WorldWideScience

Sample records for rapid method fermentables

  1. Rapid analytical extraction of volatile fermentation products

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, N B; Flickinger, M C; Tsao, G T

    1979-10-01

    With renewed interest in production of liquid fuels and chemical feedstocks from carbohydrates, numerous authors have utilized gas-liquid chromatography (GC) for quantification of volatile products. Poor separation and short column life will result if residual sugars present in the medium are not separated from the volatile compounds before injection. In our current investigation of 2,3-butanediol production from xylose, we have developed a rapid GC assay for 2,3-butanediol, acetyl methyl carbinol (acetoin), 2,3-butanedione (diacetyl), and ethanol. This method extracts the fermentation products at high pH from residual xylose before injection into the GC. This routine is a modification of the method of Kolfenbach et al. and is more rapid than the method of separation of diacetyl and acetoin from carbohydrates by distillation reported by Gupta et al. Their erroneous reports of yields of 640 mg diacetyl + acetoin/g sugar are 30% higher than the theoretical maximum for Enterobacter cloacae (ATCC 27613) and points out the need for a reliable, accurate assay for these products.

  2. Rapid ion-pair liquid chromatographic method for the determination of fenbendazole marker residue in fermented dairy products.

    Science.gov (United States)

    Vousdouka, Venetia I; Papapanagiotou, Elias P; Angelidis, Apostolos S; Fletouris, Dimitrios J

    2017-04-15

    A simple, rapid and sensitive liquid chromatographic method that allows for the quantitative determination of fenbendazole residues in fermented dairy products is described. Samples were extracted with a mixture of acetonitrile-phosphoric acid and the extracts were defatted with hexane to be further partitioned into ethyl acetate. The organic layer was evaporated to dryness and the residue was reconstituted in mobile phase. Separation of fenbendazole and its sulphoxide, sulphone, and p-hydroxylated metabolites was carried out isocratically with a mobile phase containing both positively and negatively charged pairing ions. Overall recoveries ranged from 79.8 to 88.8%, while precision data, based on within and between days variations, suggested an overall relative standard deviation of 6.3-11.0%. The detection and quantification limits were lower than 9 and 21μg/kg, respectively. The method has been successfully applied to quantitate fenbendazole residues in Feta cheese and yoghurt made from spiked and incurred ovine milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    Science.gov (United States)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  4. Method for anaerobic fermentation and biogas production

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for biomass processing, anaerobic fermentation of the processed biomass, and the production biogas. In particular, the invention relates to a system and method for generating biogas from anaerobic fermentation of processed organic material that comprises...

  5. Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR.

    Science.gov (United States)

    Martín, Belén; Jofré, Anna; Garriga, Margarita; Pla, Maria; Aymerich, Teresa

    2006-09-01

    A quick and simple method for quantitative detection of Lactobacillus sakei in fermented sausages was successfully developed. It is based on Chelex-100-based DNA purification and real-time PCR enumeration using a TaqMan fluorescence probe. Primers and probes were designed in the L. sakei 16S-23S rRNA intergenic transcribed spacer region, and the assay was evaluated using L. sakei genomic DNA and an artificially inoculated sausage model. The detection limit of this technique was approximately 3 cells per reaction mixture using both purified DNA and the inoculated sausage model. The quantification limit was established at 30 cells per reaction mixture in both models. The assay was then applied to enumerate L. sakei in real samples, and the results were compared to the MRS agar count method followed by confirmation of the percentage of L. sakei colonies. The results obtained by real-time PCR were not statistically significantly different than those obtained by plate count on MRS agar (P > 0.05), showing a satisfactory agreement between both methods. Therefore, the real-time PCR assay developed can be considered a promising rapid alternative method for the quantification of L. sakei and evaluation of the implantation of starter strains of L. sakei in fermented sausages.

  6. Novel Method of Lactic Acid Production by Electrodialysis Fermentation

    OpenAIRE

    Hongo, Motoyoshi; Nomura, Yoshiyuki; Iwahara, Masayoshi

    1986-01-01

    In lactic acid fermentation by Lactobacillus delbrueckii, the produced lactic acid affected the lactic acid productivity. Therefore, for the purpose of alleviating this inhibitory effect, an electrodialysis fermentation method which can continuously remove produced lactic acid from the fermentation broth was applied to this fermentation process. As a result, the continuation of fermentation activity was obtained, and the productivity was three times higher than in non-pH-controlled fermentati...

  7. Method for extracting protein from a fermentation product

    Science.gov (United States)

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2014-02-18

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  8. Effect of Fermentation Methods on Chemical and Microbial ...

    African Journals Online (AJOL)

    Mung flours were fermented using spontaneous and backslopping methods for 72 h and microbial analysis over a period of 72 h fermentation was carried out. The samples were subjected to biochemical test, anti-nutrient and selected mineral and vitamin contents evaluation using standard methods. There was a gradual ...

  9. Effects of seed fermentation method on seed germination and vigor ...

    African Journals Online (AJOL)

    The present study was conducted to examine the influence of Lagenaria siceraria seed fermentation method on seed germination and vigor. Three seed fermentation methods (fermented in ambient air, plastic bag stored in ambient or in plastic bag buried) were tested on two cultivars during two years. Seed germination and ...

  10. Effect of Fermentation Methods on the Nutrient Profile and ...

    African Journals Online (AJOL)

    Objective: This study evaluated the effect of fermentation method on the nutrient profile and organoleptic characteristics of African oil bean seed (Pentaclethra macrophylla Benth). Materials and Methods: Dry and mature African oil bean seeds were cleaned, boiled, dehulled, cooked, sliced/pulverized and fermented to ugba ...

  11. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Sonderegger, M.; Jeppsson, M.; Larsson, C.

    2004-01-01

    Lignocellulose hydrolysate is an abundant substrate for bioethanol production. The ideal microorganism for such a fermentation process should combine rapid and efficient conversion of the available carbon sources to ethanol with high tolerance to ethanol and to inhibitory components in the hydrol......Lignocellulose hydrolysate is an abundant substrate for bioethanol production. The ideal microorganism for such a fermentation process should combine rapid and efficient conversion of the available carbon sources to ethanol with high tolerance to ethanol and to inhibitory components...... in the hydrolysate. A particular biological problem are the pentoses, which are not naturally metabolized by the main industrial ethanol producer Saccharomyces cerevisiae. Several recombinant, mutated, and evolved xylose fermenting S. cerevisiae strains have been developed recently. We compare here the fermentation...

  12. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.

    Science.gov (United States)

    Kaur, Amandeep; Rose, Devin J; Rumpagaporn, Pinthip; Patterson, John A; Hamaker, Bruce R

    2011-01-01

    Sustained colonic fermentation supplies beneficial fermentative by-products to the distal colon, which is particularly prone to intestinal ailments. Blunted/delayed initial fermentation may also lead to less bloating. Previously, we reported that starch-entrapped alginate-based microspheres act as a slowly fermenting dietary fiber. This material was used in the present study to provide a benchmark to compare to other "slowly fermentable" fibers. Dietary fibers with previous reports of slow fermentation, namely, long-chain inulin, psyllium, alkali-soluble corn bran arabinoxylan, and long-chain β-glucan, as well as starch-entrapped microspheres were subjected to in vitro upper gastrointestinal digestion and human fecal fermentation and measured over 48 h for pH, gas, and short-chain fatty acids (SCFA). The resistant fraction of cooked and cooled potato starch was used as another form of fermentable starch and fructooligosaccharides (FOS) served as a fast fermenting control. Corn bran arabinoxylan and long-chain β-glucan initially appeared slower fermenting with comparatively low gas and SCFA production, but later fermented rapidly with little remaining in the final half of the fermentation period. Long-chain inulin and psyllium had slow and moderate, but incomplete, fermentation. The resistant fraction of cooked and cooled potato starch fermented rapidly and appeared similar to FOS. In conclusion, compared to the benchmark slowly fermentable starch-entrapped microspheres, a number of the purported slowly fermentable fibers fermented fairly rapidly overall and, of this group, only the starch-entrapped microspheres appreciably fermented in the second half of the fermentation period. Consumption of dietary fibers, particularly commercial prebiotics, leads to uncomfortable feelings of bloating and flatulence due to their rapid degradation in our large intestine. This article employs claimed potential slowly fermenting fibers and compares their fermentation rates

  13. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Quarterman, Josh; Skerker, Jeffrey M; Feng, Xueyang; Liu, Ian Y; Zhao, Huimin; Arkin, Adam P; Jin, Yong-Su

    2016-07-10

    In the important industrial yeast Saccharomyces cerevisiae, galactose metabolism requires energy production by respiration; therefore, this yeast cannot metabolize galactose under strict anaerobic conditions. While the respiratory dependence of galactose metabolism provides benefits in terms of cell growth and population stability, it is not advantageous for producing fuels and chemicals since a substantial fraction of consumed galactose is converted to carbon dioxide. In order to force S. cerevisiae to use galactose without respiration, a subunit (COX9) of a respiratory enzyme was deleted, but the resulting deletion mutant (Δcox9) was impaired in terms of galactose assimilation. Interestingly, after serial sub-cultures on galactose, the mutant evolved rapidly and was able to use galactose via fermentation only. The evolved strain (JQ-G1) produced ethanol from galactose with a 94% increase in yield and 6.9-fold improvement in specific productivity as compared to the wild-type strain. (13)C-metabolic flux analysis demonstrated a three-fold reduction in carbon flux through the TCA cycle of the evolved mutant with redirection of flux toward the fermentation pathway. Genome sequencing of the JQ-G1 strain revealed a loss of function mutation in a master negative regulator of the Leloir pathway (Gal80p). The mutation (Glu348*) in Gal80p was found to act synergistically with deletion of COX9 for efficient galactose fermentation, and thus the double deletion mutant Δcox9Δgal80 produced ethanol 2.4 times faster and with 35% higher yield than a single knockout mutant with deletion of GAL80 alone. When we introduced a functional COX9 cassette back into the JQ-G1 strain, the JQ-G1-COX9 strain showed a 33% reduction in specific galactose uptake rate and a 49% reduction in specific ethanol production rate as compared to JQ-G1. The wild-type strain was also subjected to serial sub-cultures on galactose but we failed to isolate a mutant capable of utilizing galactose without

  14. Rapid monitoring of glycerol in fermentation growth media: Facilitating crude glycerol bioprocess development.

    Science.gov (United States)

    Abad, Sergi; Pérez, Xavier; Planas, Antoni; Turon, Xavier

    2014-04-01

    Recently, the need for crude glycerol valorisation from the biodiesel industry has generated many studies for practical and economic applications. Amongst them, fermentations based on glycerol media for the production of high value metabolites are prominent applications. This has generated a need to develop analytical techniques which allow fast and simple glycerol monitoring during fermentation. The methodology should be fast and inexpensive to be adopted in research, as well as in industrial applications. In this study three different methods were analysed and compared: two common methodologies based on liquid chromatography and enzymatic kits, and the new method based on a DotBlot assay coupled with image analysis. The new methodology is faster and cheaper than the other conventional methods, with comparable performance. Good linearity, precision and accuracy were achieved in the lower range (10 or 15 g/L to depletion), the most common range of glycerol concentrations to monitor fermentations in terms of growth kinetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Quantitative measurement of vitamin K2 (menaquinones) in various fermented dairy products using a reliable high-performance liquid chromatography method.

    Science.gov (United States)

    Manoury, E; Jourdon, K; Boyaval, P; Fourcassié, P

    2013-03-01

    We evaluated menaquinone contents in a large set of 62 fermented dairy products samples by using a new liquid chromatography method for accurate quantification of lipo-soluble vitamin K(2), including distribution of individual menaquinones. The method used a simple and rapid purification step to remove matrix components in various fermented dairy products 3 times faster than a reference preparation step. Moreover, the chromatography elution time was significantly shortened and resolution and efficiency were optimized. We observed wide diversity of vitamin K(2) contents in the set of fermented dairy products, from undetectable to 1,100 ng/g of product, and a remarkable diversity of menaquinone forms among products. These observations relate to the main microorganism species currently in the different fermented product technologies. The major form in this large set of fermented dairy products was menaquinone (MK)-9, and contents of MK-9 and MK-8 forms were correlated, that of MK-9 being around 4 times that of MK-8, suggesting that microorganisms able to produce MK-9 also produce MK-8. This was not the case for the other menaquinones, which were produced independently of each other. Finally, no obvious link was established between MK-9 content and fat content or pH of the fermented dairy products. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. AO–MW–PLS method applied to rapid quantification of teicoplanin with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Jiemei Chen

    2017-01-01

    Full Text Available Teicoplanin (TCP is an important lipoglycopeptide antibiotic produced by fermenting Actinoplanes teichomyceticus. The change in TCP concentration is important to measure in the fermentation process. In this study, a reagent-free and rapid quantification method for TCP in the TCP–Tris–HCl mixture samples was developed using near-infrared (NIR spectroscopy by focusing our attention on the fermentation process for TCP. The absorbance optimization (AO partial least squares (PLS was proposed and integrated with the moving window (MW PLS, which is called AO–MW–PLS method, to select appropriate wavebands. A model set that includes various wavebands that were equivalent to the optimal AO–MW–PLS waveband was proposed based on statistical considerations. The public region of all equivalent wavebands was just one of the equivalent wavebands. The obtained public regions were 1540–1868nm for TCP and 1114–1310nm for Tris. The root-mean-square error and correlation coefficient for leave-one-out cross validation were 0.046mg mL−1 and 0.9998mg mL−1 for TCP, and 0.235mg mL−1 and 0.9986mg mL−1 for Tris, respectively. All the models achieved highly accurate prediction effects, and the selected wavebands provided valuable references for designing specialized spectrometers. This study provided a valuable reference for further application of the proposed methods to TCP fermentation broth and to other spectroscopic analysis fields.

  17. Alcoholic fermentation of whey

    Energy Technology Data Exchange (ETDEWEB)

    Beach, A S; Holland, J W

    1958-09-10

    The lactose of whey and other milk products is rapidly fermented to ethanol by means of Candida pseudotropicalis strain XI. The fermentation is complete in about 12 hours and yields about 45% ethanol based on the weight of lactose. Conditions favoring the fermentation and inhibiting lactic acid production include pH 4.5, 30/sup 0/, and continuous aeration.

  18. Rapid discrimination of strain-dependent fermentation characteristics among Lactobacillus strains by NMR-based metabolomics of fermented vegetable juice.

    Directory of Open Access Journals (Sweden)

    Satoru Tomita

    Full Text Available In this study, we investigated the applicability of NMR-based metabolomics to discriminate strain-dependent fermentation characteristics of lactic acid bacteria (LAB, which are important microorganisms for fermented food production. To evaluate the discrimination capability, six type strains of Lactobacillus species and six additional L. brevis strains were used focusing on i the difference between homo- and hetero-lactic fermentative species and ii strain-dependent characteristics within L. brevis. Based on the differences in the metabolite profiles of fermented vegetable juices, non-targeted principal component analysis (PCA clearly separated the samples into those inoculated with homo- and hetero-lactic fermentative species. The separation was primarily explained by the different levels of dominant metabolites (lactic acid, acetic acid, ethanol, and mannitol. Orthogonal partial least squares discrimination analysis, based on a regions-of-interest (ROIs approach, revealed the contribution of low-abundance metabolites: acetoin, phenyllactic acid, p-hydroxyphenyllactic acid, glycerophosphocholine, and succinic acid for homolactic fermentation; and ornithine, tyramine, and γ-aminobutyric acid (GABA for heterolactic fermentation. Furthermore, ROIs-based PCA of seven L. brevis strains separated their strain-dependent fermentation characteristics primarily based on their ability to utilize sucrose and citric acid, and convert glutamic acid and tyrosine into GABA and tyramine, respectively. In conclusion, NMR metabolomics successfully discriminated the fermentation characteristics of the tested strains and provided further information on metabolites responsible for these characteristics, which may impact the taste, aroma, and functional properties of fermented foods.

  19. Quality and characteristics of fermented ginseng seed oil based on bacterial strain and extraction method

    Directory of Open Access Journals (Sweden)

    Myung-Hee Lee

    2017-07-01

    Results and Conclusion: The color of the fermented ginseng seed oil did not differ greatly according to the fermentation or extraction method. The highest phenolic compound content recovered with the use of supercritical fluid extraction combined with fermentation using the Bacillus subtilis Korea Food Research Institute (KFRI 1127 strain. The fatty acid composition did not differ greatly according to fermentation strain and extraction method. The phytosterol content of ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method was highest at 983.58 mg/100 g. Therefore, our results suggested that the ginseng seed oil fermented with Bacillus subtilis KFRI 1127 and extracted using the supercritical fluid method can yield a higher content of bioactive ingredients, such as phenolics, and phytosterols, without impacting the color or fatty acid composition of the product.

  20. Effect of pH fermentation on production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis method

    Science.gov (United States)

    Arif, A. R.; Natsir, H.; Rohani, H.; Karim, A.

    2018-03-01

    Bioethanol is one of the alternative energy sourced from natural products containing carbohydrates through hydrolysis and fermentation process. Jackfruit seeds is one of the feedstock that contain high carbohydrate content but less utilized. The aims of this study to determine the effect of pH hydrolysis in the process of production bioethanol from jackfruit seeds (Artocarpus heterophyllus) through separate fermentation hydrolysis (SHF) method. The hydrolysis process uses H2SO4 as a hydrolyzing agent. The fermentation process used Saccharomyces cereviceae as a fermentor with a variation of pH 2,3 4 and 5 for 70 hours. The results showed that glucose content of 75% and pH 3 was the optimum pH of fermentation with the content of bioethanol 57.94%. The fermentation stage has an important role in increasing the levels of glucose and bioethanol in linear. The content of glucose and bioethanol of jackfruit seeds showed a great potential for development as the feedstock in bioethanol production.

  1. Rapid production of organic fertilizer by dynamic high-temperature aerobic fermentation (DHAF) of food waste.

    Science.gov (United States)

    Jiang, Yang; Ju, Meiting; Li, Weizun; Ren, Qingbin; Liu, Le; Chen, Yu; Yang, Qian; Hou, Qidong; Liu, Yiliang

    2015-12-01

    Keep composting matrix in continuous collision and friction under a relatively high-temperature can significantly accelerate the progress of composting. A bioreactor was designed according to the novel process. Using this technology, organic fertilizer could be produced within 96h. The electric conductivity (EC) and pH value reached to a stable value of 2.35mS/cm and 7.7 after 96h of fermentation. The total carbon/total nitrogen (TC/TN) and dissolved carbon/dissolved nitrogen (DC/DN) ratio was decrease from 27.3 and 36.2 to 17.4 and 7.6 respectively. In contrast, it needed 24days to achieve the similar result in traditional static composting (TSC). Compost particles with different size were analyzed to explore the rapid degradation mechanism of food waste. The evidence of anaerobic fermentation was firstly discovered in aerobic composting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cyclic method for the fermentation of starch raw material in the Romadanovsk alcohol plant

    Energy Technology Data Exchange (ETDEWEB)

    Naumenko, I I; Basharin, I I; Pol' gin, I V

    1958-01-01

    Fermentation vats (volume 32 cu.m.) were connected in 2 series of 4 vats communicating by flow pipes supplied with cut-off valves. The main wort conduit was supplied with a 3-way valve connected with a bent pipe joint, by means of which the 3-way valve could be turned to any of the vats. Fermentation took place alternately, each vat series being filled for 24 hours with wort after yeast had been added. Fermentation in the main vat continued for 38 hours and in the others for 20 hours. Draining the finished brew and the preparation of the vats for the next fermentation began from the 4th vat, which in the following cycle, became the main vat. Fermentation took place with satisfactory acidity-increase indexes (less than or equal to 0.20 D.), with wastes no greater than expected, and with an alcohol yield of 100.2 to 100.3% of that expected from 1 ton of starch. The advantages of the cyclic method are a decrease in the fermentation time and a more complete fermentation of sugar; the method can thus be recommended for fermentation plants which have an insufficient productivity as a method which does not require many repairs or much expense. A flow sheet of the process and the design of the distributing pipes are given.

  3. Technology and economics of fermentation alcohol - an update

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, R.K.

    1983-03-01

    Fermentation alcohol is being widely studied as an alternative fuel, and production is increasing, especially in Brazil, where the goal is more than 10 billion litres per year by 1985. Fuel markets are hundreds of times greater than the traditional ethanol markets which the existing industry supplies. To make a material contribution to fuel supply, fermentation ethanol must be treated as a major chemical and produced in large-volume, highly efficient plants. Such plants must be assured of a continuous supply of low-cost raw materials for which suitable processes have been developed and commercially proven. Sugar cane in the tropics and grains in some temperate countries meet these requirements; cellulosics do not qualify at present, nor will they in the foreseeable future, without major breakthroughs. Using techniques borrowed from the starch sweetener industry, starchy materials may be economically hydrolysed to fermentable sugars; rapid acid hydrolysis may prove superior to enzymatic processes. Major projects are under way to replace traditional batch or cascade fermentations with rapid, single-vessel continuous units, but these have not yet been fully proven. Where suitable, yeast recycle is being used as a means of increasing alcohol yields, and energy-efficient distillation methods of the petrochemical industry are being adopted. The consequent large reduction in steam consumption greatly reduces the appeal of other methods which have been proposed to remove water. Opportunities for process improvements abound, especially in developing (1) the means to provide cellulosic raw materials in large quantities at acceptable costs, (2) economically effective methods of pretreating and hydrolysing cellulosics, (3) practical organisms for converting five-carbon sugars to ethanol and (4) higher fermentation yields and efficiencies using bacteria or immobilized yeast. (Refs. 21).

  4. Fed-batch hydrolysate addition and cell separation by settling in high cell density lignocellulosic ethanol fermentations on AFEX™ corn stover in the Rapid Bioconversion with Integrated recycling Technology process.

    Science.gov (United States)

    Sarks, Cory; Jin, Mingjie; Balan, Venkatesh; Dale, Bruce E

    2017-09-01

    The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.

  5. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Guo, Wan-Qian; Liu, Bing-Feng; Wang, Xing-Zu; Ding, Jie; Chen, Zhao-Bo [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, Heilongjiang (China); Wang, Xiang-Jing; Xiang, Wen-Sheng [Research Center of Life Science and Biotechnology, Northeast Agricultural University, Harbin 150030 (China)

    2008-08-15

    In order to enrich hydrogen producing bacteria and to establish high-efficient communities of the mixed microbial cultures, inoculum needs to be pretreated before the cultivation. Four pretreatment methods including heat-shock pretreatment, acid pretreatment, alkaline pretreatment and repeated-aeration pretreatment were performed on the seed sludge which was collected from a secondary settling tank of a municipal wastewater treatment plant. In contrast to the control test without any pretreatment, the heat-shock pretreatment, acid pretreatment and repeated-aeration pretreatment completely suppressed the methanogenic activity of the seed sludge, but the alkaline pretreatment did not. Employing different pretreatment methods resulted in the change in fermentation types as butyric-acid type fermentation was achieved by the heat-shock and alkaline pretreatments, mixed-acid type fermentation was achieved by acid pretreatment and the control, and ethanol-type fermentation was observed by repeated-aeration pretreatment. Denaturing gradient gel electrophoresis (DGGE) profiles revealed that pretreatment method substantially affected the species composition of microbial communities. The highest hydrogen yield of 1.96 mol/mol-glucose was observed with the repeated-aeration pretreatment method, while the lowest was obtained as the seed sludge was acidified. It is concluded that the pretreatment methods led to the difference in the initial microbial communities which might be directly responsible for different fermentation types and hydrogen yields. (author)

  6. Lactose fermentation by engineered Saccharomyces cerevisiae capable of fermenting cellobiose.

    Science.gov (United States)

    Liu, Jing-Jing; Zhang, Guo-Chang; Oh, Eun Joong; Pathanibul, Panchalee; Turner, Timothy L; Jin, Yong-Su

    2016-09-20

    Lactose is an inevitable byproduct of the dairy industry. In addition to cheese manufacturing, the growing Greek yogurt industry generates excess acid whey, which contains lactose. Therefore, rapid and efficient conversion of lactose to fuels and chemicals would be useful for recycling the otherwise harmful acid whey. Saccharomyces cerevisiae, a popular metabolic engineering host, cannot natively utilize lactose. However, we discovered that an engineered S. cerevisiae strain (EJ2) capable of fermenting cellobiose can also ferment lactose. This finding suggests that a cellobiose transporter (CDT-1) can transport lactose and a β-glucosidase (GH1-1) can hydrolyze lactose by acting as a β-galactosidase. While the lactose fermentation by the EJ2 strain was much slower than the cellobiose fermentation, a faster lactose-fermenting strain (EJ2e8) was obtained through serial subcultures on lactose. The EJ2e8 strain fermented lactose with a consumption rate of 2.16g/Lh. The improved lactose fermentation by the EJ2e8 strain was due to the increased copy number of cdt-1 and gh1-1 genes. Looking ahead, the EJ2e8 strain could be exploited for the production of other non-ethanol fuels and chemicals from lactose through further metabolic engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A novel method to rapidly distinguish the geographical origin of traditional fermented-salted vegetables by mass fingerprinting.

    Science.gov (United States)

    Yoon, So-Ra; Kim, Sung Hyun; Lee, Hae-Won; Ha, Ji-Hyoung

    2017-01-01

    The geographical origin of kimchi is of interest to consumers and producers because the prices of commercial kimchi products can vary significantly according to the geographical origin. Hence, social issues related to the geographical origin of kimchi in Korea have emerged as a major problem. In this study, the geographical origin of kimchi was determined by comparing the mass fingerprints obtained for Korean and Chinese kimchi samples by MALDI-TOF MS with multivariate analysis. The results obtained herein provide an accurate, powerful tool to clearly discriminate kimchi samples based on their geographical origin within a short time and to ensure food authenticity, which is of significance in the kimchi industry. Furthermore, our MALDI-TOF MS method could be applied to determining the geographical origin of other fermented-salted vegetables at a reduced cost in shorter times.

  8. The Effect of Fungicide Residues and Yeast Assimilable Nitrogen on Fermentation Kinetics and H2S Production during Cider Fermentation

    OpenAIRE

    Boudreau IV, Thomas Francis

    2016-01-01

    The Virginia cider industry has grown rapidly in the past decade, and demands research-based recommendations for cider fermentation. This study evaluated relationships between the unique chemistry of apples and production of hydrogen sulfide (H2S) in cider fermentations. Yeast assimilable nitrogen (YAN) concentration and composition and residual fungicides influence H2S production by yeast during fermentation, but these factors have to date only been studied in wine grape fermentations. This ...

  9. Effect of fermentation and sterilization on anthocyanins in blueberry.

    Science.gov (United States)

    Nie, Qixing; Feng, Lei; Hu, Jielun; Wang, Sunan; Chen, Haihong; Huang, Xiaojun; Nie, Shaoping; Xiong, Tao; Xie, Mingyong

    2017-03-01

    Blueberry products have various health benefits due to their high content of dietary anthocyanins. The aim of this study was to investigate the impact of fermentation and sterilization on total anthocyanin content, composition and some quality attributes of blueberry puree. The blueberry puree used here was fermented for 40 h at 37 °C by Lactobacillus after sterilization. The method of ultra-performance liquid chromatography-mass spectrometry was optimized for the rapid analysis of anthocyanins. Quality attributes including pH, color, total soluble solids and viscosity were measured. A total of 21 anthocyanins and five anthocyanidins were quantified by ultra-performance liquid chromatography. Fermented blueberry had reduced total anthocyanin content (29%) and levels of individual anthocyanins compared with fresh blueberry. Total anthocyanin content was decreased 46% by sterilization, and different degradation behavior of individual anthocyanin was appeared between fermented and sterilized-fermented blueberry puree. Fermentation and sterilization decreased the total soluble solids and pH and changed color parameters, while minimally influencing viscosity. The loss of total anthocyanin content by fermentation was related to the unstable structure of blueberry anthocyanins. Anthocyanins are sensitive to temperature (>80 °C), and degradation of anthocyanins by sterilization in blueberry should be considered in the fermentation procedure. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. A study of the process of two staged anaerobic fermentation as a possible method for purifying sewage

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Kouama, K; Matsuo, T

    1983-01-01

    Great attention has recently been given to the study of the processes of anaerobic fermentation, which may become alternatives to the existing methods for purifying waste waters which use aerobic microorganisms. A series of experimentswere conducted with the use of an artificially prepared liquid (fermented milk and starch) which imitates the waste to be purified, in order to explain the capabilities of the process of two staged anaerobic fermentation (DAS) as a method for purifying waste waters. The industrial system of the process includes: a fermentation vat for acetic fermentation with recirculation of the sediment, a primary settler, a fermentation tank for methane fermentation and a secondary settler. The process was conducted at a loading speed (based on Carbon) from 0.15 to 0.4 kilograms per cubic meter per day at a temperature of 38C. The degree of conversion of the fermented organic substances into volatile organic acids was not a function of the loading speed and was 54 to 57 percent in the acetic fermentation tank, where 95 to 97 percent of the organic material was broken down with the production of methane and carbon dioxide.

  11. The Use of Titrimetric, Nelson Somogyi and Hplc Methods for the Analysis of Cashew Apple Juice Fermentation Broths

    OpenAIRE

    Kantasubrata, Julia; T. Karossi, A; S. Pramudi, A

    1993-01-01

    In cashew apple juice fermentation to produce wine and vinegar, analysis of organic acids and sugars in fermentation broths is very important, due to the fact that optimum conditions of fermentation could only be established from results obtained on monitoring the concentrations of those components during the fermentation process. Analysis of organic acids by tiirimetric method and analysis of sugars by Nelson-Somogyi method only give a total amount of acids and sugars. HPLC is one of the pro...

  12. Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production.

    Science.gov (United States)

    Shi, Jun; Zhang, Min; Zhang, Libin; Wang, Pin; Jiang, Li; Deng, Huiping

    2014-03-01

    Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild-type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high-ethanol-producing strain was obtained. Designated as TJ2-3, this strain could ferment xylose and produce 1.5 times more ethanol than wild-type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. Quantitation & Case-Study-Driven Inquiry to Enhance Yeast Fermentation Studies

    Science.gov (United States)

    Grammer, Robert T.

    2012-01-01

    We propose a procedure for the assay of fermentation in yeast in microcentrifuge tubes that is simple and rapid, permitting assay replicates, descriptive statistics, and the preparation of line graphs that indicate reproducibility. Using regression and simple derivatives to determine initial velocities, we suggest methods to compare the effects of…

  14. Effects of seed fermentation method on seed germination and vigor ...

    African Journals Online (AJOL)

    BERTIN

    2013-11-27

    Nov 27, 2013 ... methods (fermented in ambient air, plastic bag stored in ambient or in plastic bag buried) were tested ... fruits into plastic bag that was exposed in ambient air in the field; SFD, seeds ..... Concepts and technologies of selected.

  15. Method for saccharification and fermentation of mashes containing polysaccharides for alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Beubler, A.; Giang, B.; Dempwolf, M.; Dickscheit, R.; Lietz, P.; Nielebock, C.; Peglow, K.; Sattelberg, K.

    1970-01-01

    Twenty-five g comminuted grain are steeped in 200 ml water. At 5/sup 0/C, 0.02% (in terms of grain mass) ..cap alpha..-amylase preparation is added at 5/sup 0/C, and the mash then treated by conventional methods so that the starch, cellulose, hemicellulose and other polysaccharides are ready for enzymatic digestion. The mash is then brought to 65/sup 0/C and saccharified with 1% ..cap alpha..-amylase and 0.2% amyloglucosidase for 45 minutes. The saccharified mash is freed from its solids, fermentation is induced after sterilization by addition of yeast, and fermentation is completed in < 36 hours by discontinuous, continuous or agitated methods. A part of the enzyme preparation can be replaced by malt.

  16. Yeast Population Dynamics in Spontaneous and Inoculated Alcoholic Fermentations of Zametovka Must

    Directory of Open Access Journals (Sweden)

    Franc Cus

    2002-01-01

    Full Text Available Inoculated fermentations, which are more rapid and more reliable than spontaneous fermentations, and assure predictable wine quality, are nowadays prevalent in Slovenia’s large-scale wine production. However, spontaneous fermentation strengthens local characteristics of wine and offers opportunities for technological innovation. In the 1999 vintage, spontaneous and inoculated fermentations of Zametovka (Vitis vinifera grape must were studied. Zametovka is the main red variety in production of traditional Slovene red blend wine, Cvicek. The diversity of yeast species and strains in both of the investigated fermentations was determined by molecular and traditional identification methods. The outset of alcoholic fermentation, yeast growth kinetics, and yeast population dynamics presents the main differences between the examined fermentations. Yeast population diversity was higher in the spontaneous process. Dominant yeast isolates from spontaneous fermentation were identified as Candida stellata, Hanseniaspora uvarum and Saccharomyces cerevisiae; whereas Saccharomyces bayanus, Pichia kluyveri, Pichia membranifaciens and Torulaspora delbrueckiim were found less frequently. Dominant species in the inoculated fermentation was Saccharomyces cerevisiae; other species found in smaller numbers were Candida stellata, Hanseniaspora uvarum and Debaryomyces hansenii var. hansenii. Using PFGE, we were able to distinguish among 15 different Saccharomyces cerevisiae strains and three different Saccharomyces bayanus strains isolated from spontaneous fermentation, whereas, in the case of inoculated fermentation, only two Saccharomyces cerevisiae strains were found. Their chromosomal patterns coincide with the chromosomal patterns of the starter culture strains.

  17. Effects of seed fermentation method on seed germination and vigor ...

    African Journals Online (AJOL)

    BERTIN

    2013-11-27

    Nov 27, 2013 ... high, suggesting that wet soil is necessary for an on farm reliable evaluation of seed fermentation method in the .... with tap water, and sundried in ambient air until attaining 6 to 7% moisture. ..... arabica in Brazil. Int. J. Food ...

  18. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste.

    Science.gov (United States)

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.

  19. Rapid Quantification of Major Volatile Metabolites in Fermented Food and Beverages Using Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Pinu, Farhana R; Villas-Boas, Silas G

    2017-07-26

    Here we present a method for the accurate quantification of major volatile metabolites found in different food and beverages, including ethanol, acetic acid and other aroma compounds, using gas chromatography coupled to mass spectrometry (GC-MS). The method is combined with a simple sample preparation procedure using sodium chloride and anhydrous ethyl acetate. The GC-MS analysis was accomplished within 4.75 min, and over 80 features were detected, of which 40 were positively identified using an in-house and a commercialmass spectrometry (MS) library. We determined different analytical parameters of these metabolites including the limit of detection (LOD), limit of quantitation (LOQ) and range of quantification. In order to validate the method, we also determined detailed analytical characteristics of five major fermentation end products including ethanol, acetic acid, isoamyl alcohol, ethyl-L-lactate and, acetoin. The method showed very low technical variability for the measurements of these metabolites in different matrices (<3%) with an excellent accuracy (100% ± 5%), recovery (100% ± 10%), reproducibility and repeatability [Coefficient of variation (CV) 1-10%)]. To demonstrate the applicability of the method, we analysed different fermented products including balsamic vinegars, sourdough, distilled (whisky) and non-distilled beverages (wine and beer).

  20. Rapid prototyping: een veelbelovende methode

    NARCIS (Netherlands)

    Haverman, T.M.; Karagozoglu, K.H.; Prins, H.; Schulten, E.A.J.M.; Forouzanfar, T.

    2013-01-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization,

  1. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.

    Science.gov (United States)

    Arslan, Yeşim; Eken-Saraçoğlu, Nurdan

    2010-11-01

    In this study, we investigated the use of hazelnut shell as a renewable and low cost lignocellulosic material for bioethanol production for the first time. High lignin content of hazelnut shell is an important obstacle for such a biotransformation. Biomass hydrolysis with acids yields reducing sugar with several inhibitors which limit the fermentability of sugars. The various conditioning methods for biomass and hydrolysate were performed to overcome the toxicity and their effects on the subsequent fermentation of hazelnut shell hydrolysate by Pichia stipitis were evaluated with shaking flasks experiments. Hazelnut shells hydrolysis with 0.7M H(2)SO(4) yielded 49 gl(-1) total reducing sugars and fermentation inhibitors in untreated hydrolysate. First, it was shown that several hydrolysate detoxification methods were solely inefficient in achieving cell growth and ethanol production in the fermentation of hazelnut shell hydrolysates derived from non-delignified biomass. Next, different pretreatments of hazelnut shells were considered for delignification and employed before hydrolysis in conjunction with hydrolysate detoxification to improve alcohol fermentation. Among six delignification methods, the most effective pretreatment regarding to ethanol concentration includes the treatment of shells with 3% (w/v) NaOH at room temperature, which was integrated with sequential hydrolysate detoxification by overliming and then treatment with charcoal twice at 60 degrees C. This treatment brought about a total reduction of 97% in furans and 88.4% in phenolics. Almost all trialed treatments caused significant sugar loss. Under the best assayed conditions, ethanol concentration of 16.79gl(-1) was reached from a hazelnut shell hyrolysate containing initial 50g total reducing sugar l(-1) after partial synthetic xylose supplementation. This value is equal to 91.25% of ethanol concentration that was obtained from synthetic d-xylose under same conditions. The present study

  2. The Application of State-of-the-Art Analytic Tools (Biosensors and Spectroscopy in Beverage and Food Fermentation Process Monitoring

    Directory of Open Access Journals (Sweden)

    Shaneel Chandra

    2017-09-01

    Full Text Available The production of several agricultural products and foods are linked with fermentation. Traditional methods used to control and monitor the quality of the products and processes are based on the use of simple chemical analysis. However, these methods are time-consuming and do not provide sufficient relevant information to guarantee the chemical changes during the process. Commonly used methods applied in the agriculture and food industries to monitor fermentation are those based on simple or single-point sensors, where only one parameter is measured (e.g., temperature or density. These sensors are used several times per day and are often the only source of data available from which the conditions and rate of fermentation are monitored. In the modern food industry, an ideal method to control and monitor the fermentation process should enable a direct, rapid, precise, and accurate determination of several target compounds, with minimal to no sample preparation or reagent consumption. Here, state-of-the-art advancements in both the application of sensors and analytical tools to monitor beverage and food fermentation processes will be discussed.

  3. Lactic Acid Fermentation, Urea and Lime Addition: Promising Faecal Sludge Sanitizing Methods for Emergency Sanitation.

    Science.gov (United States)

    Anderson, Catherine; Malambo, Dennis Hanjalika; Perez, Maria Eliette Gonzalez; Nobela, Happiness Ngwanamoseka; de Pooter, Lobke; Spit, Jan; Hooijmans, Christine Maria; de Vossenberg, Jack van; Greya, Wilson; Thole, Bernard; van Lier, Jules B; Brdjanovic, Damir

    2015-10-29

    In this research, three faecal sludge sanitizing methods-lactic acid fermentation, urea treatment and lime treatment-were studied for application in emergency situations. These methods were investigated by undertaking small scale field trials with pit latrine sludge in Blantyre, Malawi. Hydrated lime was able to reduce the E. coli count in the sludge to below the detectable limit within 1 h applying a pH > 11 (using a dosage from 7% to 17% w/w, depending faecal sludge alkalinity), urea treatment required about 4 days using 2.5% wet weight urea addition, and lactic acid fermentation needed approximately 1 week after being dosed with 10% wet weight molasses (2 g (glucose/fructose)/kg) and 10% wet weight pre-culture (99.8% pasteurised whole milk and 0.02% fermented milk drink containing Lactobacillus casei Shirota). Based on Malawian prices, the cost of sanitizing 1 m³ of faecal sludge was estimated to be €32 for lactic acid fermentation, €20 for urea treatment and €12 for hydrated lime treatment.

  4. A modified indirect mathematical model for evaluation of ethanol production efficiency in industrial-scale continuous fermentation processes.

    Science.gov (United States)

    Canseco Grellet, M A; Castagnaro, A; Dantur, K I; De Boeck, G; Ahmed, P M; Cárdenas, G J; Welin, B; Ruiz, R M

    2016-10-01

    To calculate fermentation efficiency in a continuous ethanol production process, we aimed to develop a robust mathematical method based on the analysis of metabolic by-product formation. This method is in contrast to the traditional way of calculating ethanol fermentation efficiency, where the ratio between the ethanol produced and the sugar consumed is expressed as a percentage of the theoretical conversion yield. Comparison between the two methods, at industrial scale and in sensitivity studies, showed that the indirect method was more robust and gave slightly higher fermentation efficiency values, although fermentation efficiency of the industrial process was found to be low (~75%). The traditional calculation method is simpler than the indirect method as it only requires a few chemical determinations in samples collected. However, a minor error in any measured parameter will have an important impact on the calculated efficiency. In contrast, the indirect method of calculation requires a greater number of determinations but is much more robust since an error in any parameter will only have a minor effect on the fermentation efficiency value. The application of the indirect calculation methodology in order to evaluate the real situation of the process and to reach an optimum fermentation yield for an industrial-scale ethanol production is recommended. Once a high fermentation yield has been reached the traditional method should be used to maintain the control of the process. Upon detection of lower yields in an optimized process the indirect method should be employed as it permits a more accurate diagnosis of causes of yield losses in order to correct the problem rapidly. The low fermentation efficiency obtained in this study shows an urgent need for industrial process optimization where the indirect calculation methodology will be an important tool to determine process losses. © 2016 The Society for Applied Microbiology.

  5. Rapid Quantification of Major Volatile Metabolites in Fermented Food and Beverages Using Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Farhana R. Pinu

    2017-07-01

    Full Text Available Here we present a method for the accurate quantification of major volatile metabolites found in different food and beverages, including ethanol, acetic acid and other aroma compounds, using gas chromatography coupled to mass spectrometry (GC-MS. The method is combined with a simple sample preparation procedure using sodium chloride and anhydrous ethyl acetate. The GC-MS analysis was accomplished within 4.75 min, and over 80 features were detected, of which 40 were positively identified using an in-house and a commercialmass spectrometry (MS library. We determined different analytical parameters of these metabolites including the limit of detection (LOD, limit of quantitation (LOQ and range of quantification. In order to validate the method, we also determined detailed analytical characteristics of five major fermentation end products including ethanol, acetic acid, isoamyl alcohol, ethyl-L-lactate and, acetoin. The method showed very low technical variability for the measurements of these metabolites in different matrices (<3% with an excellent accuracy (100% ± 5%, recovery (100% ± 10%, reproducibility and repeatability [Coefficient of variation (CV 1–10%]. To demonstrate the applicability of the method, we analysed different fermented products including balsamic vinegars, sourdough, distilled (whisky and non-distilled beverages (wine and beer.

  6. TRADITIONAL FERMENTED FOODS OF LESOTHO

    Directory of Open Access Journals (Sweden)

    Tendekayi H. Gadaga

    2013-06-01

    Full Text Available This paper describes the traditional methods of preparing fermented foods and beverages of Lesotho. Information on the preparation methods was obtained through a combination of literature review and face to face interviews with respondents from Roma in Lesotho. An unstructured questionnaire was used to capture information on the processes, raw materials and utensils used. Four products; motoho (a fermented porridge, Sesotho (a sorghum based alcoholic beverage, hopose (sorghum fermented beer with added hops and mafi (spontaneously fermented milk, were found to be the main fermented foods prepared and consumed at household level in Lesotho. Motoho is a thin gruel, popular as refreshing beverage as well as a weaning food. Sesotho is sorghum based alcoholic beverage prepared for household consumption as well as for sale. It is consumed in the actively fermenting state. Mafi is the name given to spontaneously fermented milk with a thick consistency. Little research has been done on the technological aspects, including the microbiological and biochemical characteristics of fermented foods in Lesotho. Some of the traditional aspects of the preparation methods, such as use of earthenware pots, are being replaced, and modern equipment including plastic utensils are being used. There is need for further systematic studies on the microbiological and biochemical characteristics of these these products.

  7. Influence of Fermentation Methods on Neutral Detergent Fiber Degradation Parameters

    DEFF Research Database (Denmark)

    Bossen, D; Mertens, D R; Weisbjerg, M R

    2008-01-01

    The effect of 3 fermentation methods, in situ (IS) in 4 lactating cows (average pH of 5.8), in vitro (IVn) with media pH of 6.8, or in vitro (IVa) with media pH adjusted to 6.0 using citric acid, on fiber degradation parameters was studied using feeds ground to different particle sizes. Corn silage...

  8. Introduction of a cyclic-fermentation method

    Energy Technology Data Exchange (ETDEWEB)

    Makarova, C P

    1958-01-01

    Equipment is described, consisting of 8 kettles, which permits a cyclic fermentation process and continuous ethanol production; 100% yields of ethanol are obtained, based on the starch content in grain.

  9. Acetone-butyl alcohol fermentation of the cornstalk hydrolyzates prepared by the method of Riga

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, N A; Shcheblykina, N A; Kalnina, V; Pelsis, D

    1960-01-01

    The possibility of use of waste instead of food products in the acetone-butyl alcohol fermentation was investigated. Crushed cornstalks hydrolyzed by the method of Riga were inverted at varying conditions. The hydrolyzate containing about 50% of reducing substances (RS), based on dry weight of cornstalks, was neutralized to pH 6.3-6.5, diluted with water to the final concentration 5.0-5.1% of RS filtered, and the filtrate sterilized. The resulting liquor (I) was mixed with the wheat meal mash containing 5% of sugar (starch calculated as glucose) and fermented. The utilization of I depended upon the regime of inversion; the optimal being 20 minutes at 115/sup 0/, hydrocoefficient 1:4. In this case the use of 40% of mash sugar in form of I did not impair the yield of fermentation. The use of corn instead of wheat meal decreased the yield of butanol and increased that of ethanol. The fermentation of the mixture of I (final concentration 3% RS) and corn gluten (final concentration 2%), mineral salts added, gave higher yields than did the fermentation of the wheat meal mash.

  10. Direct determination of calcium, sodium and potassium in fermented milk products

    Directory of Open Access Journals (Sweden)

    Kravić Snežana Ž.

    2012-01-01

    Full Text Available The aim of this study was the investigation of the possibilities of direct determination of calcium, sodium and potassium in the commercial and kombucha-based fermented milk products by flame photometry. Two procedures were used for sample preparation: simple dilution with water (direct method and extraction with mineral acid. Calcium, sodium and potassium levels determined after mentioned sample preparation methods were compared. The results showed that the differences between the values obtained for the different sample treatment were within the experimental error at the 95% confidence level. Compared to the method based on extraction with mineral acid, the direct method is efficient, faster, simpler, cheaper, and operates according to the principles of Green Chemistry. Consequently, the proposed method for the direct determination of calcium, sodium and potassium could be applied for the rapid routine analysis of the mineral content in the fermented dairy products. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  11. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbach, Dana J.; Kuo, Alan; Sato, Trey K.; Potts, Katlyn M.; Salamov, Asaf A.; LaButti, Kurt M.; Sun, Hui; Clum, Alicia; Pangilinan, Jasmyn L.; Lindquist, Erika A.; Lucas, Susan; Lapidus, Alla; Jin, Mingjie; Gunawan, Christa; Balan, Venkatesh; Dale, Bruce E.; Jeffries, Thomas W.; Zinkel, Robert; Barry, Kerrie W.; Grigoriev, Igor V.; Gasch, Audrey P.

    2011-02-24

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative capacity pales in comparison with glucose, limiting the economic feasibility of industrial fermentations. To better understand xylose utilization for subsequent microbial engineering, we sequenced the genomes of two xylose-fermenting, beetle-associated fungi, Spathaspora passalidarum and Candida tenuis. To identify genes involved in xylose metabolism, we applied a comparative genomic approach across 14 Ascomycete genomes, mapping phenotypes and genotypes onto the fungal phylogeny, and measured genomic expression across five Hemiascomycete species with different xylose-consumption phenotypes. This approach implicated many genes and processes involved in xylose assimilation. Several of these genes significantly improved xylose utilization when engineered into S. cerevisiae, demonstrating the power of comparative methods in rapidly identifying genes for biomass conversion while reflecting on fungal ecology.

  12. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Madsen, M.; Sophanodora, P.

    2002-01-01

    % salt (w/w) as well as two high-salt batches, containing 9% and 11% salt. pH decreased rapidly from 6 to 4.5 in low-salt batches, whereas in high-salt batches, a slow or no decrease in pH was found. Lactic acid bacteria (LAB) and yeasts were isolated as the dominant microorganisms during fermentation....... LAB counts increased to 108-109 cfu g-1 and yeast counts to 107-5 x 107 cfu g-1 in all batches, except in the 11% salt batch, where counts were 1-2 log lower. Phenotypic tests, ITS-PCR, carbohydrate fermentations and 16S rRNA gene sequencing identified LAB isolates as Pediococcus pentosaceus......Plaa-som is a Thai fermented fish product prepared from snakehead fish, salt, palm syrup and sometimes roasted rice. We studied the effects of different salt concentrations on decrease in pH and on microflora composition during fermentation. Two low-salt batches were prepared, containing 6% and 7...

  13. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    Science.gov (United States)

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  14. Aeration-Controlled Formation of Acid in Heterolactic Fermentations

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens

    1994-01-01

    fermentation processes should be analyzed as fed-batch fermentations with oxygen as the limiting substrate. Addition of fructose in limited amounts leads to the formation of one half mole of acetic acid for each mole fructose, thus offering an alternative mechanism for controlling acetic acid formation.......Controlled aeration of Leuconostoc mesenteroides was studied as a possible mechanism for control of the formation of acetic acid, a metabolite of major influence on the taste of lactic fermented foods. Fermentations were carried out in small scale in a medium in which growth was limited...... by the buffer capacity only. Ethanol and acetic acid formed during the fermentation were analyzed by rapid head space gas chromatography, and the ratio of the molar concentrations of these two volatiles quantitatively predicted the balance between the formation of acetic acid and lactic acid. The oxygen...

  15. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  16. Biodiversity and dynamics of meat fermentations: the contribution of molecular methods for a better comprehension of a complex ecosystem.

    Science.gov (United States)

    Cocolin, Luca; Dolci, Paola; Rantsiou, Kalliopi

    2011-11-01

    The ecology of fermented sausages is complex and includes different species and strains of bacteria, yeasts and molds. The developments in the field of molecular biology, allowed for new methods to become available, which could be applied to better understand dynamics and diversity of the microorganisms involved in the production of sausages. Methods, such as denaturing gradient gel electrophoresis (DGGE), employed as a culture-independent approach, allow to define the microbial dynamics during the fermentation and ripening. Such approach has highlighted that two main species of lactic acid bacteria, namely Lactobacillus sakei and Lb. curvatus, are involved in the transformation process and that they are accompanied by Staphylococcus xylosus, as representative of the coagulase-negative cocci. These findings were repeatedly confirmed in different regions of the world, mainly in the Mediterranean countries where dry fermented sausages have a long tradition and history. The application of molecular methods for the identification and characterization of isolated strains from fermentations highlighted a high degree of diversity within the species mentioned above, underlining the need to better follow strain dynamics during the transformation process. While there is an important number of papers dealing with bacterial ecology by using molecular methods, studies on mycobiota of fermented sausages are just a few. This review reports on how the application of molecular methods made possible a better comprehension of the sausage fermentations, opening up new fields of research that in the near future will allow to unravel the connection between sensory properties and co-presence of multiple strains of the same species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Science.gov (United States)

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  18. Potential of bacterial fermentation as a biosafe method of improving ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... the organic acid content of fermented feeds has been reported to improve ..... fatty acid and ethanol concentration resulting from the natural fermentation of ..... energy in Atlantic salmon (Salmo salar L.) diets. Aquaculture 210:.

  19. [Rapid prototyping: a very promising method].

    Science.gov (United States)

    Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T

    2013-03-01

    Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.

  20. High cell density fed-batch fermentations for lipase production: feeding strategies and oxygen transfer.

    Science.gov (United States)

    Salehmin, M N I; Annuar, M S M; Chisti, Y

    2013-11-01

    This review is focused on the production of microbial lipases by high cell density fermentation. Lipases are among the most widely used of the enzyme catalysts. Although lipases are produced by animals and plants, industrial lipases are sourced almost exclusively from microorganisms. Many of the commercial lipases are produced using recombinant species. Microbial lipases are mostly produced by batch and fed-batch fermentation. Lipases are generally secreted by the cell into the extracellular environment. Thus, a crude preparation of lipases can be obtained by removing the microbial cells from the fermentation broth. This crude cell-free broth may be further concentrated and used as is, or lipases may be purified from it to various levels. For many large volume applications, lipases must be produced at extremely low cost. High cell density fermentation is a promising method for low-cost production: it allows a high concentration of the biomass and the enzyme to be attained rapidly and this eases the downstream recovery of the enzyme. High density fermentation enhances enzyme productivity compared with the traditional submerged culture batch fermentation. In production of enzymes, a high cell density is generally achieved through fed-batch operation, not through perfusion culture which is cumbersome. The feeding strategies used in fed-batch fermentations for producing lipases and the implications of these strategies are discussed. Most lipase-producing microbial fermentations require oxygen. Oxygen transfer in such fermentations is discussed.

  1. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method.

    Science.gov (United States)

    Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu

    2015-08-01

    In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

  2. Comparison of Methods for Bifenthrin Residues Determination in Fermented Wheat Samples

    Directory of Open Access Journals (Sweden)

    Tijana Đorđević

    2012-01-01

    Full Text Available Efficiency of three different sample preparation methods for GC/MS determinationof bifenthrin residues in wheat (Triticum spelta samples fermented by Lactobacillusplantarum was tested. The first method was based on a methanol:acetone=1:1 extractionfolowed by a purification on columns containing mixture of aluminium oxide and activatedcharcoal slurry-packed and eluted with dichlormethane, the second was based onmethanol:acetone=1:1 extraction folowed by the purification on florisil column and elutionby ethil acetate:acetone=4:1, while the third tested method was based on a combinationof the first two mentioned methods, thus methanol:acetone=1:1 extraction and clean-upthrought columns filled with a mixture of aluminum oxide and activated charcoal slurrypackedand eluted with ethil acetate:acetone=4:1. The second method was the most effectivefor obtaining satisfactory recoveries for bifenthrin in a range of 79-83% for four fortificationlevels, with good reproducibility i.e. RSD% in a range of 2.2-7.4%. The chosen methodwas further optimized by assessing the optimum volume of elution solvent used duringthe clean-up procedures. The highest recovery of 82.1% was obtained after elution with25 ml of solvent. Overall, two-step extraction with 25 ml of methanol:acetone=1:1 solventmix for 30 min, followed by clean-up procedure through a glass column with florisil coupledwith elution with 25 ml of ethyl acetate: acetone=4:1, allows simple, efficient and reliableGC/MS detection of bifenthrin residues from wheat grain fermented by L. plantarum.

  3. Novel Pathway for Alcoholic Fermentation of 8-Gluconolactone in the Yeast Saccharomyces bulderi

    NARCIS (Netherlands)

    Dijken, van J.P.; Tuijl, van A.; Luttik, M.A.H.; Middelhoven, W.J.; Pronk, J.T.

    2002-01-01

    Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments -gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for -gluconolactone fermentation operates in this yeast. In this pathway, -gluconolactone is first reduced to glucose via an NADPH-dependent

  4. Comparison of methods for glycogen analysis of in vitro fermentation pellets produced with strained ruminal inoculum.

    Science.gov (United States)

    Hall, Mary Beth; Hatfield, Ronald D

    2015-11-01

    Microbial glycogen measurement is used to account for fates of carbohydrate substrates. It is commonly applied to washed cells or pure cultures which can be accurately subsampled, allowing the use of smaller sample sizes. However, the nonhomogeneous fermentation pellets produced with strained rumen inoculum cannot be accurately subsampled, requiring analysis of the entire pellet. In this study, two microbial glycogen methods were compared for analysis of such fermentation pellets: boiling samples for 3h in 30% KOH (KOH) or for 15min in 0.2M NaOH (NaOH), followed by enzymatic hydrolysis with α-amylase and amyloglucosidase, and detection of released glucose. Total α-glucan was calculated as glucose×0.9. KOH and NaOH did not differ in the α-glucan detected in fermentation pellets (29.9 and 29.6mg, respectively; P=0.61). Recovery of different control α-glucans was also tested using KOH, NaOH, and a method employing 45min of bead beating (BB). For purified beef liver glycogen (water-soluble) recovery, BB (95.0%)>KOH (91.4%)>NaOH (87.4%; PBB (93.8%)>KOH (91.0%; Pglycogen (water-insoluble granules) did not differ among KOH (87.0%), NaOH (87.6%), and BB (86.0%; P=0.81), but recoveries for all were below 90%. Differences among substrates in the need for gelatinization and susceptibility to destruction by alkali likely affected the results. In conclusion, KOH and NaOH glycogen methods provided comparable determinations of fermentation pellet α-glucan. The tests on purified α-glucans indicated that assessment of recovery in glycogen methods can differ by the control α-glucan selected. Published by Elsevier B.V.

  5. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Soo Rin Kim

    Full Text Available Economic bioconversion of plant cell wall hydrolysates into fuels and chemicals has been hampered mainly due to the inability of microorganisms to efficiently co-ferment pentose and hexose sugars, especially glucose and xylose, which are the most abundant sugars in cellulosic hydrolysates. Saccharomyces cerevisiae cannot metabolize xylose due to a lack of xylose-metabolizing enzymes. We developed a rapid and efficient xylose-fermenting S. cerevisiae through rational and inverse metabolic engineering strategies, comprising the optimization of a heterologous xylose-assimilating pathway and evolutionary engineering. Strong and balanced expression levels of the XYL1, XYL2, and XYL3 genes constituting the xylose-assimilating pathway increased ethanol yields and the xylose consumption rates from a mixture of glucose and xylose with little xylitol accumulation. The engineered strain, however, still exhibited a long lag time when metabolizing xylose above 10 g/l as a sole carbon source, defined here as xylose toxicity. Through serial-subcultures on xylose, we isolated evolved strains which exhibited a shorter lag time and improved xylose-fermenting capabilities than the parental strain. Genome sequencing of the evolved strains revealed that mutations in PHO13 causing loss of the Pho13p function are associated with the improved phenotypes of the evolved strains. Crude extracts of a PHO13-overexpressing strain showed a higher phosphatase activity on xylulose-5-phosphate (X-5-P, suggesting that the dephosphorylation of X-5-P by Pho13p might generate a futile cycle with xylulokinase overexpression. While xylose consumption rates by the evolved strains improved substantially as compared to the parental strain, xylose metabolism was interrupted by accumulated acetate. Deletion of ALD6 coding for acetaldehyde dehydrogenase not only prevented acetate accumulation, but also enabled complete and efficient fermentation of xylose as well as a mixture of glucose and

  6. Fermentation of melon seeds for “Ogiri egusi” as affected by fermentation variables using Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Ogueke, C. C.

    2013-12-01

    Full Text Available Aims: Manipulation of fermentation variables during ‘Ogiri egusi’ production using Bacillus subtilis was studied with the view to improving the fermentation process and quality of product. The variables studied were relative humidity (RH, temperature and pore size of wrapping material. Methodology and results: Effect of variables on amino nitrogen, pH and peroxide value was determined on 24 h basis for 96 h. Attempt on optimization of process using response surface method was made. Amino nitrogen increased with fermentation time, the highest value (6.25 mg N/g being obtained from sample fermented at 75% RH, temperature 35 °C and 90 µm pore size of wrapping material. Fermentation attained its peak at 48 h fermentation time. pH increased into the alkaline range within the period, the highest value (7.81 being from sample that gave the highest amount of amino nitrogen. Peroxide values obtained in all samples were far below the recommended value of 30 Meq/kg. However, the highest value (4.16 Keq/kg was obtained in sample fermented at 85% RH, temperature 30 °C and 70 µm pore size of wrapper. Statistical analysis and response surface plots associated with analysis showed that the quadratic effect of variables was significant (p = 0.05. Effects of relative humidity and pore size of wrapping material were also significant and accounted for 99.56% of the amino nitrogen variation. Conclusion, significance and impact study: Manipulation of the fermentation variables significantly improved the process. Thus use of response surface method optimized the fermentation process especially the effects of relative humidity and pore size of wrapping materials. The suggested combination of variables for optimum fermentation is 75% RH, temperature 35 °C and 70 µm pore size of wrapper. This ultimately will improve product quality and reduce fermentation time.

  7. Recent advances in electronic nose techniques for monitoring of fermentation process.

    Science.gov (United States)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-12-01

    Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.

  8. A scoping review of rapid review methods.

    Science.gov (United States)

    Tricco, Andrea C; Antony, Jesmin; Zarin, Wasifa; Strifler, Lisa; Ghassemi, Marco; Ivory, John; Perrier, Laure; Hutton, Brian; Moher, David; Straus, Sharon E

    2015-09-16

    Rapid reviews are a form of knowledge synthesis in which components of the systematic review process are simplified or omitted to produce information in a timely manner. Although numerous centers are conducting rapid reviews internationally, few studies have examined the methodological characteristics of rapid reviews. We aimed to examine articles, books, and reports that evaluated, compared, used or described rapid reviews or methods through a scoping review. MEDLINE, EMBASE, the Cochrane Library, internet websites of rapid review producers, and reference lists were searched to identify articles for inclusion. Two reviewers independently screened literature search results and abstracted data from included studies. Descriptive analysis was conducted. We included 100 articles plus one companion report that were published between 1997 and 2013. The studies were categorized as 84 application papers, seven development papers, six impact papers, and four comparison papers (one was included in two categories). The rapid reviews were conducted between 1 and 12 months, predominantly in Europe (58 %) and North America (20 %). The included studies failed to report 6 % to 73 % of the specific systematic review steps examined. Fifty unique rapid review methods were identified; 16 methods occurred more than once. Streamlined methods that were used in the 82 rapid reviews included limiting the literature search to published literature (24 %) or one database (2 %), limiting inclusion criteria by date (68 %) or language (49 %), having one person screen and another verify or screen excluded studies (6 %), having one person abstract data and another verify (23 %), not conducting risk of bias/quality appraisal (7 %) or having only one reviewer conduct the quality appraisal (7 %), and presenting results as a narrative summary (78 %). Four case studies were identified that compared the results of rapid reviews to systematic reviews. Three studies found that the conclusions between

  9. Acetone-butanol fermentation of blackstrap molasses. An effective factor of some symbiotic organisms against an abnormal fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, A; Kinoshita, S; Okumura, T

    1954-01-01

    There were three types of abnormal fermentation in the industrial acetone-butanol fermentation of blackstrap molasses; one of them called B type, was characterized by the extremely prolonged acidity peak, and sluggishness experiments were carried out to find some symbiotic organisms among various aerobic bacteria and yeasts for several strains of Clostridium acetobutylicum. Torula utilis showed an outstanding effectiveness for a rapid completion of the fermentation, and the yields of solvents was much increased. Culture filtrate of T. utilis contained a soluble and thermolabile effective factor, and showed high invertase activity. A close relation was found between high yields of solvents and the degree of inversion of molasses medium. Thus, the effective factor against sluggishness was ascribed to the invertase activity of the yeast. Some inhibiting factors to invertase of C. acetobutylicum were presumed to be present in molasses as the principal cause of the sluggishness.

  10. RAPD-PCR characterization of lactobacilli isolated from artisanal meat plants and traditional fermented sausages of Veneto region (Italy).

    Science.gov (United States)

    Andrighetto, C; Zampese, L; Lombardi, A

    2001-07-01

    The study was carried out to evaluate the use of randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) as a method for the identification of lactobacilli isolated from meat products. RAPD-PCR with primers M13 and D8635 was applied to the identification and intraspecific differentiation of 53 lactobacilli isolates originating from traditional fermented sausages and artisanal meat plants of the Veneto region (Italy). Most of the isolates were assigned to the species Lactobacillus sakei and Lact. curvatus; differentiation of groups of strains within the species was also possible. RAPD-PCR could be applied to the identification of lactobacilli species most commonly found in meat products. The method, which is easy and rapid to perform, could be useful for the study of the lactobacilli populations present in fermented sausages, and could help in the selection of candidate strains to use as starter cultures in meat fermentation.

  11. A simple Pichia pastoris fermentation and downstream processing strategy for making recombinant pandemic Swine Origin Influenza a virus Hemagglutinin protein.

    Science.gov (United States)

    Athmaram, T N; Singh, Anil Kumar; Saraswat, Shweta; Srivastava, Saurabh; Misra, Princi; Kameswara Rao, M; Gopalan, N; Rao, P V L

    2013-02-01

    The present Influenza vaccine manufacturing process has posed a clear impediment to initiation of rapid mass vaccination against spreading pandemic influenza. New vaccine strategies are therefore needed that can accelerate the vaccine production. Pichia offers several advantages for rapid and economical bulk production of recombinant proteins and, hence, can be attractive alternative for producing an effective influenza HA based subunit vaccine. The recombinant Pichia harboring the transgene was subjected to fed-batch fermentation at 10 L scale. A simple fermentation and downstream processing strategy is developed for high-yield secretory expression of the recombinant Hemagglutinin protein of pandemic Swine Origin Influenza A virus using Pichia pastoris via fed-batch fermentation. Expression and purification were optimized and the expressed recombinant Hemagglutinin protein was verified by sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blot and MALDI-TOF analysis. In this paper, we describe a fed-batch fermentation protocol for the secreted production of Swine Influenza A Hemagglutinin protein in the P. pastoris GS115 strain. We have shown that there is a clear relationship between product yield and specific growth rate. The fed-batch fermentation and downstream processing methods optimized in the present study have immense practical application for high-level production of the recombinant H1N1 HA protein in a cost effective way using P. pastoris.

  12. A SIMPLE METHOD TO CONTROL THE MOISTURE CONTENT OF THE FERMENTING MEDIUM DURING LABORATORY-SCALE SOLID-STATE FERMENTATION EXPERIMENTS

    Directory of Open Access Journals (Sweden)

    W. BORZANI

    1999-03-01

    Full Text Available When the moisture content of the fermenting medium significantly decreases during laboratory-scale solid-state fermentation tests, the quantity of water to be periodically added to the medium in order to control its moisture content may be evaluated from the water evaporation rate of the non-inoculated medium.

  13. Development of an In Vivo and In Vitro Ileal Fermentation Method in a Growing Pig Model.

    Science.gov (United States)

    Montoya, Carlos A; de Haas, Edward S; Moughan, Paul J

    2018-02-01

    Substantial microbial fermentation may occur mainly in the lower small intestine (SI) of human adults, but there is no established methodology to determine this. The study aimed to develop a combined in vivo and in vitro methodology for ileal fermentation based on the pig as an animal model for digestion in human adults. Several aspects of a combined in vivo/in vitro ileal fermentation assay were evaluated. Male 9-wk-old pigs (n = 30; mean ± SD body weight: 23 ± 1.6 kg) were fed a human-type diet (143, 508, 45, 49, and 116 g/kg dry matter diet of crude protein, starch, total lipid, ash, and total dietary fiber) for 15 d. On day 15, pigs were killed, and the last third of the SI was collected to prepare an ileal digesta-based inoculum. Terminal jejunal digesta (last 50 cm of the second third of the SI) were collected as substrate for the assay to test the form of substrate (fresh or freeze-dried), origin (location in jejunum or SI) of the substrate, storage of the inoculum, incubation time (1.2-6.8 h), pH of the medium, and inoculum concentration (6-26 mg inoculum/100 mg substrate). The group of donor pigs used to prepare the inoculum, form of the substrate, origin of the substrate, origin of the inoculum (location in the SI), storage of the inoculum, incubation time, and inoculum concentration did not influence the in vitro ileal organic matter (OM) fermentability (P > 0.05). The in vitro ileal OM fermentability decreased when the pH of the medium increased from 5.5 to 7.5 (31% to 28%; P ≤ 0.05). Predicted (in vivo/in vitro) apparent ileal OM digestibility was similar to the value measured in vivo. Thirty-percent of the terminal jejunal digesta OM was fermented in the ileum. Fiber fermentation in the ileum can be studied using the optimized in vivo/in vitro ileal fermentation method.

  14. An efficient fermentation method for the degradation of cyanogenic glycosides in flaxseed.

    Science.gov (United States)

    Wu, C-F; Xu, X-M; Huang, S-H; Deng, M-C; Feng, A-J; Peng, J; Yuan, J-P; Wang, J-H

    2012-01-01

    Recently, flaxseed has become increasingly popular in the health food market because it contains a considerable amount of specific beneficial nutrients such as lignans and omega-3 fatty acids. However, the presence of cyanogenic glycosides (CGs) in flaxseed severely limits the exploitation of its health benefits and nutritive value. We, therefore, developed an effective fermentation method, optimised by response surface methodology (RSM), for degrading CGs with an enzymatic preparation that includes 12.5% β-glucosidase and 8.9% cyanide hydratase. These optimised conditions resulted in a maximum CG degradation level of 99.3%, reducing the concentration of cyanide in the flaxseed power from 1.156 to 0.015 mg g(-1) after 48 h of fermentation. The avoidance of steam heat to evaporate hydrocyanic acid (HCN) results in lower energy consumption and no environmental pollution. In addition, the detoxified flaxseed retained the beneficial nutrients, lignans and fatty acids at the same level as untreated flaxseed, and this method could provide a new means of removing CGs from other edible plants, such as cassava, almond and sorghum by simultaneously expressing cyanide hydratase and β-glucosidase.

  15. Sugaring-out extraction of acetoin from fermentation broth by coupling with fermentation.

    Science.gov (United States)

    Dai, Jian-Ying; Ma, Lin-Hui; Wang, Zhuang-Fei; Guan, Wen-Tian; Xiu, Zhi-Long

    2017-03-01

    Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.

  16. The effect of kefir starter on Thai fermented sausage product

    Directory of Open Access Journals (Sweden)

    Marisa Jatupornpipat

    2007-07-01

    Full Text Available The effect of kefir starter from Wilderness Family Naturals Company on the initial formulation of Thai fermented sausage were evaluated. The differences found among batches in the main microbial populations and pH were not significant. Only, the total acid of batch D (added the kefir starter 15 ml was significantly higher (P0.05. It is concluded that the addition of kefir starter (7 ml could be useful to improve the final quality of Thai fermented sausages. The addition of kefir starter that initiates rapid acidification of the raw meat and that leads to a desirable sensory quality of the end-product are used for the production of fermented sausages, and represents a way of improving and optimizing the sausage fermentation process and achieving tastier, safer, and healthier products.

  17. Fermentation reactions of Erysipelothrix rhusiopathiae.

    Science.gov (United States)

    WHITE, T G; SHUMAN, R D

    1961-10-01

    White, Thomas G. (U. S. Department of Agriculture, Ames, Iowa), and Richard D. Shuman. Fermentation reactions of Erysipelothrix rhusiopathiae. J. Bacteriol. 82:595-599. 1961.-A study was made to determine the effect of four different basal media, to which fermentable carbon compounds had been added, upon 22 selected strains of Erysipelothrix rhusiopathiae (insidiosa). Acid production was measured by (i) chemical indicator, (ii) change in pH, and (iii) production of titrable acidity. At least two determinations, usually four, were made for each test on each strain. The fermentation pattern varied according to the medium, the indicator, and the method of measuring acid production. Andrade's base plus serum was the most dependable medium because it permitted the least variation in the total number of different patterns. Of the three methods used to measure acid production, the chemical indicator gave the most valid and reproducible results. The within-strain variation was not extreme and most strains persisted in a given fermentation pattern under like conditions of growth and acid production. Results of the study indicated that, regardless of the medium and indicator routinely used, one should be familiar with the fermentation pattern of known strains of the erysipelas organism.

  18. Microbial diversity and their roles in the vinegar fermentation process.

    Science.gov (United States)

    Li, Sha; Li, Pan; Feng, Feng; Luo, Li-Xin

    2015-06-01

    Vinegar is one of the oldest acetic acid-diluted solution products in the world. It is produced from any fermentable sugary substrate by various fermentation methods. The final vinegar products possess unique functions, which are endowed with many kinds of compounds formed in the fermentation process. The quality of vinegar is determined by many factors, especially by the raw materials and microbial diversity involved in vinegar fermentation. Given that metabolic products from the fermenting strains are directly related to the quality of the final products of vinegar, the microbial diversity and features of the dominant strains involved in different fermentation stages should be analyzed to improve the strains and stabilize fermentation. Moreover, although numerous microbiological studies have been conducted to examine the process of vinegar fermentation, knowledge about microbial diversity and their roles involved in fermentation is still fragmentary and not systematic enough. Therefore, in this review, the dominant microorganism species involved in the stages of alcoholic fermentation and acetic acid fermentation of dissimilar vinegars were summarized. We also summarized various physicochemical properties and crucial compounds in disparate types of vinegar. Furthermore, the merits and drawbacks of vital fermentation methods were generalized. Finally, we described in detail the relationships among microbial diversity, raw materials, fermentation methods, physicochemical properties, compounds, functionality, and final quality of vinegar. The integration of this information can provide us a detailed map about the microbial diversity and function involved in vinegar fermentation.

  19. Rapid radiometric method for detection of Salmonella in foods

    International Nuclear Information System (INIS)

    Stewart, B.J.; Eyles, M.J.; Murrell, W.G.

    1980-01-01

    A radiometric method for the detection of Salmonella in foods has been developed which is based on Salmonella poly H agglutinating serum preventing Salmonella from producing 14CO2 from [14C] dulcitol. The method will detect the presence or absence of Salmonella in a product within 30 h compared to 4 to 5 days by routine culture methods. The method has been evaluated against a routine culture method using 58 samples of food. The overall agreement was 91%. Five samples negative for Salmonella by the routine method were positive by the radiometric method. These may have been false positives. However, the routine method may have failed to detect Salmonella due to the presence of large numbers of lactose-fermenting bacteria which hindered isolation of Salmonella colonies on the selective agar plates

  20. Biotechnology of olive fermentation of Galega Portuguese variety

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.; Brito, D.; Catulo, L.; Leitao, F.; Gomes, L.; Silva, S.A; Vilas-boas, L.; Peito, A.; Fernandes, I.; Gordo, F.; Peres, C.

    2004-07-01

    Galega in the main Portuguese olive variety providing the greatest percentage of table olive production from homemade and industrial methods. In this work a better understanding about the fermentation involved in both methods is intended. Yeasts and lactic acid bacteria (LAB) constitute the microflora acting in olive fermentation, being Pichia membranaefaciens the dominant yeast specie present throughout the process. LAB developed their activity mainly along the second fermentation stage where Lactobacillus plantarum and Lactobacillus pentosus were isolated and identified, as well as Leuconostoc mesenteroides and Pediococcus pentosaceus. Results of a chemical analysis have shown the effectiveness of both homemade and industrial fermentation methods. Nevertheless, the chemical composition of the brines from homemade samples was more similar than those from the industrial ones. Remarkables differences were found in the phenolic compounds profile mainly on the final fermentation stage. the amount of volatile compounds has enhanced on the same phase in both methods and some differences were found between them. Sensorial analysis has shown the best results obtained through the homemade method. (Author) 18 refs.

  1. Adaptive evolution of the lager brewing yeast Saccharomyces pastorianus for improved growth under hyperosmotic conditions and its influence on fermentation performance.

    Science.gov (United States)

    Ekberg, Jukka; Rautio, Jari; Mattinen, Laura; Vidgren, Virve; Londesborough, John; Gibson, Brian R

    2013-05-01

    An adaptive evolution method to obtain stable Saccharomyces pastorianus brewing yeast variants with improved fermentation capacity is described. The procedure involved selection for rapid growth resumption at high osmotic strength. It was applied to a lager strain and to a previously isolated ethanol-tolerant strain. Fermentation performance of strains was compared at 15 °P wort strength. A selected osmotolerant variant of the ethanol-tolerant strain showed significantly shorter fermentation time than the parent strain, producing 6.45% alcohol by volume beer in 4-5 days with mostly similar organoleptic properties to the original strain. Diacetyl and pentanedione contents were 50-75% and 3-methylbutyl acetate and 2-phenylethyl acetate 50% higher than with the original strain, leading to a small flavour change. The variant contained significantly less intracellular trehalose and glycogen than the parent. Transcriptional analysis of selected genes at 24 h revealed reduced transcription of hexose transport genes and increased transcription of the MALx1 and MALx2 genes, responsible for α-glucoside uptake and metabolism. It is suggested that an attenuated stress response contributes to the improved fermentation performance. Results show that sequential selection for both ethanol tolerance and rapid growth at high osmotic strength can provide strains with enhanced fermentation speed with acceptable product quality. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Ultrasonic Monitoring of the Progress of Lactic Acid Fermentation

    Science.gov (United States)

    Masuzawa, Nobuyoshi; Kimura, Akihiro; Ohdaira, Etsuzo

    2003-05-01

    Promotion of lactic acid fermentation by ultrasonic irradiation has been attempted. It is possible to determine the progress of fermentation and production of a curd, i.e., yoghurt and or kefir, by measuring acidity using a pH meter. However, this method is inconvenient and indirect for the evaluation of the progress of lactic acid fermentation under anaerobic condition. In this study, an ultrasonic monitoring method for evaluating the progress of lactic acid fermentation was examined.

  3. A new method for rapid Canine retraction

    Directory of Open Access Journals (Sweden)

    "Khavari A

    2001-06-01

    Full Text Available Distraction osteogenesis method (Do in bone lengthening and rapid midpalatal expansion have shown the great ability of osteognic tissues for rapid bone formation under distraction force and special protocol with optimum rate of one millimeter per day. Periodontal membrane of teeth (PDM is the extension of periostium in the alveolar socked. Orthodontic force distracts PDM fibers in the tension side and then bone formation will begin.Objects: Rapid retraction of canine tooth into extraction space of first premolar by DO protocol in order to show the ability of the PDM in rapid bone formation. The other objective was reducing total orthodontic treatment time of extraction cases.Patients and Methods: Tweleve maxillary canines in six patients were retracted rapidly in three weeks by a custom-made tooth-born appliance. Radiographic records were taken to evaluate the effects of heavy applied force on canine and anchorage teeth.Results: Average retraction was 7.05 mm in three weeks (2.35 mm/week. Canines rotated distal- in by mean 3.5 degrees.Anchorage loss was from 0 to 0.8 mm with average of 0.3 mm.Root resorption of canines was negligible, and was not significant clinically. Periodontium was normal after rapid retraction. No hazard for pulp vitality was observed.Discussion: PDM responded well to heavy distraction force by Do protocol. Rapid canine retraction seems to be a safe method and can considerabely reduce orthodontic time.

  4. Enhancement of fermentative hydrogen production from green algal biomass of Thermotoga neapolitana by various pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam-Anh D.; Kim, Kyoung-Rok; Nguyen, Minh-Thu; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Mi Sun [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Kim, Donhue [Department of Biochemical Engineering, Dongyang Mirae College, Seoul 152-714 (Korea, Republic of)

    2010-12-15

    Biomass of the green algae has been recently an attractive feedstock source for bio-fuel production because the algal carbohydrates can be derived from atmospheric CO{sub 2} and their harvesting methods are simple. We utilized the accumulated starch in the green alga Chlamydomonas reinhardtii as the sole substrate for fermentative hydrogen (H{sub 2}) production by the hyperthermophilic eubacterium Thermotoga neapolitana. Because of possessing amylase activity, the bacterium could directly ferment H{sub 2} from algal starch with H{sub 2} yield of 1.8-2.2 mol H{sub 2}/mol glucose and the total accumulated H{sub 2} level from 43 to 49% (v/v) of the gas headspace in the closed culture bottle depending on various algal cell-wall disruption methods concluding sonication or methanol exposure. Attempting to enhance the H{sub 2} production, two pretreatment methods using the heat-HCl treatment and enzymatic hydrolysis were applied on algal biomass before using it as substrate for H{sub 2} fermentation. Cultivation with starch pretreated by 1.5% HCl at 121 C for 20 min showed the total accumulative H{sub 2} yield of 58% (v/v). In other approach, enzymatic digestion of starch by thermostable {alpha}-amylase (Termamyl) applied in the SHF process significantly enhanced the H{sub 2} productivity of the bacterium to 64% (v/v) of total accumulated H{sub 2} level and a H{sub 2} yield of 2.5 mol H{sub 2}/mol glucose. Our results demonstrated that direct H{sub 2} fermentation from algal biomass is more desirably potential because one bacterial cultivation step was required that meets the cost-savings, environmental friendly and simplicity of H{sub 2} production. (author)

  5. Flavour Characters of Wines from Cool-Climate Grape Cultivars in Relation to Different Fermentation Approaches

    DEFF Research Database (Denmark)

    Liu, Jing

    -climate grape cultivars have been grown. However there is little knowledge on the flavour properties and potential of Danish wines. The overall aim of this project was to investigate the sensory characters and chemical composition of wines from different cool-climate grape cultivars and co-fermentations...... caused by inadequate sulphite management, which resulted in accelerated aging, oxidation and/or spontaneous malolactic fermentation. These findings indicated that producers in Denmark should be more cautious in their use and management of sulphite in wine making. To develop a rapid methodology...... for evaluating sensory properties of wines, different variations of Napping and Flash Profile methods were tested using model wines. It turned out that conducting Napping with panel training on either the method (training on how to arrange samples on the sheet) or the product (familiarization with the sensory...

  6. A Perspective on PSE in Fermentation Process Development and Operation

    DEFF Research Database (Denmark)

    Gernaey, Krist

    2015-01-01

    Compared to the chemical industry, the use of PSE methods and tools is not as widespread in industrial fermentation processes. This paper gives an overview of some of the main engineering challenges in industrial fermentation processes. Furthermore, a number of mathematical models are highlighted...... as examples of PSE methods and tools that are used in the context of industrial fermentation technology. Finally, it is discussed what could be done to increase the future use of PSE methods and tools within the industrial fermentation technology area....

  7. Simulation and optimization of continuous extractive fermentation with recycle system

    Science.gov (United States)

    Widjaja, Tri; Altway, Ali; Rofiqah, Umi; Airlangga, Bramantyo

    2017-05-01

    Extractive fermentation is continuous fermentation method which is believed to be able to substitute conventional fermentation method (batch). The recovery system and ethanol refinery will be easier. Continuous process of fermentation will make the productivity increase although the unconverted sugar in continuous fermentation is still in high concentration. In order to make this process more efficient, the recycle process was used. Increasing recycle flow will enhance the probability of sugar to be re-fermented. However, this will make ethanol enter fermentation column. As a result, the accumulated ethanol will inhibit the growth of microorganism. This research aims to find optimum conditions of solvent to broth ratio (S:B) and recycle flow to fresh feed ratio in order to produce the best yield and productivity. This study employed optimization by Hooke Jeeves method using Matlab 7.8 software. The result indicated that optimum condition occured in S: B=2.615 and R: F=1.495 with yield = 50.2439 %.

  8. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    International Nuclear Information System (INIS)

    Buratti, S.; Ballabio, D.; Giovanelli, G.; Dominguez, C.M. Zuluanga; Moles, A.; Benedetti, S.; Sinelli, N.

    2011-01-01

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: → We monitored time-related changes in red wine fermentation process. → NIR and MIR spectroscopies, electronic nose and tongue were applied. → Data were kinetically modelled to identify critical points during fermentation. → NIR, MIR electronic nose and tongue were able to follow the fermentation process. → The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that

  9. Monitoring of alcoholic fermentation using near infrared and mid infrared spectroscopies combined with electronic nose and electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Buratti, S., E-mail: susanna.buratti@unimi.it [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Ballabio, D. [Department of Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano (Italy); Giovanelli, G. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Dominguez, C.M. Zuluanga [Instituto de Ciencia y Tecnologia de Alimentos, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia); Moles, A.; Benedetti, S.; Sinelli, N. [Department of Food Science and Technology, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2011-07-04

    Graphical abstract: Application of non destructive methods for the monitoring of red wine fermentation in correlation with the evolution of chemical parameters. Highlights: > We monitored time-related changes in red wine fermentation process. > NIR and MIR spectroscopies, electronic nose and tongue were applied. > Data were kinetically modelled to identify critical points during fermentation. > NIR, MIR electronic nose and tongue were able to follow the fermentation process. > The models agreed with the evolution of chemical parameters. - Abstract: Effective fermentation monitoring is a growing need due to the rapid pace of change in the wine industry, which calls for fast methods providing real time information in order to assure the quality of the final product. The objective of this work is to investigate the potential of non-destructive techniques associated with chemometric data analysis, to monitor time-related changes that occur during red wine fermentation. Eight micro-fermentation trials conducted in the Valtellina region (Northern Italy) during the 2009 vintage, were monitored by a FT-NIR and a FT-IR spectrometer and by an electronic nose and tongue. The spectroscopic technique was used to investigate molecular changes, while electronic nose and electronic tongue evaluated the evolution of the aroma and taste profile during the must-wine fermentation. Must-wine samples were also analysed by traditional chemical methods in order to determine sugars (glucose and fructose) consumption and alcohol (ethanol and glycerol) production. Principal Component Analysis was applied to spectral, electronic nose and electronic tongue data, as an exploratory tool, to uncover molecular, aroma and taste modifications during the fermentation process. Furthermore, the chemical data and the PC1 scores from spectral, electronic nose and electronic tongue data were modelled as a function of time to identify critical points during fermentation. The results showed that NIR and MIR

  10. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    Smart Katherine A

    2011-09-01

    Full Text Available Abstract Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput.

  11. Wheaten ferments spontaneous fermantation in biotechnological methods

    OpenAIRE

    KAKHRAMON SANOQULOVICH RAKHMONOV; ISABAEV ISMAIL BABADJANOVICH

    2016-01-01

    In article are shown results of research of biotechnological properties of wheaten leavens of spontaneous fermentation (in the example of pea-anisetree leaven) and their analysis. Also is established influence of the given type of leavens on the basic biopolymers of the flour, on the property of the pastry and quality of bread from wheaten flour.

  12. Comparison of experimental methods for determination of the volumetric mass transfer coefficient in fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tobajas, M.; Garcia-Calvo, E. [Dept. de Ingenieria Quimica, Univ. de Alcala, Alcala de Henares (Spain)

    2000-05-01

    Mass transfer in bioreactors has been examined. In the present work, dynamic methods are used for the determination of K{sub L}a values for water, model media and a fermentation broth (Candida utilis) in an airlift reactor. The conventional dynamic method is applied at the end of the microbial process in order to avoid an alteration in the metabolism of the microorganisms. New dynamic methods are used to determine K{sub L}a in an airlift reactor during the microbial growth of Candida utilis on glucose. One of the methods is based on the continuous measurement of carbon dioxide production while the other method is based on the relationship between the oxygen transfer and biomass growth rates. These methods of determining K{sub L}a does not interfere with the microorganisms action. A theoretical mass transfer model has been used for K{sub L}a estimation for the systems described above. Some differences between calculated and measured values are found for fermentation processes due to the model is developed for two-phase air-water systems. Nevertheless, the average deviation between the predicted values and those obtained from the relationship between oxygen transfer and biomass production rates are lower than 25% in any case. (orig.)

  13. Optimal Control of Beer Fermentation Process Using Differential ...

    African Journals Online (AJOL)

    Optimal Control of Beer Fermentation Process Using Differential Transform Method. ... Journal of Applied Sciences and Environmental Management ... The method of differential transform was used to obtain the solution governing the fermentation process; the system of equation was transformed using the differential ...

  14. Ultrafiltration of hemicellulose hydrolysate fermentation broth

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Desiriani, Ria; Wenten, I. G.

    2017-03-01

    Hemicelulosic material is often used as the main substrate to obtain high-value products such as xylose. The five carbon sugar, xylose, could be further processed by fermentation to produce xylitol. However, not only the hemicellulose hydrolysate fermentation broth contains xylitol, but also metabolite products, residual substances, biomass and mineral salts. Therefore, in order to obtain the end products, various separation processes are required to separate and purify the desired product from the fermentation broth. One of the most promising downstream processing methods of fermentation broth clarification is ultrafiltration due to its potential for energy saving and higher purity. In addition, ultrafiltration membrane has a high performance in separating inhibitory components in the fermentation broth. This paper assesses the influence of operating conditions; including trans-membrane pressure, velocity, pH of the fermentation broth solutions, and also to the xylitol concentration in the product. The challenges of the ultrafiltration process will be pointed out.

  15. Protein extraction method for the proteomic study of a Mexican traditional fermented starchy food.

    Science.gov (United States)

    Cárdenas, C; Barkla, B J; Wacher, C; Delgado-Olivares, L; Rodríguez-Sanoja, R

    2014-12-05

    Pozol is a traditional fermented maize dough prepared in southeastern Mexico. Wide varieties of microorganisms have already been isolated from this spontaneously fermented product; and include fungi, yeasts, and lactic- and non-lactic acid bacteria. Pozol presents physicochemical features different from that of other food fermentation products, such as a high starch content, in addition to a low protein content. It is these qualities that make it intractable for protein recovery and characterization. The aim of this study was to develop a methodology to optimize the recovery of proteins from the pozol dough following fermentation, by reducing the complexity of the mixture prior to 2D-PAGE analysis and sequencing, to allow the characterization of the metaproteome of the dough. The proteome of 15day fermented maize dough was characterized; proteins were separated and analyzed by mass spectrometry (LC-MS/MS). Subsequent sequence homology database searching, identified numerous bacterial and fungi proteins; with a predominance of lactic acid bacterial proteins, mainly from the Lactobacillus genus. Fungi are mainly represented by Aspergillus. For dominant genera, the most prevalent proteins belong to carbohydrate metabolism and energy production, which suggest that at 15days of fermentation not only fungi but also bacteria are metabolically active. Several methodologies have been employed to study pozol, with a specific focus toward the identification of the microbiota of this fermented maize dough, using both traditional cultivation techniques and culture independent molecular techniques. However to date, the dynamics of this complex fermentation is not well understood. With the purpose to gain further insight into the nature of the fermentation, we used proteomic technologies to identify the origin of proteins and enzymes that facilitate substrate utilization and ultimately the development of the microbiota and fermentation. In this paper we overcome the first general

  16. Effect of inulin chain length on fermentation by equine fecal bacteria and Streptococcus bovis in vitro

    Science.gov (United States)

    The ingestion of large quantities of rapidly fermentable carbohydrates (e.g. fructans) from pasture has been associated with the development of laminitis. Fructans are poorly degraded by mammalian enzymes and, therefore, are able to reach the hindgut. The fermentation of fructans can lead to the ove...

  17. Method for ph-controlled fermentation and biogas production

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention is in the field of biomass processing and bioenergy production and facilitates efficient biomass processing and an increased production of renewable energy from processing and anaerobic fermentation of a wide variety of organic materials. In order to control the pH value...

  18. Optimal Control of Beer Fermentation Process Using Differential ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: In this paper, the mathematical model of batch fermentation process of ethanol was formulated. The method of differential transform was used to obtain the solution governing the fermentation process; the system of equation was transformed using the differential transform method. The result obtained from the ...

  19. Bioprocess Intensification of Beer Fermentation Using Immobilised Cells

    Science.gov (United States)

    Verbelen, Pieter J.; Nedović, Viktor A.; Manojlović, Verica; Delvaux, Freddy R.; Laskošek-Čukalović, Ida; Bugarski, Branko; Willaert, Ronnie

    Beer production with immobilised yeast has been the subject of research for approximately 30 years but has so far found limited application in the brewing industry, due to engineering problems, unrealised cost advantages, microbial contaminations and an unbalanced beer flavor (Linko et al. 1998; Brányik et al. 2005; Willaert and Nedović 2006). The ultimate aim of this research is the production of beer of desired quality within 1-3 days. Traditional beer fermentation systems use freely suspended yeast cells to ferment wort in an unstirred batch reactor. The primary fermentation takes approximately 7 days with a subsequent secondary fermentation (maturation) of several weeks. A batch culture system employing immobilization could benefit from an increased rate of fermentation. However, it appears that in terms of increasing productivity, a continuous fermentation system with immobilization would be the best method (Verbelen et al. 2006). An important issue of the research area is whether beer can be produced by immobilised yeast in continuous culture with the same characteristic as the traditional method.

  20. FERMENTATION ACTIVITY OF LACTOSE-FERMENTATION YEAST IN WHEY-MALT WORT

    Directory of Open Access Journals (Sweden)

    E. V. Greek

    2013-04-01

    Full Text Available The main parameters of fermentation of whey-malt wort with the use of different strains of lactose-fermentation yeast was investigated experimentally. According to the findings of investigation of fermentive activity for different types of lactose-fermentation microorganisms in whey-malt wort it was found that the most active spirituous fermentation for all parameters was in wort fermented by microorganisms Zygosaccharomyces lactis 868-K and Saccharomyces lactis 95. High capacity for utilization of malt carbohydrates represented by easily metabolized carbohydrates of malt extract was determined. Also organoleptic analysis of fermented whey drinks derived from the renewed mixtures of dry whey and fermented malt and yeast Zygosaccharomyces lactis 868-K and Saccharomyces lactis 95 was carried out. It was found that the drink fermented with yeast Zygosaccharomyces lactis 868-K had intense refreshing flavor of rye bread with fruit tones. Intensity growth of aromatization for complex of sample with microorganisms Saccharomyces lactis 95, indicating high organoleptic indexes of the drink was observed.

  1. Computer evaluation of the results of batch fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Nyeste, L; Sevella, B

    1980-01-01

    A useful aid to the mathematical modeling of fermentation systems, for the kinetic evaluation of batch fermentations, is described. The generalized logistic equation may be used to describe the growth curves, substrate consumption, and product formation. A computer process was developed to fit the equation to experimental points, automatically determining the equation constants on the basis of the iteration algorithm of the method of non-linear least squares. By fitting the process to different master programs of various fermentations, the complex kinetic evaluation of fermentations becomes possible. Based on the analysis easily treatable generalized logistic equation, it is possible to calculate by computer different kinetic characteristics, e.g. rates, special rates, yields, etc. The possibility of committing subjective errors was reduced to a minimum. Employment of the method is demonstrated on some fermentation processes and problems arising in the course of application are discussed.

  2. System for extracting protein from a fermentation product

    Science.gov (United States)

    Lawton, Jr., John Warren; Bootsma, Jason Alan; Lewis, Stephen Michael

    2016-04-26

    A method of producing bioproducts from a feedstock in a system configured to produce ethanol and distillers grains from a fermentation product is disclosed. A system configured to process feedstock into a fermentation product and bioproducts including ethanol and meal is disclosed. A bioproduct produced from a fermentation product produced from a feedstock in a biorefining system is disclosed.

  3. Optimization of Fermentation Conditions for the Production of Bacteriocin Fermentate

    Science.gov (United States)

    2015-03-30

    FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ” by Anthony Sikes Wayne Muller and Claire Lee March 2015...From - To) October 2010 – November 2013 4. TITLE AND SUBTITLE OPTIMIZATION OF FERMENTATION CONDITIONS FOR THE PRODUCTION OF BACTERIOCIN “ FERMENTATE ...nisin and pediocin. Whey + yeast extract was the best performing whey fermentation media. The nisin producer strain Lactococcus. lactis ssp. lactis was

  4. Simultaneous Saccharification and Fermentation and Partial Saccharification and Co-Fermentation of Lignocellulosic Biomass for Ethanol Production

    Science.gov (United States)

    Doran-Peterson, Joy; Jangid, Amruta; Brandon, Sarah K.; Decrescenzo-Henriksen, Emily; Dien, Bruce; Ingram, Lonnie O.

    Ethanol production by fermentation of lignocellulosic biomass-derived sugars involves a fairly ancient art and an ever-evolving science. Production of ethanol from lignocellulosic biomass is not avant-garde, and wood ethanol plants have been in existence since at least 1915. Most current ethanol production relies on starch- and sugar-based crops as the substrate; however, limitations of these materials and competing value for human and animal feeds is renewing interest in lignocellulose conversion. Herein, we describe methods for both simultaneous saccharification and fermentation (SSF) and a similar but separate process for partial saccharification and cofermentation (PSCF) of lignocellulosic biomass for ethanol production using yeasts or pentose-fermenting engineered bacteria. These methods are applicable for small-scale preliminary evaluations of ethanol production from a variety of biomass sources.

  5. Development of a quantitative PCR assay for rapid detection of Lactobacillus plantarum and Lactobacillus fermentum in cocoa bean fermentation.

    Science.gov (United States)

    Schwendimann, Livia; Kauf, Peter; Fieseler, Lars; Gantenbein-Demarchi, Corinne; Miescher Schwenninger, Susanne

    2015-08-01

    To monitor dominant species of lactic acid bacteria during cocoa bean fermentation, i.e. Lactobacillus plantarum and Lactobacillus fermentum, a fast and reliable culture-independent qPCR assay was developed. A modified DNA isolation procedure using a commercial kit followed by two species-specific qPCR assays resulted in 100% sensitivity for L. plantarum and L. fermentum. Kruskal-Wallis and post-hoc analyses of data obtained from experiments with cocoa beans that were artificially spiked with decimal concentrations of L. plantarum and L. fermentum strains allowed the calculation of a regression line suitable for the estimation of both species with a detection limit of 3 to 4 Log cells/g cocoa beans. This process was successfully tested for efficacy through the analyses of samples from laboratory-scale cocoa bean fermentations with both the qPCR assay and a culture-dependent method which resulted in comparable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Biogasification of solid wastes by two-phase anaerobic fermentation

    International Nuclear Information System (INIS)

    Ghosh, S.; Vieitez, E.R.; Liu, T.; Kato, Y.

    1997-01-01

    Municipal, industrial and agricultural solid wastes, and biomass deposits, cause large-scale pollution of land and water. Gaseous products of waste decomposition pollute the air and contribute to global warming. This paper describes the development of a two-phase fermentation system that alleviates methanogenic inhibition encountered with high-solids feed, accelerates methane fermentation of the solid bed, and captures methane (renewable energy) for captive use to reduce global warming. The innovative system consisted of a solid bed reactor packed with simulated solid waste at a density of 160 kg/m 3 and operated with recirculation of the percolated culture (bioleachate) through the bed. A rapid onset of solids hydrolysis, acidification, denitrification and hydrogen gas formation was observed under these operating conditions. However, these fermentative reactions stopped at a total fatty acids concentration of 13,000 mg/l (as acetic) at pH 5, with a reactor head-gas composition of 75 percent carbon dioxide, 20 percent nitrogen, 2 percent hydrogen and 3 percent methane. Fermentation inhibition was alleviated by moving the bioleachate to a separate methane-phase fermenter, and recycling methanogenic effluents at pH 7 to the solid bed. Coupled operation of the two reactors promoted methanogenic conversion of the high-solids feed. (author)

  7. Recent advances in industrial fermentation in Japan. [408 references

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.

    1977-11-01

    In the field of industrial fermentation in Japan, we have made remarkable progress in this century. This rapid development may be attributed to the following factors: (a) for the past centuries the Japanese people have been familiar with handling microorganisms through the production of such traditional foods as sake (rice wine), shoyu (soya sauce), miso (soya paste), natto (fermented beans), and many other commodities. (b) The government has been always eager to promote the research and development of fermentation, establishing laboratories of applied microbiology at almost all national universities throughout the country. Researchers in this field now include large numbers of applied microbiologists including professors, researchers, and students. (c) Moreover, we are fortunate enough to have many excellent leaders in the past half century. During World War II, there was little research in Japan in the fields of aerobic fermentation, however, presently, we are playing a leading role in such fields as the production of amino acids, nucleic acids and related compounds, microbial enzymes and antibiotics, and the utilization of hydrocarbons or petrochemicals. In this article, the author wishes to offer an explanation regarding the recent advances in industrial fermentation in Japan, especially in the fields mentioned above. 408 references.

  8. Continuous fermentation of carbohydrate-containing liquids to alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Moldenhauer, O; Lechner, R

    1955-08-25

    Rate of alcohol fermentation depends mostly on the biological state of the yeast. The process described avoids retardation during the final fermentation phase by increasing the concentration of yeast as the fermentation proceeds. The method is especially suitable for dilute carbohydrate solutions. Thus, to a solution containing 4% carbohydrates, 66 g pressed yeast was added. This mash was passed continuously through several fermentation vessels. The temperature was adjusted to 29 to 35 degrees according to the type of yeast. Before entering the next vessel, another portion of pressed yeast (66 g/1 of mash) is added. The yeast is recovered from the fermented mash by means of a yeast separator.

  9. Continuous fermentation of carbohydrate-containing liquids to alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Moldenhauer, O; Lechner, R

    1955-08-29

    Rate of alcohol fermentation depends mostly on the biological state of the yeast. The process described avoids retardation during the final fermentation phase by increasing the concentration of yeast as the fermentation proceeds. The method is especially suitable for dilute carbohydrate solutions. Thus, to a solution containing 4% carbohydrates, 66 g pressed yeast was added. This mash was passed continuously through several fermentation vessels. The temperature was adjusted to 29 to 35/sup 0/ according to the type of yeast. Before entering the next vessel, another portion of pressed yeast (66 g/l of mash) is added. The yeast is recovered from the fermented mash by means of a yeast separator.

  10. Fermentation: From Sensory Experience to Conceptual Understanding

    Science.gov (United States)

    Moore, Eugene B.

    1977-01-01

    Presented is a laboratory exercise that utilizes the natural yeast carbonation method of making homemade root beer to study fermentation and the effect of variables upon the fermentation process. There are photographs, a sample data sheet, and procedural hints included. (Author/MA)

  11. Evaluation of MALDI-TOF mass spectrometry for differentiation of Pichia kluyveri strains isolated from traditional fermentation processes.

    Science.gov (United States)

    De la Torre González, Francisco Javier; Gutiérrez Avendaño, Daniel Oswaldo; Gschaedler Mathis, Anne Christine; Kirchmayr, Manuel Reinhart

    2018-06-06

    Non- Saccharomyces yeasts are widespread microorganisms and some time ago were considered contaminants in the beverage industry. However, nowadays they have gained importance for their ability to produce aromatic compounds, which in alcoholic beverages improves aromatic complexity and therefore the overall quality. Thus, identification and differentiation of the species involved in fermentation processes is vital and can be classified in traditional methods and techniques based on molecular biology. Traditional methods, however, can be expensive, laborious and/or unable to accurately discriminate on strain level. In the present study, a total of 19 strains of Pichia kluyveri isolated from mezcal, tejuino and cacao fermentations were analyzed with rep-PCR fingerprinting and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The comparative analysis between MS spectra and rep-PCR patterns obtained from these strains showed a high similarity between both methods. However, minimal differences between the obtained rep-PCR and MALDI-TOF MS clusters could be observed. The data shown suggests that MALDI-TOF MS is a promising alternative technique for rapid, reliable and cost-effective differentiation of natives yeast strains isolated from different traditional fermented foods and beverages. This article is protected by copyright. All rights reserved.

  12. Electro-Fermentation - Merging Electrochemistry with Fermentation in Industrial Applications.

    Science.gov (United States)

    Schievano, Andrea; Pepé Sciarria, Tommy; Vanbroekhoven, Karolien; De Wever, Heleen; Puig, Sebastià; Andersen, Stephen J; Rabaey, Korneel; Pant, Deepak

    2016-11-01

    Electro-fermentation (EF) merges traditional industrial fermentation with electrochemistry. An imposed electrical field influences the fermentation environment and microbial metabolism in either a reductive or oxidative manner. The benefit of this approach is to produce target biochemicals with improved selectivity, increase carbon efficiency, limit the use of additives for redox balance or pH control, enhance microbial growth, or in some cases enhance product recovery. We discuss the principles of electrically driven fermentations and how EF can be used to steer both pure culture and microbiota-based fermentations. An overview is given on which advantages EF may bring to both existing and innovative industrial fermentation processes, and which doors might be opened in waste biomass utilization towards added-value biorefineries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review

    International Nuclear Information System (INIS)

    Peris, Miguel; Escuder-Gilabert, Laura

    2013-01-01

    Graphical abstract: -- Highlights: •This review paper deals with the applications of electronic noses and electronic tongues to the monitoring of fermentation processes. •Positive and negative aspects of the different approaches reviewed are analyzed. •Current and future endeavors in this field are also commented. -- Abstract: Fermentation processes are often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, close follow-up of this type of processes is critical for detecting unfavorable deviations as early as possible in order to save downtime, materials and resources. Nevertheless the use of traditional analytical techniques is often hindered by the need for expensive instrumentation and experienced operators and complex sample preparation. In this sense, one of the most promising ways of developing rapid and relatively inexpensive methods for quality control in fermentation processes is the use of chemical multisensor systems. In this work we present an overview of the most important contributions dealing with the monitoring of fermentation processes using electronic noses and electronic tongues. After a brief description of the fundamentals of both types of devices, the different approaches are critically commented, their strengths and weaknesses being highlighted. Finally, future trends in this field are also mentioned in the last section of the article

  14. On-line monitoring of food fermentation processes using electronic noses and electronic tongues: A review

    Energy Technology Data Exchange (ETDEWEB)

    Peris, Miguel, E-mail: mperist@qim.upv.es [Departamento de Química, Universidad Politécnica de Valencia, 46071 Valencia (Spain); Escuder-Gilabert, Laura [Departamento de Química Analítica, Universitat de Valencia, C/ Vicente Andrés Estellés s/n, E-46100 Burjasot, Valencia (Spain)

    2013-12-04

    Graphical abstract: -- Highlights: •This review paper deals with the applications of electronic noses and electronic tongues to the monitoring of fermentation processes. •Positive and negative aspects of the different approaches reviewed are analyzed. •Current and future endeavors in this field are also commented. -- Abstract: Fermentation processes are often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, close follow-up of this type of processes is critical for detecting unfavorable deviations as early as possible in order to save downtime, materials and resources. Nevertheless the use of traditional analytical techniques is often hindered by the need for expensive instrumentation and experienced operators and complex sample preparation. In this sense, one of the most promising ways of developing rapid and relatively inexpensive methods for quality control in fermentation processes is the use of chemical multisensor systems. In this work we present an overview of the most important contributions dealing with the monitoring of fermentation processes using electronic noses and electronic tongues. After a brief description of the fundamentals of both types of devices, the different approaches are critically commented, their strengths and weaknesses being highlighted. Finally, future trends in this field are also mentioned in the last section of the article.

  15. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].

    Science.gov (United States)

    Zhang, Shuang; Zhang, Lanwei; Han, Xue

    2015-12-04

    Lactic acid bacteria (LAB) could synthesize cell envelope proteinase with weak activity, which primarily degrades casein. In addition to its crucial role in the rapid growth of LAB in milk, LAB proteinases are also of industrial importance due to their contribution to the formation of texture and flavor of many fermented dairy products. The proteolytic system, properties of proteinase, the degradation product of casein and its effect on the quality of fermented dairy products were reviewed in this manuscript.

  16. The microbial diversity of traditional spontaneously fermented lambic beer

    OpenAIRE

    Spitaels, Freek; Wieme, Anneleen D.; Janssens, Maarten; Aerts, Maarten; Daniel, Heide-Marie; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2014-01-01

    Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations i...

  17. Effects of dietary fibers with different fermentation characteristics on feeding motivation in adult female pigs.

    Science.gov (United States)

    Souza da Silva, Carol; Bolhuis, J Elizabeth; Gerrits, Walter J J; Kemp, Bas; van den Borne, Joost J G C

    2013-02-17

    Dietary fibers can be fermented in the colon, resulting in production of short-chain fatty acids (SCFA) and secretion of satiety-related peptides. Fermentation characteristics (fermentation kinetics and SCFA-profile) differ between fibers and could impact their satiating potential. We investigated the effects of fibers with varying fermentation characteristics on feeding motivation in adult female pigs. Sixteen pair-housed pigs received four diets in four periods in a Latin square design. Starch from a control (C) diet was exchanged, based on gross energy, for inulin (INU), guar gum (GG), or retrograded tapioca starch (RS), each at a low (L) and a high (H) inclusion level. This resulted in a decreased metabolizable energy intake when feeding fiber diets as compared with the C diet. According to in vitro fermentation measurements, INU is rapidly fermentable and yields relatively high amounts of propionate, GG is moderately rapidly fermentable and yields relatively high amounts of acetate, and RS is slowly fermentable and yields relatively high amounts of butyrate. Feeding motivation was assessed using behavioral tests at 1h, 3h and 7h after the morning meal, and home pen behavioral observations throughout the day. The number of wheel turns paid for a food reward in an operant test was unaffected by diet. Pigs on H-diets ran 25% slower for a food reward in a runway test than pigs on L-diets, and showed less spontaneous physical activity and less stereotypic behavior in the hours before the afternoon meal, reflecting increased interprandial satiety. Reduced feeding motivation with increasing inclusion level was most pronounced for RS, as pigs decreased speed in the runway test and tended to have a lower voluntary food intake in an ad libitum food intake test when fed RS-H. In conclusion, increasing levels of fermentable fibers in the diet seemed to enhance satiety in adult pigs, despite a reduction in metabolizable energy supply. RS was the most satiating fiber

  18. Rapid Radiochemical Methods for Asphalt Paving Material ...

    Science.gov (United States)

    Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice

  19. Strain-Level Metagenomic Analysis of the Fermented Dairy Beverage Nunu Highlights Potential Food Safety Risks.

    Science.gov (United States)

    Walsh, Aaron M; Crispie, Fiona; Daari, Kareem; O'Sullivan, Orla; Martin, Jennifer C; Arthur, Cornelius T; Claesson, Marcus J; Scott, Karen P; Cotter, Paul D

    2017-08-15

    The rapid detection of pathogenic strains in food products is essential for the prevention of disease outbreaks. It has already been demonstrated that whole-metagenome shotgun sequencing can be used to detect pathogens in food but, until recently, strain-level detection of pathogens has relied on whole-metagenome assembly, which is a computationally demanding process. Here we demonstrated that three short-read-alignment-based methods, i.e., MetaMLST, PanPhlAn, and StrainPhlAn, could accurately and rapidly identify pathogenic strains in spinach metagenomes that had been intentionally spiked with Shiga toxin-producing Escherichia coli in a previous study. Subsequently, we employed the methods, in combination with other metagenomics approaches, to assess the safety of nunu, a traditional Ghanaian fermented milk product that is produced by the spontaneous fermentation of raw cow milk. We showed that nunu samples were frequently contaminated with bacteria associated with the bovine gut and, worryingly, we detected putatively pathogenic E. coli and Klebsiella pneumoniae strains in a subset of nunu samples. Ultimately, our work establishes that short-read-alignment-based bioinformatics approaches are suitable food safety tools, and we describe a real-life example of their utilization. IMPORTANCE Foodborne pathogens are responsible for millions of illnesses each year. Here we demonstrate that short-read-alignment-based bioinformatics tools can accurately and rapidly detect pathogenic strains in food products by using shotgun metagenomics data. The methods used here are considerably faster than both traditional culturing methods and alternative bioinformatics approaches that rely on metagenome assembly; therefore, they can potentially be used for more high-throughput food safety testing. Overall, our results suggest that whole-metagenome sequencing can be used as a practical food safety tool to prevent diseases or to link outbreaks to specific food products. Copyright

  20. Controlling alchohol fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Leedham, P A; Tubb, R S

    1983-09-21

    In the initial stages of a fermentation of carbohydrate to EtOH, the growth of the yeast is controlled by monitoring the pH of a fermenting liquid or wort and controlling the supply of O/sub 2/ in accordance with the pH. The temperature of the fermenting liquid is also controlled in dependence upon the pH. The control of the fermentation process is carried out automatically by an apparatus including a fermentation vessel, a pH sensor arranged to provide an output signal representative of the pH of the liquid in the vessel, memory means to store information on the required pH with regard to the fermentation time, means to inject O/sub 2/ into the fermenting liquid and control means to compare the output signal of the pH sensor at a particular time with that of the required pH at that time, and in the event of the pH of the fermenting liquid lagging behind that required, actuate the means to inject O/sub 2/ into the fermenting liquid to increase the O/sub 2/ content of the fermenting liquid.

  1. Dynamics in population heterogeneity during batch and continuous fermentation of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Lencastre Fernandes, Rita; Lundin, L.

    2012-01-01

    Traditionally, microbial populations in optimization studies of fermentation processes have been considered homogeneous. However, research has shown that a typical microbial population in fermentation is heterogeneous. There are indications that this heterogeneity may be both beneficial...... (facilitates quick adaptation to new conditions) and harmful (reduces yields and productivities)[1,2]. Typically, gradients of e.g. dissolved oxygen, substrates, and pH are observed in industrial scale fermentation processes. Consequently, microbial cells circulating throughout a bioreactor experience rapid...... distribution during different growth stages. To further simulate which effect gradients have on population heterogeneity, glucose and ethanol perturbations during continuous cultivation were performed. Physiological changes were analyzed on single cell level by using flow cytometry followed by cell sorting...

  2. Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS

    Science.gov (United States)

    Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai

    2015-10-01

    The use of wavelength variable selection before partial least squares discriminant analysis (PLS-DA) for qualitative identification of solid state fermentation degree by FT-NIR spectroscopy technique was investigated in this study. Two wavelength variable selection methods including competitive adaptive reweighted sampling (CARS) and stability competitive adaptive reweighted sampling (SCARS) were employed to select the important wavelengths. PLS-DA was applied to calibrate identified model using selected wavelength variables by CARS and SCARS for identification of solid state fermentation degree. Experimental results showed that the number of selected wavelength variables by CARS and SCARS were 58 and 47, respectively, from the 1557 original wavelength variables. Compared with the results of full-spectrum PLS-DA, the two wavelength variable selection methods both could enhance the performance of identified models. Meanwhile, compared with CARS-PLS-DA model, the SCARS-PLS-DA model achieved better results with the identification rate of 91.43% in the validation process. The overall results sufficiently demonstrate the PLS-DA model constructed using selected wavelength variables by a proper wavelength variable method can be more accurate identification of solid state fermentation degree.

  3. Acoustical experiment of yogurt fermentation process.

    Science.gov (United States)

    Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T

    2006-12-22

    One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the

  4. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods.

    Science.gov (United States)

    Coton, Monika; Pawtowski, Audrey; Taminiau, Bernard; Burgaud, Gaëtan; Deniel, Franck; Coulloumme-Labarthe, Laurent; Fall, Abdoulaye; Daube, Georges; Coton, Emmanuel

    2017-05-01

    Kombucha, historically an Asian tea-based fermented drink, has recently become trendy in Western countries. Producers claim it bears health-enhancing properties that may come from the tea or metabolites produced by its microbiome. Despite its long history of production, microbial richness and dynamics have not been fully unraveled, especially at an industrial scale. Moreover, the impact of tea type (green or black) on microbial ecology was not studied. Here, we compared microbial communities from industrial-scale black and green tea fermentations, still traditionally carried out by a microbial biofilm, using culture-dependent and metabarcoding approaches. Dominant bacterial species belonged to Acetobacteraceae and to a lesser extent Lactobacteriaceae, while the main identified yeasts corresponded to Dekkera, Hanseniaspora and Zygosaccharomyces during all fermentations. Species richness decreased over the 8-day fermentation. Among acetic acid bacteria, Gluconacetobacter europaeus, Gluconobacter oxydans, G. saccharivorans and Acetobacter peroxydans emerged as dominant species. The main lactic acid bacteria, Oenococcus oeni, was strongly associated with green tea fermentations. Tea type did not influence yeast community, with Dekkera bruxellensis, D. anomala, Zygosaccharomyces bailii and Hanseniaspora valbyensis as most dominant. This study unraveled a distinctive core microbial community which is essential for fermentation control and could lead to Kombucha quality standardization. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Physiochemical Properties and Antinutrient Content of Fermented ...

    African Journals Online (AJOL)

    Popcorn and groundnut composite flours were fermented using pure strains of Rhizopus nigricans and Saccharomyces cerevisiae by solid substrate fermentation method. There was decrease in pH with increase in total titrable acidity in all the samples. The result of the proximate analysis revealed that there was an ...

  6. Ethanol fermentation by immobilized cells of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Grote, W.

    1985-01-01

    Previous studies have shown that immobilized yeast cell cultures have commercial potential for fuel ethanol production. In this study the suitability of strains of Z. mobilis for whole cell immobilization was investigated. Experiments revealed that immobilization in Ca-alginate or K-carrageenan gel or use of flocculating strains was effective for ethanol production at relatively high productivities. Two laboratory size reactors were designed and constructed. These were a compartmented multiple discshaft column and a tower fermentor. Results of this work supported other studies that established that growth and fermentation could be uncoupled. The data indicated that specific metabolic rates were dependent on the nature of the fermentation media. The addition of lactobacilli to Z. mobilis continuous fermentations had only a transient effect, and was unlikely to affect an immobilized Z. mobilis process. With 150 gl/sup -1/ glucose media and a Z. mobilis ZM4 immobilized cell reactor, a maximum volumetric ethanol productivity of 55 gl/sup -1/h/sup -1/ was obtained. The fermentation of sucrose media or sucrose-based raw materials (molasses, cane juice, synthetic mill liquor) by immobilized Z. mobilis ZM4 revealed a pattern of rapid sucrose hydrolysis, preferential glucose utilization and the conversion of fructose to the undesirable by-products levan and sorbitol.

  7. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation.

    Science.gov (United States)

    Hu, Yongjin; Ge, Changrong; Yuan, Wei; Zhu, Renjun; Zhang, Wujiu; Du, Lijuan; Xue, Jie

    2010-05-01

    To make nutrients more accessible and further increase biological activity, cooked black soybeans were inoculated with Bacillus natto and fermented at 37 degrees C for 48 h. The changes in physiochemical properties of fermented black soybean natto were investigated. The inoculation procedure significantly increased moisture, viscosity, color, polyphenol compounds and anthocyanin, and significantly decreased hardness after 48 h fermentation. Fibrinolytic and caseinolytic protease, beta-glucosidase activities, TCA-soluble nitrogen, and ammonia nitrogen contents in the inoculated samples significantly increased as fermentation time increased. Genistin and daidzin concentrations gradually decreased with increased fermentation time. However, genistein and daidzein increased with fermentation time, which reached 316.8 and 305.2 microg g(-1) during 48 h fermentation, respectively. DPPH radical scavenging activities of the fermented black soybeans increased linearly with fermentation time and concentration. Compared with the soaked black soybeans and cooked black soybeans, the fermented black soybeans with B. natto resulted in higher scavenging activity towards DPPH radicals, which correlated well with the content of total phenols (r = 0.9254, P natto fermented by B. natto has the potential to become a functional food because of its high antioxidant activity.

  8. Genotypic and phenotypic characterization of garlic-fermenting lactic acid bacteria isolated from som-fak, a Thai low-salt fermented fish product

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Valyasevi, R.; Huss, Hans Henrik

    2002-01-01

    AIMS: To evaluate the importance of garlic for fermentation of a Thai fish product, and to differentiate among garlic-/inulin-fermenting lactic acid bacteria (LAB) at strain level. METHODS AND RESULTS: Som-fak was prepared by fermentation of a mixture of fish, salt, rice, sucrose and garlic. p......H decreased to 4.5 in 2 days, but omitting garlic resulted in a lack of acidification. LAB were predominant and approximately one third of 234 isolated strains fermented garlic and inulin (the carbohydrate reserve in garlic). These strains were identified as Lactobacillus pentosus and Lact. plantarum...... AND IMPACT OF THE STUDY: The present study indicates the role of fructans (garlic/inulin) as carbohydrate sources for LAB. Fructan fermenters may have several biotechnological applications, for example, as probiotics....

  9. Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates

    Science.gov (United States)

    Adams, Stephen S.; Scott, Syrona; Ko, Ching-Whan

    2015-05-19

    The present invention relates to methods for sustaining microorganism culture in a syngas fermentation reactor in decreased concentration or absence of various substrates comprising: adding carbon dioxide and optionally alcohol; maintaining free acetic acid concentrations; and performing the above mentioned steps within specified time.

  10. Characterization of the Factors that Influence Sinapine Concentration in Rapeseed Meal during Fermentation

    Science.gov (United States)

    Niu, Yanxing; Jiang, Mulan; Guo, Mian; Wan, Chuyun; Hu, Shuangxi; Jin, Hu; Huang, Fenghong

    2015-01-01

    We analyzed and compared the difference in sinapine concentration in rapeseed meal between the filamentous fungus, Trametes sp 48424, and the yeast, Saccharomyces cerevisiae, in both liquid and solid-state fermentation. During liquid and solid-state fermentation by Trametes sp 48424, the sinapine concentration decreased significantly. In contrast, the liquid and solid-state fermentation process by Saccharomyces cerevisiae just slightly decreased the sinapine concentration (P ≤ 0.05). After the solid-state fermented samples were dried, the concentration of sinapine in rapeseed meal decreased significantly in Saccharomyces cerevisiae. Based on the measurement of laccase activity, we observed that laccase induced the decrease in the concentration of sinapine during fermentation with Trametes sp 48424. In order to eliminate the influence of microorganisms and the metabolites produced during fermentation, high moisture rapeseed meal and the original rapeseed meal were dried at 90°C and 105°C, respectively. During drying, the concentration of sinapine in high moisture rapeseed meal decreased rapidly and we obtained a high correlation coefficient between the concentration of sinapine and loss of moisture. Our results suggest that drying and enzymes, especially laccase that is produced during the solid-state fermentation process, may be the main factors that affect the concentration of sinapine in rapeseed meal. PMID:25606856

  11. Real-Time Monitoring of Chemical Changes in Three Kinds of Fermented Milk Products during Fermentation Using Quantitative Difference Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Lu, Yi; Ishikawa, Hiroto; Kwon, Yeondae; Hu, Fangyu; Miyakawa, Takuya; Tanokura, Masaru

    2018-02-14

    Fermented milk products are rising in popularity throughout the world as a result of their health benefits, including improving digestion, normalizing the function of the immune system, and aiding in weight management. This study applies an in situ quantitative nuclear magnetic resonance method to monitor chemical changes in three kinds of fermented milk products, Bulgarian yogurt, Caspian Sea yogurt, and kefir, during fermentation. As a result, the concentration changes in nine organic compounds, α/β-lactose, α/β-galactose, lactic acid, citrate, ethanol, lecithin, and creatine, were monitored in real time. This revealed three distinct metabolic processes in the three fermented milk products. Moreover, pH changes were also determined by variations in the chemical shift of citric acid during the fermentation processes. These results can be applied to estimate microbial metabolism in various flora and help guide the fermentation and storage of various fermented milk products to improve their quality, which may directly influence human health.

  12. Comparison of protein fermentation characteristics in rumen fluid determined with the gas production technique and the nylon bag technique

    NARCIS (Netherlands)

    Cone, J.W.; Rodrigues, M.A.M.; Guedes, C.M.; Blok, M.C.

    2009-01-01

    In this study, a modified version of the gas production technique was used to determine protein fermentation characteristics in rumen fluid of 19 feedstuffs. Performing the incubations in a N-free environment, and with an excess of rapidly fermentable carbohydrates, made N the limiting factor to

  13. Survey of methods for rapid spin reversal

    International Nuclear Information System (INIS)

    McKibben, J.L.

    1980-01-01

    The need for rapid spin reversal technique in polarization experiments is discussed. The ground-state atomic-beam source equipped with two rf transitions for hydrogen can be reversed rapidly, and is now in use on several accelerators. It is the optimum choice provided the accelerator can accept H + ions. At present all rapid reversal experiments using H - ions are done with Lamb-shift sources; however, this is not a unique choice. Three methods for the reversal of the spin of the atomic beam within the Lamb-shift source are discussed in order of development. Coherent intensity and perhaps focus modulation seem to be the biggest problems in both types of sources. Methods for reducing these modulations in the Lamb-shift source are discussed. The same Lamb-shift apparatus is easily modified to provide information on the atomic physics of quenching of the 2S/sub 1/2/ states versus spin orientation, and this is also discussed. 2 figures

  14. Continuous saccharification and fermentation in alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, I Ya; Gracheva, I M; Mikhailova, L E; Babaeva, S A; Ustinnikov, B A

    1968-01-01

    Submerged cultures of Aspergillus niger NRRL 337 and A. batatae 61, or a mixture of submerged A. niger culture with a surface culture of A. oryzae Kc are used for fermentations and compared with the usual barley malt procedure. The latter yields 71% maltose and 24 to 28% glucose, wherease the fungal procedure gives 14 to 21% maltose and 80 to 85% glucose in a continuous mashing-fermentation process with barley. The fungal method gives a higher degree of fermentation for sugars and dextrins and a lower content of total and high-molecular-weight residual dextrins. The amounts of propanol PrOH and iso-BuOH isobutyl alcohol are almost equal, whereas the amount of isoamylalcohol is lower in fungal fermentations.

  15. Treatment and processing of residues of fermentation; Behandlung und Verwertung von Gaerrueckstaenden

    Energy Technology Data Exchange (ETDEWEB)

    Doehler, H.; Schliebner, P. [Kuratorium fuer Technik und Bauwesen in der Landwirtschaft (KTBL), Darmstadt (Germany)

    2007-07-01

    With the transformation of the EEG (Renewable Energy Resources Act), the number of biogas plants increased rapidly. Additionally, an enlargement of the performance of the plants and a regional concentration process take place. Recently, processing routes for liquid manure will be considered in order to reduce problems of the surplus of nutrients as well as the costs of the transport of the water-rich residues of fermentation. Under this aspect, the authors of the contribution under consideration report on procedures for the processing of residues of fermentation as well as costs and utilization of these procedures. By the example of an agrarian society, four procedures for the output and processing of residues of fermentation are compared with one another regarding to expenditure of work time, investments and economy: Output of residues of fermentation, treatment of residues of fermentation by separation, processing of residues of fermentation by means of diaphragm technology, processing of residues of fermentation by means of evaporation technology. The processing routes reduce the residues of fermentation by 60 %. Thus, the costs of output and the necessary storage capacities for residues of fermentation are reduced. Presently, no savings regarding to work completion by the processing of the residues of fermentation can be obtained. The specific total costs of the investigated procedures are between 2.64 Euro/m{sup 3} according to the procedure with separation and to 8.64 Euro/m{sup 3} according to the diaphragm processing route. An enhanced demand of investment does not cause compellingly the highest specific total costs of the procedures. In comparison to the output of residues of fermentation, the examined procedures for the processing of residues of fermentation do not result in economical and ergonomic advantages. The high costs of investment and operating cost of the processing of residues of fermentation cannot be compensated by the reduced costs of output

  16. Controlled fermentation of Moroccan picholine green olives by oleuropein-degrading Lactobacilli strains

    Energy Technology Data Exchange (ETDEWEB)

    Ghabbour, N.; Rokni, Y.; Lamzira, Z.; Thonart, P.; Chihib, N.E.; Peres, C.; Asehraou, A.

    2016-07-01

    The control of the spontaneous fermentation process of un-debittered Moroccan Picholine green olives was undertaken basing the inoculation with two lactobacilli strains (Lactobacillus plantarum S175 and Lactobacillus pentosus S100). These strains, previously selected in our laboratory for their oleuropein-degrading capacity, were inoculated in olives brined at 5% of NaCl, and then incubated at 30 °C. The physico-chemical parameters (pH, free acidity, reducing sugars, sodium chloride, oleuropein and its hydrolysis products), and the microbiological parameters (mesophilic aerobic bacteria, coliforms, Staphylococcus, lactic acid bacteria and yeasts and moulds), were regularly analyzed during the fermentation time. The results obtained showed the effectiveness of the lactic acid bacteria strains to develop suitable oleuropein biodegradation and controlled lactic fermentation processes more than the un-inoculated olives (control). This result was confirmed by the rapid elimination of coliforms and staphylococcus, the accumulation of hydroxytyrosol as a result of oleuropein biodegradation, and a drastic reduction in spoiled olives with good quality fermented olives. (Author)

  17. Coevolution with bacteria drives the evolution of aerobic fermentation in Lachancea kluyveri.

    Directory of Open Access Journals (Sweden)

    Nerve Zhou

    Full Text Available The Crabtree positive yeasts, such as Saccharomyces cerevisiae, prefer fermentation to respiration, even under fully aerobic conditions. The selective pressures that drove the evolution of this trait remain controversial because of the low ATP yield of fermentation compared to respiration. Here we propagate experimental populations of the weak-Crabtree yeast Lachancea kluyveri, in competitive co-culture with bacteria. We find that L. kluyveri adapts by producing quantities of ethanol lethal to bacteria and evolves several of the defining characteristics of Crabtree positive yeasts. We use precise quantitative analysis to show that the rate advantage of fermentation over aerobic respiration is insufficient to provide an overall growth advantage. Thus, the rapid consumption of glucose and the utilization of ethanol are essential for the success of the aerobic fermentation strategy. These results corroborate that selection derived from competition with bacteria could have provided the impetus for the evolution of the Crabtree positive trait.

  18. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula...

  19. Two Novel Strains of Torulaspora delbrueckii Isolated from the Honey Bee Microbiome and Their Use in Honey Fermentation

    Directory of Open Access Journals (Sweden)

    Joseph P. Barry

    2018-03-01

    Full Text Available Yeasts are ubiquitous microbes found in virtually all environments. Many yeast species can ferment sugar into ethanol and CO2, and humans have taken advantage of these characteristics to produce fermented beverages for thousands of years. As a naturally abundant source of fermentable sugar, honey has had a central role in such fermentations since Neolithic times. However, as beverage fermentation has become industrialized, the processes have been streamlined, including the narrow and almost exclusive usage of yeasts in the genus Saccharomyces for fermentation. We set out to identify wild honey- or honey-bee-related yeasts that can be used in honey fermentation. Here, we isolated two strains of Torulaspora delbrueckii from the gut of a locally collected honey bee. Both strains were able to ferment honey sugar into mead but failed to metabolize more than a modest amount of wort sugar in trial beer fermentations. Further, the meads fermented by the T. delbrueckii strains displayed better sensory characteristics than mead fermented by a champagne yeast. The combination of T. delbrueckii and champagne yeast strains was also able to rapidly ferment honey at an industrial scale. Thus, wild yeasts represent a largely untapped reservoir for the introduction of desirable sensory characteristics in fermented beverages such as mead.

  20. Fermentation temperature and wort composition influence on diacetyl and 2, 3-pentanedione contents in beer

    Directory of Open Access Journals (Sweden)

    Pejin Jelena D.

    2005-01-01

    Full Text Available Diacetyl and 2,3-pentanedione are important constituents of beer sensory properties. A new GC/MS method for diacetyl and 2,3-pentanedione content determination was developed. This method was applied for the determination of diacetyl and 2,3-pentanedione contents during beer fermentation (primary fermentation and maturation. Primary fermentations were carried out at different temperatures (8°C and 14°C. Primary fermentation temperature had a great influence on diacetyl and 2,3-pentanedione formation and reduction. Formation and reduction rates increased with the primary fermentation temperature increasment. Diacetyl and 2,3-pentanedione contents also increased with the corn grits increasment. Fermentations were carried out with Saccharomyces cerevisiae pure culture, specially prepared for each fermentation. This GC/MS method for diacetyl and 2,3-pentanedione determination was valuable for analysing the influence of wort composition or fermentation conditions such as primary fermentation temperature on their formation and reduction.

  1. A strain of Saccharomyces cerevisiae evolved for fermentation of lignocellulosic biomass displays improved growth and fermentative ability in high solids concentrations and in the presence of inhibitory compounds

    Directory of Open Access Journals (Sweden)

    Hawkins Gary M

    2011-11-01

    Full Text Available Abstract Background Softwoods are the dominant source of lignocellulosic biomass in the northern hemisphere, and have been investigated worldwide as a renewable substrate for cellulosic ethanol production. One challenge to using softwoods, which is particularly acute with pine, is that the pretreatment process produces inhibitory compounds detrimental to the growth and metabolic activity of fermenting organisms. To overcome the challenge of bioconversion in the presence of inhibitory compounds, especially at high solids loading, a strain of Saccharomyces cerevisiae was subjected to evolutionary engineering and adaptation for fermentation of pretreated pine wood (Pinus taeda. Results An industrial strain of Saccharomyces, XR122N, was evolved using pretreated pine; the resulting daughter strain, AJP50, produced ethanol much more rapidly than its parent in fermentations of pretreated pine. Adaptation, by preculturing of the industrial yeast XR122N and the evolved strains in 7% dry weight per volume (w/v pretreated pine solids prior to inoculation into higher solids concentrations, improved fermentation performance of all strains compared with direct inoculation into high solids. Growth comparisons between XR122N and AJP50 in model hydrolysate media containing inhibitory compounds found in pretreated biomass showed that AJP50 exited lag phase faster under all conditions tested. This was due, in part, to the ability of AJP50 to rapidly convert furfural and hydroxymethylfurfural to their less toxic alcohol derivatives, and to recover from reactive oxygen species damage more quickly than XR122N. Under industrially relevant conditions of 17.5% w/v pretreated pine solids loading, additional evolutionary engineering was required to decrease the pronounced lag phase. Using a combination of adaptation by inoculation first into a solids loading of 7% w/v for 24 hours, followed by a 10% v/v inoculum (approximately equivalent to 1 g/L dry cell weight into 17

  2. Rapid flow imaging method

    International Nuclear Information System (INIS)

    Pelc, N.J.; Spritzer, C.E.; Lee, J.N.

    1988-01-01

    A rapid, phase-contrast, MR imaging method of imaging flow has been implemented. The method, called VIGRE (velocity imaging with gradient recalled echoes), consists of two interleaved, narrow flip angle, gradient-recalled acquisitions. One is flow compensated while the second has a specified flow encoding (both peak velocity and direction) that causes signals to contain additional phase in proportion to velocity in the specified direction. Complex image data from the first acquisition are used as a phase reference for the second, yielding immunity from phase accumulation due to causes other than motion. Images with pixel values equal to MΔΘ where M is the magnitude of the flow compensated image and ΔΘ is the phase difference at the pixel, are produced. The magnitude weighting provides additional vessel contrast, suppresses background noise, maintains the flow direction information, and still allows quantitative data to be retrieved. The method has been validated with phantoms and is undergoing initial clinical evaluation. Early results are extremely encouraging

  3. Modelling of the process yields of a whey fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Blakebrough, N; Moresi, M

    1981-09-01

    The biomass yields (y) and COD reduction efficiencies (eta) of a whey fermentation by Kluyveromyces fragilis were studied in a 100-l fermenter at various stirrer speeds and lactose concentrations, and compared to those obtained in 10-l and 15-l fermenters at constant values of the oxygen transfer coefficient (ksub(L)a) and air velocity. The empirical models previously constructed by using the 15-l fermenter data could be used to predict the yields on the other scales by calculating for each run the 15-l fermenter which would provide the same oxygen transfer coefficient measured by the sulphite method on each fermenter under study. To make this model independent of stirrer speeds used in each generic fermenter, the effect of aeration and mixing was incorporated into an overall parameter (ksub(L)a) and the values of y and eta were correlated only with temperature, lactose level and ksub(L)a since these variables were approximately orthogonal.

  4. Acetone-butanol fermentation of blackstrap molasses. An effective factor of some symbiotic organisms against an abnormal fermentation. [Torula utilis

    Energy Technology Data Exchange (ETDEWEB)

    Shige, A; Kinoshita, S; Okumura, T

    1954-01-01

    There were three types of industrial acetone-butanol fermentation of blackstrap molasses; one of them, called B type, was characterized by the extremely prolonged acidity peak, and sluggishness experiments were carried out to find some symbiotic organisms among various aerobic bacteria and yeasts for several strains of Clostridium acetobutylicum. Torula utilis showed an outstanding effectiveness for a rapid completion of the fermentation, and the yields of solvents was much increased. Culture filtrate of T. utilis contained a soluble and invertase activity. A close relation was found between high yields of solvents and the degree of inversion of molasses medium. Thus, the effective factor against sluggishness was ascribed to the invertase activity of the yeast. Some inhibiting factors to invertase of C. acetobutylicum were presumed to be present in molasses as the principal cause of the sluggishness.

  5. Rapid purification and plasticization of D-glutamate-containing poly-γ-glutamate from Japanese fermented soybean food natto.

    Science.gov (United States)

    Ashiuchi, Makoto; Oike, Shota; Hakuba, Hirofumi; Shibatani, Shigeo; Oka, Nogiho; Wakamatsu, Taisuke

    2015-12-10

    Poly-γ-glutamate (PGA) is a major component of mucilage derived from natto, a Japanese fermented food made from soybeans, and PGAs obtained under laboratory's conditions contain numerous d-glutamyl residues. Natto foods are thus promising as a source for nutritionally safe d-amino acids present in intact and digested polymers, although there is little information on the stereochemistry of PGA isolated directly from natto. Here, we describe the development of a new process for rapid purification of PGA using alum and determined the D-glutamate content of natto PGA by chiral high-performance liquid chromatographic analysis. Further, using hexadecylpyridinium cation (HDP(+)), which is a compound of toothpaste, we chemically transformed natto PGA into a new thermoplastic material, called DL-PGAIC. (1)H nuclear magnetic resonance and calorimetric measurements indicate that DL-PGAIC is a stoichiometric complex of natto PGA and HDP(+) with glass transition points of -16.8 °C and -3.1 °C. Then, DL-PGAIC began decomposing at 210°C, suggesting thermal stability suitable for use as a supramolecular soft plastic. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Relationships between functional genes in Lactobacillus delbrueckii ssp. bulgaricus isolates and phenotypic characteristics associated with fermentation time and flavor production in yogurt elucidated using multilocus sequence typing.

    Science.gov (United States)

    Liu, Wenjun; Yu, Jie; Sun, Zhihong; Song, Yuqin; Wang, Xueni; Wang, Hongmei; Wuren, Tuoya; Zha, Musu; Menghe, Bilige; Heping, Zhang

    2016-01-01

    Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is well known for its worldwide application in yogurt production. Flavor production and acid producing are considered as the most important characteristics for starter culture screening. To our knowledge this is the first study applying functional gene sequence multilocus sequence typing technology to predict the fermentation and flavor-producing characteristics of yogurt-producing bacteria. In the present study, phenotypic characteristics of 35 L. bulgaricus strains were quantified during the fermentation of milk to yogurt and during its subsequent storage; these included fermentation time, acidification rate, pH, titratable acidity, and flavor characteristics (acetaldehyde concentration). Furthermore, multilocus sequence typing analysis of 7 functional genes associated with fermentation time, acid production, and flavor formation was done to elucidate the phylogeny and genetic evolution of the same L. bulgaricus isolates. The results showed that strains significantly differed in fermentation time, acidification rate, and acetaldehyde production. Combining functional gene sequence analysis with phenotypic characteristics demonstrated that groups of strains established using genotype data were consistent with groups identified based on their phenotypic traits. This study has established an efficient and rapid molecular genotyping method to identify strains with good fermentation traits; this has the potential to replace time-consuming conventional methods based on direct measurement of phenotypic traits. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Microbial production of four biodegradable siderophores under submerged fermentation.

    Science.gov (United States)

    Fazary, Ahmed E; Al-Shihri, Ayed S; Alfaifi, Mohammad Y; Saleh, Kamel A; Alshehri, Mohammed A; Elbehairi, Serag Eldin I; Ju, Yi-Hsu

    2016-07-01

    Four siderophore analogues were isolated and purified from Escherichia coli, Bacillus spp. ST13, and Streptomyces pilosus microorganisms under some specific submerged fermentation conditions. In order to evaluate the highest production of this siderophore analogues through the growth, a rapid spectrophotometric screening semi-quantitative method was used, in which interestingly the analogues were isolated in its own form not its iron chelate. After chromatographic separation, the chemical structures of the isolated and purified siderophores were illustrated using detailed spectroscopic techniques. The biodegradation studies were done on that four novel isolated and purified siderophores following OECD protocols. In addition, the bioactivities of these siderophores and their iron complexes were examined and evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Residual mitochondrial transmembrane potential decreases unsaturated fatty acid level in sake yeast during alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Kazutaka Sawada

    2016-01-01

    Full Text Available Oxygen, a key nutrient in alcoholic fermentation, is rapidly depleted during this process. Several pathways of oxygen utilization have been reported in the yeast Saccharomyces cerevisiae during alcoholic fermentation, namely synthesis of unsaturated fatty acid, sterols and heme, and the mitochondrial electron transport chain. However, the interaction between these pathways has not been investigated. In this study, we showed that the major proportion of unsaturated fatty acids of ester-linked lipids in sake fermentation mash is derived from the sake yeast rather than from rice or koji (rice fermented with Aspergillus. Additionally, during alcoholic fermentation, inhibition of the residual mitochondrial activity of sake yeast increases the levels of unsaturated fatty acids of ester-linked lipids. These findings indicate that the residual activity of the mitochondrial electron transport chain reduces molecular oxygen levels and decreases the synthesis of unsaturated fatty acids, thereby increasing the synthesis of estery flavors by sake yeast. This is the first report of a novel link between residual mitochondrial transmembrane potential and the synthesis of unsaturated fatty acids by the brewery yeast during alcoholic fermentation.

  9. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters.

    Science.gov (United States)

    Cai, Jian; Zhu, Bao-Qing; Wang, Yun-He; Lu, Lin; Lan, Yi-Bin; Reeves, Malcolm J; Duan, Chang-Qing

    2014-07-01

    The influence of pre-fermentation cold maceration (CM) on Cabernet Sauvignon wines fermented in two different industrial-scale fermenters was studied. CM treatment had different effects on wine aroma depending on the types of fermenter, being more effective for automatic pumping-over tank (PO-tank) than automatic punching-down tank (PD-tank). When PO-tank was used, CM-treated wine showed a decrease in some fusel alcohols (isobutanol and isopentanol) and an increase in some esters (especially acetate esters). However, no significant changes were detected in these compounds when PD-tank was used. Ethyl 2-hexenoate and diethyl succinate were decreased, while geranylacetone was increased by the CM treatment in both fermenters. β-Damascenone was increased by the CM treatment in PO-tank fermented wines but decreased in PD-tank fermented wines. The fruity, caramel and floral aroma series were enhanced while chemical series were decreased by the CM treatment in PO-tank fermented wines. The content of (Z)-6-nonen-1-ol in the final wines was positively correlated to CM treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. CONTROL BASED ON NUMERICAL METHODS AND RECURSIVE BAYESIAN ESTIMATION IN A CONTINUOUS ALCOHOLIC FERMENTATION PROCESS

    Directory of Open Access Journals (Sweden)

    Olga L. Quintero

    Full Text Available Biotechnological processes represent a challenge in the control field, due to their high nonlinearity. In particular, continuous alcoholic fermentation from Zymomonas mobilis (Z.m presents a significant challenge. This bioprocess has high ethanol performance, but it exhibits an oscillatory behavior in process variables due to the influence of inhibition dynamics (rate of ethanol concentration over biomass, substrate, and product concentrations. In this work a new solution for control of biotechnological variables in the fermentation process is proposed, based on numerical methods and linear algebra. In addition, an improvement to a previously reported state estimator, based on particle filtering techniques, is used in the control loop. The feasibility estimator and its performance are demonstrated in the proposed control loop. This methodology makes it possible to develop a controller design through the use of dynamic analysis with a tested biomass estimator in Z.m and without the use of complex calculations.

  11. GUT FERMENTATION SYNDROME

    African Journals Online (AJOL)

    boaz

    individuals who became intoxicated after consuming carbohydrates, which became fermented in the gastrointestinal tract. These claims of intoxication without drinking alcohol, and the findings on endogenous alcohol fermentation are now called Gut. Fermentation Syndrome. This review will concentrate on understanding ...

  12. Rapid spectrographic method for determining microcomponents in solutions

    International Nuclear Information System (INIS)

    Karpenko, L.I.; Fadeeva, L.A.; Gordeeva, A.N.; Ermakova, N.V.

    1984-01-01

    Rapid spectrographic method foe determining microcomponents (Cd, V, Mo, Ni, rare earths and other elements) in industrial and natural solutions has been developed. The analyses were conducted in argon medium and in the air. Calibration charts for determining individual rare earths in solutions are presented. The accuracy of analysis (Sr) was detection limit was 10 -3 -10 -4 mg/ml, that for rare earths - 1.10 -2 mg/ml. The developed method enables to rapidly analyze solutions (sewages and industrialllwaters, wine products) for 20 elements including 6 rare earths, using strandard equipment

  13. Assessment of Monacolin in the Fermented Products Using Monascus purpureus FTC5391

    Directory of Open Access Journals (Sweden)

    Zahra Ajdari

    2011-01-01

    Full Text Available Monacolins, as natural statins, form a class of fungal secondary metabolites and act as the specific inhibitors of HMG-CoA reductase. The interest in using the fermented products as the natural source of monacolins, instead of statin drugs, is increasing enormously with its increasing demand. In this study, the fermented products were produced by Monascus purpureus FTC5391 using submerged and solid state fermentations. Two commercial Monascus-fermented products were also evaluated for comparison. Improved methods of monacolins extraction and identification were developed for the assessment of monacolins in the fermented products. Methanol and ethanol were found to be the most favorable solvents for monacolins extraction due to their ability to extract higher amount of monacolin K and higher numbers of monacolin derivatives. Problem related to false-positive results during monacolins identification was solved by adding monacolin lactonization step in the assessment method. Using this improved method, monacolin derivatives were not detected in all Monascus-fermented products tested in this study, suggesting that their hypocholesterolemic effects may be due to other compounds other than monacolins.

  14. Methods of preparation of Swazi traditional fermented foods

    Directory of Open Access Journals (Sweden)

    Protus Simatende

    2015-09-01

    Conclusion: Umcombotsi, emahewu, buganu, and emasi were the fermented foods commonly prepared at a household level in the Hhohho region, Swaziland. The main ingredient used for preparing umcombotsi and emahewu was maize meal. Unmilled sorghum malt was also added during preparation of umcombotsi. However, typically no malt was added during the preparation of emahewu. Buganu and emasi also play an important role in the diet and socioeconomic activities of the population in Swaziland.

  15. Reduction of verotoxigenic Escherichia coli in production of fermented sausages.

    Science.gov (United States)

    Holck, Askild L; Axelsson, Lars; Rode, Tone Mari; Høy, Martin; Måge, Ingrid; Alvseike, Ole; L'abée-Lund, Trine M; Omer, Mohamed K; Granum, Per Einar; Heir, Even

    2011-11-01

    After a number of foodborne outbreaks of verotoxigenic Escherichia coli involving fermented sausages, some countries have imposed regulations on sausage production. For example, the US Food Safety and Inspection Service requires a 5 log(10) reduction of E. coli in fermented products. Such regulations have led to a number of studies on the inactivation of E. coli in fermented sausages by changing processing and post-processing conditions. Several factors influence the survival of E. coli such as pre-treatment of the meat, amount of NaCl, nitrite and lactic acid, water activity, pH, choice of starter cultures and addition of antimicrobial compounds. Also process variables like fermentation temperature and storage time play important roles. Though a large variety of different production processes of sausages exist, generally the reduction of E. coli caused by production is in the range 1-2 log(10). In many cases this may not be enough to ensure microbial food safety. By optimising ingredients and process parameters it is possible to increase E. coli reduction to some extent, but in some cases still other post process treatments may be required. Such treatments may be storage at ambient temperatures, specific heat treatments, high pressure processing or irradiation. HACCP analyses have identified the quality of the raw materials, low temperature in the batter when preparing the sausages and a rapid pH drop during fermentation as critical control points in sausage production. This review summarises the literature on the reduction verotoxigenic E. coli in production of fermented sausages. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Modelling of the process yields of a whey fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Blakebrough, N; Moresi, M

    1981-01-01

    The biomass yields (y) and COD reduction efficiencies (eta) of a whey fermentation by Kluyveromyces fragilis were studied in a 100-l fermenter at various stirrer speeds and lactose concentrations, and compared to those obtained in 10-l and 15-l fermenters at constant values of the oxygen transfer coefficient (kla) and air velocity. The empirical models previously constructed by using the 15-l fermenter data could be used to predict the yields on the other scales by calculating for each run the 15-l fermenter which would provide the same oxygen transfer coefficient measured by the sulfite method on each fermenter under study. To make this model independent of stirrer speeds used in each generic fermenter, the effect of aeration and mixing was incorporated into an overall parameter (kla) and the values of y and eta were correlated only with temperature, lactose level and kla, since these variables were approximately orthogonal. The validity of this model was finally checked against the yields reported by Wasserman et al. (1961) in a 6-cubic metre fermenter, thus confirming the capability of the model to provide a reliable basis for further scale-up on the production scale. (Refs. 17).

  17. Single-cell analysis of S. cerevisiae growth recovery after a sublethal heat-stress applied during an alcoholic fermentation.

    Science.gov (United States)

    Tibayrenc, Pierre; Preziosi-Belloy, Laurence; Ghommidh, Charles

    2011-06-01

    Interest in bioethanol production has experienced a resurgence in the last few years. Poor temperature control in industrial fermentation tanks exposes the yeast cells used for this production to intermittent heat stress which impairs fermentation efficiency. Therefore, there is a need for yeast strains with improved tolerance, able to recover from such temperature variations. Accordingly, this paper reports the development of methods for the characterization of Saccharomyces cerevisiae growth recovery after a sublethal heat stress. Single-cell measurements were carried out in order to detect cell-to-cell variability. Alcoholic batch fermentations were performed on a defined medium in a 2 l instrumented bioreactor. A rapid temperature shift from 33 to 43 °C was applied when ethanol concentration reached 50 g l⁻¹. Samples were collected at different times after the temperature shift. Single cell growth capability, lag-time and initial growth rate were determined by monitoring the growth of a statistically significant number of cells after agar medium plating. The rapid temperature shift resulted in an immediate arrest of growth and triggered a progressive loss of cultivability from 100 to 0.0001% within 8 h. Heat-injured cells were able to recover their growth capability on agar medium after a lag phase. Lag-time was longer and more widely distributed as the time of heat exposure increased. Thus, lag-time distribution gives an insight into strain sensitivity to heat-stress, and could be helpful for the selection of yeast strains of technological interest.

  18. Ultrasonic characterization of yogurt fermentation process

    OpenAIRE

    IZBAIM , DRIS; FAIZ , BOUAZZA; MOUDDEN , ALI; MALAININE , MOHAMED; ABOUDAOUD , Idriss

    2012-01-01

    International audience; The objective of this work is to characterize the fermentation of yogurt based on an ultrasonic technique. Conventionally, the acidity of the yogurt is measured by a pH meter to determine the progress of fermentation. However, the pH meter should be cleaned and calibrated for each measurement and, therefore, this method is not practical. In this regard, ultrasonic techniques are fast, non-invasive and inexpensive. The measurement of ultrasonic parameters such as amplit...

  19. effective extraction of cephalosporin c from whole fermentation broth

    African Journals Online (AJOL)

    amina

    2012-04-17

    Apr 17, 2012 ... The effects of pH, neutral salts, temperature and centrifugal force on .... Fermentation was carried out in a defined media developed with slight modifications ... were pH 6.5, 200 rpm and incubation of culture for 72 h, as determined in our ... that CPC is rapidly inactivated at pH 12, while it is stable at pH 3.5.

  20. The microbial diversity of traditional spontaneously fermented lambic beer.

    Science.gov (United States)

    Spitaels, Freek; Wieme, Anneleen D; Janssens, Maarten; Aerts, Maarten; Daniel, Heide-Marie; Van Landschoot, Anita; De Vuyst, Luc; Vandamme, Peter

    2014-01-01

    Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration.

  1. The microbial diversity of traditional spontaneously fermented lambic beer.

    Directory of Open Access Journals (Sweden)

    Freek Spitaels

    Full Text Available Lambic sour beers are the products of a spontaneous fermentation that lasts for one to three years before bottling. The present study determined the microbiota involved in the fermentation of lambic beers by sampling two fermentation batches during two years in the most traditional lambic brewery of Belgium, using culture-dependent and culture-independent methods. From 14 samples per fermentation, over 2000 bacterial and yeast isolates were obtained and identified. Although minor variations in the microbiota between casks and batches and a considerable species diversity were found, a characteristic microbial succession was identified. This succession started with a dominance of Enterobacteriaceae in the first month, which were replaced at 2 months by Pediococcus damnosus and Saccharomyces spp., the latter being replaced by Dekkera bruxellensis at 6 months fermentation duration.

  2. The legend of laphet: A Myanmar fermented tea leaf

    Directory of Open Access Journals (Sweden)

    Thazin Han

    2015-12-01

    Conclusion: Fermentation is the traditional method. Epigallocatechin gallate is a powerful constituent of laphet for human health. Its caffeinated effect is also popular in Myanmar society. This study will contribute to understanding Myanmar fermented tea leaves and spread the legend of laphet around the world.

  3. Quality and Composition of Red Wine Fermented with Schizosaccharomyces pombe as Sole Fermentative Yeast, and in Mixed and Sequential Fermentations with Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Felipe Palomero

    2014-01-01

    Full Text Available This work examines the physiology of Schizosaccharomyces pombe (represented by strain 938 in the production of red wine, as the sole fermentative yeast, and in mixed and sequential fermentations with Saccharomyces cerevisiae 796. For further comparison, fermentations in which Saccharomyces cerevisiae was the sole fermentative yeast were also performed; in these fermentations a commercial lactic acid bacterium was used to perform malolactic fermentation once alcoholic fermentation was complete (unlike S. cerevisiae, the Sc. pombe performs maloalcoholic fermentation and therefore removes malic acid without such help. Relative density, acetic, malic and pyruvic acid concentrations, primary amino nitrogen and urea concentrations, and pH of the musts were measured over the entire fermentation period. In all fermentations in which Sc. pombe 938 was involved, nearly all the malic acid was consumed from an initial concentration of 5.5 g/L, and moderate acetic acid concentrations below 0.4 g/L were formed. The urea content of these wines was notably lower, showing a tenfold reduction when compared with those that were made with S. cerevisiae 796 alone. The sensorial properties of the different final wines varied widely. The wines fermented with Sc. pombe 938 had maximum aroma intensity and quality, and they were preferred by the tasters.

  4. Protein concentrations of sweet soysauces from Rhizopus oryzae and R. oligosporus fermentation without moromi fermentation

    Directory of Open Access Journals (Sweden)

    NOOR SOESANTI HANDAJANI

    2007-07-01

    Full Text Available Soy sauce was produce from soybean that fermented with koji/tempeh fungi and thenfermented under salt solution or moromi fermentation. The objectives of this experiment was to compare of protein (total and soluble content of sweet soy sauce that produced from soybean fermented with Rhizopus oryzae and R. oligosporus without moromi fermentation to the sweet soysauce with moromi fermentation one. The total and soluble proteins of sweet soy sauces that produce from soybean without moromi fermentation were higher that sweet soy sauces that produce with moromi fermentation. Soluble protein of sweet soy sauce that produced from soybean fermented with R. oligosporus without moromi fermentation was 8.2% and meet to the highest quality of sweet soy sweet sauce based on Indonesia Industrial Standard. Soluble protein of sweet soy sauce that produced from soybean fermented with R. oryzae without moromi fermentation was 4.1% and meet to the medium quality of sweet soy sweet sauce based on Indonesia Industrial Standard.

  5. Fermentable sugar in ammonium and calcium bisulfite pulping and ethanol production therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, O; Schoon, N H; Ingvar, E

    1955-01-01

    The yields of fermentable sugar and EtOH were determined on spruce chips pulped with NH/sub 4/HSO/sub 3/ and Ca(HSO/sub 3/)/sub 2/. The yield of fermentable sugar is plotted vs the yield of pulp; the curve shows a difference in sugar content for the two bases during the first part of the process. With yields of pulp below 44%, this difference disappears. Univalent ions (other than NH/sub 4//sup +/) have a beneficial effect on the sugar yield. Consequently, the destruction of the sugar is more rapid when NH/sub 4//sup +/ is used.

  6. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar.

    Science.gov (United States)

    Fu, Liang; Chen, Siqian; Yi, Jiulong; Hou, Zongxia

    2014-07-01

    A strain of acidogenic bacterium was isolated from the fermentation liquid of Cantonese-style rice vinegar produced by traditional surface fermentation. 16S rDNA identification confirmed the bacterium as Gluconacetobacter xylinus, which synthesizes bacterial cellulose, and the acid productivity of the strain was investigated. In the study, the effects of the membrane integrity and the comparison of the air-liquid interface membrane with immerged membrane on total acidity, cellulose production, alcohol dehydrogenase (ADH) activity and number of bacteria were investigated. The cellulose membrane and the bacteria were observed under SEM for discussing their relationship. The correlations between oxygen consumption and total acid production rate were compared in surface and shake flask fermentation. The results showed the average acid productivity of the strain was 0.02g/(100mL/h), and the integrity of cellulose membrane in surface fermentation had an important effect on total acidity and cellulose production. With a higher membrane integrity, the total acidity after 144 h of fermentation was 3.75 g/100 mL, and the cellulose production was 1.71 g/100 mL after 360 h of fermentation. However, when the membrane was crushed by mechanical force, the total acidity and the cellulose production were as low as 0.36 g/100 mL and 0.14 g/100 mL, respectively. When the cellulose membrane was forced under the surface of fermentation liquid, the total acid production rate was extremely low, but the activity of ADH in the cellulose membrane was basically the same with the one above the liquid surface. The bacteria were mainly distributed in the cellulose membrane during the fermentation. The bacterial counts in surface fermentation were more than in the shake flask fermentation and G. xylinus consumed the substrate faster, in surface fermentation than in shake flask fermentation. The oxygen consumption rate and total acid production rate of surface fermentation were respectively 26

  7. Monitoring of beer fermentation based on hybrid electronic tongue.

    Science.gov (United States)

    Kutyła-Olesiuk, Anna; Zaborowski, Michał; Prokaryn, Piotr; Ciosek, Patrycja

    2012-10-01

    Monitoring of biotechnological processes, including fermentation is extremely important because of the rapidly occurring changes in the composition of the samples during the production. In the case of beer, the analysis of physicochemical parameters allows for the determination of the stage of fermentation process and the control of its possible perturbations. As a tool to control the beer production process a sensor array can be used, composed of potentiometric and voltammetric sensors (so-called hybrid Electronic Tongue, h-ET). The aim of this study is to apply electronic tongue system to distinguish samples obtained during alcoholic fermentation. The samples originate from batch of homemade beer fermentation and from two stages of the process: fermentation reaction and maturation of beer. The applied sensor array consists of 10 miniaturized ion-selective electrodes (potentiometric ET) and silicon based 3-electrode voltammetric transducers (voltammetric ET). The obtained results were processed using Partial Least Squares (PLS) and Partial Least Squares-Discriminant Analysis (PLS-DA). For potentiometric data, voltammetric data, and combined potentiometric and voltammetric data, comparison of the classification ability was conducted based on Root Mean Squared Error (RMSE), sensitivity, specificity, and coefficient F calculation. It is shown, that in the contrast to the separately used techniques, the developed hybrid system allowed for a better characterization of the beer samples. Data fusion in hybrid ET enables to obtain better results both in qualitative analysis (RMSE, specificity, sensitivity) and in quantitative analysis (RMSE, R(2), a, b). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    Science.gov (United States)

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Development of methods and systems for preparing hydrolyzates for acetone-butanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M

    1967-01-01

    Optimal conditions for hydrolysis of vegetable waste material, e.g., maize stalks, sunflower parings, and hemp wastes, with concentrated or dilute H/sub 2/SO/sub 4/ were established. Hydrolyzates were neutralized with Ca(OH)/sub 2/ to pH 5.5 to 6.0 and the supernatant was sterilized at 110 to 115/sup 0/ for 15 to 20 minutes and used for fermentation in mixtures with molasses or mash. The maximum amount of fermentation inhibitors which can be present in hydrolyzate is: 0.1% furfural, 0.03% HCO/sub 2/H and 0.001% As.

  10. Microbial fuel cell treatment of ethanol fermentation process water

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN

    2012-06-05

    The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

  11. Methods for sequestering carbon dioxide into alcohols via gasification fermentation

    Science.gov (United States)

    Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

    2013-11-26

    The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

  12. ISOLATION AND IDENTIFICATION OF MICROORGANISMS DURING SPONTANEOUS FERMENTATION OF MAIZE [Isolasi dan Identifikasi Mikroorganisme pada Fermentasi Spontan Jagung

    Directory of Open Access Journals (Sweden)

    Rahmawati1,2

    2013-06-01

    Full Text Available Maize was traditionally the second most common staple food in Indonesia. Conversion to maize flour has been accomplished to improve its convenience. Traditionally, maize flour is produced by soaking the kernels in water followed by grinding. It was reported that final physicochemical characteristics of the maize flour were influenced by spontaneous fermentation which occurred during soaking. This research aimed to isolate and identify important microorganisms that grew during fermentation thus a standardized starter culture can be developed for a more controlled fermentation process. Soaking of maize grits was conducted in sterile water (grits:water=1:2, w/v in a closed container at room temperature (±28ºC for 72 hours. After 0, 4, 12, 24, 36, 48, 72 hours, water and maize grits were sampled and tested for the presence of mold, yeast, and lactic acid bacteria (LAB. Isolates obtained from the spontaneous fermentation were reinoculated into the appropriate media containing starch to observe their amylolytic activity. Individual isolate was then identified; mold by slide culture method, while yeast and LAB by biochemical rapid kits, i.e. API 20C AUX and API CH50, respectively. The number of each microorganism was plotted against time to obtain the growth curve of the microorganisms during spontaneous fermentation. The microorganisms were identified as Penicillium chrysogenum, P. citrinum, A. flavus, A. niger, Rhizopus stolonifer, R.oryzae, Fusarium oxysporum, Acremonium strictum, Candida famata, Kodamaea ohmeri, Candida krusei/incospicua, Lactobacillus plantarum 1a, Pediococcus pentosaceus, L. brevis 1, L. plantarum 1b, and L. paracasei ssp paracasei 3. Four molds and one yeast were amylolytic while none of the LAB was capable of starch hydrolysis. The growth curve suggested that the amylolitic mold and yeast grew to hydrolyze starch during the course of fermentation, while the LABs benefited from the hydrolyzed products and dominated the later

  13. Solid substrate fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Tengerdy, R P

    1985-04-01

    Solid Substrate Fermentation (SSF) describes the microbiological tranformation of biological materials in their natural state, in contrast with liquid or submerged fermentations which are carried out in dilute solutions or slurries. The most important industrial microorganisms used in SSF are filamentous fungi and the critical factors in their growth are the control of the moisture level and the temperature. Traditionally, most SSFs are conducted in shallow trays (so that heat build up is avoided) and stacked in a moist chamber, however, the modern SSF should be able to mix large amounts of substrate for a uniform fermentation, maximum automization scale-up of the process, continuous operation and fermentation control and a promising new design is the Helical screw fermenter. At the present time SSF is used in the production of foods (e.g. mushrooms and oriental foods) in municipal, agricultural and industrial solid waste disposal and in the production of enzymes and speciality chemicals but it does not seem likely that it will replace prevalent liquid fermentation technologies. 29 references.

  14. Produce from Africa’s Gardens: Potential for Leafy Vegetable and Fruit Fermentations

    Science.gov (United States)

    Oguntoyinbo, Folarin A.; Fusco, Vincenzina; Cho, Gyu-Sung; Kabisch, Jan; Neve, Horst; Bockelmann, Wilhelm; Huch, Melanie; Frommherz, Lara; Trierweiler, Bernhard; Becker, Biserka; Benomar, Nabil; Gálvez, Antonio; Abriouel, Hikmate; Holzapfel, Wilhelm H.; Franz, Charles M. A. P.

    2016-01-01

    A rich variety of indigenous fruits and vegetables grow in Africa, which contribute to the nutrition and health of Africa’s populations. Fruits and vegetables have high moisture and are thus inherently prone to accelerated spoilage. Food fermentation still plays a major role in combating food spoilage and foodborne diseases that are prevalent in many of Africa’s resource disadvantaged regions. Lactic acid fermentation is probably the oldest and best-accepted food processing method among the African people, and is largely a home-based process. Fermentation of leafy vegetables and fruits is, however, underutilized in Africa, although such fermented products could contribute toward improving nutrition and food security in this continent, where many are still malnourished and suffer from hidden hunger. Fermentation of leafy vegetables and fruits may not only improve safety and prolong shelf life, but may also enhance the availability of some trace minerals, vitamins and anti-oxidants. Cassava, cow-peas, amaranth, African nightshade, and spider plant leaves have a potential for fermentation, as do various fruits for the production of vinegars or fruit beers and wines. What is needed to accelerate efforts for production of fermented leaves and vegetables is the development of fermentation protocols, training of personnel and scale-up of production methods. Furthermore, suitable starter cultures need to be developed and produced to guarantee the success of the fermentations. PMID:27458430

  15. Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast.

    Science.gov (United States)

    Oomuro, Mayu; Kato, Taku; Zhou, Yan; Watanabe, Daisuke; Motoyama, Yasuo; Yamagishi, Hiromi; Akao, Takeshi; Aizawa, Masayuki

    2016-11-01

    One of the key processes in making beer is fermentation. In the fermentation process, brewer's yeast plays an essential role in both the production of ethanol and the flavor profile of beer. Therefore, the mechanism of ethanol fermentation by of brewer's yeast is attracting much attention. The high ethanol productivity of sake yeast has provided a good basis from which to investigate the factors that regulate the fermentation rates of brewer's yeast. Recent studies found that the elevated fermentation rate of sake Saccharomyces cerevisiae species is closely related to a defective transition from vegetative growth to the quiescent (G 0 ) state. In the present study, to clarify the relationship between the fermentation rate of brewer's yeast and entry into G 0 , we constructed two types of mutant of the bottom-fermenting brewer's yeast Saccharomyces pastorianus Weihenstephan 34/70: a RIM15 gene disruptant that was defective in entry into G 0 ; and a CLN3ΔPEST mutant, in which the G 1 cyclin Cln3p accumulated at high levels. Both strains exhibited higher fermentation rates under high-maltose medium or high-gravity wort conditions (20° Plato) as compared with the wild-type strain. Furthermore, G 1 arrest and/or G 0 entry were defective in both the RIM15 disruptant and the CLN3ΔPEST mutant as compared with the wild-type strain. Taken together, these results indicate that regulation of the G 0 /G 1 transition might govern the fermentation rate of bottom-fermenting brewer's yeast in high-gravity wort. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations.

    Science.gov (United States)

    Plengvidhya, Vethachai; Breidt, Fredrick; Lu, Zhongjing; Fleming, Henry P

    2007-12-01

    Previous studies using traditional biochemical identification methods to study the ecology of commercial sauerkraut fermentations revealed that four species of lactic acid bacteria, Leuconostoc mesenteroides, Lactobacillus plantarum, Pediococcus pentosaceus, and Lactobacillus brevis, were the primary microorganisms in these fermentations. In this study, 686 isolates were collected from four commercial fermentations and analyzed by DNA fingerprinting. The results indicate that the species of lactic acid bacteria present in sauerkraut fermentations are more diverse than previously reported and include Leuconostoc citreum, Leuconostoc argentinum, Lactobacillus paraplantarum, Lactobacillus coryniformis, and Weissella sp. The newly identified species Leuconostoc fallax was also found. Unexpectedly, only two isolates of P. pentosaceus and 15 isolates of L. brevis were recovered during this study. A better understanding of the microbiota may aid in the development of low-salt fermentations, which may have altered microflora and altered sensory characteristics.

  17. Solid phase fermentation of Helianthus tuberosus for ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Baerwald, G.; Hamad, S.H.

    1989-01-01

    The direct fermentation of pure inulin and hammer mill crushed Helianthus tuberosus tubers (topinambur, Jerusalem artichoke) was studied using two heat-tolerant yeasts, namely Kluyveromyces marxianus and Candida kefyr. A Saccharomyces cerevisiae was included in the study so as to compare the yields of these two yeasts with that of a commercial distiller's yeast. The inulin fermentation was carried out in an 18-L bioreactor using the fed-batch and the batch-fermentation methods. The final ethanol concentration was 6.1% (L/L) which represents 82% of the theoretical yield. Commercial scale experiments with hammer mill crushed tubers gave yields lower than those found in the laboratory: 69% of the theoretical yield for direct fermentation without enzyme addition, and about 91% when cellolytic enzymes were added.

  18. Fingerprint analysis and quality consistency evaluation of flavonoid compounds for fermented Guava leaf by combining high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry and chemometric methods.

    Science.gov (United States)

    Wang, Lu; Tian, Xiaofei; Wei, Wenhao; Chen, Gong; Wu, Zhenqiang

    2016-10-01

    Guava leaves are used in traditional herbal teas as antidiabetic therapies. Flavonoids are the main active of Guava leaves and have many physiological functions. However, the flavonoid compositions and activities of Guava leaves could change due to microbial fermentation. A high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry method was applied to identify the varieties of the flavonoids in Guava leaves before and after fermentation. High-performance liquid chromatography, hierarchical cluster analysis and principal component analysis were used to quantitatively determine the changes in flavonoid compositions and evaluate the consistency and quality of Guava leaves. Monascus anka Saccharomyces cerevisiae fermented Guava leaves contained 2.32- and 4.06-fold more total flavonoids and quercetin, respectively, than natural Guava leaves. The flavonoid compounds of the natural Guava leaves had similarities ranging from 0.837 to 0.927. The flavonoid compounds from the Monascus anka S. cerevisiae fermented Guava leaves had similarities higher than 0.993. This indicated that the quality consistency of the fermented Guava leaves was better than that of the natural Guava leaves. High-performance liquid chromatography fingerprinting and chemometric analysis are promising methods for evaluating the degree of fermentation of Guava leaves based on quality consistency, which could be used in assessing flavonoid compounds for the production of fermented Guava leaves. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Monitoring multiple components in vinegar fermentation using Raman spectroscopy.

    Science.gov (United States)

    Uysal, Reyhan Selin; Soykut, Esra Acar; Boyaci, Ismail Hakki; Topcu, Ali

    2013-12-15

    In this study, the utility of Raman spectroscopy (RS) with chemometric methods for quantification of multiple components in the fermentation process was investigated. Vinegar, the product of a two stage fermentation, was used as a model and glucose and fructose consumption, ethanol production and consumption and acetic acid production were followed using RS and the partial least squares (PLS) method. Calibration of the PLS method was performed using model solutions. The prediction capability of the method was then investigated with both model and real samples. HPLC was used as a reference method. The results from comparing RS-PLS and HPLC with each other showed good correlations were obtained between predicted and actual sample values for glucose (R(2)=0.973), fructose (R(2)=0.988), ethanol (R(2)=0.996) and acetic acid (R(2)=0.983). In conclusion, a combination of RS with chemometric methods can be applied to monitor multiple components of the fermentation process from start to finish with a single measurement in a short time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mechanistic Fermentation Models for Process Design, Monitoring, and Control

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads Orla

    2017-01-01

    Mechanistic models require a significant investment of time and resources, but their application to multiple stages of fermentation process development and operation can make this investment highly valuable. This Opinion article discusses how an established fermentation model may be adapted...... for application to different stages of fermentation process development: planning, process design, monitoring, and control. Although a longer development time is required for such modeling methods in comparison to purely data-based model techniques, the wide range of applications makes them a highly valuable tool...... for fermentation research and development. In addition, in a research environment, where collaboration is important, developing mechanistic models provides a platform for knowledge sharing and consolidation of existing process understanding....

  1. Exploring microbial succession and diversity during solid-state fermentation of Tianjin duliu mature vinegar.

    Science.gov (United States)

    Nie, Zhiqiang; Zheng, Yu; Wang, Min; Han, Yue; Wang, Yuenan; Luo, Jianmei; Niu, Dandan

    2013-11-01

    Tianjin duliu mature vinegar was one of famous Chinese traditional vinegars. The unique flavor and taste of vinegar are mainly generated by the multitudinous microorganisms during fermentation. In this research, the composition and succession of microbial communities in the entire solid-state fermentation were investigated, including starter daqu and acetic acid fermentation (AAF). Molds and yeasts in daqu, including Aspergillus, Saccharomycopsis and Pichia, decreased in AAF. The bacterial compositions increased from four genera in daqu to more than 13 genera in AAF. Principal component analysis showed that Acetobacter, Gluconacetobacter, Lactobacillus and Nostoc were dominant bacteria that were correlated well with AAF process. In the early fermentation period, lactic acid bacteria (LAB) decreased while acetic acid bacteria and Nostoc increased rapidly with the accumulation of total acids. Then, the abundance and diversity of LAB increased (more than 80%), indicating that LAB had important influences on the flavor and taste of vinegar. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Novel strategies for control of fermentation processes

    DEFF Research Database (Denmark)

    Mears, Lisa

    to highly optimised industrial host strains. The focus of this project is instead on en-gineering of the process. The question to be answered in this thesis is, given a highly optimised industrial host strain, how can we operate the fermentation process in order to maximise the productivity of the system...... (2012). This model describes the fungal processes operated in the fermentation pilot plant at Novozymes A/S. This model is investigated using uncertainty analysis methods in order to as-sess the applicability to control applications. A mechanistic model approach is desirable, as it is a predictive....... This provides a prediction of the future trajectory of the process, so that it is possible to guide the system to the desired target mass. The control strategy is applied on-line at 550L scale in the Novozymes A/S fermentation pilot plant, and the method is challenged with four different sets of process...

  3. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  4. Probiotic fermented dairy products

    OpenAIRE

    Adnan Tamime; Rajka Božanić; Irena Rogelj

    2003-01-01

    Fermented dairy products are the most popular vehicle used in theindustry for the implantation of the probiotic microflora in humans. Therefore this paper provides an overview of new knowledge on probiotic fermented dairy products. It involves historical developments, commercial probiotic microorganisms and products, and their therapeutic properties, possibilities of quality improvement of different types of newly developed fermented dairy products together with fermented goat’s milk products.

  5. Experimental study on rapid embankment construction methods

    International Nuclear Information System (INIS)

    Hirano, Hideaki; Egawa, Kikuji; Hyodo, Kazuya; Kannoto, Yasuo; Sekimoto, Tsuyoshi; Kobayashi, Kokichi.

    1982-01-01

    In the construction of a thermal or nuclear power plant in a coastal area, shorter embankment construction period has come to be called for recently. This tendency is remarkable where construction period is limited due to meteorological or sea conditions. To meet this requirement, the authors have been conducting basic experimental studies on two methods for the rapid execution of embankment construction, that is, Steel Plate Cellular Bulkhead Embedding Method and Ship Hull Caisson Method. This paper presents an outline of the results of the experimental study on these two methods. (author)

  6. Methods for Rapid Screening in Woody Plant Herbicide Development

    Directory of Open Access Journals (Sweden)

    William Stanley

    2014-07-01

    Full Text Available Methods for woody plant herbicide screening were assayed with the goal of reducing resources and time required to conduct preliminary screenings for new products. Rapid screening methods tested included greenhouse seedling screening, germinal screening, and seed screening. Triclopyr and eight experimental herbicides from Dow AgroSciences (DAS 313, 402, 534, 548, 602, 729, 779, and 896 were tested on black locust, loblolly pine, red maple, sweetgum, and water oak. Screening results detected differences in herbicide and species in all experiments in much less time (days to weeks than traditional field screenings and consumed significantly less resources (<500 mg acid equivalent per herbicide per screening. Using regression analysis, various rapid screening methods were linked into a system capable of rapidly and inexpensively assessing herbicide efficacy and spectrum of activity. Implementation of such a system could streamline early-stage herbicide development leading to field trials, potentially freeing resources for use in development of beneficial new herbicide products.

  7. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Science.gov (United States)

    Aslankoohi, Elham; Rezaei, Mohammad Naser; Vervoort, Yannick; Courtin, Christophe M; Verstrepen, Kevin J

    2015-01-01

    Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  8. Fermentative production of isobutene.

    Science.gov (United States)

    van Leeuwen, Bianca N M; van der Wulp, Albertus M; Duijnstee, Isabelle; van Maris, Antonius J A; Straathof, Adrie J J

    2012-02-01

    Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO(2) + 2H(2)O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO(2). The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 Euro kg(-1), which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.

  9. EFFECT OF FERMENTED CACAO POD SUPPLEMENTATION ON SHEEP RUMEN MICROBIAL FERMENTATION

    Directory of Open Access Journals (Sweden)

    S. Wulandari

    2015-09-01

    Full Text Available The objective of this research was to improve beneficial value of cacao pod as sheep feedingredients comprising up to 50% total feed. This research was conducted in two stages. Stage 1 wascacao pod fermentation. Completely randomized design with 3x3 factorial patterns was used in thisstage, in which factor I was microbial inoculum dosage of 0%, 0.05% and 0.1% and factor II wasincubation period of 0, 3 and 6 days. Result demonstrated that six-day fermentation with 0.05%microbial inoculum could lower cacao NDF, ADF and theobromine. The optimum inoculum dosage andfermentation time from stage 1 was applied to stage 2. Stage 2 was rumen microbial fermentation test.This research administrated 3x3 of latin square design. In period I sheep were fed with CF0 (nonfermentedcomplete feed, in period II sheep were given CF 1 (complete feed containing fermentedcacao pod and in period III sheep were given CF2 (fermented complete feed based cacao pod. Resultdemonstrated that pH value of sheep microbial liquid in treatment of CF0, CF1 and CF2 was in normalpH range and did not affect volatile fatty acids (VFA and ammonia. In conclusion, supplementing up to 50% of feed with complete feed containing fermented or non-fermented cacao pod did not affect theprocess of rumen microbial fermentation.

  10. Effect of production phase on bottle-fermented sparkling wine quality.

    Science.gov (United States)

    Kemp, Belinda; Alexandre, Hervé; Robillard, Bertrand; Marchal, Richard

    2015-01-14

    This review analyzes bottle-fermented sparkling wine research at each stage of production by evaluating existing knowledge to identify areas that require future investigation. With the growing importance of enological investigation being focused on the needs of the wine production industry, this review examines current research at each stage of bottle-fermented sparkling wine production. Production phases analyzed in this review include pressing, juice adjustments, malolactic fermentation (MLF), stabilization, clarification, tirage, lees aging, disgorging, and dosage. The aim of this review is to identify enological factors that affect bottle-fermented sparkling wine quality, predominantly aroma, flavor, and foaming quality. Future research topics identified include regional specific varieties, plant-based products from vines, grapes, and yeast that can be used in sparkling wine production, gushing at disgorging, and methods to increase the rate of yeast autolysis. An internationally accepted sensory analysis method specifically designed for sparkling wine is required.

  11. In vitro fermentability of differently digested resistant starch preparations

    NARCIS (Netherlands)

    Fässler, C.; Arrigoni, E.; Venema, K.; Brouns, F.; Amadò, R.

    2006-01-01

    The in vitro fermentability of two resistant starch preparations type 2 (RS2) and type 3 (RS3) was investigated using human colonic microbiota. Prior to the fermentation experiments, samples were digested using two in vitro models, a batch (ba) and a dynamic (dy), as well as an in vivo method (il)

  12. Lactic acid fermentation from refectory waste: Factorial design analysis

    African Journals Online (AJOL)

    Yomi

    2012-04-12

    Apr 12, 2012 ... method. At the end of the fermentation process, lactic acid exists in the complex medium of fermentation broth that contains whey proteins, biomass, salts and other impurities. Lactic acid is then recovered from this complex medium. Since the high cost of lactic acid purification process limits the utilization of ...

  13. [Modeling of sugar content based on NIRS during cider-making fermentation].

    Science.gov (United States)

    Peng, Bang-Zhu; Yue, Tian-Li; Yuan, Ya-Hong; Gao, Zhen-Peng

    2009-03-01

    The sugar content and the matrix always are being changed during cider-making fermentation. In order to measure and monitor sugar content accurately and rapidly, it is necessary for the spectra to be sorted. Calibration models were established at different fermentation stages based on near infrared spectroscopy with artificial neural network. NIR spectral data were collected in the spectral region of 12 000-4 000 cm(-1) for the next analysis. After the different conditions for modeling sugar content were analyzed and discussed, the results indicated that the calibration models developed by the spectral data pretreatment of straight line subtraction(SLS) in the characteristic absorption spectra ranges of 7 502-6 472.1 cm(-1) at stage I and 6 102-5 446.2 cm(-1) at stage II were the best for sugar content. The result of comparison of different data pretreatment methods for establishing calibration model showed that the correlation coefficients of the models (R2) for stage I and II were 98.93% and 99.34% respectively and the root mean square errors of cross validation(RMSECV) for stage I and II were 4.42 and 1.21 g x L(-1) respectively. Then the models were tested and the results showed that the root mean square error of prediction (RMSEP) was 4.07 g x L(-1) and 1.13 g x L(-1) respectively. These demonstrated that the models the authors established are very well and can be applied to quick determination and monitoring of sugar content during cider-making fermentation.

  14. Study of water dynamics in the soaking, steaming, and solid-state fermentation of glutinous rice by LF-NMR: a novel monitoring approach.

    Science.gov (United States)

    Li, Teng; Tu, Chuanhai; Rui, Xin; Gao, Yangwen; Li, Wei; Wang, Kun; Xiao, Yu; Dong, Mingsheng

    2015-04-01

    Solid-state fermentation (SSF) of starchy grain is a traditional technique for food and alcoholic beverage production in East Asia. In the present study, low-field nuclear magnetic resonance (LF-NMR) was introduced for the elucidation of water dynamics and microstructure alternations during the soaking, steaming, and SSF of glutinous rice as a rapid real-time monitoring method. Three different proton fractions with different mobilities were identified based on the degree of interaction between biopolymers and water. Soaking and steaming significantly changed the proton distribution of the sample. The different phases of SSF were reflected by the T2 parameters. In addition, the variations in the T2 parameters were explained by the microstructure changes of rice induced by SSF. The fermentation time and T2 parameters were sigmoidally correlated. Thus, LF-NMR may be an effective real-time monitoring method for SSF in starch systems.

  15. Fermentation performance optimization in an ectopic fermentation system.

    Science.gov (United States)

    Yang, Xiaotong; Geng, Bing; Zhu, Changxiong; Li, Hongna; He, Buwei; Guo, Hui

    2018-07-01

    Ectopic fermentation systems (EFSs) were developed for wastewater treatment. Previous studies have investigated the ability of thermophilic bacteria to improve fermentation performance in EFS. Continuing this research, we evaluated EFS performance using principle component analysis and investigated the addition of different proportions of cow dung. Viable bacteria communities were clustered and identified using BOX-AIR-based repetitive extragenic palindromic-PCR and 16S rDNA analysis. The results revealed optimal conditions for the padding were maize straw inoculated with thermophilic bacteria. Adding 20% cow dung yielded the best pH values (6.94-8.56), higher temperatures, increased wastewater absorption, improved litter quality, and greater microbial quantities. The viable bacteria groups were enriched by the addition of thermophilic consortium, and exogenous strains G21, G14, G4-1, and CR-15 were detected in fermentation process. The proportion of Bacillus species in treatment groups reached 70.37% after fermentation, demonstrating that thermophilic bacteria, especially Bacillus, have an important role in EFS, supporting previous predictions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Optimal control of switched systems arising in fermentation processes

    CERN Document Server

    Liu, Chongyang

    2014-01-01

    The book presents, in a systematic manner, the optimal controls under different mathematical models in fermentation processes. Variant mathematical models – i.e., those for multistage systems; switched autonomous systems; time-dependent and state-dependent switched systems; multistage time-delay systems and switched time-delay systems – for fed-batch fermentation processes are proposed and the theories and algorithms of their optimal control problems are studied and discussed. By putting forward novel methods and innovative tools, the book provides a state-of-the-art and comprehensive systematic treatment of optimal control problems arising in fermentation processes. It not only develops nonlinear dynamical system, optimal control theory and optimization algorithms, but can also help to increase productivity and provide valuable reference material on commercial fermentation processes.

  17. Etude microbiologique des feuilles fermentées de manioc: "Ntoba Mbodi"

    Directory of Open Access Journals (Sweden)

    Bouanga Kalou, G.

    2003-01-01

    Full Text Available Microbiological Study of "Ntoba-Mbodi", Fermented Cassava Leaves. Some families and small processing units proceed by way of fermentation of the cassava leaves to make "ntoba mbodi", a dish with a particular taste and flavor. The fermentation process lastes 4 days and after that the product undergoes significant alteration. During fermentation, about 70% of the cyanogenic glucosides are eliminated compared to 82 to 94% by blanching, vapor cooking or sun drying. Thus fermentation can be considered as good in eliminating cyanide as these other methods. Contrary to other plant material whose fermentation leads to an increase in acidity, fermentation of cassava leaves leads to alkalinization, with the pH rising from 6.2 to 8.9. Microbiological analyses of the fermented cassava leaves reveal the unusual presence of Micrococcus varians, Bacillus macerans, Bacillus subtilis, Staphylococcus sciuri and Staphylococcus xylosus among the other usual microorganisms; however yeasts and Leuconostoc strains are not present. Among this micro-organisms, Bacillus macerans, Bacillus subtilis, Bacillus cereus, Staphylococcus xylosus and Erwinia spp. play an important role in with their polysaccharolytic enzymes.

  18. A novel method for rapid in vitro radiobioassay

    Science.gov (United States)

    Crawford, Evan Bogert

    Rapid and accurate analysis of internal human exposure to radionuclides is essential to the effective triage and treatment of citizens who have possibly been exposed to radioactive materials in the environment. The two most likely scenarios in which a large number of citizens would be exposed are the detonation of a radiation dispersal device (RDD, "dirty bomb") or the accidental release of an isotope from an industrial source such as a radioisotopic thermal generator (RTG). In the event of the release and dispersion of radioactive materials into the environment in a large city, the entire population of the city -- including all commuting workers and tourists -- would have to be rapidly tested, both to satisfy the psychological needs of the citizens who were exposed to the mental trauma of a possible radiation dose, and to satisfy the immediate medical needs of those who received the highest doses and greatest levels of internal contamination -- those who would best benefit from rapid, intensive medical care. In this research a prototype rapid screening method to screen urine samples for the presence of up to five isotopes, both individually and in a mixture, has been developed. The isotopes used to develop this method are Co-60, Sr-90, Cs-137, Pu-238, and Am-241. This method avoids time-intensive chemical separations via the preparation and counting of a single sample on multiple detectors, and analyzing the spectra for isotope-specific markers. A rapid liquid-liquid separation using an organic extractive scintillator can be used to help quantify the activity of the alpha-emitting isotopes. The method provides quantifiable results in less than five minutes for the activity of beta/gamma-emitting isotopes when present in the sample at the intervention level as defined by the Centers for Disease Control and Prevention (CDC), and quantifiable results for the activity levels of alpha-emitting isotopes present at their respective intervention levels in approximately 30

  19. Electro-Fermentation in Aid of Bioenergy and Biopolymers

    Directory of Open Access Journals (Sweden)

    Prasun Kumar

    2018-02-01

    Full Text Available The soaring levels of industrialization and rapid progress towards urbanization across the world have elevated the demand for energy besides generating a massive amount of waste. The latter is responsible for poisoning the ecosystem in an exponential manner, owing to the hazardous and toxic chemicals released by them. In the past few decades, there has been a paradigm shift from “waste to wealth”, keeping the value of high organic content available in the wastes of biological origin. The most practiced processes are that of anaerobic digestion, leading to the production of methane. However; such bioconversion has limited net energy yields. Industrial fermentation targeting value-added bioproducts such as—H2, butanediols; polyhydroxyalkanoates, citric acid, vitamins, enzymes, etc. from biowastes/lignocellulosic substrates have been planned to flourish in a multi-step process or as a “Biorefinery”. Electro-fermentation (EF is one such technology that has attracted much interest due to its ability to boost the microbial metabolism through extracellular electron transfer during fermentation. It has been studied on various acetogens and methanogens, where the enhancement in the biogas yield reached up to 2-fold. EF holds the potential to be used with complex organic materials, leading to the biosynthesis of value-added products at an industrial scale.

  20. Yeast communities associated with artisanal mezcal fermentations from Agave salmiana.

    Science.gov (United States)

    Verdugo Valdez, A; Segura Garcia, L; Kirchmayr, M; Ramírez Rodríguez, P; González Esquinca, A; Coria, R; Gschaedler Mathis, A

    2011-11-01

    The aims of this work were to characterize the fermentation process of mezcal from San Luis Potosi, México and identify the yeasts present in the fermentation using molecular culture-dependent methods (RFLP of the 5.8S-ITS and sequencing of the D1/D2 domain) and also by using a culture-independent method (DGGE). The alcoholic fermentations of two separate musts obtained from Agave salmiana were analyzed. Sugar, ethanol and major volatile compounds concentrations were higher in the first fermentation, which shows the importance of having a quality standard for raw materials, particularly in the concentration of fructans, in order to produce fermented Agave salmiana must with similar characteristics. One hundred ninety-two (192) different yeast colonies were identified, from those present on WL agar plates, by RFLP analysis of the ITS1-5.8S- ITS2 from the rRNA gene, with restriction endonucleases, HhaI, HaeIII and HinfI. The identified yeasts were: Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia kluyveri, Zygosaccharomyces bailii, Clavispora lusitaniae, Torulaspora delbrueckii, Candida ethanolica and Saccharomyces exiguus. These identifications were confirmed by sequencing the D1-D2 region of the 26S rRNA gene. With the PCR-DGGE method, bands corresponding to S. cerevisiae, K. marxianus and T. delbrueckii were clearly detected, confirming the results obtained with classic techniques.

  1. Glycerol production by fermenting yeast cells is essential for optimal bread dough fermentation.

    Directory of Open Access Journals (Sweden)

    Elham Aslankoohi

    Full Text Available Glycerol is the main compatible solute in yeast Saccharomyces cerevisiae. When faced with osmotic stress, for example during semi-solid state bread dough fermentation, yeast cells produce and accumulate glycerol in order to prevent dehydration by balancing the intracellular osmolarity with that of the environment. However, increased glycerol production also results in decreased CO2 production, which may reduce dough leavening. We investigated the effect of yeast glycerol production level on bread dough fermentation capacity of a commercial bakery strain and a laboratory strain. We find that Δgpd1 mutants that show decreased glycerol production show impaired dough fermentation. In contrast, overexpression of GPD1 in the laboratory strain results in increased fermentation rates in high-sugar dough and improved gas retention in the fermenting bread dough. Together, our results reveal the crucial role of glycerol production level by fermenting yeast cells in dough fermentation efficiency as well as gas retention in dough, thereby opening up new routes for the selection of improved commercial bakery yeasts.

  2. Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste.

    Science.gov (United States)

    Zhang, Lu; Sun, Xiangyang; Tian, Yun; Gong, Xiaoqiang

    2013-03-01

    The generation of green waste is increasing rapidly with population growth in China, and green waste is commonly treated by composting. The objective of this work was to study the physical and chemical characteristics of composted green waste as affected by a two-stage composting process and by the addition of brown sugar (at 0.0%, 0.5%, and 1%) and calcium superphosphate (Ca(H2PO4)2·H2O) (at 0%, 3%, and 6%) during the second stage. With or without these additives, all the composts displayed two peaks in fermentation temperature and matured in only 30days. Compared to traditional industrial composting, the composting method described here increased the duration of high-temperature fermentation period, reduced the maturity time, and reduced costs. Addition of 0.5% brown sugar plus 6% calcium superphosphate produced the highest quality compost with respect to C/N ratio, pH, organic matter content, electrical conductivity, particle-size distribution, and other characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Evaluation of rapid radiometric method for drug susceptibility testing of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Siddiqi, S.H.; Libonati, J.P.; Middlebrook, G.

    1981-01-01

    A total of 106 isolates of Mycobacterium tuberculosis were tested for drug susceptibility by the conventional 7H11 plate method and by a new rapid radiometric method using special 7H12 liquid medium with 14 C-labeled substrate. Results obtained by the two methods were compared for rapidity, sensitivity, and specificity of the new test method. There was 98% overall agreement between the results obtained by the two methods. Of a total of 424 drug tests, only 8 drug results did not agree, mostly in the case of streptomycin. This new procedure was found to be rapid, with 87% of the tests results reportable within 4 days and 98% reportable within 5 days as compared to the usual 3 weeks required with the conventional indirect susceptibility test method. The results of this preliminary study indicate that the rapid radiometric method seems to have the potential for routine laboratory use and merits further investigations

  4. Membrane gas sensors for fermentation monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Mandenius, C F

    1987-12-01

    Results of a study on membrane gas sensors are presented to show their general applicability to fermentation monitoring of volatiles, such as alcohols, organic acids and aldehydes under various process and reactor conditions. Permeable silicone (Noax AB) and teflon (fluorcarbon AB) are tested as material for a gas sensor. The silicone tubing method is mainly used and ethanolic fermentation is performed in the study. Investigation is made to determine the dependence of the sensitivity of the sensors on the temperature, pH, concentration and other properties of fermentation liquid. The effect of temperature on the ethanol response is investigated in the temperature range of 7-50/sup 0/C to reveal that the response time decreases while the sensor's sensitivity increases with an increasing temperature. Comparison among methanol, ethyl acetate, acetaldehyde and ethanol is made with respect to the effect of their concentration on the sensitivity of a sensor. Results of a three-month measurement with the sensor immersed in fermentation liquid are compared with those of GC analysis to investigate the correlation between the sensor's sensitivity and GC analysis data. (11 figs, 17 refs)

  5. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-06-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  6. Development of a High Temperature Microbial Fermentation Processfor Butanol Production

    International Nuclear Information System (INIS)

    Jeor, Jeffery D.; Reed, David W.; Daubaras, Dayna L.; Thompson, Vicki S.

    2016-01-01

    Transforming renewable biomass into cost competitive high-performance biofuels and bioproducts is key to US energy security. Butanol production by microbial fermentation and chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process can facilitate butanol recovery up to 40%, by using gas stripping. Other benefits of fermentation at high temperatures are optimal hydrolysis rates in the saccharification of biomass which leads to maximized butanol production, decrease in energy costs associated with reactor cooling and capital cost associated with reactor design, and a decrease in contamination and cost for maintaining a sterile environment. Butanol stripping at elevated temperatures gives higher butanol production through constant removal and continuous fermentation. We describe methods used in an attempt to genetically prepare Geobacillus caldoxylosiliticus for insertion of a butanol pathway. Methods used were electroporation of electrocompetent cells, ternary conjugation with E. coli, and protoplast fusion.

  7. Microbioligical Hazard Contamination in Fermented Vegetables Sold in Local Markets in Cambodia.

    Science.gov (United States)

    Chrun, Rithy; Hosotani, Yukie; Kawasaki, Susumu; Inatsu, Yasuhiro

    2017-01-01

     Fermented vegetables are common part of Cambodian diet. The food safety status for these foods has not been investigated. This study was conducted to evaluate the microbiological hazards that contaminated fermented vegetables. A total of 68 samples of fermented vegetables were purchased randomly from five wet markets in Phnom Penh. The conventional culture methods for microbiological analysis were used. Coliform bacteria (Escherichia coli, Cronobactersakazakii, and Enterobacter spp.), opportunistic non-Entrobacteriaceae, Enterococcus spp., Staphylococcus spp., and Listeria spp. were found in these fermented foods. The highest contamination rate of Enterococcus spp. was 34% of total fermented vegetable samples, followed by Bacillus spp. coliform bacteria and E. coli (31%, 24% and 10%, respectively). The potential foodborne pathogen, C. sakazakii, was identified in one sample. Fermented mixed vegetables showed higher contamination rate of coliform bacteria (50%) than fermented single-type vegetables (13%). The results showed that fermented vegetables sold in wet market are poor in hygiene. The stage in the processing chain where contamination occurred should be identified and basic sanitary practice should be enforced to improve the food safety of fermented vegetables in Cambodia.

  8. Laboratory method for fermentation of meat and poultry sausages in fibrous casings.

    Science.gov (United States)

    Johnson, M G; Acton, J C

    1975-06-01

    The construction and operation of a relatively inexpensive cabinet for sausage fermentation studies is described. Temperature can be controlled to +/-1 C with a relative humidity of approximately 95%.

  9. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media.

    Science.gov (United States)

    Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M

    2018-02-01

    The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.

  10. Novel insights into the microbiology of fermented dairy foods.

    Science.gov (United States)

    Macori, Guerrino; Cotter, Paul D

    2018-02-01

    Fermentation is a traditional approach to food preservation that, in addition to improving food safety, also confers enhanced organoleptic, nutritional, and health-promoting attributes upon those foods. Dairy products can be fermented by a diverse microbiota. The accompanying microbes can be studied using a variety of different, including 'omics'-based, approaches that can reveal their composition and functionality. These methods have increasingly been recently applied to study fermented dairy foods from the perspective of genetic diversity, functionality and succession. The insights provided by these studies are summarised in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Microbiological Research on the Traditional Alcoholic Fermented Milk“Airag”in Mongolia

    OpenAIRE

    宮本, 拓

    2015-01-01

     Airag, a traditional fermented milk well loved by Mongolians, has been drunk habitually sinceancient times as a unique drink. It is produced from cow, mare and camel milk by a traditional method using indigenous starter cultures containing lactic acid bacteria, yeasts and other fermentative microorganisms. Spontaneously fermented milk products have for centuries been consumed for their therapeutic value in promoting health and well-being, especially among the pastoral communities in Mongolia...

  12. Antioxidant, Antibacterial and Color Analysis of Garlic Fermented in Kombucha and Red Grape Vinegar

    Directory of Open Access Journals (Sweden)

    Ali Ebrahimi Pure

    2016-10-01

    Full Text Available Background and Objective: Garlic, in different types, is a very common food ingredient all over the world. Traditionally, garlic is fermented in grape vinegar to produce garlic pickles; in this study, to produce a novel fermented food, garlic was fermented in kombucha beverage; then, antibacterial and chemical properties and color changes of garlics fermented in kombucha and vinegar were compared with each other and those of fresh garlic.Material and Methods: Folin-Ciocalteu assay was performed to evaluate total phenolic contents; free radical scavenging activity was evaluated using 2,2- diphenyl-1-picrylhydrazyl. Disk diffusion method was performed to measure inhibitory activity against testing bacteria. A digital method was designed for color analysis. All data were statistically analyzed by ANOVA test at significant level of (p≤0.05.Results and Conclusion: Fresh garlic extract had the highest inhibitory effect (mean 27.7 mm against tested bacteria; kombucha fermented garlic showed bigger inhibition zone (mean 21.7 mm than vinegar fermented garlic (mean 17.9 mm. Anti-staphylococcus aureus activity of fresh garlic was stronger than gentamycin and amoxicillin; inhibitory effect of garlic extracts against tested bacteria was significant in comparison with standard antibiotics. Fresh-garlic extract contained highest amount of phenolic contents; fermentation of garlic in kombucha decreased phenolic content of garlic bulbs by 1.92% and IC50 factor for antioxidant activity was 10.25% higher than fresh garlic; fermentation in vinegar reduced 21% of phenolic contents and IC50 obtained 47.4% higher than fresh garlic. Fermentation of garlic reduces the density of colors and luminosity, but the reduction in garlics fermented in vinegar is more than in kombucha. Appearance of vinegar fermented garlic changed to yellowish and kombucha inclined the color to reddish. Fermentation of garlic in kombucha provides better preservation of biological properties of

  13. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.

    Science.gov (United States)

    Kim, Kyoung Hyoun; Choi, In Seong; Kim, Ho Myeong; Wi, Seung Gon; Bae, Hyeun-Jong

    2014-02-01

    The microalga Chlorella vulgaris is a potential feedstock for bioenergy due to its rapid growth, carbon dioxide fixation efficiency, and high accumulation of lipids and carbohydrates. In particular, the carbohydrates in microalgae make them a candidate for bioethanol feedstock. In this study, nutrient stress cultivation was employed to enhance the carbohydrate content of C. vulgaris. Nitrogen limitation increased the carbohydrate content to 22.4% from the normal content of 16.0% on dry weight basis. In addition, several pretreatment methods and enzymes were investigated to increase saccharification yields. Bead-beating pretreatment increased hydrolysis by 25% compared with the processes lacking pretreatment. In the enzymatic hydrolysis process, the pectinase enzyme group was superior for releasing fermentable sugars from carbohydrates in microalgae. In particular, pectinase from Aspergillus aculeatus displayed a 79% saccharification yield after 72h at 50°C. Using continuous immobilized yeast fermentation, microalgal hydrolysate was converted into ethanol at a yield of 89%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Influence of Ammonium Salt and Fermentation pH on Acarbose ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of ammonium salts and fermentation pH on the biosynthesis of acarbose by Streptomyces M37. Methods: Different ammonium salts were added to the fermentation broth of Streptomyces M37 to explore their effects on acarbose production. The concentration and addition time of ammonium ...

  15. Kivuguto traditional fermented milk and the dairy industry in Rwanda. A review

    Directory of Open Access Journals (Sweden)

    Karenzi, E.

    2013-01-01

    Full Text Available Traditional methods of fermenting milk involve the use of indigenous microorganisms, leading to the production of a variety of tastes in fermented milk products. Kivuguto is a fermented milk product, which is popular in Rwanda. Kivuguto is produced by traditional spontaneous acidification of raw milk by a microflora present both on utensils and containers used for milk preservation and in the near environment of cattle. Thus, this method does not allow the shelf stability of the product. Faced to such a situation, modern dairies now produce fermented milk and other dairy products using exotic strains. The main objectives of this paper are firstly, to provide documentation on the traditional production of kivuguto, as well as its by-products, and secondly, to describe the current situation of the dairy industry in Rwanda.

  16. Impedimetric method for physiologically characterisation of fungi

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Petersen, Karina

    1998-01-01

    Fungi are playing an important role in the food and pharmaceutical industry today, both as starter cultures, fermentation organisms, and as contaminants. Characterisation of fungal growth is normally time consuming as it includes measurements and study on a wide range of media at different...... temperatures, pH, water activity and atmosphere composition. Nevertheless is it important information in ecophysiological studies, where the growth potential by fungi are related to composition and storage of food. It is therefore of great interest to device a rapid method for characterisation of fungi.......The objective was to determine the growth phases of various fungi using an impedimetric method and compare this with traditional methods using agar plates, in order to determine if this rapid method can replace the traditional method.The method is based on impedimetric assessment of growth on the Bactometer 128...

  17. Improving properties of sweet potato composite flour: Influence of lactic fermentation

    Science.gov (United States)

    Yuliana, Neti; Nurdjanah, Siti; Setyani, Sri; Novianti, Dini

    2017-06-01

    The use of locally grown crops such as sweet potato as raw material for composite flour is considered advantageous as it reduces the importation of wheat flour. However the use of native sweetpotato flour has drawback properties when applied in the food. This study was aimed to modify sweet potato flour through six methods of lactic fermentation (spontaneous, pickle brine, Lb plantarum, Lc mesentereoides, a mixed of Lb plantarum and Lc mesentereoides, and mixed of Lb plantarum, Lc mesentereoides and yeast) to increase its properties in composite flour. Composite flours were obtained after fermentation of sweet potato slices for 48h in the proportion of 50% sweet potatoes flour and 50% wheat flour. pH, moisture content, swelling power, solubility, and pasting properties were determined for the fermented and unfermented composite flours. The results indicated that the composite fermented flours had better properties than those of non fermented flour. Fermentation increased swelling power, moisture content, meanwhile, solubility, and pH, deacresed. Amylose leaching, however, was not significantly affected by the fermentation process.

  18. Relationship between fermentation index and other biochemical changes evaluated during the fermentation of Mexican cocoa (Theobroma cacao) beans.

    Science.gov (United States)

    Romero-Cortes, Teresa; Salgado-Cervantes, Marco Antonio; García-Alamilla, Pedro; García-Alvarado, Miguel Angel; Rodríguez-Jimenes, Guadalupe del C; Hidalgo-Morales, Madeleine; Robles-Olvera, Víctor

    2013-08-15

    During traditional cocoa processing, the end of fermentation is empirically determined by the workers; consequently, a high variability on the quality of fermented cocoa beans is observed. Some physicochemical properties (such as fermentation index) have been used to measure the degree of fermentation and changes in quality, but only after the fermentation process has concluded, using dried cocoa beans. This would suggest that it is necessary to establish a relationship between the chemical changes inside the cocoa bean and the fermentation conditions during the fermentation in order to standardize the process. Cocoa beans were traditionally fermented inside wooden boxes, sampled every 24 h and analyzed to evaluate fermentation changes in complete bean, cotyledon and dried beans. The value of the fermentation index suggested as the minimal adequate (≥1) was observed at 72 h in all bean parts analyzed. At this time, values of pH, spectral absorption, total protein hydrolysis and vicilin-class globulins of fermented beans suggested that they were well fermented. Since no difference was found between the types of samples, the pH value could be used as a first indicator of the end of the fermentation and confirmed by evaluation of the fermentation index using undried samples, during the process. © 2013 Society of Chemical Industry.

  19. A novel polymerase chain reaction (PCR) - denaturing gradient gel electrophoresis (DGGE) for the identification of Micrococcaceae strains involved in meat fermentations. Its application to naturally fermented Italian sausages.

    Science.gov (United States)

    Cocolin, L; Manzano, M; Aggio, D; Cantoni, C; Comi, G

    2001-05-01

    A new molecular method consisting of polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis (DGGE) of a small fragment from the 16S rRNA gene identified the Micrococcaceae strains isolated from natural fermented Italian sausages. Lactic acid bacteria, total aerobic mesophilic flora, Enterobacteriaceae and faecal enterococci were also monitored. Micrococcaceaea control strains from international collections were used to optimise the method and 90 strains, isolated from fermented sausages, were identified by biochemical tests and PCR-DGGE. No differences were observed between the methods used. The results reported in this paper prove that Staphylococcus xylosus is the main bacterium involved in fermented sausage production, representing, from the tenth day of ripening, the only Micrococcaceaea species isolated.

  20. Comparation of instrumental and sensory methods in fermented milk beverages texture quality analysis

    Directory of Open Access Journals (Sweden)

    Jovica Hardi

    2001-04-01

    Full Text Available The texture of the curd of fermented dairy products is one of the primary factors of their overall quality. The flow properties of fermented dairy products have characteristic of thixotropic (pseudoplastic type of liquids. At the same time, these products are viscoelastic systems, i.e. they are capable of texture renewal after applied deformation. Complex analysis of some of the properties is essentional for the system description . The aim of the present work was to completely describe the texture of fermented milk beverages . Three basic parameters were taken into consideration: structure, hardness (consistency and stability of the curd. The description model of these three parameters was applied on the basis of the experimental results obteined. Results obtained by present model were compared with the results of sensory analysis. Influence of milk fat content and skimmed milk powder addition on acidophilus milk texture quality was also examined using this model. It was shawn that, by using this model – on the basis of instrumental and sensory analyses, a complete and objective determination of texture quality of the fermented milk beverages can be obtained. High degree of correlation between instrumental and sensory results (r =0.8975 is obtained results of this work indicated that both factors (milk fat content and skimmed milk powder addition had an influence on texture quality. Samples with higher milk fat content had a better texture properties in comparsion with low fat content samples. Texture of all examined samples was improved by increasing skimmed milk powder content. Optimal amounts of skimmed milk powder addition with regard to milk fat content, in milk, is determined using the proposed model.

  1. Proteomic profiling of an undefined microbial consortium cultured in fermented dairy manure: Methods development.

    Science.gov (United States)

    Hanson, Andrea J; Paszczynski, Andrzej J; Coats, Erik R

    2016-03-01

    The production of polyhydroxyalkanoates (PHA; bioplastics) from waste or surplus feedstocks using mixed microbial consortia (MMC) and aerobic dynamic feeding (ADF) is a growing field within mixed culture biotechnology. This study aimed to optimize a 2DE workflow to investigate the proteome dynamics of an MMC synthesizing PHA from fermented dairy manure. To mitigate the challenges posed to effective 2DE by this complex sample matrix, the bacterial biomass was purified using Accudenz gradient centrifugation (AGC) before protein extraction. The optimized 2DE method yielded high-quality gels suitable for quantitative comparative analysis and subsequent protein identification by LC-MS/MS. The optimized 2DE method could be adapted to other proteomic investigations involving MMC in complex organic or environmental matrices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  3. Development of a high temperature microbial fermentation process for butanol

    Energy Technology Data Exchange (ETDEWEB)

    Jeor, Jeffery D. St. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reed, David W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daubaras, Dayna L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, Vicki S. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Transforming renewable biomass into cost-competitive high-performance biofuels and bioproducts is key to the U.S. future energy and chemical needs. Butanol production by microbial fermentation for chemical conversion to polyolefins, elastomers, drop-in jet or diesel fuel, and other chemicals is a promising solution. A high temperature fermentation process could decrease energy costs, capital cost, give higher butanol production, and allow for continuous fermentation. In this paper, we describe our approach to genetically transform Geobacillus caldoxylosiliticus, using a pUCG18 plasmid, for potential insertion of a butanol production pathway. Transformation methods tested were electroporation of electrocompetent cells, ternary conjugation with E. coli donor and helper strains, and protoplast fusion. These methods have not been successful using the current plasmid. Growth controls show cells survive the various methods tested, suggesting the possibility of transformation inhibition from a DNA restriction modification system in G. caldoxylosiliticus, as reported in the literature.

  4. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Hasunuma, Tomohisa; Yoshimura, Kazuya; Matsuda, Fumio [Kobe Univ., Hyogo (Japan). Organization of Advanced Science and Technology; Sung, Kyung-mo; Sanda, Tomoya; Kondo, Akihiko [Kobe Univ., Hyogo (Japan). Dept. of Chemical Science and Engineering

    2011-05-15

    Recombinant yeast strains highly tolerant to formic acid during xylose fermentation were constructed. Microarray analysis of xylose-fermenting Saccharomyces cerevisiae strain overexpressing endogenous xylulokinase in addition to xylose reductase and xylitol dehydrogenase from Pichia stipitis revealed that upregulation of formate dehydrogenase genes (FDH1 and FDH2) was one of the most prominent transcriptional events against excess formic acid. The quantification of formic acid in medium indicated that the innate activity of FDH was too weak to detoxify formic acid. To reinforce the capability for formic acid breakdown, the FDH1 gene was additionally overexpressed in the xylose-metabolizing recombinant yeast. This modification allowed the yeast to rapidly decompose excess formic acid. The yield and final ethanol concentration in the presence of 20 mM formic acid is as essentially same as that of control. The fermentation profile also indicated that the production of xylitol and glycerol, major by-products in xylose fermentation, was not affected by the upregulation of FDH activity. (orig.)

  5. [A new method of fabricating photoelastic model by rapid prototyping].

    Science.gov (United States)

    Fan, Li; Huang, Qing-feng; Zhang, Fu-qiang; Xia, Yin-pei

    2011-10-01

    To explore a novel method of fabricating the photoelastic model using rapid prototyping technique. A mandible model was made by rapid prototyping with computerized three-dimensional reconstruction, then the photoelastic model with teeth was fabricated by traditional impression duplicating and mould casting. The photoelastic model of mandible with teeth, which was fabricated indirectly by rapid prototyping, was very similar to the prototype in geometry and physical parameters. The model was of high optical sensibility and met the experimental requirements. Photoelastic model of mandible with teeth indirectly fabricated by rapid prototyping meets the photoelastic experimental requirements well.

  6. Introducing capnophilic lactic fermentation in a combined dark-photo fermentation process: a route to unparalleled H2 yields.

    Science.gov (United States)

    Dipasquale, L; Adessi, A; d'Ippolito, G; Rossi, F; Fontana, A; De Philippis, R

    2015-01-01

    Two-stage process based on photofermentation of dark fermentation effluents is widely recognized as the most effective method for biological production of hydrogen from organic substrates. Recently, it was described an alternative mechanism, named capnophilic lactic fermentation, for sugar fermentation by the hyperthermophilic bacterium Thermotoga neapolitana in CO2-rich atmosphere. Here, we report the first application of this novel process to two-stage biological production of hydrogen. The microbial system based on T. neapolitana DSM 4359(T) and Rhodopseudomonas palustris 42OL gave 9.4 mol of hydrogen per mole of glucose consumed during the anaerobic process, which is the best production yield so far reported for conventional two-stage batch cultivations. The improvement of hydrogen yield correlates with the increase in lactic production during capnophilic lactic fermentation and takes also advantage of the introduction of original conditions for culturing both microorganisms in minimal media based on diluted sea water. The use of CO2 during the first step of the combined process establishes a novel strategy for biohydrogen technology. Moreover, this study opens the way to cost reduction and use of salt-rich waste as feedstock.

  7. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth.

    Science.gov (United States)

    Martínez, M E; Ranilla, M J; Tejido, M L; Ramos, S; Carro, M D

    2010-08-01

    Four ruminally and duodenally cannulated sheep and 8 Rusitec fermenters were used to determine the effects of forage to concentrate (F:C) ratio and type of forage in the diet on ruminal fermentation and microbial protein synthesis. The purpose of the study was to assess how closely fermenters can mimic the dietary differences found in vivo. The 4 experimental diets contained F:C ratios of 70:30 or 30:70 with either alfalfa hay or grass hay as the forage. Microbial growth was determined in both systems using (15)N as a microbial marker. Rusitec fermenters detected differences between diets similar to those observed in sheep by changing F:C ratio on pH; neutral detergent fiber digestibility; total volatile fatty acid concentrations; molar proportions of acetate, propionate, butyrate, isovalerate, and caproate; and amylase activity. In contrast, Rusitec fermenters did not reproduce the dietary differences found in sheep for NH(3)-N and lactate concentrations, dry matter (DM) digestibility, proportions of isobutyrate and valerate, carboxymethylcellulase and xylanase activities, and microbial growth and its efficiency. Regarding the effect of the type of forage in the diet, Rusitec fermenters detected differences between diets similar to those found in sheep for most determined parameters, with the exception of pH, DM digestibility, butyrate proportion, and carboxymethylcellulase activity. Minimum pH and maximal volatile fatty acid concentrations were reached at 2h and at 6 to 8h postfeeding in sheep and fermenters, respectively, indicating that feed fermentation was slower in fermenters compared with that in sheep. There were differences between systems in the magnitude of most determined parameters. In general, fermenters showed lower lactate concentrations, neutral detergent fiber digestibility, acetate:propionate ratios, and enzymatic activities. On the contrary, fermenters showed greater NH(3)-N concentrations, DM digestibility, and proportions of propionate

  8. Formation of ethyl carbamate and changes during fermentation and storage of yellow rice wine.

    Science.gov (United States)

    Wu, Pinggu; Cai, Chenggang; Shen, Xianghong; Wang, Liyuan; Zhang, Jing; Tan, Ying; Jiang, Wei; Pan, Xiaodong

    2014-01-01

    Ethyl carbamate (EC) was analyzed during yellow rice wine production and storage. EC increased slowly during fermentation and rapidly after frying and sterilization. Less amount of EC was formed when cooled rapidly to 30 °C than when cooled naturally. High temperature and long storage time increased EC formation. After 400 days storage, EC increased from 74.0 to 84.2, 131.8 and 509.4 μg/kg at 4 °C, room temperature and 37 °C, respectively, and there was significantly difference between the fried wine and the wine on sale from 2011 (pwine fermentation and was above 20 mg/kg after the wine was fried; urea contributed to EC formation when the fried wine was cooled slowly. These results indicate that it is necessary for industry to optimize the wine frying conditions, such as temperature, time and cooling process in order to decrease EC formation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Investigating the Variation of Volatile Compound Composition in Maotai-Flavoured Liquor During Its Multiple Fermentation Steps Using Statistical Methods

    Directory of Open Access Journals (Sweden)

    Zheng-Yun Wu

    2016-01-01

    Full Text Available The use of multiple fermentations is one of the most specific characteristics of Maotai-flavoured liquor production. In this research, the variation of volatile composition of Maotai-flavoured liquor during its multiple fermentations is investigated using statistical approaches. Cluster analysis shows that the obtained samples are grouped mainly according to the fermentation steps rather than the distillery they originate from, and the samples from the first two fermentation steps show the greatest difference, suggesting that multiple fermentation and distillation steps result in the end in similar volatile composition of the liquor. Back-propagation neural network (BNN models were developed that satisfactorily predict the number of fermentation steps and the organoleptic evaluation scores of liquor samples from their volatile compositions. Mean impact value (MIV analysis shows that ethyl lactate, furfural and some high-boiling-point acids play important roles, while pyrazine contributes much less to the improvement of the flavour and taste of Maotai-flavoured liquor during its production. This study contributes to further understanding of the mechanisms of Maotai-flavoured liquor production.

  10. Microbiota in fermented feed and swine gut.

    Science.gov (United States)

    Wang, Cheng; Shi, Changyou; Zhang, Yu; Song, Deguang; Lu, Zeqing; Wang, Yizhen

    2018-04-01

    Development of alternatives to antibiotic growth promoters (AGP) used in swine production requires a better understanding of their impacts on the gut microbiota. Supplementing fermented feed (FF) in swine diets as a novel nutritional strategy to reduce the use of AGP and feed price, can positively affect the porcine gut microbiota, thereby improving pig productivities. Previous studies have noted the potential effects of FF on the shift in benefit of the swine microbiota in different regions of the gastrointestinal tract (GIT). The positive influences of FF on swine gut microbiota may be due to the beneficial effects of both pre- and probiotics. Necessarily, some methods should be adopted to properly ferment and evaluate the feed and avoid undesired problems. In this mini-review, we mainly discuss the microbiota in both fermented feed and swine gut and how FF influences swine gut microbiota.

  11. Streptomyces sp. TEM 33 possesses high lipolytic activity in solid-state fermentation in comparison with submerged fermentation.

    Science.gov (United States)

    Cadirci, Bilge Hilal; Yasa, Ihsan; Kocyigit, Ali

    2016-01-01

    Solid-state fermentation (SSF) is a bioprocess that doesn't need an excess of free water, and it offers potential benefits for microbial cultivation for bioprocesses and product development. In comparing the antibiotic production, few detailed reports could be found with lipolytic enzyme production by Streptomycetes in SSF. Taking this knowledge into consideration, we prefer to purify Actinomycetes species as a new source for lipase production. The lipase-producing strain Streptomyces sp. TEM 33 was isolated from soil and lipase production was managed by solid-state fermentation (SSF) in comparison with submerged fermentation (SmF). Bioprocess-affecting factors like initial moisture content, incubation time, and various carbon and nitrogen additives and the other enzymes secreted into the media were optimized. Lipase activity was measured as 1.74 ± 0.0005 U/g dry substrate (gds) by the p-nitrophenylpalmitate (pNPP) method on day 6 of fermentation with 71.43% final substrate moisture content. In order to understand the metabolic priority in SSF, cellulase and xylanase activity of Streptomyces sp. TEM33 was also measured. The microorganism degrades the wheat bran to its usable form by excreting cellulases and xylanases; then it secretes the lipase that is necessary for degrading the oil in the medium.

  12. An experimental study about effect of far infrared radiant ceramics on efficient methane fermentation

    International Nuclear Information System (INIS)

    Oda, A.; Yamazaki, M.; Oida, A.

    2003-01-01

    Methane fermentation, well known as one of the methods for organic wastes treatment, has been used as an energy production process in order to produce a gaseous fuel. But methane fermentation has some problems to be solved about gas production rate and volatile solids reduction efficiency. Simple methods to improve these problems are needed. In this study, we focused on far infrared radiant ceramics as a stimulating substance to activate methanogenic bacteria. Firstly, through the experiment of one batch fermentation, it was confirmed that the ceramics in the fermenter caused increase of total gas production. Next, even through the experiment of continuous fermentation, same stimulating effect was confirmed. It was considered that this effect was caused not only by a function of bio-contactor of the ceramics but also by far infrared radiation from ceramics. (author)

  13. optimization of process parameters for lovastatin production under solid-state fermentation from ground corn cobs by gamma irradiated aspergillus tamarri isolate

    International Nuclear Information System (INIS)

    Mattar, Z.A.; Khalaf, M.A.; Meleigy, S.A.

    2010-01-01

    rapid screening method is demonstrated for isolating lovastatin overproducing strains of gamma irradiated aspergillus tamarri. the screening methodology, based on the activity of lovastatin against the yeast candida albicans. among 24 gamma irradiated isolates of a. tamarri, the isolate G-8 was selected as best producer for lovastatin. solid state fermentation (SSF)was evaluated to produce lovastatin by a. tamarri G-8 isolate using ground corn cobs as substrate. monofactorial experiments were adopted to optimize the fermentation conditions. various crucial parameters such as particle size, moisture content, ph, temperature, inoculum size and incubation time were derived. corn cobs of particle size 0.4 mm having moisture level of 60 % and ph 5 gave the highest yield of lovastatin (12.4 mg/gram dry substrate) when inoculated with a. tamarri G-8 at inoculum size 10 % and 28 degree C for 8 days.

  14. Ethanol from lignocellulose - Fermentation inhibitors, detoxification and genetic engineering of Saccharomyces cerevisiae for enhanced resistance

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Simona

    2000-07-01

    Ethanol can be produced from lignocellulose by first hydrolysing the material to sugars, and then fermenting the hydrolysate with the yeast Saccharomyces cerevisiae. Hydrolysis using dilute sulphuric acid has advantages over other methods, however, compounds which inhibit fermentation are generated during this kind of hydrolysis. The inhibitory effect of aliphatic acids, furans, and phenolic compounds was investigated. The generation of inhibitors during hydrolysis was studied using Norway spruce as raw material. It was concluded that the decrease in the fermentability coincided with increasing harshness of the hydrolysis conditions. The decrease in fermentability was not correlated solely to the content of aliphatic acids or furan derivatives. To increase the fermentability, detoxification is often employed. Twelve detoxification methods were compared with respect to the chemical composition of the hydrolysate and the fermentability after treatment. The most efficient detoxification methods were anion-exchange at pH 10.0, overliming and enzymatic detoxification with the phenol-oxidase laccase. Detailed analyses of ion exchange revealed that anion exchange and unspecific hydrophobic interactions greatly contributed to the detoxification effect, while cation exchange did not. The comparison of detoxification methods also showed that phenolic compounds are very important fermentation inhibitors, as their selective removal with laccase had a major positive effect on the fermentability. Selected compounds; aliphatic acids, furans and phenolic compounds, were characterised with respect to their inhibitory effect on ethanolic fermentation by S. cerevisiae. When aliphatic acids or furans were compared, the inhibitory effects were found to be in the same range, but the phenolic compounds displayed widely different inhibitory effects. The possibility of genetically engineering S. cerevisiae to achieve increased inhibitor resistance was explored by heterologous expression of

  15. Quantitative monitoring of yeast fermentation using Raman spectroscopy

    DEFF Research Database (Denmark)

    Iversen, Jens A.; Berg, Rolf W.; Ahring, Birgitte K.

    2014-01-01

    of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe.A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly...... measurement of yeast cell concentrations. Extinction of Raman intensities to more than 50 % during fermentation was normalized with approximated extinction expressions using Raman signal of water around 1,627 cm−1 as internal standard to correct for the effect of scattering. Complicated standard multi...... was followed by linear regression. In situ quantification measurements of the fermentation resulted in root mean square errors of prediction (RMSEP) of 2.357, 1.611, and 0.633 g/L for glucose, ethanol, and yeast concentrations, respectively....

  16. Use of high-gradient magnetic fishing for reducing proteolysis during fermentation

    DEFF Research Database (Denmark)

    Maury, Trine Lütken; Ottow, Kim Ekelund; Brask, Jesper

    2012-01-01

    Proteolysis during fermentation may have a severe impact on the yield and quality of a secreted product. In the current study, we demonstrate the use of high-gradient magnetic fishing (HGMF) as an efficient alternative to the more conventional methods of preventing proteolytic degradation....... Bacitracin-linked magnetic affinity adsorbents were employed directly in a fermenter during Bacillus licheniformis cultivation to remove trace amounts of unwanted proteases. The constructed magnetic adsorbents had excellent, highly specific binding characteristics in the fermentation broth (K(d) = 1...

  17. Monitoring of Lactic Fermentation Process by Ultrasonic Technique

    Science.gov (United States)

    Alouache, B.; Touat, A.; Boutkedjirt, T.; Bennamane, A.

    The non-destructive control by using ultrasound techniques has become of great importance in food industry. In this work, Ultrasound has been used for quality control and monitoring the fermentation stages of yogurt, which is a highly consumed product. On the contrary to the physico-chemical methods, where the measurement instruments are directly introduced in the sample, ultrasound techniques have the advantage of being non-destructive and contactless, thus reducing the risk of contamination. Results obtained in this study by using ultrasound seem to be in good agreement with those obtained by physico-chemical methods such as acidity measurement by using a PH-meter instrument. This lets us to conclude that ultrasound method may be an alternative for a healthy control of yoghurt fermentation process.

  18. Effect of alcoholic fermentation on the quality of grape brandies

    Directory of Open Access Journals (Sweden)

    Vukosavljević Vera

    2015-01-01

    Full Text Available Grape brandy is a product obtained by fermentation and distillation of crushed grapes of cultivated grapevine Vitis vinifera. Grape brandy quality depends on many factors such as: grapevine varieties, climate, soil, time and method of distillation, storage methods and other distillates. The grapevine variety 'Neoplanta' grown in the experimental field of the PD 'Center for Viticulture and Enology' in Niš was used in the experiment. Tests were performed in the laboratory of the Centre. Healthy grapes of harvest maturity were squashed by a stalk-removing electric crusher. Fermentation was performed in plastic containers in the presence of the indigenous microflora of wine yeasts. This paper presents the influence of pH and inorganic nitrogen added to the fermentation medium on the content of volatile components and concentrations of higher alcohols.

  19. A viable method and configuration for fermenting biomass sugars to ethanol using native Saccharomyces cerevisiae.

    Science.gov (United States)

    Yuan, Dawei; Rao, Kripa; Varanasi, Sasidhar; Relue, Patricia

    2012-08-01

    A system that incorporates a packed bed reactor for isomerization of xylose and a hollow fiber membrane fermentor (HFMF) for sugar fermentation by yeast was developed for facile recovery of the xylose isomerase enzyme pellets and reuse of the cartridge loaded with yeast. Fermentation of pre-isomerized poplar hydrolysate produced using ionic liquid pretreatment in HFMF resulted in ethanol yields equivalent to that of model sugar mixtures of xylose and glucose. By recirculating model sugar mixtures containing partially isomerized xylose through the packed bed and the HFMF connected in series, 39 g/l ethanol was produced within 10h with 86.4% xylose utilization. The modular nature of this configuration has the potential for easy scale-up of the simultaneous isomerization and fermentation process without significant capital costs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Integrated process development-a robust, rapid method for inclusion body harvesting and processing at the microscale level.

    Science.gov (United States)

    Walther, Cornelia; Kellner, Martin; Berkemeyer, Matthias; Brocard, Cécile; Dürauer, Astrid

    2017-10-21

    Escherichia coli stores large amounts of highly pure product within inclusion bodies (IBs). To take advantage of this beneficial feature, after cell disintegration, the first step to optimal product recovery is efficient IB preparation. This step is also important in evaluating upstream optimization and process development, due to the potential impact of bioprocessing conditions on product quality and on the nanoscale properties of IBs. Proper IB preparation is often neglected, due to laboratory-scale methods requiring large amounts of materials and labor. Miniaturization and parallelization can accelerate analyses of individual processing steps and provide a deeper understanding of up- and downstream processing interdependencies. Consequently, reproducible, predictive microscale methods are in demand. In the present study, we complemented a recently established high-throughput cell disruption method with a microscale method for preparing purified IBs. This preparation provided results comparable to laboratory-scale IB processing, regarding impurity depletion, and product loss. Furthermore, with this method, we performed a "design of experiments" study to demonstrate the influence of fermentation conditions on the performance of subsequent downstream steps and product quality. We showed that this approach provided a 300-fold reduction in material consumption for each fermentation condition and a 24-fold reduction in processing time for 24 samples.

  1. Considerations for Task Analysis Methods and Rapid E-Learning Development Techniques

    Directory of Open Access Journals (Sweden)

    Dr. Ismail Ipek

    2014-02-01

    Full Text Available The purpose of this paper is to provide basic dimensions for rapid training development in e-learning courses in education and business. Principally, it starts with defining task analysis and how to select tasks for analysis and task analysis methods for instructional design. To do this, first, learning and instructional technologies as visions of the future were discussed. Second, the importance of task analysis methods in rapid e-learning was considered, with learning technologies as asynchronous and synchronous e-learning development. Finally, rapid instructional design concepts and e-learning design strategies were defined and clarified with examples, that is, all steps for effective task analysis and rapid training development techniques based on learning and instructional design approaches were discussed, such as m-learning and other delivery systems. As a result, the concept of task analysis, rapid e-learning development strategies and the essentials of online course design were discussed, alongside learner interface design features for learners and designers.

  2. Data Pre-Processing Method to Remove Interference of Gas Bubbles and Cell Clusters During Anaerobic and Aerobic Yeast Fermentations in a Stirred Tank Bioreactor

    Science.gov (United States)

    Princz, S.; Wenzel, U.; Miller, R.; Hessling, M.

    2014-11-01

    One aerobic and four anaerobic batch fermentations of the yeast Saccharomyces cerevisiae were conducted in a stirred bioreactor and monitored inline by NIR spectroscopy and a transflectance dip probe. From the acquired NIR spectra, chemometric partial least squares regression (PLSR) models for predicting biomass, glucose and ethanol were constructed. The spectra were directly measured in the fermentation broth and successfully inspected for adulteration using our novel data pre-processing method. These adulterations manifested as strong fluctuations in the shape and offset of the absorption spectra. They resulted from cells, cell clusters, or gas bubbles intercepting the optical path of the dip probe. In the proposed data pre-processing method, adulterated signals are removed by passing the time-scanned non-averaged spectra through two filter algorithms with a 5% quantile cutoff. The filtered spectra containing meaningful data are then averaged. A second step checks whether the whole time scan is analyzable. If true, the average is calculated and used to prepare the PLSR models. This new method distinctly improved the prediction results. To dissociate possible correlations between analyte concentrations, such as glucose and ethanol, the feeding analytes were alternately supplied at different concentrations (spiking) at the end of the four anaerobic fermentations. This procedure yielded low-error (anaerobic) PLSR models for predicting analyte concentrations of 0.31 g/l for biomass, 3.41 g/l for glucose, and 2.17 g/l for ethanol. The maximum concentrations were 14 g/l biomass, 167 g/l glucose, and 80 g/l ethanol. Data from the aerobic fermentation, carried out under high agitation and high aeration, were incorporated to realize combined PLSR models, which have not been previously reported to our knowledge.

  3. Rapid Enzymatic Method for Pectin Methyl Esters Determination

    Directory of Open Access Journals (Sweden)

    Lucyna Łękawska-Andrinopoulou

    2013-01-01

    Full Text Available Pectin is a natural polysaccharide used in food and pharma industries. Pectin degree of methylation is an important parameter having significant influence on pectin applications. A rapid, fully automated, kinetic flow method for determination of pectin methyl esters has been developed. The method is based on a lab-made analyzer using the reverse flow-injection/stopped flow principle. Methanol is released from pectin by pectin methylesterase in the first mixing coil. Enzyme working solution is injected further downstream and it is mixed with pectin/pectin methylesterase stream in the second mixing coil. Methanol is oxidized by alcohol oxidase releasing formaldehyde and hydrogen peroxide. This reaction is coupled to horse radish peroxidase catalyzed reaction, which gives the colored product 4-N-(p-benzoquinoneimine-antipyrine. Reaction rate is proportional to methanol concentration and it is followed using Ocean Optics USB 2000+ spectrophotometer. The analyzer is fully regulated by a lab written LabVIEW program. The detection limit was 1.47 mM with an analysis rate of 7 samples h−1. A paired t-test with results from manual method showed that the automated method results are equivalent to the manual method at the 95% confidence interval. The developed method is rapid and sustainable and it is the first application of flow analysis in pectin analysis.

  4. Yeast Identification During Fermentation of Turkish Gemlik Olives.

    Science.gov (United States)

    Mujdeci, Gamze; Arévalo-Villena, María; Ozbas, Z Yesim; Briones Pérez, Ana

    2018-05-01

    Naturally fermented black table olives of the Gemlik variety are one of the most consumed fermented products in Turkey. The objective of this work was to identify yeast strains isolated during their natural fermentation by using Restriction Fragments Lengths Polymorphism-Polimerase Chain Reaction (RFLP-PCR) and DNA sequencing methods. The study also focused on determining the effect of regional differences on yeast microflora of naturally fermented Gemlik olives. A total of 47 yeast strains belonging to 12 different species which had been previously isolated from the natural brine of Akhisar and Iznik-Gemlik cv. olives were characterized by molecular methods. Forty-two of the tested strains could be identified by RFLP-PCR to species level. These yeast species were determined as Candida mycetangi, Candida hellenica, Candida membranaefaciens, Candida famata, Candida pelliculosa, Saccharomyces cerevisiae, and Zygosaccharomyces mrakii. Five strains were identified by DNA sequencing. These strains belonged to three different species: Aureobasidium pullulans, Kloeckera apiculate, and Cryptococcus saitoi. The most frequent species were C. famata and C. pelliculosa in both regions. This work studies the yeasts from Turkish table olives which could prove to be of importance to the food industry in that area. On the other hand, it compares identification by molecular and classical biochemical methods and offers an idea about the differences between the ecosystems of Gemlik olives in the Akhisar (AO) and Iznik (IO) regions. The study could be useful in characterizing a very important product and, in this way, could help to promote its marketing. © 2018 Institute of Food Technologists®.

  5. Fermentation of sugar-beet molasses

    Energy Technology Data Exchange (ETDEWEB)

    Malchenko, A L; Krishtul, F B

    1956-08-25

    Sugar-beet molasses is fermented with yeast separated from the mash, sterilized, and reactivated. To reduce sugar losses and hasten fermentation, the yeast is removed from the mash as the cells fall to the bottom during the fermentation process.

  6. An integrated platform for gas-diffusion separation and electrochemical determination of ethanol on fermentation broths

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, Gabriela Furlan [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Vieira, Luis Carlos Silveira; Gobbi, Angelo Luiz [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Lima, Renato Sousa [Microfabrication Laboratory, Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP 13083-970 (Brazil); Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); Kubota, Lauro Tatsuo, E-mail: kubota@iqm.unicamp.br [Department of Analytical Chemistry, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil); National Institute of Science and Technology of Bioanalytics, Institute of Chemistry – UNICAMP, Campinas, SP 13083-970 (Brazil)

    2015-05-22

    Highlights: • Integrated platform was developed to determine ethanol in fermentation broths. • The designed system integrates gas diffusion separation with voltammetric detection. • Detector relied on Ni(OH){sub 2}-modified electrode stabilized by Co{sup 2+} and Cd{sup 2+} insertion. • Separation was made by PTFE membrane separating sample from electrolyte (receptor). • Despite the sample complexity, accurate tests were achieved by direct interpolation. - Abstract: An integrated platform was developed for point-of-use determination of ethanol in sugar cane fermentation broths. Such analysis is important because ethanol reduces its fuel production efficiency by altering the alcoholic fermentation step when in excess. The custom-designed platform integrates gas diffusion separation with voltammetric detection in a single analysis module. The detector relied on a Ni(OH){sub 2}-modified electrode. It was stabilized by uniformly depositing cobalt and cadmium hydroxides as shown by XPS measurements. Such tests were in accordance with the hypothesis related to stabilization of the Ni(OH){sub 2} structure by insertion of Co{sup 2+} and Cd{sup 2+} ions in this structure. The separation step, in turn, was based on a hydrophobic PTFE membrane, which separates the sample from receptor solution (electrolyte) where the electrodes were placed. Parameters of limit of detection and analytical sensitivity were estimated to be 0.2% v/v and 2.90 μA % (v/v){sup −1}, respectively. Samples of fermentation broth were analyzed by both standard addition method and direct interpolation in saline medium based-analytical curve. In this case, the saline solution exhibited ionic strength similar to those of the samples intended to surpass the tonometry colligative effect of the samples over analyte concentration data by attributing the reduction in quantity of diffused ethanol vapor majorly to the electrolyte. The approach of analytical curve provided rapid, simple and accurate

  7. Change of Monascus pigment metabolism and secretion in different extractive fermentation process.

    Science.gov (United States)

    Chen, Gong; Tang, Rui; Tian, Xiaofei; Qin, Peng; Wu, Zhenqiang

    2017-06-01

    Monascus pigments that were generally produced intracellularly from Monascus spp. are important natural colorants in food industry. In this study, change of pigment metabolism and secretion was investigated through fed-batch extractive fermentation and continuous extractive fermentation. The biomass, secreting rate of pigment and total pigment yield closely correlated with the activated time of extractive fermentation as well as the composition of feeding nutrients. Metal ions played a key role in both the cell growth and pigment metabolism. Nitrogen source was necessary for a high productivity of biomass but not for high pigment yield. Furthermore, fermentation period for the fed-batch extractive fermentation could be reduced by 18.75% with a nitrogen source free feeding medium. Through a 30-day continuous extractive fermentation, the average daily productivity for total pigments reached 74.9 AU day -1 with an increase by 32.6 and 296.3% compared to that in a 6-day conventional batch fermentation and a 16-day fed-batch extractive fermentation, respectively. At the meantime, proportions of extracellular pigments increased gradually from 2.7 to 71.3%, and yellow pigments gradually became dominated in both intracellular and extracellular pigments in the end of continuous extractive fermentation. This findings showed that either fed-batch or continuous extractive fermentation acted as a promising method in the efficient production of Monascus pigments.

  8. Microbial diversity and component variation in Xiaguan Tuo Tea during pile fermentation.

    Science.gov (United States)

    Li, Haizhou; Li, Min; Yang, Xinrui; Gui, Xin; Chen, Guofeng; Chu, Jiuyun; He, Xingwang; Wang, Weitao; Han, Feng; Li, Ping

    2018-01-01

    Xiaguan Tuo Tea is largely consumed by the Chinese, but there is little research into the microbial diversity and component changes during the fermentation of this tea. In this study, we first used fluorescence in situ hybridization (FISH), next-generation sequencing (NGS) and chemical analysis methods to determine the microbial abundance and diversity and the chemical composition during fermentation. The FISH results showed that the total number of microorganisms ranges from 2.3×102 to 4.0×108 cells per gram of sample during fermentation and is mainly dominated by fungi. In the early fermentation stages, molds are dominant (0.6×102~2.8×106 cells/g, 0~35 d). However, in the late stages of fermentation, yeasts are dominant (3.6×104~9.6×106 cells/g, 35~56 d). The bacteria have little effect during the fermentation of tea (102~103 cells/g, fermentation (Shannon-Weaver index: 1.195857), and lower diversity was observed on days 6 and 56 of fermentation (Shannon-Weaver index 0.860589 and 1.119106, respectively). During the microbial fermentation, compared to the unfermented tea, the tea polyphenol content decreased by 54%, and the caffeine content increased by 59%. Theanine and free amino acid contents were reduced during fermentation by 81.1 and 92.85%, respectively.

  9. Effect of Cultivar, Temperature, and Environmental Conditions on the Dynamic Change of Melatonin in Mulberry Fruit Development and Wine Fermentation.

    Science.gov (United States)

    Wang, Cheng; Yin, Li-Yuan; Shi, Xue-Ying; Xiao, Hua; Kang, Kun; Liu, Xing-Yan; Zhan, Ji-Cheng; Huang, Wei-Dong

    2016-04-01

    High levels of melatonin have been reported in various foods but not in mulberry or its wine. This study investigated the dynamic changes of melatonin levels during mulberry fruit development and ethanol fermentation of 2 different colored mulberry cultivars ("Hongguo2ˮ Morus nigra, black and "Baiyuwangˮ Morus alba, white) at 2 fermentation temperatures (16 and 25 °C). Our results showed that the melatonin level increased in the beginning of mulberry development but decreased in the end. The MnTDC gene expression level correlated with melatonin production, which implied that TDC may be the rate-limiting enzyme of the melatonin biosynthetic process in mulberries. During mulberry fermentation, the melatonin concentration increased rapidly in the beginning and then decreased gradually. Low temperature delayed the melatonin production during fermentation. A relatively high level of melatonin was found in "Hongguo2ˮ compared with "Baiyuwangˮ during fruit development and fermentation. The variation of melatonin correlated with the ethanol production rate, suggesting that melatonin may participate in physiological regulation of Saccharomyces cerevisiae during the fermentation stage. © 2016 Institute of Food Technologists®

  10. Food Technologies: Fermentation

    NARCIS (Netherlands)

    Nout, M.J.R.

    2014-01-01

    Fermentation refers to the use of microorganisms to achieve desirable food properties in the fermented food or beverage. Although the word ‘fermentation’ indicates ‘anaerobic metabolism,’ it is also used in a broader sense to indicate all anaerobic and aerobic microbiological and biochemical

  11. Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique.

    Science.gov (United States)

    Wang, Min; Wang, Rong; Yang, Shan; Deng, Jin Ping; Tang, Shao Xun; Tan, Zhi Liang

    2016-02-01

    Methane (CH4 ) can be mitigated through directly inhibiting methanogen activity and starving methanogens by hydrogen (H2 ) sink. Three types of mechanism (i.e. bromoethanesulphonate (BES), nitrate and emodin) and doses of CH4 mitigation agents were employed to investigate their pathways of CH4 inhibition. Results indicated that both BES and emodin inhibited CH4 production and altered H2 balance, which could be accompanied by decreased dry matter disappearance (DMD), fractional rate of gH2 formation, volatile fatty acid (VFA) production, ability to produce and use reducing equivalences and molecular H2 , and increased final asymptotic gH2 production, time to the peak of gH2 , discrete lag time of gH2 production and fermentation efficiency. However, emodin decreased gas volume produced by rapidly fermentable components of substrate and the rate of fermentation at early stage of incubation, while BES supplementation inhibited gas volume produced by both rapidly and slowly fermentable components of substrate and the rate of fermentation at middle or late stage of incubation. The nitrate supplementation inhibited CH4 production without affecting VFA profile, because of its dual role as H2 sink and being toxic to methanogens. Nitrate supplementation had more complicated pattern of fermentation, VFA production and profile and H2 balance in comparison to BES and emodin supplementation. © 2015 Japanese Society of Animal Science.

  12. Metaproteomics of Microbiota in Naturally Fermented Soybean Paste, Da-jiang.

    Science.gov (United States)

    Zhang, Ping; Zhang, Pengfei; Xie, Mengxi; An, Feiyu; Qiu, Boshu; Wu, Rina

    2018-05-01

    Da-jiang is a typical traditional fermented soybean product in China. At present, the proteins in da-jiang are needed to be explored. The composition and species of microbial proteins in traditional fermented da-jiang were analyzed by metaproteomics based on sodium dodecyl sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The results showed that the number and variety of microbial proteins in the traditional fermented da-jiang from different regions were different. The production site influences the fermentation in da-jiang. Then we analyzed the functions of the microbial proteins identified in da-jiang, and found that they were mainly involved in the process of protein synthesis, glycometabolism and nucleic acid synthesis. In addtion, we compared the proteins composition in different da-jiang. There are 51 common proteins of naturally fermented da-jiang, and 25 common microbial sources. The main commonly microbial sources of fungal proteins are Saccharomyces cerevisiae and Schizosaccharomyces; the main commonly microbial sources of bacterial proteins are Enterococcus faecalis, Leuconostoc mesenteroides, Acinetobacter baumannii, and Bacillus subtilis. These common microbes play the predominant role in da-jiang fermentation. The present results help us to understand the fermentation of da-jiang and improve the quality and safety of final products in the future. The study illustrated metaproteome of microbiota in traditional fermented soybean paste, da-jiang, by sodium dodecyl sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). A method of extracting metaproteome from microbiota in da-jiang was attempted. The findings help to understand the fermentation of da-jiang and improve the quality and safety of da-jiang in fermented industry. © 2018 Institute of Food Technologists®.

  13. Xylose fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  14. The Brewing Process: Optimizing the Fermentation

    Directory of Open Access Journals (Sweden)

    Teodora Coldea

    2014-11-01

    Full Text Available Beer is a carbonated alcoholic beverage obtained by alcoholic fermentation of malt wort boiled with hops. Brown beer obtained at Beer Pilot Station of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca was the result of a recipe based on blond, caramel and black malt in different proportions, water, hops and yeast. This study aimed to monitorize the evolution of wort in primary and secondary alcoholic fermentation in order to optimize the process. Two wort batches were assambled in order to increase the brewing yeast fermentation performance. The primary fermentation was 14 days, followed by another 14 days of secondary fermentation (maturation. The must fermentation monitoring was done by the automatic FermentoStar analyzer. The whole fermentation process was monitorized (temperature, pH, alcohol concentration, apparent and total wort extract.

  15. The Effect of Different Starch Liberation and Saccharification Methods on the Microbial Contaminations of Distillery Mashes, Fermentation Efficiency, and Spirits Quality

    Directory of Open Access Journals (Sweden)

    Katarzyna Pielech-Przybylska

    2017-09-01

    Full Text Available The aim of this study was to evaluate the influence of different starch liberation and saccharification methods on microbiological contamination of distillery mashes. Moreover, the effect of hop α-acid preparation for protection against microbial infections was assessed. The quality of agricultural distillates was also evaluated. When applying the pressureless liberation of starch (PLS and malt as a source of amylolytic enzymes, the lactic acid bacteria count in the mashes increased several times during fermentation. The mashes obtained using the pressure-thermal method and malt enzymes revealed a similar pattern. Samples prepared using cereal malt exhibited higher concentrations of lactic and acetic acids, as compared to mashes prepared using enzymes of microbial origin. The use of hop α-acids led to the reduction of bacterial contamination in all tested mashes. As a result, fermentation of both mashes prepared with microbial origin enzyme preparations and with barley malt resulted in satisfactory efficiency and distillates with low concentrations of aldehydes.

  16. The Effect of Different Starch Liberation and Saccharification Methods on the Microbial Contaminations of Distillery Mashes, Fermentation Efficiency, and Spirits Quality.

    Science.gov (United States)

    Pielech-Przybylska, Katarzyna; Balcerek, Maria; Nowak, Agnieszka; Wojtczak, Maciej; Czyżowska, Agata; Dziekońska-Kubczak, Urszula; Patelski, Piotr

    2017-09-30

    The aim of this study was to evaluate the influence of different starch liberation and saccharification methods on microbiological contamination of distillery mashes. Moreover, the effect of hop α-acid preparation for protection against microbial infections was assessed. The quality of agricultural distillates was also evaluated. When applying the pressureless liberation of starch (PLS) and malt as a source of amylolytic enzymes, the lactic acid bacteria count in the mashes increased several times during fermentation. The mashes obtained using the pressure-thermal method and malt enzymes revealed a similar pattern. Samples prepared using cereal malt exhibited higher concentrations of lactic and acetic acids, as compared to mashes prepared using enzymes of microbial origin. The use of hop α-acids led to the reduction of bacterial contamination in all tested mashes. As a result, fermentation of both mashes prepared with microbial origin enzyme preparations and with barley malt resulted in satisfactory efficiency and distillates with low concentrations of aldehydes.

  17. The Use of Rapid Review Methods for the U.S. Preventive Services Task Force.

    Science.gov (United States)

    Patnode, Carrie D; Eder, Michelle L; Walsh, Emily S; Viswanathan, Meera; Lin, Jennifer S

    2018-01-01

    Rapid review products are intended to synthesize available evidence in a timely fashion while still meeting the needs of healthcare decision makers. Various methods and products have been applied for rapid evidence syntheses, but no single approach has been uniformly adopted. Methods to gain efficiency and compress the review time period include focusing on a narrow clinical topic and key questions; limiting the literature search; performing single (versus dual) screening of abstracts and full-text articles for relevance; and limiting the analysis and synthesis. In order to maintain the scientific integrity, including transparency, of rapid evidence syntheses, it is imperative that procedures used to streamline standard systematic review methods are prespecified, based on sound review principles and empiric evidence when possible, and provide the end user with an accurate and comprehensive synthesis. The collection of clinical preventive service recommendations maintained by the U.S. Preventive Services Task Force, along with its commitment to rigorous methods development, provide a unique opportunity to refine, implement, and evaluate rapid evidence synthesis methods and add to an emerging evidence base on rapid review methods. This paper summarizes the U.S. Preventive Services Task Force's use of rapid review methodology, its criteria for selecting topics for rapid evidence syntheses, and proposed methods to streamline the review process. Copyright © 2018 American Journal of Preventive Medicine. All rights reserved.

  18. A Rapid Method for Measuring Strontium-90 Activity in Crops in China

    Science.gov (United States)

    Pan, Lingjing Pan; Yu, Guobing; Wen, Deyun; Chen, Zhi; Sheng, Liusi; Liu, Chung-King; Xu, X. George

    2017-09-01

    A rapid method for measuring Sr-90 activity in crop ashes is presented. Liquid scintillation counting, combined with ion exchange columns 4`, 4"(5")-di-t-butylcyclohexane-18-crown-6, is used to determine the activity of Sr-90 in crops. The yields of chemical procedure are quantified using gravimetric analysis. The conventional method that uses ion-exchange resin with HDEHP could not completely remove all the bismuth when comparatively large lead and bismuth exist in the samples. This is overcome by the rapid method. The chemical yield of this method is about 60% and the MDA for Sr-90 is found to be 2:32 Bq/kg. The whole procedure together with using spectrum analysis to determine the activity only takes about one day, which is really a large improvement compared with the conventional method. A modified conventional method is also described here to verify the value of the rapid one. These two methods can meet di_erent needs of daily monitoring and emergency situation.

  19. Metabolism of Zearalenone in the Course of Beer Fermentation

    Directory of Open Access Journals (Sweden)

    Naoki Mochizuki

    2011-02-01

    Full Text Available Zearalenone (ZON is a mycotoxin with estrogenic activity, produced by members of Fusarium species, and is found worldwide in a number of cereal crops. It is known to have four active metabolites (a-zearalenol (a-ZOL, b-zearalenol (b-ZOL, a-zearalanol (a-ZAL, and b-zearalanol (b-ZAL. A highly sensitive analytical method using liquid chromatography/tandem mass spectrometry using electrospray ionization (LC-ESI-MS/MS has been established and validated in order to analyze ZON and its metabolites in beer and malt samples. The metabolism of ZON in the course of beer fermentation was further characterized using the artificially contaminated wort by this established method. In the fermented sample, 85.9% of ZON was converted to b-ZOL, which has lower estrogenic activity than that of ZON. These findings indicate that the health risk to humans due to ZON in beer is reduced during the fermentation process.

  20. 27 CFR 24.197 - Production by fermentation.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production by fermentation... fermentation. In producing special natural wine by fermentation, flavoring materials may be added before or during fermentation. Special natural wine produced by fermentation may be ameliorated in the same manner...

  1. In vitro digestibility of processed and fermented soya bean, cowpea and maize

    NARCIS (Netherlands)

    Kiers, J.L.; Nout, M.J.R.; Rombouts, F.M.

    2000-01-01

    Tropical legumes, ie soya bean and cowpea, were pre-treated and subsequently fermented using pure cultures of Rhizopus spp. Impact of soaking, cooking and fermentation of the legumes on their digestibility was determined using an in vitro digestion method. Processing of white maize included, amongst

  2. Rapid identification of ascomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays.

    Science.gov (United States)

    Page, Brent T; Shields, Christine E; Merz, William G; Kurtzman, Cletus P

    2006-09-01

    This study was designed to compare the identification of ascomycetous yeasts recovered from clinical specimens by using phenotypic assays (PA) and a molecular flow cytometric (FC) method. Large-subunit rRNA domains 1 and 2 (D1/D2) gene sequence analysis was also performed and served as the reference for correct strain identification. A panel of 88 clinical isolates was tested that included representatives of nine commonly encountered species and six infrequently encountered species. The PA included germ tube production, fermentation of seven carbohydrates, morphology on corn meal agar, urease and phenoloxidase activities, and carbohydrate assimilation tests when needed. The FC method (Luminex) employed species-specific oligonucleotides attached to polystyrene beads, which were hybridized with D1/D2 amplicons from the unidentified isolates. The PA identified 81 of 88 strains correctly but misidentified 4 of Candida dubliniensis, 1 of C. bovina, 1 of C. palmioleophila, and 1 of C. bracarensis. The FC method correctly identified 79 of 88 strains and did not misidentify any isolate but did not identify nine isolates because oligonucleotide probes were not available in the current library. The FC assay takes approximately 5 h, whereas the PA takes from 2 h to 5 days for identification. In conclusion, PA did well with the commonly encountered species, was not accurate for uncommon species, and takes significantly longer than the FC method. These data strongly support the potential of FC technology for rapid and accurate identification of medically important yeasts. With the introduction of new antifungals, rapid, accurate identification of pathogenic yeasts is more important than ever for guiding antifungal chemotherapy.

  3. Anaerobic xylose fermentation by Spathaspora passalidarum

    DEFF Research Database (Denmark)

    Hou, Xiaoru

    2012-01-01

    A cost-effective conversion of lignocellulosic biomass into bioethanol requires that the xylose released from the hemicellulose fraction (20–40% of biomass) can be fermented. Baker’s yeast, Saccharomyces cerevisiae, efficiently ferments glucose but it lacks the ability to ferment xylose. Xylose-fermenting...... yeast such as Pichia stipitis requires accurately controlled microaerophilic conditions during the xylose fermentation, rendering the process technically difficult and expensive. In this study, it is demonstrated that under anaerobic conditions Spathaspora passalidarum showed high ethanol production...

  4. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor.

    Science.gov (United States)

    Chen, Bi; Wu, Qun; Xu, Yan

    2014-06-02

    Maotai-flavor liquor is produced by simultaneous saccharification and fermentation (SSF) process under solid state conditions, including Daqu (starter) making, stacking fermentation and alcohol fermentation stages. Filamentous fungi produce many enzymes to degrade the starch material into fermentable sugar during liquor fermentation. This study investigated the filamentous fungal community associated with liquor making process. Eight and seven different fungal species were identified by using culture-dependent and -independent method (PCR-denaturing gradient gel electrophoresis, DGGE) analyses, respectively. The traditional enumeration method showed that Daqu provided 7 fungal species for stacking fermentation. The total population of filamentous fungi increased from 3.4 × 10(3)cfu/g to 1.28 × 10(4)cfu/g in the first 3 days of stacking fermentation, and then decreased till the end. In alcohol fermentation in pits, the population continuously decreased and few fungal species survived (lower than 1 × 10(3)cfu/g) after 10 days. Therefore, stacking fermentation is an essential stage for the growth of filamentous fungi. Paecilomyces variotii, Aspergillus oryzae and Aspergillus terreus were detected by both methods, and P. variotii and A. oryzae were the predominant species. Meanwhile, P. variotii possessed the highest glucoamylase (3252 ± 526 U/g) and A. oryzae exhibited the highest α-amylase (1491 ± 324 U/g) activity among the cultivable fungal species. Furthermore, the variation of starch and reducing sugar content was consistent with the growth of P. variotii and A. oryzae in Zaopei (fermented grains) during stacking fermentation, which implied that the two filamentous fungi played an important role in producing amylase for hydrolyzing the starch. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Profiling of dynamic changes in the microbial community during the soy sauce fermentation process.

    Science.gov (United States)

    Wei, Quanzeng; Wang, Hongbin; Chen, Zhixin; Lv, Zhijia; Xie, Yufeng; Lu, Fuping

    2013-10-01

    Soy sauce is a traditional condiment manufactured by natural inoculation and mixed culture fermentation. As is well known, it is the microbial community that plays an important role in the formation of its flavors. However, to date, its dynamic changes during the long period of fermentation process are still unclear, intensively constraining the improvement and control of the soy sauce quality. In this work, we revealed the dynamic changes of the microbial community by combining a cultured dependent method and a cultured independent method of polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis. Results indicated that the two methods verified and complemented each other in profiling microbial community, and that significant dynamics of the microbial community existed during the fermentation process, especially the strong inhibition of the growth of most of the microbes when entering into the mash stage from the koji stage. In the analysis of bacterial community, Staphylococcus and Bacillus were found to be the dominant bacteria and detected in the whole fermentation process. Kurthia and Klebsiella began to appear in the koji stage and then fade away in the early stage of the mash fermentation. In the analysis of fungal community, Aspergillus sojae and Zygosaccharomyces rouxii were found to be the dominant fungi in the koji and mash fermentation, respectively. It was clearly shown that when A. sojae decreased and disappeared in the middle stage of the mash fermentation, Z. rouxii appeared and increased at the meantime. Aspergillus parasiticus, Trichosporon ovoides and Trichosporon asahii also appeared in the koji and the early period of the mash fermentation and disappeared thereafter. Similar to Z. rouxii, Millerozyma farinosa and Peronospora farinosa were also found spontaneously which appeared in the mid-late period of the mash fermentation. The principal component analysis suggested that the microbial community underwent significant changes in

  6. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation.

    Science.gov (United States)

    Kim, Il-Sup; Kim, Young-Saeng; Kim, Hyun; Jin, Ingnyol; Yoon, Ho-Sung

    2013-03-01

    Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.

  7. Brazilian Kefir-Fermented Sheep's Milk, a Source of Antimicrobial and Antioxidant Peptides.

    Science.gov (United States)

    de Lima, Meire Dos Santos Falcão; da Silva, Roberto Afonso; da Silva, Milena Fernandes; da Silva, Paulo Alberto Bezerra; Costa, Romero Marcos Pedrosa Brandão; Teixeira, José António Couto; Porto, Ana Lúcia Figueiredo; Cavalcanti, Maria Taciana Holanda

    2017-12-28

    Fermented milks are a source of bioactive peptides and may be considered as functional foods. Among these, sheep's milk fermented with kefir has not been widely studied and its most relevant properties need to be more thoroughly characterized. This research study is set out to investigate and evaluate the antioxidant and antimicrobial properties of peptides from fermented sheep's milk in Brazil when produced by using kefir. For this, the chemical and microbiological composition of the sheep's milk before and after the fermentation was evaluated. The changes in the fermented milk and the peptides extracted before the fermentation and in the fermented milk during its shelf life were verified. The antimicrobial and antioxidant activities of the peptides from the fermented milk were evaluated and identified according to the literature. The physicochemical properties and mineral profile of the fermented milk were like those of fresh milk. The peptide extract presented antimicrobial activity and it was detected that 13 of the 46 peptides were able to inhibit the growth of pathogenic microorganisms. A high antioxidant activity was observed in the peptides extracted from fermented milk (3.125 mg/mL) on the 28th day of storage. Two fractions displayed efficient radical scavenging properties by DPPH and ABTS methods. At least 11 peptides distributed in the different fractions were identified by tandem mass spectrometry. This sheep's milk fermented by Brazilian kefir grains, which has antioxidant and antimicrobial activities and probiotic microorganisms, is a good candidate for further investigation as a source for bioactive peptides. The fermentation process was thus a means by which to produce potential bioactive peptides.

  8. Fermentative alcohol production

    Science.gov (United States)

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  9. Combination of culture-independent and culture-dependent molecular methods for the determination of bacterial community of iru, a fermented Parkia biglobosa seeds.

    Directory of Open Access Journals (Sweden)

    Gbenga Adedeji Adewumi

    2013-01-01

    Full Text Available In this study, bacterial composition of iru produced by natural, uncontrolled fermentation of Parkia biglobosa seeds was assessed using culture-independent method in combination with culture-based genotypic typing techniques. PCR-denaturing gradient gel electrophoresis (DGGE revealed similarity in DNA fragments with the two DNA extraction methods used and confirmed bacterial diversity in the sixteen iru samples from different production regions. DNA sequencing of the highly variable V3 region of the 16S rRNA genes obtained from PCR-DGGE identified species related to Bacillus subtilis as consistent bacterial species in the fermented samples, while other major bands were identified as close relatives of Staphylococcus vitulinus, Morganella morganii, B. thuringiensis, Staphylococcus saprophyticus, Tetragenococcus halophilus, Ureibacillus thermosphaericus, Brevibacillus parabrevis, Salinicoccus jeotgali, Brevibacterium sp. and Uncultured bacteria clones. Bacillus species were cultured as potential starter cultures and clonal relationship of different isolates determined using amplified ribosomal DNA restriction analysis (ARDRA combined with 16S-23S rRNA gene internal transcribed spacer (ITS PCR amplification, restriction analysis (ITS-PCR-RFLP and randomly amplified polymorphic DNA (RAPD-PCR. This further discriminated Bacillus subtilis and its variants from food-borne pathogens such as Bacillus cereus and suggested the need for development of controlled fermentation processes and good manufacturing practices (GMP for iru production to achieve product consistency, safety quality and improved shelf life.

  10. The scope of application of incremental rapid prototyping methods in foundry engineering

    Directory of Open Access Journals (Sweden)

    M. Stankiewicz

    2010-01-01

    Full Text Available The article presents the scope of application of selected incremental Rapid Prototyping methods in the process of manufacturing casting models, casting moulds and casts. The Rapid Prototyping methods (SL, SLA, FDM, 3DP, JS are predominantly used for the production of models and model sets for casting moulds. The Rapid Tooling methods, such as: ZCast-3DP, ProMetalRCT and VoxelJet, enable the fabrication of casting moulds in the incremental process. The application of the RP methods in cast production makes it possible to speed up the prototype preparation process. This is particularly vital to elements of complex shapes. The time required for the manufacture of the model, the mould and the cast proper may vary from a few to several dozen hours.

  11. Study on color identification for monitoring and controlling fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Chen, Ning; Liu, Tiegen; Xu, Qingyang; Kong, Fanzhi

    2008-12-01

    In this paper, a new method for monitoring and controlling fermentation process of branched chain amino acid (BCAA) was proposed based on color identification. The color image of fermentation broth of BCAA was firstly taken by a CCD camera. Then, it was changed from RGB color model to HIS color model. Its histograms of hue H and saturation S were calculated, which were used as the input of a designed BP network. The output of the BP network was the description of the color of fermentation broth of BCAA. After training, the color of fermentation broth was identified by the BP network according to the histograms of H and S of a fermentation broth image. Along with other parameters, the fermentation process of BCAA was monitored and controlled to start the stationary phase of fermentation soon. Experiments were conducted with satisfied results to show the feasibility and usefulness of color identification of fermentation broth in fermentation process control of BCAA.

  12. Antimicrobial potential of triticale stillage after lactic acid fermentation with Lactobacillus fermentum PL-1

    OpenAIRE

    Kujundžić Žužana; Dimić Gordana R.; Markov Siniša L.; Kocić-Tanackov Sunčica D.; Mojović Ljiljana V.; Pejin Jelena D.; Marković Milica N.

    2013-01-01

    This study is concerned with the testing of antimicrobial activity of triticale stillage obtained after lactic fermentation by Lactobacillus fermentum PL-1. The antimicrobial tests were performed using the disc-diffusion and agar well diffusion methods. It was found that fermented triticale stillage after lactic acid fermentation exhibited an inhibitory effect towards tested Gram positive and Gram negative bacteria: Escherichia coli, Salmonella enteritidis,...

  13. Freezing of meat raw materials affects tyramine and diamine accumulation in spontaneously fermented sausages.

    Science.gov (United States)

    Bover-Cid, Sara; Miguelez-Arrizado, M Jesús; Luz Latorre Moratalla, L; Vidal Carou, M Carmen

    2006-01-01

    Biogenic amine accumulation was studied in spontaneously fermented sausages (Fuet) manufactured from unfrozen-fresh meat (U-sausages) and frozen-thawed meat (F-sausages). The aim was to investigate whether the frozen storage of raw materials affects the microbial composition and its aminogenic activity during sausage fermentation. Tyramine was the major amine in all sausages. Although the final levels were similar, tyramine accumulated more rapidly in F-sausages, which contained putrescine as the second amine. By contrast, U-sausages accumulated much more cadaverine than putrescine. F-sausages showed a slightly lower pH and free amino acid content as well as higher counts of technological flora (lactic acid and gram positive catalase positive bacteria) and lower counts of enterobacteria. Therefore, to freeze the meat raw materials for few days before sausage manufacture could be a useful practice, especially for the artisan fermented sausages (without starter), because it helps to reduce enterobacteria development and cadaverine production.

  14. Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Law eJodi Woan-Fei

    2015-01-01

    Full Text Available The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR, multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA, loop-mediated isothermal amplification (LAMP and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.

  15. Laboratory Method for Fermentation of Meat and Poultry Sausages in Fibrous Casings1

    Science.gov (United States)

    Johnson, Michael G.; Acton, James C.

    1975-01-01

    The construction and operation of a relatively inexpensive cabinet for sausage fermentation studies is described. Temperature can be controlled to ±1 C with a relative humidity of approximately 95%. PMID:16350019

  16. Typical Mexican agroindustrial residues as supports for solid-state fermentation

    DEFF Research Database (Denmark)

    Flores-Maltos, Dulce A.; Mussatto, Solange Ines; Contreras Esquivel, Juan Carlos

    2014-01-01

    . These biological wastes can be used as support-substrates in Solid-State Fermentation (SSF) to produce industrially relevant metabolites with great economical advantage. In addition, it is an environment friendly method of waste management. In this study were analyzed six different Mexican agro industrial residues...... process. The results provided important knowledge about the characteristics of these materials revealing their potential for use in fermentation processes....

  17. Quality, functionality, and shelf life of fermented meat and meat products: A review.

    Science.gov (United States)

    Kumar, Pavan; Chatli, M K; Verma, Akhilesh K; Mehta, Nitin; Malav, O P; Kumar, Devendra; Sharma, Neelesh

    2017-09-02

    Fermentation of meat is a traditional preservation method used widely for improving quality and shelf life of fermented meat products. Fermentation of meat causes a number of physical, biochemical, and microbial changes, which eventually impart functional properties, sensory characteristics, and nutritional aspects to these products and inhibit the growth of various pathogenic and spoilage microorganisms. These changes include acidification (carbohydrate catabolism), solubilization and gelation of myofibrillar and sarcoplasmic proteins of muscle, degradation of proteins and lipids, reduction of nitrate into nitrite, formation of nitrosomyoglobin, and dehydration. Dry-fermented sausages are increasingly being used as carrier of probiotics. The production of biogenic amines during fermentation can be controlled by selecting proper starter cultures and other preventive measures such as quality of raw materials, hygienic measures, temperature, etc.

  18. Commercial Biomass Syngas Fermentation

    Directory of Open Access Journals (Sweden)

    James Daniell

    2012-12-01

    Full Text Available The use of gas fermentation for the production of low carbon biofuels such as ethanol or butanol from lignocellulosic biomass is an area currently undergoing intensive research and development, with the first commercial units expected to commence operation in the near future. In this process, biomass is first converted into carbon monoxide (CO and hydrogen (H2-rich synthesis gas (syngas via gasification, and subsequently fermented to hydrocarbons by acetogenic bacteria. Several studies have been performed over the last few years to optimise both biomass gasification and syngas fermentation with significant progress being reported in both areas. While challenges associated with the scale-up and operation of this novel process remain, this strategy offers numerous advantages compared with established fermentation and purely thermochemical approaches to biofuel production in terms of feedstock flexibility and production cost. In recent times, metabolic engineering and synthetic biology techniques have been applied to gas fermenting organisms, paving the way for gases to be used as the feedstock for the commercial production of increasingly energy dense fuels and more valuable chemicals.

  19. Filtration, haze and foam characteristics of fermented wort mediated by yeast strain.

    Science.gov (United States)

    Douglas, P; Meneses, F J; Jiranek, V

    2006-01-01

    To investigate the influence of the choice of yeast strain on the haze, shelf life, filterability and foam quality characteristics of fermented products. Twelve strains were used to ferment a chemically defined wort and hopped ale or stout wort. Fermented products were assessed for foam using the Rudin apparatus, and filterability and haze characteristics using the European Brewing Convention methods, to reveal differences in these parameters as a consequence of the choice of yeast strain and growth medium. Under the conditions used, the choice of strain of Saccharomyces cerevisiae effecting the primary fermentation has an impact on all of the parameters investigated, most notably when the fermentation medium is devoid of macromolecular material. The filtration of fermented products has a large cost implication for many brewers and wine makers, and the haze of the resulting filtrate is a key quality criterion. Also of importance to the quality of beer and some wines is the foaming and head retention of these beverages. The foam characteristics, filterability and potential for haze formation in a fermented product have long been known to be dependant on the raw materials used, as well as other production parameters. The choice of Saccharomyces cerevisiae strain used to ferment has itself been shown here to influence these parameters.

  20. COMPARATIVE EVALUTION OF CEPHALOSPORIN-C PRODUCTION IN SOLID STATE FERMENTATION AND SUBMERGED LIQUID CULTURE

    Directory of Open Access Journals (Sweden)

    Mahdi Rezazarandi

    2012-08-01

    Full Text Available The advantages of solid state fermentation (SSF utilization in producing enzymes & secondary metabolites have been shown, whereas, submerged liquid fermentation (SLF condition has the major usage in industrial production of antibiotics. As an antibiotic of B-lactams group, cephalosporin-C (CPC is indicated due to its wide effect and broad convention in treatment of infectious diseases. Regarding industrial production of CPC regularly done in SLF condition, we compared CPC production sum in SLF and SSF conditions. In this analysis, A. chrysogenum was employed, which was inoculated to SLF and SSF, while internal fermenter conditions were totally under control. After extraction of CPC, productions in two states of SLF and SSF were compared using the cylinder plate method. According to Antibiotic assay and production amount comparison, results expressed a ratio of development of production in SSF conditions to SLF conditions. Regarding previous studies on a solid state fermenter and its advantages, in this study, convenience of SSF conditions compared to SLF conditions was experimented. Also mentioning that maintaining the condition of solid state fermenter is more comfortable and practical than liquid state fermenter, using a solid based fermenter to produce antibiotics, especially CPC, can be appropriate. Considering appropriate control conditions of SSF to produce secondary metabolites, decrease in expenses, and increase of production, taking advantage of it in order to increase production parallel to modern methods, such as genetically manipulating CPC producing microorganisms are recommended to pharmacological industries. Also, to make this method applicable, further studies in industrial criterion seem necessary.

  1. Influence of aeration in the fermentative activity of Kloeckera apiculata during fermentation of apple juice

    International Nuclear Information System (INIS)

    Estela Escalante, Waldir D; Rychtera, Mojmir; Melzoch, Karel; Guerrero Ochoa, Manuel R

    2012-01-01

    The influence of aeration on the fermentative activity of Kloeckera apiculata RIVE 9-2-1 was studied in order to evaluate the production of metabolites of the fermentation. To achieve this, the strain was cultured in Erlenmeyer flasks containing sterilized and aroma removed apple juice, and the chemical compounds produced during fermentation in shaken (200 min-1) and static (without agitation) cultivation were determined. The results showed that the agitation of the culture medium increases production of higher alcohols (till 591.0 mg/L) compared to static cultivation, whereas on the contrary, the production of acetic acid, ethyl acetate and glycerol (260.0 ± 11.0 mg/L, 196.0 ± 10.0 mg/L y 2.6±0.2 g/L) were higher compared to shaken cultivation (222.0 ± 8.0 mg/L, 96.0 ± 4.5 mg/L and 1.8 ± 0.2 g/L) respectively. Batch cultivations carried out in bioreactor with air flux of 25 l/h reported a growth rate μ of 0.17 h-1, production of ethanol (12.5 ± 2.0 g/L) and other compounds typically produced during alcoholic fermentation. The concentration of dissolved oxygen in the fermentation medium affects its metabolism thus; insufficient amounts of oxygen would provoke a respirofermentative metabolism. The best results in terms of organoleptic quality of the fermented beverage regarding to aroma, taste and flavor was obtained when fermented in static cultivation. The control of aeration during fermentation can be used to control the synthesis of chemical compounds of sensory impact in the production of fermented beverages.

  2. Traditional Turkish Fermented Cereal Based Products: Tarhana, Boza and Chickpea Bread

    Directory of Open Access Journals (Sweden)

    Hasan Tangüler

    2014-04-01

    Full Text Available Fermented products are one of the important foodstuffs in many countries of the world. People have gradually recognized the nutritional, functional and therapeutic value of these products and this has made them even more popular. Today, almost all consumers have a significant portion of their nutritional requirements fulfilled through these products. Scientific and technological knowledge is quite well developed for some fermented products such as wine, beer, cheese, and bread. These products are produced universally. However, scientific knowledge for some traditional foods produced locally in Turkey is still poor and not thorough. Numerous traditional, cereal-based fermented foods are produced in Turkey. The aim of this paper is to provide knowledge regarding the characterization, raw materials used for production, production methods, fermentation conditions and microorganisms which are effective in the fermentation of traditional foods. The study will focus on Boza, Tarhana, and Chickpea bread which are foods widely produced in Turkey.

  3. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  4. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.

    Science.gov (United States)

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R; Cook, Gregory M

    2014-08-05

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments.

  5. Research in fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A K

    1966-01-01

    The following aspects of the biochemistry of fermentation were discussed: carbohydrate, amino acid, S, and phosphate metabolisms in the yeast cell; pantothenic acid and biotin as the essential growth factors in yeast metabolisms; effects of different aeration conditions on yeast growth, mitochondria development, and lipid contents. Gas chromatographic studies of fermentation products are also discussed.

  6. Fermented Nut-Based Vegan Food: Characterization of a Home made Product and Scale-Up to an Industrial Pilot-Scale Production.

    Science.gov (United States)

    Tabanelli, Giulia; Pasini, Federica; Riciputi, Ylenia; Vannini, Lucia; Gozzi, Giorgia; Balestra, Federica; Caboni, Maria Fiorenza; Gardini, Fausto; Montanari, Chiara

    2018-03-01

    Because of the impossibility to consume food of animal origin, vegan consumers are looking for substitutes that could enrich their diet. Among many substitutes, fermented nut products are made from different nut types and obtained after soaking, grinding, and fermentation. Although other fermented vegetable products have been deeply investigated, there are few data about the fermentative processes of nut-based products and the microbial consortia able to colonize these products are not yet studied. This study characterized a hand-made vegan product obtained from cashew nut. Lactic acid bacteria responsible for fermentation were identified, revealing a succession of hetero- and homo-fermentative species during process. Successively, some lactic acid bacteria isolates from the home-made vegan product were used for a pilot-scale fermentation. The products obtained were characterized and showed features similar to the home-made one, although the microbiological hazards have been prevented through proper and rapid acidification, enhancing their safety features. Spontaneous fermented products are valuable sources of microorganisms that can be used in many food processes as starter cultures. The lactic acid bacteria isolated in this research can be exploited by industries to develop new foods and therefore to enter new markets. The use of selected starter cultures guarantees good organoleptic characteristics and food safety (no growth of pathogens). © 2018 Institute of Food Technologists®.

  7. Effects of Fermentation, Boiling and Roasting on Some ...

    African Journals Online (AJOL)

    The effects of processing methods such as fermentation, boiling and roasting on some micronutrients and antinutrient composition of jackfruit seed flour were evaluated. The mineral, vitamin and antinutrient composition of raw and processed jackfruit seed flours were determined using standard methods. Iron, calcium and ...

  8. Superparamagnetic poly(methyl methacrylate) beads for nattokinase purification from fermentation broth.

    Science.gov (United States)

    Yang, Chengli; Xing, Jianmin; Guan, Yueping; Liu, Huizhou

    2006-09-01

    An effective method for purification of nattokinase from fermentation broth using magnetic poly(methyl methacrylate) (PMMA) beads immobilized with p-aminobenzamidine was proposed in this study. Firstly, magnetic PMMA beads with a narrow size distribution were prepared by spraying suspension polymerization. Then, they were highly functionalized via transesterification reaction with polyethylene glycol. The surface hydroxyl-modified magnetic beads obtained were further modified with chloroethylamine to transfer the surface amino-modified magnetic functional beads. The morphology and surface functionality of the magnetic beads were examined by scanning electron microscopy and Fourier transform infrared. An affinity ligand, p-aminobenzamidine was covalently immobilized to the amino-modified magnetic beads by the glutaraldehyde method for nattokinase purification directly from the fermentation broth. The purification factor and the recovery of the enzyme activity were found to be 8.7 and 85%, respectively. The purification of nattokinase from fermentation broth by magnetic beads only took 40 min, which shows a very fast purification of nattokinase compared to traditional purification methods.

  9. Petrifilm rapid S. aureus Count Plate method for rapid enumeration of Staphylococcus aureus in selected foods: collaborative study.

    Science.gov (United States)

    Silbernagel, K M; Lindberg, K G

    2001-01-01

    A rehydratable dry-film plating method for Staphylococcus aureus in foods, the 3M Petrifilm Rapid S. aureus Count Plate method, was compared with AOAC Official Method 975.55 (Staphylococcus aureus in Foods). Nine foods-instant nonfat dried milk, dry seasoned vegetable coating, frozen hash browns, frozen cooked chicken patty, frozen ground raw pork, shredded cheddar cheese, fresh green beans, pasta filled with beef and cheese, and egg custard-were analyzed for S. aureus by 13 collaborating laboratories. For each food tested, the collaborators received 8 blind test samples consisting of a control sample and 3 levels of inoculated test sample, each in duplicate. The mean log counts for the methods were comparable for pasta filled with beef and cheese; frozen hash browns; cooked chicken patty; egg custard; frozen ground raw pork; and instant nonfat dried milk. The repeatability and reproducibility variances of the Petrifilm Rapid S. aureus Count Plate method were similar to those of the standard method.

  10. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food.

    Science.gov (United States)

    Park, Kun-Young; Jeong, Ji-Kang; Lee, Young-Eun; Daily, James W

    2014-01-01

    Kimchi is a traditional Korean food manufactured by fermenting vegetables with probiotic lactic acid bacteria (LAB). Many bacteria are involved in the fermentation of kimchi, but LAB become dominant while the putrefactive bacteria are suppressed during salting of baechu cabbage and the fermentation. The addition of other subingredients and formation of fermentation byproducts of LAB promote the fermentation process of LAB to eventually lead to eradication of putrefactive- and pathogenic bacteria, and also increase the functionalities of kimchi. Accordingly, kimchi can be considered a vegetable probiotic food that contributes health benefits in a similar manner as yogurt as a dairy probiotic food. Further, the major ingredients of kimchi are cruciferous vegetables; and other healthy functional foods such as garlic, ginger, red pepper powder, and so on are added to kimchi as subingredients. As all of these ingredients undergo fermentation by LAB, kimchi is regarded as a source of LAB; and the fermentative byproducts from the functional ingredients significantly boost its functionality. Because kimchi is both tasty and highly functional, it is typically served with steamed rice at every Korean meal. Health functionality of kimchi, based upon our research and that of other, includes anticancer, antiobesity, anticonstipation, colorectal health promotion, probiotic properties, cholesterol reduction, fibrolytic effect, antioxidative and antiaging properties, brain health promotion, immune promotion, and skin health promotion. In this review we describe the method of kimchi manufacture, fermentation, health functionalities of kimchi and the probiotic properties of its LAB.

  11. Bioactivity of a Novel Glycolipid Produced by a Halophilic Buttiauxella sp. and Improving Submerged Fermentation Using a Response Surface Method

    Directory of Open Access Journals (Sweden)

    Abdolrazagh Marzban

    2016-09-01

    Full Text Available An antimicrobial glycolipid biosurfactant (GBS, extracted and identified from a marine bacterium, was studied to inhibit pathogenic microorganisms. Production of the GBS was optimized using a statistical method, a response surface method (RSM with a central composite design (CCD for obtaining maximum yields on a cost-effective substrate, molasses. The GBS-producing bacterium was identified as Buttiauxella Species in terms of biochemical and molecular characteristics. This compound showed a desirable antimicrobial activity against some pathogens such as E. coli, Bacillus subtilis, Bacillus cereus, Candida albicans, Aspergilus niger, Salmonella enterica. The rheological studies described the stability of the GBS at high values in a range of pH (7–8, temperature (20–60 and salinity (0%–3%. The statistical optimization of GBS fermentation was found to be pH 7, temperature 33 °C, Peptone 1%, NaCl 1% and molasses 1%. The potency of the GBS as an effective antimicrobial agent provides evidence for its use against food and human pathogens. Moreover, favorable production of the GBS in the presence of molasses as a cheap substrate and the feasibility of pilot scale fermentation using an RSM method could expand its uses in food, pharmaceutical products and oil industries.

  12. Korean traditional fermented soybean products: Jang

    Directory of Open Access Journals (Sweden)

    Donghwa Shin

    2015-03-01

    Fermented products are going beyond the boundaries of their use as mere side dishes, and are seeing significant increases in their use as a functional food. Kanjang (fermented soy sauce, Doenjang (fermented soybean paste, and Gochujang (fermented red pepper paste are the most well-known fermented products in Korea. These products occupy an important place in people's daily lives as seasonings and are used in many side dishes. It has been proven through clinical studies that these products have many health benefits, such as their ability to fight cancer and diabetes, and to prevent obesity and constipation.

  13. Ethnobotany of wild plants used for starting fermented beverages in Shui communities of southwest China.

    Science.gov (United States)

    Hong, Liya; Zhuo, Jingxian; Lei, Qiyi; Zhou, Jiangju; Ahmed, Selena; Wang, Chaoying; Long, Yuxiao; Li, Feifei; Long, Chunlin

    2015-05-28

    Shui communities of southwest China have an extensive history of using wild plants as starters (Xiaoqu) to prepare fermented beverages that serve important roles in interpersonal relationships and cultural events. While the practice of using wild plants as starters for the preparation of fermented beverages was once prevalent throughout China, this tradition has seen a decline nationally since the 1930s. The traditional technique of preparing fermented beverages from wild plant starters remains well preserved in the Shui communities in southwest China and provides insight on local human-environment interactions and conservation of plant biodiversity for cultural purposes. The present study sought to examine the ethnobotany of wild plants used as starters for the preparation of fermented beverages including an inventory of plants used as a starter in liquor fermentation and associated knowledge and practices. Field surveys were carried out that consisted of semi-structured surveys and plant species inventories. One hundred forty-nine informants in twenty Shui villages were interviewed between July 2012 and October 2014 to document knowledge associated with wild plants used as a liquor fermentation starter. The inventories involved plant voucher specimens and taxonomic identification of plant collections. A total of 103 species in 57 botanical families of wild plants were inventoried and documented that are traditionally used as starters for preparing fermented beverages by Shui communities. The majority of the species (93.2%) have multiple uses in addition to being used as a starter with medicinal purposes being the most prevalent. Shui women are the major harvesters and users of wild plants used as starters for preparing fermented beverages and transfer knowledge orally from mother to daughter. Findings from this study can serve as a basis for future investigation on fermented beverages and foods and associated knowledge and cultural practices. However, with rapid

  14. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    OpenAIRE

    Chin-Feng Chan; Ching-Cheng Huang; Ming-Yuan Lee; Yung-Sheng Lin

    2014-01-01

    Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  15. Protein modification by fermentation

    DEFF Research Database (Denmark)

    Barkholt, Helle Vibeke; Jørgensen, P.B.; Sørensen, Anne Dorthe

    1998-01-01

    The effect of fermentation on components of potential significance for the allergenicity of pea was analyzed. Pea flour was fermented with three lactic acid bacteria, Pediococcus pentosaceus, Lactococcus raffinolactis, and Lactobacillus plantarum, and two fungi, Rhizopus microsporus, var....... oligosporus and Geotrichum candidum. Residual antigenicity against antipea antibodies was reduced to 10% by the three lactic acid bacteria and R. microsporus. Reactions to anti-pea profilin and anti-Bet v I were still detectable after fermentation. The contents of lectin and pea protease inhibitor were...

  16. Effective method of fermentation of Riga hydrolyzates of corn cobs and other vegetable waste products for butanol and acetone

    Energy Technology Data Exchange (ETDEWEB)

    Nakhmanovich, B M; Kameneva, L; Kalnina, V

    1963-01-01

    A simplified method is described for the production of butanol and acetone. The acid mixture (H/sub 3/PO/sub 4/, 10 to 20%; H/sub 2/SO/sub 4/, 90 to 80%) used to hydrolyze corn cobs and other vegetable waste products served also to invert the sugar of molasses which was added in 3 parts to 1 part hydrolyzate on the basis of reducing sugar content. The mixture was then diluted and neutralized with NH/sub 4/OH to pH 6.3 to 6.8. In this way a suitable hydrolyzate medium containing the appropriate amounts of mineral salts as well as invert sugar was provided for fermentation by Clostridium butyricum Prazmowsky. Lignin which precipitated during hydrolysis served as a solid phase which helped to accelerate fermentation. Combined yields of butanol, acetone, and small amounts of ethanol amounted to 30 to 38% of the available sugar; approximately 67% consisted of butanol.

  17. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  18. A curve fitting approach to estimate the extent of fermentation of indigestible carbohydrates

    NARCIS (Netherlands)

    Wang, H.; Weening, D.; Jonkers, E.; Boer, T.; Stellaard, F.; Small, A. C.; Preston, T.; Vonk, R. J.; Priebe, M. G.

    Background Information about the extent of carbohydrate digestion and fermentation is critical to our ability to explore the metabolic effects of carbohydrate fermentation in vivo. We used cooked (13)C-labelled barley kernels, which are rich in indigestible carbohydrates, to develop a method which

  19. A curve fitting approach to estimate the extent of fermentation of indigestible carbohydrates

    NARCIS (Netherlands)

    Wang, H.; Weening, D.; Jonkers, E.; Boer, T.; Stellaard, F.; Small, A. C.; Preston, T.; Vonk, R. J.; Priebe, M. G.

    2008-01-01

    Background Information about the extent of carbohydrate digestion and fermentation is critical to our ability to explore the metabolic effects of carbohydrate fermentation in vivo. We used cooked (13)C-labelled barley kernels, which are rich in indigestible carbohydrates, to develop a method which

  20. Fermented Broth in Tyrosinase- and Melanogenesis Inhibition

    Directory of Open Access Journals (Sweden)

    Chin-Feng Chan

    2014-08-01

    Full Text Available Fermented broth has a long history of applications in the food, pharmaceutical and cosmetic industries. Recently, the use of fermented broth in skin care products is in ascendance. This review investigates the efficacy of fermented broth in inhibiting tyrosinase and melanogenesis. Possible active ingredients and hypopigmentation mechanisms of fermented broth are discussed, and potential applications of fermented broth in the cosmetic industry are also addressed.

  1. Industrial optimization of acetone-butanol fermentation: A study of the utilization of Jerusalem artichokes

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, R.; Blanchet, D.; Vandecasteele, J.P.

    1985-12-01

    Acetone-butanol fermentation of the Jerusalem artichoke has been studied as a case for systematic investigation of the industrial optimization of both strain selection and fermentation operation. Hydrolysis of the inulinic oligofructans of the substrate was found necessary for optimal performance but could be achieved with a selected strain using a moderate amount of inulinase added at the beginning of the fermentation. Apart from ammonia, no nutritrional supplementation of the medium was found necessary. The marked influence of pH in the fermentation performance prompted a detailed search for a method of controlling pH during fermentation. With an optimized procedure, solvent production of 23-24 g/l were obtained in 36 h. Detailed fermentation balances are presented. An industrial process for ABE production from Jerusalem artichoke or sugar beet has been defined and tested in the pilot plant. (orig.).

  2. Rapid separation method for {sup 237}Np and Pu isotopes in large soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Sherrod L., E-mail: sherrod.maxwell@srs.go [Savannah River Nuclear Solutions, LLC, Building 735-B, Aiken, SC 29808 (United States); Culligan, Brian K.; Noyes, Gary W. [Savannah River Nuclear Solutions, LLC, Building 735-B, Aiken, SC 29808 (United States)

    2011-07-15

    A new rapid method for the determination of {sup 237}Np and Pu isotopes in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for large soil samples. The new soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates are used to reduce analytical time.

  3. CHANGES IN NUTRIENT AND ANTINUTRITIONAL CONTENTS OF SESAME SEEDS DURING FERMENTATION

    Directory of Open Access Journals (Sweden)

    Aderonke I. Olagunju

    2013-06-01

    Full Text Available Sesame seeds were fermented using the traditional method for four days and samples taken for analysis each day till the last day of fermentation to monitor the compositional changes in the seeds as fermentation progressed. The viable count obtained ranged from 8.0×103 after 24 h to 2.93×106 cfu/g on the 4th day. The crude protein and fat content increased as fermentation progressed reaching 27.84% and 51.58% respectively. Fermentation yielded positive effect on the phytic acid, phytin phosphorus and oxalate content of the flour samples when compared with the control. Phytic acid content ranged from 31.59 mg/g for raw seed to 18.13 mg/g for fermented seed flour. Sesame seed are high in minerals such as calcium, magnesium, potassium, sodium and slight increases in values were obtained at the end of processing. Sesame seeds are rich in both essential and non-essential amino acids with leucine, methionine, phenylalanine, threonine and valine values higher than the recommended daily allowance. Processing significantly increased the amino acid values. Sesame flour demonstrated ability to scavenge free radicals. Fermentation of sesame seeds resulted in reduction in the antinutrients in the seed and the seed can serve as soup condiment and seasoning with improved nutritional composition with respect to protein and amino acid.

  4. High-strength fermentable wastewater reclamation through a sequential process of anaerobic fermentation followed by microalgae cultivation.

    Science.gov (United States)

    Qi, Wenqiang; Chen, Taojing; Wang, Liang; Wu, Minghong; Zhao, Quanyu; Wei, Wei

    2017-03-01

    In this study, the sequential process of anaerobic fermentation followed by microalgae cultivation was evaluated from both nutrient and energy recovery standpoints. The effects of different fermentation type on the biogas generation, broth metabolites' composition, algal growth and nutrients' utilization, and energy conversion efficiencies for the whole processes were discussed. When the fermentation was designed to produce hydrogen-dominating biogas, the total energy conversion efficiency (TECE) of the sequential process was higher than that of the methane fermentation one. With the production of hydrogen in anaerobic fermentation, more organic carbon metabolites were left in the broth to support better algal growth with more efficient incorporation of ammonia nitrogen. By applying the sequential process, the heat value conversion efficiency (HVCE) for the wastewater could reach 41.2%, if methane was avoided in the fermentation biogas. The removal efficiencies of organic metabolites and NH 4 + -N in the better case were 100% and 98.3%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Nitrifying aerobic granular sludge fermentation for releases of carbon source and phosphorus: The role of fermentation pH.

    Science.gov (United States)

    Zou, Jinte; Pan, Jiyang; He, Hangtian; Wu, Shuyun; Xiao, Naidong; Ni, Yongjiong; Li, Jun

    2018-07-01

    The effect of fermentation pH (uncontrolled, 4 and 10) on the releases of carbon source and phosphorus from nitrifying aerobic granular sludge (N-AGS) was investigated. Meanwhile, metal ion concentration and microbial community characterization were explored during N-AGS fermentation. The results indicated that N-AGS fermentation at pH 10 significantly promoted the releases of soluble chemical oxygen demand (SCOD) and total volatile fatty acids (TVFAs). However, SCOD and TVFA released from N-AGS were inhibited at pH 4. Moreover, acidic condition promoted phosphorus release (mainly apatite) from N-AGS during anaerobic fermentation. Nevertheless, alkaline condition failed to increase phosphorus concentration due to the formation of chemical-phosphate precipitates. Compared with the previously reported flocculent sludge fermentation, N-AGS fermentation released more SCOD and TVFAs, possibly due to the greater extracellular polymeric substances content and some hydrolytic-acidogenic bacteria in N-AGS. Therefore, N-AGS alkaline fermentation facilitated the carbon source recovery, while N-AGS acidic fermentation benefited the phosphorus recovery. Copyright © 2018. Published by Elsevier Ltd.

  6. Filamentous Fungi Fermentation

    DEFF Research Database (Denmark)

    Nørregaard, Anders; Stocks, Stuart; Woodley, John

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...... morphology, together with non-Newtonian rheological properties (shear thinning), result in poor oxygen transfer unless sufficient energy is provided to the fermentation. While genomic research may improve the organisms, there is no doubt that to enable further application in future it will be necessary...... to match such research with studies of oxygen transfer and energy supply to high viscosity fluids. Hence, the implementation of innovative solutions (some of which in principle are already possible) will be essential to ensure the further development of such fermentations....

  7. COMPARISON OF PRETREATMENT STRATEGIES FOR CONVERSION OF COCONUT HUSK FIBER TO FERMENTABLE SUGARS

    Directory of Open Access Journals (Sweden)

    Teck Y. Ding,

    2012-02-01

    Full Text Available In the present study, coconut husk was employed as biomass feedstock for production of bioethanol, due to its abundance in Malaysia. Due to the complex structures of coconut husk, a pretreatment process is crucial in extracting fermentable sugars from the embedded cellulose matrix for subsequent ethanol fermentation process. The ground coconut husk was subjected to three different pretreatment processes inclusive of thermal, chemical, and microwave-assisted-alkaline techniques, prior to enzymatic hydrolysis and fermentation process. The composition profile of coconut husk was significantly altered upon the microwave-assisted-alkaline treatment as compared to the untreated sample, with the cellulose content increasing from 18-21% to 38-39% while lignin content decreased from 46-53% to 31-33%. Among the pretreatment methods applied, enzymatic hydrolysis of coconut husk pretreated by microwave-assisted-alkaline method recorded the highest yield of fermentable sugars, 0.279 g sugar/g substrate. SEM imaging showed the obvious and significant disruption of coconut husks’ structure after microwave-assisted-alkaline pretreatment. In conclusion, by employing suitable pretreatment technique in treating the lignocellulosic materials of coconut husk, the extracted fermentable sugar is a potential substrate for bioethanol production.

  8. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    Science.gov (United States)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  9. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

    Directory of Open Access Journals (Sweden)

    W. Hao

    2015-06-01

    Full Text Available The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR. The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML, 450 g/kg (medium moisture level, MML, and 500 g/kg (high moisture level, HML, and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM basis, yeast populations significantly increased from 107 to 1010 cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 109 cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.

  10. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels.

    Science.gov (United States)

    Hao, W; Wang, H L; Ning, T T; Yang, F Y; Xu, C C

    2015-06-01

    The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 10(7) to 10(10) cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 10(9) cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.

  11. The Fermentative and Aromatic Ability of Kloeckera and Hanseniaspora Yeasts

    Science.gov (United States)

    Díaz-Montaño, Dulce M.; de Jesús Ramírez Córdova, J.

    Spontaneous alcoholic fermentation from grape, agave and others musts into an alcoholic beverage is usually characterized by the presence of several non-Saccharomyces yeasts. These genera yeasts are dominant in the early stages of the alcoholic fermentation. However the genera Hanseniaspora and Kloeckera may survive at a significant level during fermentation and can influence the chemical composition of the beverage. Several strains belonging to the species Kloeckera api-culata and Hanseniaspora guilliermondii have been extensively studied in relation to the formation of some metabolic compounds affecting the bouquet of the final product. Indeed some apiculate yeast showed positive oenological properties and their use in the alcoholic fermentations has been suggested to enhance the aroma and flavor profiles. The non- Saccharomyces yeasts have the capability to produce and secrete enzymes in the medium, such as β -glucosidases, which release monoterpenes derived from their glycosylated form. These compounds contribute to the higher fruit-like characteristic of final product. This chapter reviews metabolic activity of Kloeckera and Hanseniaspora yeasts in several aspects: fermentative capability, aromatic compounds production and transformation of aromatic precursor present in the must, also covers the molecular methods for identifying of the yeast

  12. New alternatives for the fermentation process in the ethanol production from sugarcane: Extractive and low temperature fermentation

    International Nuclear Information System (INIS)

    Palacios-Bereche, Reynaldo; Ensinas, Adriano; Modesto, Marcelo; Nebra, Silvia A.

    2014-01-01

    Ethanol is produced in large scale from sugarcane in Brazil by fermentation of sugars and distillation. This is currently considered as an efficient biofuel technology, leading to significant reduction on greenhouse gases emissions. However, some improvements in the process can be introduced in order to improve the use of energy. In current distilleries, a significant fraction of the energy consumption occurs in the purification step – distillation and dehydration – since conventional fermentation systems employed in the industry require low substrate concentration, which must be distilled, consequently with high energy consumption. In this study, alternatives to the conventional fermentation processes are assessed, through computer simulation: low temperature fermentation and vacuum extractive fermentation. The aim of this study is to assess the incorporation of these alternative fermentation processes in ethanol production, energy consumption and electricity surplus produced in the cogeneration system. Several cases were evaluated. Thermal integration technique was applied. Results shown that the ethanol production increases between 3.3% and 4.8% and a reduction in steam consumption happens of up to 36%. About the electricity surplus, a value of 85 kWh/t of cane can be achieved when condensing – extracting steam turbines are used. - Highlights: • Increasing the wine concentration in the ethanol production from sugarcane. • Alternatives to the conventional fermentation process. • Low temperature fermentation and vacuum extractive fermentation. • Reduction of steam consumption through the thermal integration of the processes. • Different configurations of cogeneration system maximizing the electricity surplus

  13. Effect of fermented soya beans on diarrhoea and feed efficiency in weaned piglets

    NARCIS (Netherlands)

    Kiers, J.L.; Meijer, J.C.; Nout, M.J.R.; Rombouts, F.M.; Nabuurs, M.J.A.; Meulen, van der J.

    2003-01-01

    Aims: To evaluate anti-diarrhoeal and growth enhancing properties of fermented soya beans in weaned piglets. Methods and Results: In a first phase piglet diet, toasted full-fat soya beans (20%) were replaced with either cooked soya beans or Rhizopus microsporus or Bacillus subtilis fermented soya

  14. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains.

    Science.gov (United States)

    Hachmeister, K A; Fung, D Y

    1993-01-01

    A variety of indigenous fermented foods exist today; however, tempeh has been one of the most widely accepted and researched mold-modified fermented products. Tempeh is a traditional fermented food made from soaked and cooked soybeans inoculated with a mold, usually of the genus Rhizopus. After fermentation has occurred, the soybeans are bound together into a compact cake by dense cottony mycelium. An important function of the mold in the fermentation process is the synthesis of enzymes, which hydrolyze soybean constituents and contribute to the development of a desirable texture, flavor, and aroma of the product. Enzymatic hydrolysis also may decrease or eliminate antinutritional constituents; consequently, the nutritional quality of the fermented product may be improved. Current technology and new scientific advancements have enabled researchers to examine specific strains of Rhizopus and new substrates such as cereal grains. Because Kansas produces numerous cereal grains, production of a fermented tempeh-like product using wheat, sorghum (milo), oats, rye, barley, corn, and triticale is a definite possibility for generating a Kansas Value-Added Product. In this study, several different tempeh-like products were produced using various cereal grains inoculated with Rhizopus oligosporus NRRL 2549 or R. oligosporus NRRL 2710. Grains used included hard red winter wheat, triticale, yellow sorghum (milo), and red sorghum (milo). The grain source as well as the strain of R. oligosporus used influenced the product's appearance, flavor, and patty integrity. Results showed that R. oligosporus NRRL 2549 produced more mycelium at a more rapid rate than did the R. oligosporus NRRL 2710 strain. The combination of red sorghum and R. oligosporus NRRL 2549 yielded a product with good patty texture, aroma, and appearance. Furthermore, the red sorghum fermented product was well suited for slicing. On the other hand, yellow sorghum inoculated with either R. oligosporus NRRL 2549 or

  15. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment.

    Science.gov (United States)

    Yin, Jun; Wang, Kun; Yang, Yuqiang; Shen, Dongsheng; Wang, Meizhen; Mo, Han

    2014-11-01

    Food waste (FW) was pretreated by a hydrothermal method and then fermented for volatile fatty acid (VFAs) production. The soluble substance in FW increased after hydrothermal pretreatment (⩽200 °C). Higher hydrothermal temperature would lead to mineralization of the organic compounds. The optimal temperature for organic dissolution was 180 °C, at which FW dissolved 42.5% more soluble chemical oxygen demand than the control. VFA production from pretreated FW fermentation was significantly enhanced compared with the control. The optimal hydrothermal temperature was 160 °C with a VFA yield of 0.908 g/g VSremoval. Butyrate and acetate were the prevalent VFAs followed by propionate and valerate. FW fermentation was inhibited after 200 °C pretreatment. The VFAs were extracted from the fermentation broth by liquid-liquid extraction. The VFA recovery was 50-70%. Thus, 0.294-0.411 g VFAs could be obtained per gram of hydrothermally pretreated FW (in dry weight) by this method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Methods for the evaluation of antibiotic resistance in Lactobacillus isolated from fermented sausages

    Directory of Open Access Journals (Sweden)

    Hanna Lethycia Wolupeck

    Full Text Available ABSTRACT: The present study aimed to assess the antibiotic resistance in 54 indigenous Lactobacillus plantarum isolated from artisanal fermented sausages. The confirmation of the strain species was performed by multiplex-PCR assay. Antibiotic resistance was assessed by disk diffusion (DD and Minimum Inhibitory Concentration (MIC methods. Of 54 L. plantarum, 44 strains were genotypically confirmed as L. plantarum and 3 as Lactobacillus pentosus. The highest resistance rates were to ampicillin and streptomycin. The highest susceptibility rates were shown to tetracycline, chloramphenicol and penicillin G. None of the strains showed multidrug resistance. Resistance rates by DD and MIC were not different (P>0.05 for ampicillin, chloramphenicol, erythromycin and penicillin G. Future research should assess the genetic mechanisms underlying the phenotypic resistance in Lactobacillus strains to screen the potential probiotic strains for the development of functional meat products.

  17. Nutritive value of palm oil sludge fermented with Aspergillus niger after therma1 drying process

    Directory of Open Access Journals (Sweden)

    T Purwadaria

    1999-12-01

    Full Text Available Solid substrate fermentation by Aspergillus niger has been carried out to improve the nutritive value of palm oil sludge (POS. POS was fermented aerobically for four days in a fermentor chambers (28°C, RH 80%, with 60% moisture content Some of the product was further incubated anaerobically for 2 days at 28°C. Both products from aerobic and anaerobic fermentation processes were dried by various methods, i.e. sunlight, oven at 60°C, oven with blower at 40°C, at the moisture content less than 11%. Results of the drying methods were also compared with the fresh fermented product. Statistic analysis using factorial design (2 x 4 showed that there was no interaction between kind of fermentation processes (aerobic and anaerobic and drying methods (fresh, sunlight, oven 60°C, and blower 40°C for almost all parameters except total a-amino acid content Significant results (p<0.05 were obtained on the drying methods for parameters of crude protein, true protein, in vitro dry matter and protein digestibilities, and mannanase and cellulase activities. There were no significant results between treatments in the crude fiber analysis and soluble nitrogen content Significant results also did not occur between treatment of aerob and anaerob fermentation processes for almost all parameters except for dry matter digestibilities. Results from true protein and in vitro digestibilities show that the fresh fermented product has the best nutritive value, while product dried by sunlight was best among other drying processes. Results from in vivo of protein and energy digestibilities show that there were better metabolizable energy and protein for product with aerobic process and dried with oven and blower treatments, while sunlight drying was best for product processed in anaerobic condition. Although fresh fermented product gave better result from in vitro digestibilities and enzyme activity analyses, for some reasons (easy handling and preservation sunlight

  18. Studies on continuous fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K

    1958-01-01

    Continuous fermentation of molasses with a combined system of agitated vessel and flow pipe is studied. A new apparatus was designed. The rate of the fermentation was faster with this apparatus than with the former apparatus which was composed of two vessels.

  19. Fermented milk for hypertension

    DEFF Research Database (Denmark)

    Usinger, Lotte; Reimer, Christina; Ibsen, Hans

    2012-01-01

    Fermented milk has been suggested to have a blood pressure lowering effect through increased content of proteins and peptides produced during the bacterial fermentation. Hypertension is one of the major risk factors for cardiovascular disease world wide and new blood pressure reducing lifestyle...

  20. Comparison of Pretreatment Methods on Vetiver Leaves for Efficient Processes of Simultaneous Saccharification and Fermentation by Neurospora sp.

    Science.gov (United States)

    Restiawaty, E.; Dewi, A.

    2017-07-01

    Lignocellulosic biomass is a potential raw material for bioethanol production. Neurospora sp. can be used to convert lignocellulosic biomass into bioethanol because of its ability to perform simultaneous saccharification and fermentation. However, lignin content, degree of polymerization, and crystallinity of cellulose contained in lignocellulosic biomass can inhibit cellulosic-biomass digestion by Neurospora sp, so that a suitable pretreatment method of lignocellulosic biomass is needed. The focus of this research was to investigate the suitable pretreatment method for vetiver leaves (Vetiveria zizanioides L. Nash) used as a raw material producing bioethanol in the process of simultaneous saccharification and fermentation (SSF) by Neurospora sp.. Vetiver plants obtained from Garut are deliberately cultivated to produce essential oils extracted from the roots of this plant. Since the vetiver leaves do not contain oil, some of harvested leaves are usually used for crafts and cattle feed, and the rest are burned. This study intended to look at other potential of vetiver leaves as a source of renewable energy. Pretreatments of the vetiver leaves were conducted using hot water, dilute acid, alkaline & dilute acid, and alkaline peroxide, in which each method was accompanied by thermal treatment. The results showed that the alkaline peroxide treatment is a suitable for vetiver leaves as indicated by the increase of cellulose content up to 65.1%, while the contents of hot water soluble, hemicellulose, lignin, and ash are 8.7%, 18.3%, 6.8%, and 1.1%, respectively. Using this pretreatment method, the vetiver leaves can be converted into bioethanol by SSF process using Neurospora sp. with a concentration of bioethanol of 6.7 g/L operated at room temperature.

  1. Screening of Ganoderma strains with high polysaccharides and ganoderic acid contents and optimization of the fermentation medium by statistical methods.

    Science.gov (United States)

    Wei, Zhen-hua; Duan, Ying-yi; Qian, Yong-qing; Guo, Xiao-feng; Li, Yan-jun; Jin, Shi-he; Zhou, Zhong-Xin; Shan, Sheng-yan; Wang, Chun-ru; Chen, Xue-Jiao; Zheng, Yuguo; Zhong, Jian-Jiang

    2014-09-01

    Polysaccharides and ganoderic acids (GAs) are the major bioactive constituents of Ganoderma species. However, the commercialization of their production was limited by low yield in the submerged culture of Ganoderma despite improvement made in recent years. In this work, twelve Ganoderma strains were screened to efficiently produce polysaccharides and GAs, and Ganoderma lucidum 5.26 (GL 5.26) that had been never reported in fermentation process was found to be most efficient among the tested stains. Then, the fermentation medium was optimized for GL 5.26 by statistical method. Firstly, glucose and yeast extract were found to be the optimum carbon source and nitrogen source according to the single-factor tests. Ferric sulfate was found to have significant effect on GL 5.26 biomass production according to the results of Plackett-Burman design. The concentrations of glucose, yeast extract and ferric sulfate were further optimized by response surface methodology. The optimum medium composition was 55 g/L of glucose, 14 g/L of yeast extract, 0.3 g/L of ferric acid, with other medium components unchanged. The optimized medium was testified in the 10-L bioreactor, and the production of biomass, IPS, total GAs and GA-T enhanced by 85, 27, 49 and 93 %, respectively, compared to the initial medium. The fermentation process was scaled up to 300-L bioreactor; it showed good IPS (3.6 g/L) and GAs (670 mg/L) production. The biomass was 23.9 g/L in 300-L bioreactor, which was the highest biomass production in pilot scale. According to this study, the strain GL 5.26 showed good fermentation property by optimizing the medium. It might be a candidate industrial strain by further process optimization and scale-up study.

  2. Changes in physical and chemical characteristics of fermented cocoa(Theobroma cacaobeans with manual and semi-mechanized transfer, between fermentation boxes

    Directory of Open Access Journals (Sweden)

    Pedro. P. Peláez

    2016-01-01

    Full Text Available The aim of this study was to evaluate variation in the physical and chemical properties of fermented cocoa beans with cocoa beans transfer between wooden fermentation boxes manually (M and semi - mechanized (SM way. Mass temperature, moisture, pH, and total acidity of the cotyledon and pulp; the total polyphenol, anthocyanin, reducing sugar, theobromine, and caffeine content in fresh, fermented, and dried beans; and percentage of fermented beans and time required to move beans during fermentation were determined. The cocoa used grew in the Pachiza district of the San Martin region of Peru. Cocoa sampling w as each 0, 48, 72, 96, 120, 144, and 168 h of fermentation. The cocoa mass temperature was highest with both removal systems after 96 h of fermentation. M cotyledon and pulp samples had the highest moisture content and titratable acidity, while cotyledon a nd pulp pH with both systems were statistically equal. In contrast, fermented beans had a higher polyphenol, anthocyanin, reducing sugar, theobromine, and caffeine content with SM. SM produced the greatest amount of fermentation (91.67% and required the s hortest amount of time to move beans (78.56 min. In conclusion, the system of fermentation of cocoa beans with SM was faster and produced fermented grains with high chemical quality.

  3. Anaerobic fermentation of beef cattle manure. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, A.G.; Chen, Y.R.; Varel, V.H.

    1981-01-01

    The research to convert livestock manure and crop residues into methane and a high protein feed ingredient by thermophilic anaerobic fermentation are summarized. The major biological and operational factors involved in methanogenesis were discussed, and a kinetic model that describes the fermentation process was presented. Substrate biodegradability, fermentation temperature, and influent substrate concentration were shown to have significant effects on CH/sub 4/ production rate. The kinetic model predicted methane production rates of existing pilot and full-scale fermentation systems to within 15%. The highest methane production rate achieved by the fermenter was 4.7 L CH/sub 4//L fermenter day. This is the highest rate reported in the literature and about 4 times higher than other pilot or full-scale systems fermenting livestock manures. Assessment of the energy requirements for anaerobic fermentation systems showed that the major energy requirement for a thermophilic system was for maintaining the fermenter temperature. The next major energy consumption was due to the mixing of the influent slurry and fermenter liquor. An approach to optimizing anaerobic fermenter designs by selecting design criteria that maximize the net energy production per unit cost was presented. Based on the results, we believe that the economics of anaerobic fermentation is sufficiently favorable for farm-scale demonstration of this technology.

  4. The fermented milk product of functional destination

    Directory of Open Access Journals (Sweden)

    L. V. Golubeva

    2016-01-01

    Full Text Available As a flavor component selected syrup made from viburnum. This berry is widely used in various forms in the food industry including the dairy. Particular attention should be paid to the fact that the viburnum is a wild plant, and does not need to land and cultivation costs. Viburnum is rich in biologically active substances and raw materials is a drug. Fruits of Viburnum is rich in organic acids, in particular valeric acid. From berries contain minerals: manganese, zinc, iron, phosphorus, copper, chromium, iodine, selenium. Mass fraction of iron in Kalina in 2–3 times higher compared to other berries. The Kalina 70% more than the C vitamin, than lemon, it also contains vitamins A, E, P and K. In berries contains tannin, pectin, tannins, coumarins, resinous esters, glycoside viburnin (very useful in the composition of Viburnum, namely it makes bitter berries. It is suggested the use of syrup of viburnum in the production of fermented milk product. Since the biologically active substances is not destroyed by freezing and processing was freeze berries and added sucrose. The syrup had the gray edge-ruby color and a pleasant taste. Fermented milk product functionality produced reservoir method. Technological process of obtaining a fermented milk product is different from the traditional operations of preparation components and their introduction in the finished product. The consumption of 100 g of fermented milk product with a vitamin premix meets the daily requirement of vitamins A, B complex, C, D, E 40–50%. According to the research developed formulation of dairy products, assessed their quality. Production of fermented milk product thus expanding the range of dairy products functional orientation.

  5. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  6. Antioxidant Activities of Lactic Acid Bacteria for Quality Improvement of Fermented Sausage.

    Science.gov (United States)

    Zhang, Yulong; Hu, Ping; Lou, Lijiao; Zhan, Jianlong; Fan, Min; Li, Dan; Liao, Qianwei

    2017-12-01

    Lactobacillus curvatus (SR6) and Lactobacillus paracasei (SR10-1) were assessed for their antioxidant activities and inoculated into sausages to investigate their effects on quality during fermentation. The results showed that L. curvatus SR6 had better DPPH• scavenging activity (59.67% ± 6.68%) and reducing power (47.31% ± 4.62%) and L. paracasei SR10-1 had better OH• scavenging activity (285.67% ± 2.00%) and anti-lipid peroxidation capacity (63.89% ± 0.93%). The superoxide dismutase activity of the cell culture fluid was greater than 47.00 U/mL, and the catalase activity of the cell-free extracts was greater than 1.00 U/mL. In the sausage model, lactic acid bacteria rapidly became the dominant microflora and reduced the moisture content, water activity, nitrite, and pH. The bacteria significantly enhanced the antioxidant activity of the sausage extracts, which improved the sensory characteristics and safety of the sausages. These results illustrate that both strains have excellent antioxidant activities and can be used as antioxidant starters in fermented meat products. The study illustrated the antioxidant and antioxidase activities of Lactobacillus curvatus SR6 and Lactobacillus paracasei SR10-1 and demonstrated the changes in the quality characteristics and antioxidant activities of fermented sausages. The findings provide valuable information for the meat industry on the application of functional starters in fermented meat products. © 2017 Institute of Food Technologists®.

  7. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. Effects of different microbes on fermenting feed for sea cucumber ( Apostichopus japonicus)

    Science.gov (United States)

    Jiang, Yan; Wang, Yingeng; Mai, Kangsen; Zhang, Zheng; Liao, Meijie; Rong, Xiaojun

    2015-10-01

    The effects of different microbes on fermenting feed for sea cucumber ( Apostichopus japonicus) were compared to select the optimal fermentation strain in this study. Saccharomgces cerevisae, Candida utilis, Bacillus subtilis and Geotrichum candidum were independently added into the experimental compound feed, while only saline was mixed with the control feed. The fermentation treatments were inoculated with 10% seed solution under the condition of 25°C and 70% water content, which lasted for 5 days to elucidate the optimal microbe strain for fermenting effect. Physicochemical indexes and sensorial characteristics were measured per day during the fermentation. The indexes included dry matter recovery (DMR), crude protein (CP), the percentage of amino acid nitrogen to total nitrogen (AA-N/tN), the percentage of ammonia nitrogen to total nitrogen (NH3-N/tN), and the ratio of fermentation strains and vibrios to the total microbes, color, smell and viscosity. The results showed that DMR, CP and AA-N/tN of the S. cerevisae group reached the highest level on day 3, but the ratio of fermentation strain was second to C. utilis group. In addition, its NH3-N/tN and the ratio of vibrios were maintained at low levels, and the sensory evaluation score including smell, color and viscosity was the highest in S. cerevisae group on day 3. Therefore, S. cerevisae could be the optimal strain for the feed fermentation for sea cucumber. This research developed a new production method of fermentation feed for sea cucumber.

  9. Assessment of cocoa (Theobroma cacao L.) butter content and composition throughout fermentations.

    Science.gov (United States)

    Servent, Adrien; Boulanger, Renaud; Davrieux, Fabrice; Pinot, Marie-Neige; Tardan, Eric; Forestier-Chiron, Nelly; Hue, Clotilde

    2018-05-01

    Cocoa fermentation is a crucial step for the development of cocoa aroma and precursors of high quality cocoa and by-products. This bioprocess has been studied for years to understand cocoa chemical changes but some matters concerning changes in fat content remain that are investigated in this work. Changes in the quantity (free and total fat), extractability and composition of cocoa butter were assessed in samples from Madagascar, the Dominican Republic and Ecuador. Increases in free fat content were highlighted in samples from each origin thanks to the use of the 'soxtec' solvent method, which preserves the integrity of the butter. A 4.71% increase in free fat was measured in the Ecuadorian samples fermented for 144 h. Conversely, total fat content remained stable throughout fermentation. Protein and polyphenol contents decreases were linked to fat content augmentation by a strong negative interaction. Triglyceride and total and linked fatty acid kinetics (0 to 6 days) of the butter remained statistically stable during fermentation, as did unsaponifiable matter. The origin of fermentation had a predominant and significant impact on composition, revealed by PCA. This work underlines and explains the importance of fermentation process in improving yield of fat that can be extracted while preserving the composition of this cocoa butter. This study highlights an interaction in cocoa unfermented or partially fermented beans. This phenomenon causes butter content retention but is slowly broken after 72 h fermentation. Therefore, fermentation appears to be also necessary to enhance the cocoa butter content extracted from the nibs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A novel method of rapidly modeling optical properties of actual photonic crystal fibres

    International Nuclear Information System (INIS)

    Li-Wen, Wang; Shu-Qin, Lou; Wei-Guo, Chen; Hong-Lei, Li

    2010-01-01

    The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. (rapid communication)

  11. Biotechnology of olive fermentation of ‘Galega' Portuguese variety

    Directory of Open Access Journals (Sweden)

    Oliveira, Manuela

    2004-09-01

    Full Text Available ‘Galega' is the main Portuguese olive variety providing the greatest percentage of table olive production from homemade and industrial methods. In this work a better understanding of the fermentation involved in both methods is intended. Yeasts and lactic acid bacteria (LAB constitute the microflora acting in olive fermentation, with Pichia membranaefaciens being the dominant yeast specie present throughout the process. LAB develop their activity mainly along the second fermentation stage where Lactobacillus plantarum and Lactobacillus pentosus were isolated and identified, as well as Leuconostoc mesenteroides and Pediococcus pentosaceus. Results of a chemical analysis have shown the effectiveness of both homemade and industrial fermentation methods. Nevertheless, the chemical composition of the brines from homemade samples was more similar than those from the industrial ones. Remarkable differences were found in the phenolic compound profile mainly on the final fermentation stage. The amount of volatile compounds has enhanced on the same phase in both methods and some differences were found between them. Sensorial analysis has shown the best results obtained through the homemade method.La variedad de aceitunas más importante en Portugal es la ‘Galega', que representa un gran porcentaje de la producción de aceitunas de mesa portuguesas por métodos caseros ó industriales. La fermentación se produce por una compleja flora microbiana, principalmente levaduras y bacterias del ácido láctico (LAB, siendo la especie Pichia membranaefaciens la que domina en todo el proceso. Las LAB desarrollan su actividad a lo largo de la segunda fase de la fermentación, en donde Lactobacillus plantarum y Lactobacillus pentosus fueran aislados y identificados, así como Leuconostoc pentosaceus. Los resultados de los análisis químicos muestran la mejor eficiencia del método casero. Además, la composición química de la salmuera es más parecida

  12. [Effect of products of thermophilous methane fermentation on the fermentation of fruit must by Saccharomyces vini].

    Science.gov (United States)

    Mikhlin, E D; Kotomina, E N; Pisarnitsky

    1975-01-01

    Experiments were carried out to study the effect of extracts from products of thermophilous methane fermentation at a dose of 0.7+2.0 ml/100 ml on the proliferation and fermentation activity of yeast Saccharomyces vini of the Yablochnaya-7 and Vishnevaya-33 race during their cultivation in the Hansen medium and in the apple and cranberry must with a normal and elevated content of sugar and acid. In some experiments the must was enriched in (NH4)2HPO4 at a dose of 0.3 g/l. Additions of small amounts of products of thermophilous methane fermentation accelerated fermentation of fruit musts with a normal sugar content and to a greater extent musts with an increased sugar content (27%). In the must enriched in (NH4)2HPO4 an almost complete (over 98%) fermentation of sugar developed for 27 days. In the must with an increased acidity (due to citric acid added to bring titrable acidity to 25 g/l) additions of the preparation also accerlerated the begining of the fermentation and increased its intensity.

  13. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase.

    Science.gov (United States)

    Li, Qunrui; Metthew Lam, L K; Xun, Luying

    2011-11-01

    Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The "furfural reductase" (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD(+) as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power.

  14. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation

    DEFF Research Database (Denmark)

    Kemsawasd, Varongsiri; Monteiro Lomba Viana, Tiago; Ardö, Ylva

    2015-01-01

    -Saccharomyces yeast species (Lachancea thermotolerans, Metschnikowia pulcherrima, Hanseniaspora uvarum and Torulaspora delbrueckii) was investigated during alcoholic fermentation. Briefly, the N-sources with beneficial effects on all performance parameters (or for the majority of them) for each yeast species were...... for L. thermotolerans, H. uvarum and M. pulcherrima, single amino acids affected growth and fermentation performance to the same extent as the mixtures. Moreover, we found groups of N-sources with similar effects on the growth and/or fermentation performance of two or more yeast species. Finally...... species under oxygen-limited conditions, which, in turn, may be used to, e.g. optimize growth and fermentation performance of the given yeast upon N-source supplementation during wine fermentations....

  15. Yersinia enterocolitica in fermented sausages

    Science.gov (United States)

    Mitrović, R.; Janković, V.; Baltić, B.; Ivanović, J.

    2017-09-01

    Different types of food, among them meat, can be the cause of food-borne diseases, and infections are commonly caused by Campylobacter, Salmonella, Yersinia enterocolitica, verotoxic Escherichia coli and Listeria monocytogenes. All these bacteria, depending on a number of factors, including animal species, geographical origin, climatic factors, methods of animal breeding and meat production, could cause disease. Here, we summarise results on production of different groups of sausages produced with or without added starter culture, and contaminated with Y.enterocolitica (control sausages were not contaminated). During the ripening, changes in the microbiological status of the fermented sausages and their physical and chemical properties were monitored. For all tests, standard methods were used. In these fermented sausages, the number of Y. enterocolitica decreased during ripening. The number of Y. enterocolitica was statistically significantly lower in sausages with added starter culture on all days of the study Zoonotic pathogens in meat should be controlled through the complete production chain, from the farms to consumers, in order to reduce the probability of disease in humans. However, the necessary controls in the production chain are not the same for all bacteria.

  16. Physical and textural characteristics of fermented milk products obtained by kombucha inoculums with herbal teas

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2012-01-01

    Full Text Available In this investigation, kombucha fermented milk products were produced from milk with 1.6% milk fat using 10% (v/v kombucha inoculums cultivated on the extracts of peppermint and stinging nettle. The fermentation process was conducted at temperatures of 37, 40 and 43°C. Fermentation was stopped when the pH value of 4.5 was reached. The fermentation process was shortened with an increase of temperature. Physical characteristics of the fermented products were determined by using standard methods of analysis. Textural characteristics were determined by texture profile analysis. The obtained products showed good physical and textural characteristics, typical for the yoghurt-like products. [Projekat Ministarstva nauke Republike Srbije, br. III-46009

  17. Optimal Cultivation Time for Yeast and Lactic Acid Bacteria in Fermented Milk and Effects of Fermented Soybean Meal on Rumen Degradability Using Nylon Bag Technique

    Directory of Open Access Journals (Sweden)

    S. Polyorach

    2016-09-01

    Full Text Available The objectives of this study were to determine an optimal cultivation time for populations of yeast and lactic acid bacteria (LAB co-cultured in fermented milk and effects of soybean meal fermented milk (SBMFM supplementation on rumen degradability in beef cattle using nylon bag technique. The study on an optimal cultivation time for yeast and LAB growth in fermented milk was determined at 0, 4, 8, 24, 48, 72, and 96 h post-cultivation. After fermenting for 4 days, an optimal cultivation time of yeast and LAB in fermented milk was selected and used for making the SBMFM product to study nylon bag technique. Two ruminal fistulated beef cattle (410±10 kg were used to study on the effect of SBMFM supplementation (0%, 3%, and 5% of total concentrate substrate on rumen degradability using in situ method at incubation times of 0, 2, 4, 6, 12, 24, 48, and 72 h according to a Completely randomized design. The results revealed that the highest yeast and LAB population culture in fermented milk was found at 72 h-post cultivation. From in situ study, the soluble fractions at time zero (a, potential degradability (a+b and effective degradability of dry matter (EDDM linearly (p<0.01 increased with the increasing supplemental levels and the highest was in the 5% SBMFM supplemented group. However, there was no effect of SBMFM supplement on insoluble degradability fractions (b and rate of degradation (c. In conclusion, the optimal fermented time for fermented milk with yeast and LAB was at 72 h-post cultivation and supplementation of SBMFM at 5% of total concentrate substrate could improve rumen degradability of beef cattle. However, further research on effect of SBMFM on rumen ecology and production performance in meat and milk should be conducted using in vivo both digestion and feeding trials.

  18. Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Jing; Ding, Wen-Tao; Zhang, Guo-Chang; Wang, Jing-Yu [Tianjin Univ. (China). Dept. of Biochemical Engineering

    2011-08-15

    Genome shuffling is an efficient way to improve complex phenotypes under the control of multiple genes. For the improvement of strain's performance in very high-gravity (VHG) fermentation, we developed a new method of genome shuffling. A diploid ste2/ste2 strain was subjected to EMS (ethyl methanesulfonate) mutagenesis followed by meiotic recombination-mediated genome shuffling. The resulting haploid progenies were intrapopulation sterile and therefore haploid recombinant cells with improved phenotypes were directly selected under selection condition. In VHG fermentation, strain WS1D and WS5D obtained by this approach exhibited remarkably enhanced tolerance to ethanol and osmolarity, increased metabolic rate, and 15.12% and 15.59% increased ethanol yield compared to the starting strain W303D, respectively. These results verified the feasibility of the strain improvement strategy and suggested that it is a powerful and high throughput method for development of Saccharomyces cerevisiae strains with desired phenotypes that is complex and cannot be addressed with rational approaches. (orig.)

  19. Rapid NMR method for the quantification of organic compounds in thin stillage.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shen, Jianheng; Jia, Yunhua; Tyler, Robert T; Shim, Youn Young; Reaney, Martin J T

    2011-10-12

    Thin stillage contains organic and inorganic compounds, some of which may be valuable fermentation coproducts. This study describes a thorough analysis of the major solutes present in thin stillage as revealed by NMR and HPLC. The concentration of charged and neutral organic compounds in thin stillage was determined by excitation sculpting NMR methods (double pulse field gradient spin echo). Compounds identified by NMR included isopropanol, ethanol, lactic acid, 1,3-propanediol, acetic acid, succinic acid, glycerophosphorylcholine, betaine, glycerol, and 2-phenylethanol. The concentrations of lactic and acetic acid determined with NMR were comparable to those determined using HPLC. HPLC and NMR were complementary, as more compounds were identified using both methods. NMR analysis revealed that stillage contained the nitrogenous organic compounds betaine and glycerophosphorylcholine, which contributed as much as 24% of the nitrogen present in the stillage. These compounds were not observed by HPLC analysis.

  20. Low energy Kombucha fermented milk-based beverages

    Directory of Open Access Journals (Sweden)

    Milanović Spasenija D.

    2008-01-01

    Full Text Available This paper investigates manufacturing of fermented beverages from two types of milk (1 % w/w and 2.2 % w/w fat by applying of Kombucha, which contains several yeasts and bacterial strains. The starter was the inoculum produced from previous Kombucha fermentation. The applied starter concentrations were: 10 % v/v, 15 % v/v and 20 % v/v. Also, the traditional yoghurt starter was used to produce the control samples. All fermentations were performed at 42oC and the changes in the pH were monitored. The fermentation process was about three times faster in the control yoghurt than in the Kombucha samples. Influence of Kombucha inoculum concentration on the rate of fermentation appeared not to be significant. All fermentations were stopped when the pH reached 4.4. After the production, the quality of the fermented milk beverages with Kombucha was determined and compared with the quality of the control yoghurt samples. It was concluded that the difference in fat contents in milks affects the difference in quantities of other components in the fermented milk beverages with Kombucha. Sensory characteristics of the beverages manufactured from the partially skimmed milk are much better than those of the fermented beverages produced from the low fat milk.

  1. Asian fungal fermented food

    NARCIS (Netherlands)

    Nout, M.J.R.; Aidoo, K.E.

    2010-01-01

    In Asian countries, there is a long history of fermentation of foods and beverages. Diverse micro-organisms, including bacteria, yeasts and moulds, are used as starters, and a wide range of ingredients can be made into fermented foods. The main raw materials include cereals, leguminous seeds,

  2. Dynamics of Cocoa Bean Pulp Degradation during Cocoa Bean Fermentation: Effects of Yeast Starter Culture Addition

    Directory of Open Access Journals (Sweden)

    Laras Cempaka

    2014-07-01

    Full Text Available Fermentation is a crucial step in the post-harvest processing of cocoa beans. This process comprises mixed culture microbial activities on the cocoa bean pulp, producing metabolites that act as important precursors for cocoa flavour development. Variations in the microbial population dynamics during the fermentation process may induce changes in the overall process. Thus, the introduction of a specific microbial starter culture may improve the quality of the fermentation. This article discusses the effects ofthe addition of Saccharomyces cerevisae var. Chevalieri starter culture on cocoa bean fermentation. The dynamics in the yeast concentration, sugary pulp compounds and metabolic products were measured during fermentation. The alterations in the dynamic metabolite profile were significant, although only a slight difference was observed in the yeast population. A higher fermentation index was measured for the cocoa bean fermentation with yeast starter culture, 1.13 compared to 0.84. In conclusion, this method can potentially be applied to shorten the cocoa bean fermentation time.

  3. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  4. Continuous alcoholic fermentation of molasses

    Energy Technology Data Exchange (ETDEWEB)

    Kazimierz, J

    1962-01-01

    The first Polish plant for ontinuous alcohol fermentation of molasses is described. Continuous fermentation permits a better use of the installation, automatic control, and shorter fermentation time. It yields more CO/sub 2/ for dry ice manufacture and decreases corrosion of apparatus. From 22 to 24% mash is used, giving a yield of 61.1 of 100-proof alc./kg. sucrose and an average of 37 kg. of dry yeast/1000 l. alcohol

  5. Why solid-state fermentation is more advantageous over submerged fermentation for converting high concentration of glycerol into Monacolin K by Monascus purpureus 9901: A mechanistic study.

    Science.gov (United States)

    Zhang, Bo-Bo; Lu, Li-Ping; Xu, Gan-Rong

    2015-07-20

    The underlying mechanisms by which solid-state fermentation (SSF) was more advantageous over submerged fermentation (SmF) for converting high concentration of glycerol into Monacolin K by Monascus purpureus were investigated innovatively. First, the established kinetic models and kinetic parameters showed that the cell growth, Monacolin K formation and glycerol consumption in SSF were more rapid than those in SmF. Secondly, the comparison of fatty acid composition of mycelial cells indicated a better fluidity and permeability of the cell membrane in SSF than that of SmF, which was also consistent with the difference in the ratio of extracellular/intracellular Monacolin K between the two systems. Thirdly, the phenomenon of glycerol concentration gradient was verified in SSF, which could well explain the resistance effect to high concentration of glycerol in SSF. These new findings provide some important insights to the elucidation of the advantages of SSF for the synthesis of fungal secondary metabolites. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Study and management of atmospheric exhaust gas in acetic acid fermentation developing a new process for alcohol vinegar production; Etude et maitrise des rejets atmospheriques en vinaigrerie, developpement d'un procede nouveau de conduite de la fermentation acetique

    Energy Technology Data Exchange (ETDEWEB)

    Pochat Bohatier, C

    1999-12-06

    The aim of the study was to examine emissions of volatile organic compounds (VOCs) during acetic (acid) fermentation. The first part of the study presents the methodology developed to reproduce production cycles for spirit vinegar and to analyse gas effluents. The second part describes the origin and quantification of the emissions (ethanol, acetic acid, acetaldehyde and ethyl acetate). The acetic acid is produced by bacterial metabolism while the ethyl acetate is a result of the chemical reaction of esterification. By modelling the emissions during batch processing we were able to identify the various parameters involved when VOCs are carried along by the fermentation gases. The quantities of ethyl acetate depend on the length of time the diluted alcohol is stored, and on its composition. By using a fed-batch method with a continuous supply of ethanol we could reduce alcohol emissions. The third part of the study develops the kinetics studies carried out to adapt the fed-batch process to acetic acid fermentation. The influence of ethanol, either in terms of deficiency or inhibition, is minimized between 8 and 16 g.1-1. A study of the growth rate of bacteria in relation to the amount of acetic acid showed that the latter was highly inhibitive. There is a critical concentration of acetic acid at which the growth of bacteria stops, and the death rate of the culture increases rapidly. The latter depends on the composition of the culture's medium; the corresponding pH of the concentration is between 2.25 and 2.28. By limiting the formation of ethyl acetate in the diluted alcohol and by controlling the concentration of ethanol at 16 g.l -1 per fermentation, the VOC emissions are reduced by 30% and the yield increases as a result. (author)

  7. La fermentation éthanolique. Les microorganismes Ethanol Fermentation. The Microorganisms

    Directory of Open Access Journals (Sweden)

    Ballerini D.

    2006-11-01

    Full Text Available Cette étude précise l'état actuel des connaissances concernant la fermentation éthanolique, d'un point de vue microbiologique. Outre les microorganismes utilisés depuis longtemps, sont décrites les nouvelles espèces de levures et de bactéries capables de transformer en éthanol des substrats aussi divers que les composés cellulosiques et hémicellulosiques issus de la biomasse et leurs produits d'hydrolyse. Pour la fermentation des substrats traditionnels tels que les mélasses et les jus d'extraction de plantes sucrières, ou encore l'amidon de maïs, les performances des levures du genre Saccharomyces sont comparées à celles des bactéries du genre Zymomonas. This review gives the state-of-the-art of what is known about ethanol fermentation from the microbiological viewpoint. In addition to the microorganisms that have been used for a long time, it describes new species of yeasts and bacteria capable of transforming, in ethanol, substrates including such different ones as cellulosic and hemicellulosic compounds issuing from biomass and their hydrolysis products. For the fermentation of traditional substrates such as molasses and juices extracted from sugar plants, or cornstarch, the performances of yeasts of the Saccharomyces type are compared to those of bacteria of the Zymomonas type.

  8. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    Science.gov (United States)

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol.

  9. Alcoholic fermentation under oenological conditions. Use of a combination of data analysis and neural networks to predict sluggish and stuck fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Insa, G. [Inst. National de la Recherche Agronomique, Inst. des Produits de la Vigne, Lab. de Microbiologie et Technologie des Fermentations, 34 - Montpellier (France); Sablayrolles, J.M. [Inst. National de la Recherche Agronomique, Inst. des Produits de la Vigne, Lab. de Microbiologie et Technologie des Fermentations, 34 - Montpellier (France); Douzal, V. [Centre National du Machinisme Agricole du Genie Rural des Eaux et Forets, 92 - Antony (France)

    1995-09-01

    The possibility of predicting sluggish fermentations under oenological conditions was investigated by studying 117 musts of different French grape varieties using an automatic device for fermentation monitoring. The objective was to detect sluggish or stuck fermentations at the halfway point of fermentation. Seventy nine percent of fermentations were correctly predicted by combining data analysis and neural networks. (orig.)

  10. Rapid and Quantitative Determination of S-Adenosyl-L-Methionine in the Fermentation Process by Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Hairui Ren

    2016-01-01

    Full Text Available Concentrations of S-Adenosyl-L-Methionine (SAM in aqueous solution and fermentation liquids were quantitatively determined by surface-enhanced Raman scattering (SERS and verified by high-pressure liquid chromatography (HPLC. The Ag nanoparticle/silicon nanowire array substrate was fabricated and employed as an active SERS substrate to indirectly measure the SAM concentration. The linear relationship between the integrated intensity of peak centered at ~2920 cm−1 in SERS spectra and the SAM concentration was established, and the limit of detections of SAM concentrations was analyzed to be ~0.1 g/L. The concentration of SAM in real solution could be predicted by the linear relationship and verified by the HPLC detection method. The relative deviations (δ of the predicted SAM concentration are less than 13% and the correlation coefficient is 0.9998. Rolling-Circle Filter was utilized to subtract fluorescence background and the optimal results were obtained when the radius of the analyzing circle is 650 cm−1.

  11. Application of Rapid Prototyping Methods to High-Speed Wind Tunnel Testing

    Science.gov (United States)

    Springer, A. M.

    1998-01-01

    This study was undertaken in MSFC's 14-Inch Trisonic Wind Tunnel to determine if rapid prototyping methods could be used in the design and manufacturing of high speed wind tunnel models in direct testing applications, and if these methods would reduce model design/fabrication time and cost while providing models of high enough fidelity to provide adequate aerodynamic data, and of sufficient strength to survive the test environment. Rapid prototyping methods utilized to construct wind tunnel models in a wing-body-tail configuration were: fused deposition method using both ABS plastic and PEEK as building materials, stereolithography using the photopolymer SL-5170, selective laser sintering using glass reinforced nylon, and laminated object manufacturing using plastic reinforced with glass and 'paper'. This study revealed good agreement between the SLA model, the metal model with an FDM-ABS nose, an SLA nose, and the metal model for most operating conditions, while the FDM-ABS data diverged at higher loading conditions. Data from the initial SLS model showed poor agreement due to problems in post-processing, resulting in a different configuration. A second SLS model was tested and showed relatively good agreement. It can be concluded that rapid prototyping models show promise in preliminary aerodynamic development studies at subsonic, transonic, and supersonic speeds.

  12. A rapid radiobioassay method for strontium estimation in nuclear/radiological emergencies

    International Nuclear Information System (INIS)

    Wankhede, Sonal; Sawant, Pramilla D.; Rao, D.D.; Pradeepkumar, K.S.

    2014-01-01

    During a nuclear/radiological emergency, workers as well as members of the public (MOP) may get internally contaminated with the radionuclides like Sr and Cs. In such situations, a truly rapid radiobioassay method is required to screen a large number of people in order to assess internal contamination and also to decide on subsequent medical intervention. The current precipitation method used at Bioassay Lab., Trombay is quite lengthy and laborious. Efforts are being made to optimize bioassay methods at Bhabha Atomic Research Centre using Solid Extraction Chromatography (SEC) technique for emergency response. The present work reports standardization of SEC technique for rapid estimation of Sr in urine samples. The method standardized using Sr spec is simpler, shorter, result in higher recoveries and reproducible results. It is most suitable for quick dose assessment of 90 Sr in bioassay samples in case of emergency

  13. Discovery and History of Amino Acid Fermentation.

    Science.gov (United States)

    Hashimoto, Shin-Ichi

    There has been a strong demand in Japan and East Asia for L-glutamic acid as a seasoning since monosodium glutamate was found to present umami taste in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum in 1956 enabled abundant and low-cost production of the amino acid, creating a large market. The discovery also prompted researchers to develop fermentative production processes for other L-amino acids, such as lysine. Currently, the amino acid fermentation industry is so huge that more than 5 million metric tons of amino acids are manufactured annually all over the world, and this number continues to grow. Research on amino acid fermentation fostered the notion and skills of metabolic engineering which has been applied for the production of other compounds from renewable resources. The discovery of glutamate fermentation has had revolutionary impacts on both the industry and science. In this chapter, the history and development of glutamate fermentation, including the very early stage of fermentation of other amino acids, are reviewed.

  14. Changes in physical and chemical characteristics of fermented cocoa (Theobroma cacao beans with manual and semi-mechanized transfer, between fermentation boxes

    Directory of Open Access Journals (Sweden)

    Pedro. P. Peláez

    2016-06-01

    Full Text Available The aim of this study was to evaluate variation in the physical and chemical properties of fermented cocoa beans with cocoa beans transfer between wooden fermentation boxes manually (M and semi-mechanized (SM way. Mass temperature, moisture, pH, and total acidity of the cotyledon and pulp; the total polyphenol, anthocyanin, reducing sugar, theobromine, and caffeine content in fresh, fermented, and dried beans; and percentage of fermented beans and time required to move beans during fermentation were determined. The cocoa used grew in the Pachiza district of the San Martin region of Peru. Cocoa sampling was each 0, 48, 72, 96, 120, 144, and 168 h of fermentation. The cocoa mass temperature was highest with both removal systems after 96 h of fermentation. M cotyledon and pulp samples had the highest moisture content and titratable acidity, while cotyledon and pulp pH with both systems were statistically equal. In contrast, fermented beans had a higher polyphenol, anthocyanin, reducing sugar, theobromine, and caffeine content with SM. SM produced the greatest amount of fermentation (91.67% and required the shortest amount of time to move beans (78.56 min. In conclusion, the system of fermentation of cocoa beans with SM was faster and produced fermented grains with high chemical quality.

  15. Real-time economic optimization for a fermentation process using Model Predictive Control

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Jørgensen, John Bagterp

    2014-01-01

    Fermentation is a widely used process in production of many foods, beverages, and pharmaceuticals. The main goal of the control system is to maximize profit of the fermentation process, and thus this is also the main goal of this paper. We present a simple dynamic model for a fermentation process...... and demonstrate its usefulness in economic optimization. The model is formulated as an index-1 differential algebraic equation (DAE), which guarantees conservation of mass and energy in discrete form. The optimization is based on recent advances within Economic Nonlinear Model Predictive Control (E......-NMPC), and also utilizes the index-1 DAE model. The E-NMPC uses the single-shooting method and the adjoint method for computation of the optimization gradients. The process constraints are relaxed to soft-constraints on the outputs. Finally we derive the analytical solution to the economic optimization problem...

  16. Safety assessment of the biogenic amines in fermented soya beans and fermented bean curd.

    Science.gov (United States)

    Yang, Juan; Ding, Xiaowen; Qin, Yingrui; Zeng, Yitao

    2014-08-06

    To evaluate the safety of biogenic amines, high performance liquid chromatography (HPLC) was used to evaluate the levels of biogenic amines in fermented soya beans and fermented bean curd. In fermented soya beans, the total biogenic amines content was in a relatively safe range in many samples, although the concentration of histamine, tyramine, and β-phenethylamine was high enough in some samples to cause a possible safety threat, and 8 of the 30 samples were deemed unsafe. In fermented bean curd, the total biogenic amines content was more than 900 mg/kg in 19 white sufu amples, a level that has been determined to pose a safety hazard; putrescine was the only one detected in all samples and also had the highest concentration, which made samples a safety hazard; the content of tryptamine, β-phenethylamine, tyramine, and histamine had reached the level of threat to human health in some white and green sufu samples, and that may imply another potential safety risk; and 25 of the 33 samples were unsafe. In conclusion, the content of biogenic amines in all fermented soya bean products should be studied and appropriate limits determined to ensure the safety of eating these foods.

  17. Ethanol production from lignocellulosic materials. Fermentation and on-line analysis

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, L.

    1994-04-01

    The fermentation performance of bacteria, yeast and fungi was investigated in lignocellulosic hydrolysates with the aim of finding microorganisms which both withstand the inhibitors and that have the ability to ferment pentoses. Firstly, the performance of Saccharomyces cidri, Saccharomyces cerevisiae, Lactobacillus brevis, Lactococcus lactis ssp lactis, Escherichia coli and Zymomonas mobilis was investigated in spent sulphite liquor and enzymatic hydrolysate of steam-pretreated willow. Secondly, the performance of natural and recombinant E. coli, Pichia stipitis, recombinant S. cerevisiae, S. cerevisiae in combination with xylose isomerase and Fusarium oxysporum was investigated in a xylose-rich acid hydrolysate of corn cob. Recombinant E. coli was the best alternative for fermentation of lignocellulosic hydrolysates, giving both high yields and productivities. The main drawback was that detoxification was necessary. The kinetics of the fermentation with recombinant E. coli KO11 was investigated in the condensate of steam-pretreated willow. A cost analysis of the ethanol production from willow was made, which predicted an ethanol production cost of 3.9 SEK/l for the pentose fermentation. The detoxification cost constituted 22% of this cost. The monitoring of three monosaccharides and ethanol in lignocellulosic hydro lysates is described. The monosaccharides were determined using immobilized pyranose oxidase in an on-line amperometric analyser. Immobilization and characterization of pyranose oxidase from Phanerochaete chrysosporium is also described. The ethanol was monitored on-line using a micro dialysis probe as an in situ sampling device. The dialysate components were then separated in a column liquid chromatographic system and the ethanol was selectively detected by an amperometric alcohol bio sensor. The determinations with on-line analysis methods agreed well with off-line methods. 248 refs, 4 figs, 12 tabs

  18. Continuous alcoholic fermentation of blackstrap molasses

    Energy Technology Data Exchange (ETDEWEB)

    Borzani, W; Aquarone, E

    1957-01-01

    The sugar concentration and the fermentation-cycle time can be related by an equation, theoretically justified, if it is assumed that the sugar consumption has a reaction rate of -1. Agitation is probably the rate-determining factor for continous alcohol fermentation. Penicillin increases the efficiency by preventing contamination. After 30 hours of fermentation, the penicillin concentration was 25 to 60% of the initial antibiotic concentration. Laboratory and plant-scale fermentations with 1.0 unit/ml of penicillin were studied and found favorable. An increase in the alcohol yield (4.8 to 19.5%) and a reduction of the acid production (17.0 to 66.6%) were observed. Penicillin did not affect the final yeast count or the fermentation time, and Leuconostoc contamination was inhibited by 8.0 units/ml.

  19. Application of Baechu-Kimchi Powder and GABA-Producing Lactic Acid Bacteria for the Production of Functional Fermented Sausages

    Science.gov (United States)

    Choi, Ji Hun; Kang, Ki Moon

    2017-01-01

    This study was carried out to determine the physicochemical, microbiological, and quality characteristics of a new type of fermented sausage manufactured by incorporating Baechu-kimchi powder and gamma-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB). The LAB count was at the maximum level by day nine of ripening in inoculated sausages, accompanied by a rapid decrease in the pH. The addition of kimchi powder decreased the lightness (L*) and increased the redness (a*) and, yellowness (b*) values, while also significantly increasing the hardness and chewiness of the sausage (p<0.05). Moreover, although the thiobarbituric acid reactive substances values increased in all samples during the study period, this increase was lower in the kimchi-treated samples, indicating a reduction in lipid oxidation. Overall, our results show that the addition of Baechu-kimchi powder to sausages reduced the off-flavor properties and improved the taste profile of the fermented sausage in sensory evaluations. The GABA content of all fermented sausages increased from 17.42-25.14 mg/kg on the third day of fermentation to 60.95-61.47 mg/kg on the thirtieth day. These results demonstrate that Baechu-kimchi powder and GABA-producing LAB could be functional materials in fermented sausage to improve quality characteristics. PMID:29725201

  20. Effect of propionic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Bao, Jia-Wei; Su, Xian-Feng; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2016-03-01

    In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.

  1. Hybrid and Mixed Matrix Membranes for Separations from Fermentations.

    Science.gov (United States)

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-02-29

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase.

  2. Kinetics model development of cocoa bean fermentation

    Science.gov (United States)

    Kresnowati, M. T. A. P.; Gunawan, Agus Yodi; Muliyadini, Winny

    2015-12-01

    Although Indonesia is one of the biggest cocoa beans producers in the world, Indonesian cocoa beans are oftenly of low quality and thereby frequently priced low in the world market. In order to improve the quality, adequate post-harvest cocoa processing techniques are required. Fermentation is the vital stage in series of cocoa beans post harvest processing which could improve the quality of cocoa beans, in particular taste, aroma, and colours. During the fermentation process, combination of microbes grow producing metabolites that serve as the precursors for cocoa beans flavour. Microbial composition and thereby their activities will affect the fermentation performance and influence the properties of cocoa beans. The correlation could be reviewed using a kinetic model that includes unstructured microbial growth, substrate utilization and metabolic product formation. The developed kinetic model could be further used to design cocoa bean fermentation process to meet the expected quality. Further the development of kinetic model of cocoa bean fermentation also serve as a good case study of mixed culture solid state fermentation, that has rarely been studied. This paper presents the development of a kinetic model for solid-state cocoa beans fermentation using an empirical approach. Series of lab scale cocoa bean fermentations, either natural fermentations without starter addition or fermentations with mixed yeast and lactic acid bacteria starter addition, were used for model parameters estimation. The results showed that cocoa beans fermentation can be modelled mathematically and the best model included substrate utilization, microbial growth, metabolites production and its transport. Although the developed model still can not explain the dynamics in microbial population, this model can sufficiently explained the observed changes in sugar concentration as well as metabolic products in the cocoa bean pulp.

  3. Study and management of atmospheric exhaust gas in acetic acid fermentation developing a new process for alcohol vinegar production; Etude et maitrise des rejets atmospheriques en vinaigrerie, developpement d'un procede nouveau de conduite de la fermentation acetique

    Energy Technology Data Exchange (ETDEWEB)

    Pochat Bohatier, C.

    1999-12-06

    The aim of the study was to examine emissions of volatile organic compounds (VOCs) during acetic (acid) fermentation. The first part of the study presents the methodology developed to reproduce production cycles for spirit vinegar and to analyse gas effluents. The second part describes the origin and quantification of the emissions (ethanol, acetic acid, acetaldehyde and ethyl acetate). The acetic acid is produced by bacterial metabolism while the ethyl acetate is a result of the chemical reaction of esterification. By modelling the emissions during batch processing we were able to identify the various parameters involved when VOCs are carried along by the fermentation gases. The quantities of ethyl acetate depend on the length of time the diluted alcohol is stored, and on its composition. By using a fed-batch method with a continuous supply of ethanol we could reduce alcohol emissions. The third part of the study develops the kinetics studies carried out to adapt the fed-batch process to acetic acid fermentation. The influence of ethanol, either in terms of deficiency or inhibition, is minimized between 8 and 16 g.1-1. A study of the growth rate of bacteria in relation to the amount of acetic acid showed that the latter was highly inhibitive. There is a critical concentration of acetic acid at which the growth of bacteria stops, and the death rate of the culture increases rapidly. The latter depends on the composition of the culture's medium; the corresponding pH of the concentration is between 2.25 and 2.28. By limiting the formation of ethyl acetate in the diluted alcohol and by controlling the concentration of ethanol at 16 g.l -1 per fermentation, the VOC emissions are reduced by 30% and the yield increases as a result. (author)

  4. The Most Probable Limit of Detection (MPL) for rapid microbiological methods

    NARCIS (Netherlands)

    Verdonk, G.P.H.T.; Willemse, M.J.; Hoefs, S.G.G.; Cremers, G.; Heuvel, E.R. van den

    Classical microbiological methods have nowadays unacceptably long cycle times. Rapid methods, available on the market for decades, are already applied within the clinical and food industry, but the implementation in pharmaceutical industry is hampered by for instance stringent regulations on

  5. The most probable limit of detection (MPL) for rapid microbiological methods

    NARCIS (Netherlands)

    Verdonk, G.P.H.T.; Willemse, M.J.; Hoefs, S.G.G.; Cremers, G.; Heuvel, van den E.R.

    2010-01-01

    Classical microbiological methods have nowadays unacceptably long cycle times. Rapid methods, available on the market for decades, are already applied within the clinical and food industry, but the implementation in pharmaceutical industry is hampered by for instance stringent regulations on

  6. fermentation

    African Journals Online (AJOL)

    user

    2012-05-17

    May 17, 2012 ... genes in glycolysis pathway, trehalose and steroid biosynthesis and heat shock proteins (HSP) in .... com) and prepared for microarray construction and analysis. .... a single time point of the late stage of VHG fermentation.

  7. A simple and rapid method to estimate radiocesium in man

    International Nuclear Information System (INIS)

    Kindl, P.; Steger, F.

    1990-09-01

    A simple and rapid method for monitoring internal contamination of radiocesium in man was developed. This method is based on measurements of the γ-rays emitted from the muscular parts between the thights by a simple NaJ(Tl)-system. The experimental procedure, the calibration, the estimation of the body activity and results are explained and discussed. (Authors)

  8. Alleviation of harmful effect in stillage reflux in food waste ethanol fermentation based on metabolic and side-product accumulation regulation.

    Science.gov (United States)

    Ma, Hongzhi; Yang, Jian; Jia, Yan; Wang, Qunhui; Ma, Xiaoyu; Sonomoto, Kenji

    2016-10-01

    Stillage reflux fermentation in food waste ethanol fermentation could reduce sewage discharge but exert a harmful effect because of side-product accumulation. In this study, regulation methods based on metabolic regulation and side-product alleviation were conducted. Result demonstrated that controlling the proper oxidation-reduction potential value (-150mV to -250mV) could reduce the harmful effect, improve ethanol yield by 21%, and reduce fermentation time by 20%. The methods of adding calcium carbonate to adjust the accumulated lactic acid showed that ethanol yield increased by 17.3%, and fermentation time decreased by 20%. The accumulated glyceal also shows that these two methods can reduce the harmful effect. Fermentation time lasted for seven times without effect, and metabolic regulation had a better effect than side-product regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effect of mixing during fermentation in yogurt manufacturing.

    Science.gov (United States)

    Aguirre-Ezkauriatza, E J; Galarza-González, M G; Uribe-Bujanda, A I; Ríos-Licea, M; López-Pacheco, F; Hernández-Brenes, C M; Alvarez, M M

    2008-12-01

    In traditional yogurt manufacturing, the yogurt is not agitated during fermentation. However, stirring could be beneficial, particularly for improving heat and mass transport across the fermentation tank. In this contribution, we studied the effect of low-speed agitation during fermentation on process time, acidity profile, and microbial dynamics during yogurt fermentation in 2 laboratory-scale fermenters (3 and 5 L) with different heat-transfer characteristics. Lactobacillus bulgaricus and Streptococcus thermophilus were used as fermenting bacteria. Curves of pH, lactic acid concentration, lactose concentration, and bacterial population profiles during fermentation are presented for static and low-agitation conditions during fermentation. At low-inoculum conditions, agitation reduced the processing time by shortening the lag phase. However, mixing did not modify the duration or the shape of the pH profiles during the exponential phase. In fermentors with poor heat-transfer characteristics, important differences in microbial dynamics were observed between the agitated and nonagitated fermentation experiments; that is, agitation significantly increased the observable specific growth rate and the final microbial count of L. bulgaricus.

  10. Gas Fermentation-A Flexible Platform for Commercial Scale Production of Low-Carbon-Fuels and Chemicals from Waste and Renewable Feedstocks.

    Science.gov (United States)

    Liew, FungMin; Martin, Michael E; Tappel, Ryan C; Heijstra, Björn D; Mihalcea, Christophe; Köpke, Michael

    2016-01-01

    There is an immediate need to drastically reduce the emissions associated with global fossil fuel consumption in order to limit climate change. However, carbon-based materials, chemicals, and transportation fuels are predominantly made from fossil sources and currently there is no alternative source available to adequately displace them. Gas-fermenting microorganisms that fix carbon dioxide (CO2) and carbon monoxide (CO) can break this dependence as they are capable of converting gaseous carbon to fuels and chemicals. As such, the technology can utilize a wide range of feedstocks including gasified organic matter of any sort (e.g., municipal solid waste, industrial waste, biomass, and agricultural waste residues) or industrial off-gases (e.g., from steel mills or processing plants). Gas fermentation has matured to the point that large-scale production of ethanol from gas has been demonstrated by two companies. This review gives an overview of the gas fermentation process, focusing specifically on anaerobic acetogens. Applications of synthetic biology and coupling gas fermentation to additional processes are discussed in detail. Both of these strategies, demonstrated at bench-scale, have abundant potential to rapidly expand the commercial product spectrum of gas fermentation and further improve efficiencies and yields.

  11. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation.

    Science.gov (United States)

    Phengnuam, Thanyarat; Suntornsuk, Worapot

    2013-02-01

    Jatropha curcas seed cake is a by-product generated from oil extraction of J. curcas seed. Although it contains a high amount of protein, it has phorbol esters and anti-nutritional factors such as phytate, trypsin inhibitor, lectin and saponin. It cannot be applied directly in the food or animal feed industries. This investigation was aimed at detoxifying the toxic and anti-nutritional compounds in J. curcas seed cake by fermentation with Bacillus spp. Two GRAS (generally recognized as safe) Bacillus strains used in the study were Bacillus subtilis and Bacillus licheniformis with solid-state and submerged fermentations. Solid-state fermentation was done on 10 g of seed cake with a moisture content of 70% for 7 days, while submerged fermentation was carried out on 10 g of seed cake in 100 ml distilled water for 5 days. The fermentations were incubated at the optimum condition of each strain. After fermentation, bacterial growth, pH, toxic and anti-nutritional compounds were determined. Results showed that B. licheniformis with submerged fermentation were the most effective method to degrade toxic and anti-nutritional compounds in the seed cake. After fermentation, phorbol esters, phytate and trypsin inhibitor were reduced by 62%, 42% and 75%, respectively, while lectin could not be eliminated. The reduction of phorbol esters, phytate and trypsin inhibitor was related to esterase, phytase and protease activities, respectively. J. curcas seed cake could be mainly detoxified by bacterial fermentation and the high-protein fermented seed cake could be potentially applied to animal feed. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. Antimicrobial potential of triticale stillage after lactic acid fermentation with Lactobacillus fermentum PL-1

    Directory of Open Access Journals (Sweden)

    Kujundžić Žužana

    2013-01-01

    Full Text Available This study is concerned with the testing of antimicrobial activity of triticale stillage obtained after lactic fermentation by Lactobacillus fermentum PL-1. The antimicrobial tests were performed using the disc-diffusion and agar well diffusion methods. It was found that fermented triticale stillage after lactic acid fermentation exhibited an inhibitory effect towards tested Gram positive and Gram negative bacteria: Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, and Enterococcus faecalis. The triticale stillage without addition of CaCO3 before fermentation showed a stronger antimicrobial effect in comparison with the triticale stillage with added CaCO3. Triticale stillage after lactic acid fermentation did not show any antifungal effect on the growth of tested moulds (Alternaria alternata, Aspergillus versicolor, Penicillium brevicompactum, and Fusarium subglutinans. [Projekat Ministarstva nauke Republike Srbije, br. TR-31017

  13. On-line monitoring of fermentation processes using multi-wavelength fluorescence

    DEFF Research Database (Denmark)

    Odman, Peter; Petersen, Nanna; Johansen, Claus Lindvald

    2007-01-01

    . The model system considered in this work is the antibiotic production by Streptomyces coelicolor, a filamentous bacterium. In addition to predicting concentrations of biomass in the fermentation broth, the data allowed detection of different physiological states, i.e. growth phase and phosphate limitation......Fermentation processes often suffer from a lack of real-time methods for on-line determination of variables like the concentrations of nutrients and products. This work aims at investigating the possibilities of implementing an on-line fermentation monitoring system based on multi......-wavelength fluorescence (MWF). This type of sensor has previously showed promising accuracy and selectivity for in situ monitoring of cell mass and certain metabolites in bioreactors (Lantz et al., 2006). The sensor generates multivariate data outputs, which necessitate chemometric modeling for signal interpretation...

  14. Determination of carbohydrates in fermentation processes by high-performance liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Plaga, A.; Stuempfel, J.; Fiedler, H.P. (Tuebingen Univ. (Germany, F.R.). Fakultaet fuer Biologie)

    1989-11-01

    HPLC is a universal, fast, accurate and selective method for the quantification of carbohydrates during fermentation processes. HPLC is not affected by complex constituents of fermentation media, such as meat extract, soybean meal or distillers solubles. The detection limit of the different investigated carbohydrates by refractive index monitoring ranges between 20 and 40 mg/l using a cation-exchange resin and between 50 and 100 mg/l using amino- or diol-bonded phases. (orig.).

  15. Fermentation of biomass sugars to ethanol using native industrial yeast strains.

    Science.gov (United States)

    Yuan, Dawei; Rao, Kripa; Relue, Patricia; Varanasi, Sasidhar

    2011-02-01

    In this paper, the feasibility of a technology for fermenting sugar mixtures representative of cellulosic biomass hydrolyzates with native industrial yeast strains is demonstrated. This paper explores the isomerization of xylose to xylulose using a bi-layered enzyme pellet system capable of sustaining a micro-environmental pH gradient. This ability allows for considerable flexibility in conducting the isomerization and fermentation steps. With this method, the isomerization and fermentation could be conducted sequentially, in fed-batch, or simultaneously to maximize utilization of both C5 and C6 sugars and ethanol yield. This system takes advantage of a pH-dependent complexation of xylulose with a supplemented additive to achieve up to 86% isomerization of xylose at fermentation conditions. Commercially-proven Saccharomyces cerevisiae strains from the corn-ethanol industry were used and shown to be very effective in implementation of the technology for ethanol production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process.

    Science.gov (United States)

    Lu, Congcong; Dong, Jie; Yang, Shang-Tian

    2013-09-01

    Wood pulping hydrolysate (WPH) containing mainly xylose and glucose as a potential substrate for acetone-butanol-ethanol (ABE) fermentation was studied. Due to the inhibitors present in the hydrolysate, several dilution levels and detoxification treatments, including overliming, activated charcoal adsorption, and resin adsorption, were evaluated for their effectiveness in relieving the inhibition on fermentation. Detoxification using resin and evaporation was found to be the most effective method in reducing the toxicity of WPH. ABE production in batch fermentation by Clostridium beijerinckii increased 68%, from 6.73 g/L in the non-treated and non-diluted WPH to 11.35 g/L in the resin treated WPH. With gas stripping for in situ product removal, ABE production from WPH increased to 17.73 g/L, demonstrating that gas stripping was effective in alleviating butanol toxicity by selectively separating butanol from the fermentation broth, which greatly improved solvents production and sugar conversion in the fermentation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Method for producing rapid pH changes

    Science.gov (United States)

    Clark, J.H.; Campillo, A.J.; Shapiro, S.L.; Winn, K.R.

    A method of initiating a rapid pH change in a solution comprises irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.

  18. Shifts in microbial populations in Rusitec fermenters as affected by the type of diet and impact of the method for estimating microbial growth (15N v. microbial DNA).

    Science.gov (United States)

    Mateos, I; Ranilla, M J; Saro, C; Carro, M D

    2017-11-01

    offered similar results for diets comparison, but both methods presented contrasting results for microbial growth in SOL and LIQ phases. The study showed that fermentation parameters remained fairly stable over the commonly used sampling period (days 8 to 14), but shifts in microbial populations were detected. Moreover, microbial populations differed markedly from those in the inocula, which indicates the difficulty of directly transposing results on microbial populations developed in Rusitec fermenters to in vivo conditions.

  19. Comprehensive Secondary Metabolite Profiling Toward Delineating the Solid and Submerged-State Fermentation of Aspergillus oryzae KCCM 12698

    Directory of Open Access Journals (Sweden)

    Su Y. Son

    2018-05-01

    Full Text Available Aspergillus oryzae has been commonly used to make koji, meju, and soy sauce in traditional food fermentation industries. However, the metabolic behaviors of A. oryzae during fermentation in various culture environments are largely uncharacterized. Thus, we performed time resolved (0, 4, 8, 12, 16 day secondary metabolite profiling for A. oryzae KCCM 12698 cultivated on malt extract agar and broth (MEA and MEB under solid-state fermentation (SSF and submerged fermentation (SmF conditions using the ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS followed by multivariate analyses. We observed the relatively higher proportions of coumarins and oxylipins in SSF, whereas the terpenoids were abundant in SmF. Moreover, we investigated the antimicrobial efficacy of metabolites that were extracted from SSF and SmF. The SSF extracts showed higher antimicrobial activities as compared to SmF, with higher production rates of bioactive secondary metabolites viz., ketone-citreoisocoumarin, pentahydroxy-anthraquinone, hexylitaconic acid, oxylipins, and saturated fatty acids. The current study provides the underpinnings of a metabolomic framework regarding the growth and bioactive compound production for A. oryzae under the primarily employed industrial cultivation states. Furthermore, the study holds the potentials for rapid screening and MS-characterization of metabolites helpful in determining the consumer safety implications of fermented foods involving Koji mold.

  20. Imaging for monitoring downstream processing of fermentation broths

    DEFF Research Database (Denmark)

    Moiseyenko, Rayisa; Baum, Andreas; Jørgensen, Thomas Martini

    In relation to downstream processing of a fermentation broth coagulation/flocculation is a typical pretreatment method for separating undesirable particles/impurities from the wanted product. In the coagulation process the negatively charged impurities are destabilized by adding of a clarifying...

  1. Vinegar rice (Oryza sativa L.) produced by a submerged fermentation process from alcoholic fermented rice

    OpenAIRE

    Spinosa,Wilma Aparecida; Santos Júnior,Vitório dos; Galvan,Diego; Fiorio,Jhonatan Luiz; Gomez,Raul Jorge Hernan Castro

    2015-01-01

    Considering the limited availability of technology for the production of rice vinegar and also due to the potential consumer product market, this study aimed to use alcoholic fermented rice (rice wine (Oryza sativa L.)) for vinegar production. An alcoholic solution with 6.28% (w/v) ethanol was oxidized by a submerged fermentation process to produce vinegar. The process of acetic acid fermentation occurred at 30 ± 0.3°C in a FRINGS® Acetator (Germany) for the production of vineg...

  2. An original method for producing acetaldehyde and diacetyl by yeast fermentation

    Directory of Open Access Journals (Sweden)

    Irina Rosca

    Full Text Available Abstract In this study a natural culture medium that mimics the synthetic yeast peptone glucose medium used for yeast fermentations was designed to screen and select yeasts capable of producing high levels of diacetyl and acetaldehyde. The presence of whey powder and sodium citrate in the medium along with manganese and magnesium sulfate enhanced both biomass and aroma development. A total of 52 yeasts strains were cultivated in two different culture media, namely, yeast peptone glucose medium and yeast acetaldehyde-diacetyl medium. The initial screening of the strains was based on the qualitative reaction of the acetaldehyde with Schiff's reagent (violet color and diacetyl with Brady's reagent (yellow precipitate. The fermented culture media of 10 yeast strains were subsequently analyzed by gas chromatography to quantify the concentration of acetaldehyde and diacetyl synthesized. Total titratable acidity values indicated that a total titratable acidity of 5.5 °SH, implying culture medium at basic pH, was more favorable for the acetaldehyde biosynthesis using strain D15 (Candida lipolytica; 96.05 mg L-1 acetaldehyde while a total titratable acidity value of 7 °SH facilitated diacetyl flavor synthesis by strain D38 (Candida globosa; 3.58 mg L-1 diacetyl. Importantly, the results presented here suggest that this can be potentially used in the baking industry.

  3. Alcoholic fermentation of stored sweet potatoes

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka, Y; One, H

    1958-01-01

    Sweet potatoes were ground and stored in a ground hold. The stored sweet potatoes gave about 90% fermentation efficiency by the koji process. A lower fermentation efficiency by the amylo process was improved by adding 20 to 30 mg/100 ml of organic N. Inorganic N has no effect in improving the fermentation efficiency of the stored sweet potatoes by the amylo process.

  4. Shuidouchi (Fermented Soybean Fermented in Different Vessels Attenuates HCl/Ethanol-Induced Gastric Mucosal Injury

    Directory of Open Access Journals (Sweden)

    Huayi Suo

    2015-11-01

    Full Text Available Shuidouchi (Natto is a fermented soy product showing in vivo gastric injury preventive effects. The treatment effects of Shuidouchi fermented in different vessels on HCl/ethanol-induced gastric mucosal injury mice through their antioxidant effect was determined. Shuidouchi contained isoflavones (daidzein and genistein, and GVFS (glass vessel fermented Shuidouchi had the highest isoflavone levels among Shuidouchi samples fermented in different vessels. After treatment with GVFS, the gastric mucosal injury was reduced as compared to the control mice. The gastric secretion volume (0.47 mL and pH of gastric juice (3.1 of GVFS treated gastric mucosal injury mice were close to those of ranitidine-treated mice and normal mice. Shuidouchi could decrease serum motilin (MTL, gastrin (Gas level and increase somatostatin (SS, vasoactive intestinal peptide (VIP level, and GVFS showed the strongest effects. GVFS showed lower IL-6, IL-12, TNF-α and IFN-γ cytokine levels than other vessel fermented Shuidouchi samples, and these levels were higher than those of ranitidine-treated mice and normal mice. GVFS also had higher superoxide dismutase (SOD, nitric oxide (NO and malonaldehyde (MDA contents in gastric tissues than other Shuidouchi samples. Shuidouchi could raise IκB-α, EGF, EGFR, nNOS, eNOS, Mn-SOD, Gu/Zn-SOD, CAT mRNA expressions and reduce NF-κB, COX-2, iNOS expressions as compared to the control mice. GVFS showed the best treatment effects for gastric mucosal injuries, suggesting that glass vessels could be used for Shuidouchi fermentation in functional food manufacturing.

  5. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation.

    Science.gov (United States)

    Bigelis, Ramunas; He, Haiyin; Yang, Hui Y; Chang, Li-Ping; Greenstein, Michael

    2006-10-01

    The use of inert absorbent polymeric supports for cellular attachment in solid-state fungal fermentation influenced growth, morphology, and production of bioactive secondary metabolites. Two filamentous fungi exemplified the utility of this approach to facilitate the discovery of new antimicrobial compounds. Cylindrocarpon sp. LL-Cyan426 produced pyrrocidines A and B and Acremonium sp. LL-Cyan416 produced acremonidins A-E when grown on agar bearing moist polyester-cellulose paper and generated distinctly different metabolite profiles than the conventional shaken or stationary liquid fermentations. Differences were also apparent when tenfold concentrated methanol extracts from these fermentations were tested against antibiotic-susceptible and antibiotic-resistant Gram-positive bacteria, and zones of inhibition were compared. Shaken broth cultures of Acremonium sp. or Cylindrocarpon sp. showed complex HPLC patterns, lower levels of target compounds, and high levels of unwanted compounds and medium components, while agar/solid support cultures showed significantly increased yields of pyrrocidines A and B and acremonidins A-E, respectively. This method, mixed-phase fermentation (fermentation with an inert solid support bearing liquid medium), exploited the increase in surface area available for fungal growth on the supports and the tendency of some microorganisms to adhere to solid surfaces, possibly mimicking their natural growth habits. The production of dimeric anthraquinones by Penicillium sp. LL-WF159 was investigated in liquid fermentation using various inert polymeric immobilization supports composed of polypropylene, polypropylene cellulose, polyester-cellulose, or polyurethane. This culture produced rugulosin, skyrin, flavomannin, and a new bisanthracene, WF159-A, after fermentation in the presence and absence of polymeric supports for mycelial attachment. The physical nature of the different support systems influenced culture morphology and relative

  6. Effect of Fermentation Conditions and Plucking Standards of Tea Leaves on the Chemical Components and Sensory Quality of Fermented Juice

    Directory of Open Access Journals (Sweden)

    Ping Tang

    2018-01-01

    Full Text Available The effects of fermentation conditions (temperature, time, and pH and plucking standards (one leaf and a bud to four leaves and a bud on the chemical components and sensory quality of the fermented juices processed from crushed fresh tea leaves were investigated. The results showed that optimum fermentation conditions that resulted in fermented juices of the best sensory quality and the highest content of TFs were a temperature of 35°C, time duration of 75 min, and pH 5.1. The fermented juices processed from new shoots with three leaves and a bud or four leaves and a bud afforded high overall acceptability and TF concentration. These differences arise because tea leaves with different plucking standards have different catechin content and enzyme activities. Fermented tea juice possessed higher concentrations of chemical components such as soluble solids, amino acids, and TFs and exhibited better sensory quality as compared to black tea infusion. The TF concentrations decreased as the pH of the fermenting juice increased, and the fermented juice showed the best overall acceptability. These results provide essential information for the improvement of the processing of black tea beverage by suggesting fermentation of fresh tea leaves as a better alternative to their infusion.

  7. A new rapid method for isolating nucleoli.

    Science.gov (United States)

    Li, Zhou Fang; Lam, Yun Wah

    2015-01-01

    The nucleolus was one of the first subcellular organelles to be isolated from the cell. The advent of modern proteomic techniques has resulted in the identification of thousands of proteins in this organelle, and live cell imaging technology has allowed the study of the dynamics of these proteins. However, the limitations of current nucleolar isolation methods hinder the further exploration of this structure. In particular, these methods require the use of a large number of cells and tedious procedures. In this chapter we describe a new and improved nucleolar isolation method for cultured adherent cells. In this method cells are snap-frozen before direct sonication and centrifugation onto a sucrose cushion. The nucleoli can be obtained within a time as short as 20 min, and the high yield allows the use of less starting material. As a result, this method can capture rapid biochemical changes in nucleoli by freezing the cells at a precise time, hence faithfully reflecting the protein composition of nucleoli at the specified time point. This protocol will be useful for proteomic studies of dynamic events in the nucleolus and for better understanding of the biology of mammalian cells.

  8. A Model of the Effect of the Microbial Biomass on the Isotherm of the Fermenting Solids in Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Barbara Celuppi Marques

    2006-01-01

    Full Text Available We compare isotherms for soybeans and soybeans fermented with Rhizopus oryzae, showing that in solid-state fermentation the biomass affects the isotherm of the fermenting solids. Equations are developed to calculate, for a given overall water content of the fermenting solids, the water contents of the biomass and residual substrate, as well as the water activity. A case study, undertaken using a mathematical model of a well-mixed bioreactor, shows that if water additions are made on the basis of the assumption that fermenting solids have the same isotherm as the substrate itself, poor growth can result since the added water does not maintain the water activity at levels favorable for growth. We conclude that the effect of the microbial biomass on the isotherm of the fermenting solids must be taken into account in mathematical models of solid-state fermentation bioreactors.

  9. Effect of acetic acid on citric acid fermentation in an integrated citric acid-methane fermentation process.

    Science.gov (United States)

    Xu, Jian; Chen, Yang-Qiu; Zhang, Hong-Jian; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui

    2014-09-01

    An integrated citric acid-methane fermentation process was proposed to solve the problem of extraction wastewater in citric acid fermentation process. Extraction wastewater was treated by anaerobic digestion and then recycled for the next batch of citric acid fermentation to eliminate wastewater discharge and reduce water resource consumption. Acetic acid as an intermediate product of methane fermentation was present in anaerobic digestion effluent. In this study, the effect of acetic acid on citric acid fermentation was investigated and results showed that lower concentration of acetic acid could promote Aspergillus niger growth and citric acid production. 5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) staining was used to quantify the activity of A. niger cells, and the results suggested that when acetic acid concentration was above 8 mM at initial pH 4.5, the morphology of A. niger became uneven and the part of the cells' activity was significantly reduced, thereby resulting in deceasing of citric acid production. Effects of acetic acid on citric acid fermentation, as influenced by initial pH and cell number in inocula, were also examined. The result indicated that inhibition by acetic acid increased as initial pH declined and was rarely influenced by cell number in inocula.

  10. [Rapid methods for the genus Salmonella bacteria detection in food and raw materials].

    Science.gov (United States)

    Sokolov, D M; Sokolov, M S

    2013-01-01

    The article considers sanitary and epidemiological aspects and the impact of Salmonella food poisoning in Russia and abroad. The main characteristics of the agent (Salmonella enterica subsp. Enteritidis) are summarized. The main sources of human Salmonella infection are products of poultry and livestock (poultry, eggs, dairy products, meat products, etc.). Standard methods of identifying the causative agent, rapid (alternative) methods of analysis of Salmonella using differential diagnostic medium (MSRV, Salmosyst, XLT4-agar, agar-Rambach et al.), rapid tests Singlepath-Salmonella and PCR (food proof Salmonella) in real time were stated. Rapid tests provide is a substantial (at 24-48 h) reducing the time to identify Salmonella.

  11. Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii

    Science.gov (United States)

    Spindler, Diane D.; Grohmann, Karel; Wyman, Charles E.

    1992-01-01

    A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.

  12. Fermentation of irradiated sugarcane must

    International Nuclear Information System (INIS)

    Alcarde, Andre Ricardo; Horii, Jorge; Walder, Julio Marcos Melges

    2003-01-01

    Bacillus and Lactobacillus are bacteria that usually contaminate the ethanolic fermentation by yeasts and my influence yeast viability. As microorganisms can be killed by ionizing radiation, the efficacy of gamma radiation in reducing the population of certain contaminating bacteria from sugarcane must was examined and, as a consequence, the beneficial effect of lethal doses of radiation on some parameters of yeast-based ethanolic fermentation was verified. Must from sugarcane juice was inoculated with bacteria of the general Bacillus and Lactobacillus. The contaminated must was irradiated with 2.0, 4.0, 6.0, 8.0 and 10.0 kGy of gamma radiation. After ethanolic fermentation by the yeast (Saccharomyces cerevisiae) the total and volatile acidity produced during the process were evaluated: yeast viability and ethanol yield were also recorded. Treatments of gamma radiation reduced the population of the contaminating bacteria in the sugarcane must. The acidity produced during the fermentation decreased as the dose rate of radiation increased. Conversely, the yeast viability increased as the dose rate of radiation increased. Gamma irradiation was an efficient treatment to decontaminate the must and improved its parameters related to ethanolic fermentation, including ethanol yield, which increased 1.9%. (author)

  13. Fermented dairy products: knowledge and consumption.

    Science.gov (United States)

    Hekmat, Sharareh; Koba, Lesia

    2006-01-01

    Much has been published on the nutritional and health benefits of fermented dairy products, especially those containing probiotic microorganisms. However, consumers may not be familiar with the term "fermented dairy products," and therefore may not take full advantage of them. University students' knowledge and consumption patterns of fermented dairy products were assessed. University students (n=223) completed a survey consisting of a section on demographics and another on knowledge and consumption patterns. The majority of respondents (62%) were not familiar with the term "fermented dairy products." Most respondents consumed yogourt a few times a week (40%) or a few times a month (30%). Almost all respondents (92%) were unable to identify the difference between regular and probiotic yogourt. Most respondents (93%) had not heard of acidophilus milk, but the majority (65%) would be willing to try it. Most respondents were unsure whether sour cream (65%), yogourt beverages (74%), and cheddar cheese (61%) were fermented dairy products. Sixty percent of respondents never consumed yogourt drinks. Education is needed about fermented dairy products, especially probiotics, and their nutritional and health benefits. Such education may increase their acceptability and consumption.

  14. The effect of gas double-dynamic on mass distribution in solid-state fermentation.

    Science.gov (United States)

    Chen, Hong-Zhang; Zhao, Zhi-Min; Li, Hong-Qiang

    2014-05-10

    The mass distribution regularity in substrate of solid-state fermentation (SSF) has rarely been reported due to the heterogeneity of solid medium and the lack of suitable instrument and method, which limited the comprehensive analysis and enhancement of the SSF performance. In this work, the distributions of water, biomass, and fermentation product in different medium depths of SSF were determined using near-infrared spectroscopy (NIRS) and the developed models. Based on the mass distribution regularity, the effects of gas double-dynamic on heat transfer, microbial growth and metabolism, and product distribution gradient were systematically investigated. Results indicated that the maximum temperature of substrate and the maximum carbon dioxide evolution rate (CER) were 39.5°C and 2.48mg/(hg) under static aeration solid-state fermentation (SASSF) and 33.9°C and 5.38mg/(hg) under gas double-dynamic solid-state fermentation (GDSSF), respectively, with the environmental temperature for fermentation of 30±1°C. The fermentation production (cellulase activity) ratios of the upper, middle, and lower levels were 1:0.90:0.78 at seventh day under SASSF and 1:0.95:0.89 at fifth day under GDSSF. Therefore, combined with NIRS analysis, gas double-dynamic could effectively strengthen the solid-state fermentation performance due to the enhancement of heat transfer, the stimulation of microbial metabolism and the increase of the homogeneity of fermentation products. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale.

    Directory of Open Access Journals (Sweden)

    Nicholas A Bokulich

    Full Text Available American coolship ale (ACA is a type of spontaneously fermented beer that employs production methods similar to traditional Belgian lambic. In spite of its growing popularity in the American craft-brewing sector, the fermentation microbiology of ACA has not been previously described, and thus the interface between production methodology and microbial community structure is unexplored. Using terminal restriction fragment length polymorphism (TRFLP, barcoded amplicon sequencing (BAS, quantitative PCR (qPCR and culture-dependent analysis, ACA fermentations were shown to follow a consistent fermentation progression, initially dominated by Enterobacteriaceae and a range of oxidative yeasts in the first month, then ceding to Saccharomyces spp. and Lactobacillales for the following year. After one year of fermentation, Brettanomyces bruxellensis was the dominant yeast population (occasionally accompanied by minor populations of Candida spp., Pichia spp., and other yeasts and Lactobacillales remained dominant, though various aerobic bacteria became more prevalent. This work demonstrates that ACA exhibits a conserved core microbial succession in absence of inoculation, supporting the role of a resident brewhouse microbiota. These findings establish this core microbial profile of spontaneous beer fermentations as a target for production control points and quality standards for these beers.

  16. Application of Neesler reagent in the ammonium quantification used in the fermentations of biotechnology products

    Directory of Open Access Journals (Sweden)

    Dinorah Torres-Idavoy

    2015-08-01

    Full Text Available The ammonium salts are used in fermentations to supplement the deficient amounts of nitrogen and stabilize the pH of the culture medium. The excess ammonium ion exerts a detrimental effect on the fermentation process inhibiting microbial growth. An analytical method based on Neesler reagent was developed for monitoring and controlling the concentration of ammonium during the fermentation process. The test was standardized, by means of the selection of measuring equipment, and the reaction time as well as comparing standards of ammonium salts. The method was characterized with the evaluation of the next parameters: Specificity, Linearity and Range, Quantification Limit, Accuracy and Precision. The method proved to be specific. Two linear curves were defined in the ranges of concentrations of ammonium chloride salt (2-20 μg/ml and ammonium sulfate salt (5-30 μg/ml. The limits of quantification were the lowest points of each one. The method proved to be accurate and precise. This assay was applied to samples of the yeast culture and bacteria of the genus Saccharomyces and E. coli respectively. A novel method in micro plate for quantification and analytical control of ammonia was developed. This method is used to control this fundamental chemical component in the fermentations, to optimize the culture medium. Thus, an appropriate expression of recombinant proteins and proper vaccine candidates for clinical use are achieved

  17. Comparison of microbial fermentation of high- and low-forage diets in Rusitec, single-flow continuous-culture fermenters and sheep rumen.

    Science.gov (United States)

    Carro, M D; Ranilla, M J; Martín-García, A I; Molina-Alcaide, E

    2009-04-01

    Eight Rusitec and eight single-flow continuous-culture fermenters (SFCCF) were used to compare the ruminal fermentation of two diets composed of alfalfa hay and concentrate in proportions of 80 : 20 (F80) and 20 : 80 (F20). Results were validated with those obtained previously in sheep fed the same diets. Rusitec fermenters were fed once daily and SFCCF twice, but liquid dilution rates were similar in both types of fermenters. Mean values of pH over the 12 h postfeeding were higher (P 0.05) were found in any in vitro system. A more precise control of pH in both types of fermenters and a reduction of concentrate retention time in Rusitec could probably improve the simulation of in vivo fermentation.

  18. Characterization of typical Tunisian fermented milk, rayeb | Samet ...

    African Journals Online (AJOL)

    Traditional Tunisian fermented milk, rayeb, was produced according to the traditional method. Physicochemical, microstructural, microbiological characteristics and major aromatic compounds evaluation were studied. The results show a decrease in lactose content and pH value and an increase in lactic acid during ...

  19. Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine.

    Science.gov (United States)

    Sulaiman, Joanita; Gan, Han Ming; Yin, Wai-Fong; Chan, Kok-Gan

    2014-01-01

    The quality of traditional Chinese soy sauce is determined by microbial communities and their inter-related metabolic roles in the fermentation tank. In this study, traditional Chinese soy sauce brine samples were obtained periodically to monitor the transitions of the microbial population and functional properties during the 6 months of fermentation process. Whole genome shotgun method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida. Metabolic reconstruction of the metagenome sequences demonstrated a characteristic profile of heterotrophic fermentation of proteins and carbohydrates. This was supported by the detection of ethanol with stable decrease of pH values. To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of 6 months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

  20. Physiological and fermentation properties of Bacillus coagulans and a mutant lacking fermentative lactate dehydrogenase activity.

    Science.gov (United States)

    Su, Yue; Rhee, Mun Su; Ingram, Lonnie O; Shanmugam, K T

    2011-03-01

    Bacillus coagulans, a sporogenic lactic acid bacterium, grows optimally at 50-55 °C and produces lactic acid as the primary fermentation product from both hexoses and pentoses. The amount of fungal cellulases required for simultaneous saccharification and fermentation (SSF) at 55 °C was previously reported to be three to four times lower than for SSF at the optimum growth temperature for Saccharomyces cerevisiae of 35 °C. An ethanologenic B. coagulans is expected to lower the cellulase loading and production cost of cellulosic ethanol due to SSF at 55 °C. As a first step towards developing B. coagulans as an ethanologenic microbial biocatalyst, activity of the primary fermentation enzyme L-lactate dehydrogenase was removed by mutation (strain Suy27). Strain Suy27 produced ethanol as the main fermentation product from glucose during growth at pH 7.0 (0.33 g ethanol per g glucose fermented). Pyruvate dehydrogenase (PDH) and alcohol dehydrogenase (ADH) acting in series contributed to about 55% of the ethanol produced by this mutant while pyruvate formate lyase and ADH were responsible for the remainder. Due to the absence of PDH activity in B. coagulans during fermentative growth at pH 5.0, the l-ldh mutant failed to grow anaerobically at pH 5.0. Strain Suy27-13, a derivative of the l-ldh mutant strain Suy27, that produced PDH activity during anaerobic growth at pH 5.0 grew at this pH and also produced ethanol as the fermentation product (0.39 g per g glucose). These results show that construction of an ethanologenic B. coagulans requires optimal expression of PDH activity in addition to the removal of the LDH activity to support growth and ethanol production.

  1. Carrot Juice Fermentations as Man-Made Microbial Ecosystems Dominated by Lactic Acid Bacteria.

    Science.gov (United States)

    Wuyts, Sander; Van Beeck, Wannes; Oerlemans, Eline F M; Wittouck, Stijn; Claes, Ingmar J J; De Boeck, Ilke; Weckx, Stefan; Lievens, Bart; De Vuyst, Luc; Lebeer, Sarah

    2018-06-15

    Spontaneous vegetable fermentations, with their rich flavors and postulated health benefits, are regaining popularity. However, their microbiology is still poorly understood, therefore raising concerns about food safety. In addition, such spontaneous fermentations form interesting cases of man-made microbial ecosystems. Here, samples from 38 carrot juice fermentations were collected through a citizen science initiative, in addition to three laboratory fermentations. Culturing showed that Enterobacteriaceae were outcompeted by lactic acid bacteria (LAB) between 3 and 13 days of fermentation. Metabolite-target analysis showed that lactic acid and mannitol were highly produced, as well as the biogenic amine cadaverine. High-throughput 16S rRNA gene sequencing revealed that mainly species of Leuconostoc and Lactobacillus (as identified by 8 and 20 amplicon sequence variants [ASVs], respectively) mediated the fermentations in subsequent order. The analyses at the DNA level still detected a high number of Enterobacteriaceae , but their relative abundance was low when RNA-based sequencing was performed to detect presumptive metabolically active bacterial cells. In addition, this method greatly reduced host read contamination. Phylogenetic placement indicated a high LAB diversity, with ASVs from nine different phylogenetic groups of the Lactobacillus genus complex. However, fermentation experiments with isolates showed that only strains belonging to the most prevalent phylogenetic groups preserved the fermentation dynamics. The carrot juice fermentation thus forms a robust man-made microbial ecosystem suitable for studies on LAB diversity and niche specificity. IMPORTANCE The usage of fermented food products by professional chefs is steadily growing worldwide. Meanwhile, this interest has also increased at the household level. However, many of these artisanal food products remain understudied. Here, an extensive microbial analysis was performed of spontaneous fermented

  2. Biohydrogen production from combined dark-photo fermentation under a high ammonia content in the dark fermentation effluent

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; Lo, Yung-Chung; Yeh, Kuei-Ling [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Chang, Jo-Shu [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; National Cheng Kung Univ., Tainan, Taiwan (China). Sustainable Environment Research Center; National Cheng Kung Univ., Tainan, Taiwan (China). Microalgae Biotechnology and Bioengineering Lab.

    2010-07-01

    Integrated dark and photo (two-stage) fermentation was employed to enhance the performance of H{sub 2} production. First, the continuous dark fermentation using indigenous Clostridium butyricum CGS5 was carried out at 12 h HRT and fed with sucrose at a concentration of 18750 mg/l. The overall H{sub 2} production rate and H{sub 2} yield were fairly stable with a mean value of 87.5 ml/l/h and 1.015 mol H{sub 2}/mol sucrose, respectively. In addition, a relatively high ammonia nitrogen content (574 mg/l) in the dark fermentation effluent was observed. The soluble metabolites from dark fermentation, consisting mainly of butyric, lactic and acetic acids, were directly used as the influent of continuous photo-H{sub 2} production process inoculated with Rhodopseudomonas palutris WP 3-5 under the condition of 35oC, 10000 lux irradiation, pH 7.0 and 48 h HRT. The maximum overall hydrogen production rate from photo fermentation was 16.4 ml H{sub 2}/l/h, and the utilization of the soluble metabolites could reach 90%. The maximum H{sub 2} yield dramatically increased from 1.015 mol H{sub 2}/mol sucrose (in dark fermentation only) to 6.04 mol H{sub 2}/mol sucrose in the combined dark and photo fermentation. Surprisingly, the operation strategy applied in this work was able to attain an average NH{sub 3}-N removal efficiency of 92%, implying that our photo-H{sub 2} production system has a higher NH{sub 3}-N tolerance, demonstrating its high applicability in an integrated dark-photo fermentation system. (orig.)

  3. Bioethanol production: an integrated process of low substrate loading hydrolysis-high sugars liquid fermentation and solid state fermentation of enzymatic hydrolysis residue.

    Science.gov (United States)

    Chu, Qiulu; Li, Xin; Ma, Bin; Xu, Yong; Ouyang, Jia; Zhu, Junjun; Yu, Shiyuan; Yong, Qiang

    2012-11-01

    An integrated process of enzymatic hydrolysis and fermentation was investigated for high ethanol production. The combination of enzymatic hydrolysis at low substrate loading, liquid fermentation of high sugars concentration and solid state fermentation of enzymatic hydrolysis residue was beneficial for conversion of steam explosion pretreated corn stover to ethanol. The results suggested that low substrate loading hydrolysis caused a high enzymatic hydrolysis yield; the liquid fermentation of about 200g/L glucose by Saccharomyces cerevisiae provided a high ethanol concentration which could significantly decrease cost of the subsequent ethanol distillation. A solid state fermentation of enzymatic hydrolysis residue was combined, which was available to enhance ethanol production and cellulose-to-ethanol conversion. The results of solid state fermentation demonstrated that the solid state fermentation process accompanied by simultaneous saccharification and fermentation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Improving wood hydrolyzate fermentation by using schizosaccharomycetes

    Energy Technology Data Exchange (ETDEWEB)

    Kalyuzhnyi, M Ya; Ustinova, V I; Petrushko, G I

    1967-01-01

    The development of Schizosaccharomycetes (I) in wood hydrolyzates is not observed when fermentation is carried out by the convetional batch process, evidently because of the highly inhibitory action of the medium. More recently, with the introduction of continuous fermentation of wood and other hydrolyzates, the occurrence of I has been frequently reported, and in some hydrolysis plants, I became predominant, eliminating the budding yeast strains. The phenomenon can be attributed to higher temperatures employed in continuous fermentation, and to a more favorable medium, as the hydrolyzate is diluted with spent fermentation liquor (the flow of fresh medium constitutes about 20% of the fermentation-vat volume). The I cells, when grown under favorable conditions, have a high fermenting power, adapt easily to the fermentation of galactose, and give higher yields of ethanol than the budding yeast. As observed at plants using I, however, the cells are sensitive to variations in the fermentation process, and are inactivated upon storage. This is usually attributed to their inability to store polysaccharides, and especially glycogen. An experimental study undertaken to determine conditions under which reserve polysaccharides accumulate in I cells showed that the important factor is the quality of the medium in which the cells are grown and the conditions of storage. In media enriched with spent fermentaion liquor or with cell autolyzate and purified from toxic components, considerable amounts of glycogen accumulate in the cells.

  5. Color identification and fuzzy reasoning based monitoring and controlling of fermentation process of branched chain amino acid

    Science.gov (United States)

    Ma, Lei; Wang, Yizhong; Xu, Qingyang; Huang, Huafang; Zhang, Rui; Chen, Ning

    2009-11-01

    The main production method of branched chain amino acid (BCAA) is microbial fermentation. In this paper, to monitor and to control the fermentation process of BCAA, especially its logarithmic phase, parameters such as the color of fermentation broth, culture temperature, pH, revolution, dissolved oxygen, airflow rate, pressure, optical density, and residual glucose, are measured and/or controlled and/or adjusted. The color of fermentation broth is measured using the HIS color model and a BP neural network. The network's input is the histograms of hue H and saturation S, and output is the color description. Fermentation process parameters are adjusted using fuzzy reasoning, which is performed by inference rules. According to the practical situation of BCAA fermentation process, all parameters are divided into four grades, and different fuzzy rules are established.

  6. Enhanced substrate conversion effiency of fermentation processes

    OpenAIRE

    Sanders, J.P.M.; Weusthuis, R.A.; Mooibroek, H.

    2008-01-01

    The present invention relates to the field of fermentation technology. In particular the invention relates to fermentation processes for the production of a first and a second fermentation product by a single production organism wherein the first product is in a more reduced state than the substrate and the second fermentation product is in a more oxidised state than the substrate yet in a less oxidised state than the final oxidation product CO2, such that the concurrent synthesis of the firs...

  7. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions

    Science.gov (United States)

    Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes. PMID:29351285

  8. Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions.

    Science.gov (United States)

    Peltier, Emilien; Bernard, Margaux; Trujillo, Marine; Prodhomme, Duyên; Barbe, Jean-Christophe; Gibon, Yves; Marullo, Philippe

    2018-01-01

    This work describes the set up of a small scale fermentation methodology for measuring quantitative traits of hundreds of samples in an enological context. By using standardized screw cap vessels, the alcoholic fermentation kinetics of Saccharomyces cerevisiae strains were measured by following their weight loss over the time. This dispositive was coupled with robotized enzymatic assays for measuring metabolites of enological interest in natural grape juices. Despite the small volume used, kinetic parameters and fermentation end products measured are similar with those observed in larger scale vats. The vessel used also offers the possibility to assay 32 volatiles compounds using a headspace solid-phase micro-extraction coupled to gas chromatography and mass spectrometry. The vessel shaking applied strongly impacted most of the phenotypes investigated due to oxygen transfer occuring in the first hours of the alcoholic fermentation. The impact of grape must and micro-oxygenation was investigated illustrating some relevant genetic x environmental interactions. By phenotyping a wide panel of commercial wine starters in five grape juices, broad phenotypic correlations between kinetics and metabolic end products were evidentiated. Moreover, a multivariate analysis illustrates that some grape musts are more able than others to discriminate commercial strains since some are less robust to environmental changes.

  9. What is alcoholic fermentation? A study about the alcoholic fermentation conception through the history

    Directory of Open Access Journals (Sweden)

    C.A. F. Cardoso

    2004-05-01

    Full Text Available This work shows the historical development of the alcoholic fermentation conception, based on expe-rimental results obtained from European scientists, from Renascence to the beginning of 20th century(1930. From this, ve concepts were identied for the phenomenon: putrefactive, spiritual, chemical,biological and biochemical. The current conception of alcoholic fermentation was also evaluated. Forthis proposal, three groups of teachers were interviewed through the question? What is alcoholicfermentation? The P group (pilot, n=12 made of professionals that teach on secondary and highschools, group A composed of PhDs from the Center of Technology Education - NUTES (n=9 andgroup B from Department of Medical Biochemistry (called group B, n=41 both of Federal Universityof Rio de Janeiro, respectively. Key words associated with the fermentative process were identiedidentify in the interviewees answers. The group A components mentioned only six key words andpointed out the alcoholic fermentation products. Dierently, subjects from P and B groups cited ahigher number and also more unusual key words (n = 9 and 12, respectively. We also analyzedtheir answers throughout fermentative descriptive words (sugar, alcohol, carbon dioxide, anaerobic,yeast and ATP. These words were established after an evaluation of alcoholic fermentation conceptstated in the Biology/Biochemistry books most adopted in high schools and Universities. Our analysisshowed that group A used only three descriptive words (sugar, alcohol and yeast while componentsof group B used all the selected descriptive words. However, only one interviewee used all the sixwords together. From this analysis, we proposed that the chemical concept of alcoholic fermentationprevailed on the other concepts found on the historical research (spiritual, putrefactive, biological ebiochemical.

  10. Rapid identification of salmonella serotypes with stereo and hyperspectral microscope imaging Methods

    Science.gov (United States)

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  11. Mobile Image Ratiometry: A New Method for Instantaneous Analysis of Rapid Test Strips

    OpenAIRE

    Donald C. Cooper; Bryan Callahan; Phil Callahan; Lee Burnett

    2012-01-01

    Here we describe Mobile Image Ratiometry (MIR), a new method for the automated quantification of standardized rapid immunoassay strips using consumer-based mobile smartphone and tablet cameras. To demonstrate MIR we developed a standardized method using rapid immunotest strips directed against cocaine (COC) and its major metabolite, benzoylecgonine (BE). We performed image analysis of three brands of commercially available dye-conjugated anti-COC/BE antibody test strips in response to three d...

  12. FERMENTED MILK AS A FUNCTIONAL FOOD

    Directory of Open Access Journals (Sweden)

    Irena Rogelj

    2000-06-01

    Full Text Available Certain foods have been associated with health benefits for many years; fermented milks and yoghurt are typical examples. The health properties of these dairy products were a part of folklore until the concept of probiotics emerged, and the study of fermented milks and yoghurt containing probiotic bacteria has become more systematic. Functional foods have thus developed as a food, or food ingredient, with positive effects on host health and/or well-being beyond their nutritional value, and fermented milk with probiotic bacteria has again become the prominent representative of this new category of food. Milk alone is much more than the sum of its nutrients. It contains an array of bioactivities: modulating digestive and gastrointestinal functions, haemodynamics, controlling probiotic microbial growth, and immunoregulation. When fermented milk is enriched with probiotic bacteria and prebiotics it meets all the requirements of functional food. The possible positive effects of enriched fermented milk on host health will be reviewed.

  13. Xylose fermentation to ethanol. A review

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J D

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  14. Enhanced substrate conversion efficiency of fermentation processes

    NARCIS (Netherlands)

    Sanders, J.P.M.; Weusthuis, R.A.; Mooibroek, H.

    2006-01-01

    The present invention relates to the field of fermentation technology. In particular the invention relates to fermentation processes for the production of a first and a second fermentation product by a single production organism wherein the first product is in a more reduced state than the substrate

  15. Enhanced substrate conversion effiency of fermentation processes

    NARCIS (Netherlands)

    Sanders, J.P.M.; Weusthuis, R.A.; Mooibroek, H.

    2008-01-01

    The present invention relates to the field of fermentation technology. In particular the invention relates to fermentation processes for the production of a first and a second fermentation product by a single production organism wherein the first product is in a more reduced state than the substrate

  16. Production of tea vinegar by batch and semicontinuous fermentation

    OpenAIRE

    Kaur, Pardeep; Kocher, G. S.; Phutela, R. P.

    2010-01-01

    The fermented tea vinegar combines the beneficial properties of tea and vinegar. The complete fermentation takes 4 to 5 weeks in a batch culture and thus can be shortened by semi continuous/ continuous fermentation using immobilized bacterial cells. In the present study, alcoholic fermentation of 1.0 and 1.5% tea infusions using Saccharomyces cerevisae G was carried out that resulted in 84.3 and 84.8% fermentation efficiency (FE) respectively. The batch vinegar fermentation of these wines wit...

  17. Estimation of the antioxidant activity of the commercially available fermented milks.

    Science.gov (United States)

    Najgebauer-Lejko, Dorota; Sady, Marek

    2015-01-01

    Free radicals are connected with the increased risk of certain diseases, especially cancers. There is some scientific evidence that antioxidant-rich diet may inhibit the negative impact of free radicals. The aim of the present study was to analyse the antioxidant capacity of the selected commercial natural and flavoured fermented milks offered in Poland, derived from different producers. The following commercially available natural fermented milks: 12 yoghurts, 12 kefirs, 2 butter milks, 2 cultured milks, Turkish yoghurt drink (ayran) and the following flavoured fermented milks: 22 yoghurts, 2 acidophillus milks, 2 kefirs, butter milk and vegetable flavoured fermented milk were analysed for their antioxidant potential. The antioxidant capacity was assessed, in two replicates and twice for each product, by means of ferric reducing antioxidant power (FRAP) and DPPH radical scavenging ability (expressed as ARP - anti radical power) methods. Among all analysed plain products, yoghurts and kefirs were characterised by the highest antioxidant activity. The presence of probiotic Lactobacillus casei strains in the product positively affected both FRAP and ARP values. Antioxidant capacity of the flavoured fermented milks was primarily affected by the type and quality (e.g. fruit concentration) of the added flavouring preparation. The most valuable regarding the estimated parameters were chocolate, coffee, grapefruit with green tea extract as well as bilberry, forest fruits, strawberry and cherry with blackcurrant fillings. Protein content, inclusion of probiotic microflora as well as type and quality of flavouring preparations are the main factors affecting antioxidant properties of fermented milks.

  18. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    Directory of Open Access Journals (Sweden)

    Christopher John Davey

    2016-02-01

    Full Text Available Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s, Greater understanding of the compatibility between the polymer and inorganic phase(s, Improved methods for homogeneously dispersing the inorganic phase.

  19. Effect of fermented Banana peel on Broiler Carcass

    Directory of Open Access Journals (Sweden)

    Koni TNI

    2013-06-01

    Full Text Available This experiment was conducted to examine effect of inclusion of fermented banana peel by Rhyzopus oligosporus in diets on slaughter weight, carcass weight and carcass percentage, weight and percentage abdominal fat of broiler. The experiment was done based on Completely Randomized Design with four treatments and four replications and each replication consisted of six chickens. The treatment were R0 = without banana peel fermented, R1 = 5% banana peel fermented, R2 = 10% banana peel fermented, R3 = 15% banana peel fermented. Data of the experiment were analyzed, using ANOVA and then continued with Duncan's Multiple Range Test. Result showed that level of fermented banana peel affected slaughter weight and carcass weight. However carcass persentage, weight and percentage of abdominal fat was not affected by treatment. Banana peel fermented by Rhizopus oligosporus could can be used maximally 10% in broiler ration.

  20. Utilization of Encapsulated CaCO_3 in Liquid Core Capsules for Improving Lactic Acid Fermentation

    International Nuclear Information System (INIS)

    Boon-Beng, Lee; Nurul Ainina Zulkifli

    2016-01-01

    Lactic acid bacteria (LAB) have been used for food fermentation due to its fermentative ability to improve and enhance the quality of the end food products. However, the performance of LAB is affected as fermentation time elapsed because the microbial growth is inhibited by its end product, for example lactic acid. In this study, a new approach was introduced to reduce the product inhibition effect using CaCO_3 which is encapsulated in spherical liquid core capsules of diameter 3.5 mm and 3.6 mm produced through extrusion dripping method. The results showed that the pH and lactic acid concentration of LAB fermentation was well maintained by the capsules. The results of the fermentation conducted to control pH and lactic acid concentration using the capsules were better than those of the control set and comparable with that of the free CaCO_3 set. In addition, the viable cell concentration of L. casei shirota was high at the end of fermentation when the fermentation was conducted using the capsules. The results of this study suggested that the capsules have high potential to be applied for pH and lactic acid level control in LAB fermentation for various productions. (author)

  1. Acetate adaptation of clostridia tyrobutyricum for improved fermentation production of butyrate.

    Science.gov (United States)

    Jaros, Adam M; Rova, Ulrika; Berglund, Kris A

    2013-12-01

    Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

  2. Effectiveness of Higher Fatty Acids C8, C10 and C12, Dimethyl Dicarbonate and Sulphur Dioxide for Inhibition of Re-fermentation and Malolactic Activities in Wine

    Directory of Open Access Journals (Sweden)

    Mojmír Baroň

    2014-01-01

    Full Text Available The issue of preventing the re-fermentation and protection against undesirable malolactic fermentation (MLF in order to safe content of acids in wine is very complicated. In this paper the saturated higher fatty acids (HFA – C8, C10 and C12, dimethyldicarbonate (DMDC and sulphur dioxide (SO2 were tested. The re-fermentation test showed the strongest inhibition power at ratio 2:8, 1:9 and 0:10 as C8:C10 acids – 65 days without re-fermentation. MLF experiments confirmed that addition of SO2 into the fermenting media causes rapid inhibition of lactic acid bacteria metabolic activity. Malic acid concentrations were proportionally decreasing during 6 days of experiment and at the end the content of this acid varied between 0.16 and 0.22 g/L, the only exception formed a variant with the addition of SO2 (1.57 g/L of malic acid. After calculation of the average consumption rate of malic acid, the results showed the inhibition power – SO2 (81.05% followed by variant of 40 mg/L mixture of HFA (40.76%, a variant of 200 mg/L of DMDC (31.98% and a variant of 20 mg/L mixture of HFA (12.59%. The addition of HFA can significantly reduce the dosage of other preservatives, especially SO2. Based on results, this method can be recommend in the production of wines with residual sugar and also wines made from over-mature material to prevent undesirable MLF.

  3. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    Science.gov (United States)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results

  4. Comparative Study of Different Processing Methods for the ...

    African Journals Online (AJOL)

    The result of the two processing methods reduced the cyanide concentration to the barest minimum level required by World Health Organization (10mg/kg). The mechanical pressing-fermentation method removed more cyanide when compared to fermentation processing method. Keywords: Cyanide, Fermentation, Manihot ...

  5. [GSH fermentation process modeling using entropy-criterion based RBF neural network model].

    Science.gov (United States)

    Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng

    2008-05-01

    The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.

  6. Evaluation of PDA Technical Report No 33. Statistical Testing Recommendations for a Rapid Microbiological Method Case Study.

    Science.gov (United States)

    Murphy, Thomas; Schwedock, Julie; Nguyen, Kham; Mills, Anna; Jones, David

    2015-01-01

    New recommendations for the validation of rapid microbiological methods have been included in the revised Technical Report 33 release from the PDA. The changes include a more comprehensive review of the statistical methods to be used to analyze data obtained during validation. This case study applies those statistical methods to accuracy, precision, ruggedness, and equivalence data obtained using a rapid microbiological methods system being evaluated for water bioburden testing. Results presented demonstrate that the statistical methods described in the PDA Technical Report 33 chapter can all be successfully applied to the rapid microbiological method data sets and gave the same interpretation for equivalence to the standard method. The rapid microbiological method was in general able to pass the requirements of PDA Technical Report 33, though the study shows that there can be occasional outlying results and that caution should be used when applying statistical methods to low average colony-forming unit values. Prior to use in a quality-controlled environment, any new method or technology has to be shown to work as designed by the manufacturer for the purpose required. For new rapid microbiological methods that detect and enumerate contaminating microorganisms, additional recommendations have been provided in the revised PDA Technical Report No. 33. The changes include a more comprehensive review of the statistical methods to be used to analyze data obtained during validation. This paper applies those statistical methods to analyze accuracy, precision, ruggedness, and equivalence data obtained using a rapid microbiological method system being validated for water bioburden testing. The case study demonstrates that the statistical methods described in the PDA Technical Report No. 33 chapter can be successfully applied to rapid microbiological method data sets and give the same comparability results for similarity or difference as the standard method. © PDA, Inc

  7. A novel strategy to construct yeast Saccharomyces cerevisiae strains for very high gravity fermentation.

    Directory of Open Access Journals (Sweden)

    Xianglin Tao

    Full Text Available Very high gravity (VHG fermentation is aimed to considerably increase both the fermentation rate and the ethanol concentration, thereby reducing capital costs and the risk of bacterial contamination. This process results in critical issues, such as adverse stress factors (ie., osmotic pressure and ethanol inhibition and high concentrations of metabolic byproducts which are difficult to overcome by a single breeding method. In the present paper, a novel strategy that combines metabolic engineering and genome shuffling to circumvent these limitations and improve the bioethanol production performance of Saccharomyces cerevisiae strains under VHG conditions was developed. First, in strain Z5, which performed better than other widely used industrial strains, the gene GPD2 encoding glycerol 3-phosphate dehydrogenase was deleted, resulting in a mutant (Z5ΔGPD2 with a lower glycerol yield and poor ethanol productivity. Second, strain Z5ΔGPD2 was subjected to three rounds of genome shuffling to improve its VHG fermentation performance, and the best performing strain SZ3-1 was obtained. Results showed that strain SZ3-1 not only produced less glycerol, but also increased the ethanol yield by up to 8% compared with the parent strain Z5. Further analysis suggested that the improved ethanol yield in strain SZ3-1 was mainly contributed by the enhanced ethanol tolerance of the strain. The differences in ethanol tolerance between strains Z5 and SZ3-1 were closely associated with the cell membrane fatty acid compositions and intracellular trehalose concentrations. Finally, genome rearrangements in the optimized strain were confirmed by karyotype analysis. Hence, a combination of genome shuffling and metabolic engineering is an efficient approach for the rapid improvement of yeast strains for desirable industrial phenotypes.

  8. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  9. Phenolic profile and fermentation patterns of different commercial gluten-free pasta during in vitro large intestine fermentation.

    Science.gov (United States)

    Rocchetti, Gabriele; Lucini, Luigi; Chiodelli, Giulia; Giuberti, Gianluca; Gallo, Antonio; Masoero, Francesco; Trevisan, Marco

    2017-07-01

    The fate of phenolic compounds, along with short-chain fatty acids (SCFAs) production kinetics, was evaluated on six different commercial gluten-free (GF) pasta samples varying in ingredient compositions, focussing on the in vitro faecal fermentation after the gastrointestinal digestion. A general reduction of both total phenolics and reducing power was observed in all samples, together with a substantial change in phenolic profile over 24h of faecal fermentation, with differences among GF pasta samples. Flavonoids, hydroxycinnamics and lignans degraded over time, with a concurrent increase in low-molecular-weight phenolic acids (hydroxybenzoic acids), alkylphenols, hydroxybenzoketones and tyrosols. Interestingly, discriminant analysis also identified several alkyl derivatives of resorcinol as markers of the changes in phenolic profile during in vitro fermentation. Furthermore, degradation pathways of phenolics by intestinal microbiota have been proposed. Considering the total SCFAs and butyrate production during the in vitro fermentation, different fermentation kinetics were observed among GF pasta post-hydrolysis residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Modeling and simulation of the bubble-induced flow in wine fermentation vessels

    Directory of Open Access Journals (Sweden)

    Schmidt Dominik

    2015-01-01

    Full Text Available Detailed flow pattern analyses regarding wine fermentations conducted without mechanical agitation are limited to lab-scale investigations, as industrial size measurements are expensive and difficult to realize. Computational fluid dynamic (CFD methods can offer an alternative and more flexible approach to gain insight into such bubble induced fluid flows. Therefore, the aim of this study was to transfer the findings of existing research onto a CFD model capable of capturing the three- dimensional flow pattern in industrial scale wine fermentation vessels. First results were obtained by using an extended version of the OpenFOAM® (v.2.2.x solver multiphaseEulerFoam for modeling the gas-liquid two phase system. With parameters from the most vigorous phase of wine fermentation a fully developed, unsteady flow regime could be established after approx. 120 s of real time. Thereby the groundwork for further evaluations of e.g. mixing efficiency or cooling equipment optimizations with CFD methods is laid.

  11. Comparative study of the antioxidant and immunomodulant activities between yeast and lab fermented papaya

    Directory of Open Access Journals (Sweden)

    Cristiana Caliceti

    2018-01-01

    Full Text Available Background: Dietary supplements of Carica papaya Linn fermented with yeast using a biotechnological process have well recognized positive effects on immunological, hematological, inflammatory, and oxidative stress parameters, utilized as biomarkers of chronic and degenerative diseases. Although many natural products fermented with lactic acid bacteria (LAB have shown beneficial effects on the immune system and on antioxidant defenses, formulations of papaya fermented with LAB have not yet been studied. Aims: The aims of this study were to investigate the immunomodulatory activity linked to the type of papaya fermentation (yeast vs LAB in macrophages and to evaluate whether the type of fermentation differently modulates oxidative stress both in cell free system and in a model of embryonic brain cells. Methods: Cytotoxicity was evaluated through cell proliferation kinetic and lactate dehydrogenase release assays; immunomodulatory activity through the transcriptional activation of inducible nitric oxide synthase (iNOS and Tumor Necrosis Factor α (TNFα by qRT-PCR in RAW 264.7 macrophages; antioxidant capacity was assessed, in cell free system and in pheochromocytoma cells embryonic brain cells, by measuring the intracellular ROS levels through a fluorescent dye. Results: Our data showed that all the formulations studied are safe at low concentrations (3-6 mg/ml; the LAB- fermented formulations promoted the expression of iNOS and TNFα more efficiently than yeast-fermented papaya preparation (p <0.001. In a cell free system, the LAB-fermented formulation acted as mild scavengers of ROS while, in cells, both formulations didn’t show any significant effect. Conclusions: This study corroborates previous reports showing the efficacy of yeast fermented papaya as a potent immunostimulant and highlights the beneficial contribution of lactic bacteria fermentation.

  12. Changes in the bacterial community in the fermentation process of kôso, a Japanese sugar-vegetable fermented beverage.

    Science.gov (United States)

    Chiou, Tai-Ying; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Takahashi, Tomoya

    2017-02-01

    Kôso is a Japanese fermented beverage made with over 20 kinds of vegetables, mushrooms, and sugars. The changes in the bacterial population of kôso during fermentation at 25 °C over a period of 10 days were studied using 454 pyrosequencing of the 16S rRNA gene. The analysis detected 224 operational taxonomic units (OTUs) clustered from 8 DNA samples collected on days 0, 3, 7, and 10 from two fermentation batches. Proteobacteria were the dominant phylum in the starting community, but were replaced by Firmicutes within three days. Seventy-eight genera were identified from the 224 OTUs, in which Bifidobacterium, Leuconostoc, Lactococcus, and Lactobacillus dominated, accounting for over 96% of the total bacterial population after three days' fermentation. UniFrac-Principal Coordinate Analysis of longitudinal fermented samples revealed dramatic changes in the bacterial community in kôso, resulting in significantly low diversity at the end of fermentation as compared with the complex starting community.

  13. [Accuracy of three methods for the rapid diagnosis of oral candidiasis].

    Science.gov (United States)

    Lyu, X; Zhao, C; Yan, Z M; Hua, H

    2016-10-09

    Objective: To explore a simple, rapid and efficient method for the diagnosis of oral candidiasis in clinical practice. Methods: Totally 124 consecutive patients with suspected oral candidiasis were enrolled from Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China. Exfoliated cells of oral mucosa and saliva or concentrated oral rinse) obtained from all participants were tested by three rapid smear methods(10% KOH smear, gram-stained smear, Congo red stained smear). The diagnostic efficacy(sensitivity, specificity, Youden's index, likelihood ratio, consistency, predictive value and area under curve(AUC) of each of the above mentioned three methods was assessed by comparing the results with the gold standard(combination of clinical diagnosis, laboratory diagnosis and expert opinion). Results: Gram-stained smear of saliva(or concentrated oral rinse) demonstrated highest sensitivity(82.3%). Test of 10%KOH smear of exfoliated cells showed highest specificity(93.5%). Congo red stained smear of saliva(or concentrated oral rinse) displayed highest diagnostic efficacy(79.0% sensitivity, 80.6% specificity, 0.60 Youden's index, 4.08 positive likelihood ratio, 0.26 negative likelihood ratio, 80% consistency, 80.3% positive predictive value, 79.4% negative predictive value and 0.80 AUC). Conclusions: Test of Congo red stained smear of saliva(or concentrated oral rinse) could be used as a point-of-care tool for the rapid diagnosis of oral candidiasis in clinical practice. Trial registration: Chinese Clinical Trial Registry, ChiCTR-DDD-16008118.

  14. 27 CFR 24.212 - High fermentation wine.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false High fermentation wine. 24..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Other Than Standard Wine § 24.212 High fermentation wine. High fermentation wine is wine made with the addition of sugar within the limitations prescribed...

  15. Drying characteristics and engineering properties of fermented ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-06

    Mar 6, 2009 ... fermented ground cassava. J. T. Nwabanne ... The drying characteristics of fermented ground local variety of ... effect of variety on the drying and engineering properties of fermented .... Figure 2 shows that the bulk density of each cultivar ... very close thermal conductivities as depicted in the shape of Figure ...

  16. The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation.

    Science.gov (United States)

    Boudreau, Thomas F; Peck, Gregory M; O'Keefe, Sean F; Stewart, Amanda C

    2017-01-01

    Fungicide residues on fruit may adversely affect yeast during cider fermentation, leading to sluggish or stuck fermentation or the production of hydrogen sulfide (H 2 S), which is an undesirable aroma compound. This phenomenon has been studied in grape fermentation but not in apple fermentation. Low nitrogen availability, which is characteristic of apples, may further exacerbate the effects of fungicides on yeast during fermentation. The present study explored the effects of three fungicides: elemental sulfur (S 0 ) (known to result in increased H 2 S in wine); fenbuconazole (used in orchards but not vineyards); and fludioxonil (used in post-harvest storage of apples). Only S 0 led to increased H 2 S production. Fenbuconazole (≥0.2 mg L -1 ) resulted in a decreased fermentation rate and increased residual sugar. An interactive effect of yeast assimilable nitrogen (YAN) concentration and fenbuconazole was observed such that increasing the YAN concentration alleviated the negative effects of fenbuconazole on fermentation kinetics. Cidermakers should be aware that residual fenbuconazole (as low as 0.2 mg L -1 ) in apple juice may lead to stuck fermentation, especially when the YAN concentration is below 250 mg L -1 . These results indicate that fermentation problems attributed to low YAN may be caused or exacerbated by additional factors such as fungicide residues, which have a greater impact on fermentation performance under low YAN conditions. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  17. Production of Protein Concentrate and 1,3-Propanediol by Wheat-Based Thin Stillage Fermentation.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shim, Youn Young; Emami, Shahram; Reaney, Martin J T

    2017-05-17

    Fermentation of wheat with yeast produces thin stillage (W-TS) and distiller's wet grains. A subsequent fermentation of W-TS (two-stage fermentation, TSF) with endemic bacteria at 25 and 37 °C decreased glycerol and lactic acid concentrations, while 1,3-propanediol (1,3-PD) and acetic acid accumulated with greater 1,3-PD and acetic acid produced at 37 °C. During TSF, W-TS colloids coagulated and floated in the fermentation medium producing separable liquid and slurry fractions. The predominant endemic bacteria in W-TS were Lactobacillus panis, L. gallinarum, and L. helveticus, and this makeup did not change substantially as fermentation progressed. As nutrients were exhausted, floating particles precipitated. Protein contents of slurry and clarified liquid increased and decreased, respectively, as TSF progressed. The liquid was easily filtered through an ultrafiltration membrane. These results suggested that TSF is a novel method for W-TS clarification and production of protein concentrates and 1,3-PD from W-TS.

  18. Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine

    Directory of Open Access Journals (Sweden)

    Joanita eSulaiman

    2014-10-01

    Full Text Available The quality of traditional Chinese soy sauce is determined by microbial communities and their inter-related metabolic roles in the fermentation tank. In this study, traditional Chinese soy sauce brine samples were obtained periodically to monitor the transitions of the microbial population and functional properties during the six months of fermentation process. Whole genome shotgun (WGS method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida. Metabolic reconstruction of the metagenome sequences demonstrated a characteristic profile of heterotrophic fermentation of proteins and carbohydrates. This was supported by the detection of ethanol with stable decrease of pH values. To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of six months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

  19. Improving the acetylcholinesterase inhibitory effect of Illigera henryi by solid-state fermentation with Clonostachys rogersoniana.

    Science.gov (United States)

    Li, Xue-Jiao; Dong, Jian-Wei; Cai, Le; Mei, Rui-Feng; Ding, Zhong-Tao

    2017-11-01

    Illigera henryi, an endemic traditional Chinese medicine, contains abundant aporphine alkaloids that possess various bioactivities. In the present study, tubers of I. henryi were fermented by several fungi, and the acetylcholinesterase (AChE) inhibitory activities of non-fermented and fermented I. henryi were measured. The results showed that the fermentation of I. henryi with Clonostachys rogersoniana 828H2 is effective for improving the AChE inhibitory activity. A key biotransformation was found during the C. rogersoniana fermentation for clarifying the improvement of the AChE inhibitory activity of I. henryi: (S)-actinodaphnine (1) was converted to a new 4-hydroxyaporphine alkaloid (4R,6aS)-4-hydroxyactinodaphnine (2) that possessed a stronger AChE inhibitory activity, with an IC 50 value of 17.66±0.06 μM. This paper is the first to report that the pure strain fermentation processing of I. henryi and indicated C. rogersoniana fermentation might be a potential processing method for I. henryi. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Fermentation of an Aromatized Wine-Based Beverage with Sambucus nigra L. Syrup (after Champenoise Method

    Directory of Open Access Journals (Sweden)

    Teodora Emilia Coldea

    2015-11-01

    Full Text Available The sparkling wine based beverage with elderflower (Sambucus nigra L. syrup presented improved sensorial characteristics. White wine used was Fetească regală variety, obtained in Micro winery of University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca. Elderflower syrup was prepared without thermal treatment, but was pasteurised before its addition to wine. Elderflower have many health benefits, such as diuretic, diaphoretic, or antioxidant activity. In this study it was used elderflower syrup both to improve the product s sensorial properties, and for their multiple benefits to health. The sparkling wine based beverage with elderflower syrup was produced by fermentation in the bottle (after Champenoise method, with the addition of wine yeast. The novelty brought by this paper is the use of elderflower syrup in alcoholic-beverage industry.

  1. A Rapid Aeroelasticity Optimization Method Based on the Stiffness characteristics

    OpenAIRE

    Yuan, Zhe; Huo, Shihui; Ren, Jianting

    2018-01-01

    A rapid aeroelasticity optimization method based on the stiffness characteristics was proposed in the present study. Large time expense in static aeroelasticity analysis based on traditional time domain aeroelasticity method is solved. Elastic axis location and torsional stiffness are discussed firstly. Both torsional stiffness and the distance between stiffness center and aerodynamic center have a direct impact on divergent velocity. The divergent velocity can be adjusted by changing the cor...

  2. Rapid determination of tannins in tanning baths by adaptation of BSA method.

    Science.gov (United States)

    Molinari, R; Buonomenna, M G; Cassano, A; Drioli, E

    2001-01-01

    A rapid and reproducible method for the determination of tannins in vegetable tanning baths is proposed as a modification of the BSA method for grain tannins existing in literature. The protein BSA was used instead of leather powder employed in the Filter Method, which is adopted in Italy and various others countries of Central Europe. In this rapid method the tannin contents is determined by means a spectrophotometric reading and not by means a gravimetric analysis of the Filter Method. The BSA method, which belongs to mixed methods (which use both precipitation and complexation of tannins), consists of selective precipitation of tannin from a solution containing also non tannins by BSA, the dissolution of precipitate and the quantification of free tannin amount by its complexation with Fe(III) in hydrochloric solutions. The absorbance values, read at 522 nm, have been expressed in terms of tannic acid concentration by using a calibration curve made with standard solutions of tannic acid; these have been correlated with the results obtained by using the Filter Method.

  3. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw☆

    Science.gov (United States)

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B.; Du, Chenyu

    2013-01-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

  4. A rapid method for monitoring the hydrodeoxygenation of coal-derived naphtha

    Energy Technology Data Exchange (ETDEWEB)

    Farnand, B.A.; Coulombe, S.; Smiley, G.T.; Fairbridge, C.

    1988-01-01

    A bonded polar poly(ethylene glycol) capillary column has been used for the identification and quantification of the phenolic components in synthetic crude naphthas. This provides a rapid and routine method for the determination of phenolic oxygen content with results comparable to combustion and neutron activation methods. The method is most useful in monitoring the removal of phenolic oxygen by hydroprocessing. 11 refs., 1 fig. 1 tab.

  5. Modeling Bacteriocin Resistance and Inactivation of Listeria innocua LMG 13568 by Lactobacillus sakei CTC 494 under Sausage Fermentation Conditions

    Science.gov (United States)

    Leroy, Frédéric; Lievens, Kristoff; De Vuyst, Luc

    2005-01-01

    In mixed cultures, bacteriocin production by the sausage isolate Lactobacillus sakei CTC 494 rapidly inactivated sensitive Listeria innocua LMG 13568 cells, even at low bacteriocin activity levels. A small fraction of the listerial population was bacteriocin resistant. However, sausage fermentation conditions inhibited regrowth of resistant cells. PMID:16269805

  6. Fluidized Bed Reactor as Solid State Fermenter

    Directory of Open Access Journals (Sweden)

    Krishnaiah, K.

    2005-01-01

    Full Text Available Various reactors such as tray, packed bed, rotating drum can be used for solid-state fermentation. In this paper the possibility of fluidized bed reactor as solid-state fermenter is considered. The design parameters, which affect the performances are identified and discussed. This information, in general can be used in the design and the development of an efficient fluidized bed solid-state fermenter. However, the objective here is to develop fluidized bed solid-state fermenter for palm kernel cake conversion into enriched animal and poultry feed.

  7. MASS SPECTROMETRY PROTEOMICS METHOD AS A RAPID SCREENING TOOL FOR BACTERIAL CONTAMINATION OF FOOD

    Science.gov (United States)

    2017-06-01

    MASS SPECTROMETRY PROTEOMICS METHOD AS A RAPID SCREENING TOOL FOR BACTERIAL CONTAMINATION OF FOOD ECBC-TR...TITLE AND SUBTITLE Mass Spectrometry Proteomics Method as a Rapid Screening Tool for Bacterial Contamination of Food 5a. CONTRACT NUMBER 5b...the MSPM to correctly classify whether or not food samples were contaminated with Salmonella enterica serotype Newport in this blinded pilot study

  8. Fuji apple storage time rapid determination method using Vis/NIR spectroscopy

    Science.gov (United States)

    Liu, Fuqi; Tang, Xuxiang

    2015-01-01

    Fuji apple storage time rapid determination method using visible/near-infrared (Vis/NIR) spectroscopy was studied in this paper. Vis/NIR diffuse reflection spectroscopy responses to samples were measured for 6 days. Spectroscopy data were processed by stochastic resonance (SR). Principal component analysis (PCA) was utilized to analyze original spectroscopy data and SNR eigen value. Results demonstrated that PCA could not totally discriminate Fuji apples using original spectroscopy data. Signal-to-noise ratio (SNR) spectrum clearly classified all apple samples. PCA using SNR spectrum successfully discriminated apple samples. Therefore, Vis/NIR spectroscopy was effective for Fuji apple storage time rapid discrimination. The proposed method is also promising in condition safety control and management for food and environmental laboratories. PMID:25874818

  9. Traditional fermented foods and beverages of Namibia

    Directory of Open Access Journals (Sweden)

    Jane Misihairabgwi

    2017-09-01

    Conclusion: Fermented foods and beverages play a major role in the diet, socioeconomic, and cultural activities of the Namibian population. Most are spontaneously fermented. Research is scarce and should be conducted on the microbiology, biochemistry, nutritional value, and safety of the fermented foods and beverages to ensure the health of the population.

  10. The changes of proteins fractions shares in milk and fermented milk drinks.

    Science.gov (United States)

    Bonczar, Genowefa; Walczycka, Maria; Duda, Iwona

    2016-01-01

    The aim of this research was to observe the changes which take place in the electrophoretic picture of milk proteins after pasteurisation and inoculation with different starter cultures (both traditional and probiotic). After incubation, the yoghurt, kefir, acidified milk, fermented Bifidobacterium bifidum drink and Lactobacillus acidophillus drink were chilled for 14 days to observe the changes which occurred. The research materials were raw and pasteurised milk, as well as fermented milk- based drinks. The raw milk used for research came from Polish Holstein-Fresian black and white cows. The milk was sampled 3 times and divided into 5 parts, each of which was pasteurised at 95°C for 10 min and then cooled for inoculation: yoghurt to 45°C, kefir and acidified milk to 22°C and drinks with Bifidobacterium bifidum and Lactobacillus acidophillus to 38°C. Milk was inoculated with lyophilised, direct vat starter cultures, in an amount equal to 2% of the working starter. For the production of fermented drinks, the subsequent starters were applied: "YC-180" Christian Hansen for yoghurt, "D" Biolacta-Texel-Rhodia for kefir, CH-N--11 Christian Hansen for acidified milk, starter by Christian Hansen for the probiotic Bifidobacterium bifidum milk, starter by Biolacta-Texel-Rhodia for the probiotic Lactobacillus acidophillus milk. The analyses were conducted in raw, pasteurised and freshly fermented milk as well as in milk drinks stored for 14 days. The total solid content was estimated by the drying method; the fat content by the Gerber method; the lactose content by the Bertrand method; the protein content by the Kjeldahl method with Buchi apparatus; the density of milk was measured with lactodensimeter; acidity with a pH-meter; and potential acidity by Soxhlet-Henkl method (AOAC, 1990). The electrophoretic separation of proteins in raw and pasteurised milk, as well as in freshly produced milk drinks and those stored for 14 days, was performed with SDS-PAGE (on

  11. Exploiting the potential of gas fermentation

    DEFF Research Database (Denmark)

    Redl, Stephanie Maria Anna; Diender, Martijn; Jensen, Torbjørn Ølshøj

    2017-01-01

    The use of gas fermentation for production of chemicals and fuels with lower environmental impact is a technology that is gaining increasing attention. Over 38 Gt of CO2 is annually being emitted from industrial processes, thereby contributing significantly to the concentration of greenhouse gases...... in the atmosphere. Together with the gasification of biomass and different waste streams, these gases have the potential for being utilized for production of chemicals through fermentation processes. Acetogens are among the most studied organisms capable of utilizing waste gases. Although engineering...... focus on the advantages of alternative fermentation scenarios, including thermophilic production strains, multi-stage fermentations, mixed cultures, as well as mixotrophy. Such processes have the potential to significantly broaden the product portfolio, increase the product concentrations and yields...

  12. Enhanced fermentable sugar production from kitchen waste using various pretreatments.

    Science.gov (United States)

    Hafid, Halimatun Saadiah; Rahman, Nor'Aini Abdul; Md Shah, Umi Kalsom; Baharudin, Azhari Samsu

    2015-06-01

    The kitchen waste fraction in municipal solid waste contains high organic matter particularly carbohydrate that can contribute to fermentable sugar production for subsequent conversion to bioethanol. This study was carried out to evaluate the influence of single and combination pretreatments of kitchen waste by liquid hot water, mild acid pretreatment of hydrochloric acid (HCl) and sulphuric acid (H2SO4) and enzymatic hydrolysis (glucoamylase). The maximum total fermentable sugar produced after combination pretreatment by 1.5% HCl and glucoamylase consisted of 93.25 g/L glucose, 0.542 g/L sucrose, 0.348 g/L maltose, and 0.321 g/L fructose. The glucose released by the combination pretreatment method was 0.79 g glucose/g KW equivalent to 79% of glucose conversion. The effects of the pre-treatment on kitchen waste indicated that the highest solubilization was 40% by the combination method of 1.5% HCl and glucoamylase. The best combination pre-treatment gave concentrations of lactic acid, acetic acid, and propionic acid of 11.74 g/L, 6.77 g/L, and 1.02 g/L, respectively. The decrease of aliphatic absorbance bands of polysaccharides at 2851 and 2923 cm(-1) and the increase on structures of carbonyl absorbance bands at 1600 cm(-1) reflects the progress of the kitchen waste hydrolysis to fermentable sugars. Overall, 1.5% HCl and glucoamylase treatment was the most profitable process as the minimum selling price of glucose was USD 0.101/g kitchen waste. Therefore, the combination pretreatment method was proposed to enhance the production of fermentable sugar, particularly glucose from kitchen waste as the feedstock for bioethanol production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fermentation process for the production of organic acids

    Science.gov (United States)

    Hermann, Theron; Reinhardt, James; Yu, Xiaohui; Udani, Russell; Staples, Lauren

    2018-05-01

    This invention relates to improvements in the fermentation process used in the production of organic acids from biological feedstock using bacterial catalysts. The improvements in the fermentation process involve providing a fermentation medium comprising an appropriate form of inorganic carbon, an appropriate amount of aeration and a biocatalyst with an enhanced ability to uptake and assimilate the inorganic carbon into the organic acids. This invention also provides, as a part of an integrated fermentation facility, a novel process for producing a solid source of inorganic carbon by sequestering carbon released from the fermentation in an alkali solution.

  14. The mitochondrial genome impacts respiration but not fermentation in interspecific Saccharomyces hybrids.

    Directory of Open Access Journals (Sweden)

    Warren Albertin

    Full Text Available In eukaryotes, mitochondrial DNA (mtDNA has high rate of nucleotide substitution leading to different mitochondrial haplotypes called mitotypes. However, the impact of mitochondrial genetic variant on phenotypic variation has been poorly considered in microorganisms because mtDNA encodes very few genes compared to nuclear DNA, and also because mitochondrial inheritance is not uniparental. Here we propose original material to unravel mitotype impact on phenotype: we produced interspecific hybrids between S. cerevisiae and S. uvarum species, using fully homozygous diploid parental strains. For two different interspecific crosses involving different parental strains, we recovered 10 independent hybrids per cross, and allowed mtDNA fixation after around 80 generations. We developed PCR-based markers for the rapid discrimination of S. cerevisiae and S. uvarum mitochondrial DNA. For both crosses, we were able to isolate fully isogenic hybrids at the nuclear level, yet possessing either S. cerevisiae mtDNA (Sc-mtDNA or S. uvarum mtDNA (Su-mtDNA. Under fermentative conditions, the mitotype has no phenotypic impact on fermentation kinetics and products, which was expected since mtDNA are not necessary for fermentative metabolism. Alternatively, under respiratory conditions, hybrids with Sc-mtDNA have higher population growth performance, associated with higher respiratory rate. Indeed, far from the hypothesis that mtDNA variation is neutral, our work shows that mitochondrial polymorphism can have a strong impact on fitness components and hence on the evolutionary fate of the yeast populations. We hypothesize that under fermentative conditions, hybrids may fix stochastically one or the other mt-DNA, while respiratory environments may increase the probability to fix Sc-mtDNA.

  15. 27 CFR 24.176 - Crushing and fermentation.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Crushing and fermentation..., DEPARTMENT OF THE TREASURY LIQUORS WINE Production of Wine § 24.176 Crushing and fermentation. (a) Natural... fermentation but the density of the juice may not be reduced below 22 degrees Brix. However, if the juice is...

  16. Biochemical Characteristics and Viability of Probiotic and Yogurt Bacteria in Yogurt during the Fermentation and Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    F Sarvari

    2014-09-01

    Full Text Available This research aimed to investigate the viability of probiotic bacteria (Lactobacillus acidophilus LA-5 and Bifidobacterium lactis BB-12 and yogurt bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus in yogurt during the fermentation, immediately after fermentation and during refrigerated storage (21 d, 4˚C. Also the biochemical characteristics of milk as affected by the commercial 4-strain mixed starter culture were investigated. Storage time affected the viability of all bacterial species. The concentration of lactic acid during the fermentation increased in parallel with the titrable acidity, and the concentration of acetic acid was proportional to the viability of Bifidobacterium lactis. The acetaldehyde level was decreased in the yogurt from day 0 up to the end of the storage. Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus were multiplied considerably during the fermentation. Streptococcus thermophilus could maintain its viability to the highest level, but Lactobacillus delbrueckii ssp. bulgaricus lost its viability rapidly during the cold storage compared to Streptococcus thermophilus. The multiplication and viability of probiotic bacteria were also influenced by the associative strains and species of yogurt organisms. Bifidobacteria counts were satisfactory. The loss of viability for bifidobacteria was gradual and steady during the storage, and they showed good stability during the storage as compared to Lactobacillus acidophilus.

  17. Moisture content during extrusion of oats impacts the initial fermentation metabolites and probiotic bacteria during extended fermentation by human fecal microbiota.

    Science.gov (United States)

    Brahma, Sandrayee; Weier, Steven A; Rose, Devin J

    2017-07-01

    Extrusion exposes flour components to high pressure and shear during processing, which may affect the dietary fiber fermentability by human fecal microbiota. The objective of this study was to determine the effect of flour moisture content during extrusion on in vitro fermentation properties of whole grain oats. Extrudates were processed at three moisture levels (15%, 18%, and 21%) at fixed screw speed (300rpm) and temperature (130°C). The extrudates were then subjected to in vitro digestion and fermentation. Extrusion moisture significantly affected water-extractable β-glucan (WE-BG) in the extrudates, with samples processed at 15% moisture (lowest) and 21% moisture (highest) having the highest concentration of WE-BG. After the first 8h of fermentation, more WE-BG remained in fermentation media in samples processed at 15% moisture compared with the other conditions. Also, extrusion moisture significantly affected the production of acetate, butyrate, and total SCFA by the microbiota during the first 8h of fermentation. Microbiota grown on extrudates processed at 18% moisture had the highest production of acetate and total SCFA, whereas bacteria grown on extrudates processed at 15% and 18% moisture had the highest butyrate production. After 24h of fermentation, samples processed at 15% moisture supported lower Bifidobacterium counts than those produced at other conditions, but had among the highest Lactobacillus counts. Thus, moisture content during extrusion significantly affects production of fermentation metabolites by the gut microbiota during the initial stages of fermentation, while also affecting probiotic bacteria counts during extended fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of submerged and anaerobic fermentations on cassava flour ...

    African Journals Online (AJOL)

    Cassava tubers for processing into cassava flour, Lafun a Nigerian locally fermented product was subjected to two different types of fermentations: submerged and anaerobic fermentation for 72 h. Physicochemical changes that occurred during fermentation and their influence on the functional, rheological and sensory ...

  19. RESEARCHES CONCERNING THE EVOLUTION OF WINE MICROBIOTA DURING THE SPONTANEOUS FERMENTATION OF RED GRAPES JUICES

    Directory of Open Access Journals (Sweden)

    Ionica Deliu

    2010-01-01

    Full Text Available In order to keep its place on the wine international market, Romania should produce typical wines starting from localgrape varieties and conducting the alcoholic fermentation by starter cultures obtained from local isolated wine yeast.The present study was initiated due to the fact that there are few informations regarding the evolution of winemicrorganisms in plantations and in the fermentations process for quantitative point of view.The population dynamics of microbiota in Valea Calugareasca vineyard was analysed during the alcoholicfermentation. No yeast starter cultures had been used in order to investigate the dynamics of grape-related indigenousmicroorganisms population. Classical works and methods for alcoholic fermentation monitoring have been employed atthis level.At the beginning of fermentation the total number of yeasts found is doubling, while the number of bacteria is stabilizedat a value of 103 CFU/ml. During the alcoholic fermentation the yeasts become predominant (107–108 cfu/ml andcontinue the fermentation until its completion. Significant differences regarding the evolution of yeast microbiota forquantitative point of view between varieties have been recorded.

  20. Effect of fermentation period on the organic acid and amino acid contents of Ogiri from castor oil bean seeds

    Directory of Open Access Journals (Sweden)

    Ojinnaka, M-T. C.

    2013-01-01

    .Conclusion, significance and impact of study: Sufficient organic acids were detected in the three Bacillus fermented castor oil bean samples. The production of organic acids is undoubtedly the determining factor on which the shelf life and the safety of the final product depend while the inhibition of pathogenic and spoilage flora is also dependent on a rapid and adequate formation of these organic acids. The results of amino acid analysis indicated a high concentration of all amino acids especially at 96 h of fermentation. Amino acids are known to play a major role in the taste and flavour development of foods Thus the flavour and aroma of ogiri may be due to the production of amino acids, especially glutamic acid during the fermentation process.

  1. Simultaneous determination of free amino acids in Pu-erh tea and their changes during fermentation.

    Science.gov (United States)

    Zhu, Yuchen; Luo, Yinghua; Wang, Pengpu; Zhao, Mengyao; Li, Lei; Hu, Xiaosong; Chen, Fang

    2016-03-01

    Pu-erh ripened tea is produced through a unique microbial fermentation process from the sun-dried leaves of large-leaf tea species (Camellia sinensis (Linn.) var. assamica (Masters) Kitamura) in Yunnan province of China. In this study, the changes of amino acid profiles during fermentation of Pu-erh tea were investigated, based on the improved HPLC-UV method with PITC pre-column derivatization for the simultaneous determination of twenty free amino acids. Results showed that aspartic acid, glutamic acid, arginine, alanine, theanine and tyrosine were the major amino acids in tea samples. Fermentation significantly influenced on the amino acid profiles. The total free amino acid contents significantly decreased during fermentation (pfermentation and then decreased gradually. The results provided the useful information for the manipulation of fermentation process according to the changes of amino acids and acrylamide contents in Pu-erh ripened tea. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Energy consumption in fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Bach, P

    1984-01-01

    The purpose of the present publication is to limit energy used to aerate the anaerobic fermentation processes. In yeast production the aeration process consumes the greatest part of the total energy required. A mathematical model, based on literature data, is presented for a yeast fermenter. the effect of various aeration and raw product strategies can be calculated. Simulation of yeast fermentation proves it to be independent of oxygen transport. However interaction between flow conditions and biological kinetics (glucose effect) is a limiting factor. With many feeding point the use of enegy for aeration (mixing) can be reduced to 1/3 of the present one.

  3. Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods.

    Science.gov (United States)

    Álvarez-Ainza, M L; Zamora-Quiñonez, K A; Moreno-Ibarra, G M; Acedo-Félix, E

    2015-03-01

    Bacanora is a spirituous beverage elaborated with Agave angustifolia Haw in an artisanal process. Natural fermentation is mostly performed with native yeasts and bacteria. In this study, 228 strains of yeast like Saccharomyces were isolated from the natural alcoholic fermentation on the production of bacanora. Restriction analysis of the amplified region ITS1-5.8S-ITS2 of the ribosomal DNA genes (RFLPr) were used to confirm the genus, and 182 strains were identified as Saccharomyces cerevisiae. These strains displayed high genomic variability in their chromosomes profiles by karyotyping. Electrophoretic profiles of the strains evaluated showed a large number of chromosomes the size of which ranged between 225 and 2200 kpb approximately.

  4. The Dynamic Microbiota Profile During Pepper (Piper nigrum L.) Peeling by Solid-State Fermentation.

    Science.gov (United States)

    Hu, Qisong; Zhang, Jiachao; Xu, Chuanbiao; Li, Congfa; Liu, Sixin

    2017-06-01

    White pepper (Piper nigrum L.), a well-known spice, is the main pepper processing product in Hainan province, China. The solid-state method of fermentation can peel pepper in a highly efficient manner and yield high-quality white pepper. In the present study, we used next-generation sequencing to reveal the dynamic changes in the microbiota during pepper peeling by solid-state fermentation. The results suggested that the inoculated Aspergillus niger was dominant throughout the fermentation stage, with its strains constituting more than 95% of the fungi present; thus, the fungal community structure was relatively stable. The bacterial community structure fluctuated across different fermentation periods; among the bacteria present, Pseudomonas, Tatumella, Pantoea, Acinetobacter, Lactococcus, and Enterobacter accounted for more than 95% of all bacteria. Based on the correlations among the microbial community, we found that Pseudomonas and Acinetobacter were significantly positively related with A. niger, which showed strong synergy with them. In view of the microbial functional gene analysis, we found that these three bacteria and fungi were closely related to the production of pectin esterase (COG4677) and acetyl xylan esterase (COG3458), the key enzymes for pepper peeling. The present research clarifies the solid-state fermentation method of pepper peeling and lays a theoretical foundation to promote the development of the pepper peeling process and the production of high-quality white pepper.

  5. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  6. STUDY OF THE EFFECTS SHOWN BY THE ACTION OF VARIOUS MICROORGANISMS ON THE LACTIC FERMENTATION OF JUICES

    Directory of Open Access Journals (Sweden)

    Iuliana Manea

    2010-01-01

    Full Text Available Research has established the most effective lactic acid bacteria used for fermentation of fruit and vegetables juices. The cultures were used for Bifidobacteria, Lactobacillus acidophilus and culture of micro flora obtained spontaneous shoots. Lactic fermented juice was obtained from cabbage, carrots and beetroot. Working in these variants were determined lactic fermentation parameters and some of the bioactive compounds from this process: pH, reducing sugars, viable cell counts. Determination of reducing sugars calculated as glucose was conducted using the 3.5 dinitrosalicilic acid method (DNS method, pH was determined with a pH meter electronics. Chemical parameters listed were determined every two hours during the first 24 hours, then 48 and 72 hours in thermostatic conditions at 37 degrees C and 7 days storage at refrigerator temperature. At the end of the lactic fermentation, the lowest pH 4.31, which also provide juice conservation was obtained using a pure culture of Lactobacillus acidophilus. Reducing sugar is metabolized significantly when the juice of beetroot, fermented with Lactobacillus acidophilus culture, 75.19%. The results may be an argument for obtaining juice fermented lactic acid, which are popular functional foods, to obtain a chemical composition and sensory their optimum.

  7. Rapid assessment methods in eye care: An overview

    Directory of Open Access Journals (Sweden)

    Srinivas Marmamula

    2012-01-01

    Full Text Available Reliable information is required for the planning and management of eye care services. While classical research methods provide reliable estimates, they are prohibitively expensive and resource intensive. Rapid assessment (RA methods are indispensable tools in situations where data are needed quickly and where time- or cost-related factors prohibit the use of classical epidemiological surveys. These methods have been developed and field tested, and can be applied across almost the entire gamut of health care. The 1990s witnessed the emergence of RA methods in eye care for cataract, onchocerciasis, and trachoma and, more recently, the main causes of avoidable blindness and visual impairment. The important features of RA methods include the use of local resources, simplified sampling methodology, and a simple examination protocol/data collection method that can be performed by locally available personnel. The analysis is quick and easy to interpret. The entire process is inexpensive, so the survey may be repeated once every 5-10 years to assess the changing trends in disease burden. RA survey methods are typically linked with an intervention. This article provides an overview of the RA methods commonly used in eye care, and emphasizes the selection of appropriate methods based on the local need and context.

  8. Detection of Gluten during the Fermentation Process To Produce Soy Sauce.

    Science.gov (United States)

    Cao, Wanying; Watson, Damien; Bakke, Mikio; Panda, Rakhi; Bedford, Binaifer; Kande, Parnavi S; Jackson, Lauren S; Garber, Eric A E

    2017-04-03

    Advances have been made to provide people with celiac disease (CD) access to a diverse diet through an increase in the availability of gluten-free food products and regulations designed to increase label reliability. Despite advances in our knowledge regarding CD and analytical methods to detect gluten, little is known about the effects of fermentation on gluten detection. The enzyme-linked immunosorbent assay (ELISA) and lateral flow devices routinely used by analytical laboratories and regulatory agencies to test for the presence of gluten in food were examined for their ability to detect gluten during the fermentation processes leading to the production of soy sauce, as well as in finished products. Similar results were observed irrespective of whether the soy sauce was produced using pilot-plant facilities or according to a homemade protocol. In both cases, gluten was not detected after moromi (brine-based) fermentation, which is the second stage of fermentation. The inability to detect gluten after moromi fermentation was irrespective of whether the assay used a sandwich configuration that required two epitopes or a competitive configuration that required only one epitope. Consistent with these results was the observation that ELISA, lateral flow devices, and Western immunoblot analyses were unable to detect gluten in commercial soy sauce, teriyaki sauce, and Worcestershire sauce. Although reports are lacking on problems associated with the consumption of fermented soy-containing sauces by consumers with CD, additional research is needed to determine whether all immunopathogenic elements in gluten are hydrolyzed during soy sauce production.

  9. Lactic acid fermentation of cassava dough into agbelima.

    Science.gov (United States)

    Amoa-Awua, W K; Appoh, F E; Jakobsen, M

    1996-08-01

    The souring of cassava dough during fermentation into the fermented cassava meal, agbelima, was investigated. Four different types of traditional inocula were used to ferment the dough and increases in titrable acidity expressed as lactic acid from 0.31-0.38 to 0.78-0.91% (w/w) confirmed the fermentation to be a process of acidification. The microflora of all inocula and fermenting dough contained high counts of lactic acid bacteria, 10(8)-10(9) cfu/g in all inocula and 10(7)-10(8), 10(8)-10(9) and 10(9) cfu/g at 0, 24 and 48 h in all fermentations. Lactobacillus plantarum was the dominant species of lactic acid bacteria during all types of fermentation accounting for 51% of 171 representative isolates taken from various stages of fermentation. Other major lactic acid bacteria found were Lactobacillus brevis, 16%, Leuconostoc mesenteroides, 15% and some cocci including Streptococcus spp. whose numbers decreased with fermentation time. The lactic acid bacteria were responsible for the souring of agbelima through the production of lactic acid. All L. plantarum, L. brevis and L. mesenteroides isolates examined demonstrated linamarase as well as other enzymatic activities but did not possess tissue degrading enzymes like cellulase, pectin esterase and polygalacturonase. The aroma profile of agbelima did not vary with the type of inoculum used and in all samples the build-up of aroma compounds were dominated by a non-identified low molecular weight alcohol, 1-propanol, isoamyl alcohol, ethyl acetate, 3-methyl-1-butanol and acetoin. Substantial reductions occurred in the levels of cyanogenic compounds present in cassava during fermentation into agbelima and detoxification was enhanced by the use of inoculum.

  10. Challenges in industrial fermentation technology research

    DEFF Research Database (Denmark)

    Formenti, Luca Riccardo; Nørregaard, Anders; Bolic, Andrijana

    2014-01-01

    Industrial fermentation processes are increasingly popular, and are considered an important technological asset for reducing our dependence on chemicals and products produced from fossil fuels. However, despite their increasing popularity, fermentation processes have not yet reached the same...... engineering challenges: scaling up and scaling down fermentation processes, the influence of morphology on broth rheology and mass transfer, and establishing novel sensors to measure and control insightful process parameters. The greatest emphasis is on the challenges posed by filamentous fungi, because...

  11. Effect of fermentation and drying on cocoa polyphenols.

    Science.gov (United States)

    Albertini, Barbara; Schoubben, Aurélie; Guarnaccia, Davide; Pinelli, Filippo; Della Vecchia, Mirco; Ricci, Maurizio; Di Renzo, Gian Carlo; Blasi, Paolo

    2015-11-18

    Cocoa seed polyphenols have demonstrated interesting beneficial effects in humans. Most polyphenols contained in fresh seeds are chemically modified during fermentation, drying, and cocoa powder or chocolate production. The improvement of these procedures to obtain a high-polyphenol-content cocoa is highly desirable. To this aim, a field investigation on the effect of fermentation and natural drying on fine flavor National cocoa (cacao Nacional) was performed. Cocoa seeds were fermented for 6 days and, every day, samples were sun-dried and analyzed for polyphenol content and antioxidant power. During the first 2 days of fermentation, Folin-Ciocalteu and FRAP tests evidenced a significant reduction of polyphenol content and antioxidant capacity, respectively. Changes during the following days of fermentation were less significant. Epicatechin, the most studied member of the catechin family, followed a similar pathway of degradation. Data confirmed the high impact of fermentation and drying on cocoa seed polyphenols. Fermentation and drying are, on the one hand, necessary to obtain cocoa flavor and palatability but, on the other hand, are responsible for greatly compromising polyphenol content. To obtain high-polyphenol-content cocoa, the existing fermentation, drying, and manufacturing protocols should be scientifically reviewed to understand and modify the critical steps.

  12. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae.

    Science.gov (United States)

    Chen, Xingxuan; Wang, Xiahui; Xue, Yiyun; Zhang, Tian-Ao; Li, Yuhao; Hu, Jiajun; Tsang, Yiu Fai; Zhang, Hongsheng; Gao, Min-Tian

    2018-01-31

    Rice straw can be used as carbon sources for lactic acid fermentation. However, only a small amount of lactic acid is produced even though Rhizopus oryzae can consume glucose in rice straw-derived hydrolysates. This study correlated the inhibitory effect of rice straw with rice straw-derived dissolved organic matter (DOM). Lactic acid fermentations with and without DOM were conducted to investigate the effect of DOM on lactic acid fermentation by R. oryzae. Fermentation using control medium with DOM showed a similar trend to fermentation with rice straw-derived hydrolysates, showing that DOM contained the major inhibitor of rice straw. DOM assay indicated that it mainly consisted of polyphenols and polysaccharides. The addition of polyphenols and polysaccharides derived from rice straw confirmed that lactic acid fermentation was promoted by polysaccharides and significantly inhibited by polyphenols. The removal of polyphenols also improved lactic acid production. However, the loss of polysaccharides during the removal of polyphenols resulted in low glucose consumption. This study is the first to investigate the effects of rice straw-derived DOM on lactic acid fermentation by R. oryzae. The results may provide a theoretical basis for identifying inhibitors and promoters associated with lactic acid fermentation and for establishing suitable pretreatment methods. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Hypolipidemic effects of lactic acid bacteria fermented cereal in rats

    Directory of Open Access Journals (Sweden)

    Banjoko Immaculata

    2012-12-01

    Full Text Available Abstract Background The objectives of the present study were to investigate the efficacy of the mixed culture of Lactobacillus acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lactobacillus helveticus (CK60 in the fermentation of maize and the evaluation of the effect of the fermented meal on the lipid profile of rats. Methods Rats were randomly assigned to 3 groups and each group placed on a Diet A (high fat diet into which a maize meal fermented with a mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 was incorporated, B (unfermented high fat diet or C (commercial rat chow respectively after the first group of 7 rats randomly selected were sacrificed to obtain the baseline data. Thereafter 7 rats each from the experimental and control groups were sacrificed weekly for 4 weeks and the plasma, erythrocytes, lipoproteins and organs of the rats were assessed for cholesterol, triglyceride and phospholipids. Results Our results revealed that the mixed culture of Lb acidophilus (DSM 20242, B bifidum (DSM 20082 and Lb helveticus (CK 60 were able to grow and ferment maize meal into ‘ogi’ of acceptable flavour. In addition to plasma and hepatic hypercholesterolemia and hypertriglyceridemia, phospholipidosis in plasma, as well as cholesterogenesis, triglyceride constipation and phospholipidosis in extra-hepatic tissues characterized the consumption of unfermented hyperlipidemic diets. However, feeding the animals with the fermented maize diet reversed the dyslipidemia. Conclusion The findings of this study indicate that consumption of mixed culture lactic acid bacteria (Lb acidophilus (DSM 20242, Bifidobacterium bifidum (DSM 20082 and Lb helveticus (CK 60 fermented food results in the inhibition of fat absorption. It also inhibits the activity of HMG CoA reductase. This inhibition may be by feedback inhibition or repression of the transcription of the gene encoding the enzyme via activation of the

  14. Lactic acid fermentation of crude sorghum extract

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, W.A.; Lee, Y.Y.; Anthony, W.B.

    1980-04-01

    Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7% (w/v) total sugar was completed in 60-80 hours by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g/liter per hour. Under limited medium supplementation the lactic acid yield was lowered to 67%. The fermented ammoniated product contained over eight times as much equivalent crude protein (N x 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately described the fermentation process. 15 references.

  15. Experiments with Fungi Part 2: Fermentation.

    Science.gov (United States)

    Dale, Michele; Hetherington, Shane

    1996-01-01

    Gives details of three experiments with alcoholic fermentation by yeasts which yield carbon dioxide and ethanol. Lists procedures for making cider, vinegar, and fermentation gases. Provides some historical background and detailed equipment requirements. (DDR)

  16. Preliminary Study of Fermented Tapioca for Synthesis of Carbon Nano tubes

    International Nuclear Information System (INIS)

    Nurulhuda Ismail; Ying, P.Y.

    2011-01-01

    Carbon nano tubes had been produced by various precursor such as gas (methane, carbon dioxide), oil (camphor oil, olive oil, and cooking oil) and alcohol. Different methods used for carbon nano tubes synthesis like arc discharge method, laser ablation method and chemical vapour deposition method. In this experiment, thermal chemical vapour deposition method was selected for carbon nano tubes synthesis. Starting material of fermented tapioca was used as carbon source for the process. Argon gas flow were controlled at around 10-15 bubbles per minute and deposition time around 20 to 30 minute. Others parameters such as temperature of furnace 1 and 2, amount of inoculum and catalyst have been studied. The asThermogravimetri (TGA) was used to determine the volatile temperature of the mixing catalyst and fermented tapioca extract. The grown carbon nano tubes morphology was characterized through Raman spectroscopy, scanning and Field Emission Scanning Electron Microscopy (FESEM) techniques. The surface morphology and uniformity of carbon nano tubes are reliant to parameters used. (author)

  17. Produce from Africa?s Gardens: Potential for Leafy Vegetable and Fruit Fermentations

    OpenAIRE

    Oguntoyinbo, Folarin A.; Fusco, Vincenzina; Cho, Gyu-Sung; Kabisch, Jan; Neve, Horst; Bockelmann, Wilhelm; Huch, Melanie; Frommherz, Lara; Trierweiler, Bernhard; Becker, Biserka; Benomar, Nabil; G?lvez, Antonio; Abriouel, Hikmate; Holzapfel, Wilhelm H.; Franz, Charles M. A. P.

    2016-01-01

    A rich variety of indigenous fruits and vegetables grow in Africa, which contribute to the nutrition and health of Africa’s populations. Fruits and vegetables have high moisture and are thus inherently prone to accelerated spoilage. Food fermentation still plays a major role in combating food spoilage and foodborne diseases that are prevalent in many of Africa’s resource disadvantaged regions. Lactic acid fermentation is probably the oldest and best-accepted food processing method among the A...

  18. Influence of trace elements mixture on bacterial diversity and fermentation characteristics of liquid diet fermented with probiotics under air-tight condition.

    Directory of Open Access Journals (Sweden)

    Yuyong He

    Full Text Available Cu2+, Zn2+, Fe2+ and I- are often supplemented to the diet of suckling and early weaning piglets, but little information is available regarding the effects of different Cu2+, Zn2+, Fe2+ and I- mixtures on bacteria growth, diversity and fermentation characteristics of fermented liquid diet for piglets. Pyrosequencing was performed to investigate the effect of Cu2+, Zn2+, Fe2+ and I- mixtures on the diversity, growth and fermentation characteristics of bacteria in the liquid diet fermented with Bacillus subtilis and Enterococcus faecalis under air-tight condition. Results showed that the mixtures of Cu2+, Zn2+, Fe2+ and I- at different concentrations promoted Bacillus growth, increased bacterial diversity and lactic acid production and lowered pH to about 5. The importance of Cu2+, Zn2+, Fe2+ and I- is different for Bacillus growth with the order Zn2+> Fe2+>Cu2+> I- in a 21-d fermentation and Cu2+>I->Fe2+>Zn2+ in a 42-d fermentation. Cu2+, Zn2+, Fe2+ and I- is recommended at a level of 150, 60, 150 and 0.6 mg/kg respectively for the production of fermented liquid diet with Bacillus subtilis. The findings improve our understanding of the influence of trace elements on liquid diet fermentation with probiotics and support the proper use of trace elements in the production of fermented liquid diet for piglets.

  19. The effect of lactic acid bacteria on cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2015-07-16

    Cocoa beans (Theobroma cacao L.) are the raw material for chocolate production. Fermentation of cocoa pulp by microorganisms is crucial for developing chocolate flavor precursors. Yeasts conduct an alcoholic fermentation within the bean pulp that is essential for the production of good quality beans, giving typical chocolate characters. However, the roles of bacteria such as lactic acid bacteria and acetic acid bacteria in contributing to the quality of cocoa bean and chocolate are not fully understood. Using controlled laboratory fermentations, this study investigated the contribution of lactic acid bacteria to cocoa bean fermentation. Cocoa beans were fermented under conditions where the growth of lactic acid bacteria was restricted by the use of nisin and lysozyme. The resultant microbial ecology, chemistry and chocolate quality of beans from these fermentations were compared with those of indigenous (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii, Kluyveromyces marxianus and Saccharomyces cerevisiae, the lactic acid bacteria Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in control fermentations. In fermentations with the presence of nisin and lysozyme, the same species of yeasts and acetic acid bacteria grew but the growth of lactic acid bacteria was prevented or restricted. These beans underwent characteristic alcoholic fermentation where the utilization of sugars and the production of ethanol, organic acids and volatile compounds in the bean pulp and nibs were similar for beans fermented in the presence of lactic acid bacteria. Lactic acid was produced during both fermentations but more so when lactic acid bacteria grew. Beans fermented in the presence or absence of lactic acid bacteria were fully fermented, had similar shell weights and gave acceptable chocolates with no differences

  20. Rapid quantification of live/dead lactic acid bacteria in probiotic products using high-sensitivity flow cytometry

    Science.gov (United States)

    He, Shengbin; Hong, Xinyi; Huang, Tianxun; Zhang, Wenqiang; Zhou, Yingxing; Wu, Lina; Yan, Xiaomei

    2017-06-01

    A laboratory-built high-sensitivity flow cytometer (HSFCM) was employed for the rapid and accurate detection of lactic acid bacteria (LAB) and their viability in probiotic products. LAB were stained with both the cell membrane-permeable SYTO 9 green-fluorescent nucleic acid stain and the red-fluorescent nucleic acid stain, propidium iodide, which penetrates only bacteria with compromised membranes. The side scatter and dual-color fluorescence signals of single bacteria were detected simultaneously by the HSFCM. Ultra-high temperature processing milk and skim milk spiked with Lactobacillus casei were used as the model systems for the optimization of sample pretreatment and staining. The viable LAB counts measured by the HSFCM were in good agreement with those of the plate count method, and the measured ratios between the live and dead LAB matched well with the theoretical ratios. The established method was successfully applied to the rapid quantification of live/dead LAB in yogurts and fermented milk beverages of different brands. Moreover, the concentration and viability status of LAB in ambient yogurt, a relatively new yet popular milk product in China, are also reported.

  1. Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose.

    Science.gov (United States)

    Sukwong, Pailin; Ra, Chae Hun; Sunwoo, In Yung; Tantratian, Sumate; Jeong, Gwi-Taek; Kim, Sung-Koo

    2018-03-23

    This study employed a statistical method to obtain optimal hyper thermal acid hydrolysis conditions using Gelidium amansii (red seaweed) as a source of biomass. The optimal hyper thermal acid hydrolysis using G. amansii as biomass was determined as 12% (w/v) slurry content, 358.3 mM H 2 SO 4 , and temperature of 142.6 °C for 11 min. After hyper thermal acid hydrolysis, enzymatic saccharification was carried out. The total monosaccharide concentration was 45.1 g/L, 72.2% of the theoretical value of the total fermentable monosaccharides of 62.4 g/L based on 120 g dry weight/L in the G. amansii slurry. To increase ethanol production, 3.8 g/L 5-hydroxymethylfurfural (HMF) in the hydrolysate was removed by treatment with 3.5% (w/v) activated carbon for 2 min and fermented with Pichia stipitis adapted to high galactose concentrations via separate hydrolysis and fermentation. With complete HMF removal and the use of P. stipitis adapted to high galactose concentrations, 22 g/L ethanol was produced (yield 0.50). Fermentation with total HMF removal and yeast adapted to high galactose concentrations increased the fermentation performance and decreased the fermentation time from 96 to 36 h compared to traditional fermentation.

  2. Microbe-microbe interactions in mixed culture food fermentations

    NARCIS (Netherlands)

    Smid, E.J.; Lacroix, C.

    2013-01-01

    Most known natural and industrial food fermentation processes are driven by either simple or complex communities of microorganisms. Obviously, these fermenting microbes will not only interact with the fermentable substrate but also with each other. These microbe–microbe interactions are complex but

  3. Fermentation of lignocellulosic hydrolysates: Inhibition and detoxification

    Energy Technology Data Exchange (ETDEWEB)

    Palmqvist, E.

    1998-02-01

    The ethanol yield and productivity obtained during fermentation of lignocellulosic hydrolysates is decreased due to the presence of inhibiting compounds, such as weak acids, furans and phenolic compounds produced during hydrolysis. Evaluation of the effect of various biological, physical and chemical detoxification treatments by fermentation assays using Saccharomyces cerevisiae was used to characterise inhibitors. Inhibition of fermentation was decreased after removal of the non-volatile compounds, pre-fermentation by the filamentous fungus Trichoderma reesei, treatment with the lignolytic enzyme laccase, extraction with ether, and treatment with alkali. Yeast growth in lignocellulosic hydrolysates was inhibited below a certain fermentation pH, most likely due to high concentrations of undissociated weak acids. The effect of individual compounds were studied in model fermentations. Furfural is reduced to furfuryl alcohol by yeast dehydrogenases, thereby affecting the intracellular redox balance. As a result, acetaldehyde accumulated during furfural reduction, which most likely contributed to inhibition of growth. Acetic acid (10 g 1{sup -1}) and furfural (3 g 1{sup -1}) interacted antagonistically causing decreased specific growth rate, whereas no significant individual or interaction effects were detected by the lignin-derived compound 4-hydroxybenzoic acid (2 g 1{sup -1}). By maintaining a high cell mass density in the fermentor, the process was less sensitive to inhibitors affecting growth and to fluctuations in fermentation pH, and in addition the depletion rate of bioconvertible inhibitors was increased. A theoretical ethanol yield and high productivity was obtained in continuous fermentation of spruce hydrolysate when the cell mass concentration was maintained at a high level by applying cell recirculation 164 refs, 16 figs, 5 tabs

  4. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation

    Science.gov (United States)

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-01-01

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH3-H2O2-pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH3-H2O2-pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water. PMID:27853308

  5. Comparison of high-titer lactic acid fermentation from NaOH- and NH3-H2O2-pretreated corncob by Bacillus coagulans using simultaneous saccharification and fermentation.

    Science.gov (United States)

    Zhang, Zhenting; Xie, Yuejiao; He, Xiaolan; Li, Xinli; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Peng, Nan; Liang, Yunxiang

    2016-11-17

    Lignocellulose is one of the most abundant renewable feedstocks that has attracted considerable attention as a substrate for biofuel and biochemical production. One such biochemical product, lactic acid, is an important fermentation product because of its great potential for the production of biodegradable and biocompatible polylactic acid. High-titer lactic acid production from lignocellulosic materials has been achieved recently; however, it requires biodetoxification or results in large amounts of waste washing water. In this study, we employed two alkaline pretreatment methods and compared their effects on lactic acid fermentation of pretreated corncob by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile conditions. The lactic acid titer, yield, and productivity from 16% (w/w) NaOH-pretreated and washed corncob were 122.99 g/L, 0.77 g/g corncob, and 1.37 g/L/h, respectively, and from 16% NH 3 -H 2 O 2 -pretreated and washed corncob were 118.60 g/L, 0.74 g/g corncob, and 1.32 g/L/h, respectively. Importantly, the lactic acid titer, yield, and productivity from 18.4% NH 3 -H 2 O 2 -pretreated and unwashed corncob by using fed-batch simultaneous saccharification and fermentation reached 79.47 g/L, 0.43 g/g corncob, and 1.10 g/L/h, respectively, demonstrating that this method is possible for industrial applications and saves washing water.

  6. Effect of fermented Banana peel on Broiler Carcass

    OpenAIRE

    Koni TNI

    2013-01-01

    This experiment was conducted to examine effect of inclusion of fermented banana peel by Rhyzopus oligosporus in diets on slaughter weight, carcass weight and carcass percentage, weight and percentage abdominal fat of broiler. The experiment was done based on Completely Randomized Design with four treatments and four replications and each replication consisted of six chickens. The treatment were R0 = without banana peel fermented, R1 = 5% banana peel fermented, R2 = 10% banana peel fermented...

  7. Consumers' perceptions toward 3 different fermented dairy products: Insights from focus groups, word association, and projective mapping.

    Science.gov (United States)

    Esmerino, Erick A; Ferraz, Juliana P; Filho, Elson R Tavares; Pinto, Letícia P F; Freitas, Mônica Q; Cruz, Adriano G; Bolini, Helena M A

    2017-11-01

    Yogurts, fermented milk beverages, and fermented milks have great similarity and are widely accepted by Brazilian population, but the factors that influence their choice and consumption are unknown. In this sense, the present study aimed to identify the main aspects involved in consumers' perception of 3 different products, comparing the findings by using the 2 fast qualitative methods, word association and projective mapping, and a standard method, focus group. The tasks were performed by different participants through graphic stimuli (word association and projective mapping) and focus interviews (focus group). Results showed that all the 3 methodologies identified numerous intrinsic and extrinsic factors that influence the consumer choices regarding fermented dairy products. Major dimensions were closely related to the sensory aspects, emotional factors, perception of benefits, and composition, among others. It is noteworthy that the stimuli related to fermented milk beverages evoked rejecting responses, possibly due to the dissociation between information and consumers' expectation. Although minor differences were observed between the number and type of dimensions that were obtained, similar conclusions can be drawn from all 3 sensory methods, which shows the relevance of qualitative and projective methods for investigation of consumers' perception. These findings can help dairy companies to provide subsidies and guidelines for the reformulation of their products, marketing strategies, and improvement in the communication between producers and consumers from different fermented dairy products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. The economics of ethanol production by extractive fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Daugulis, A J; Axford, D B; McLellan, P J [Queen' s Univ., Kingston, ON (Canada)

    1991-04-01

    Extractive fermentation is a processing strategy in which reaction and recovery occur simultaneously in a fermentation vessel through the use of a water-immiscible solvent which selectively removes an inhibitory product. An ethanol-extractive fermentation process has been developed, incorporating continuous operation and the ability to ferment concentrated feedstocks. A detailed economic assessment of this process is provided relative to current technology for an annual capacity of 100 million litres of ethanol. Extractive fermentation provides significant economic advantages for both grass roots and retrofitted plants. Total production costs are estimated at 45{cents}/l for a conventional plant and 29.4{cents}/l for a retrofitted plant. The main cost saving achievable by extractive fermentation is in energy, used for evaporation and drying, since the process uses significantly less water in its conversion of concentrated feedstocks. Producing anhydrous ethanol without distillation is also a prospect. 15 refs., 5 fig., 10 tabs.

  9. Study on feasibility of determination of glucosamine content of fermentation process using a micro NIR spectrometer.

    Science.gov (United States)

    Sun, Zhongyu; Li, Can; Li, Lian; Nie, Lei; Dong, Qin; Li, Danyang; Gao, Lingling; Zang, Hengchang

    2018-08-05

    N-acetyl-d-glucosamine (GlcNAc) is a microbial fermentation product, and NIR spectroscopy is an effective process analytical technology (PAT) tool in detecting the key quality attribute: the GlcNAc content. Meanwhile, the design of NIR spectrometers is under the trend of miniaturization, portability and low-cost nowadays. The aim of this study was to explore a portable micro NIR spectrometer with the fermentation process. First, FT-NIR spectrometer and Micro-NIR 1700 spectrometer were compared with simulated fermentation process solutions. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal FT-NIR and Micro-NIR 1700 models were 0.999, 0.999, 3.226 g/L, 1.388 g/L and 0.999, 0.999, 1.821 g/L, 0.967 g/L. Passing-Bablok regression method and paired t-test results showed there were no significant differences between the two instruments. Then the Micro-NIR 1700 was selected for the practical fermentation process, 135 samples from 10 batches were collected. Spectral pretreatment methods and variables selection methods (BiPLS, FiPLS, MWPLS and CARS-PLS) for PLS modeling were discussed. The R c 2 , R p 2 , RMSECV and RMSEP of the optimal GlcNAc content PLS model of the practical fermentation process were 0.994, 0.995, 2.792 g/L and 1.946 g/L. The results have a positive reference for application of the Micro-NIR spectrometer. To some extent, it could provide theoretical supports in guiding the microbial fermentation or the further assessment of bioprocess. Copyright © 2018. Published by Elsevier B.V.

  10. (ajst) influence of fermentation and cowpea

    African Journals Online (AJOL)

    opiyo

    Statgraphics (Graphics Software System, STCC, Inc. U.S.A). Comparisons .... 7 2. 0.473. 0.597. 1.056. 0.14. Co-fermentation. Fermented maize and cowpea blends showed varied effects ...... Oligosaccharides in eleven Legumes and their air-.

  11. Modeling of the substrate and product transfer coefficients for ethanol fermentation

    International Nuclear Information System (INIS)

    Zerajic, S.; Grbavcic, Z.; Savkovic-Stevanovic, J.

    2008-01-01

    The transfer phenomena of the substrate and product for ethanol fermentation with immobilized biocatalyst were investigated. Fermentation was carried out with a biocatalyst consisting of Ca-alginate gel in the form of two-layer spherical beads in anaerobic conditions. The determination of kinetic parameters was achieved by fitting bioreaction progress curves to the experimental data. The calculation of the diffusion coefficients was performed by numerical methods for experimental conditions. Finally, the glucose and ethanol transfer coefficients are defined and determined, using the effective diffusion coefficients. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Factors Causing Farmers Not to Ferment Rice Straw as Cattle Feed

    Science.gov (United States)

    Sirajuddin, S. N.; Saleh, I. M.; Syawal, S.; Syamsinar

    2018-02-01

    This study aimed was to identify the factor of breeders have not done fermentation of rice straw as cattle feed. This research was conducted on August-September 2017 in Patampanua village, Marioriawa sub-district, Soppeng district. This research is descriptive quantitative with Delbeq method. Data collection is qualitative and quantitative. Data sources are primary and secondary data. Data analysis used is frequency distribution. The results showed that farmers have not done the fermentation of rice straw as animal feed that is the motivation of farmers, intensity counseling and lack of knowledge of farmers

  13. Removing Bacillus subtilis from fermentation broth using alumina nanoparticles.

    Science.gov (United States)

    Mu, Dashuai; Mu, Xin; Xu, Zhenxing; Du, Zongjun; Chen, Guanjun

    2015-12-01

    In this study, an efficient separation technology using Al2O3 nanoparticles (NPs) was developed for removing Bacillus subtilis from fermentation broth. The dosage of alumina nanoparticles used for separating B. subtilis increased during the culture process and remained stable in the stationary phase of the culture process. The pH of the culture-broth was also investigated for its effects on flocculation efficiency, and showed an acidic pH could enhance the flocculation efficiency. The attachment mechanisms of Al2O3 NPs to the B. subtilis surface were investigated, and the zeta potential analysis showed that Al2O3 NPs could attach to B. subtilis via electrostatic attachment. Finally, the metabolite content and the antibacterial effect of the fermentation supernatants were detected and did not significantly differ between alumina nanoparticle separation and centrifugation separation. Together, these results indicate a great potential for a highly efficient and economical method for removing B. subtilis from fermentation broth using alumina nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Use of fresh versus frozen or blast-frozen grapes for small-scale fermentation

    Directory of Open Access Journals (Sweden)

    Schmid F

    2011-10-01

    Full Text Available Frank Schmid, Vladimir Jiranek School of Agriculture, Food and Wine, The University of Adelaide; and Wine Innovation Cluster, The Waite Campus, Glen Osmond, South Australia, Australia Background: This paper firstly examines the validity of using laboratory-scale fermentations as a means of correlating winemaking outcomes with larger industrial scale fermentations. Secondly, conventional and blast-freezing of whole bunches were investigated for their relative suitability as methods of preservation as determined by the nature of the resulting wines. Methods: Red must fermentations were compared at the laboratory 80 kg scale, and the more industrially representative 500 kg pilot scale. Fermentation profiles and duration for both scales were found to be very similar. Whole bunches were either slow/conventionally frozen (−20°C, or quickly/blast-frozen (−25°C. Results: Wines made from frozen grapes compared well with the wine made from the fresh must. Color and chemical analyses of the wines revealed few differences. A duo-trio sensory evaluation showed that wine from blast-frozen grapes was more similar to the fresh wines than wines from conventional frozen grapes. Conclusion: The findings of this research suggest that whole-bunch blast-freezing of grapes is preferable to conventional freezing. Keywords: wine color, research winemaking, frozen grapes

  15. Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices.

    Science.gov (United States)

    Ong, Yien Yien; Tan, Wen Siang; Rosfarizan, Mohamad; Chan, Eng Seng; Tey, Beng Ti

    2012-10-01

    Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans. Current research revealed the use of biochemical analyses and molecular approaches to identify the microbial population particularly lactic acid bacteria from fermented red dragon fruit juices. © 2012 Institute of Food Technologists®

  16. Acetic acid bacteria in fermented foods and beverages.

    Science.gov (United States)

    De Roos, Jonas; De Vuyst, Luc

    2018-02-01

    Although acetic acid bacteria (AAB) are commonly found in spontaneous or backslopped fermented foods and beverages, rather limited knowledge about their occurrence and functional role in natural food fermentation ecosystems is available. Not only is their cultivation, isolation, and identification difficult, their cells are often present in a viable but not culturable state. Yet, they are promising starter cultures either to better control known food fermentation processes or to produce novel fermented foods and beverages. This review summarizes the most recent findings on the occurrence and functional role of AAB in natural food fermentation processes such as lambic beer, water kefir, kombucha, and cocoa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Understanding Kombucha Tea Fermentation: A Review.

    Science.gov (United States)

    Villarreal-Soto, Silvia Alejandra; Beaufort, Sandra; Bouajila, Jalloul; Souchard, Jean-Pierre; Taillandier, Patricia

    2018-03-01

    Kombucha is a beverage of probable Manchurian origins obtained from fermented tea by a microbial consortium composed of several bacteria and yeasts. This mixed consortium forms a powerful symbiosis capable of inhibiting the growth of potentially contaminating bacteria. The fermentation process also leads to the formation of a polymeric cellulose pellicle due to the activity of certain strains of Acetobacter sp. The tea fermentation process by the microbial consortium was able to show an increase in certain biological activities which have been already studied; however, little information is available on the characterization of its active components and their evolution during fermentation. Studies have also reported that the use of infusions from other plants may be a promising alternative. Kombucha is a traditional fermented tea whose consumption has increased in the recent years due to its multiple functional properties such as anti-inflammatory potential and antioxidant activity. The microbiological composition of this beverage is quite complex and still more research is needed in order to fully understand its behavior. This study comprises the chemical and microbiological composition of the tea and the main factors that may affect its production. © 2018 Institute of Food Technologists®.

  18. Interactions of meat-associated bacteriocin-producing Lactobacilli with Listeria innocua under stringent sausage fermentation conditions.

    Science.gov (United States)

    Leroy, Frédéric; Lievens, Kristoff; De Vuyst, Luc

    2005-10-01

    The kinetics of the antilisterial effect of meat-associated lactobacilli on Listeria innocua LMG 13568 were investigated during laboratory batch fermentations. During these fermentations, which were performed in a liquid meat simulation medium, a combination of process factors typical for European-style sausage fermentations was applied, such as a temperature of 20 degrees C and a representative pH and salting profile. Two bacteriocin-producing sausage isolates (Lactobacillus sakei CTC 494 and Lactobacillus curvatus LTH 1174), which have already proven efficacy in sausage trials, and one nonbacteriocinogenic, industrial strain (Lactobacillus sakei I), were evaluated. Staphylococcus carnosus 833 was included in the experiment because of its role in flavor and color development. When grown as a monoculture or upon cocultivation with L. sakei I and S. carnosus 833, L. innocua LMG 13568 developed slightly, despite the stress of low temperature, pH, lactic acid, salt, and nitrite. In contrast, when either of the bacteriocin producers was used, the L. innocua LMG 13568 population was rapidly inactivated with more than 3 log CFU ml(-1) after 2 days of fermentation. A bacteriocin-tolerant L. innocua LMG 13568 subpopulation (4 X 10(-4)) remained after bacteriocin inactivation. Thus, when the initial level of L. innocua LMG 13568 equaled 3 log CFU ml(-1), all cells were inactivated and no bacteriocin-tolerant cells were detected, even after 7 days of incubation. S. carnosus was not inactivated by the Lactobacillus bacteriocins and displayed slight growth.

  19. Fermentation Characteristics and Microbial Diversity of Tropical Grass-legumes Silages

    Directory of Open Access Journals (Sweden)

    Roni Ridwan

    2015-04-01

    Full Text Available Calliandra calothyrsus preserved in silage is an alternative method for improving the crude protein content of feeds for sustainable ruminant production. The aim of this research was to evaluate the quality of silage which contained different levels of C. calothyrsus by examining the fermentation characteristics and microbial diversity. Silage was made in a completely randomized design consisting of five treatments with three replications i.e.: R0, Pennisetum purpureum 100%; R1, P. purpureum 75%+C. calothyrsus 25%;, R2, P. purpureum 50%+C. calothyrsus 50%; R3, P. purpureum 25%+C. calothyrsus 75%; and R4, C. calothyrsus 100%. All silages were prepared using plastic jar silos (600 g and incubated at room temperature for 30 days. Silages were analyzed for fermentation characteristics and microbial diversity. Increased levels of C. calothyrsus in silage had a significant effect (p<0.01 on the fermentation characteristics. The microbial diversity index decreased and activity was inhibited with increasing levels of C. calothyrsus. The microbial community indicated that there was a population of Lactobacillus plantarum, L. casei, L. brevis, Lactococcus lactis, Chryseobacterium sp., and uncultured bacteria. The result confirmed that silage with a combination of grass and C. calothyrsus had good fermentation characteristics and microbial communities were dominated by L. plantarum.

  20. Effects of concentrate replacement by feed blocks on ruminal fermentation and microbial growth in goats and single-flow continuous-culture fermenters.

    Science.gov (United States)

    Molina-Alcaide, E; Pascual, M R; Cantalapiedra-Hijar, G; Morales-García, E Y; Martín-García, A I

    2009-04-01

    The effect of replacing concentrate with 2 different feed blocks (FB) on ruminal fermentation and microbial growth was evaluated in goats and in single-flow continuous-culture fermenters. Diets consisted of alfalfa hay plus concentrate and alfalfa hay plus concentrate with 1 of the 2 studied FB. Three trials were carried out with 6 rumen-fistulated Granadina goats and 3 incubation runs in 6 single-flow continuous-culture fermenters. Experimental treatments were assigned randomly within each run, with 2 repetitions for each diet. At the end of each in vivo trial, the rumen contents were obtained for inoculating the fermenters. For each incubation run, the fermenters were inoculated with ruminal fluid from goats fed the same diet supplied to the corresponding fermenter flask. The average pH values, total and individual VFA, and NH(3)-N concentrations, and acetate:propionate ratios in the rumen of goats were not affected (P >or= 0.10) by diet, whereas the microbial N flow (MNF) and efficiency were affected (P fermenters, the diet affected pH (Por= 0.05), and total (P=0.02), NH(3) (P=0.005), and non-NH(3) (P=0.02) N flows, whereas the efficiency of VFA production was not affected (P=0.75). The effect of diet on MNF and efficiency depended on the bacterial pellet used as a reference. An effect (Pfermenter contents and effluent were similar (P=0.05). Differences (Pfermentation variables and bacterial pellet compositions were found. Partial replacement of the concentrate with FB did not greatly compromise carbohydrate fermentation in unproductive goats. However, this was not the case for MNF and efficiency. Differences between the results obtained in vivo and in vitro indicate a need to identify conditions in fermenters that allow better simulation of fermentation, microbial growth, and bacterial pellet composition in vivo. Reduced feeding cost could be achieved with the inclusion of FB in the diets of unproductive goats without altering rumen fermentation.