WorldWideScience

Sample records for rapid metabolic profiling

  1. A rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by direct analysis in real-time mass spectrometry

    Directory of Open Access Journals (Sweden)

    Jang Young

    2011-06-01

    Full Text Available Abstract Background Efficient high throughput screening systems of useful mutants are prerequisite for study of plant functional genomics and lots of application fields. Advance in such screening tools, thanks to the development of analytic instruments. Direct analysis in real-time (DART-mass spectrometry (MS by ionization of complex materials at atmospheric pressure is a rapid, simple, high-resolution analytical technique. Here we describe a rapid, simple method for the genetic discrimination of intact Arabidopsis thaliana mutant seeds using metabolic profiling by DART-MS. Results To determine whether this DART-MS combined by multivariate analysis can perform genetic discrimination based on global metabolic profiling, intact Arabidopsis thaliana mutant seeds were subjected to DART-MS without any sample preparation. Partial least squares-discriminant analysis (PLS-DA of DART-MS spectral data from intact seeds classified 14 different lines of seeds into two distinct groups: Columbia (Col-0 and Landsberg erecta (Ler ecotype backgrounds. A hierarchical dendrogram based on partial least squares-discriminant analysis (PLS-DA subdivided the Col-0 ecotype into two groups: mutant lines harboring defects in the phenylpropanoid biosynthetic pathway and mutants without these defects. These results indicated that metabolic profiling with DART-MS could discriminate intact Arabidopsis seeds at least ecotype level and metabolic pathway level within same ecotype. Conclusion The described DART-MS combined by multivariate analysis allows for rapid screening and metabolic characterization of lots of Arabidopsis mutant seeds without complex metabolic preparation steps. Moreover, potential novel metabolic markers can be detected and used to clarify the genetic relationship between Arabidopsis cultivars. Furthermore this technique can be applied to predict the novel gene function of metabolic mutants regardless of morphological phenotypes.

  2. The Relation of Rapid Changes in Obesity Measures to Lipid Profile - Insights from a Nationwide Metabolic Health Survey in 444 Polish Cities

    Science.gov (United States)

    Kaess, Bernhard M.; Jóźwiak, Jacek; Nelson, Christopher P.; Lukas, Witold; Mastej, Mirosław; Windak, Adam; Tomasik, Tomasz; Grzeszczak, Władysław; Tykarski, Andrzej; Gąsowski, Jerzy; Ślęzak-Prochazka, Izabella; Ślęzak, Andrzej; Charchar, Fadi J.; Sattar, Naveed; Thompson, John R.; Samani, Nilesh J.; Tomaszewski, Maciej

    2014-01-01

    Objective The impact of fast changes in obesity indices on other measures of metabolic health is poorly defined in the general population. Using the Polish accession to the European Union as a model of political and social transformation we examined how an expected rapid increase in body mass index (BMI) and waist circumference relates to changes in lipid profile, both at the population and personal level. Methods Through primary care centres in 444 Polish cities, two cross-sectional nationwide population-based surveys (LIPIDOGRAM 2004 and LIPIDOGRAM 2006) examined 15,404 and 15,453 adult individuals in 2004 and 2006, respectively. A separate prospective sample of 1,840 individuals recruited in 2004 had a follow-up in 2006 (LIPIDOGRAM PLUS). Results Two years after Polish accession to European Union, mean population BMI and waist circumference increased by 0.6% and 0.9%, respectively. This tracked with a 7.6% drop in HDL-cholesterol and a 2.1% increase in triglycerides (all p<0.001) nationwide. The direction and magnitude of the population changes were replicated at the personal level in LIPIDOGRAM PLUS (0.7%, 0.3%, 8.6% and 1.8%, respectively). However, increases in BMI and waist circumference were both only weakly associated with HDL-cholesterol and triglycerides changes prospectively. The relation of BMI to the magnitude of change in both lipid fractions was comparable to that of waist circumference. Conclusions Moderate changes in obesity measures tracked with a significant deterioration in measures of pro-atherogenic dyslipidaemia at both personal and population level. These associations were predominantly driven by factors not measureable directly through either BMI or waist circumference. PMID:24497983

  3. Metabolic Profiles of Brain Metastases

    Directory of Open Access Journals (Sweden)

    Tone F. Bathen

    2013-01-01

    Full Text Available Metastasis to the brain is a feared complication of systemic cancer, associated with significant morbidity and poor prognosis. A better understanding of the tumor metabolism might help us meet the challenges in controlling brain metastases. The study aims to characterize the metabolic profile of brain metastases of different origin using high resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS to correlate the metabolic profiles to clinical and pathological information. Biopsy samples of human brain metastases (n = 49 were investigated. A significant correlation between lipid signals and necrosis in brain metastases was observed (p < 0.01, irrespective of their primary origin. The principal component analysis (PCA showed that brain metastases from malignant melanomas cluster together, while lung carcinomas were metabolically heterogeneous and overlap with other subtypes. Metastatic melanomas have higher amounts of glycerophosphocholine than other brain metastases. A significant correlation between microscopically visible lipid droplets estimated by Nile Red staining and MR visible lipid signals was observed in metastatic lung carcinomas (p = 0.01, indicating that the proton MR visible lipid signals arise from cytoplasmic lipid droplets. MRS-based metabolomic profiling is a useful tool for exploring the metabolic profiles of metastatic brain tumors.

  4. Metabolic Profiling of Alpine and Ecuadorian Lichens

    Directory of Open Access Journals (Sweden)

    Verena K. Mittermeier

    2015-10-01

    Full Text Available Non-targeted 1H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA internal transcribed spacer (ITS sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.

  5. MetAssimulo:Simulation of Realistic NMR Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2010-10-01

    Full Text Available Abstract Background Probing the complex fusion of genetic and environmental interactions, metabolic profiling (or metabolomics/metabonomics, the study of small molecules involved in metabolic reactions, is a rapidly expanding 'omics' field. A major technique for capturing metabolite data is 1H-NMR spectroscopy and this yields highly complex profiles that require sophisticated statistical analysis methods. However, experimental data is difficult to control and expensive to obtain. Thus data simulation is a productive route to aid algorithm development. Results MetAssimulo is a MATLAB-based package that has been developed to simulate 1H-NMR spectra of complex mixtures such as metabolic profiles. Drawing data from a metabolite standard spectral database in conjunction with concentration information input by the user or constructed automatically from the Human Metabolome Database, MetAssimulo is able to create realistic metabolic profiles containing large numbers of metabolites with a range of user-defined properties. Current features include the simulation of two groups ('case' and 'control' specified by means and standard deviations of concentrations for each metabolite. The software enables addition of spectral noise with a realistic autocorrelation structure at user controllable levels. A crucial feature of the algorithm is its ability to simulate both intra- and inter-metabolite correlations, the analysis of which is fundamental to many techniques in the field. Further, MetAssimulo is able to simulate shifts in NMR peak positions that result from matrix effects such as pH differences which are often observed in metabolic NMR spectra and pose serious challenges for statistical algorithms. Conclusions No other software is currently able to simulate NMR metabolic profiles with such complexity and flexibility. This paper describes the algorithm behind MetAssimulo and demonstrates how it can be used to simulate realistic NMR metabolic profiles with

  6. Sample preparation optimization in fecal metabolic profiling.

    Science.gov (United States)

    Deda, Olga; Chatziioannou, Anastasia Chrysovalantou; Fasoula, Stella; Palachanis, Dimitris; Raikos, Νicolaos; Theodoridis, Georgios A; Gika, Helen G

    2017-03-15

    Metabolomic analysis of feces can provide useful insight on the metabolic status, the health/disease state of the human/animal and the symbiosis with the gut microbiome. As a result, recently there is increased interest on the application of holistic analysis of feces for biomarker discovery. For metabolomics applications, the sample preparation process used prior to the analysis of fecal samples is of high importance, as it greatly affects the obtained metabolic profile, especially since feces, as matrix are diversifying in their physicochemical characteristics and molecular content. However there is still little information in the literature and lack of a universal approach on sample treatment for fecal metabolic profiling. The scope of the present work was to study the conditions for sample preparation of rat feces with the ultimate goal of the acquisition of comprehensive metabolic profiles either untargeted by NMR spectroscopy and GC-MS or targeted by HILIC-MS/MS. A fecal sample pooled from male and female Wistar rats was extracted under various conditions by modifying the pH value, the nature of the organic solvent and the sample weight to solvent volume ratio. It was found that the 1/2 (w f /v s ) ratio provided the highest number of metabolites under neutral and basic conditions in both untargeted profiling techniques. Concerning LC-MS profiles, neutral acetonitrile and propanol provided higher signals and wide metabolite coverage, though extraction efficiency is metabolite dependent. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Metabolic profiles of cow's blood; a review.

    Science.gov (United States)

    Puppel, Kamila; Kuczyńska, Beata

    2016-10-01

    The term 'metabolic profile' refers to the analysis of blood biochemical parameters that are useful to assess and prevent metabolic and nutritional disorders in dairy herds. In the higher standards of milk production, the priority in modern breeding is keeping dairy cows in high lactation and healthy. The proper analysis, as well as control. of their feeding and metabolic status is immensely important for the health condition of the herd. The disproportion between the genetically determined ability for milk production and the limitations in improving the energy value of the ration may be the cause of metabolic disorders. Negative energy balance has a major impact on the body's hormonal balance and organ functions and mostly appears during transition periods: from 3 to 2 weeks prepartum until 2-3 weeks postpartum. The term 'transition' is used to underscore the important physiological, metabolic and nutritional changes occurring in this time. The manner in which these changes occur and how they are diagnosed and detected are extremely important, as they are closely related to clinical and subclinical postpartum diseases, lactation and reproductive performance - factors that significantly shape the profitability of production. Therefore the priority for intensive milk production is prevention of metabolic diseases and other disorders. It is the intent of this review to synthesize and summarize the information currently available on metabolic status and physiological changes in the cow's body that occur during lactation, as well as to discuss the interpretation of the results, which will be a useful diagnostic tool in nutritional evaluations of the dairy herd. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. The metabolic profile of long-lived Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Pedersen, Simon Metz; Nielsen, Niels Christian

    2012-01-01

    We investigated the age-related changes in the metabolic profile of male Drosophila melanogaster and compared the metabolic profile of flies selected for increased longevity to that of control flies of equal age. We found clear differences in metabolite composition between selection regimes...

  9. Rapid Measurement of Nanoparticle Thickness Profiles

    International Nuclear Information System (INIS)

    Katz-Boon, Hadas; Rossouw, Chris J.; Dwyer, Christian; Etheridge, Joanne

    2013-01-01

    A method to measure the thickness of a single-crystal nanoparticle in the direction parallel to the incident beam from annular dark field scanning transmission electron microscope (ADF-STEM) images is reported, providing a map of thickness versus position across the nanoparticle—a ‘thickness profile’ image. The method is rapid and hence suitable for surveying large numbers of nanoparticles. The method measures the intensity scattered to a characterised ADF detector and compares this to the incident beam intensity, to obtain a normalized ADF image. The normalised intensity is then converted to thickness via dynamical ADF image simulations. The method is accurate within 10% and the precision is dominated primarily by ‘shot noise’. Merits and limitations of this method are discussed. A method to calibrate the response function of the ADF detector without external equipment is also described, which is applicable to the entire range of gain and background settings. -- Highlights: ► A method is developed to convert ADF-STEM images to ‘thickness profile’ images. ► It is applicable in particles survey, facets determination and discrete tomography. ► A method to calibrate the response of the ADF detector is described. ► The response in analysed across a range of conditions. ► Dynamical ADF image simulations are presented, demonstrating intensity vs. thickness dependence.

  10. Rapid Inhibition Profiling in Bacillus subtilis to Identify the Mechanism of Action of New Antimicrobials.

    Science.gov (United States)

    Lamsa, Anne; Lopez-Garrido, Javier; Quach, Diana; Riley, Eammon P; Pogliano, Joe; Pogliano, Kit

    2016-08-19

    Increasing antimicrobial resistance has become a major public health crisis. New antimicrobials with novel mechanisms of action (MOA) are desperately needed. We previously developed a method, bacterial cytological profiling (BCP), which utilizes fluorescence microscopy to rapidly identify the MOA of antimicrobial compounds. BCP is based upon our discovery that cells treated with antibiotics affecting different metabolic pathways generate different cytological signatures, providing quantitative information that can be used to determine a compound's MOA. Here, we describe a system, rapid inhibition profiling (RIP), for creating cytological profiles of new antibiotic targets for which there are currently no chemical inhibitors. RIP consists of the fast, inducible degradation of a target protein followed by BCP. We demonstrate that degrading essential proteins in the major metabolic pathways for DNA replication, transcription, fatty acid biosynthesis, and peptidoglycan biogenesis in Bacillus subtilis rapidly produces cytological profiles closely matching that of antimicrobials targeting the same pathways. Additionally, RIP and antibiotics targeting different steps in fatty acid biosynthesis can be differentiated from each other. We utilize RIP and BCP to show that the antibacterial MOA of four nonsteroidal anti-inflammatory antibiotics differs from that proposed based on in vitro data. RIP is a versatile method that will extend our knowledge of phenotypes associated with inactivating essential bacterial enzymes and thereby allow for screening for molecules that inhibit novel essential targets.

  11. Metabolic profile in different cathegories of diary cowst

    OpenAIRE

    Ulchar Igor; Celeska Irena; Ilievska Ksenija; Mitrov Dine; Dzhadzhovski Igor

    2008-01-01

    Knowing the values of the metabolic profile is important for prevention of so-called "production diseases" which have significant negative impact on the milk production. The aim of these investigations was determination of the metabolic profile and its referent values in the diary cows in several farms. Investigations included four categories of diary cows: pregnant heifers, cows in early lactation, cows in late lactation and dry cows. Discussion explains both significant differences of value...

  12. Metabolic Profiling of Impaired Cognitive Function in Patients Receiving Dialysis

    OpenAIRE

    Kurella Tamura, Manjula; Chertow, Glenn M.; Depner, Thomas A.; Nissenson, Allen R.; Schiller, Brigitte; Mehta, Ravindra L.; Liu, Sai; Sirich, Tammy L.

    2016-01-01

    Retention of uremic metabolites is a proposed cause of cognitive impairment in patients with ESRD. We used metabolic profiling to identify and validate uremic metabolites associated with impairment in executive function in two cohorts of patients receiving maintenance dialysis. We performed metabolic profiling using liquid chromatography/mass spectrometry applied to predialysis plasma samples from a discovery cohort of 141 patients and an independent replication cohort of 180 patients partici...

  13. Comparison of rapid descriptive sensory methodologies: Free-Choice Profiling, Flash Profile and modified Flash Profile.

    Science.gov (United States)

    Liu, Jing; Bredie, Wender L P; Sherman, Emma; Harbertson, James F; Heymann, Hildegarde

    2018-04-01

    Rapid sensory methods have been developed as alternatives to traditional sensory descriptive analysis methods. Among them, Free-Choice Profiling (FCP) and Flash Profile (FP) are two that have been known for many years. The objectives of this work were to compare the rating-based FCP and ranking-based FP method; to evaluate the impact of adding adjustments to FP approach; to investigate the influence of the number of assessors on the outcome of modified FP. To achieve these aims, a conventional descriptive analysis (DA), FCP, FP and a modified version of FP were carried out. Red wines made by different grape maturity and ethanol concentration were used for sensory testing. This study showed that DA provided a more detailed and accurate information on products through a quantitative measure of the intensity of sensory attributes than FCP and FP. However, the panel hours for conducting DA were higher than that for rapid methods, and FP was even able to separate the samples to a higher degree than DA. When comparing FCP and FP, this study showed that the ranking-based FP provided a clearer separation of samples than rating-based FCP, but the latter was an easier task for most assessors. When restricting assessors on their use of attributes in FP, the sample space became clearer and the ranking task was simplified. The FP protocol with restricted attribute sets seems to be a promising approach for efficient screening of sensory properties in wine. When increasing the number of assessors from 10 to 20 for conducting the modified FP, the outcome tended to be slightly more stable, however, one should consider the degree of panel training when deciding the optimal number of assessors for conducting FP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Metabolic Profiles in Children During Fasting

    NARCIS (Netherlands)

    van Veen, Merel R.; van Hasselt, Peter M.; de Sain-van der Velden, Monique G. M.; Verhoeven, Nanda; Hofstede, Floris C.; de Koning, Tom J.; Visser, Gepke

    BACKGROUND: Hypoglycemia is one of the most common metabolic derangements in childhood. To establish the cause of hypoglycemia, fasting tolerance tests can be used. Currently available reference values for fasting tolerance tests have limitations in their use in daily practice. OBJECTIVE: The aim of

  15. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status

    Directory of Open Access Journals (Sweden)

    Bénédicte Allam-Ndoul

    2016-05-01

    Full Text Available Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW and overweight/obese (Ov/Ob individuals, with or without metabolic syndrome (MetS. Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1’s (long chain glycerophospholipids metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3’s (medium chain acylcarnitines metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile.

  16. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  17. Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.

    Science.gov (United States)

    Bae, Soo-Jung; Park, Young-Hwan; Bae, Hyeun-Jong; Jeon, Junhyun; Bae, Hanhong

    2017-06-28

    The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti- Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell walldegrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.

  18. Metabolic Profiling in Patients with Pneumonia on Intensive Care.

    Science.gov (United States)

    Antcliffe, David; Jiménez, Beatriz; Veselkov, Kirill; Holmes, Elaine; Gordon, Anthony C

    2017-04-01

    Clinical features and investigations lack predictive value when diagnosing pneumonia, especially when patients are ventilated and when patients develop ventilator associated pneumonia (VAP). New tools to aid diagnosis are important to improve outcomes. This pilot study examines the potential for metabolic profiling to aid the diagnosis in critical care. In this prospective observational study ventilated patients with brain injuries or pneumonia were recruited in the intensive care unit and serum samples were collected soon after the start of ventilation. Metabolic profiles were produced using 1D 1 H NMR spectra. Metabolic data were compared using multivariate statistical techniques including Principal Component Analysis (PCA) and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA). We recruited 15 patients with pneumonia and 26 with brain injuries, seven of whom went on to develop VAP. Comparison of metabolic profiles using OPLS-DA differentiated those with pneumonia from those with brain injuries (R 2 Y=0.91, Q 2 Y=0.28, p=0.02) and those with VAP from those without (R 2 Y=0.94, Q 2 Y=0.27, p=0.05). Metabolites that differentiated patients with pneumonia included lipid species, amino acids and glycoproteins. Metabolic profiling shows promise to aid in the diagnosis of pneumonia in ventilated patients and may allow a more timely diagnosis and better use of antibiotics. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Observability of plant metabolic networks is reflected in the correlation of metabolic profiles

    DEFF Research Database (Denmark)

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel James

    2016-01-01

    to obtain information about the entire system. Yet, the extent to which the data profiles reflect the role of components in the observability of the system remains unexplored. Here we first identify the sensor metabolites in the model plant Arabidopsis (Arabidopsis thaliana) by employing state...... with in silico generated metabolic profiles from a medium-size kinetic model of plant central carbon metabolism. Altogether, due to the small number of identified sensors, our study implies that targeted metabolite analyses may provide the vast majority of relevant information about plant metabolic systems....

  20. Metabolic Risk Profile and Cancer in Korean Men and Women.

    Science.gov (United States)

    Ko, Seulki; Yoon, Seok-Jun; Kim, Dongwoo; Kim, A-Rim; Kim, Eun-Jung; Seo, Hye-Young

    2016-05-01

    Metabolic syndrome is a cluster of risk factors for type 2 diabetes mellitus and cardiovascular disease. Associations between metabolic syndrome and several types of cancer have recently been documented. We analyzed the sample cohort data from the Korean National Health Insurance Service from 2002, with a follow-up period extending to 2013. The cohort data included 99 565 individuals who participated in the health examination program and whose data were therefore present in the cohort database. The metabolic risk profile of each participant was assessed based on obesity, high serum glucose and total cholesterol levels, and high blood pressure. The occurrence of cancer was identified using Korean National Health Insurance claims data. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazards models, adjusting for age group, smoking status, alcohol intake, and regular exercise. A total of 5937 cases of cancer occurred during a mean follow-up period of 10.4 years. In men with a high-risk metabolic profile, the risk of colon cancer was elevated (HR, 1.40; 95% CI, 1.14 to 1.71). In women, a high-risk metabolic profile was associated with a significantly increased risk of gallbladder and biliary tract cancer (HR, 2.05; 95% CI, 1.24 to 3.42). Non-significantly increased risks were observed in men for pharynx, larynx, rectum, and kidney cancer, and in women for colon, liver, breast, and ovarian cancer. The findings of this study support the previously suggested association between metabolic syndrome and the risk of several cancers. A high-risk metabolic profile may be an important risk factor for colon cancer in Korean men and gallbladder and biliary tract cancer in Korean women.

  1. Metabolic Profiles in Obese Children and Adolescents with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Marko Kostovski

    2018-03-01

    CONCLUSION: Higher percentage of insulin-resistant participants was of female gender and was adolescents. In general, insulin resistant obese children and adolescents tend to have a worse metabolic profile in comparison to individuals without insulin resistance. It is of note that the highest insulin resistance was also linked with the highest concentrations of triglycerides.

  2. Metabolic Syndrome Risk Profiles Among African American Adolescents

    Science.gov (United States)

    Fitzpatrick, Stephanie L.; Lai, Betty S.; Brancati, Frederick L.; Golden, Sherita H.; Hill-Briggs, Felicia

    2013-01-01

    OBJECTIVE Although African American adolescents have the highest prevalence of obesity, they have the lowest prevalence of metabolic syndrome across all definitions used in previous research. To address this paradox, we sought to develop a model of the metabolic syndrome specific to African American adolescents. RESEARCH DESIGN AND METHODS Data from the National Health and Nutrition Examination Survey (2003–2010) of 822 nonpregnant, nondiabetic, African American adolescents (45% girls; aged 12 to 17 years) who underwent physical examinations and fasted at least 8 h were analyzed. We conducted a confirmatory factor analysis to model metabolic syndrome and then used latent profile analysis to identify metabolic syndrome risk groups among African American adolescents. We compared the risk groups on probability of prediabetes. RESULTS The best-fitting metabolic syndrome model consisted of waist circumference, fasting insulin, HDL, and systolic blood pressure. We identified three metabolic syndrome risk groups: low, moderate, and high risk (19% boys; 16% girls). Thirty-five percent of both boys and girls in the high-risk groups had prediabetes, a significantly higher prevalence compared with boys and girls in the low-risk groups. Among adolescents with BMI higher than the 85th percentile, 48 and 36% of boys and girls, respectively, were in the high-risk group. CONCLUSIONS Our findings provide a plausible model of the metabolic syndrome specific to African American adolescents. Based on this model, approximately 19 and 16% of African American boys and girls, respectively, are at high risk for having the metabolic syndrome. PMID:23093663

  3. Expression profiling and comparative sequence derived insights into lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Callow, Matthew J.; Rubin, Edward M.

    2001-12-19

    Expression profiling and genomic DNA sequence comparisons are increasingly being applied to the identification and analysis of the genes involved in lipid metabolism. Not only has genome-wide expression profiling aided in the identification of novel genes involved in important processes in lipid metabolism such as sterol efflux, but the utilization of information from these studies has added to our understanding of the regulation of pathways participating in the process. Coupled with these gene expression studies, cross species comparison, searching for sequences conserved through evolution, has proven to be a powerful tool to identify important non-coding regulatory sequences as well as the discovery of novel genes relevant to lipid biology. An example of the value of this approach was the recent chance discovery of a new apolipoprotein gene (apo AV) that has dramatic effects upon triglyceride metabolism in mice and humans.

  4. Metabolic profile of clinically severe obese patients.

    Science.gov (United States)

    Faria, Silvia Leite; Faria, Orlando Pereira; Menezes, Caroline Soares; de Gouvêa, Heloisa Rodrigues; de Almeida Cardeal, Mariane

    2012-08-01

    Since low basal metabolic rate (BMR) is a risk factor for weight regain, it is important to measure BMR before bariatric surgery. We aimed to evaluate the BMR among clinically severe obese patients preoperatively. We compared it with that of the control group, with predictive formulas and correlated it with body composition. We used indirect calorimetry (IC) to collect BMR data and multifrequency bioelectrical impedance to collect body composition data. Our sample population consisted of 193 patients of whom 130 were clinically severe obese and 63 were normal/overweight individuals. BMR results were compared with the following predictive formulas: Harris-Benedict (HBE), Bobbioni-Harsch (BH), Cunningham (CUN), Mifflin-St. Jeor (MSJE), and Horie-Waitzberg & Gonzalez (HW & G). This study was approved by the Ethics Committee for Research of the University of Brasilia. Statistical analysis was used to compare and correlate variables. Clinically severe obese patients had higher absolute BMR values and lower adjusted BMR values (p BMR were found in both groups. Among the clinically severe obese patients, the formulas of HW & G and HBE overestimated BMR values (p = 0.0002 and p = 0.0193, respectively), while the BH and CUN underestimated this value; only the MSJE formulas showed similar results to those of IC. The clinically severe obese patients showed low BMR levels when adjusted per kilogram per body weight. Body composition may influence BMR. The use of the MSJE formula may be helpful in those cases where it is impossible to use IC.

  5. Circulating Metabolic Profile of High Producing Holstein Dairy Cows

    Directory of Open Access Journals (Sweden)

    Aliasghar CHALMEH

    2015-07-01

    Full Text Available Assessing the metabolic profile based on the concept that the laboratory measurement of certain circulating components is a tool to evaluate metabolic status of dairy cows. Veterinarian also can evaluate the energy input-output relationships by assessing the metabolic profile to prevent and control of negative energy balance, metabolic disorders and nutritional insufficiencies. In the present study, 25 multiparous Holstein dairy cows were divided to 5 equal groups containing early, mid and late lactation, and far-off and close-up dry. Blood samples were collected from all cows through jugular venipuncture and sera were evaluated for glucose, insulin, β-hydroxybutyric acid (BHBA, non-esterified fatty acid (NEFA, cholesterol, triglyceride (TG, high, low and very low density lipoproteins (HDL, LDL and VLDL. Insulin levels in mid lactation and close-up dry cows were significantly higher than other groups (P<0.05 and the lowest insulin concentration was detected in far-off dry group. Serum concentrations of NEFA and BHBA in early and mid-lactation and close-up dry cows were significantly higher than late lactation and far-off dry animals (P<0.05. Baseline levels of cholesterol in mid and late lactation were significantly higher than other groups. The level of LDL in mid lactation cows was higher than others significantly, and its value in far-off dry cows was significantly lower than other group (P<0.05. It may be concluded that the detected changes among different groups induce commonly by negative energy balance, lactogenesis and fetal growth in each state. The presented metabolic profile can be considered as a tool to assess the energy balance in dairy cows at different physiologic states. It can be used to evaluate the metabolic situations of herd and manage the metabolic and production disorders.

  6. Metabolic Profiling of Adiponectin Levels in Adults: Mendelian Randomization Analysis.

    Science.gov (United States)

    Borges, Maria Carolina; Barros, Aluísio J D; Ferreira, Diana L Santos; Casas, Juan Pablo; Horta, Bernardo Lessa; Kivimaki, Mika; Kumari, Meena; Menon, Usha; Gaunt, Tom R; Ben-Shlomo, Yoav; Freitas, Deise F; Oliveira, Isabel O; Gentry-Maharaj, Aleksandra; Fourkala, Evangelia; Lawlor, Debbie A; Hingorani, Aroon D

    2017-12-01

    Adiponectin, a circulating adipocyte-derived protein, has insulin-sensitizing, anti-inflammatory, antiatherogenic, and cardiomyocyte-protective properties in animal models. However, the systemic effects of adiponectin in humans are unknown. Our aims were to define the metabolic profile associated with higher blood adiponectin concentration and investigate whether variation in adiponectin concentration affects the systemic metabolic profile. We applied multivariable regression in ≤5909 adults and Mendelian randomization (using cis -acting genetic variants in the vicinity of the adiponectin gene as instrumental variables) for analyzing the causal effect of adiponectin in the metabolic profile of ≤37 545 adults. Participants were largely European from 6 longitudinal studies and 1 genome-wide association consortium. In the multivariable regression analyses, higher circulating adiponectin was associated with higher high-density lipoprotein lipids and lower very-low-density lipoprotein lipids, glucose levels, branched-chain amino acids, and inflammatory markers. However, these findings were not supported by Mendelian randomization analyses for most metabolites. Findings were consistent between sexes and after excluding high-risk groups (defined by age and occurrence of previous cardiovascular event) and 1 study with admixed population. Our findings indicate that blood adiponectin concentration is more likely to be an epiphenomenon in the context of metabolic disease than a key determinant. © 2017 The Authors.

  7. Metabolic profile in different cathegories of diary cowst

    Directory of Open Access Journals (Sweden)

    Ulchar Igor

    2008-11-01

    Full Text Available Knowing the values of the metabolic profile is important for prevention of so-called "production diseases" which have significant negative impact on the milk production. The aim of these investigations was determination of the metabolic profile and its referent values in the diary cows in several farms. Investigations included four categories of diary cows: pregnant heifers, cows in early lactation, cows in late lactation and dry cows. Discussion explains both significant differences of values of some parameters (glucosis, total proteins, urea, creatinine, AST, GGT in different groups of animals which were investigated and significant correlations between some parameters (glucosis, total protein, albumin, calcium, phosphorus, urea, creatinine, cholesterol, triglycerids, AST, GGT within each of groups of animals. The values gained with our investigations were compared with the referent values. It was found that cows included in our investigations were good metabolic profile, although their values were in some degree different from the referent values. Cows which were in lactation, especially the early lactation, had disposition of development of energy-protein deficit, but the disposition to calcium deficit was low.

  8. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  9. Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes.

    NARCIS (Netherlands)

    Wopereis, S.; Rubingh, C.M. de; Erk, M.J. van; Verheij, E.R.; Vliet, T. van; Cnubben, N.H.; Smilde, A.K.; Greef, J. van der; Ommen, B. van; Hendriks, H.F.

    2009-01-01

    BACKGROUND: The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one

  10. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  11. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R. [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Jijakli, Kenan [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Engineering Division, Biofinery, Manhattan, KS (United States); Salehi-Ashtiani, Kourosh, E-mail: ksa3@nyu.edu [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates)

    2014-12-10

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  12. Oxidative status and lipid profile in metabolic syndrome: gender differences.

    Science.gov (United States)

    Kaya, Aysem; Uzunhasan, Isil; Baskurt, Murat; Ozkan, Alev; Ataoglu, Esra; Okcun, Baris; Yigit, Zerrin

    2010-02-01

    Metabolic syndrome is associated with cardiovascular disease and oxidative stress. The aim of this study was to investigate the differences of novel oxidative stress parameters and lipid profiles in men and women with metabolic syndrome. The study population included 88 patients with metabolic syndrome, consisting of 48 postmenauposal women (group I) and 40 men (group II). Premenauposal women were excluded. Plasma levels of total antioxidant status (TAS) and total oxidative status (TOS) were determined by using the Erel automated measurement method, and oxidative stress index (OSI) was calculated. To perform the calculation, the resulting unit of TAS, mmol Trolox equivalent/L, was converted to micromol equivalent/L and the OSI value was calculated as: OSI = [(TOS, micromol/L)/(TAS, mmol Trolox equivalent/L) x 100]. The Student t-test, Mann-Whitney-U test, and chi-squared test were used for statistical analysis; the Pearson correlation coefficient and Spearman rank test were used for correlation analysis. P women and men had similar properties regarding demographic characteristics and biochemical work up. Group II had significantly lower levels of antioxidant levels of TAS and lower levels of TOS and OSI compared with group I (P = 0.0001, P = 0.0035, and P = 0,0001). Apolipoprotein A (ApoA) levels were significantly higher in group I compared with group II. Our findings indicate that women with metabolic syndrome have a better antioxidant status and higher ApoA levels compared with men. Our findings suggest the existence of a higher oxidative stress index in men with metabolic syndrome. Considering the higher risk of atherosclerosis associated with men, these novel oxidative stress parameters may be valuable in the evaluation of patients with metabolic sydrome.

  13. Adverse metabolic risk profiles in Greenlandic Inuit children compared to Danish children.

    Science.gov (United States)

    Munch-Andersen, T; Sorensen, K; Andersen, L B; Aachmann-Andersen, N J; Aksglaede, L; Juul, A; Helge, J W

    2013-06-01

    During recent decades, the prevalence of metabolic morbidity has increased rapidly in adult Greenlandic Inuit. To what extent this is also reflected in the juvenile Inuit population is unknown. The objective was, therefore, in the comparison with Danish children, to evaluate metabolic profiles in Greenlandic Inuit children from the capital in the southern and from the northern most villages 187 Inuit and 132 Danish children were examined with anthropometrics, pubertal staging, fasting blood samples, and a maximal aerobic test. Both Inuit children living in Nuuk and the northern villages had significantly higher glucose, total cholesterol, apolipoprotein A1 levels, and diastolic blood pressure compared with Danish children after adjustment for differences in adiposity and aerobic fitness levels. The Inuit children living in Nuuk had significantly higher BMI, body fat %, HbA1 c, and significantly lower aerobic fitness and ApoA1 levels than northern living Inuit children. Greenlandic Inuit children had adverse metabolic health profile compared to the Danish children, the differences where more pronounced in Inuit children living in Nuuk. The tendencies toward higher prevalence of diabetes and metabolic morbidity in the adult Greenlandic Inuit population may also be present in the Inuit children population. Copyright © 2013 The Obesity Society.

  14. Global metabolic profiling procedures for urine using UPLC-MS.

    Science.gov (United States)

    Want, Elizabeth J; Wilson, Ian D; Gika, Helen; Theodoridis, Georgios; Plumb, Robert S; Shockcor, John; Holmes, Elaine; Nicholson, Jeremy K

    2010-06-01

    The production of 'global' metabolite profiles involves measuring low molecular-weight metabolites (sample preparation, stability/storage and the selection of chromatographic conditions that balance metabolome coverage, chromatographic resolution and throughput. We discuss quality control and metabolite identification, as well as provide details of multivariate data analysis approaches for analyzing such MS data. Using this protocol, the analysis of a sample set in 96-well plate format, would take ca. 30 h, including 1 h for system setup, 1-2 h for sample preparation, 24 h for UPLC-MS analysis and 1-2 h for initial data processing. The use of UPLC-MS for metabolic profiling in this way is not faster than the conventional HPLC-based methods but, because of improved chromatographic performance, provides superior metabolome coverage.

  15. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  16. BEAP profiles as rapid test system for status analysis and early detection of process incidents in biogas plants.

    Science.gov (United States)

    Refai, Sarah; Berger, Stefanie; Wassmann, Kati; Hecht, Melanie; Dickhaus, Thomas; Deppenmeier, Uwe

    2017-03-01

    A method was developed to quantify the performance of microorganisms involved in different digestion levels in biogas plants. The test system was based on the addition of butyrate (BCON), ethanol (ECON), acetate (ACON) or propionate (PCON) to biogas sludge samples and the subsequent analysis of CH 4 formation in comparison to control samples. The combination of the four values was referred to as BEAP profile. Determination of BEAP profiles enabled rapid testing of a biogas plant's metabolic state within 24 h and an accurate mapping of all degradation levels in a lab-scale experimental setup. Furthermore, it was possible to distinguish between specific BEAP profiles for standard biogas plants and for biogas reactors with process incidents (beginning of NH 4 + -N inhibition, start of acidification, insufficient hydrolysis and potential mycotoxin effects). Finally, BEAP profiles also functioned as a warning system for the early prediction of critical NH 4 + -N concentrations leading to a drop of CH 4 formation.

  17. Association Between Newborn Metabolic Profiles and Pediatric Kidney Disease

    Directory of Open Access Journals (Sweden)

    Manish M. Sood

    2018-05-01

    Full Text Available Introduction: Metabolomics offers considerable promise in early disease detection. We set out to test the hypothesis that routine newborn metabolic profiles at birth, obtained through screening for inborn errors of metabolism, would be associated with kidney disease and add incremental information to known clinical risk factors. Methods: We conducted a population-level cohort study in Ontario, Canada, using metabolic profiles from 1,288,905 newborns from 2006 to 2015. The primary outcome was chronic kidney disease (CKD or dialysis. Individual metabolites and their ratio combinations were examined by logistic regression after adjustment for established risk factors for kidney disease and incremental risk prediction measured. Results: CKD occurred in 2086 (0.16%, median time 612 days and dialysis in 641 (0.05%, median time 99 days infants and children. Individual metabolites consisted of amino acids, acylcarnitines, markers of fatty acid oxidation, and others. Base models incorporating clinical risk factors only provided c-statistics of 0.61 for CKD and 0.70 for dialysis. The addition of identified metabolites to risk prediciton models resulted in significant incremental improvement in the performance of both models (CKD model: c-statistic 0.66 NRI 0.36 IDI 0.04, dialysis model: c-statistic 0.77 NRI 0.57 IDI 0.09. This was consistent after internal validation using bootstrapping and a sensitivity analysis excluding outcomes within the first 30 days. Conclusion: Routinely collected screening metabolites at birth are associated with CKD and the need for dialytic therapies in infants and children, and add incremental information to traditional clinical risk factors. Keywords: chronic kidney disease, dialysis, end-stage kidney disease, metabolomics, newborn screening, pediatric, renal failure

  18. Metabolic Profiling of Impaired Cognitive Function in Patients Receiving Dialysis.

    Science.gov (United States)

    Kurella Tamura, Manjula; Chertow, Glenn M; Depner, Thomas A; Nissenson, Allen R; Schiller, Brigitte; Mehta, Ravindra L; Liu, Sai; Sirich, Tammy L

    2016-12-01

    Retention of uremic metabolites is a proposed cause of cognitive impairment in patients with ESRD. We used metabolic profiling to identify and validate uremic metabolites associated with impairment in executive function in two cohorts of patients receiving maintenance dialysis. We performed metabolic profiling using liquid chromatography/mass spectrometry applied to predialysis plasma samples from a discovery cohort of 141 patients and an independent replication cohort of 180 patients participating in a trial of frequent hemodialysis. We assessed executive function with the Trail Making Test Part B and the Digit Symbol Substitution test. Impaired executive function was defined as a score ≥2 SDs below normative values. Four metabolites-4-hydroxyphenylacetate, phenylacetylglutamine, hippurate, and prolyl-hydroxyproline-were associated with impaired executive function at the false-detection rate significance threshold. After adjustment for demographic and clinical characteristics, the associations remained statistically significant: relative risk 1.16 (95% confidence interval [95% CI], 1.03 to 1.32), 1.39 (95% CI, 1.13 to 1.71), 1.24 (95% CI, 1.03 to 1.50), and 1.20 (95% CI, 1.05 to 1.38) for each SD increase in 4-hydroxyphenylacetate, phenylacetylglutamine, hippurate, and prolyl-hydroxyproline, respectively. The association between 4-hydroxyphenylacetate and impaired executive function was replicated in the second cohort (relative risk 1.12; 95% CI, 1.02 to 1.23), whereas the associations for phenylacetylglutamine, hippurate, and prolyl-hydroxyproline did not reach statistical significance in this cohort. In summary, four metabolites related to phenylalanine, benzoate, and glutamate metabolism may be markers of cognitive impairment in patients receiving maintenance dialysis. Copyright © 2016 by the American Society of Nephrology.

  19. Microclimate influence on mineral and metabolic profiles of grape berries.

    Science.gov (United States)

    Pereira, G E; Gaudillere, J-P; Pieri, P; Hilbert, G; Maucourt, M; Deborde, C; Moing, A; Rolin, D

    2006-09-06

    The grape berry microclimate is known to influence berry quality. The effects of the light exposure of grape berry clusters on the composition of berry tissues were studied on the "Merlot" variety grown in a vineyard in Bordeaux, France. The light exposure of the fruiting zone was modified using different intensities of leaf removal, cluster position relative to azimuth, and berry position in the cluster. Light exposures were identified and classified by in situ measurements of berry temperatures. Berries were sampled at maturity (>19 Brix) for determination of skin and/or pulp chemical and metabolic profiles based on (1) chemical and physicochemical measurement of minerals (N, P, K, Ca, Mg), (2) untargeted 1H NMR metabolic fingerprints, and HPLC targeted analyses of (3) amino acids and (4) phenolics. Each profile defined by partial least-square discriminant analysis allowed us to discriminate berries from different light exposure. Discriminant compounds between shaded and light-exposed berries were quercetin-3-glucoside, kaempferol-3-glucoside, myricetin-3-glucoside, and isorhamnetin-3-glucoside for the phenolics, histidine, valine, GABA, alanine, and arginine for the amino acids, and malate for the organic acids. Capacities of the different profiling techniques to discriminate berries were compared. Although the proportion of explained variance from the 1H NMR fingerprint was lower compared to that of chemical measurements, NMR spectroscopy allowed us to identify lit and shaded berries. Light exposure of berries increased the skin and pulp flavonols, histidine and valine contents, and reduced the organic acids, GABA, and alanine contents. All the targeted and nontargeted analytical data sets used made it possible to discriminate sun-exposed and shaded berries. The skin phenolics pattern was the most discriminating and allowed us to sort sun from shade berries. These metabolite classes can be used to qualify berries collected in an undetermined environment. The

  20. Multiplex Immunoassay Profiling of Hormones Involved in Metabolic Regulation.

    Science.gov (United States)

    Stephen, Laurie; Guest, Paul C

    2018-01-01

    Multiplex immunoassays are used for rapid profiling of biomarker proteins and small molecules in biological fluids. The advantages over single immunoassays include lower sample consumption, cost, and labor. This chapter details a protocol to develop a 5-plex assay for glucagon-like peptide 1, growth hormone, insulin, leptin, and thyroid-stimulating hormone on the Luminex ® platform. The results of the analysis of insulin in normal control subjects are given due to the important role of this hormone in nutritional programming diseases.

  1. Metabolic syndrome and metabolic risk profile according to polycystic ovary syndrome phenotype.

    Science.gov (United States)

    Bil, Enes; Dilbaz, Berna; Cirik, Derya Akdag; Ozelci, Runa; Ozkaya, Enis; Dilbaz, Serdar

    2016-07-01

    It is unknown which phenotype of polycystic ovary syndrome (PCOS) has a greater metabolic risk and how to detect this risk. The aim of this study was therefore to compare the incidence of metabolic syndrome (MetS) and metabolic risk profile (MRP) for different phenotypes. A total of 100 consecutive newly diagnosed PCOS women in a tertiary referral hospital were recruited. Patients were classified into four phenotypes according to the Rotterdam criteria, on the presence of at least two of the three criteria hyperandrogenism (H), oligo/anovulation (O) and PCO appearance (P): phenotype A, H + O + P; phenotype B, H + O; phenotype C, H + P; phenotype D, O + P. Prevalence of MetS and MRP were compared among the four groups. Based on Natural Cholesterol Education Program Adult Treatment Panel III diagnostic criteria, MetS prevalence was higher in phenotypes A and B (29.6% and 34.5%) compared with the other phenotypes (10.0% and 8.3%; P 3.8 was significantly higher in androgenic PCOS phenotypes. After logistic regression analysis, visceral adiposity index (VAI) was the only independent predictor of MetS in PCOS (P = 0.002). VAI was also significantly higher in phenotype B, when compared with the others (P risk of MetS among the four phenotypes, and VAI may be a predictor of metabolic risk in PCOS women. © 2016 Japan Society of Obstetrics and Gynecology.

  2. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  3. INFLUENCE FEEDING AND TRAINING ON THE METABOLIC PROFIL SPORT HORSES

    Directory of Open Access Journals (Sweden)

    M HALO

    2010-06-01

    Full Text Available In a group of 11 sport horses, the effect of the traianig process, inclunding training and resting periods, on the metabolic profile. Training proces was divided into four part: I. End of the sport season, II. End of the resting period, III. End of the quantitative training charged and IV. End of the qualitative training charged. The level glucose in the blood serum of the observed horses was stated within the reference limits, with the tendency towards the inncreased values in the 2-st and 4-st period (4,34 – 5,03 mmol.l-1. The average values global lipid and cholesterol was stated whitin the reference limits.

  4. Correlative analysis of metabolite profiling of Danggui Buxue Tang in rat biological fluids by rapid resolution LC-TOF/MS.

    Science.gov (United States)

    Li, Chang-Yin; Qi, Lian-Wen; Li, Ping

    2011-04-28

    In this work, the metabolite profiles of Danggui Buxue Tang (DBT) in rat bile and plasma were qualitatively described, and the possible metabolic pathways of DBT were subsequently proposed. Emphasis was put on correlative analysis of metabolite profiling in different biological fluids. After oral administration of DBT, bile and plasma samples were collected and pretreated by solid phase extraction. Rapid resolution liquid chromatography coupled to time-of-flight mass spectrometry (RRLC-TOFMS) was used for characterization of DBT-related compounds (parent compounds and metabolites) in biological matrices. A total of 142 metabolites were detected and tentatively identified from the drug-containing bile and plasma samples. Metabolite profiling shows that rat bile contained relatively more glutathione-derived conjugates, more saponins compounds and more diverse forms of metabolites than urine. The metabolite profile in plasma revealed that glucuronide conjugates of isoflavonoids, dimmers, acetylcysteine conjugates and parent form of phthalides, as well as saponin aglycones were the major circulating forms of DBT. Collectively, the metabolite profile analysis of DBT in different biological matrices provided a comprehensive understanding of the in vivo metabolic fates of constituents in DBT. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    Directory of Open Access Journals (Sweden)

    Lishan Xiao

    Full Text Available The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas.

  6. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    Science.gov (United States)

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas.

  7. Metabolic profiling of sourdough fermented wheat and rye bread.

    Science.gov (United States)

    Koistinen, Ville M; Mattila, Outi; Katina, Kati; Poutanen, Kaisa; Aura, Anna-Marja; Hanhineva, Kati

    2018-04-09

    Sourdough fermentation by lactic acid bacteria is commonly used in bread baking, affecting several attributes of the final product. We analyzed whole-grain wheat and rye breads and doughs prepared with baker's yeast or a sourdough starter including Candida milleri, Lactobacillus brevis and Lactobacillus plantarum using non-targeted metabolic profiling utilizing LC-QTOF-MS. The aim was to determine the fermentation-induced changes in metabolites potentially contributing to the health-promoting properties of whole-grain wheat and rye. Overall, we identified 118 compounds with significantly increased levels in sourdough, including branched-chain amino acids (BCAAs) and their metabolites, small peptides with high proportion of BCAAs, microbial metabolites of phenolic acids and several other potentially bioactive compounds. We also identified 69 compounds with significantly decreased levels, including phenolic acid precursors, nucleosides, and nucleobases. Intensive sourdough fermentation had a higher impact on the metabolite profile of whole-grain rye compared to milder whole-grain wheat sourdough fermentation. We hypothesize that the increased amount of BCAAs and potentially bioactive small peptides may contribute to the insulin response of rye bread, and in more general, the overall protective effect against T2DM and CVD.

  8. Does family history of metabolic syndrome affect the metabolic profile phenotype in young healthy individuals?

    Science.gov (United States)

    Lipińska, Anna; Koczaj-Bremer, Magdalena; Jankowski, Krzysztof; Kaźmierczak, Agnieszka; Ciurzyński, Michał; Ou-Pokrzewińska, Aisha; Mikocka, Ewelina; Lewandowski, Zbigniew; Demkow, Urszula; Pruszczyk, Piotr

    2014-01-01

    Early identification of high-risk individuals is key for the prevention of cardiovascular disease (CVD). The aim of this study was to assess the potential impact of a family history of metabolic syndrome (fhMetS) on the risk of metabolic disorders (abnormal body mass, lipid profile, glucose metabolism, insulin resistance, and blood pressure) in healthy young individuals. We studied CVD risk factors in 90 healthy volunteers, aged 27-39 years; of these, 78 had fhMetS and 12 were without fhMetS (control group). Fasting serum lipids, glucose, and insulin levels were assayed, and anthropometric parameters and blood pressure using, an ambulatory blood pressure monitoring system, were measured. Nutritional and physical activity habits were assessed. Despite similar nutritional and physical activity habits, abnormal body mass was found in 53.2% of the fhMetS participants and 46.1% of the control participants (p = 0.54). The occurrence of obesity was 19.4% and 0%, respectively (p = 0.69). Compared to the control participants, fhMetS was associated with significantly higher total cholesterol (5.46 mmol/L vs. 4.69 mmol/L, p family history of MetS.

  9. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    Science.gov (United States)

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production. © 2015 Scandinavian Plant Physiology Society.

  10. Real-time metabolome profiling of the metabolic switch between starvation and growth.

    Science.gov (United States)

    Link, Hannes; Fuhrer, Tobias; Gerosa, Luca; Zamboni, Nicola; Sauer, Uwe

    2015-11-01

    Metabolic systems are often the first networks to respond to environmental changes, and the ability to monitor metabolite dynamics is key for understanding these cellular responses. Because monitoring metabolome changes is experimentally tedious and demanding, dynamic data on time scales from seconds to hours are scarce. Here we describe real-time metabolome profiling by direct injection of living bacteria, yeast or mammalian cells into a high-resolution mass spectrometer, which enables automated monitoring of about 300 compounds in 15-30-s cycles over several hours. We observed accumulation of energetically costly biomass metabolites in Escherichia coli in carbon starvation-induced stationary phase, as well as the rapid use of these metabolites upon growth resumption. By combining real-time metabolome profiling with modeling and inhibitor experiments, we obtained evidence for switch-like feedback inhibition in amino acid biosynthesis and for control of substrate availability through the preferential use of the metabolically cheaper one-step salvaging pathway over costly ten-step de novo purine biosynthesis during growth resumption.

  11. Global transcriptional profiling of longitudinal clinical isolates of Mycobacterium tuberculosis exhibiting rapid accumulation of drug resistance.

    Directory of Open Access Journals (Sweden)

    Anirvan Chatterjee

    Full Text Available The identification of multidrug resistant (MDR, extensively and totally drug resistant Mycobacterium tuberculosis (Mtb, in vulnerable sites such as Mumbai, is a grave threat to the control of tuberculosis. The current study aimed at explaining the rapid expression of MDR in Directly Observed Treatment Short Course (DOTS compliant patients, represents the first study comparing global transcriptional profiles of 3 pairs of clinical Mtb isolates, collected longitudinally at initiation and completion of DOTS. While the isolates were drug susceptible (DS at onset and MDR at completion of DOTS, they exhibited identical DNA fingerprints at both points of collection. The whole genome transcriptional analysis was performed using total RNA from H37Rv and 3 locally predominant spoligotypes viz. MANU1, CAS and Beijing, hybridized on MTBv3 (BuG@S microarray, and yielded 36, 98 and 45 differentially expressed genes respectively. Genes encoding transcription factors (sig, rpoB, cell wall biosynthesis (emb genes, protein synthesis (rpl and additional central metabolic pathways (ppdK, pknH, pfkB were found to be down regulated in the MDR isolates as compared to the DS isolate of the same genotype. Up regulation of drug efflux pumps, ABC transporters, trans-membrane proteins and stress response transcriptional factors (whiB in the MDR isolates was observed. The data indicated that Mtb, without specific mutations in drug target genes may persist in the host due to additional mechanisms like drug efflux pumps and lowered rate of metabolism. Furthermore this population of Mtb, which also showed reduced DNA repair activity, would result in selection and stabilization of spontaneous mutations in drug target genes, causing selection of a MDR strain in the presence of drug pressures. Efflux pump such as drrA may play a significant role in increasing fitness of low level drug resistant cells and assist in survival of Mtb till acquisition of drug resistant mutations with

  12. Study of protein and metabolic profile of sugarcane workers

    Energy Technology Data Exchange (ETDEWEB)

    Polachini, G.M.; Tajara, E.H. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil); Santos, U.P. [Universidade de Sao Paulo (USP), SP (Brazil); Zeri, A.C.M.; Paes Leme, A.F. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: The National Alcohol Program (Proalcool) is a successful Brazilian renewable fuel initiative aiming to reduce the country's oil dependence. Producing ethanol from sugar cane, the program has shown positive results although accompanied by potential damage. The environmental impact mainly derives from the particulate matter emissions due to sugarcane burning, which is potentially harmful to human health. The physical activity of sugarcane workers is repetitive and exhaustive and is carried out in presence of dust, smoke and soot. The efforts by the sugarcane workers during the labor process result in increased risks of nervous, respiratory and cardiovascular system diseases and also in premature death. The aim of the present study was to investigate the effect of occupational stress on protein and metabolic profile of sugarcane workers. Forty serum samples were analyzed by 1-DE and LC MS/MS proteomic shotgun strategy and nuclear magnetic resonance (NMR). A set of proteins was found to be altered in workers after crops when compared with controls. The analysis of NMR spectra by Chenomx also showed differences in the expression of metabolites. For example, lactate displayed higher levels in control subjects than in sugarcane workers, and vice versa for the acetate. The concentrations of the two metabolites were lower after the crop, except in the case of acetate, which remained uniform in the control subjects before and after the crop. The present findings can have important application for rational designs of preventive measures and early disease detection in sugarcane workers. (author)

  13. Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis.

    Science.gov (United States)

    Zeng, Chunwei; Wen, Bo; Hou, Guixue; Lei, Li; Mei, Zhanlong; Jia, Xuekun; Chen, Xiaomin; Zhu, Wu; Li, Jie; Kuang, Yehong; Zeng, Weiqi; Su, Juan; Liu, Siqi; Peng, Cong; Chen, Xiang

    2017-10-01

    Psoriasis is a common and chronic inflammatory skin disease that is complicated by gene-environment interactions. Although genomic, transcriptomic, and proteomic analyses have been performed to investigate the pathogenesis of psoriasis, the role of metabolites in psoriasis, particularly of lipids, remains unclear. Lipids not only comprise the bulk of the cellular membrane bilayers but also regulate a variety of biological processes such as cell proliferation, apoptosis, immunity, angiogenesis, and inflammation. In this study, an untargeted lipidomics approach was used to study the lipid profiles in psoriasis and to identify lipid metabolite signatures for psoriasis through ultra-performance liquid chromatography-tandem quadrupole mass spectrometry. Plasma samples from 90 participants (45 healthy and 45 psoriasis patients) were collected and analyzed. Statistical analysis was applied to find different metabolites between the disease and healthy groups. In addition, enzyme-linked immunosorbent assay was performed to validate differentially expressed lipids in psoriatic patient plasma. Finally, we identified differential expression of several lipids including lysophosphatidic acid (LPA), lysophosphatidylcholine (LysoPC), phosphatidylinositol (PI), phosphatidylcholine (PC), and phosphatidic acid (PA); among these metabolites, LPA, LysoPC, and PA were significantly increased, while PC and PI were down-regulated in psoriasis patients. We found that elements of glycerophospholipid metabolism such as LPA, LysoPC, PA, PI, and PC were significantly altered in the plasma of psoriatic patients; this study characterizes the circulating lipids in psoriatic patients and provides novel insight into the role of lipids in psoriasis. © The Author 2017. Published by Oxford University Press.

  14. Study of protein and metabolic profile of sugarcane workers

    International Nuclear Information System (INIS)

    Polachini, G.M.; Tajara, E.H.; Santos, U.P.; Zeri, A.C.M.; Paes Leme, A.F.

    2012-01-01

    Full text: The National Alcohol Program (Proalcool) is a successful Brazilian renewable fuel initiative aiming to reduce the country's oil dependence. Producing ethanol from sugar cane, the program has shown positive results although accompanied by potential damage. The environmental impact mainly derives from the particulate matter emissions due to sugarcane burning, which is potentially harmful to human health. The physical activity of sugarcane workers is repetitive and exhaustive and is carried out in presence of dust, smoke and soot. The efforts by the sugarcane workers during the labor process result in increased risks of nervous, respiratory and cardiovascular system diseases and also in premature death. The aim of the present study was to investigate the effect of occupational stress on protein and metabolic profile of sugarcane workers. Forty serum samples were analyzed by 1-DE and LC MS/MS proteomic shotgun strategy and nuclear magnetic resonance (NMR). A set of proteins was found to be altered in workers after crops when compared with controls. The analysis of NMR spectra by Chenomx also showed differences in the expression of metabolites. For example, lactate displayed higher levels in control subjects than in sugarcane workers, and vice versa for the acetate. The concentrations of the two metabolites were lower after the crop, except in the case of acetate, which remained uniform in the control subjects before and after the crop. The present findings can have important application for rational designs of preventive measures and early disease detection in sugarcane workers. (author)

  15. Metabolic profiling of follistatin overexpression: a novel therapeutic strategy for metabolic diseases

    Directory of Open Access Journals (Sweden)

    Singh R

    2018-03-01

    Full Text Available Rajan Singh,1,2 Shehla Pervin,1,2 Se-Jin Lee,3,4 Alan Kuo,5 Victor Grijalva,6 John David,7 Laurent Vergnes,8 Srinivasa T Reddy1,6 1Department of Obstetrics and Gynecology, UCLA School of Medicine, Los Angeles, CA, USA; 2Division of Endocrinology and Metabolism, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA; 3The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; 4Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, CT, USA; 5Department of Biology, California State University Dominguez Hills, CA, USA; 6Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, USA; 7Department of Comparative Medicine, Pfizer Inc, San Diego, CA, USA; 8Department of Human Genetics, UCLA School of Medicine, Los Angeles, CA, USA Background: Follistatin (Fst promotes brown adipocyte characteristics in adipose tissues.Methods: Abdominal fat volume (CT scan, glucose clearance (GTT test, and metabolomics analysis (mass spectrometry of adipose tissues from Fst transgenic (Fst-Tg and wild type (WT control mice were analyzed. Oxygen consumption (Seahorse Analyzer and lipidomics (gas chromatography was analyzed in 3T3-L1 cells.Results: Fst-Tg mice show significant decrease in abdominal fat content, increased glucose clearance, improved plasma lipid profiles and significant changes in several conventional metabolites compared to the WT mice. Furthermore, overexpression of Fst in 3T3-L1 cells resulted in up regulation of key brown/beige markers and changes in lipidomics profiles. Conclusion: Fst modulates key factors involved in promoting metabolic syndrome and could be used for therapeutic intervention. Keywords: follistatin, transgenic, adipocyte, fibroblast growth factor 21, AdipoQ

  16. Metabolic and inflammatory profiles of biomarkers in obesity, metabolic syndrome, and diabetes in a Mediterranean population. DARIOS Inflammatory study.

    Science.gov (United States)

    Fernández-Bergés, Daniel; Consuegra-Sánchez, Luciano; Peñafiel, Judith; Cabrera de León, Antonio; Vila, Joan; Félix-Redondo, Francisco Javier; Segura-Fragoso, Antonio; Lapetra, José; Guembe, María Jesús; Vega, Tomás; Fitó, Montse; Elosua, Roberto; Díaz, Oscar; Marrugat, Jaume

    2014-08-01

    There is a paucity of data regarding the differences in the biomarker profiles of patients with obesity, metabolic syndrome, and diabetes mellitus as compared to a healthy, normal weight population. We aimed to study the biomarker profile of the metabolic risk continuum defined by the transition from normal weight to obesity, metabolic syndrome, and diabetes mellitus. We performed a pooled analysis of data from 7 cross-sectional Spanish population-based surveys. An extensive panel comprising 20 biomarkers related to carbohydrate metabolism, lipids, inflammation, coagulation, oxidation, hemodynamics, and myocardial damage was analyzed. We employed age- and sex-adjusted multinomial logistic regression models for the identification of those biomarkers associated with the metabolic risk continuum phenotypes: obesity, metabolic syndrome, and diabetes mellitus. A total of 2851 subjects were included for analyses. The mean age was 57.4 (8.8) years, 1269 were men (44.5%), and 464 participants were obese, 443 had metabolic syndrome, 473 had diabetes mellitus, and 1471 had a normal weight (healthy individuals). High-sensitivity C-reactive protein, apolipoprotein B100, leptin, and insulin were positively associated with at least one of the phenotypes of interest. Apolipoprotein A1 and adiponectin were negatively associated. There are differences between the population with normal weight and that having metabolic syndrome or diabetes with respect to certain biomarkers related to the metabolic, inflammatory, and lipid profiles. The results of this study support the relevance of these mechanisms in the metabolic risk continuum. When metabolic syndrome and diabetes mellitus are compared, these differences are less marked. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  17. Metabolic profiling for detection of Staphylococcus aureus infection and antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Henrik Antti

    Full Text Available Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria. Methicillin-resistant Staphylococcus aureus (MRSA and methicillin-sensitive S. aureus (MSSA were used in vitro and for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. In vitro experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated severe MSSA sepsis (n = 6 from severe Escherichia coli sepsis (n = 10 and identified treatment responses over time. Combined analysis of human, in vitro, and mice samples identified 25 metabolites indicative of effective treatment of S. aureus sepsis. Taken together, this

  18. Metabolic Profile of Pancreatic Acinar and Islet Tissue in Culture

    Science.gov (United States)

    Suszynski, Thomas M.; Mueller, Kathryn; Gruessner, Angelika C.; Papas, Klearchos K.

    2016-01-01

    The amount and condition of exocrine impurities may affect the quality of islet preparations especially during culture. In this study, the objective was to determine the oxygen demandand viability of islet and acinar tissue post-isolation and whether they change disproportionately while in culture. We compare the OCR normalized to DNA (OCR/DNA, a measure of fractional viability in units nmol/min/mg DNA), and percent change in OCR and DNA recoveries between adult porcine islet and acinar tissue from the same preparation (paired) over a 6-9 days of standard culture. Paired comparisons were done to quantify differences in OCR/DNA between islet and acinar tissue from the same preparation, at specified time points during culture; the mean (± standard error) OCR/DNA was 74.0 (±11.7) units higher for acinar (vs. islet) tissue on the day of isolation (n=16, p<0.0001), but 25.7 (±9.4) units lower after 1 day (n=8, p=0.03), 56.6 (±11.5) units lower after 2 days (n=12, p=0.0004), and 65.9 (±28.7) units lower after 8 days (n=4, p=0.2) in culture. DNA and OCR recoveries decreased at different rates for acinar versus islet tissue over 6-9 days in culture (n=6). DNA recovery decreased to 24±7% for acinar and 75±8% for islets (p=0.002). Similarly, OCR recovery decreased to 16±3% for acinar and remained virtually constant for islets (p=0.005). Differences in the metabolic profile of acinarand islet tissue should be considered when culturing impure islet preparations. OCR-based measurements may help optimize pre-IT culture protocols. PMID:25131082

  19. Abdominal obesity has the highest impact on metabolic profile in an overweight African population

    DEFF Research Database (Denmark)

    Handlos, L. N.; Witte, D. R.; Mwaniki, D. L.

    2012-01-01

    Aim: The aim of this study was to determine the association between different anthropometric parameters and metabolic profile in an overweight, adult, black Kenyan population. Methods: An opportunity sample of 245 overweight adult Kenyans (body mass index (BMI) ≥ 25 kg/m2) was analysed. A score...... anthropometric variables tested, WC and VAT thickness had the strongest negative association with the metabolic profile (β = 0.17 (0.09; 0.24) and 0.15 (0.08; 0.23), respectively). Conclusions: WC and VAT thickness were the strongest anthropometric predictors for the metabolic profile in overweight adult Kenyans...

  20. 1 H-NMR metabolomics: Profiling method for a rapid and efficient ...

    African Journals Online (AJOL)

    Principal component analysis was used to separate groups of samples and to relate known and unknown metabolites to transgenic events. The screening of 100 samples, from extraction to data mining, took 36 h. Thus, this procedure allows the rapid selection of metabolic phenotypes of interest among about 30 transgenic ...

  1. Low Birthweight, Rapid Weight Gain and Metabolic Syndrome in Adolescence: An Illustrative Case Report

    Directory of Open Access Journals (Sweden)

    Onyiriuka Alphonsus N.

    2015-12-01

    Full Text Available A 16-year-old boy whose diabetes mellitus was diagnosed 3 months previously in a private hospital but was not placed on medication. The presenting complaints were fast breathing for 24 hours, weakness for 2 hours, and unresponsiveness to calls for 0.5 hours. His father was obese with type 2 diabetes mellitus and died 8 months earlier from cardiac arrest. His birthweight was low, 2.2kg. At first presentation, his weight, BMI and blood pressure were 60kg (25th-50th percentile, 19.4kg/m2 (25thpercentile and 110/70mmHg (systolic BP 50th percentile, diastolic BP 50th-90th percentile, respectively. He was managed for diabetic ketoacidosis and was discharged on subcutaneous premixed insulin, 1 Unit/kg/day. At point of discharge, weight and BP were 60.5 kg and 120/70 mmHg, respectively. The patient defaulted but presented again 6 months later at the age of 17 years. At second presentation, his weight, BMI and BP were 89 kg (95th percentile, 27.5 kg/m2 (90th-95th percentile and 180/80 mmHg (systolic 99th percentile; diastolic 90th percentile, respectively. His waist circumference was 98.7cm (> 90th percentile. We had no record of previous waist circumference. His lipid profile showed low HDL-cholesterol 0.7252 mmol/L [(28mg/dl; <5thpercentile]. His fasting blood glucose and HbA1C were 6.5 mmol/L (117mg/dl and 34 mol/mol (5.3%, respectively. A diagnosis of metabolic syndrome in a patient with ketosis-prone type 2 diabetes was made. He was referred to the pediatric cardiologist for management of his hypertension. He defaulted again and was lost to follow up. Conclusion: This report illustrates the association of low birth weight and rapid weight gain with metabolic syndrome in adolescence.

  2. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  3. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children : The ABCD Study

    NARCIS (Netherlands)

    Vrijkotte, Tanja G M; van den Born, Bert-Jan H; Hoekstra, Christine M C A; Gademan, Maaike G J; van Eijsden, Manon; de Rooij, Susanne R; Twickler, Marcel T B

    2015-01-01

    BACKGROUND: In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system

  4. Preadipocyte factor-1 is associated with metabolic profile in severe obesity.

    LENUS (Irish Health Repository)

    O'Connell, J

    2011-04-01

    Dysfunctional adipose tissue has been proposed as a key pathological process linking obesity and metabolic disease. Preadipocyte factor-1 (Pref-1) has been shown to inhibit differentiation in adipocyte precursor cells and could thereby play a role in determining adipocyte size, adipose tissue functioning, and metabolic profile in obese individuals.

  5. Adverse Metabolic Risk Profiles in Greenlandic Inuit Children Compared to Danish Children

    DEFF Research Database (Denmark)

    Munch-Andersen, T.; Sorensen, K.; Andersen, L. B.

    2013-01-01

    Objective During recent decades, the prevalence of metabolic morbidity has increased rapidly in adult Greenlandic Inuit. To what extent this is also reflected in the juvenile Inuit population is unknown. The objective was, therefore, in the comparison with Danish children, to evaluate metabolic p...

  6. Does Lifestyle Exercise After a Cardiac Event Improve Metabolic Syndrome Profile in Older Adults?

    Science.gov (United States)

    Wright, Kathy D; Moore-Schiltz, Laura; Sattar, Abdus; Josephson, Richard; Moore, Shirley M

    Exercise is a common recommendation to reduce the risk factors of metabolic syndrome, yet there are limited data on the influence of lifestyle exercise after cardiac events on metabolic syndrome factors. The purpose of this study was to determine whether lifestyle exercise improves metabolic syndrome profile in older adults after a cardiac event. Participants were from a post-cardiac-event lifestyle exercise study. Five metabolic syndrome factors were assessed: waist circumference, triglycerides, high-density lipids, glucose, and systolic and diastolic blood pressure. Objective measures of exercise were obtained from heart rate monitors over a year. Logistic regression was used to determine whether participants who engaged in the minimum recommendation of 130 hours of exercise or greater during the 12-month period improved their metabolic syndrome profile by improving at least 1 metabolic syndrome factor. In the sample of 116 participants (74% men; average age, 67.5 years), 43% exercised at the recommended amount (≥130 h/y) and 28% (n = 33) improved their metabolic syndrome profile. After controlling for confounding factors of age, gender, race, diabetes, functional ability, and employment, subjects who exercised at least 130 hours a year were 3.6 times more likely to improve at least 1 metabolic syndrome factor (95% confidence interval, 1.24-10.49). Of the 28% who improved their metabolic syndrome profile, 72% increased their high-density lipoprotein and 60.6% reduced their waist circumference and glucose. After a cardiac event, older patients who engage in lifestyle exercise at the recommended amount have improvement in their metabolic syndrome profile.

  7. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China.

    Science.gov (United States)

    Li, Dongxue; Guo, Guanghong; Xia, Lili; Yang, Xinghua; Zhang, Biao; Liu, Feng; Ma, Jingang; Hu, Zhiping; Li, Yajun; Li, Wei; Jiang, Jiajia; Gaisano, Herbert; Shan, Guangliang; He, Yan

    2018-01-01

    Background: Absolute handgrip strength has been correlated with metabolic profile and metabolic disease. Whether relative handgrip strength is also associated with metabolic disease has not been assessed. This study aimed at assessing the association of relative handgrip strength with metabolic profile and metabolic disease in the general population in China. Methods: Data were derived from an ongoing cross-sectional survey of the 2013 National Physical and Health in Shanxi Province, which involved 5520 participants. Multiple linear regression or multiple logistic regression analysis were used to assess the association of absolute/relative handgrip strength with the metabolic profile, preclinical, and established stages of metabolic diseases. Results: This study revealed that relative handgrip strength, that is when normalized to BMI, was associated with: (1) in both genders for more favorable blood lipid levels of high-density lipoprotein cholesterol [males: b = 0.19 (0.15, 0.23); females: b = 0.22 (0.17, 0.28)], low-density lipoprotein cholesterol [males: b = -0.14 (-0.23, -0.05); females: b = -0.19 (-0.31, -0.18)], triglycerides [males: b = -0.58 (-0.74, -0.43); females: b = -0.55 (-0.74, -0.36)] and total cholesterol [males: b = -0.20 (-0.31, -0.10); females: b = -0.19 (-0.32, -0.06)]; and better serum glucose levels in males [ b = -0.30 (-0.46, -0.15)]. (2) lower risk of impaired fasting glucose in males {third quartile [OR = 0.66 (0.45-0.95)] and fourth quartile [OR = 0.46 (0.30-0.71)] vs. first quartile} and dyslipidemia in both genders {third quartile [males: OR = 0.65 (0.48-0.87); females: OR = 0.68 (0.53-0.86)] and fourth quartile [males: OR = 0.47 (0.35-0.64); females: OR = 0.47(0.36-0.61)] vs. first quartile}. (3) lower risk of hyperlipidemia in both genders third quartile [males: OR = 0.66 (0.50-0.87); females: OR = 0.57 (0.43-0.75)] and fourth quartile [males: OR = 0.35 (0.26-0.47); females: OR = 0.51 (0.38-0.70)] vs. first quartile. However, contrary

  8. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  9. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation

    Energy Technology Data Exchange (ETDEWEB)

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M.; Young, Vincent B.; Jansson, Janet K.; Fredricks, David N.; Borenstein, Elhanan; Sanchez, Laura M.

    2015-12-22

    ABSTRACT

    Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in

  10. Metabolic profile at first-time schizophrenia diagnosis

    DEFF Research Database (Denmark)

    Horsdal, Henriette Thisted; Benros, Michael Eriksen; Köhler-Forsberg, Ole

    2017-01-01

    Region. Information on metabolic parameters was obtained from a clinical laboratory information system. Associations were calculated using Wilcoxon rank-sum tests, chi-square tests, logistic regression, and Spearman's correlation coefficients. RESULTS: A total of 2,452 people with a first...... in the early phase of schizophrenia emphasize the need for increased monitoring and management....

  11. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences.

    Science.gov (United States)

    Tayyari, Fariba; Gowda, G A Nagana; Olopade, Olufunmilayo F; Berg, Richard; Yang, Howard H; Lee, Maxwell P; Ngwa, Wilfred F; Mittal, Suresh K; Raftery, Daniel; Mohammed, Sulma I

    2018-02-20

    Breast cancer, a heterogeneous disease with variable pathophysiology and biology, is classified into four major subtypes. While hormonal- and antibody-targeted therapies are effective in the patients with luminal and HER-2 subtypes, the patients with triple-negative breast cancer (TNBC) subtype do not benefit from these therapies. The incidence rates of TNBC subtype are higher in African-American women, and the evidence indicates that these women have worse prognosis compared to women of European descent. The reasons for this disparity remain unclear but are often attributed to TNBC biology. In this study, we performed metabolic analysis of breast tissues to identify how TNBC differs from luminal A breast cancer (LABC) subtypes within the African-American and Caucasian breast cancer patients, respectively. We used High-Resolution Magic Angle Spinning (HR-MAS) 1H Nuclear magnetic resonance (NMR) to perform the metabolomic analysis of breast cancer and adjacent normal tissues (total n=82 samples). TNBC and LABC subtypes in African American women exhibited different metabolic profiles. Metabolic profiles of these subtypes were also distinct from those revealed in Caucasian women. TNBC in African-American women expressed higher levels of glutathione, choline, and glutamine as well as profound metabolic alterations characterized by decreased mitochondrial respiration and increased glycolysis concomitant with decreased levels of ATP. TNBC in Caucasian women was associated with increased pyrimidine synthesis. These metabolic alterations could potentially be exploited as novel treatment targets for TNBC.

  12. Rapid descriptive sensory methods – Comparison of Free Multiple Sorting, Partial Napping, Napping, Flash Profiling and conventional profiling

    DEFF Research Database (Denmark)

    Dehlholm, Christian; Brockhoff, Per B.; Meinert, Lene

    2012-01-01

    is a modal restriction of Napping to specific sensory modalities, directing sensation and still allowing a holistic approach to products. The new methods are compared to Flash Profiling, Napping and conventional descriptive sensory profiling. Evaluations are performed by several panels of expert assessors......Two new rapid descriptive sensory evaluation methods are introduced to the field of food sensory evaluation. The first method, free multiple sorting, allows subjects to perform ad libitum free sortings, until they feel that no more relevant dissimilarities among products remain. The second method...... are applied for the graphical validation and comparisons. This allows similar comparisons and is applicable to single-block evaluation designs such as Napping. The partial Napping allows repetitions on multiple sensory modalities, e.g. appearance, taste and mouthfeel, and shows the average...

  13. Metabolic profiling of meat: assessment of pork hygiene and contamination with Salmonella typhimurium.

    Science.gov (United States)

    Xu, Yun; Cheung, William; Winder, Catherine L; Dunn, Warwick B; Goodacre, Royston

    2011-02-07

    Spoilage in meat is the result of the action of microorganisms and results in changes of meat and microbial metabolism. This process may include pathogenic food poisoning bacteria such as Salmonella typhimurium, and it is important that these are differentiated from the natural spoilage process caused by non-pathogenic microorganisms. In this study we investigated the application of metabolic profiling using gas chromatography-mass spectrometry, to assess the microbial contamination of pork. Metabolite profiles were generated from microorganisms, originating from the natural spoilage process and from the artificial contamination with S. typhimurium. In an initial experiment, we investigated changes in the metabolic profiles over a 72 hour time course at 25 °C and established time points indicative of the spoilage process. A further experiment was performed to provide in-depth analysis of the metabolites characteristic of contamination by S. typhimurium. We applied a three-way PARAllel FACtor analysis 2 (PARAFAC2) multivariate algorithm to model the metabolic profiles. In addition, two univariate statistical tests, two-sample Wilcoxon signed rank test and Friedman test, were employed to identify metabolites which showed significant difference between natural spoiled and S. typhimurium contaminated samples. Consistent results from the two independent experiments were obtained showing the discrimination of the metabolic profiles of the natural spoiled pork chops and those contaminated with S. typhimurium. The analysis identified 17 metabolites of significant interest (including various types of amino acid and fatty acid) in the discrimination of pork contaminated with the pathogenic microorganism.

  14. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks

    International Nuclear Information System (INIS)

    Fliniaux, Ophélie; Gaillard, Gwenaelle; Lion, Antoine; Cailleu, Dominique; Mesnard, François; Betsou, Fotini

    2011-01-01

    A blood pre-centrifugation delay of 24 h at room temperature influenced the proton NMR spectroscopic profiles of human serum. A blood pre-centrifugation delay of 24 h at 4°C did not influence the spectroscopic profile as compared with 4 h delays at either room temperature or 4°C. Five or ten serum freeze–thaw cycles also influenced the proton NMR spectroscopic profiles. Certain common in vitro preanalytical variations occurring in biobanks may impact the metabolic profile of human serum.

  15. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks

    Energy Technology Data Exchange (ETDEWEB)

    Fliniaux, Ophelie [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Gaillard, Gwenaelle [Biobanque de Picardie (France); Lion, Antoine [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Cailleu, Dominique [Batiment Serres-Transfert, rue de Mai/rue Dallery, Plateforme Analytique (France); Mesnard, Francois, E-mail: francois.mesnard@u-picardie.fr [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Betsou, Fotini [Integrated Biobank of Luxembourg (Luxembourg)

    2011-12-15

    A blood pre-centrifugation delay of 24 h at room temperature influenced the proton NMR spectroscopic profiles of human serum. A blood pre-centrifugation delay of 24 h at 4 Degree-Sign C did not influence the spectroscopic profile as compared with 4 h delays at either room temperature or 4 Degree-Sign C. Five or ten serum freeze-thaw cycles also influenced the proton NMR spectroscopic profiles. Certain common in vitro preanalytical variations occurring in biobanks may impact the metabolic profile of human serum.

  16. Magnetic resonance imaging of tumor oxygenation and metabolic profile

    DEFF Research Database (Denmark)

    Krishna, Murali C.; Matsumoto, Shingo; Saito, Keita

    2013-01-01

    The tumor microenvironment is distinct from normal tissue as a result of abnormal vascular network characterized by hypoxia, low pH, high interstitial fluid pressure and elevated glycolytic activity. This poses a barrier to treatments including radiation therapy and chemotherapy. Imaging methods...... spectroscopic imaging. Imaging pO2 in tumors is now a robust pre-clinical imaging modality with potential for implementation clinically. Pre-clinical studies and an initial clinical study with hyperpolarized metabolic MR have been successful and suggest that the method may be part of image-guided radiotherapy...

  17. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    OpenAIRE

    Ellis, James K; Athersuch, Toby J; Thomas, Laura DK; Teichert, Friederike; Pérez-Trujillo, Miriam; Svendsen, Claus; Spurgeon, David J; Singh, Rajinder; Järup, Lars; Bundy, Jacob G; Keun, Hector C

    2012-01-01

    Background: The ‘exposome’ represents the accumulation of all environmental exposures across a lifetime. Topdown strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual’s metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers...

  18. A RAPID THIN-LAYER CHROMATOGRAPHIC PROCEDURE TO IDENTIFY POOR AND EXTENSIVE OXIDATIVE DRUG METABOLIZERS IN MAN USING DEXTROMETHORPHAN

    NARCIS (Netherlands)

    DEZEEUW, RA; EIKEMA, D; FRANKE, JP; JONKMAN, JHG

    A rapid TLC method is presented to distinguish poor oxidative drug metabolizers from extensive oxidative drug metabolizers. Dextromethorphan (1) is used as test probe because it is safe, well characterized, generally available and easy to measure. The method is based on the extraction of 1 and its

  19. Radiation Changes the Metabolic Profiling of Melanoma Cell Line B16.

    Directory of Open Access Journals (Sweden)

    Lige Wu

    Full Text Available Radiation therapy can be an effective way to kill cancer cells using ionizing radiation, but some tumors are resistant to radiation therapy and the underlying mechanism still remains elusive. It is therefore necessary to establish an appropriate working model to study and monitor radiation-mediated cancer therapy. In response to cellular stress, the metabolome is the integrated profiling of changes in all metabolites in cells, which can be used to investigate radiation tolerance mechanisms and identify targets for cancer radiation sensibilization. In this study, using 1H nuclear magnetic resonance for untargeted metabolic profiling in radiation-tolerant mouse melanoma cell line B16, we comprehensively investigated changes in metabolites and metabolic network in B16 cells in response to radiation. Principal component analysis and partial least squares discriminant analysis indicated the difference in cellular metabolites between the untreated cells and X-ray radiated cells. In radiated cells, the content of alanine, glutamate, glycine and choline was increased, while the content of leucine, lactate, creatine and creatine phosphate was decreased. Enrichment analysis of metabolic pathway showed that the changes in metabolites were related to multiple metabolic pathways including the metabolism of glycine, arginine, taurine, glycolysis, and gluconeogenesis. Taken together, with cellular metabolome study followed by bioinformatic analysis to profile specific metabolic pathways in response to radiation, we deepened our understanding of radiation-resistant mechanisms and radiation sensibilization in cancer, which may further provide a theoretical and practical basis for personalized cancer therapy.

  20. Plasma metabolic profiling of dairy cows affected with clinical ketosis using LC/MS technology.

    Science.gov (United States)

    Li, Y; Xu, C; Xia, C; Zhang, Hy; Sun, Lw; Gao, Y

    2014-01-01

    Ketosis in dairy cattle is an important metabolic disorder. Currently, the plasma metabolic profile of ketosis as determined using liquid chromatography-mass spectrometry (LC/MS) has not been reported. To investigate plasma metabolic profiles from cows with clinical ketosis in comparison to control cows. Twenty Holstein dairy cows were divided into two groups based on clinical signs and plasma β-hydroxybutyric acid and glucose concentrations 7-21 days postpartum: clinical ketosis and control cows. Plasma metabolic profiles were analyzed using LC/MS. Data were processed using principal component analysis and orthogonal partial least-squares discriminant analysis. Compared to control cows, the levels of valine, glycine, glycocholic, tetradecenoic acid, and palmitoleic acid increased significantly in clinical ketosis. On the other hand, the levels of arginine, aminobutyric acid, leucine/isoleucine, tryptophan, creatinine, lysine, norcotinine, and undecanoic acid decreased markedly. Our results showed that the metabolic changes in cows with clinical ketosis involve complex metabolic networks and signal transduction. These results are important for future studies elucidating the pathogenesis, diagnosis, and prevention of clinical ketosis in dairy cows.

  1. Biochemical association of metabolic profile and microbiome in chronic pressure ulcer wounds.

    Directory of Open Access Journals (Sweden)

    Mary Cloud B Ammons

    Full Text Available Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment.

  2. Fruit bats (Pteropodidae) fuel their metabolism rapidly and directly with exogenous sugars.

    Science.gov (United States)

    Amitai, O; Holtze, S; Barkan, S; Amichai, E; Korine, C; Pinshow, B; Voigt, C C

    2010-08-01

    Previous studies reported that fed bats and birds mostly use recently acquired exogenous nutrients as fuel for flight, rather than endogenous fuels, such as lipids or glycogen. However, this pattern of fuel use may be a simple size-related phenomenon because, to date, only small birds and bats have been studied with respect to the origin of metabolized fuel, and because small animals carry relatively small energy reserves, considering their high mass-specific metabolic rate. We hypothesized that approximately 150 g Egyptian fruit bats (Rousettus aegyptiacus Pteropodidae), which are more than an order of magnitude heavier than previously studied bats, also catabolize dietary sugars directly and exclusively to fuel both rest and flight metabolism. We based our expectation on the observation that these animals rapidly transport ingested dietary sugars, which are absorbed via passive paracellular pathways in the intestine, to organs of high energy demand. We used the stable carbon isotope ratio in exhaled CO(2) (delta(13)C(breath)) to assess the origin of metabolized substrates in 16 Egyptian fruit bats that were maintained on a diet of C3 plants before experiments. First, we predicted that in resting bats delta(13)C(breath) remains constant when bats ingest C3 sucrose, but increases and converges on the dietary isotopic signature when C4 sucrose and C4 glucose are ingested. Second, if flying fruit bats use exogenous nutrients exclusively to fuel flight, we predicted that delta(13)C(breath) of flying bats would converge on the isotopic signature of the C4 sucrose they were fed. Both resting and flying Egyptian fruit bats, indeed, directly fuelled their metabolism with freshly ingested exogenous substrates. The rate at which the fruit bats oxidized dietary sugars was as fast as in 10 g nectar-feeding bats and 5 g hummingbirds. Our results support the notion that flying bats, irrespective of their size, catabolize dietary sugars directly, and possibly exclusively, to

  3. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    OpenAIRE

    Xu, Jia; Verbrugghe, Adronie; Louren?o, Marta; Janssens, Geert P. J.; Liu, Daisy J. X.; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-01-01

    Background Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host me...

  4. Relative Handgrip Strength Is Inversely Associated with Metabolic Profile and Metabolic Disease in the General Population in China

    Directory of Open Access Journals (Sweden)

    Dongxue Li

    2018-02-01

    Full Text Available Background: Absolute handgrip strength has been correlated with metabolic profile and metabolic disease. Whether relative handgrip strength is also associated with metabolic disease has not been assessed. This study aimed at assessing the association of relative handgrip strength with metabolic profile and metabolic disease in the general population in China.Methods: Data were derived from an ongoing cross-sectional survey of the 2013 National Physical and Health in Shanxi Province, which involved 5520 participants. Multiple linear regression or multiple logistic regression analysis were used to assess the association of absolute/relative handgrip strength with the metabolic profile, preclinical, and established stages of metabolic diseases.Results: This study revealed that relative handgrip strength, that is when normalized to BMI, was associated with: (1 in both genders for more favorable blood lipid levels of high-density lipoprotein cholesterol [males: b = 0.19 (0.15, 0.23; females: b = 0.22 (0.17, 0.28], low-density lipoprotein cholesterol [males: b = −0.14 (−0.23, −0.05; females: b = −0.19 (−0.31, −0.18], triglycerides [males: b = −0.58 (−0.74, −0.43; females: b = −0.55 (−0.74, −0.36] and total cholesterol [males: b = −0.20 (−0.31, −0.10; females: b = −0.19 (−0.32, −0.06]; and better serum glucose levels in males [b = −0.30 (−0.46, −0.15]. (2 lower risk of impaired fasting glucose in males {third quartile [OR = 0.66 (0.45–0.95] and fourth quartile [OR = 0.46 (0.30–0.71] vs. first quartile} and dyslipidemia in both genders {third quartile [males: OR = 0.65 (0.48–0.87; females: OR = 0.68 (0.53–0.86] and fourth quartile [males: OR = 0.47 (0.35–0.64; females: OR = 0.47(0.36–0.61] vs. first quartile}. (3 lower risk of hyperlipidemia in both genders third quartile [males: OR = 0.66 (0.50–0.87; females: OR = 0.57 (0.43–0.75] and fourth quartile [males: OR = 0.35 (0.26–0.47; females: OR

  5. A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis.

    Science.gov (United States)

    Chang, Hao; Zheng, Mengjia; Yu, Xiaojun; Than, Aung; Seeni, Razina Z; Kang, Rongjie; Tian, Jingqi; Khanh, Duong Phan; Liu, Linbo; Chen, Peng; Xu, Chenjie

    2017-10-01

    Skin interstitial fluid (ISF) is an emerging source of biomarkers for disease diagnosis and prognosis. Microneedle (MN) patch has been identified as an ideal platform to extract ISF from the skin due to its pain-free and easy-to-administrated properties. However, long sampling time is still a serious problem which impedes timely metabolic analysis. In this study, a swellable MN patch that can rapidly extract ISF is developed. The MN patch is made of methacrylated hyaluronic acid (MeHA) and further crosslinked through UV irradiation. Owing to the supreme water affinity of MeHA, this MN patch can extract sufficient ISF in a short time without the assistance of extra devices, which remarkably facilitates timely metabolic analysis. Due to covalent crosslinked network, the MN patch maintains the structure integrity in the swelling hydrated state without leaving residues in skin after usage. More importantly, the extracted ISF metabolites can be efficiently recovered from MN patch by centrifugation for the subsequent offline analysis of metabolites such as glucose and cholesterol. Given the recent trend of easy-to-use point-of-care devices for personal healthcare monitoring, this study opens a new avenue for the development of MN-based microdevices for sampling ISF and minimally invasive metabolic detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Earwax metabolomics: An innovative pilot metabolic profiling study for assessing metabolic changes in ewes during periparturition period.

    Science.gov (United States)

    Shokry, Engy; Pereira, Julião; Marques Júnior, Jair Gonzalez; da Cunha, Paulo Henrique Jorge; Noronha Filho, Antônio Dionísio Feitosa; da Silva, Jessica Alves; Fioravanti, Maria Clorinda Soares; de Oliveira, Anselmo Elcana; Antoniosi Filho, Nelson Roberto

    2017-01-01

    Important metabolic changes occur during transition period of late pregnancy and early lactation to meet increasing energy demands of the growing fetus and for milk production. The aim of this investigation is to present an innovative and non-invasive tool using ewe earwax sample analysis to assess the metabolic profile in ewes during late pregnancy and early lactation. In this work, earwax samples were collected from 28 healthy Brazilian Santa Inês ewes divided into 3 sub-groups: 9 non-pregnant ewes, 6 pregnant ewes in the last 30 days of gestation, and 13 lactating ewes ≤ 30 days postpartum. Then, a range of metabolites including volatile organic compounds (VOC), amino acids (AA), and minerals were profiled and quantified in the samples by applying headspace gas chromatography/mass spectrometry, high performance liquid chromatography/tandem mass spectrometry, and inductively coupled plasma-optical emission spectrometry, respectively. As evident in our results, significant changes were observed in the metabolite profile of earwax between the studied groups where a remarkable elevation was detected in the levels of non-esterified fatty acids, alcohols, ketones, and hydroxy urea in the VOC profile of samples obtained from pregnant and lactating ewes. Meanwhile, a significant decrease was detected in the levels of 9 minerals and 14 AA including essential AA (leucine, phenyl alanine, lysine, isoleucine, threonine, valine), conditionally essential AA (arginine, glycine, tyrosine, proline, serine), and a non-essential AA (alanine). Multivariate analysis using robust principal component analysis and hierarchical cluster analysis was successfully applied to discriminate the three study groups using the variations of metabolites in the two stress states (pregnancy and lactation) from the healthy non-stress condition. The innovative developed method was successful in evaluating pre- and post-parturient metabolic changes using earwax and can in the future be applied to

  7. Earwax metabolomics: An innovative pilot metabolic profiling study for assessing metabolic changes in ewes during periparturition period.

    Directory of Open Access Journals (Sweden)

    Engy Shokry

    Full Text Available Important metabolic changes occur during transition period of late pregnancy and early lactation to meet increasing energy demands of the growing fetus and for milk production. The aim of this investigation is to present an innovative and non-invasive tool using ewe earwax sample analysis to assess the metabolic profile in ewes during late pregnancy and early lactation. In this work, earwax samples were collected from 28 healthy Brazilian Santa Inês ewes divided into 3 sub-groups: 9 non-pregnant ewes, 6 pregnant ewes in the last 30 days of gestation, and 13 lactating ewes ≤ 30 days postpartum. Then, a range of metabolites including volatile organic compounds (VOC, amino acids (AA, and minerals were profiled and quantified in the samples by applying headspace gas chromatography/mass spectrometry, high performance liquid chromatography/tandem mass spectrometry, and inductively coupled plasma-optical emission spectrometry, respectively. As evident in our results, significant changes were observed in the metabolite profile of earwax between the studied groups where a remarkable elevation was detected in the levels of non-esterified fatty acids, alcohols, ketones, and hydroxy urea in the VOC profile of samples obtained from pregnant and lactating ewes. Meanwhile, a significant decrease was detected in the levels of 9 minerals and 14 AA including essential AA (leucine, phenyl alanine, lysine, isoleucine, threonine, valine, conditionally essential AA (arginine, glycine, tyrosine, proline, serine, and a non-essential AA (alanine. Multivariate analysis using robust principal component analysis and hierarchical cluster analysis was successfully applied to discriminate the three study groups using the variations of metabolites in the two stress states (pregnancy and lactation from the healthy non-stress condition. The innovative developed method was successful in evaluating pre- and post-parturient metabolic changes using earwax and can in the future be

  8. Estimation of dynamic flux profiles from metabolic time series data

    Directory of Open Access Journals (Sweden)

    Chou I-Chun

    2012-07-01

    Full Text Available Abstract Background Advances in modern high-throughput techniques of molecular biology have enabled top-down approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among them is the recent method of dynamic flux estimation (DFE, which uses such data not only for parameter estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and information. However, such supplementations incur their own limitations. In particular, assumptions must be made regarding the functional forms of some processes and detailed kinetic information must be available, in addition to the time series data. Results The authors propose here a systematic approach that supplements DFE and overcomes some of its shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series data are available, the approach allows the determination of a subset of fluxes that enables the subsequent applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces cerevisiae. Conclusions The results demonstrate that the proposed method successfully complements DFE under various situations and without a priori assumptions regarding the model representation. The proposed method also permits an examination of whether at all, to what degree, or within what range the available time series data can be validly represented in a particular functional format of

  9. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rahbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    Background: This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. Material and methods: To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated

  10. Effect of age and blood collection site on the metabolic profile of ...

    African Journals Online (AJOL)

    Different collection site did not affect the examined parameters, but some statistically significant differences were observed between the age groups. However, all the parameters agreed with the data reported in the literature and contribute to our knowledge of the metabolic profile of ostriches. South African Journal of Animal ...

  11. Metabolomic profiles of lipid metabolism, arterial stiffness and hemodynamics in male coronary artery disease patients

    Directory of Open Access Journals (Sweden)

    Kaido Paapstel

    2016-06-01

    Conclusions: We demonstrated an independent association between the serum medium- and long-chain acylcarnitine profile and aortic stiffness for the CAD patients. In addition to the lipid-related classical CVD risk markers, the intermediates of lipid metabolism may serve as novel indicators for altered vascular function.

  12. Yogurt consumption is associated with better diet quality and metabolic profile in American men and women

    Science.gov (United States)

    Low-fat dairy products may be beneficial for health, but few studies have specifically focused on yogurt. We examined whether yogurt consumption was associated with better dietary patterns, diet quality, and metabolic profile. This cross-sectional study included the adults (n=6526) participating in ...

  13. Rapid metabolism of exogenous angiotensin II by catecholaminergic neuronal cells in culture media.

    Science.gov (United States)

    Basu, Urmi; Seravalli, Javier; Madayiputhiya, Nandakumar; Adamec, Jiri; Case, Adam J; Zimmerman, Matthew C

    2015-02-01

    Angiotensin II (AngII) acts on central neurons to increase neuronal firing and induce sympathoexcitation, which contribute to the pathogenesis of cardiovascular diseases including hypertension and heart failure. Numerous studies have examined the precise AngII-induced intraneuronal signaling mechanism in an attempt to identify new therapeutic targets for these diseases. Considering the technical challenges in studying specific intraneuronal signaling pathways in vivo, especially in the cardiovascular control brain regions, most studies have relied on neuronal cell culture models. However, there are numerous limitations in using cell culture models to study AngII intraneuronal signaling, including the lack of evidence indicating the stability of AngII in culture media. Herein, we tested the hypothesis that exogenous AngII is rapidly metabolized in neuronal cell culture media. Using liquid chromatography-tandem mass spectrometry, we measured levels of AngII and its metabolites, Ang III, Ang IV, and Ang-1-7, in neuronal cell culture media after administration of exogenous AngII (100 nmol/L) to a neuronal cell culture model (CATH.a neurons). AngII levels rapidly declined in the media, returning to near baseline levels within 3 h of administration. Additionally, levels of Ang III and Ang-1-7 acutely increased, while levels of Ang IV remained unchanged. Replenishing the media with exogenous AngII every 3 h for 24 h resulted in a consistent and significant increase in AngII levels for the duration of the treatment period. These data indicate that AngII is rapidly metabolized in neuronal cell culture media, and replenishing the media at least every 3 h is needed to sustain chronically elevated levels. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles

    Science.gov (United States)

    Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia

    2017-01-01

    An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035

  15. Hypoadiponectinemia in overweight children contributes to a negative metabolic risk profile 6 years later

    DEFF Research Database (Denmark)

    Kynde, Iben; Heitmann, Berit L; Bygbjerg, Ib C

    2009-01-01

    follow-up data 6 years later (n = 169). Cardiometabolic risk profile was calculated using a continuous composite score derived from summing of 6 factors standardized to the sample means (Z scores): body mass index, homeostasis model assessment of insulin resistance, total serum cholesterol to serum high...... adiponectin at baseline was inversely associated with metabolic risk score 6 years later (P = .04). In childhood, both hypoadiponectinemia and hyperleptinemia accompany a negative metabolic risk profile. In addition, circulating plasma adiponectin may be a useful biomarker to identify overweight children......Prognostic biomarkers are needed to identify children at increased cardiometabolic risk. The objective was to study whether markers of metabolism and inflammation, for example, circulating plasma adiponectin, leptin, interleukin-8, and hepatocyte growth factor, are associated with cardiometabolic...

  16. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues.

    Directory of Open Access Journals (Sweden)

    Valerio Mori

    Full Text Available NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the "amidated" and "deamidated" routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT, which in mammals comprises three distinct isozymes, and NAD synthetase (NADS. First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes'rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme's substrate NaAD (nicotinic acid adenine dinucleotide. In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease.

  17. Obesity, metabolic profile, and inhibition failure: Young women under scrutiny.

    Science.gov (United States)

    Catoira, N P; Tapajóz, F; Allegri, R F; Lajfer, J; Rodríguez Cámara, M J; Iturry, M L; Castaño, G O

    2016-04-01

    The prevalence of obesity, as well as evidence about this pathology as a risk factor for cognitive decline and dementia in the elderly, is increasing worldwide. Executive functions have been found to be compromised in most studies, although the specific results are dissimilar. Obese young women constitute an interesting study and intervention group, having been found to be unaffected by age and hormonal negative effects on cognition and considering that their health problems affect not only themselves but their families and offspring. The objective of the present study was to compare the executive performance of obese young women with that of a healthy control group. A cross-sectional study was done among premenopausal women from a public hospital in Buenos Aires. The sample comprised 113 participants (32 healthy controls and 81 obese women), who were evaluated for depressive and anxiety symptoms (Beck Depression Inventory-II and State-Trait Anxiety Inventory) and executive functioning (Trail-Making Test B, Stroop Color and Word Test, Wisconsin Card Sorting Test, and verbal fluency test). Statistical analysis was done by using the SPSS version 20.0 software. Among executive functions, a significant difference was found between groups in inhibition (pcognitive test and 2h post-load glucose level. Inhibition was decreased in our obese young women group, and glucose/lipid metabolism may be involved in this association. The cognitive impairment is comparable with that described in addictive conditions. Our conclusions support the concept of multidisciplinary management of obese patients from the time of diagnosis. Detecting and understanding cognitive dysfunction in this population is essential to providing appropriate treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia.

    Directory of Open Access Journals (Sweden)

    Ravi Goyal

    Full Text Available Long-term hypoxia (LTH is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death.LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups.Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation.

  19. Metabolic profile at first-time schizophrenia diagnosis: a population-based cross-sectional study

    Directory of Open Access Journals (Sweden)

    Horsdal HT

    2017-02-01

    Full Text Available Henriette Thisted Horsdal,1,2 Michael Eriksen Benros,2,3 Ole Köhler-Forsberg,2–4 Jesper Krogh,3 Christiane Gasse1,2,5 1National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus BSS, Aarhus University, Aarhus, 2The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, 3Faculty of Health Sciences, Mental Health Centre Copenhagen, University of Copenhagen, Copenhagen, 4Psychosis Research Unit, Aarhus University Hospital, Risskov, 5Centre for Integrated Register-Based Research, Aarhus University, Aarhus, Denmark Objective: Schizophrenia and/or antipsychotic drug use are associated with metabolic abnormalities; however, knowledge regarding metabolic status and physician’s monitoring of metabolic status at first schizophrenia diagnosis is sparse. We assessed the prevalence of monitoring for metabolic blood abnormalities and characterized the metabolic profiles in people with a first-time schizophrenia diagnosis. Methods: This is a population-based cross-sectional study including all adults born in Denmark after January 1, 1955, with their first schizophrenia diagnosis between 2000 and 2012 in the Central Denmark Region. Information on metabolic parameters was obtained from a clinical laboratory information system. Associations were calculated using Wilcoxon rank-sum tests, chi-square tests, logistic regression, and Spearman’s correlation coefficients. Results: A total of 2,452 people with a first-time schizophrenia diagnosis were identified, of whom 1,040 (42.4% were monitored for metabolic abnormalities. Among those monitored, 58.4% had an abnormal lipid profile and 13.8% had an abnormal glucose profile. People who had previously filled prescription(s for antipsychotic drugs were more likely to present an abnormal lipid measure (65.7% vs 46.8%, P<0.001 and abnormal glucose profile (16.4% vs 10.1%, P=0.01. Conclusion: Metabolic abnormalities are common at first

  20. Determination of the in vitro disintegration profile of rapidly disintegrating tablets and correlation with oral disintegration.

    Science.gov (United States)

    Abdelbary, G; Eouani, C; Prinderre, P; Joachim, J; Reynier, Jp; Piccerelle, Ph

    2005-03-23

    The assessment of the in vitro disintegration profile of rapidly disintegrating tablets (RDT) is very important in the evaluation and the development of new formulations of this type. So far neither the US Pharmacopoeia nor the European Pharmacopoeia has defined a specific disintegration test for RDT; currently, it is only possible to refer to the tests on dispersible or effervescent tablets for the evaluation of RDT's disintegration capacity. In the present study, we have evaluated the disintegration profile of RDT manufactured by main commercialised technologies, using the texture analyser (TA). In order to simulate as much as possible the oral disintegration of these dosage forms, a new operating structure was developed. This structure mimics the situation in the patient's mouth and provides a gradual elimination of the detached particles during the disintegration process. The obtained time-distance profiles or disintegration profiles enabled the calculation of certain quantitative values as the disintegration onset (t1) and the total disintegration time (t2). These values were used in the characterisation of the effect of test variables as the disintegration medium and temperature on the disintegration time of RDT. Moreover, the oral disintegration time of the same products was evaluated by 14 healthy volunteers. Results obtained when artificial saliva at 37 degrees C was employed as disintegration medium were used to correlate the in vitro (t2) and oral disintegration times. Excellent correlation was found and in addition, we were able to achieve a qualitative measure of the mouthfeel by comparing the thickness of the tablets and the penetration distance obtained from the disintegration profile. This method also permitted the discrimination between different RDT, where differences in the disintegration mechanism were reflected on the disintegration profile achieved for each tablet.

  1. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Directory of Open Access Journals (Sweden)

    Ellis James K

    2012-06-01

    Full Text Available Abstract Background The 'exposome' represents the accumulation of all environmental exposures across a lifetime. Top-down strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics defines an individual's metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods High-resolution 1H NMR spectroscopy (metabonomics was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4-deoxy-erythronic acid or one-carbon metabolism (dimethylglycine, creatinine, creatine, were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental

  2. Carotta: Revealing Hidden Confounder Markers in Metabolic Breath Profiles

    Directory of Open Access Journals (Sweden)

    Anne-Christin Hauschild

    2015-06-01

    Full Text Available Computational breath analysis is a growing research area aiming at identifying volatile organic compounds (VOCs in human breath to assist medical diagnostics of the next generation. While inexpensive and non-invasive bioanalytical technologies for metabolite detection in exhaled air and bacterial/fungal vapor exist and the first studies on the power of supervised machine learning methods for profiling of the resulting data were conducted, we lack methods to extract hidden data features emerging from confounding factors. Here, we present Carotta, a new cluster analysis framework dedicated to uncovering such hidden substructures by sophisticated unsupervised statistical learning methods. We study the power of transitivity clustering and hierarchical clustering to identify groups of VOCs with similar expression behavior over most patient breath samples and/or groups of patients with a similar VOC intensity pattern. This enables the discovery of dependencies between metabolites. On the one hand, this allows us to eliminate the effect of potential confounding factors hindering disease classification, such as smoking. On the other hand, we may also identify VOCs associated with disease subtypes or concomitant diseases. Carotta is an open source software with an intuitive graphical user interface promoting data handling, analysis and visualization. The back-end is designed to be modular, allowing for easy extensions with plugins in the future, such as new clustering methods and statistics. It does not require much prior knowledge or technical skills to operate. We demonstrate its power and applicability by means of one artificial dataset. We also apply Carotta exemplarily to a real-world example dataset on chronic obstructive pulmonary disease (COPD. While the artificial data are utilized as a proof of concept, we will demonstrate how Carotta finds candidate markers in our real dataset associated with confounders rather than the primary disease (COPD

  3. Body weight regulation and obesity: dietary strategies to improve the metabolic profile.

    Science.gov (United States)

    Munsters, M J M; Saris, W H M

    2014-01-01

    This review discusses dietary strategies that may improve the metabolic profile and body weight regulation in obesity. Recent evidence demonstrated that long-term health effects seem to be more beneficial for low-glycemic index (GI) diets compared to high-protein diets. Still, these results need to be confirmed by other prospective cohort studies and long-term clinical trials, and the discrepancy between these study designs needs to be explored in more detail. Furthermore, the current literature is mixed with regard to the efficacy of increased meal frequency (or snacking) regimens in causing metabolic alterations, particularly in relation to body weight control. In conclusion, a growing body of evidence suggests that dietary strategies with the aim to reduce postprandial insulin response and increase fat oxidation, and that tend to restore metabolic flexibility, have a place in the prevention and treatment of obesity and associated metabolic disorders.

  4. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    Science.gov (United States)

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.

  5. Metabolic Engineering for Probiotics and their Genome-Wide Expression Profiling.

    Science.gov (United States)

    Yadav, Ruby; Singh, Puneet K; Shukla, Pratyoosh

    2018-01-01

    Probiotic supplements in food industry have attracted a lot of attention and shown a remarkable growth in this field. Metabolic engineering (ME) approaches enable understanding their mechanism of action and increases possibility of designing probiotic strains with desired functions. Probiotic microorganisms generally referred as industrially important lactic acid bacteria (LAB) which are involved in fermenting dairy products, food, beverages and produces lactic acid as final product. A number of illustrations of metabolic engineering approaches in industrial probiotic bacteria have been described in this review including transcriptomic studies of Lactobacillus reuteri and improvement in exopolysaccharide (EPS) biosynthesis yield in Lactobacillus casei LC2W. This review summaries various metabolic engineering approaches for exploring metabolic pathways. These approaches enable evaluation of cellular metabolic state and effective editing of microbial genome or introduction of novel enzymes to redirect the carbon fluxes. In addition, various system biology tools such as in silico design commonly used for improving strain performance is also discussed. Finally, we discuss the integration of metabolic engineering and genome profiling which offers a new way to explore metabolic interactions, fluxomics and probiogenomics using probiotic bacteria like Bifidobacterium spp and Lactobacillus spp. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Intervention of pumpkin seed oil on metabolic disease revealed by metabonomics and transcript profile.

    Science.gov (United States)

    Zhao, Xiu-Ju; Chen, Yu-Lian; Fu, Bing; Zhang, Wen; Liu, Zhiguo; Zhuo, Hexian

    2017-03-01

    Understanding the metabolic and transcription basis of pumpkin seed oil (PSO) intervention on metabolic disease (MD) is essential to daily nutrition and health. This study analyzed the liver metabolic variations of Wistar rats fed normal diet (CON), high-fat diet (HFD) and high-fat plus PSO diet (PSO) to establish the relationship between the liver metabolite composition/transcript profile and the effects of PSO on MD. By using proton nuclear magnetic resonance spectroscopy together with multivariate data analysis, it was found that, compared with CON rats, HFD rats showed clear dysfunctions of choline metabolism, glucose metabolism and nucleotide and amino acid metabolism. Using quantitative real-time polymerase chain reaction (qPCR), it was found that, compared with HFD rats, PSO rats showed alleviated endoplasmic reticulum stress accompanied by lowered unfolded protein response. These findings provide useful information to understand the metabolic alterations triggered by MD and to evaluate the effects of PSO intervention. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Urinary metabolic profiling of asymptomatic acute intermittent porphyria using a rule-mining-based algorithm.

    Science.gov (United States)

    Luck, Margaux; Schmitt, Caroline; Talbi, Neila; Gouya, Laurent; Caradeuc, Cédric; Puy, Hervé; Bertho, Gildas; Pallet, Nicolas

    2018-01-01

    Metabolomic profiling combines Nuclear Magnetic Resonance spectroscopy with supervised statistical analysis that might allow to better understanding the mechanisms of a disease. In this study, the urinary metabolic profiling of individuals with porphyrias was performed to predict different types of disease, and to propose new pathophysiological hypotheses. Urine 1 H-NMR spectra of 73 patients with asymptomatic acute intermittent porphyria (aAIP) and familial or sporadic porphyria cutanea tarda (f/sPCT) were compared using a supervised rule-mining algorithm. NMR spectrum buckets bins, corresponding to rules, were extracted and a logistic regression was trained. Our rule-mining algorithm generated results were consistent with those obtained using partial least square discriminant analysis (PLS-DA) and the predictive performance of the model was significant. Buckets that were identified by the algorithm corresponded to metabolites involved in glycolysis and energy-conversion pathways, notably acetate, citrate, and pyruvate, which were found in higher concentrations in the urines of aAIP compared with PCT patients. Metabolic profiling did not discriminate sPCT from fPCT patients. These results suggest that metabolic reprogramming occurs in aAIP individuals, even in the absence of overt symptoms, and supports the relationship that occur between heme synthesis and mitochondrial energetic metabolism.

  8. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhen, Shoumin; Dong, Kun; Deng, Xiong; Zhou, Jiaxing; Xu, Xuexin; Han, Caixia; Zhang, Wenying; Xu, Yanhao; Wang, Zhimin; Yan, Yueming

    2016-08-01

    Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Association of glucocorticoid receptor polymorphisms with clinical and metabolic profiles in polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Gustavo A.Rosa Maciel

    2014-03-01

    Full Text Available OBJECTIVES: We aimed to investigate whether glucocorticoid receptor gene polymorphisms are associated with clinical and metabolic profiles in patients with polycystic ovary syndrome. Polycystic ovary syndrome is a complex endocrine disease that affects 5-8% of women and may be associated with metabolic syndrome, which is a risk factor for cardiovascular disease. Cortisol action and dysregulation account for metabolic syndrome development in the general population. As glucocorticoid receptor gene (NR3C1 polymorphisms regulate cortisol sensitivity, we hypothesized that variants of this gene may be involved in the adverse metabolic profiles of patients with polycystic ovary syndrome. METHOD: Clinical, metabolic and hormonal profiles were evaluated in 97 patients with polycystic ovary syndrome who were diagnosed according to the Rotterdam criteria. The alleles of the glucocorticoid gene were genotyped. Association analyses were performed using the appropriate statistical tests. RESULTS: Obesity and metabolic syndrome were observed in 42.3% and 26.8% of patients, respectively. Body mass index was positively correlated with blood pressure, triglyceride, LDL-c, total cholesterol, glucose and insulin levels as well as HOMA-IR values and inversely correlated with HDL-c and SHBG levels. The BclI and A3669G variants were found in 24.7% and 13.4% of alleles, respectively. BclI carriers presented a lower frequency of insulin resistance compared with wild-type subjects. CONCLUSION: The BclI variant is associated with a lower frequency of insulin resistance in women with polycystic ovary syndrome. Glucocorticoid gene polymorphism screening during treatment of the syndrome may be useful for identifying subgroups of at-risk patients who would benefit the most from personalized treatment.

  10. Profile of Cardiovascular Risk Factors in Patients with Coronary Heart Disease, Normal and Impaired Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    І.V. Cherniavska

    2015-11-01

    Full Text Available The aim of research was to conduct the comparative analysis of the profile of cardiovascular risk factors in patients with coronary heart disease (CHD and normal either impaired carbohydrate metabolism. Materials and methods. One hundred and forty two patients were observed. In order to estimate the rate of different forms of CHD depending on the state of carbohydrate metabolism such groups were formed: the first group consisted of 83 patients with type 2 diabetes mellitus (DM, the second group involved 34 patients with impaired glucose tolerance (IGT, the third group consisted of 25 patients with normal carbohydrate metabolism. The ischemic changes of myocardium were detected by ambulatory ECG monitoring with the obligatory achievement of submaximal heart rate during the research. Results. Silent myocardial ischemia was educed in 19 (22.9 % patients with type 2 DM, in 3 (8.8 % persons with IGT and in 2 (8.0 % patients with normal carbohydrate metabolism. Smoking, burdened heredity, violation in the haemostatic system more often occurred in the group of patients with type 2 DM and silent myocardial ischemia in comparison with the patients with type 2 DM without CHD. The profile of general population cardiovascular risk factors in patients with CHD and type 2 DM belongs to the most unfavorable. At the same time for patients with early violations of carbohydrate metabolism and normal carbohydrate metabolism such profile statistically does not differentiate meaningfully. Conclusions. Patients with type 2 DM and silent myocardial ischemia as compared to patients with type 2 DM without CHD have more expressed violations of indexes of general population cardiovascular risk factors for certain.

  11. Metabolic Profiling of Somatic Tissues from Monochamus alternatus (Coleoptera: Cerambycidae Reveals Effects of Irradiation on Metabolism

    Directory of Open Access Journals (Sweden)

    Liangjian Qu

    2014-06-01

    Full Text Available A high-level of sexual sterility is of importance for the sterile insect technique (SIT. However, the use of high-dose-intensity gamma radiation to induce sterility has negative impacts not only on reproductive cells but also on somatic cells. In this study, we investigated the metabolite differences in somatic tissues between non-irradiated, 20-Gy-irradiated, and 40-Gy-irradiated male Monochamus alternatus, an important vector of the pathogenic nematode, Bursaphelenchus xylophilus, which kills Asian pines. The results showed that metabolite levels changed moderately in the 20-Gy samples but were markedly altered in the 40-Gy samples compared with the non-irradiated samples. Twenty-six and 53 metabolites were disturbed by 20-Gy and 40-Gy radiation, respectively. Thirty-six metabolites were found to be markedly altered in the 40-Gy samples but were not changed significantly in the 20-Gy samples. The comprehensive metabolomic disorders induced by 40-Gy radiation dysregulated six metabolic pathways involved in the life process. The findings presented in this manuscript will contribute to our knowledge of the characteristic metabolic changes associated with gamma-radiation-induced damage to somatic cells and will allow for better exploration of the SIT for the control of this target pest.

  12. Application of rapid-sampling, online microdialysis to the monitoring of brain metabolism during aneurysm surgery.

    Science.gov (United States)

    Bhatia, Robin; Hashemi, Parastoo; Razzaq, Ashfaq; Parkin, Mark C; Hopwood, Sarah E; Boutelle, Martyn G; Strong, Anthony J

    2006-04-01

    To introduce rapid-sampling microdialysis for the early detection of adverse metabolic changes in tissue at risk during aneurysm surgery. A microdialysis catheter was inserted under direct vision into at-risk cortex at the start of surgery. This monitoring was sustained throughout the course of the operation, during which intraoperative events, for example, temporary arterial occlusion or lobe retraction, were precisely documented. A continuous online flow of dialysate was fed into a mobile bedside glucose and lactate analyser. This comprises flow-injection dual-assay enzyme-based biosensors capable of determining values of metabolites every 30 seconds. Eight patients underwent clipping or wrapping of intracranial aneurysms and were monitored. Time between events and detection: 9 minutes. Mean change in metabolite value +/- standard deviation: temporal lobe retraction lactate, +656 +/- 562 micromol/L (n = 7, P glucose, -123 +/- 138 micromol/L (n = 6, P = 0.08). Glucose intravenous bolus infusion glucose, +512 +/- 244 micromol/L (n = 5, P lactate, +731 +/- 346 micromol/L (n = 6, P glucose, -139 +/- 96 micromol/L (n = 5, P glucose and lactate in dialysate, particularly when rapid, transient changes in brain analyte levels need to be determined and the alternative offline methodology would be inadequate.

  13. Cardiac Autonomic Nervous System Activation and Metabolic Profile in Young Children: The ABCD Study.

    Directory of Open Access Journals (Sweden)

    Tanja G M Vrijkotte

    Full Text Available In adults, increased sympathetic and decreased parasympathetic nervous system activity are associated with a less favorable metabolic profile. Whether this is already determined at early age is unknown. Therefore, we aimed to assess the association between autonomic nervous system activation and metabolic profile and its components in children at age of 5-6 years.Cross-sectional data from an apparently healthy population (within the ABCD study were collected at age 5-6 years in 1540 children. Heart rate (HR, respiratory sinus arrhythmia (RSA; parasympathetic activity and pre-ejection period (PEP; sympathetic activity were assessed during rest. Metabolic components were waist-height ratio (WHtR, systolic blood pressure (SBP, fasting triglycerides, glucose and HDL-cholesterol. Individual components, as well as a cumulative metabolic score, were analyzed.In analysis adjusted for child's physical activity, sleep, anxiety score and other potential confounders, increased HR and decreased RSA were associated with higher WHtR (P< 0.01, higher SBP (p<0.001 and a higher cumulative metabolic score (HR: p < 0.001; RSA: p < 0.01. Lower PEP was only associated with higher SBP (p <0.05. Of all children, 5.6% had 3 or more (out of 5 adverse metabolic components; only higher HR was associated with this risk (per 10 bpm increase: OR = 1.56; p < 0.001.This study shows that decreased parasympathetic activity is associated with central adiposity and higher SBP, indicative of increased metabolic risk, already at age 5-6 years.

  14. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    Directory of Open Access Journals (Sweden)

    Jingsong Shi

    2016-01-01

    Full Text Available Objective. To investigate potential drugs for diabetic nephropathy (DN using whole-genome expression profiles and the Connectivity Map (CMAP. Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1 A total of 1065 DEGs (FDR 1.5 were found in late stage DN patients compared with early stage DN patients. (2 Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2, vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs, PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN.

  15. Effects of switching from olanzapine to aripiprazole on the metabolic profiles of patients with schizophrenia and metabolic syndrome: a double-blind, randomized, open-label study [Corrigendum

    Directory of Open Access Journals (Sweden)

    Wani RA

    2015-03-01

    Full Text Available Wani RA, Dar MA, Chandel RK, et al Title of paper should have been “Effects of switching from olanzapine to aripiprazole on the metabolic profiles of patients with schizophrenia and metabolic syndrome: a randomized, open-label study”.  Read the original paper 

  16. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells.

    Science.gov (United States)

    Armitage, Emily G; Kotze, Helen L; Allwood, J William; Dunn, Warwick B; Goodacre, Royston; Williams, Kaye J

    2015-10-28

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments.

  17. Metabolic profiles are principally different between cancers of the liver, pancreas and breast.

    Science.gov (United States)

    Budhu, Anuradha; Terunuma, Atsushi; Zhang, Geng; Hussain, S Perwez; Ambs, Stefan; Wang, Xin Wei

    2014-01-01

    Molecular profiling of primary tumors may facilitate the classification of patients with cancer into more homogenous biological groups to aid clinical management. Metabolomic profiling has been shown to be a powerful tool in characterizing the biological mechanisms underlying a disease but has not been evaluated for its ability to classify cancers by their tissue of origin. Thus, we assessed metabolomic profiling as a novel tool for multiclass cancer characterization. Global metabolic profiling was employed to identify metabolites in paired tumor and non-tumor liver (n=60), breast (n=130) and pancreatic (n=76) tissue specimens. Unsupervised principal component analysis showed that metabolites are principally unique to each tissue and cancer type. Such a difference can also be observed even among early stage cancers, suggesting a significant and unique alteration of global metabolic pathways associated with each cancer type. Our global high-throughput metabolomic profiling study shows that specific biochemical alterations distinguish liver, pancreatic and breast cancer and could be applied as cancer classification tools to differentiate tumors based on tissue of origin.

  18. Effect of long-distance transportation on serum metabolic profiles of steer calves.

    Science.gov (United States)

    Takemoto, Satoshi; Tomonaga, Shozo; Funaba, Masayuki; Matsui, Tohru

    2017-12-01

    Long-distance transportation is sometimes inevitable in the beef industry because of the geographic separation of major breeding and fattening areas. Long-distance transportation negatively impacts production and health of cattle, which may, at least partly, result from the disturbance of metabolism during and after transportation. However, alteration of metabolism remains elusive in transported cattle. We investigated the effects of transportation on the metabolomic profiles of Holstein steer calves. Non-targeted analysis of serum concentrations of low molecular weight metabolites was performed by gas chromatography mass spectrometry. Transportation affected 38 metabolites in the serum. A pathway analysis suggested that 26, 10, and 10 pathways were affected immediately after transportation, and 3 and 7 days after transportation, respectively. Some pathways were disturbed only immediately after transportation, likely because of feed and water withdrawal during transit. Nicotinate and nicotinamide metabolism, and citric acid cycle were affected for 3 days after transportation, whereas propionate metabolism, phenylalanine and tyrosine metabolism were affected throughout the experiment. Four pathways were not affected immediately after transportation, but were altered thereafter. These results suggested that many metabolic pathways had marked perturbations during transportation. Metabolites such as citric acid, propionate, tyrosine and niacin can be candidate supplements for mitigating transportation-induced adverse effects. © 2017 Japanese Society of Animal Science.

  19. Metabolic profiling of human lung cancer blood plasma using 1H NMR spectroscopy

    Science.gov (United States)

    Kokova, Daria; Dementeva, Natalia; Kotelnikov, Oleg; Ponomaryova, Anastasia; Cherdyntseva, Nadezhda; Kzhyshkowska, Juliya

    2017-11-01

    Lung cancer (both small cell and non-small cell) is the second most common cancer in both men and women. The article represents results of evaluating of the plasma metabolic profiles of 100 lung cancer patients and 100 controls to investigate significant metabolites using 400 MHz 1H NMR spectrometer. The results of multivariate statistical analysis show that a medium-field NMR spectrometer can obtain the data which are already sufficient for clinical metabolomics.

  20. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Jasmina Saric

    Full Text Available BACKGROUND: Metabolic profiling holds promise with regard to deepening our understanding of infection biology and disease states. The objectives of our study were to assess the global metabolic responses to an Echinostoma caproni infection in the mouse, and to compare the biomarkers extracted from different biofluids (plasma, stool, and urine in terms of characterizing acute and chronic stages of this intestinal fluke infection. METHODOLOGY/PRINCIPAL FINDINGS: Twelve female NMRI mice were infected with 30 E. caproni metacercariae each. Plasma, stool, and urine samples were collected at 7 time points up to day 33 post-infection. Samples were also obtained from non-infected control mice at the same time points and measured using (1H nuclear magnetic resonance (NMR spectroscopy. Spectral data were subjected to multivariate statistical analyses. In plasma and urine, an altered metabolic profile was already evident 1 day post-infection, characterized by reduced levels of plasma choline, acetate, formate, and lactate, coupled with increased levels of plasma glucose, and relatively lower concentrations of urinary creatine. The main changes in the urine metabolic profile started at day 8 post-infection, characterized by increased relative concentrations of trimethylamine and phenylacetylglycine and lower levels of 2-ketoisocaproate and showed differentiation over the course of the infection. CONCLUSION/SIGNIFICANCE: The current investigation is part of a broader NMR-based metabonomics profiling strategy and confirms the utility of this approach for biomarker discovery. In the case of E. caproni, a diagnosis based on all three biofluids would deliver the most comprehensive fingerprint of an infection. For practical purposes, however, future diagnosis might aim at a single biofluid, in which case urine would be chosen for further investigation, based on quantity of biomarkers, ease of sampling, and the degree of differentiation from the non

  1. Impact of maternal obesity on the metabolic profiles of pregnant women and their offspring at birth

    OpenAIRE

    Desert , Romain; Canlet , Cécile; Costet , Nathalie; Cordier , Sylvaine; Bonvallot , Nathalie

    2015-01-01

    International audience; Obesity is currently an increasing public health problem. The intra-uterine environment plays a critical role in foetal development. The objective of this study is to investigate the association of obesity with modifications in the metabolic profiles of pregnant women, and their new-borns. Based on the PELAGIE cohort (Brittany, France), a sample of 321 pregnant women was divided into three groups according to their body mass index (BMI) (normal, over-weight and obese)....

  2. Physical Fitness and Metabolic Profile among Malay Undergraduates of a Public University in Selangor Malaysia

    OpenAIRE

    M. Emad; M. Kandiah; W. K. Lim; M. Y. Barakatun-Nisak; A. Rahmat; S. Norasruddin; M. Appukutty

    2017-01-01

    This study investigated health-related components of physical fitness consisting of morphological fitness (body fat % or BF %; Body Mass Index or BMI; and waist circumference or WC), metabolic fitness (blood glucose, lipid profiles and haemoglobin) and aerobic capacity (VO2max). This crosssectional study involved 324 undergraduates recruited voluntarily by systematic random sampling from a public university in the city Shah Alam, Selangor Malaysia. The respondents’ aerobic capacity was measur...

  3. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Song, Hu; Peng, Jun-Sheng; Yao, Dong-Sheng; Yang, Zu-Li; Liu, Huan-Liang; Zeng, Yi-Ke; Shi, Xian-Ping; Lu, Bi-Yan

    2011-01-01

    Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS) was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA). Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV) of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP) value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1) and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms

  4. Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions.

    Directory of Open Access Journals (Sweden)

    Vijayaraghava T S Rao

    Full Text Available Within the microenvironment of multiple sclerosis lesions, oligodendrocytes are subject to metabolic stress reflecting effects of focal ischemia and inflammation. Previous studies have shown that under optimal conditions in vitro, the respiratory activity of human adult brain-derived oligodendrocytes is lower and more predominantly glycolytic compared to oligodendrocytes differentiated in vitro from post natal rat brain oligodendrocyte progenitor cells. In response to sub-lethal metabolic stress, adult human oligodendrocytes reduce overall energy production rate impacting the capacity to maintain myelination. Here, we directly compare the metabolic profiles of oligodendrocytes derived from adult rat brain with oligodendrocytes newly differentiated in vitro from oligodendrocyte progenitor cells obtained from the post natal rat brain, under both optimal culture and metabolic stress (low/no glucose conditions. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. Our findings indicate that under optimal conditions, adult rat oligodendrocytes preferentially use glycolysis whereas newly differentiated post natal rat oligodendrocytes, and the oligodendrocyte progenitor cells from which they are derived, mainly utilize oxidative phosphorylation to produce ATP. Metabolic stress increases the rate of ATP production via oxidative phosphorylation and significantly reduces glycolysis in adult oligodendrocytes. The rate of ATP production was relatively unchanged in newly differentiated post natal oligodendrocytes under these stress conditions, while it was significantly reduced in oligodendrocyte progenitor cells. Our study indicates that both age and maturation influence the metabolic profile under optimal and stressed conditions, emphasizing the need to consider these variables for in vitro studies that aim to model adult human disease.

  5. Change in Metabolic Profile after 1-Year Nutritional-Behavioral Intervention in Obese Children

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2015-12-01

    Full Text Available Research findings are inconsistent about improvement of specific cardio-metabolic variables after lifestyle intervention in obese children. The aim of this trial was to evaluate the effect of a 1-year intervention, based on normocaloric diet and physical activity, on body mass index (BMI, blood lipid profile, glucose metabolism and metabolic syndrome. Eighty-five obese children aged ≥6 years were analyzed. The BMI z-score was calculated. Fasting blood samples were analyzed for lipids, insulin and glucose. The homeostatic model assessment of insulin resistance (HOMA-IR was calculated and insulin resistance was defined as HOMA-IR >3.16. HOMA-β%, quantitative insulin sensitivity check index and triglyceride glucose index were calculated. The metabolic syndrome was defined in accordance with the International Diabetes Federation criteria. At the end of intervention children showed a reduction (mean (95% CI in BMI z-score (−0.58 (−0.66; −0.50, triglycerides (−0.35 (−0.45; −0.25 mmol/L and triglyceride glucose index (−0.29 (−0.37; −0.21, and an increase in HDL cholesterol (0.06 (0.01; 0.11 mmol/L. Prevalence of insulin resistance declined from 51.8% to 36.5% and prevalence of metabolic syndrome from 17.1% to 4.9%. Nutritional-behavioral interventions can improve the blood lipid profile and insulin sensitivity in obese children, and possibly provide benefits in terms of metabolic syndrome.

  6. Increases in myocardial workload induced by rapid atrial pacing trigger alterations in global metabolism.

    Directory of Open Access Journals (Sweden)

    Aslan T Turer

    Full Text Available To determine whether increases in cardiac work lead to alterations in the plasma metabolome and whether such changes arise from the heart or peripheral organs.There is growing evidence that the heart influences systemic metabolism through endocrine effects and affecting pathways involved in energy homeostasis.Nineteen patients referred for cardiac catheterization were enrolled. Peripheral and selective coronary sinus (CS blood sampling was performed at serial timepoints following the initiation of pacing, and metabolite profiling was performed by liquid chromatography-mass spectrometry (LC-MS.Pacing-stress resulted in a 225% increase in the median rate·pressure product from baseline. Increased myocardial work induced significant changes in the peripheral concentration of 43 of 125 metabolites assayed, including large changes in purine [adenosine (+99%, p = 0.006, ADP (+42%, p = 0.01, AMP (+79%, p = 0.004, GDP (+69%, p = 0.003, GMP (+58%, p = 0.01, IMP (+50%, p = 0.03, xanthine (+61%, p = 0.0006], and several bile acid metabolites. The CS changes in metabolites qualitatively mirrored those in the peripheral blood in both timing and magnitude, suggesting the heart was not the major source of the metabolite release.Isolated increases in myocardial work can induce changes in the plasma metabolome, but these changes do not appear to be directly cardiac in origin. A number of these dynamic metabolites have known signaling functions. Our study provides additional evidence to a growing body of literature on metabolic 'cross-talk' between the heart and other organs.

  7. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  8. Rapid countermeasure discovery against Francisella tularensis based on a metabolic network reconstruction.

    Directory of Open Access Journals (Sweden)

    Sidhartha Chaudhury

    Full Text Available In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of

  9. The associations between yogurt consumption, diet quality, and metabolic profiles in children in the USA.

    Science.gov (United States)

    Zhu, Yong; Wang, Huifen; Hollis, James H; Jacques, Paul F

    2015-06-01

    Recent studies have shown that yogurt consumption was associated with better diet quality and a healthier metabolic profile in adults. However, such associations have not been investigated in children. The present study examined the associations in children using data from a nationally representative survey. Data from 5,124 children aged 2-18 years, who participated in the National Health and Nutrition Examination Survey (NHANES) between 2003 and 2006 in the USA were analyzed. The frequency of yogurt consumption over 12 months was determined using a validated food frequency questionnaire. Diet quality was assessed by the Healthy Eating Index 2005 (HEI-2005) using one 24-HR dietary recall, and metabolic profiles were obtained from the NHANES laboratory data. It was found that only 33.1 % of children consumed yogurt at least once per week (frequent consumers). Adjusting for covariates, frequent consumers had better diet quality than infrequent consumers, as indicated by a higher HEI-2005 total score (P = 0.04). Frequent yogurt consumption was associated with a lower fasting insulin level (P yogurt consumption was not associated with body weight, fasting glucose, serum lipid profiles, C-reactive protein, and blood pressures (all P > 0.05). These results suggest that frequent yogurt consumption may contribute to improved diet quality and a healthier insulin profile in children. Future longitudinal studies and clinical trials in children are warranted to explore the health benefits of yogurt consumption.

  10. Milk composition and blood metabolic profile from holstein cows at different calving orders and lactation stages

    Directory of Open Access Journals (Sweden)

    Mariana Borges de Castro Dias

    2017-07-01

    Full Text Available This study aimed to evaluate milk composition and metabolic profile of Holstein cows at different calving orders in the beginning, middle, and end of lactation. One hundred ten Holstein cows were housed in a free stall system receiving the same diet and were grouped according to calving order (first, second, third, and fourth calving and days in milk (DIM: early (1-90 DIM, middle (91-180 DIM, and end of lactation (over 181 DIM for comparing milk yield, milk composition, and blood metabolic profile between the calving orders within the same lactation period. These parameters were also evaluated between lactation periods of the cows in different calving orders. The calving order, in any lactation stage, had no influence on milk yield per day and blood biochemical profile of Holstein cows receiving the same diet. However, calving order in all stages of lactation influenced milk composition. The first, second, third, and fourth calving order had no effect on the blood biochemical profile of Holstein cows, in any lactation stage. On the other hand, the different stages of lactation influenced milk yield and milk composition of Holstein cows.

  11. Tissue metabolic profiling of human gastric cancer assessed by 1H NMR

    International Nuclear Information System (INIS)

    Wang, Huijuan; Zhang, Hailong; Deng, Pengchi; Liu, Chunqi; Li, Dandan; Jie, Hui; Zhang, Hu; Zhou, Zongguang; Zhao, Ying-Lan

    2016-01-01

    Gastric cancer is the fourth most common cancer and the second most deadly cancer worldwide. Study on molecular mechanisms of carcinogenesis will play a significant role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to identify the potential biomarkers for the early diagnosis of gastric cancer. In this study, we reported the metabolic profiling of tissue samples on a large cohort of human gastric cancer subjects (n = 125) and normal controls (n = 54) based on 1 H nuclear magnetic resonance ( 1 H NMR) together with multivariate statistical analyses (PCA, PLS-DA, OPLS-DA and ROC curve). The OPLS-DA model showed adequate discrimination between cancer tissues and normal controls, and meanwhile, the model excellently discriminated the stage-related of tissue samples (stage I, 30; stage II, 46; stage III, 37; stage IV, 12) and normal controls. A total of 48 endogenous distinguishing metabolites (VIP > 1 and p < 0.05) were identified, 13 of which were changed with the progression of gastric cancer. These modified metabolites revealed disturbance of glycolysis, glutaminolysis, TCA, amino acids and choline metabolism, which were correlated with the occurrence and development of human gastric cancer. The receiver operating characteristic diagnostic AUC of OPLS-DA model between cancer tissues and normal controls was 0.945. And the ROC curves among different stages cancer subjects and normal controls were gradually improved, the corresponding AUC values were 0.952, 0.994, 0.998 and 0.999, demonstrating the robust diagnostic power of this metabolic profiling approach. As far as we know, the present study firstly identified the differential metabolites in various stages of gastric cancer tissues. And the AUC values were relatively high. So these results suggest that the metabolic profiling of gastric cancer tissues has great potential in detecting this disease and helping

  12. Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications

    International Nuclear Information System (INIS)

    Nugoli, Mélanie; Theillet, Charles; Chuchana, Paul; Vendrell, Julie; Orsetti, Béatrice; Ursule, Lisa; Nguyen, Catherine; Birnbaum, Daniel; Douzery, Emmanuel JP; Cohen, Pascale

    2003-01-01

    Both phenotypic and cytogenetic variability have been reported for clones of breast carcinoma cell lines but have not been comprehensively studied. Despite this, cell lines such as MCF-7 cells are extensively used as model systems. In this work we documented, using CGH and RNA expression profiles, the genetic variability at the genomic and RNA expression levels of MCF-7 cells of different origins. Eight MCF-7 sublines collected from different sources were studied as well as 3 subclones isolated from one of the sublines by limit dilution. MCF-7 sublines showed important differences in copy number alteration (CNA) profiles. Overall numbers of events ranged from 28 to 41. Involved chromosomal regions varied greatly from a subline to another. A total of 62 chromosomal regions were affected by either gains or losses in the 11 sublines studied. We performed a phylogenetic analysis of CGH profiles using maximum parsimony in order to reconstruct the putative filiation of the 11 MCF-7 sublines. The phylogenetic tree obtained showed that the MCF-7 clade was characterized by a restricted set of 8 CNAs and that the most divergent subline occupied the position closest to the common ancestor. Expression profiles of 8 MCF-7 sublines were analyzed along with those of 19 unrelated breast cancer cell lines using home made cDNA arrays comprising 720 genes. Hierarchical clustering analysis of the expression data showed that 7/8 MCF-7 sublines were grouped forming a cluster while the remaining subline clustered with unrelated breast cancer cell lines. These data thus showed that MCF-7 sublines differed at both the genomic and phenotypic levels. The analysis of CGH profiles of the parent subline and its three subclones supported the heteroclonal nature of MCF-7 cells. This strongly suggested that the genetic plasticity of MCF-7 cells was related to their intrinsic capacity to generate clonal heterogeneity. We propose that MCF-7, and possibly the breast tumor it was derived from, evolved

  13. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    Directory of Open Access Journals (Sweden)

    Marinus F W te Pas

    Full Text Available Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean diet or a high saturated fat/cholesterol/sugar (cafeteria diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (pathophysiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA and diabetes (Glucose and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  14. Obese Patients With a Binge Eating Disorder Have an Unfavorable Metabolic and Inflammatory Profile.

    Science.gov (United States)

    Succurro, Elena; Segura-Garcia, Cristina; Ruffo, Mariafrancesca; Caroleo, Mariarita; Rania, Marianna; Aloi, Matteo; De Fazio, Pasquale; Sesti, Giorgio; Arturi, Franco

    2015-12-01

    To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese.A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile.BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile.Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic

  15. Plasma metabolic profiling analysis of nephrotoxicity induced by acyclovir using metabonomics coupled with multivariate data analysis.

    Science.gov (United States)

    Zhang, Xiuxiu; Li, Yubo; Zhou, Huifang; Fan, Simiao; Zhang, Zhenzhu; Wang, Lei; Zhang, Yanjun

    2014-08-01

    Acyclovir (ACV) is an antiviral agent. However, its use is limited by adverse side effect, particularly by its nephrotoxicity. Metabonomics technology can provide essential information on the metabolic profiles of biofluids and organs upon drug administration. Therefore, in this study, mass spectrometry-based metabonomics coupled with multivariate data analysis was used to identify the plasma metabolites and metabolic pathways related to nephrotoxicity caused by intraperitoneal injection of low (50mg/kg) and high (100mg/kg) doses of acyclovir. Sixteen biomarkers were identified by metabonomics and nephrotoxicity results revealed the dose-dependent effect of acyclovir on kidney tissues. The present study showed that the top four metabolic pathways interrupted by acyclovir included the metabolisms of arachidonic acid, tryptophan, arginine and proline, and glycerophospholipid. This research proves the established metabonomic approach can provide information on changes in metabolites and metabolic pathways, which can be applied to in-depth research on the mechanism of acyclovir-induced kidney injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Bacterial Cytological Profiling (BCP as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    D.T. Quach

    2016-02-01

    Full Text Available Successful treatment of bacterial infections requires the timely administration of appropriate antimicrobial therapy. The failure to initiate the correct therapy in a timely fashion results in poor clinical outcomes, longer hospital stays, and higher medical costs. Current approaches to antibiotic susceptibility testing of cultured pathogens have key limitations ranging from long run times to dependence on prior knowledge of genetic mechanisms of resistance. We have developed a rapid antimicrobial susceptibility assay for Staphylococcus aureus based on bacterial cytological profiling (BCP, which uses quantitative fluorescence microscopy to measure antibiotic induced changes in cellular architecture. BCP discriminated between methicillin-susceptible (MSSA and -resistant (MRSA clinical isolates of S. aureus (n = 71 within 1–2 h with 100% accuracy. Similarly, BCP correctly distinguished daptomycin susceptible (DS from daptomycin non-susceptible (DNS S. aureus strains (n = 20 within 30 min. Among MRSA isolates, BCP further identified two classes of strains that differ in their susceptibility to specific combinations of beta-lactam antibiotics. BCP provides a rapid and flexible alternative to gene-based susceptibility testing methods for S. aureus, and should be readily adaptable to different antibiotics and bacterial species as new mechanisms of resistance or multidrug-resistant pathogens evolve and appear in mainstream clinical practice.

  17. Does canine inflammatory bowel disease influence gut microbial profile and host metabolism?

    Science.gov (United States)

    Xu, Jia; Verbrugghe, Adronie; Lourenço, Marta; Janssens, Geert P J; Liu, Daisy J X; Van de Wiele, Tom; Eeckhaut, Venessa; Van Immerseel, Filip; Van de Maele, Isabel; Niu, Yufeng; Bosch, Guido; Junius, Greet; Wuyts, Brigitte; Hesta, Myriam

    2016-06-16

    Inflammatory bowel disease (IBD) refers to a diverse group of chronic gastrointestinal diseases, and gut microbial dysbiosis has been proposed as a modulating factor in its pathogenesis. Several studies have investigated the gut microbial ecology of dogs with IBD but it is yet unclear if this microbial profile can alter the nutrient metabolism of the host. The aim of the present study was to characterize the faecal bacterial profile and functionality as well as to determine host metabolic changes in IBD dogs. Twenty-three dogs diagnosed with IBD and ten healthy control dogs were included. Dogs with IBD were given a clinical score using the canine chronic enteropathy clinical activity index (CCECAI). Faecal short-chain fatty acids (SCFA) and ammonia concentrations were measured and quantitative PCR was performed. The concentration of plasma amino acids, acylcarnitines, serum folate, cobalamin, and indoxyl sulfate was determined. No significant differences in the abundance of a selection of bacterial groups and fermentation metabolites were observed between the IBD and control groups. However, significant negative correlations were found between CCECAI and the faecal proportion of Lactobacillus as well as between CCECAI and total SCFA concentration. Serum folate and plasma citrulline were decreased and plasma valine was increased in IBD compared to control dogs. Increased plasma free carnitine and total acylcarnitines were observed in IBD compared with control dogs, whereas short-chain acylcarnitines (butyrylcarnitine + isobutyrylcarnitine and, methylmalonylcarnitine) to free carnitine ratios decreased. Dogs with IBD had a higher 3-hydroxyisovalerylcarnitine + isovalerylcarnitine to leucine ratio compared to control dogs. Canine IBD induced a wide range of changes in metabolic profile, especially for the plasma concentrations of short-chain acylcarnitines and amino acids, which could have evolved from tissue damage and alteration in host metabolism. In

  18. Bioenergetic profile of human coronary artery smooth muscle cells and effect of metabolic intervention.

    Directory of Open Access Journals (Sweden)

    Mingming Yang

    Full Text Available Bioenergetics of artery smooth muscle cells is critical in cardiovascular health and disease. An acute rise in metabolic demand causes vasodilation in systemic circulation while a chronic shift in bioenergetic profile may lead to vascular diseases. A decrease in intracellular ATP level may trigger physiological responses while dedifferentiation of contractile smooth muscle cells to a proliferative and migratory phenotype is often observed during pathological processes. Although it is now possible to dissect multiple building blocks of bioenergetic components quantitatively, detailed cellular bioenergetics of artery smooth muscle cells is still largely unknown. Thus, we profiled cellular bioenergetics of human coronary artery smooth muscle cells and effects of metabolic intervention. Mitochondria and glycolysis stress tests utilizing Seahorse technology revealed that mitochondrial oxidative phosphorylation accounted for 54.5% of ATP production at rest with the remaining 45.5% due to glycolysis. Stress tests also showed that oxidative phosphorylation and glycolysis can increase to a maximum of 3.5 fold and 1.25 fold, respectively, indicating that the former has a high reserve capacity. Analysis of bioenergetic profile indicated that aging cells have lower resting oxidative phosphorylation and reduced reserve capacity. Intracellular ATP level of a single cell was estimated to be over 1.1 mM. Application of metabolic modulators caused significant changes in mitochondria membrane potential, intracellular ATP level and ATP:ADP ratio. The detailed breakdown of cellular bioenergetics showed that proliferating human coronary artery smooth muscle cells rely more or less equally on oxidative phosphorylation and glycolysis at rest. These cells have high respiratory reserve capacity and low glycolysis reserve capacity. Metabolic intervention influences both intracellular ATP concentration and ATP:ADP ratio, where subtler changes may be detected by the latter.

  19. The rapid isolation of vacuoles from leaves of crassulacean Acid metabolism plants.

    Science.gov (United States)

    Kringstad, R; Kenyon, W H; Black, C C

    1980-09-01

    A technique is presented for the isolation of vacuoles from Sedum telephium L. leaves. Leaf material is digested enzymically to produce protoplasts rapidly which are partially lysed by gentle osmotic shock and the inclusion of 5 millimolar ethyleneglycol-bis (beta-aminoethyl ether)N,N'-tetraacetic acid in the wash medium. Vacuoles are isolated from the partially lysed protoplasts by brief centrifugation on a three-step Ficoll-400 gradient consisting of 5, 10, and 15% (w/v) Ficoll-400. A majority of the vacuoles accumulate at the 5 to 10% Ficoll interface, whereas a smaller proportion sediments at the 10 to 15% Ficoll-400 interface. The total time required for vacuole isolation is 2 to 2.5 hours, beginning from leaf harvest.The yield of vacuoles is approximately 44%. The major vacuole layer is 15 hours when left in Ficoll; however, dispersion into media of various osmotic concentrations resulted in decreased stability. Addition of mercaptobenzothiazole, CaCl(2), MgCl(2), bovine serum albumin, ethylenediaminetetraacetic acid, polyethylene glycol 600, and KH(2)PO(4) to the vacuole isolation media did not increase the stability of the isolated vacuoles.THIS TECHNIQUE WITH ONLY SLIGHT MODIFICATIONS HAS BEEN USED TO ISOLATE LEAF CELL VACUOLES FROM THE FOLLOWING CRASSULACEAN ACID METABOLISM PLANTS: pineapple, Kalanchoë fedtschenkoi, and Echeveria elegans. Spinach leaves also were used successfully.

  20. Genomic and Metabolomic Profile Associated to Clustering of Cardio-Metabolic Risk Factors.

    Science.gov (United States)

    Marrachelli, Vannina G; Rentero, Pilar; Mansego, María L; Morales, Jose Manuel; Galan, Inma; Pardo-Tendero, Mercedes; Martinez, Fernando; Martin-Escudero, Juan Carlos; Briongos, Laisa; Chaves, Felipe Javier; Redon, Josep; Monleon, Daniel

    2016-01-01

    To identify metabolomic and genomic markers associated with the presence of clustering of cardiometabolic risk factors (CMRFs) from a general population. One thousand five hundred and two subjects, Caucasian, > 18 years, representative of the general population, were included. Blood pressure measurement, anthropometric parameters and metabolic markers were measured. Subjects were grouped according the number of CMRFs (Group 1: profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600 spectrometer. From the total population, 1217 (mean age 54±19, 50.6% men) with high genotyping call rate were analysed. A differential metabolomic profile, which included products from mitochondrial metabolism, extra mitochondrial metabolism, branched amino acids and fatty acid signals were observed among the three groups. The comparison of metabolomic patterns between subjects of Groups 1 to 3 for each of the genotypes associated to those subjects with three or more CMRFs revealed two SNPs, the rs174577_AA of FADS2 gene and the rs3803_TT of GATA2 transcription factor gene, with minimal or no statistically significant differences. Subjects with and without three or more CMRFs who shared the same genotype and metabolomic profile differed in the pattern of CMRFS cluster. Subjects of Group 3 and the AA genotype of the rs174577 had a lower prevalence of hypertension compared to the CC and CT genotype. In contrast, subjects of Group 3 and the TT genotype of the rs3803 polymorphism had a lower prevalence of T2DM, although they were predominantly males and had higher values of plasma creatinine. The results of the present study add information to the metabolomics profile and to the potential impact of genetic factors on the variants of clustering of cardiometabolic risk factors.

  1. Cardiovascular and metabolic profiles amongst different polycystic ovary syndrome phenotypes: who is really at risk?

    Science.gov (United States)

    Daan, Nadine M P; Louwers, Yvonne V; Koster, Maria P H; Eijkemans, Marinus J C; de Rijke, Yolanda B; Lentjes, Eef W G; Fauser, Bart C J M; Laven, Joop S E

    2014-11-01

    To study the cardiometabolic profile characteristics and compare the prevalence of cardiovascular (CV) risk factors between women with different polycystic ovary syndrome (PCOS) phenotypes. A cross-sectional multicenter study analyzing 2,288 well phenotyped women with PCOS. Specialized reproductive outpatient clinic. Women of reproductive age (18-45 years) diagnosed with PCOS. Women suspected of oligo- or anovulation underwent a standardized screening consisting of a systematic medical and reproductive history taking, anthropometric measurements, and transvaginal ultrasonography followed by an extensive endocrinologic/metabolic evaluation. Differences in cardiometabolic profile characteristics and CV risk factor prevalence between women with different PCOS phenotypes, i.e., obesity/overweight, hypertension, insulin resistance, dyslipidemia, and metabolic syndrome. Women with hyperandrogenic PCOS (n=1,219; 53.3% of total) presented with a worse cardiometabolic profile and a higher prevalence of CV risk factors, such as obesity and overweight, insulin resistance, and metabolic syndrome, compared with women with nonhyperandrogenic PCOS. In women with nonhyperandrogenic PCOS overweight/obesity (28.5%) and dyslipidemia (low-density lipoprotein cholesterol≥3.0 mmol/L; 52.2%) were highly prevalent. Women with hyperandrogenic PCOS have a worse cardiometabolic profile and higher prevalence of CV risk factors compared with women with nonhyperandrogenic PCOS. However, all women with PCOS should be screened for the presence of CV risk factors, since the frequently found derangements at a young age imply an elevated risk for the development of CV disease later in life. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Characteristics and contributions of hyperandrogenism to insulin resistance and other metabolic profiles in polycystic ovary syndrome.

    Science.gov (United States)

    Huang, Rong; Zheng, Jun; Li, Shengxian; Tao, Tao; Ma, Jing; Liu, Wei

    2015-05-01

    To investigate the different characteristics in Chinese Han women with polycystic ovary syndrome, and to analyze the significance of hyperandrogenism in insulin resistance and other metabolic profiles. A cross-sectional study. Medical university hospital. A total of 229 women with polycystic ovary syndrome aged 18-45 years. Women with polycystic ovary syndrome, diagnosed by Rotterdam criteria, were divided into four groups according to the quartile intervals of free androgen index levels. Comparisons between groups were performed using one-way analysis of variance. Stepwise logistic regression analysis was performed to investigate the association between homeostasis model assessment-insulin resistance and independent variables. Within the four phenotypes, women with phenotype 1 (hyperandrogenism, oligo/anovulation, and polycystic ovaries) exhibited higher total testosterone, free androgen index, androstenedione, low-density lipoprotein, and lower quantitative insulin sensitivity check index (p polycystic ovaries) showed lower total cholesterol, low-density lipoprotein, and homeostasis model assessment-insulin resistance, but higher high-density lipoprotein (p < 0.05). The levels of triglycerides, total cholesterol, low-density lipoprotein, and homeostasis model assessment-insulin resistance significantly increased, but high-density lipoprotein and quantitative insulin sensitivity check index decreased with the elevation of free androgen index intervals. After adjustment for lipid profiles, free androgen index was significantly associated with homeostasis model assessment-insulin resistance in both lean and overweight/obese women (odds ratio 1.302, p = 0.039 in lean vs. odds ratio 1.132, p = 0.036 in overweight/obese). Phenotypes 1 and 4 represent groups with the most and least severe metabolic profiles, respectively. Hyperandrogenism, particularly with elevated free androgen index, is likely a key contributing factor for insulin resistance and for the aggravation

  3. Considerations for automated machine learning in clinical metabolic profiling: Altered homocysteine plasma concentration associated with metformin exposure.

    Science.gov (United States)

    Orlenko, Alena; Moore, Jason H; Orzechowski, Patryk; Olson, Randal S; Cairns, Junmei; Caraballo, Pedro J; Weinshilboum, Richard M; Wang, Liewei; Breitenstein, Matthew K

    2018-01-01

    With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified

  4. Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia—A Case of Novel Weapons?

    Directory of Open Access Journals (Sweden)

    Dominik Skoneczny

    2015-11-01

    Full Text Available Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs and their N-oxides (PANOs was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17 by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant’s capacity to deter natural enemies in its invaded range through production of novel weapons.

  5. Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia—A Case of Novel Weapons?

    Science.gov (United States)

    Skoneczny, Dominik; Weston, Paul A.; Zhu, Xiaocheng; Gurr, Geoff M.; Callaway, Ragan M.; Weston, Leslie A.

    2015-01-01

    Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17) by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant’s capacity to deter natural enemies in its invaded range through production of novel weapons. PMID:26561809

  6. Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia--A Case of Novel Weapons?

    Science.gov (United States)

    Skoneczny, Dominik; Weston, Paul A; Zhu, Xiaocheng; Gurr, Geoff M; Callaway, Ragan M; Weston, Leslie A

    2015-11-06

    Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17) by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant's capacity to deter natural enemies in its invaded range through production of novel weapons.

  7. Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L. Pers].

    Directory of Open Access Journals (Sweden)

    Yan Xie

    Full Text Available Metabolic responses to cadmium (Cd may be associated with variations in Cd tolerance in plants. The objectives of this study were to examine changes in metabolic profiles in bermudagrass in response to Cd stress and to identify predominant metabolites associated with differential Cd tolerance using gas chromatography-mass spectrometry. Two genotypes of bermudagrass with contrasting Cd tolerance were exposed to 0 and 1.5 mM CdSO4 for 14 days in hydroponics. Physiological responses to Cd were evaluated by determining turf quality, growth rate, chlorophyll content and normalized relative transpiration. All these parameters exhibited higher tolerance in WB242 than in WB144. Cd treated WB144 transported more Cd to the shoot than in WB242. The metabolite analysis of leaf polar extracts revealed 39 Cd responsive metabolites in both genotypes, mainly consisting of amino acids, organic acids, sugars, fatty acids and others. A difference in the metabolic profiles was observed between the two bermudagrass genotypes exposed to Cd stress. Seven amino acids (norvaline, glycine, proline, serine, threonine, glutamic acid and gulonic acid, four organic acids (glyceric acid, oxoglutaric acid, citric acid and malic acid, and three sugars (xylulose, galactose and talose accumulated more in WB242 than WB144. However, compared to the control, WB144 accumulated higher quantities of sugars than WB242 in the Cd regime. The differential accumulation of these metabolites could be associated with the differential Cd tolerance in bermudagrass.

  8. Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures.

    Science.gov (United States)

    Yin, Yuling; Matsui, Ayu; Sakuta, Masaaki; Ashihara, Hiroshi

    2008-12-01

    Changes in the profile of pyridine metabolism during growth of cells were investigated using trigonelline-forming suspension-cultured cells of Lotus japonicus. Activity of the de novo and salvage pathways of NAD biosynthesis was estimated from the in situ metabolism of [(3)H] quinolinic acid and [(14)C] nicotinamide. Maximum activity of the de novo pathway for NAD synthesis was found in the exponential growth phase, whereas activity of the salvage pathway was increased in the lag phase of cell growth. Expression profiles of some genes related to pyridine metabolism were examined using the expression sequence tags obtained from the L. japonicus database. Transcript levels of NaPRT and NIC, encoding salvage enzymes, were enhanced in the lag phase of cell growth, whereas the maximum expression of NADS was found in the exponential growth phase. Correspondingly, the activities of the salvage enzymes, nicotinate phosphoribosyltransferase (EC 2.4.2.11) and nicotinamidase (EC 3.5.1.19), increased one day after transfer of the stationary phase cells to the fresh medium. The greatest in situ trigonelline synthesis, both from [(3)H] quinolinic acid and [(14)C] nicotinamide, was found in the stationary phase of cell growth. The role of trigonelline in leguminous plants is discussed.

  9. Metabolic profiles and free radical scavenging activity of Cordyceps bassiana fruiting bodies according to developmental stage.

    Directory of Open Access Journals (Sweden)

    Sun-Hee Hyun

    Full Text Available The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana.

  10. Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study.

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    Full Text Available Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography-mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups.

  11. Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study.

    Science.gov (United States)

    Zhao, Qi; Zhu, Yun; Best, Lyle G; Umans, Jason G; Uppal, Karan; Tran, ViLinh T; Jones, Dean P; Lee, Elisa T; Howard, Barbara V; Zhao, Jinying

    2016-01-01

    Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography-mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine) have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups.

  12. Adenovirus-36 Seropositivity and Its Relation with Obesity and Metabolic Profile in Children

    Directory of Open Access Journals (Sweden)

    Isela Parra-Rojas

    2013-01-01

    Full Text Available The human adenovirus 36 (Ad-36 is causally and correlatively associated in animals and humans, respectively, with increased adiposity and altered metabolic profile. In previous studies, the relationship between Ad-36 seropositivity with obesity was established in adults and children. We evaluated the association of positive antibodies to Ad-36 with obesity and metabolic profile in Mexican children. Seventy-five children with normal-weight and 82 with obesity were studied in this research. All children had a clinic assessment which included weight, height, body circumferences, and skinfold thickness. Laboratory analyzes included triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, and glucose and insulin levels. An enzyme-linked immunosorbent assay (ELISA was used to determine the antibodies to Ad-36 in the serum samples. The overall Ad-36 seroprevalence was 73.9%. Ad-36 seropositivity had a higher prevalence in obese children than in normal weight group (58.6 versus 41.4%, P=0.007. Ad-36 seropositivity was associated with obesity (OR=2.66, P=0.01 and high-density lipoprotein <40 mg/dL (OR=2.85, P=0.03. The Ad-36 seropositive group had greater risk of 4 metabolic abnormalities compared with those children without none alteration. In summary, Ad-36 seropositivity was associated with obesity and low HDL-c levels in the sample of children studied.

  13. Urinary Metabolite Profiles in Premature Infants Show Early Postnatal Metabolic Adaptation and Maturation

    Directory of Open Access Journals (Sweden)

    Sissel J. Moltu

    2014-05-01

    Full Text Available Objectives: Early nutrition influences metabolic programming and long-term health. We explored the urinary metabolite profiles of 48 premature infants (birth weight < 1500 g randomized to an enhanced or a standard diet during neonatal hospitalization. Methods: Metabolomics using nuclear magnetic resonance spectroscopy (NMR was conducted on urine samples obtained during the first week of life and thereafter fortnightly. Results: The intervention group received significantly higher amounts of energy, protein, lipids, vitamin A, arachidonic acid and docosahexaenoic acid as compared to the control group. Enhanced nutrition did not appear to affect the urine profiles to an extent exceeding individual variation. However, in all infants the glucogenic amino acids glycine, threonine, hydroxyproline and tyrosine increased substantially during the early postnatal period, along with metabolites of the tricarboxylic acid cycle (succinate, oxoglutarate, fumarate and citrate. The metabolite changes correlated with postmenstrual age. Moreover, we observed elevated threonine and glycine levels in first-week urine samples of the small for gestational age (SGA; birth weight < 10th percentile for gestational age as compared to the appropriate for gestational age infants. Conclusion: This first nutri-metabolomics study in premature infants demonstrates that the physiological adaptation during the fetal-postnatal transition as well as maturation influences metabolism during the breastfeeding period. Elevated glycine and threonine levels were found in the first week urine samples of the SGA infants and emerged as potential biomarkers of an altered metabolic phenotype.

  14. Metabolic profile of santa inês ewes whith low body condition score during peripartum

    Directory of Open Access Journals (Sweden)

    Nayara Resende Nasciutti

    2012-02-01

    Full Text Available The objective of this study was to analyse the variations in the metabolic profile of protein, energy enzyme and mineral of Santa Inês ewes with low body condition score (BCS during peripartum. Blood samples were collected from 12 animals by jugular venipuncture to determine the serum biochemical profiles of protein, energy, mineral and enzyme metabolisms. Samples were collected on the following days: days 28, 21, 14, and 7 before lambing, at birth and, at days 2, 4, 7, 14, 21, and 28 postpartum (dpp. The samples were centrifuged and the serum analysed by Automated-Analyser. There was no alteration of the BCS during the 28 dpp, between 0.6 and 2.1 ± 2.4 ± 0.5, and was considered, as lean. The values of the total serum protein, globulin, albumin, and albumin/globulin ratio were reduced effective from the period before birth until 28dpp. The values of beta-hydroxybutyrate, calcium, phosphorus and magnesium remained below those of reference values. The concentrations of alanin aminotransferase (ALT were decreased particularly during the weeks before delivery. It was concluded that Santa Inês sheep with low body condition score demonstrated a reduction in the metabolism of proteins, energy, mineral and enzyme during peripartum.

  15. Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L.) Pers].

    Science.gov (United States)

    Xie, Yan; Hu, Longxing; Du, Zhimin; Sun, Xiaoyan; Amombo, Erick; Fan, Jibiao; Fu, Jinmin

    2014-01-01

    Metabolic responses to cadmium (Cd) may be associated with variations in Cd tolerance in plants. The objectives of this study were to examine changes in metabolic profiles in bermudagrass in response to Cd stress and to identify predominant metabolites associated with differential Cd tolerance using gas chromatography-mass spectrometry. Two genotypes of bermudagrass with contrasting Cd tolerance were exposed to 0 and 1.5 mM CdSO4 for 14 days in hydroponics. Physiological responses to Cd were evaluated by determining turf quality, growth rate, chlorophyll content and normalized relative transpiration. All these parameters exhibited higher tolerance in WB242 than in WB144. Cd treated WB144 transported more Cd to the shoot than in WB242. The metabolite analysis of leaf polar extracts revealed 39 Cd responsive metabolites in both genotypes, mainly consisting of amino acids, organic acids, sugars, fatty acids and others. A difference in the metabolic profiles was observed between the two bermudagrass genotypes exposed to Cd stress. Seven amino acids (norvaline, glycine, proline, serine, threonine, glutamic acid and gulonic acid), four organic acids (glyceric acid, oxoglutaric acid, citric acid and malic acid,) and three sugars (xylulose, galactose and talose) accumulated more in WB242 than WB144. However, compared to the control, WB144 accumulated higher quantities of sugars than WB242 in the Cd regime. The differential accumulation of these metabolites could be associated with the differential Cd tolerance in bermudagrass.

  16. Dissection of the Mouse Pancreas for Histological Analysis and Metabolic Profiling.

    Science.gov (United States)

    Veite-Schmahl, Michelle J; Regan, Daniel P; Rivers, Adam C; Nowatzke, Joseph F; Kennedy, Michael A

    2017-08-19

    We have been investigating the pancreas specific transcription factor, 1a cre-recombinase; lox-stop-lox- Kristen rat sarcoma, glycine to aspartic acid at the 12 codon (Ptf1a cre/+ ;LSL-Kras G12D/+ ) mouse strain as a model of human pancreatic cancer. The goal of our current studies is to identify novel metabolic biomarkers of pancreatic cancer progression. We have performed metabolic profiling of urine, feces, blood, and pancreas tissue extracts, as well as histological analyses of the pancreas to stage the cancer progression. The mouse pancreas is not a well-defined solid organ like in humans, but rather is a diffusely distributed soft tissue that is not easily identified by individuals unfamiliar with mouse internal anatomy or by individuals that have little or no experience performing mouse organ dissections. The purpose of this article is to provide a detailed step-wise visual demonstration to guide novices in the removal of the mouse pancreas by dissection. This article should be especially valuable to students and investigators new to research that requires harvesting of the mouse pancreas by dissection for metabolic profiling or histological analyses.

  17. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  18. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R.; Wilson, Ian D.; Somsen, Govert W.; de Jong, Gerhardus J.

    2014-01-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared

  19. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice.

    Directory of Open Access Journals (Sweden)

    Melissa K Friswell

    2010-01-01

    Full Text Available The gastrointestinal tract microbiota (GTM of mammals is a complex microbial consortium, the composition and activities of which influences mucosal development, immunity, nutrition and drug metabolism. It remains unclear whether the composition of the dominant GTM is conserved within animals of the same strain and whether stable GTMs are selected for by host-specific factors or dictated by environmental variables.The GTM composition of six highly inbred, genetically distinct strains of mouse (C3H, C57, GFEC, CD1, CBA nu/nu and SCID was profiled using eubacterial -specific PCR-DGGE and quantitative PCR of feces. Animals exhibited strain-specific fecal eubacterial profiles that were highly stable (c. >95% concordance over 26 months for C57. Analyses of mice that had been relocated before and after maturity indicated marked, reproducible changes in fecal consortia and that occurred only in young animals. Implantation of a female BDF1 mouse with genetically distinct (C57 and Agoutie embryos produced highly similar GTM profiles (c. 95% concordance between mother and offspring, regardless of offspring strain, which was also reflected in urinary metabolite profiles. Marked institution-specific GTM profiles were apparent in C3H mice raised in two different research institutions.Strain-specific data were suggestive of genetic determination of the composition and activities of intestinal symbiotic consortia. However, relocation studies and uterine implantation demonstrated the dominance of environmental influences on the GTM. This was manifested in large variations between isogenic adult mice reared in different research institutions.

  20. Subclinical hypothyroidism does not influence the metabolic and hormonal profile of women with PCOS.

    Science.gov (United States)

    Trakakis, Eftihios; Pergialiotis, Vasilios; Hatziagelaki, Erifili; Panagopoulos, Periklis; Salloum, Ioannis; Papantoniou, Nikolaos

    2017-06-23

    Background Subclinical hypothyroidism (SCH) is present in 5%-10% of polycystic ovary syndrome (PCOS) patients. To date, its impact on the metabolic and hormonal profile of those women remains controversial. The purpose of our study is to evaluate the impact of SCH on the glycemic, lipid and hormonal profile of PCOS patients. Materials and methods We conducted a prospective case control study of patients that attended the Department of Gynecological Endocrinology of our hospital. Results Overall, 280 women with PCOS were enrolled during a time period of 7 years (2009-2015). Twenty-one patients (7.5%) suffered from SCH. The anthropometric characteristics were comparable among women with PCOS and those with SCH + PCOS. The prevalence of acne, hirsutism and anovulation did not differ. Significant differences were observed in the 2-h oral glucose tolerance test (OGTT) (p = 0.003 for glucose and p = 0.046 for insulin). The QUICKI, Matsuda and homeostatic model assessment-insulin resistance (HOMA-IR) indices where, however, similar. No difference in serum lipids was observed. Slightly elevated levels of follicle stimulating hormone (FSH) and testosterone were noted. The remaining hormonal parameters remained similar among groups. Similarly, the ovarian volume and the endometrial thickness did not differ. Conclusions The impact of SCH on the metabolic and hormonal profile of PCOS patients seems to be negligible. Future studies are needed in the field and their conduct in a multi-institutional basis seems to be required, given the small prevalence of SCH among women with PCOS.

  1. Taxonomic and predicted metabolic profiles of the human gut microbiome in pre-Columbian mummies.

    Science.gov (United States)

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-11-01

    Characterization of naturally mummified human gut remains could potentially provide insights into the preservation and evolution of commensal and pathogenic microorganisms, and metabolic profiles. We characterized the gut microbiome of two pre-Columbian Andean mummies dating to the 10-15th centuries using 16S rRNA gene high-throughput sequencing and metagenomics, and compared them to a previously characterized gut microbiome of an 11th century AD pre-Columbian Andean mummy. Our previous study showed that the Clostridiales represented the majority of the bacterial communities in the mummified gut remains, but that other microbial communities were also preserved during the process of natural mummification, as shown with the metagenomics analyses. The gut microbiome of the other two mummies were mainly comprised by Clostridiales or Bacillales, as demonstrated with 16S rRNA gene amplicon sequencing, many of which are facultative anaerobes, possibly consistent with the process of natural mummification requiring low oxygen levels. Metagenome analyses showed the presence of other microbial groups that were positively or negatively correlated with specific metabolic profiles. The presence of sequences similar to both Trypanosoma cruzi and Leishmania donovani could suggest that these pathogens were prevalent in pre-Columbian individuals. Taxonomic and functional profiling of mummified human gut remains will aid in the understanding of the microbial ecology of the process of natural mummification. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes.

    Science.gov (United States)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rabbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated (n = 10) groups. After diabetes induction, the animals were investigated for daily glucose measurements for 35 days. Serum lipid profile and haemoglobin A1c (HbA(1c)) were assayed at the baseline (before induction of diabetes) and at 35-day follow-up. The glycaemia levels in the rats treated with opium were similar to the levels measured in the control rats (544.8 +/- 62.2 mg/dl v. 524.6 +/- 50.0 mg/dl, P = 0.434). In addition, there was no difference between the opium-treated rats and control rats in HbA(1c) (6.5 +/- 0.5% v. 6.6 +/- 0.2%, P = 0.714). Compared to the control rats, the serum total cholesterol, high density lipoprotein (HDL), triglyceride and lipoprotein (a) in the test animals were similar. Opium use has no significant effect on glucose metabolism and serum lipid profile in rats with induced diabetes.

  3. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens.

    Directory of Open Access Journals (Sweden)

    Konstantinos A Aliferis

    Full Text Available Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS and gas chromatography-mass spectrometry (GC/MS for the monitoring of soybean's (Glycine max L. global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, α-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries.

  4. Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation.

    Science.gov (United States)

    Agrimi, Gennaro; Mena, Maria C; Izumi, Kazuki; Pisano, Isabella; Germinario, Lucrezia; Fukuzaki, Hisashi; Palmieri, Luigi; Blank, Lars M; Kitagaki, Hiroshi

    2014-03-01

    Although the decrease in pyruvate secretion by brewer's yeasts during fermentation has long been desired in the alcohol beverage industry, rather little is known about the regulation of pyruvate accumulation. In former studies, we developed a pyruvate under-secreting sake yeast by isolating a strain (TCR7) tolerant to ethyl α-transcyanocinnamate, an inhibitor of pyruvate transport into mitochondria. To obtain insights into pyruvate metabolism, in this study, we investigated the mitochondrial activity of TCR7 by oxigraphy and (13) C-metabolic flux analysis during aerobic growth. While mitochondrial pyruvate oxidation was higher, glycerol production was decreased in TCR7 compared with the reference. These results indicate that mitochondrial activity is elevated in the TCR7 strain with the consequence of decreased pyruvate accumulation. Surprisingly, mitochondrial activity is much higher in the sake yeast compared with CEN.PK 113-7D, the reference strain in metabolic engineering. When shifted from aerobic to anaerobic conditions, sake yeast retains a branched mitochondrial structure for a longer time than laboratory strains. The regulation of mitochondrial activity can become a completely novel approach to manipulate the metabolic profile during fermentation of brewer's yeasts. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  5. Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis.

    Science.gov (United States)

    Yan, Hui; Qiao, Zheng; Shen, Baohua; Xiang, Ping; Shen, Min

    2016-10-01

    Brodifacoum is one of the most widely used rodenticides for rodent control and eradication; however, human and animal poisoning due to primary and secondary exposure has been reported since its development. Although numerous studies have described brodifacoum induced toxicity, the precise mechanism still needs to be explored. Gas chromatography mass spectrometry (GC-MS) coupled with an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to characterize the metabolic profile of brodifacoum induced toxicity and discover potential biomarkers in rat plasma. The toxicity of brodifacoum was dose-dependent, and the high-dose group obviously manifested toxicity with subcutaneous hemorrhage. The blood brodifacoum concentration showed a positive relation to the ingestion dose in toxicological analysis. Significant changes of twenty-four metabolites were identified and considered as potential toxicity biomarkers, primarily involving glucose metabolism, lipid metabolism and amino acid metabolism associated with anticoagulant activity, nephrotoxicity and hepatic damage. MS-based metabonomics analysis in plasma samples is helpful to search for potential poisoning biomarkers and to understand the underlying mechanisms of brodifacoum induced toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Application of Fourier-transform ion cyclotron resonance mass spectrometry to metabolic profiling and metabolite identification.

    Science.gov (United States)

    Ohta, Daisaku; Kanaya, Shigehiko; Suzuki, Hideyuki

    2010-02-01

    Metabolomics, as an essential part of genomics studies, intends holistic understanding of metabolic networks through simultaneous analysis of a myriad of both known and unknown metabolites occurring in living organisms. The initial stage of metabolomics was designed for the reproducible analyses of known metabolites based on their comparison to available authentic compounds. Such metabolomics platforms were mostly based on mass spectrometry (MS) technologies enabled by a combination of different ionization methods together with a variety of separation steps including LC, GC, and CE. Among these, Fourier-transform ion cyclotron resonance MS (FT-ICR/MS) is distinguished from other MS technologies by its ultrahigh resolution power in mass to charge ratio (m/z). The potential of FT-ICR/MS as a distinctive metabolomics tool has been demonstrated in nontargeted metabolic profiling and functional characterization of novel genes. Here, we discuss both the advantages and difficulties encountered in the FT-ICR/MS metabolomics studies.

  7. Metabolic profile and genotoxicity in obese rats exposed to cigarette smoke.

    Science.gov (United States)

    Damasceno, Debora C; Sinzato, Yuri K; Bueno, Aline; Dallaqua, Bruna; Lima, Paula H; Calderon, Iracema M P; Rudge, Marilza V C; Campos, Kleber E

    2013-08-01

    Experimental studies have shown that exposure to cigarette smoke has negative effects on lipid metabolism and oxidative stress status. Cigarette smoke exposure in nonpregnant and pregnant rats causes significant genotoxicity (DNA damage). However, no previous studies have directly evaluated the effects of obesity or the association between obesity and cigarette smoke exposure on genotoxicity. Therefore, the aim of the present investigation was to evaluate DNA damage levels, oxidative stress status and lipid profiles in obese Wistar rats exposed to cigarette smoke. Female rats subcutaneously (s.c.) received a monosodium glutamate solution or vehicle (control) during the neonatal period to induce obesity. The rats were randomly distributed into three experimental groups: control, obese exposed to filtered air, and obese exposed to tobacco cigarette smoke. After a 2-month exposure period, the rats were anesthetized and killed to obtain blood samples for genotoxicity, lipid profile, and oxidative stress status analyses. The obese rats exposed to tobacco cigarette smoke presented higher DNA damage, triglycerides, total cholesterol, free fatty acids, VLDL-c, HDL-c, and LDL-c levels compared to control and obese rats exposed to filtered air. Both obese groups showed reduced SOD activity. These results showed that cigarette smoke enhanced the effects of obesity. In conclusion, the association between obesity and cigarette smoke exposure exacerbated the genotoxicity, negatively impacted the biochemical profile and antioxidant defenses and caused early glucose intolerance. Thus, the changes caused by cigarette smoke exposure can trigger the earlier onset of metabolic disorders associated with obesity, such as diabetes and metabolic syndrome. Copyright © 2012 The Obesity Society.

  8. Evaluation of 1H NMR metabolic profiling using biofluid mixture design.

    Science.gov (United States)

    Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C

    2013-07-16

    A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain.

  9. Metabolic profiling of residents in the vicinity of a petrochemical complex

    International Nuclear Information System (INIS)

    Yuan, Tzu-Hsuen; Chung, Ming-Kei; Lin, Ching-Yu; Chen, Shu-Ting; Wu, Kuen-Yuh; Chan, Chang-Chuan

    2016-01-01

    No previous studies have simultaneously measured the biomarkers of environmental exposure and metabolome perturbation in residents affected by industrial pollutants. This study aimed to investigate the metabolic effects of environmental pollutants such as vanadium and polycyclic aromatic hydrocarbons (PAHs) on residents in the vicinity of a petrochemical complex. The study subjects were 160 residents, including 80 high-exposure subjects exposed to high levels of vanadium and PAHs and 80 age- and gender-matched low-exposure subjects living within a 40-km radius of a petrochemical complex. The exposure biomarkers vanadium and 1-hydroxypyrene and four oxidative/nitrosative stress biomarkers were measured in these subjects. Plasma samples from the study subjects were also analyzed using "1H NMR spectroscopy for metabolic profiling. The results showed that the urinary levels of vanadium and 1-hydroxypyrene in the high-exposure subjects were 40- and 20-fold higher, respectively, than those in the low-exposure subjects. Higher urinary levels of stress biomarkers, including 8-OHdG, HNE-MA, 8-isoPF2α, and 8-NO_2Gua, were also observed among the high-exposure subjects compared with the low-exposure subjects. Partial least squares discriminant analysis of the plasma metabolome demonstrated a clear separation between the high- and low-exposure subjects; the intensities of amino acids and carbohydrate metabolites were lower in the high-exposure subjects compared with the low-exposure subjects. The exposure to vanadium and PAHs may cause a reduction in the levels of amino acids and carbohydrates by elevating PPAR and insulin signaling, as well as oxidative/nitrosative stress. - Highlights: • Metabolic effects when exposure to pollutants near a petrochemical complex • V and PAHs exposure associated with elevated oxidative/nitrosative stress responses • V and PAHs exposure related to reduced amino acid and carbohydrate levels • V and PAHs affect metabolic profiling by

  10. Metabolic profiling of residents in the vicinity of a petrochemical complex

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Tzu-Hsuen; Chung, Ming-Kei [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Lin, Ching-Yu [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Shu-Ting; Wu, Kuen-Yuh [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chan, Chang-Chuan, E-mail: ccchan@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2016-04-01

    No previous studies have simultaneously measured the biomarkers of environmental exposure and metabolome perturbation in residents affected by industrial pollutants. This study aimed to investigate the metabolic effects of environmental pollutants such as vanadium and polycyclic aromatic hydrocarbons (PAHs) on residents in the vicinity of a petrochemical complex. The study subjects were 160 residents, including 80 high-exposure subjects exposed to high levels of vanadium and PAHs and 80 age- and gender-matched low-exposure subjects living within a 40-km radius of a petrochemical complex. The exposure biomarkers vanadium and 1-hydroxypyrene and four oxidative/nitrosative stress biomarkers were measured in these subjects. Plasma samples from the study subjects were also analyzed using {sup 1}H NMR spectroscopy for metabolic profiling. The results showed that the urinary levels of vanadium and 1-hydroxypyrene in the high-exposure subjects were 40- and 20-fold higher, respectively, than those in the low-exposure subjects. Higher urinary levels of stress biomarkers, including 8-OHdG, HNE-MA, 8-isoPF2α, and 8-NO{sub 2}Gua, were also observed among the high-exposure subjects compared with the low-exposure subjects. Partial least squares discriminant analysis of the plasma metabolome demonstrated a clear separation between the high- and low-exposure subjects; the intensities of amino acids and carbohydrate metabolites were lower in the high-exposure subjects compared with the low-exposure subjects. The exposure to vanadium and PAHs may cause a reduction in the levels of amino acids and carbohydrates by elevating PPAR and insulin signaling, as well as oxidative/nitrosative stress. - Highlights: • Metabolic effects when exposure to pollutants near a petrochemical complex • V and PAHs exposure associated with elevated oxidative/nitrosative stress responses • V and PAHs exposure related to reduced amino acid and carbohydrate levels • V and PAHs affect metabolic

  11. Higher schizotypy predicts better metabolic profile in unaffected siblings of patients with schizophrenia.

    Science.gov (United States)

    Atbasoglu, E Cem; Gumus-Akay, Guvem; Guloksuz, Sinan; Saka, Meram Can; Ucok, Alp; Alptekin, Koksal; Gullu, Sevim; van Os, Jim

    2018-04-01

    Type 2 diabetes (T2D) is more frequent in schizophrenia (Sz) than in the general population. This association is partly accounted for by shared susceptibility genetic variants. We tested the hypotheses that a genetic predisposition to Sz would be associated with higher likelihood of insulin resistance (IR), and that IR would be predicted by subthreshold psychosis phenotypes. Unaffected siblings of Sz patients (n = 101) were compared with a nonclinical sample (n = 305) in terms of IR, schizotypy (SzTy), and a behavioural experiment of "jumping to conclusions". The measures, respectively, were the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), Structured Interview for Schizotypy-Revised (SIS-R), and the Beads Task (BT). The likelihood of IR was examined in multiple regression models that included sociodemographic, metabolic, and cognitive parameters alongside group status, SIS-R scores, and BT performance. Insulin resistance was less frequent in siblings (31.7%) compared to controls (43.3%) (p model that examined all relevant parameters included the tSzTy tertiles, TG and HDL-C levels, and BMI, as significant predictors of IR. Lack of IR was predicted by the highest as compared to the lowest SzTy tertile [OR (95%CI): 0.43 (0.21-0.85), p = 0.015]. Higher dopaminergic activity may contribute to both schizotypal features and a favourable metabolic profile in the same individual. This is compatible with dopamine's regulatory role in glucose metabolism via indirect central actions and a direct action on pancreatic insulin secretion. The relationship between dopaminergic activity and metabolic profile in Sz must be examined in longitudinal studies with younger unaffected siblings.

  12. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism

    DEFF Research Database (Denmark)

    Hao, Qin; Yadav, Rachita; Basse, Astrid L.

    2015-01-01

    We applied digital gene expression profiling to determine the transcriptome of brown and white adipose tissues (BAT and WAT, respectively) during cold exposure. Male C57BL/6J mice were exposed to cold for 2 or 4 days. A notable induction of genes related to glucose uptake, glycolysis, glycogen...... exposure, we propose a model for the intermediary glucose metabolism in activated BAT: 1) fluxes through glycolysis and the pentose phosphate pathway are induced, the latter providing reducing equivalents for de novo fatty acid synthesis; 2) glycerol synthesis from glucose is increased, facilitating...

  13. Contribution to the definition of the metabolic profile of farmed rainbow trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Massimo Mecatti

    2010-01-01

    Full Text Available The haematic outline of 339 rainbow trout (Oncorhynchus mykissfrom two different farms in the Lucca province was studied for a preliminary assessment of the metabolic profile of this species and for the investigation of the influence of some endogenous and exogenous factors on the variability of the studied parameters. The sampling time, as well as the weight, appears to have caused significant variations on most of the parameters analysed. The present study gives the annual means and the seasonal trends for each farm where the study was carried out.

  14. Longitudinal plasma metabolic profiles, infant feeding, and islet autoimmunity in the MIDIA study

    DEFF Research Database (Denmark)

    Jørgenrud, Benedicte; Stene, Lars C; Tapia, German

    2017-01-01

    Aims: The aim of this study was to investigate the longitudinal plasma metabolic profiles in healthy infants and the potential association with breastfeeding duration and islet autoantibodies predictive of type 1 diabetes. Method: Up to four longitudinal plasma samples from age 3 months from case......, and lower levels of methionine and 3,4-dihydroxybutyric acid at 3 months of age. Conclusions: Plasma levels of several small, polar metabolites changed with age during early childhood, independent of later islet autoimmunity status and sex. Breastfeeding was associated with higher levels of branched......-chain amino acids, and lower levels of methionine and 3,4-dihydroxybutyric acid....

  15. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations.

    Directory of Open Access Journals (Sweden)

    David Toubiana

    Full Text Available To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL. Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i reflect the extensive redundancy of the regulation underlying seed metabolism, (ii demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study

  16. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Directory of Open Access Journals (Sweden)

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  17. Gestational dating by metabolic profile at birth: a California cohort study.

    Science.gov (United States)

    Jelliffe-Pawlowski, Laura L; Norton, Mary E; Baer, Rebecca J; Santos, Nicole; Rutherford, George W

    2016-04-01

    Accurate gestational dating is a critical component of obstetric and newborn care. In the absence of early ultrasound, many clinicians rely on less accurate measures, such as last menstrual period or symphysis-fundal height during pregnancy, or Dubowitz scoring or the Ballard (or New Ballard) method at birth. These measures often underestimate or overestimate gestational age and can lead to misclassification of babies as born preterm, which has both short- and long-term clinical care and public health implications. We sought to evaluate whether metabolic markers in newborns measured as part of routine screening for treatable inborn errors of metabolism can be used to develop a population-level metabolic gestational dating algorithm that is robust despite intrauterine growth restriction and can be used when fetal ultrasound dating is not available. We focused specifically on the ability of these markers to differentiate preterm births (PTBs) (PTBs and term births. Using a linear discriminate analyses-derived linear function, we were able to sort PTBs and term births accurately with sensitivities and specificities of ≥95% in both the training and testing subsets. Assignment of a specific week of gestation in those identified as PTBs resulted in the correct assignment of week ±2 weeks in 89.8% of all newborns in the training and 91.7% of those in the testing subset. When PTB rates were modeled using the metabolic dating algorithm compared to fetal ultrasound, PTB rates were 7.15% vs 6.11% in the training subset and 7.31% vs 6.25% in the testing subset. When considered in combination with birthweight and hours of age at test, metabolic profile evaluated within 8 days of birth appears to be a useful measure of PTB and, among those born preterm, of specific week of gestation ±2 weeks. Dating by metabolic profile may be useful in instances where there is no fetal ultrasound due to lack of availability or late entry into care. Copyright © 2016 The Authors. Published

  18. Gestational dating by metabolic profile at birth: a California cohort study

    Science.gov (United States)

    Jelliffe-Pawlowski, Laura L.; Norton, Mary E.; Baer, Rebecca J.; Santos, Nicole; Rutherford, George W.

    2016-01-01

    Background Accurate gestational dating is a critical component of obstetric and newborn care. In the absence of early ultrasound, many clinicians rely on less accurate measures, such as last menstrual period or symphysis-fundal height during pregnancy, or Dubowitz scoring or the Ballard (or New Ballard) method at birth. These measures often underestimate or overestimate gestational age and can lead to misclassification of babies as born preterm, which has both short- and long-term clinical care and public health implications. Objective We sought to evaluate whether metabolic markers in newborns measured as part of routine screening for treatable inborn errors of metabolism can be used to develop a population-level metabolic gestational dating algorithm that is robust despite intrauterine growth restriction and can be used when fetal ultrasound dating is not available. We focused specifically on the ability of these markers to differentiate preterm births (PTBs) (PTBs and term births. Using a linear discriminate analyses-derived linear function, we were able to sort PTBs and term births accurately with sensitivities and specificities of ≥95% in both the training and testing subsets. Assignment of a specific week of gestation in those identified as PTBs resulted in the correct assignment of week ±2 weeks in 89.8% of all newborns in the training and 91.7% of those in the testing subset. When PTB rates were modeled using the metabolic dating algorithm compared to fetal ultrasound, PTB rates were 7.15% vs 6.11% in the training subset and 7.31% vs 6.25% in the testing subset. Conclusion When considered in combination with birthweight and hours of age at test, metabolic profile evaluated within 8 days of birth appears to be a useful measure of PTB and, among those born preterm, of specific week of gestation ±2 weeks. Dating by metabolic profile may be useful in instances where there is no fetal ultrasound due to lack of availability or late entry into care. PMID

  19. Effects of coronatine elicitation on growth and metabolic profiles of Lemna paucicostata culture.

    Directory of Open Access Journals (Sweden)

    Jin-Young Kim

    Full Text Available In this study, the effects of coronatine treatment on the growth, comprehensive metabolic profiles, and productivity of bioactive compounds, including phenolics and phytosterols, in whole plant cultures of Lemna paucicostata were investigated using gas chromatography-mass spectrometry (GC-MS coupled with multivariate statistical analysis. To determine the optimal timing of coronatine elicitation, coronatine was added on days 0, 23, and 28 after inoculation. The total growth of L. paucicostata was not significantly different between the coronatine treated groups and the control. The coronatine treatment in L. paucicostata induced increases in the content of hydroxycinnamic acids, such as caffeic acid, isoferulic acid, ρ-coumaric acid, sinapic acid, and phytosterols, such as campesterol and β-sitosterol. The productivity of these useful metabolites was highest when coronatine was added on day 0 and harvested on day 32. These results suggest that coronatine treatment on day 0 activates the phenolic and phytosterol biosynthetic pathways in L. paucicostata to a greater extent than in the control. To the best of our knowledge, this is the first report to investigate the effects of coronatine on the alteration of metabolism in L. paucicostata based on GC-MS profiling. The results of this research provide a foundation for designing strategies for enhanced production of useful metabolites for pharmaceutical and nutraceutical industries by cultivation of L. paucicostata.

  20. Dietary live yeast alters metabolic profiles, protein biosynthesis and thermal stress tolerance of Drosophila melanogaster.

    Science.gov (United States)

    Colinet, Hervé; Renault, David

    2014-04-01

    The impact of nutritional factors on insect's life-history traits such as reproduction and lifespan has been excessively examined; however, nutritional determinant of insect's thermal tolerance has not received a lot of attention. Dietary live yeast represents a prominent source of proteins and amino acids for laboratory-reared drosophilids. In this study, Drosophila melanogaster adults were fed on diets supplemented or not with live yeast. We hypothesized that manipulating nutritional conditions through live yeast supplementation would translate into altered physiology and stress tolerance. We verified how live yeast supplementation affected body mass characteristics, total lipids and proteins, metabolic profiles and cold tolerance (acute and chronic stress). Females fed with live yeast had increased body mass and contained more lipids and proteins. Using GC/MS profiling, we found distinct metabolic fingerprints according to nutritional conditions. Metabolite pathway enrichment analysis corroborated that live yeast supplementation was associated with amino acid and protein biosyntheses. The cold assays revealed that the presence of dietary live yeast greatly promoted cold tolerance. Hence, this study conclusively demonstrates a significant interaction between nutritional conditions and thermal tolerance. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Rapid formation of electric field profiles in repetitively pulsed high-voltage high-pressure nanosecond discharges

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Kobayashi, Kazunobu; Hamaguchi, Satoshi; Czarnetzki, Uwe

    2010-01-01

    Rapid formation of electric field profiles has been observed directly for the first time in nanosecond narrow-gap parallel-plate discharges at near-atmospheric pressure. The plasmas examined here are of hydrogen, and the field measurement is based on coherent Raman scattering (CRS) by hydrogen molecules. Combined with the observation of spatio-temporal light emission profiles by a high speed camera, it has been found that the rapid formation of a high-voltage thin cathode sheath is accompanied by fast propagation of an ionization front from a region near the anode. Unlike well-known parallel-plate discharges at low pressure, the discharge formation process at high pressure is almost entirely driven by electron dynamics as ions and neutral species are nearly immobile during the rapid process. (fast track communication)

  2. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells

    Directory of Open Access Journals (Sweden)

    Yan Yin

    2012-11-01

    Developmental exposure to diethylstilbestrol (DES causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities.

  3. Maternal chromium restriction modulates miRNA profiles related to lipid metabolism disorder in mice offspring.

    Science.gov (United States)

    Zhang, Qian; Xiao, Xinhua; Zheng, Jia; Li, Ming; Yu, Miao; Ping, Fan; Wang, Zhixin; Qi, Cuijuan; Wang, Tong; Wang, Xiaojing

    2017-08-01

    Increasing evidence shows that maternal nutrition status has a vital effect on offspring susceptibility to obesity. MicroRNAs are related to lipid metabolism processes. This study aimed to evaluate whether maternal chromium restriction could affect miRNA expression involved in lipid metabolism in offspring. Weaning C57BL/6J mice born from mothers fed with normal control diet or chromium-restricted diet were fed for 13 weeks. The adipose miRNA expression profile was analyzed by miRNA array analysis. At 16 weeks old, pups from dams fed with chromium-restricted diet exhibit higher body weight, fat weight, and serum TC, TG levels. Six miRNAs were identified as upregulated in the RC group compared with the CC group, whereas eight miRNAs were lower than the threshold level set in the RC group. In the validated target genes of these differentially expressed miRNA, the MAPK signaling pathway serves an important role in the influence of early life chromium-restricted diet on lipid metabolism through miRNA. Long-term programming on various specific miRNA and MAPK signaling pathway may be involved in maternal chromium restriction in the adipose of female offspring. Impact statement For the first time, our study demonstrates important miRNA differences in the effect of maternal chromium restriction in offspring. These miRNAs may serve as "bridges" between the mother and the offspring by affecting the MAPK pathway.

  4. Metabolic parameters and blood leukocyte profiles in cows from herds with high or low mastitis incidence.

    Science.gov (United States)

    Holtenius, K; Persson Waller, K; Essén-Gustavsson, B; Holtenius, P; Hallén Sandgren, C

    2004-07-01

    The objective of this study was to determine whether there were differences in metabolic parameters and blood leukocyte profiles between cows in herds with high or low yearly mastitis incidence. In this study, 271 cows from 20 high yielding dairy herds were examined. According to the selection criteria, all herds had low somatic cell counts. Ten of the selected herds represented low mastitis treatment incidence (LMI) and ten herds had high mastitis treatment incidence (HMI). The farms were visited once and blood samples were taken from each cow that was in the interval from three weeks before to 15 weeks after parturition. The eosinophil count was significantly lower among cows from the HMI herds in the period from four weeks to 15 weeks after parturition. The plasma concentrations of beta-hydroxybutyrate, glucose, insulin and urea did not differ between groups, but the concentration of nonesterified fatty acids was significantly higher among HMI cows during the period three weeks after parturition. The concentration of the amino acid tryptophan in plasma was significantly lower among the HMI cows prior to parturition. Glutamine was significantly lower in cows from HMI herds during the first three weeks after parturition. Arginine was consistently lower in HMI cows, although the decrease was only significant during the period from four to fifteen weeks after parturition. The results suggest that there were differences in the metabolism and immune status between herds with high or low yearly mastitis treatment incidence indicating an increased metabolic stress in HMI cows.

  5. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Directory of Open Access Journals (Sweden)

    Horia Todor

    Full Text Available Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  6. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    Science.gov (United States)

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells

    International Nuclear Information System (INIS)

    Xu Qiuwei; Vu, Heather; Liu Liping; Wang, Ting-Chuan; Schaefer, William H.

    2011-01-01

    Mitochondrial toxicity has been a serious concern, not only in preclinical drug development but also in clinical trials. In mitochondria, there are several distinct metabolic processes including fatty acid β-oxidation, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS), and each process contains discrete but often intimately linked steps. Interruption in any one of those steps can cause mitochondrial dysfunction. Detection of inhibition to OXPHOS can be complicated in vivo because intermediate endogenous metabolites can be recycled in situ or circulated systemically for metabolism in other organs or tissues. Commonly used assays for evaluating mitochondrial function are often applied to ex vivo or in vitro samples; they include various enzymatic or protein assays, as well as functional assays such as measurement of oxygen consumption rate, membrane potential, or acidification rates. Metabolomics provides quantitative profiles of overall metabolic changes that can aid in the unraveling of explicit biochemical details of mitochondrial inhibition while providing a holistic view and heuristic understanding of cellular bioenergetics. In this paper, we showed the application of quantitative NMR metabolomics to in vitro myotube cells treated with mitochondrial toxicants, rotenone and antimycin A. The close coupling of the TCA cycle to the electron transfer chain (ETC) in OXPHOS enables specific diagnoses of inhibition to ETC complexes by discrete biochemical changes in the TCA cycle.

  8. Pinhole bone scan mapping of metabolic profiles in osteoarthritis of the knee: a radiographic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Kim, H. H.; Chung, Y. A.; Chung, S. K.; Bahk, Y. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    1999-07-01

    Osteoarthritis (OA) is mixture of damage to a joint and reaction induced therefrom. Heterogeneity, slow change and no proper means of assessing pathology make it a difficult disease to study. Diagnosis can be made by radiography when OA is established. But subtle metabolic change without radiographic alteration can only be detected by bone scan. Present study was performed to assess metabolic profiles of OA of the knee with various radiographic and preradiographic changes using pinhole bone scan (PBS). PBS and radiography were taken at the same time or a few days apart. We used single-head gamma camera and a 4-mm pinhole collimator. Patients were 9 men and 19 women (30-74 yr with mean being 55). PBS was correlated with radiography in each case. Increased tracer uptake was seen in 111 lesions in 28 knees. Intensity was arbitrarily graded into Grade 0-2. The results were divided into group with radiographic change (n=85; Table) and group without (n=26). Generally, tracer uptake was much intense in the sclerotic and cystic form. In radiographically normal group pathological uptake occurred mostly in subchondral bone (n=17) and some in the femoral condyle (n=9) denoting that subchondral bone is the most vulnerable. PBS is sensitive indicator of metabolic alternations in various disease processes of OA in both radiographically normal and abnormal cases.

  9. Body composition and metabolic profile in adults with vitamin D deficiency

    Directory of Open Access Journals (Sweden)

    Liane Murari ROCHA

    Full Text Available ABSTRACT Objective: To investigate the body composition and metabolic profile in individuals in terms of different concentrations of serum vitamin D, ranging from deficiency to sufficiency. Methods: A cross-sectional study of 106 adults of both genders, who were divided into three groups according to vitamin D levels: deficiency: <20ng/mL; insufficiency: 20-29.9ng/mL; and sufficiency: 30-100ng/mL. Anthropometric evaluation included weight, height, and body circumferences. Fat mass and lean mass were assessed using the Tetrapolar bioelectrical impedance method. Clinical and biochemical evaluations were also carried out. Insulin resistance was estimated using the Homeostasis Model Assessment Insulin index. Results: The analysis showed that the main alterations in individuals in the vitamin D deficiency group were higher triglycerides, very low density lipoprotein - cholesterol, fasting blood glucose, insulin, glycated hemoglobin, body mass index, body fat percentage, lean mass percentage, waist circumference, and Homeostasis Model Assessment Insulin than those of the vitamin D sufficient group (p<0.05. Conclusion: It was found that vitamin D deficiency causes important body composition and metabolic changes, which may lead to diseases such as diabetes Mellitus and metabolic syndrome.

  10. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Science.gov (United States)

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  11. Metabolic profiling of presymptomatic Huntington’s disease sheep reveals novel biomarkers

    Science.gov (United States)

    Skene, Debra J.; Middleton, Benita; Fraser, Cara K.; Pennings, Jeroen L. A.; Kuchel, Timothy R.; Rudiger, Skye R.; Bawden, C. Simon; Morton, A. Jennifer

    2017-01-01

    The pronounced cachexia (unexplained wasting) seen in Huntington’s disease (HD) patients suggests that metabolic dysregulation plays a role in HD pathogenesis, although evidence of metabolic abnormalities in HD patients is inconsistent. We performed metabolic profiling of plasma from presymptomatic HD transgenic and control sheep. Metabolites were quantified in sequential plasma samples taken over a 25 h period using a targeted LC/MS metabolomics approach. Significant changes with respect to genotype were observed in 89/130 identified metabolites, including sphingolipids, biogenic amines, amino acids and urea. Citrulline and arginine increased significantly in HD compared to control sheep. Ten other amino acids decreased in presymptomatic HD sheep, including branched chain amino acids (isoleucine, leucine and valine) that have been identified previously as potential biomarkers of HD. Significant increases in urea, arginine, citrulline, asymmetric and symmetric dimethylarginine, alongside decreases in sphingolipids, indicate that both the urea cycle and nitric oxide pathways are dysregulated at early stages in HD. Logistic prediction modelling identified a set of 8 biomarkers that can identify 80% of the presymptomatic HD sheep as transgenic, with 90% confidence. This level of sensitivity, using minimally invasive methods, offers novel opportunities for monitoring disease progression in HD patients. PMID:28223686

  12. Urine metabolic profiling for the pathogenesis research of erosive oral lichen planus.

    Science.gov (United States)

    Li, Xu-Zhao; Yang, Xu-Yan; Wang, Yu; Zhang, Shuai-Nan; Zou, Wei; Wang, Yan; Li, Xiao-Nan; Wang, Ling-Shu; Zhang, Zhi-Gang; Xie, Liang-Zhen

    2017-01-01

    Oral lichen planus (OLP) is a relatively common chronic immune-pathological and inflammatory disease and potentially oral precancerous lesion. Erosive OLP patients show the higher rate of malignant transformation than patients with non-erosive OLP. Identifying the potential biomarkers related to erosive OLP may help to understand the pathogenesis of the diseases. Metabolic profiles were compared in control and patient subjects with erosive OLP by using ultra-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-QTOF-MS) coupled with pattern recognition methods An integrative analysis was used to identify the perturbed metabolic pathways and pathological processes that may be associated with the disease. In total, 12 modulated metabolites were identified and considered as the potential biomarkers of erosive OLP. Multiple metabolic pathways and pathological processes were involved in erosive OLP. The dysregulations of these metabolites could be used to explain the pathogenesis of the disease, which could also be the potential therapeutic targets for the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy.

    Directory of Open Access Journals (Sweden)

    Ji Soo Choi

    Full Text Available The purpose of this study was to determine whether metabolic profiling of core needle biopsy (CNB samples using high-resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS could be used for predicting pathologic response to neoadjuvant chemotherapy (NAC in patients with locally advanced breast cancer. After institutional review board approval and informed consent were obtained, CNB tissue samples were collected from 37 malignant lesions in 37 patients before NAC treatment. The metabolic profiling of CNB samples were performed by HR-MAS MRS. Metabolic profiles were compared according to pathologic response to NAC using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA. Various metabolites including choline-containing compounds were identified and quantified by HR-MAS MRS in all 37 breast cancer tissue samples obtained by CNB. In univariate analysis, the metabolite concentrations and metabolic ratios of CNB samples obtained with HR-MAS MRS were not significantly different between different pathologic response groups. However, there was a trend of lower levels of phosphocholine/creatine ratio and choline-containing metabolite concentrations in the pathologic complete response group compared to the non-pathologic complete response group. In multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles showed visible discrimination between the pathologic response groups. This study showed OPLS-DA multivariate analysis using metabolic profiles of pretreatment CNB samples assessed by HR- MAS MRS may be used to predict pathologic response before NAC, although we did not identify the metabolite showing statistical significance in univariate analysis. Therefore, our preliminary results raise the necessity of further study on HR-MAS MR metabolic profiling of CNB samples for a large number of cancers.

  14. ¹H NMR-based metabolic profiling of human rectal cancer tissue

    Science.gov (United States)

    2013-01-01

    Background Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis. Methods Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR profiling data to identify the distinguishing metabolites of rectal cancer. Results Excellent separation was obtained and distinguishing metabolites were observed among the different stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer. The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which may be correlated with the progression of human rectal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues, indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered metabolites may be as potential biomarkers, which would

  15. Does metformin treatment during pregnancy modify future metabolic profile in women with PCOS?

    Science.gov (United States)

    Underdal, Maria Othelie; Stridsklev, Solhild; Oppen, Ingrid Hennum; Høgetveit, Kristin; Andersen, Marianne Skovsager; Vanky, Eszter

    2018-04-05

    Worldwide, metformin is prescribed in an attempt to improve pregnancy outcome in PCOS. Metformin may also benefit future health by modulating the increased metabolic stress during pregnancy. To investigate if metformin during pregnancy modified future metabolic health in women with PCOS. Follow-up study of a randomized controlled trial, which compared metformin to placebo in women with PCOS. Mean follow-up period was 8 years (5-11). Three university hospitals, seven local hospitals, and one gynecological specialist practice. Women with PCOS according to Rotterdam criteria, all former participants in the PregMet study. Metformin 2000 mg daily or placebo from 1st trimester to delivery in the original study. No intervention in the present follow-up study. Main outcome measure was weight-gain in the follow-up period. Weight, body mass index, waist and hip circumferences and blood pressure were registered. Body composition was assessed by bioelectrical impedance analysis, and fasting lipids, glucose and insulin were analysed. 131 out of 239 (55%) invited women participated in the follow-up. Weight gain was similar in women given metformin (2.1±10.5) and women given placebo (1.8±11.2) at 7.7 years follow-up after pregnancy (p-value=0.834). No difference was found between those treated with metformin and placebo during pregnancy in BMI, waist/hip ratio, blood pressure, body composition, lipids, glucose and insulin levels or prevalence of metabolic syndrome at follow-up. Metformin treatment during pregnancy did not influence the metabolic profile in women with PCOS at 7.7 years of follow-up.

  16. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  17. Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion.

    Science.gov (United States)

    Wei, Qingqing; Xiao, Xiao; Fogle, Paul; Dong, Zheng

    2014-01-01

    Changes of metabolism have been implicated in renal ischemia/reperfusion injury (IRI). However, a global analysis of the metabolic changes in renal IRI is lacking and the association of the changes with ischemic kidney injury and subsequent recovery are unclear. In this study, mice were subjected to 25 minutes of bilateral renal IRI followed by 2 hours to 7 days of reperfusion. Kidney injury and subsequent recovery was verified by serum creatinine and blood urea nitrogen measurements. The metabolome of plasma, kidney cortex, and medulla were profiled by the newly developed global metabolomics analysis. Renal IRI induced overall changes of the metabolome in plasma and kidney tissues. The changes started in renal cortex, followed by medulla and plasma. In addition, we identified specific metabolites that may contribute to early renal injury response, perturbed energy metabolism, impaired purine metabolism, impacted osmotic regulation and the induction of inflammation. Some metabolites, such as 3-indoxyl sulfate, were induced at the earliest time point of renal IRI, suggesting the potential of being used as diagnostic biomarkers. There was a notable switch of energy source from glucose to lipids, implicating the importance of appropriate nutrition supply during treatment. In addition, we detected the depressed polyols for osmotic regulation which may contribute to the loss of kidney function. Several pathways involved in inflammation regulation were also induced. Finally, there was a late induction of prostaglandins, suggesting their possible involvement in kidney recovery. In conclusion, this study demonstrates significant changes of metabolome kidney tissues and plasma in renal IRI. The changes in specific metabolites are associated with and may contribute to early injury, shift of energy source, inflammation, and late phase kidney recovery.

  18. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions

    Directory of Open Access Journals (Sweden)

    Fenja Klevenhusen

    2015-10-01

    Full Text Available Left displaced abomasum (LDA is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1 evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2 establish an Animals 2015, 5 1022 association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca, but greater concentrations of non-esterified fatty acids (NEFA and beta-hydroxy-butyrate (BHBA, in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA, regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA.

  19. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions.

    Science.gov (United States)

    Klevenhusen, Fenja; Humer, Elke; Metzler-Zebeli, Barbara; Podstatzky-Lichtenstein, Leopold; Wittek, Thomas; Zebeli, Qendrim

    2015-10-13

    Left displaced abomasum (LDA) is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1) evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2) establish an Animals 2015, 5 1022 association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca), but greater concentrations of non-esterified fatty acids (NEFA) and beta-hydroxy-butyrate (BHBA), in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA), regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA.

  20. Text-based phenotypic profiles incorporating biochemical phenotypes of inborn errors of metabolism improve phenomics-based diagnosis.

    Science.gov (United States)

    Lee, Jessica J Y; Gottlieb, Michael M; Lever, Jake; Jones, Steven J M; Blau, Nenad; van Karnebeek, Clara D M; Wasserman, Wyeth W

    2018-05-01

    Phenomics is the comprehensive study of phenotypes at every level of biology: from metabolites to organisms. With high throughput technologies increasing the scope of biological discoveries, the field of phenomics has been developing rapid and precise methods to collect, catalog, and analyze phenotypes. Such methods have allowed phenotypic data to be widely used in medical applications, from assisting clinical diagnoses to prioritizing genomic diagnoses. To channel the benefits of phenomics into the field of inborn errors of metabolism (IEM), we have recently launched IEMbase, an expert-curated knowledgebase of IEM and their disease-characterizing phenotypes. While our efforts with IEMbase have realized benefits, taking full advantage of phenomics requires a comprehensive curation of IEM phenotypes in core phenomics projects, which is dependent upon contributions from the IEM clinical and research community. Here, we assess the inclusion of IEM biochemical phenotypes in a core phenomics project, the Human Phenotype Ontology. We then demonstrate the utility of biochemical phenotypes using a text-based phenomics method to predict gene-disease relationships, showing that the prediction of IEM genes is significantly better using biochemical rather than clinical profiles. The findings herein provide a motivating goal for the IEM community to expand the computationally accessible descriptions of biochemical phenotypes associated with IEM in phenomics resources.

  1. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort.

    Science.gov (United States)

    Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C

    2015-12-01

    Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate-controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of glycerophospholipids and sphingolipids in vegans.

  2. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort12

    Science.gov (United States)

    Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C

    2015-01-01

    Background: Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. Objective: We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Design: In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate–controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Results: Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Conclusions: Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of

  3. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring

    OpenAIRE

    Park, Youngja H.; Lee, Kichun; Soltow, Quinlyn A.; Strobel, Frederick H.; Brigham, Kenneth L.; Parker, Richard E.; Wilson, Mark E.; Sutliff, Roy L.; Mansfield, Keith G.; Wachtman, Lynn M.; Ziegler, Thomas R.; Jones, Dean P.

    2012-01-01

    High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses,...

  4. The Impact of Rapid Weight Loss on Oxidative Stress Markers and the Expression of the Metabolic Syndrome in Obese Individuals

    Directory of Open Access Journals (Sweden)

    Eva Tumova

    2013-01-01

    Full Text Available Objective. Obesity is linked with a state of increased oxidative stress, which plays an important role in the etiology of atherosclerosis and type 2 diabetes mellitus. The aim of our study was to evaluate the effect of rapid weight loss on oxidative stress markers in obese individuals with metabolic syndrome (MetS. Design and Methods. We measured oxidative stress markers in 40 obese subjects with metabolic syndrome (MetS+, 40 obese subjects without metabolic syndrome (MetS−, and 20 lean controls (LC at baseline and after three months of very low caloric diet. Results. Oxidized low density lipoprotein (ox-LDL levels decreased by 12% in MetS+ subjects, associated with a reduction in total cholesterol (TC, even after adjustment for age and sex. Lipoprotein associated phospholipase A2 (Lp-PLA2 activity decreased by 4.7% in MetS+ subjects, associated with a drop in LDL-cholesterol (LDL-C, TC, and insulin levels. Multivariate logistic regression analysis showed that a model including ox-LDL, LpPLA2 activity, and myeloperoxidase (MPO improved prediction of MetS status among obese individuals compared to each oxidative stress marker alone. Conclusions. Oxidative stress markers were predictive of MetS in obese subjects, suggesting a higher oxidative stress. Rapid weight loss resulted in a decline in oxidative stress markers, especially in MetS+ patients.

  5. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.

    Science.gov (United States)

    Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto

    2010-01-20

    In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time.

  6. Solid phase extraction and metabolic profiling of exudates from living copepods

    DEFF Research Database (Denmark)

    Selander, Erik; Heuschele, Jan; Nylund, Göran M.

    2016-01-01

    describe the development of a closed loop solid phase extraction setup that allows for extraction of exuded metabolites from live copepods. We captured exudates from male and female Temora longicornis and analyzed the content with high resolution LC-MS. Chemometric methods revealed 87 compounds...... that solid phase extraction in combination with metabolic profiling of exudates is a useful tool to develop our understanding of the chemical interplay between pelagic organisms....... Copepodamide G, known to induce defensive responses in phytoplankton, was among the ten compounds of highest relative abundance in both male and female extracts. The presence of copepodamide G shows that the method can be used to capture and analyze chemical signals from living source organisms. We conclude...

  7. Characterisation of metabolic profile of banana genotypes, aiming at biofortified Musa spp. cultivars.

    Science.gov (United States)

    Borges, Cristine Vanz; Amorim, Vanusia Batista de Oliveira; Ramlov, Fernanda; Ledo, Carlos Alberto da Silva; Donato, Marcela; Maraschin, Marcelo; Amorim, Edson Perito

    2014-02-15

    The banana is an important, widely consumed fruit, especially in areas of rampant undernutrition. Twenty-nine samples were analysed, including 9 diploids, 13 triploids and 7 tetraploids, in the Active Germplasm Bank, at Embrapa Cassava & Fruits, to evaluate the bioactive compounds. The results of this study reveal the presence of a diversity of bioactive compounds, e.g., catechins; they are phenolic compounds with high antioxidant potential and antitumour activity. In addition, accessions with appreciable amounts of pVACs were identified, especially compared with the main cultivars that are currently marketed. The ATR-FTIR, combined with principal components analysis, identified accessions with distinct metabolic profiles in the fingerprint regions of compounds important for human health. Likewise, starch fraction characterisation allowed discrimination of accessions according to their physical, chemical, and functional properties. The results of this study demonstrate that the banana has functional characteristics endowing it with the potential to promote human health. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. High-intensity interval training improves inflammatory and adipokine profiles in postmenopausal women with metabolic syndrome.

    Science.gov (United States)

    Steckling, Flávia Mariel; Farinha, Juliano Boufleur; Figueiredo, Felipe da Cunha; Santos, Daniela Lopes Dos; Bresciani, Guilherme; Kretzmann, Nélson Alexandre; Stefanello, Sílvio Terra; Courtes, Aline Alves; Beck, Maristela de Oliveira; Sangoi Cardoso, Manuela; Duarte, Marta Maria Medeiros Frescura; Moresco, Rafael Noal; Soares, Félix Alexandre Antunes

    2018-02-12

    This study investigate the effects of high-intensity interval training (HIIT) on systemic levels of inflammatory and hormonal markers in postmenopausal women with metabolic syndrome (MS). Fifteen postmenopausal women with MS completed the training on treadmills. Functional, body composition parameters, maximal oxygen uptake (VO 2 max), and lipid profile were assessed before and after HIIT. Serum or plasma levels of cytokines and hormonal markers were measured along the intervention. The analysis of messenger RNA (mRNA) expression of these cytokines was performed in peripheral blood mononuclear cells (PBMC). VO 2 max and some anthropometric parameters were improved after HIIT, while decreased levels of proinflammatory markers and increased levels of interleukin-10 (IL-10) were also found. Adipokines were also modulated after 12 weeks or training. The mRNA expression of the studied genes was unchanged after HIIT. In conclusion, HIIT benefits inflammatory and hormonal axis on serum or plasma samples, without changes on PBMC of postmenopausal MS patients.

  9. Effects of meal frequency on metabolic profiles and substrate partitioning in lean healthy males.

    Directory of Open Access Journals (Sweden)

    Marjet J M Munsters

    Full Text Available The daily number of meals has an effect on postprandial glucose and insulin responses, which may affect substrate partitioning and thus weight control. This study investigated the effects of meal frequency on 24 h profiles of metabolic markers and substrate partitioning.Twelve (BMI:21.6 ± 0.6 kg/m(2 healthy male subjects stayed after 3 days of food intake and physical activity standardization 2 × 36 hours in a respiration chamber to measure substrate partitioning. All subjects randomly received two isoenergetic diets with a Low meal Frequency (3 ×; LFr or a High meal Frequency (14 ×; HFr consisting of 15 En% protein, 30 En% fat, and 55 En% carbohydrates. Blood was sampled at fixed time points during the day to measure metabolic markers and satiety hormones.Glucose and insulin profiles showed greater fluctuations, but a lower AUC of glucose in the LFr diet compared with the HFr diet. No differences between the frequency diets were observed on fat and carbohydrate oxidation. Though, protein oxidation and RMR (in this case SMR + DIT were significantly increased in the LFr diet compared with the HFr diet. The LFr diet increased satiety and reduced hunger ratings compared with the HFr diet during the day.The higher rise and subsequently fall of insulin in the LFr diet did not lead to a higher fat oxidation as hypothesized. The LFr diet decreased glucose levels throughout the day (AUC indicating glycemic improvements. RMR and appetite control increased in the LFr diet, which can be relevant for body weight control on the long term.ClinicalTrials.gov NCT01034293.

  10. Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response

    Science.gov (United States)

    Aranda, Ismael; Sánchez-Gómez, David; de Miguel, Marina; Mancha, Jose Antonio; Guevara, María Angeles; Cadahía, Estrella; Fernández de Simón, María Brígida

    2017-07-01

    Most temperate forest tree species will suffer important environmental changes as result of the climate change. Adaptiveness to local conditions could change at different sites in the future. In this context, the study of intra-specific variability is important to clarify the singularity of different local populations. Phenotypic differentiation between three beech provenances covering a wide latitudinal range (Spain/ES, Germany/DE and Sweden/SE), was studied in a greenhouse experiment. Non-target leaf metabolite profiles and ecophysiological response was analyzed in well-watered and water stressed seedlings. There was a provenance-specific pattern in the relative concentrations of some leaf metabolites regardless watering treatment. The DE and SE from the center and north of the distribution area of the species showed a clear differentiation from the ES provenance in the relative concentration of some metabolites. Thus the ES provenance from the south maintained larger relative concentration of some organic and amino acids (e.g. fumaric and succinic acids or valine and isoleucine), and in some secondary metabolites (e.g. kaempferol, caffeic and ferulic acids). The ecophysiological response to mild water stress was similar among the three provenances as a consequence of the moderate water stress applied to seedlings, although leaf N isotope composition (δ15N) and leaf C:N ratio were higher and lower respectively in DE than in the other two provenances. This would suggest potential differences in the capacity to uptake and post-process nitrogen according to provenance. An important focus of the study was to address for the first time inter-provenance leaf metabolic diversity in beech from a non-targeted metabolic profiling approach that allowed differentiation of the three studied provenances.

  11. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile.

    Directory of Open Access Journals (Sweden)

    David A Lipson

    Full Text Available A metagenomic analysis was performed on a soil profile from a wet tundra site in northern Alaska. The goal was to link existing biogeochemical knowledge of the system with the organisms and genes responsible for the relevant metabolic pathways. We specifically investigated how the importance of iron (Fe oxides and humic substances (HS as terminal electron acceptors in this ecosystem is expressed genetically, and how respiratory and fermentative processes varied with soil depth into the active layer and into the upper permafrost. Overall, the metagenomes reflected a microbial community enriched in a diverse range of anaerobic pathways, with a preponderance of known Fe reducing species at all depths in the profile. The abundance of sequences associated with anaerobic metabolic processes generally increased with depth, while aerobic cytochrome c oxidases decreased. Methanogenesis genes and methanogen genomes followed the pattern of CH4 fluxes: they increased steeply with depth into the active layer, but declined somewhat over the transition zone between the lower active layer and the upper permafrost. The latter was relatively enriched in fermentative and anaerobic respiratory pathways. A survey of decaheme cytochromes (MtrA, MtrC and their homologs revealed that this is a promising approach to identifying potential reducers of Fe(III or HS, and indicated a possible role for Acidobacteria as Fe reducers in these soils. Methanogens appear to coexist in the same layers, though in lower abundance, with Fe reducing bacteria and other potential competitors, including acetogens. These observations provide a rich set of hypotheses for further targeted study.

  12. Hierarchical Status Predicts Behavioral Vulnerability and Nucleus Accumbens Metabolic Profile Following Chronic Social Defeat Stress.

    Science.gov (United States)

    Larrieu, Thomas; Cherix, Antoine; Duque, Aranzazu; Rodrigues, João; Lei, Hongxia; Gruetter, Rolf; Sandi, Carmen

    2017-07-24

    Extensive data highlight the existence of major differences in individuals' susceptibility to stress [1-4]. While genetic factors [5, 6] and exposure to early life stress [7, 8] are key components for such neurobehavioral diversity, intriguing observations revealed individual differences in response to stress in inbred mice [9-12]. This raised the possibility that other factors might be critical in stress vulnerability. A key challenge in the field is to identify non-invasively risk factors for vulnerability to stress. Here, we investigated whether behavioral factors, emerging from preexisting dominance hierarchies, could predict vulnerability to chronic stress [9, 13-16]. We applied a chronic social defeat stress (CSDS) model of depression in C57BL/6J mice to investigate the predictive power of hierarchical status to pinpoint which individuals will exhibit susceptibility to CSDS. Given that the high social status of dominant mice would be the one particularly challenged by CSDS, we predicted and found that dominant individuals were the ones showing a strong susceptibility profile as indicated by strong social avoidance following CSDS, while subordinate mice were not affected. Data from 1 H-NMR spectroscopy revealed that the metabolic profile in the nucleus accumbens (NAc) relates to social status and vulnerability to stress. Under basal conditions, subordinates show lower levels of energy-related metabolites compared to dominants. In subordinates, but not dominants, levels of these metabolites were increased after exposure to CSDS. To the best of our knowledge, this is the first study that identifies non-invasively the origin of behavioral risk factors predictive of stress-induced depression-like behaviors associated with metabolic changes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of diet on the metabolic profile of ostriches (Struthio camelus var. domesticus).

    Science.gov (United States)

    Bovera, F; Moniello, G; De Riu, N; Di Meo, C; Pinna, W; Nizza, A

    2007-05-01

    In order to study the metabolic profile of ostriches in relation to diet, 40 animals of both sexes were divided equally into two groups and fed two diets ad libitum consisting, on a dry matter basis, of the same commercial concentrate (60%) for the two groups and of corn silage (group A) or alfalfa hay (group B). In the morning, after about 12 h of fasting, blood was collected from the wing vein. The following haematological parameters were determined with an automatic system (Ektachem 250 analyser, Kodak): glucose, cholesterol, triglycerides, lactate (LAC), total protein (TP), uric acid, total bilirubin (Tbil), creatinine (CREA), calcium (Ca), magnesium (Mg), phosphorus (P), sodium (Na), potassium (K), chloride (Cl-), iron (Fe), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), cholinesterase (ChE), alpha-amylase (Amyl), lipase (LIP) and gamma-glutamyltrasferase (GGT). Diet significantly affected some parameters of the metabolic profile. Indeed, owing to the presence of alfalfa hay in the diet, group B showed, in comparison to group A, significantly higher values of uric acid (222.5 vs 387.5 mmol/L, p < 0.01), GGT (8.50 vs 11.3 U/L, p < 0.05), Tbil (8.50 vs 10.7 mmol/L, p < 0.05), Ca (2.41 vs 2.83 micromol/L, p < 0.01), Mg (1.01 vs 1.18 micromol/L, p < 0.05) and K (2.71 vs 3.16 micromol/L, p < 0.01). The levels of creatinine (27.3 vs 32.6 mmol/L, p < 0.05) and AST (344.9 vs 461.4 U/l, p < 0.01) were also higher for group B.

  14. Glucose bioconversion profile in the syngas-metabolizing species Clostridium carboxidivorans.

    Science.gov (United States)

    Fernández-Naveira, Ánxela; Veiga, María C; Kennes, Christian

    2017-11-01

    Some clostridia produce alcohols (ethanol, butanol, hexanol) from gases (CO, CO 2 , H 2 ) and others from carbohydrates (e.g., glucose). C. carboxidivorans can metabolize both gases as well as glucose. However, its bioconversion profile on glucose had not been reported. It was observed that C. carboxidivorans does not follow a typical solventogenic stage when grown on glucose. Indeed, at pH 6.2, it produced first a broad range of acids (acetic, butyric, hexanoic, formic, and lactic acids), several of which are generally not found, under similar conditions, during gas fermentation. Medium acidification did not allow the conversion of fatty acids into solvents. Production of some alcohols from glucose was observed in C. carboxidivorans but at high pH rather than under acidic conditions, and the total concentration of those solvents was low. At high pH, formic acid was produced first and later converted to acetic acid, but organic acids were not metabolized at low pH. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. [LEVELS OF OBESITY, METABOLIC PROFILE, CONSUMPTION OF TABACO AND BLOOD PRESSURE IN SEDENTARY YOUTHS].

    Science.gov (United States)

    Caamaño Navarrete, Felipe; Alarcón Hormazábal, Manuel; Delgado Floody, Pedro

    2015-11-01

    in Chile, the National Health Survey (ENS) conducted in 2009-2010 reported high prevalence of overweight, sedentary lifestyle, high cholesterol and metabolic syndrome in the population. to determine the prevalence in young sedentary obesity and consumption of tabaco and analyze their association with the metabolic profile, body fat percentage and blood pressure. 125 young sedentary, 26 men and 99 women, aged between 17 and 29 years old were evaluated. Body mass index (BMI), percent body fat (% fat), waist contour (CC), systolic and diastolic blood pressure, total cholesterol, HDL cholesterol (HDL-C), LDL cholesterol (LDL-C), triglycerides: measurements were performed, glycemia and consumption of snuff. HDL-C (p = 0.000) and% MG (p = 0.043) were higher in women. 37.6% of young people turned smoker. 35, 2% of the sample showed excessive malnutrition. Obese subjects had higher levels: waist contour (p = 0.000) and% FM (p = 0.000). When analyzing obesity DC, this showed significant differences in BMI,% fat, systolic and diastolic blood pressure. BMI presented positive association with CC,% fat, total cholesterol, triglycerides, LDL, systolic and diastolic blood pressure (p tabaco in the study sample, while other variables are not high-risk categories, it is an opportune time to intervene and reverse these negative health trends now. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Age-dependent changes in metabolic profile of turkey spermatozoa as assessed by NMR analysis

    Science.gov (United States)

    Di Iorio, Michele; Mannina, Luisa; Paventi, Gianluca; Rosato, Maria Pina; Cerolini, Silvia; Sobolev, Anatoly P.

    2018-01-01

    Metabolic profile of fresh turkey spermatozoa at three different reproductive period ages, namely 32, 44 and 56 weeks, was monitored by Nuclear Magnetic Resonance (NMR) spectroscopy and correlated to sperm quality parameters. The age-related decrease in sperm quality as indicated by reduction of sperm concentration, sperm mobility and osmotic tolerance was associated to variation in the level of specific water-soluble and liposoluble metabolites. In particular, the highest levels of isoleucine, phenylalanine, leucine, tyrosine and valine were found at 32 weeks of age, whereas aspartate, lactate, creatine, carnitine, acetylcarnitine levels increased during the ageing. Lipid composition also changed during the ageing: diunsaturated fatty acids level increased from 32 to 56 weeks of age, whereas a reduction of polyunsaturated fatty acids content was observed at 56 weeks. The untargeted approach attempts to give a wider picture of metabolic changes occurring in ageing suggesting that the reduction of sperm quality could be due to a progressive deficiency in mitochondrial energy producing systems, as also prompted by the negative correlation found between sperm mobility and the increase in certain mitochondrial metabolites. PMID:29534088

  17. Transcriptional Profiling of Metabolic Transitions during Development and Diapause Preparation in the Copepod Calanus finmarchicus.

    Science.gov (United States)

    Tarrant, Ann M; Baumgartner, Mark F; Lysiak, Nadine S J; Altin, Dag; Størseth, Trond R; Hansen, Bjørn Henrik

    2016-12-01

    Calanus finmarchicus, like many other copepods in the family Calanidae, can enter into a facultative diapause during the last juvenile phase (fifth copepodid, C5) to enable survival during unfavorable periods. Diapause is essential to the persistence of Calanus populations and profoundly impacts energy flow within oceanic ecosystems, yet regulation of diapause is not understood in these animals. Transcriptional profiling has begun to provide insight into metabolic changes occurring as C. finmarchicus prepares for and enters into diapause or skips diapause to prepare for the terminal molt. In particular, components of the glycolysis, pentose phosphate and lipid synthesis pathways are upregulated early in the C5 stage when lipid stores are low. Currently, our ability to identify metabolic patterns is limited by the incomplete functional annotation of the C. finmarchicus transcriptome. Such limitations are widespread among studies of non-model organisms and addressing them should be a priority for future research. In addition, integrating the results across multiple emerging complementary transcriptomic studies will provide a more complete picture of copepod physiology than isolated studies. Ultimately, identifying molecular markers of copepod physiology could enable robust identification of animals preparing to enter into diapause and ultimately lead to a greatly improved understanding of diapause regulation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  18. Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress.

    Science.gov (United States)

    Wang, Xin; Zhu, Wei; Hashiguchi, Akiko; Nishimura, Minoru; Tian, Jingkui; Komatsu, Setsuko

    2017-08-01

    Metabolomic analysis of flooding-tolerant mutant and abscisic acid-treated soybeans suggests that accumulated fructose might play a role in initial flooding tolerance through regulation of hexokinase and phosphofructokinase. Soybean is sensitive to flooding stress, which markedly reduces plant growth. To explore the mechanism underlying initial-flooding tolerance in soybean, mass spectrometry-based metabolomic analysis was performed using flooding-tolerant mutant and abscisic-acid treated soybeans. Among the commonly-identified metabolites in both flooding-tolerant materials, metabolites involved in carbohydrate and organic acid displayed same profile at initial-flooding stress. Sugar metabolism was highlighted in both flooding-tolerant materials with the decreased and increased accumulation of sucrose and fructose, respectively, compared to flooded soybeans. Gene expression of hexokinase 1 was upregulated in flooded soybean; however, it was downregulated in both flooding-tolerant materials. Metabolites involved in carbohydrate/organic acid and proteins related to glycolysis/tricarboxylic acid cycle were integrated. Increased protein abundance of phosphofructokinase was identified in both flooding-tolerant materials, which was in agreement with its enzyme activity. Furthermore, sugar metabolism was pointed out as the tolerant-responsive process at initial-flooding stress with the integration of metabolomics, proteomics, and transcriptomics. Moreover, application of fructose declined the increased fresh weight of plant induced by flooding stress. These results suggest that fructose might be the critical metabolite through regulation of hexokinase and phosphofructokinase to confer initial-flooding stress in soybean.

  19. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    Science.gov (United States)

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  20. Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats.

    Science.gov (United States)

    Allaway, David; Gilham, Matthew S; Colyer, Alison; Jönsson, Thomas J; Swanson, Kelly S; Morris, Penelope J

    2016-01-01

    Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS) was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN), n = 8) or at 31 weeks of age (Conventional Neuter (CN), n = 7). Univariate and multivariate analyses were used to compare plasma metabolites (n = 370) from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR pcats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion.

  1. Evaluation of hyperandrogenemia and metabolic risk profile in women with postadolescent acne

    Directory of Open Access Journals (Sweden)

    Leyla Baykal Selçuk

    2016-06-01

    Full Text Available Background and Design: Postadolescent acne is a disease with relapses frequently seen in women. Treatment is difficult. In our study, we aimed to investigate the clinical and biochemical characteristics of hyperandrogenism and the prevalence of metabolic disorders, such as metabolic syndrome (MS and dyslipidemia in women with postadolescent acne. Materials and Methods: This study was conducted on 50 women who attended our department with the complaint of postadolescent acne between July 2014 and December 2014. The presence of androgenetic alopecia (AGA, hirsutism, polycystic ovary syndrome (PCOS, MS, dyslipidemia, and obesity was evaluated. Results: Seborrhea was present in 56%, hirsutism in 40%, AGA in 26%, and PCOS in 24% of women with postadolescent acne. The prevalence of MS and dyslipidemia was 24% and 44%, respectively. The prevalence of MS was significantly higher in patients with AGA and hirsutism. There was no association of MS with menstrual irregularity and PCOS. There was no significant association of dyslipidemia with AGA, hirsutism, PCOS, and menstrual irregularity. Conclusion: Clinical symptoms of hyperandrogenism, such as hirsutism, AGA, and PCOS were more common in women with postadolescent acne but androgenic hormone profile abnormalities were minimal. As a result, postadolescent acne resistant to treatment may be considered as an early marker in the early diagnosis of PCOS in women to prevent the development of type 2 diabetes mellitus, MS and hypercholesterolemia.

  2. Metabolic profiles in serum of mouse after chronic exposure to drinking water.

    Science.gov (United States)

    Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei

    2011-08-01

    The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.

  3. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.

    Science.gov (United States)

    Nguyen, Nam-Ninh; Srihari, Sriganesh; Leong, Hon Wai; Chong, Ket-Fah

    2015-10-01

    Determining the entire complement of enzymes and their enzymatic functions is a fundamental step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and increasing the enzyme coverage. Currently, structure-based and network-based approaches can only cover a limited number of enzyme families, and the accuracy of homology-based approaches can be further improved. Bottom-up homology-based approach improves the coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. However, its clustering procedure relies firmly on BLAST similarity score, ignoring protein domains/patterns, and is sensitive to changes in cut-off thresholds. Here, we use functional domain architecture to score the association between domain families and enzyme families (Domain-Enzyme Association Scoring, DEAS). The DEAS score is used to calculate the similarity between proteins, which is then used in clustering procedure, instead of using sequence similarity score. We improve the enzyme annotation protocol using a stringent classification procedure, and by choosing optimal threshold settings and checking for active sites. Our analysis shows that our stringent protocol EnzDP can cover up to 90% of enzyme families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on five-fold cross-validation. EnzDP outperforms existing methods across several testing scenarios. Thus, EnzDP serves as a reliable automated tool for enzyme annotation and metabolic network reconstruction. Available at: www.comp.nus.edu.sg/~nguyennn/EnzDP .

  4. Yogurt consumption is associated with better diet quality and metabolic profile in American men and women.

    Science.gov (United States)

    Wang, Huifen; Livingston, Kara A; Fox, Caroline S; Meigs, James B; Jacques, Paul F

    2013-01-01

    The evidence-based Dietary Guidelines for Americans recommends increasing the intake of fat-free or low-fat milk and milk products. However, yogurt, a nutrient-dense milk product, has been understudied. This cross-sectional study examined whether yogurt consumption was associated with better diet quality and metabolic profile among adults (n = 6526) participating in the Framingham Heart Study Offspring (1998-2001) and Third Generation (2002-2005) cohorts. A validated food frequency questionnaire was used to assess dietary intake, and the Dietary Guidelines Adherence Index (DGAI) was used to measure overall diet quality. Standardized clinical examinations and laboratory tests were conducted. Generalized estimating equations examined the associations of yogurt consumption with diet quality and levels of metabolic factors. Approximately 64% of women (vs 41% of men) were yogurt consumers (ie, consumed >0 servings/week). Yogurt consumers had a higher DGAI score (ie, better diet quality) than nonconsumers. Adjusted for demographic and lifestyle factors and DGAI, yogurt consumers, compared with nonconsumers, had higher potassium intakes (difference, 0.12 g/d) and were 47%, 55%, 48%, 38%, and 34% less likely to have inadequate intakes (based on Dietary Reference Intake) of vitamins B2 and B12, calcium, magnesium, and zinc, respectively (all P ≤ .001). In addition, yogurt consumption was associated with lower levels of circulating triglycerides, glucose, and lower systolic blood pressure and insulin resistance (all P < .05). Yogurt is a good source of several micronutrients and may help to improve diet quality and maintain metabolic well-being as part of a healthy, energy-balanced dietary pattern. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Heat exposure of Cannabis sativa extracts affects the pharmacokinetic and metabolic profile in healthy male subjects.

    Science.gov (United States)

    Eichler, Martin; Spinedi, Luca; Unfer-Grauwiler, Sandra; Bodmer, Michael; Surber, Christian; Luedi, Markus; Drewe, Juergen

    2012-05-01

    The most important psychoactive constituent of CANNABIS SATIVA L. is Δ (9)-tetrahydrocannabinol (THC). Cannabidiol (CBD), another important constituent, is able to modulate the distinct unwanted psychotropic effect of THC. In natural plant extracts of C. SATIVA, large amounts of THC and CBD appear in the form of THCA-A (THC-acid-A) and CBDA (cannabidiolic acid), which can be transformed to THC and CBD by heating. Previous reports of medicinal use of cannabis or cannabis preparations with higher CBD/THC ratios and use in its natural, unheated form have demonstrated that pharmacological effects were often accompanied with a lower rate of adverse effects. Therefore, in the present study, the pharmacokinetics and metabolic profiles of two different C. SATIVA extracts (heated and unheated) with a CBD/THC ratio > 1 were compared to synthetic THC (dronabinol) in a double-blind, randomized, single center, three-period cross-over study involving 9 healthy male volunteers. The pharmacokinetics of the cannabinoids was highly variable. The metabolic pattern was significantly different after administration of the different forms: the heated extract showed a lower median THC plasma AUC (24 h) than the unheated extract of 2.84 vs. 6.59 pmol h/mL, respectively. The later was slightly higher than that of dronabinol (4.58 pmol h/mL). On the other hand, the median sum of the metabolites (THC, 11-OH-THC, THC-COOH, CBN) plasma AUC (24 h) was higher for the heated than for the unheated extract. The median CBD plasma AUC (24 h) was almost 2-fold higher for the unheated than for the heated extract. These results indicate that use of unheated extracts may lead to a beneficial change in metabolic pattern and possibly better tolerability. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism.

    Science.gov (United States)

    Lee, Jieun; Wolfgang, Michael J

    2012-10-25

    Carnitine Palmitoyltransferase-1c (CPT1c) is a neuron specific homologue of the carnitine acyltransferase family of enzymes. CPT1 isoenzymes transfer long chain acyl groups to carnitine. This constitutes a rate setting step for mitochondrial fatty acid beta-oxidation by facilitating the initial step in acyl transfer to the mitochondrial matrix. In general, neurons do not heavily utilize fatty acids for bioenergetic needs and definitive enzymatic activity has been unable to be demonstrated for CPT1c. Although there are studies suggesting an enzymatic role of CPT1c, its role in neurochemistry remains elusive. In order to better understand how CPT1c functions in neural metabolism, we performed unbiased metabolomic profiling on wild-type (WT) and CPT1c knockout (KO) mouse brains. Consistent with the notion that CPT1c is not involved in fatty acid beta-oxidation, there were no changes in metabolites associated with fatty acid oxidation. Endocannabinoids were suppressed in the CPT1c KO, which may explain the suppression of food intake seen in CPT1c KO mice. Although products of beta-oxidation were unchanged, small changes in carnitine and carnitine metabolites were observed. Finally, we observed changes in redox homeostasis including a greater than 2-fold increase in oxidized glutathione. This indicates that CPT1c may play a role in neural oxidative metabolism. Steady-state metabolomic analysis of CPT1c WT and KO mouse brains identified a small number of metabolites that differed between CPT1c WT and KO mice. The subtle changes in a broad range of metabolites in vivo indicate that CPT1c does not play a significant or required role in fatty acid oxidation; however, it could play an alternative role in neuronal oxidative metabolism.

  7. Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism

    Directory of Open Access Journals (Sweden)

    Lee Jieun

    2012-10-01

    Full Text Available Abstract Background Carnitine Palmitoyltransferase-1c (CPT1c is a neuron specific homologue of the carnitine acyltransferase family of enzymes. CPT1 isoenzymes transfer long chain acyl groups to carnitine. This constitutes a rate setting step for mitochondrial fatty acid beta-oxidation by facilitating the initial step in acyl transfer to the mitochondrial matrix. In general, neurons do not heavily utilize fatty acids for bioenergetic needs and definitive enzymatic activity has been unable to be demonstrated for CPT1c. Although there are studies suggesting an enzymatic role of CPT1c, its role in neurochemistry remains elusive. Results In order to better understand how CPT1c functions in neural metabolism, we performed unbiased metabolomic profiling on wild-type (WT and CPT1c knockout (KO mouse brains. Consistent with the notion that CPT1c is not involved in fatty acid beta-oxidation, there were no changes in metabolites associated with fatty acid oxidation. Endocannabinoids were suppressed in the CPT1c KO, which may explain the suppression of food intake seen in CPT1c KO mice. Although products of beta-oxidation were unchanged, small changes in carnitine and carnitine metabolites were observed. Finally, we observed changes in redox homeostasis including a greater than 2-fold increase in oxidized glutathione. This indicates that CPT1c may play a role in neural oxidative metabolism. Conclusions Steady-state metabolomic analysis of CPT1c WT and KO mouse brains identified a small number of metabolites that differed between CPT1c WT and KO mice. The subtle changes in a broad range of metabolites in vivo indicate that CPT1c does not play a significant or required role in fatty acid oxidation; however, it could play an alternative role in neuronal oxidative metabolism.

  8. Glucose ameliorates the metabolic profile and mitochondrial function of platelet concentrates during storage in autologous plasma

    Science.gov (United States)

    Amorini, Angela M.; Tuttobene, Michele; Tomasello, Flora M.; Biazzo, Filomena; Gullotta, Stefano; De Pinto, Vito; Lazzarino, Giuseppe; Tavazzi, Barbara

    2013-01-01

    Background It is essential that the quality of platelet metabolism and function remains high during storage in order to ensure the clinical effectiveness of a platelet transfusion. New storage conditions and additives are constantly evaluated in order to achieve this. Using glucose as a substrate is controversial because of its potential connection with increased lactate production and decreased pH, both parameters triggering the platelet lesion during storage. Materials and methods In this study, we analysed the morphological status and metabolic profile of platelets stored for various periods in autologous plasma enriched with increasing glucose concentrations (13.75, 27.5 and 55 mM). After 0, 2, 4, 6 and 8 days, high energy phosphates (ATP, GTP, ADP, AMP), oxypurines (hypoxanthine, xanthine, uric acid), lactate, pH, mitochondrial function, cell lysis and morphology, were evaluated. Results The data showed a significant dose-dependent improvement of the different parameters in platelets stored with increasing glucose, compared to what detected in controls. Interestingly, this phenomenon was more marked at the highest level of glucose tested and in the period of time generally used for platelet transfusion (0–6 days). Conclusion These results indicate that the addition of glucose during platelet storage ameliorates, in a dose-dependent manner, the biochemical parameters related to energy metabolism and mitochondrial function. Since there was no correspondence between glucose addition, lactate increase and pH decrease in our experiments, it is conceivable that platelet derangement during storage is not directly caused by glucose through an increase of anaerobic glycolysis, but rather to a loss of mitochondrial functions caused by reduced substrate availability. PMID:22682337

  9. Expression Profile of Genes Related to Drug Metabolism in Human Brain Tumors.

    Directory of Open Access Journals (Sweden)

    Pantelis Stavrinou

    Full Text Available Endogenous and exogenous compounds as well as carcinogens are metabolized and detoxified by phase I and II enzymes, the activity of which could be crucial to the inactivation and hence susceptibility to carcinogenic factors. The expression of these enzymes in human brain tumor tissue has not been investigated sufficiently. We studied the association between tumor pathology and the expression profile of seven phase I and II drug metabolizing genes (CYP1A1, CYP1B1, ALDH3A1, AOX1, GSTP1, GSTT1 and GSTM3 and some of their proteins.Using qRT-PCR and western blotting analysis the gene and protein expression in a cohort of 77 tumors were investigated. The major tumor subtypes were meningioma, astrocytoma and brain metastases, -the later all adenocarcinomas from a lung primary.Meningeal tumors showed higher expression levels for AOX1, CYP1B1, GSTM3 and GSTP1. For AOX1, GSTM and GSTP1 this could be verified on a protein level as well. A negative correlation between the WHO degree of malignancy and the strength of expression was identified on both transcriptional and translational level for AOX1, GSTM3 and GSTP1, although the results could have been biased by the prevalence of meningiomas and glioblastomas in the inevitably bipolar distribution of the WHO grades. A correlation between the gene expression and the protein product was observed for AOX1, GSTP1 and GSTM3 in astrocytomas.The various CNS tumors show different patterns of drug metabolizing gene expression. Our results suggest that the most important factor governing the expression of these enzymes is the histological subtype and to a far lesser extent the degree of malignancy itself.

  10. The impact of body condition after calving on metabolism and milk progesterone profiles in two breeds of dairy cows

    OpenAIRE

    O?Hara, Lisa A.; B?ge, Ren?e; Holtenius, Kjell

    2016-01-01

    Background Optimal body condition in early lactation is generally accepted as a prerequisite for good reproductive performance. Examination of milk progesterone profiles offers an objective method for characterization of postpartum ovarian activity in dairy cows. The present study investigated the relationship between body condition after calving, some metabolic parameters in blood plasma, and fertility, as reflected by milk progesterone profiles in the two dairy breeds Swedish Red (SR) and S...

  11. Evidence of co-metabolic bentazone transformation by methanotrophic enrichment from a groundwater-fed rapid sand filter

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen; Deliniere, Hélène; Prasse, Carsten

    2018-01-01

    from 58 to 158, well within the range for methanotrophic co-metabolic degradation of trace contaminants calculated from the literature, with normalized substrate preferences varying from 3 to 400. High-resolution mass spectrometry revealed formation of the transformation products (TPs) 6-OH, 8-OH......The herbicide bentazone is recalcitrant in aquifers and is therefore frequently detected in wells used for drinking water production. However, bentazone degradation has been observed in filter sand from a rapid sand filter at a waterworks with methane-rich groundwater. Here, the association between...... and bentazone at concentrations below 2 mg/L showed methanotrophic co-metabolic bentazone transformation: The culture removed 53% of the bentazone in 21 days in presence of 5 mg/L of methane, while only 31% was removed in absence of methane. Addition of acetylene inhibited methane oxidation and stopped...

  12. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  13. Selected metabolic and hormonal profiles during maintenance of spontaneous ovarian cysts in dairy cows.

    Science.gov (United States)

    Probo, M; Comin, A; Cairoli, F; Faustini, M; Kindahl, H; De Amicis, I; Veronesi, M C

    2011-06-01

    Information is lacking regarding the relationship between metabolic and hormonal profiles and the maintenance of spontaneous ovarian cyst disease in dairy cows. For this reason, the concentrations of non-esterified fatty acids (NEFA), insulin-like growth factor I (IGF-I) and cortisol (C) were investigated during the spontaneous course of ovarian cyst disease in dairy cows (n=6) between the 7th and 16th weeks post-partum (PP). The control group consisted of normally cycling cows (n=6). Blood samples were collected twice a day, and plasma was analysed using different techniques. Progesterone and 15-ketodihydro-PGF(2α) plasma profiles were investigated to confirm the ovulatory or anovulatory conditions of the cows. Cortisol plasma levels were not significantly different among sampling times within each group or between the two groups. NEFA plasma levels were significantly higher in cycling cows compared to cystic cows at the 16th week PP (pcows during the 8th, 10th, 11th (pdisease in cattle. © 2010 Blackwell Verlag GmbH.

  14. Metabolic Profiling of IDH Mutation and Malignant Progression in Infiltrating Glioma

    Science.gov (United States)

    Jalbert, Llewellyn E.; Elkhaled, Adam; Phillips, Joanna J.; Neill, Evan; Williams, Aurelia; Crane, Jason C.; Olson, Marram P.; Molinaro, Annette M.; Berger, Mitchel S.; Kurhanewicz, John; Ronen, Sabrina M.; Chang, Susan M.; Nelson, Sarah J.

    2017-03-01

    Infiltrating low grade gliomas (LGGs) are heterogeneous in their behavior and the strategies used for clinical management are highly variable. A key factor in clinical decision-making is that patients with mutations in the isocitrate dehydrogenase 1 and 2 (IDH1/2) oncogenes are more likely to have a favorable outcome and be sensitive to treatment. Because of their relatively long overall median survival, more aggressive treatments are typically reserved for patients that have undergone malignant progression (MP) to an anaplastic glioma or secondary glioblastoma (GBM). In the current study, ex vivo metabolic profiles of image-guided tissue samples obtained from patients with newly diagnosed and recurrent LGG were investigated using proton high-resolution magic angle spinning spectroscopy (1H HR-MAS). Distinct spectral profiles were observed for lesions with IDH-mutated genotypes, between astrocytoma and oligodendroglioma histologies, as well as for tumors that had undergone MP. Levels of 2-hydroxyglutarate (2HG) were correlated with increased mitotic activity, axonal disruption, vascular neoplasia, and with several brain metabolites including the choline species, glutamate, glutathione, and GABA. The information obtained in this study may be used to develop strategies for in vivo characterization of infiltrative glioma, in order to improve disease stratification and to assist in monitoring response to therapy.

  15. Metabolic syndrome prevalence in different affective temperament profiles in bipolar-I disorder

    Directory of Open Access Journals (Sweden)

    Kursat Altinbas

    2013-06-01

    Full Text Available Objective: Temperament originates in the brain structure, and individual differences are attributable to neural and physiological function differences. It has been suggested that temperament is associated with metabolic syndrome (MetS markers, which may be partly mediated by lifestyle and socioeconomic status. Therefore, we aim to compare MetS prevalence between different affective temperamental profiles for each season in bipolar patients. Methods: Twenty-six bipolar type-I patients of a specialized outpatient mood disorder unit were evaluated for MetS according to new definition proposed by the International Diabetes Federation in the four seasons of a year. Temperament was assessed using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego - autoquestionnaire version (TEMPS-A. Results: The proportions of MetS were 19.2, 23.1, 34.6, and 38.5% in the summer, fall, spring, and winter, respectively. Only depressive temperament scores were higher (p = 0.002 during the winter in patients with MetS. Conclusion: These data suggest that depressive temperament profiles may predispose an individual to the development of MetS in the winter.

  16. Physical fitness and activity, metabolic profile, adipokines and endothelial function in children.

    Science.gov (United States)

    Penha, Jociene Terra da; Gazolla, Fernanda Mussi; Carvalho, Cecília Noronha de Miranda; Madeira, Isabel Rey; Rodrigues-Junior, Flávio; Machado, Elisabeth de Amorim; Sicuro, Fernando Lencastre; Farinatti, Paulo; Bouskela, Eliete; Collett-Solberg, Paulo Ferrez

    2018-05-29

    The prevalence of obesity is increasing. The aim of this study was to investigate if there is endothelial dysfunction in children with normal or excess weight, and whether the metabolic profile, adipokines, and endothelial dysfunction would be more strongly associated with physical fitness or with physical activity levels. Cross-sectional study involving children aged 5-12 years. The evaluation included venous occlusion plethysmography, serum levels of adiponectin, leptin and insulin, lipid profile, physical activity score (PAQ-C questionnaire), and physical fitness evaluation (Yo-Yo test). A total of 62 children participated in this study. Based on the body mass index, 27 were eutrophic, 10 overweight and 25 obese. Triglycerides, LDL cholesterol, HOMA-IR, and leptin were higher in the obese and excess-weight groups compared to the eutrophic group (pPAQ-C. The Yo-Yo test was significantly associated with HDL cholesterol (rho=-0.41; p=0.01), and this association remained after adjusting for body mass index z-score (rho=0.28; p=0.03). This study showed that endothelial dysfunction is already present in obese children, suggesting a predisposition to atherosclerotic disease. Moreover, HDL cholesterol levels were correlated with physical fitness, regardless of body mass index. Copyright © 2018. Published by Elsevier Editora Ltda.

  17. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-06-01

    Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.

  18. PFAS profiles in three North Sea top predators: metabolic differences among species?

    Science.gov (United States)

    Galatius, Anders; Bossi, Rossana; Sonne, Christian; Rigét, Frank Farsø; Kinze, Carl Christian; Lockyer, Christina; Teilmann, Jonas; Dietz, Rune

    2013-11-01

    Profiles of seven compounds of perfluoro-alkyl substances (PFASs) were compared among three species of top predators from the Danish North Sea: the white-beaked dolphin (Lagenorhynchus albirostris), the harbor porpoise (Phocoena phocoena), and the harbor seal (Phoca vitulina). The seals had higher total burdens (757.8 ng g(-1) ww) than the dolphins (439.9 ng g(-1) ww) and the porpoises (355.8 ng g(-1) ww), probably a reflection of feeding closer to the shore and thus contamination sources. The most striking difference among the species was the relative contribution of perfluorooctanesulfonamide (PFOSA) to the profiles; the seals (0.1%) had much lower levels than porpoises (8.3%) and dolphins (26.0%). In combination with the values obtained from the literature, this result indicates that Carnivora species including Pinnipedia have a much higher capacity of transforming PFOSA to perfluorooctane sulfonic acid (PFOS) than cetacean species. Another notable difference among the species was that the two smaller species (seals and porpoises) with supposedly higher metabolic rates had lower concentrations of the perfluorinated carboxylic acids, which are generally more easily excreted than perfluorinated sulfonamides. Species-specific characteristics should be recognized when PFAS contamination in marine mammals is investigated, for example, several previous studies of PFASs in cetaceans have not quantified PFOSA.

  19. Soy Germ Protein With or Without-Zn Improve Plasma Lipid Profile in Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    SIWI PRAMATAMA MARS WIJAYANTI

    2012-03-01

    Full Text Available The aim of this research was to determine the effect of soy germ protein on lipid profile of metabolic syndrome (MetS patients. Respondents were 30 women with criteria, i.e. blood glucose level > normal, body mass index > 25 kg/m2, hypertriglyceridemia, low cholesterol-HDL level, 40-65 years old, living in Purwokerto, and signed the informed consent. The project was approved by the ethics committee of the Medical Faculty from Gadjah Mada University-Yogyakarta. Respondents were divided into three randomly chosen groups consisting of ten women each. The first, second, and third groups were treated, respectively, with milk enriched soy germ protein plus Zn, milk enriched soy germ protein (without Zn, and placebo for two months. Blood samples were taken at baseline, one and two months after observation. Two months after observation the groups consuming milk enriched with soy germ protein, both with or without Zn, had their level of cholesterol-total decrease from 215.8 to 180.2 mg/dl (P = 0.03, triglyceride from 240.2 to 162.5 mg/dl (P = 0.02, and LDL from 154.01 to 93.85 mg/dl (P = 0.03. In contrast, HDL increased from 38.91 to 49.49 mg/dl (P = 0.0008. In conclusion, soy germ protein can improve lipid profile, thus it can inhibit atherosclerosis incident.

  20. Metabolic profile of normal glucose-tolerant subjects with elevated 1-h plasma glucose values

    Directory of Open Access Journals (Sweden)

    Thyparambil Aravindakshan Pramodkumar

    2016-01-01

    Full Text Available Aim: The aim of this study was to compare the metabolic profiles of subjects with normal glucose tolerance (NGT with and without elevated 1-h postglucose (1HrPG values during an oral glucose tolerance test (OGTT. Methodology: The study group comprised 996 subjects without known diabetes seen at tertiary diabetes center between 2010 and 2014. NGT was defined as fasting plasma glucose <100 mg/dl (5.5 mmol/L and 2-h plasma glucose <140 mg/dl (7.8 mmol/L after an 82.5 g oral glucose (equivalent to 75 g of anhydrous glucose OGTT. Anthropometric measurements and biochemical investigations were done using standardized methods. The prevalence rate of generalized and central obesity, hypertension, dyslipidemia, and metabolic syndrome (MS was determined among the NGT subjects stratified based on their 1HrPG values as <143 mg/dl, ≥143-<155 mg/dl, and ≥155 mg/dl, after adjusting for age, sex, body mass index (BMI, waist circumference, alcohol consumption, smoking, and family history of diabetes. Results: The mean age of the 996 NGT subjects was 48 ± 12 years and 53.5% were male. The mean glycated hemoglobin for subjects with 1HrPG <143 mg/dl was 5.5%, for those with 1HrPG ≥143-<155 mg/dl, 5.6% and for those with 1HrPG ≥155 mg/dl, 5.7%. NGT subjects with 1HrPG ≥143-<155 mg/dl and ≥155 mg/dl had significantly higher BMI, waist circumference, systolic and diastolic blood pressure, triglyceride, total cholesterol/high-density lipoprotein (HDL ratio, triglyceride/HDL ratio, leukocyte count, and gamma glutamyl aminotransferase (P < 0.05 compared to subjects with 1HrPG <143 mg/dl. The odds ratio for MS for subjects with 1HrPG ≥143 mg/dl was 1.84 times higher compared to subjects with 1HrPG <143 mg/dl taken as the reference. Conclusion: NGT subjects with elevated 1HrPG values have a worse metabolic profile than those with normal 1HrPG during an OGTT.

  1. Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism

    Directory of Open Access Journals (Sweden)

    Lars Stechemesser

    2017-01-01

    Full Text Available Objective: Elevated serum ferritin has been linked to type 2 diabetes (T2D and adverse health outcomes in subjects with the Metabolic Syndrome (MetS. As the mechanisms underlying the negative impact of excess iron have so far remained elusive, we aimed to identify potential links between iron homeostasis and metabolic pathways. Methods: In a cross-sectional study, data were obtained from 163 patients, allocated to one of three groups: (1 lean, healthy controls (n = 53, (2 MetS without hyperferritinemia (n = 54 and (3 MetS with hyperferritinemia (n = 56. An additional phlebotomy study included 29 patients with biopsy-proven iron overload before and after iron removal. A detailed clinical and biochemical characterization was obtained and metabolomic profiling was performed via a targeted metabolomics approach. Results: Subjects with MetS and elevated ferritin had higher fasting glucose (p < 0.001, HbA1c (p = 0.035 and 1 h glucose in oral glucose tolerance test (p = 0.002 compared to MetS subjects without iron overload, whereas other clinical and biochemical features of the MetS were not different. The metabolomic study revealed significant differences between MetS with high and low ferritin in the serum concentrations of sarcosine, citrulline and particularly long-chain phosphatidylcholines. Methionine, glutamate, and long-chain phosphatidylcholines were significantly different before and after phlebotomy (p < 0.05 for all metabolites. Conclusions: Our data suggest that high serum ferritin concentrations are linked to impaired glucose homeostasis in subjects with the MetS. Iron excess is associated to distinct changes in the serum concentrations of phosphatidylcholine subsets. A pathway involving sarcosine and citrulline also may be involved in iron-induced impairment of glucose metabolism. Author Video: Author Video Watch what authors say about their articles Keywords: Metabolomics, Hyperferritinemia, Iron overload, Metabolic

  2. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile : a retrospective observational study

    NARCIS (Netherlands)

    Valayannopoulos, Vassili; Baruteau, Julien; Delgado, Maria Bueno; Cano, Aline; Couce, Maria L; Del Toro, Mireia; Donati, Maria Alice; Garcia-Cazorla, Angeles; Gil-Ortega, David; Gomez-de Quero, Pedro; Guffon, Nathalie; Hofstede, Floris C; Kalkan-Ucar, Sema; Coker, Mahmut; Lama-More, Rosa; Martinez-Pardo Casanova, Mercedes; Molina, Agustin; Pichard, Samia; Papadia, Francesco; Rosello, Patricia; Plisson, Celine; Le Mouhaer, Jeannie; Chakrapani, Anupam

    2016-01-01

    BACKGROUND: Isovaleric aciduria (IVA), propionic aciduria (PA) and methylmalonic aciduria (MMA) are inherited organic acidurias (OAs) in which impaired organic acid metabolism induces hyperammonaemia arising partly from secondary deficiency of N-acetylglutamate (NAG) synthase. Rapid reduction in

  3. Mass spectrometry-based metabolic profiling of gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells.

    Science.gov (United States)

    Fujimura, Yoshinori; Ikenaga, Naoki; Ohuchida, Kenoki; Setoyama, Daiki; Irie, Miho; Miura, Daisuke; Wariishi, Hiroyuki; Murata, Masaharu; Mizumoto, Kazuhiro; Hashizume, Makoto; Tanaka, Masao

    2014-03-01

    Gemcitabine resistance (GR) is one of the critical issues for therapy for pancreatic cancer, but the mechanism still remains unclear. Our aim was to increase the understanding of GR by metabolic profiling approach. To establish GR cells, 2 human pancreatic cancer cell lines, SUIT-2 and CAPAN-1, were exposed to increasing concentration of gemcitabine. Both parental and chemoresistant cells obtained by this treatment were subjected to metabolic profiling based on liquid chromatography-mass spectrometry. Multivariate statistical analyses, both principal component analysis and orthogonal partial least squares discriminant analysis, distinguished metabolic signature of responsiveness and resistance to gemcitabine in both SUIT-2 and CAPAN-1 cells. Among significantly different (P metabolic pathways such as amino acid, nucleotide, energy, cofactor, and vitamin pathways. Decreases in glutamine and proline levels as well as increases in aspartate, hydroxyproline, creatine, and creatinine levels were observed in chemoresistant cells from both cell lines. These results suggest that metabolic profiling can isolate distinct features of pancreatic cancer in the metabolome of gemcitabine-sensitive and GR cells. These findings may contribute to the biomarker discovery and an enhanced understanding of GR in pancreatic cancer.

  4. Rapid Revival of a Patient after very Severe Metabolic Acidosis: A Case Report

    Directory of Open Access Journals (Sweden)

    Sajad Ahmadi

    2013-01-01

    Full Text Available Background: Metabolic acidosis is a fatal finding in trauma patients thatcomplicates the process of resuscitation.Case: The case was a 37-year-old man with open fracture in both legs and fracturein second lumbar vertebral (L2. The serial arterial blood gas (ABG test resultsshowed a pH value of 6.7 indicating a very severe and special case of metabolicacidosis. The rate of mortality for such a case was very high. The patient wastreated with sodium bicarbonate and successfully revived after four hours posttreatment and metabolic acidosis was resolved.Conclusion: This indicated that bicarbonate administration is useful for verysevere cases. The good condition of the patient after survival from the severeacademia allowed for extubation.

  5. Comparative assessment of maize lines produced by different breeding methods using both microbiological and metabolic profiling tools

    CSIR Research Space (South Africa)

    Barros, E

    2006-02-01

    Full Text Available This study is about the South African maize samples that have been analysed for mycotoxins, for presence of F.verticillioides and for metabolic profiling. 26 maize cultivars are used , and 50 kernels were plated on 10 PCNB agar plates using...

  6. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species

    DEFF Research Database (Denmark)

    Pičmanová, Martina; Neilson, Elizabeth H.; Motawia, Mohammed S.

    2015-01-01

    nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and HR-MS complemented by ion-mobility mass spectrometry was carried out in three cyanogenic plant species: cassava, almond...

  7. UHPLC-PDA-ESI-TOF/MS metabolic profiling of Arctostaphylos pungens and Arctostaphylos uva-ursi. A comparative study of phenolic compounds from leaf methanolic extracts.

    Science.gov (United States)

    Panusa, Alessia; Petrucci, Rita; Marrosu, Giancarlo; Multari, Giuseppina; Gallo, Francesca Romana

    2015-07-01

    The aim of this study was to get a rapid metabolic fingerprinting and to gain insight into the metabolic profiling of Arctostaphylos pungens H. B. K., a plant morphologically similar to Arctostaphylos uva-ursi (L.) Spreng. (bearberry) but with a lower arbutin (Arb) content. According to the European Pharmacopoeia the Arb content in the dried leaf of A. uva-ursi (L.) Spreng. must be at least 7% (wt/wt) but other species, like A. pungens, are unintentionally or fraudulently marketed instead of it. Therefore, methanolic leaf extracts of nine A. uva-ursi and six A. pungens samples labeled and marketed as "bearberry leaf" have been analyzed. A five-minute gradient with a UHPLC-PDA-ESI-TOF/MS on an Acquity BEH C18 (50×2.1 mm i.d.) 1.7 μm analytical column has been used for the purpose. A comprehensive assignment of secondary metabolites has been carried out in a comparative study of the two species. Among twenty-nine standards of natural compounds analyzed, fourteen have been identified, while other fifty-five metabolites have been tentatively assigned. Moreover, differences in both metabolic fingerprinting and profiling have been evidenced by statistical multivariate analysis. Specifically, main variations have been observed in the relative content for Arb, as expected, and for some galloyl derivative like tetra- and pentagalloylglucose more abundant in A. uva-ursi than in A. pungens. Furthermore, differences in flavonols profile, especially in myricetin and quercetin glycosilated derivatives, were observed. Based on principal component analysis myricetrin, together with a galloyl arbutin isomer and a disaccharide are herein proposed as distinctive metabolites for A. pungens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2017-01-01

    Full Text Available In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA and partitial least-squares discriminant analysis (PLS-DA directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.

  9. B-Cell Metabolic Remodeling and Cancer

    DEFF Research Database (Denmark)

    Franchina, Davide G.; Grusdat, Melanie; Brenner, Dirk

    2018-01-01

    Cells of the immune system display varying metabolic profiles to fulfill their functions. B lymphocytes overcome fluctuating energy challenges as they transition from the resting state and recirculation to activation, rapid proliferation, and massive antibody production. Only through a controlled...

  10. 1H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    International Nuclear Information System (INIS)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D.

    2011-01-01

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in 1 H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  11. {sup 1}H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D., E-mail: bernard.lemire@ualberta.ca [University of Alberta, Department of Biochemistry, School of Molecular and Systems Medicine (Canada)

    2011-04-15

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in {sup 1}H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  12. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus

    Directory of Open Access Journals (Sweden)

    Chang Ha Park

    2016-01-01

    Full Text Available A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC and gas chromatography time-of-flight mass spectrometry (GC-TOFMS-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g, phenolics (0.0664 ± 0.0033 mg/g and flavonoids (0.0096 ± 0.0004 mg/g. Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA, hierarchical clustering analysis (HCA, Pearson’s correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87% at 1000 μg/mL, and DPPH activity (20.78%, followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might

  13. Effect of bariatric surgery on adiposity and metabolic profiles: A prospective cohort study in Middle-Eastern patients.

    Science.gov (United States)

    Mazidi, Mohsen; Rezaie, Peyman; Jangjoo, Ali; Tavassoli, Alireza; Rajabi, Mohammad Taghi; Kengne, Andre Pascal; Nematy, Mohsen

    2017-07-15

    To investigate changes in adiposity and cardio-metabolic risk profile following Roux-en-Y gastric bypass in patients of Middle Eastern ethnicity with severe obesity. This prospective cohort study involved 92 patients who met the indications of bariatric surgery. Post-procedure markers of obesity and cardiometabolic profile were monitored regularly for a year. Mean body mass index decreased by 29.5% from 41.9 to 29.5 kg/m 2 between baseline and 12-mo follow-up, while mean fat mass decreased by 45.9% from 64.2 kg to 34.7 kg. An improvement was also observed in the gluco-metabolic profile with both fasting glucose and HbA1c substantially decreasing ( P Middle Eastern ethnicity.

  14. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling

    Energy Technology Data Exchange (ETDEWEB)

    R. Quatrini; C. Appia-Ayme; Y. Denis; J. Ratouchniak; F. Veloso; J. Valdes; C. Lefimil; S. Silver; F. Roberto; O. Orellana; F. Denizot; E. Jedlicki; D. Holmes; V. Bonnefoy

    2006-09-01

    Acidithiobacillus ferrooxidans is a well known acidophilic, chemolithoautotrophic, Gram negative, bacterium involved in bioleaching and acid mine drainage. In aerobic conditions, it gains energy mainly from the oxidation of ferrous iron and/or reduced sulfur compounds present in ores. After initial oxidation of the substrate, electrons from ferrous iron or sulfur enter respiratory chains and are transported through several redox proteins to oxygen. However, the oxidation of ferrous iron and reduced sulfur compounds has also to provide electrons for the reduction of NAD(P) that is subsequently required for many metabolic processes including CO2 fixation. To help to unravel the enzymatic pathways and the electron transfer chains involved in these processes, a genome-wide microarray transcript profiling analysis was carried out. Oligonucleotides corresponding to approximately 3000 genes of the A. ferrooxidans type strain ATCC23270 were spotted onto glass-slides and hybridized with cDNA retrotranscribed from RNA extracted from ferrous iron and sulfur grown cells. The genes which are preferentially transcribed in ferrous iron conditions and those preferentially transcribed in sulfur conditions were analyzed. The expression of a substantial number of these genes has been validated by real-time PCR, Northern blot hybridization and/or immunodetection analysis. Our results support and extend certain models of iron and sulfur oxidation and highlight previous observations regarding the possible presence of alternate electron pathways. Our findings also suggest ways in which iron and sulfur oxidation may be co-ordinately regulated. An accompanying paper (Appia-Ayme et al.) describes results pertaining to other metabolic functions.

  15. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize.

    Science.gov (United States)

    Riedelsheimer, Christian; Lisec, Jan; Czedik-Eysenberg, Angelika; Sulpice, Ronan; Flis, Anna; Grieder, Christoph; Altmann, Thomas; Stitt, Mark; Willmitzer, Lothar; Melchinger, Albrecht E

    2012-06-05

    The diversity of metabolites found in plants is by far greater than in most other organisms. Metabolic profiling techniques, which measure many of these compounds simultaneously, enabled investigating the regulation of metabolic networks and proved to be useful for predicting important agronomic traits. However, little is known about the genetic basis of metabolites in crops such as maize. Here, a set of 289 diverse maize inbred lines was genotyped with 56,110 SNPs and assayed for 118 biochemical compounds in the leaves of young plants, as well as for agronomic traits of mature plants in field trials. Metabolite concentrations had on average a repeatability of 0.73 and showed a correlation pattern that largely reflected their functional grouping. Genome-wide association mapping with correction for population structure and cryptic relatedness identified for 26 distinct metabolites strong associations with SNPs, explaining up to 32.0% of the observed genetic variance. On nine chromosomes, we detected 15 distinct SNP-metabolite associations, each of which explained more then 15% of the genetic variance. For lignin precursors, including p-coumaric acid and caffeic acid, we found strong associations (P values to ) with a region on chromosome 9 harboring cinnamoyl-CoA reductase, a key enzyme in monolignol synthesis and a target for improving the quality of lignocellulosic biomass by genetic engineering approaches. Moreover, lignin precursors correlated significantly with lignin content, plant height, and dry matter yield, suggesting that metabolites represent promising connecting links for narrowing the genotype-phenotype gap of complex agronomic traits.

  16. Effects of 3-styrylchromones on metabolic profiles and cell death in oral squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakagami

    2015-01-01

    Full Text Available 4H-1-benzopyran-4-ones (chromones are important naturally-distributing compounds. As compared with flavones, isoflavones and 2-styrylchromones, there are only few papers of 3-styrylchromones that have been published. We have previously reported that among fifteen 3-styrylchromone derivatives, three new synthetic compounds that have OCH3 group at the C-6 position of chromone ring, (E-3-(4-hydroxystyryl-6-methoxy-4H-chromen-4-one (compound 11, (E-6-methoxy-3-(4-methoxystyryl-4H-chromen-4-one (compound 4, (E-6-methoxy-3-(3,4,5-trimethoxystyryl-4H-chromen-4-one (compound 6 showed much higher cytotoxicities against four epithelial human oral squamous cell carcinoma (OSCC lines than human normal oral mesenchymal cells. In order to further confirm the tumor specificities of these compounds, we compared their cytotoxicities against both human epithelial malignant and non-malignant cells, and then investigated their effects on fine cell structures and metabolic profiles and cell death in human OSCC cell line HSC-2. Cytotoxicities of compounds 4, 6, 11 were assayed with MTT method. Fine cell structures were observed under transmission electron microscope. Cellular metabolites were extracted with methanol and subjected to CE-TOFMS analysis. Compounds 4, 6, 11 showed much weaker cytotoxicity against human oral keratinocyte and primary human gingival epithelial cells, as compared with HSC-2, confirming their tumor-specificity, whereas doxorubicin and 5-FU were highly cytotoxic to these normal epithelial cells, giving unexpectedly lower tumor-specificity. The most cytotoxic compound 11, induced the mitochondrial vacuolization, autophagy suppression followed by apoptosis induction, and changes in the metabolites involved in amino acid and glycerophospholipid metabolisms. Chemical modification of lead compound 11 may be a potential choice for designing new type of anticancer drugs.

  17. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    International Nuclear Information System (INIS)

    Lee, Min-Ho; Kim, Mingoo; Lee, Byung-Hoon; Kim, Ju-Han; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-Il; Chung, Heekyoung; Kong, Gu; Lee, Mi-Ock

    2008-01-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid β-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity

  18. Use of metabolic profiles in dairy cattle in tropical and subtropical countries on smallholder dairy farms

    International Nuclear Information System (INIS)

    Whitaker, D.A.; Goodger, W.J.; Garcia, M.; Perera, B.M.A.O.; Wittwer, F.

    1999-01-01

    Metabolic profile testing has generally been used as part of a multi-disciplinary approach for dairy herds in temperate climates. Our goal was to evaluate the effectiveness of the technique for identifying constraints on productivity in small herds in environments less favourable for milk production. Metabolites tested were chosen for stability in the sample after collection of blood, ease of analysis and practical knowledge of the meaning of the results. Blood levels of five different metabolites in low producing dairy cows belonging to smallholders in tropical and subtropical environments were measured. The study involved 13 projects with 80 cows in each, carried out in six Latin American, six Asian and one southern European country. Data was also collected on feeding, body condition (BCS) and weight change, parasitism and reproduction. In Chile, Mexico, Paraguay, Philippines, Uruguay and Venezuela globulin levels were high in more than 17% of cows sampled on each occasion. Globulin levels were also high in Turkey and Viet Nam on one or more occasions. In Paraguay 49% of cows had high globulin levels at 2-3 months after calving. These results suggest that inflammatory disease was present to a potentially important degree, although this was not always investigated and not always taken into account. In all countries except Mexico and Venezuela high β-hydroxybutyrate (BHB) levels before calving in many cows highlighted the presence of condition loss in late pregnancy, an important potential constraint on productivity and fertility. Fewer cows showed high BHB levels in lactation where change in BCS and weight was more sensitive for measuring negative energy balance. Urea concentrations were only found to be low in small numbers of cows suggesting that dietary protein shortages were not common. Albumin values were low mainly in cows where globulin values were high and so did not generally provide additional information. The exception was in China where pregnant yaks

  19. A proton nuclear magnetic resonance-based metabonomics study of metabolic profiling in immunoglobulin a nephropathy

    International Nuclear Information System (INIS)

    Sui, Weiguo; Che, Wenti; Guimai, Zuo; Chen, Jiejing; Li, Liping; Li, Wuxian; Dai, Yong

    2012-01-01

    Objectives: Immunoglobulin A nephropathy is the most common cause of chronic renal failure among primary glomerulonephritis patients. The ability to diagnose immunoglobulin A nephropathy remains poor. However, renal biopsy is an inconvenient, invasive, and painful examination, and no reliable biomarkers have been developed for use in routine patient evaluations. The aims of the present study were to identify immunoglobulin A nephropathy patients, to identify useful biomarkers of immunoglobulin A nephropathy and to establish a human immunoglobulin A nephropathy metabolic profile. Methods: Serum samples were collected from immunoglobulin A nephropathy patients who were not using immunosuppressants. A pilot study was undertaken to determine disease-specific metabolite biomarker profiles in three groups: healthy controls (N = 23), low-risk patients in whom immunoglobulin A nephropathy was confirmed as grades I-II by renal biopsy (N = 23), and high-risk patients with nephropathies of grades IV-V (N = 12). Serum samples were analyzed using proton nuclear magnetic resonance spectroscopy and by applying multivariate pattern recognition analysis for disease classification. Results: Compared with the healthy controls, both the low-risk and high-risk patients had higher levels of phenylalanine, myo-inositol, lactate, L6 lipids ( CH-CH 2 -CH = O), L5 lipids (-CH 2 -C = O), and L3 lipids (-CH 2 -CH 2 -C = O) as well as lower levels of β-glucose, α-glucose, valine, tyrosine, phosphocholine, lysine, isoleucine, glycerolphosphocholine, glycine, glutamine, glutamate, alanine, acetate, 3-hydroxybutyrate, and 1-methylhistidine. Conclusions: These metabolites investigated in this study may serve as potential biomarkers of immunoglobulin A nephropathy. Point scoring of pattern recognition analysis was able to distinguish immunoglobulin A nephropathy patients from healthy controls. However, there were no obvious differences between the low-risk and high-risk groups in our research

  20. A proton nuclear magnetic resonance-based metabonomics study of metabolic profiling in immunoglobulin a nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Weiguo; Che, Wenti; Guimai, Zuo; Chen, Jiejing [181st Hospital Guangxi, Central Laboratory, Laboratory of Metabolic Diseases Research, Guangxi Province (China); Li, Liping [Guangxi Normal University, The Life Science College, Guangxi Province (China); Li, Wuxian [Key Laboratory of Laboratory Medical Diagnostics of Education Ministry, Chongqiong Medical University, Chongqing (China); Dai, Yong [Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People' s Hospital), Shenzhen, Guangdong Province (China)

    2012-07-01

    Objectives: Immunoglobulin A nephropathy is the most common cause of chronic renal failure among primary glomerulonephritis patients. The ability to diagnose immunoglobulin A nephropathy remains poor. However, renal biopsy is an inconvenient, invasive, and painful examination, and no reliable biomarkers have been developed for use in routine patient evaluations. The aims of the present study were to identify immunoglobulin A nephropathy patients, to identify useful biomarkers of immunoglobulin A nephropathy and to establish a human immunoglobulin A nephropathy metabolic profile. Methods: Serum samples were collected from immunoglobulin A nephropathy patients who were not using immunosuppressants. A pilot study was undertaken to determine disease-specific metabolite biomarker profiles in three groups: healthy controls (N = 23), low-risk patients in whom immunoglobulin A nephropathy was confirmed as grades I-II by renal biopsy (N = 23), and high-risk patients with nephropathies of grades IV-V (N = 12). Serum samples were analyzed using proton nuclear magnetic resonance spectroscopy and by applying multivariate pattern recognition analysis for disease classification. Results: Compared with the healthy controls, both the low-risk and high-risk patients had higher levels of phenylalanine, myo-inositol, lactate, L6 lipids ( CH-CH{sub 2}-CH = O), L5 lipids (-CH{sub 2}-C = O), and L3 lipids (-CH{sub 2}-CH{sub 2}-C = O) as well as lower levels of {beta}-glucose, {alpha}-glucose, valine, tyrosine, phosphocholine, lysine, isoleucine, glycerolphosphocholine, glycine, glutamine, glutamate, alanine, acetate, 3-hydroxybutyrate, and 1-methylhistidine. Conclusions: These metabolites investigated in this study may serve as potential biomarkers of immunoglobulin A nephropathy. Point scoring of pattern recognition analysis was able to distinguish immunoglobulin A nephropathy patients from healthy controls. However, there were no obvious differences between the low-risk and high

  1. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    Science.gov (United States)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8-4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text.

  2. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    International Nuclear Information System (INIS)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1 H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8–4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text. (paper)

  3. Offspring body size and metabolic profile - effects of lifestyle intervention in obese pregnant women.

    Science.gov (United States)

    Tanvig, Mette

    2014-07-01

    detected between the RCT offspring and the external reference group of offspring of lean mothers. Lifestyle intervention in obese pregnant women has the potential to modify the intrauterine environment and confer long-term benefits to the child. In this follow-up study, lifestyle intervention in pregnancy did not result in changes in offspring body composition or metabolic risk factors at 2.8 years. This might be due to a limited difference in gestational weight gain between follow-up attendees. When comparing offspring of obese women with offspring of normal weight mothers all outcomes were similar. We speculate that obese mothers entering a lifestyle intervention RCT regardless of the intervention have a high motivation to focus on healthy lifestyle during pregnancy, which makes it difficult to determine the effects of the randomized lifestyle intervention compared to an unselected control group of obese women. Our studies (paper I and III) on birth abdominal circumference show that abdominal size at birth is a good predictor of later adverse metabolic profile. Abdominal circumference at birth may reflect visceral adiposity and this measurement together with birth weight are strongly associated to later adverse metabolic outcome. Future studies should be performed in other populations to confirm this.

  4. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  5. Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities.

    Science.gov (United States)

    Vontas, John; Grigoraki, Linda; Morgan, John; Tsakireli, Dimitra; Fuseini, Godwin; Segura, Luis; Niemczura de Carvalho, Julie; Nguema, Raul; Weetman, David; Slotman, Michel A; Hemingway, Janet

    2018-05-01

    Since 2004, indoor residual spraying (IRS) and long-lasting insecticide-impregnated bednets (LLINs) have reduced the malaria parasite prevalence in children on Bioko Island, Equatorial Guinea, from 45% to 12%. After target site-based (knockdown resistance; kdr ) pyrethroid resistance was detected in 2004 in Anopheles coluzzii (formerly known as the M form of the Anopheles gambiae complex), the carbamate bendiocarb was introduced. Subsequent analysis showed that kdr alone was not operationally significant, so pyrethroid-based IRS was successfully reintroduced in 2012. In 2007 and 2014-2015, mass distribution of new pyrethroid LLINs was undertaken to increase the net coverage levels. The combined selection pressure of IRS and LLINs resulted in an increase in the frequency of pyrethroid resistance in 2015. In addition to a significant increase in kd r frequency, an additional metabolic pyrethroid resistance mechanism had been selected. Increased metabolism of the pyrethroid deltamethrin was linked with up-regulation of the cytochrome P450 CYP9K1. The increase in resistance prompted a reversion to bendiocarb IRS in 2016 to avoid a resurgence of malaria, in line with the national Malaria Control Program plan. Copyright © 2018 the Author(s). Published by PNAS.

  6. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Overgaard, Johannes; Malmendal, Anders; Sørensen, Jesper

    2007-01-01

    study used untargeted (1)H NMR metabolomic profiling to examine the metabolomic response in Drosophila melanogaster during the 72 h following RCH and cold shock treatment. These findings are discussed in relation to the costs and benefits of RCH that are measured in terms of survival and reproductive...

  7. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis

    Czech Academy of Sciences Publication Activity Database

    Pěnčík, Aleš; Casanova-Sáez, R.; Pilařová, V.; Žukauskaitė, Asta; Pinto, R.; Micol, J.L.; Ljung, K.; Novák, Ondřej

    2018-01-01

    Roč. 69, č. 10 (2018), s. 2569-2579 ISSN 0022-0957 R&D Projects: GA ČR(CZ) GJ17-21581Y Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * auxin * metabolite profiling * multivariate data analysis * mutant * screening Subject RIV: ED - Physiology OBOR OECD: Plant sciences, botany Impact factor: 5.830, year: 2016

  8. [Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study)].

    Science.gov (United States)

    García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J

    2007-06-01

    To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.

  9. Rapid tomato volatile profiling by using proton-transfer reaction mass spectrometry (PTS-MS)

    NARCIS (Netherlands)

    Farneti, B.; Cristescu, S.M.; Costa, G.; Harren, F.J.M.; Woltering, E.J.

    2012-01-01

    The availability of rapid and accurate methods to assess fruit flavor is of utmost importance to support quality control especially in the breeding phase. Breeders need more information and analytical tools to facilitate selection for complex multigenic traits such as flavor quality. In this study,

  10. Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine.

    Science.gov (United States)

    Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina; Rogowski, Michael; Chiellini, Grazia; Zucchi, Riccardo; Assadi-Porter, Fariba M

    2017-01-01

    Complex diseases such as polycystic ovary syndrome (PCOS) are associated with intricate pathophysiological, hormonal, and metabolic feedbacks that make their early diagnosis challenging, thus increasing the prevalence risks for obesity, cardiovascular, and fatty liver diseases. To explore the crosstalk between endocrine and lipid metabolic pathways, we administered 3-iodothyronamine (T1AM), a natural analog of thyroid hormone, in a mouse model of PCOS and analyzed plasma and tissue extracts using multidisciplinary omics and biochemical approaches. T1AM administration induces a profound tissue-specific antilipogenic effect in liver and muscle by lowering gene expression of key regulators of lipid metabolism, PTP1B and PLIN2, significantly increasing metabolites (glucogenic, amino acids, carnitine, and citrate) levels, while enhancing protection against oxidative stress. In contrast, T1AM has an opposing effect on the regulation of estrogenic pathways in the ovary by upregulating STAR, CYP11A1, and CYP17A1. Biochemical measurements provide further evidence of significant reduction in liver cholesterol and triglycerides in post-T1AM treatment. Our results shed light onto tissue-specific metabolic vs. hormonal pathway interactions, thus illuminating the intricacies within the pathophysiology of PCOS This study opens up new avenues to design drugs for targeted therapeutics to improve quality of life in complex metabolic diseases. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  11. Metabolic profile in growing buffalo heifers fed diet with different energy content

    Directory of Open Access Journals (Sweden)

    B. Gasparrini

    2010-02-01

    Full Text Available Aim of this study was to verify the relation among the mediators and indicators of nutritional status like insulin, glucagon, urea, cholesterol, triglycerides and total proteins in growing buffalo heifers, fed diets with different energy density. 12 Murrah heifers were randomly allocated into two dietary treatments (High, Group H; Low, Group L that differed in energetic levels (Group H: 5.8 UFL/d; Group L: 3.6 UFL/d. Every 30 days, for a total of five times, blood samples were collected at 08.00 h, before feeding, from the jugular vein in vacutainer tubes and analysed to determine metabolic profile. Data on haematic constants were analysed by ANOVA for repeated measures with treatment as the main factor. Low energy availability and low NSC reduced the glucose and insulin and increased glucagone and urea blood levels. The increase of NSC in the diet of group H during the experiment may caused a reduction of the fibre digestibility after the period of adaptation of the rumen microflora and, as a paradox effect, suffered for an energetic lack with a subsequent activation of lipolysis and mobilization of their body reserves. Liver and muscular synthesis increase in group with a high energy availability.

  12. Longitudinal plasma metabolic profiles, infant feeding, and islet autoimmunity in the MIDIA study.

    Science.gov (United States)

    Jørgenrud, Benedicte; Stene, Lars C; Tapia, German; Bøås, Håkon; Pepaj, Milaim; Berg, Jens P; Thorsby, Per M; Orešič, Matej; Hyötyläinen, Tuulia; Rønningen, Kjersti S

    2017-03-01

    The aim of this study was to investigate the longitudinal plasma metabolic profiles in healthy infants and the potential association with breastfeeding duration and islet autoantibodies predictive of type 1 diabetes. Up to four longitudinal plasma samples from age 3 months from case children who developed islet autoimmunity (n = 29) and autoantibody-negative control children (n = 29) with the HLA DR4-DQ8/DR3-DQ2 genotype were analyzed using two-dimensional gas chromatography coupled to a time-of-flight mass spectrometer for detection of small polar metabolites. Plasma metabolite levels were found to depend strongly on age, with fold changes varying up to 50% from age 3 to 24 months (p polar metabolites changed with age during early childhood, independent of later islet autoimmunity status and sex. Breastfeeding was associated with higher levels of branched-chain amino acids, and lower levels of methionine and 3,4-dihydroxybutyric acid. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Metabolic profiling of vitamin C deficiency in Gulo-/- mice using proton NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, Gavin E. [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada); Joan Miller, B.; Jirik, Frank R. [University of Calgary, Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health (Canada); Vogel, Hans J., E-mail: vogel@ucalgary.ca [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada)

    2011-04-15

    Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary supplements are otherwise healthy and grow normally. In this study, all vitamin C sources were removed after weaning from the diet of Gulo-/- mice (n = 7) and wild type controls (n = 7) for 12 weeks before collection of serum. A replicate study was performed with similar parameters but animals were harvested pre-symptomatically after 2-3 weeks. The serum concentration of 50 metabolites was determined by quantitative profiling of 1D proton NMR spectra. Multivariate statistical models were used to describe metabolic changes as compared to control animals; replicate study animals were used for external validation of the resulting models. The results of the study highlight the metabolites and pathways known to require ascorbate for proper flux.

  14. Identification of metabolic profiling of cell culture of licorice compared with its native one.

    Science.gov (United States)

    Man, Shuli; Guo, Songbo; Gao, Wenyuan; Wang, Juan; Zhang, Liming; Li, Xinglin

    2013-04-01

    Glycyrrhiza uralensis has long been used as a flavoring and sweetening agent in food products. In the last ten years, suspensions of Glycyrhiza cells have been successfully established. However, there is no report of full metabolic profiling research on these cells. To identify their composition we used HPLC-DAD coupled with ESI(+/-)-MS (n) to compare the constituents of cultured Glycyrhiza (CG) cells with those the native cells (NG). We identified 60 compounds including flavonoids, phenols, and triterpenoids. Among these compounds, 42 occurred both in NG and CG, nine were present in NG only and nine were present in CG alone. The number of the triterpenoid aglycones without glycones in CG was smaller than that in NG. The number of flavanone, isoflavone, isoflavan, and benzenoid compounds was also smaller in CG than that in NG, whereas the number of pterocarpans was much higher. Although differences existed between CG and NG, the extract of CG was similar to that of NG. With the development of cell suspension culture-based biotransformation, cell culture of Glycyrrhiza has the potential to be more profitable than field cultivation in some areas.

  15. EFFECTS OF PLYOMETRIC EXERCISE ON CONCOMITANTS OF FITNESS AND METABOLIC PROFILE IN TYPE 2 DIABETES PATIENTS

    Directory of Open Access Journals (Sweden)

    Mukadas Akindele

    2016-04-01

    Full Text Available Background: The prevalence of type 2 diabetes mellitus has been on the increase both in high and medium/low income countries. This increase is associated with health and economic consequences, especially in low sub-Saharan Africa that is resource stricken. Availability of affordable and easy to implement treatment intervention will surely reduce these health and economic sequealae of type 2 diabetes mellitus. This study was carried out to investigate the effects of plyometric exercise on concomitants of fitness and metabolic profile in type 2 diabetes patients. Methods: Simple random sampling technique was employed to recruit participants (n=27 for this study after meeting the inclusion criteria. Physical and physiological measurements were taken from the participants before and after six weeks of plyometric exercise for the experimental group and the control who did not participate in plyometric exercise. Results: A total number of twenty seven (control= 13 participated in the study and there are not significant differences in the physical and physiological parameters of the two groups. There are significant differences in the physiological parameter after six (6 weeks of plyometric exercise among the experimental groups while there are no significant differences among the control group. The eta squared statistics of few parameters show that the effect sizes range between medium and large association. Conclusion: It is concluded that among the concomitants of fitness, plyometric exercise is effective only in improving muscle fitness and body composition.

  16. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy.

    LENUS (Irish Health Repository)

    Horgan, Richard P

    2012-01-31

    Being born small for gestational age (SGA) confers increased risks of perinatal morbidity and mortality and increases the risk of cardiovascular complications and diabetes in later life. Accumulating evidence suggests that the etiology of SGA is usually associated with poor placental vascular development in early pregnancy. We examined metabolomic profiles using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) in three independent studies: (a) venous cord plasma from normal and SGA babies, (b) plasma from a rat model of placental insufficiency and controls, and (c) early pregnancy peripheral plasma samples from women who subsequently delivered a SGA baby and controls. Multivariate analysis by cross-validated Partial Least Squares Discriminant Analysis (PLS-DA) of all 3 studies showed a comprehensive and similar disruption of plasma metabolism. A multivariate predictive model combining 19 metabolites produced by a Genetic Algorithm-based search program gave an Odds Ratio for developing SGA of 44, with an area under the Receiver Operator Characteristic curve of 0.9. Sphingolipids, phospholipids, carnitines, and fatty acids were among this panel of metabolites. The finding of a consistent discriminatory metabolite signature in early pregnancy plasma preceding the onset of SGA offers insight into disease pathogenesis and offers the promise of a robust presymptomatic screening test.

  17. Metabolic profiling of vitamin C deficiency in Gulo−/− mice using proton NMR spectroscopy

    International Nuclear Information System (INIS)

    Duggan, Gavin E.; Joan Miller, B.; Jirik, Frank R.; Vogel, Hans J.

    2011-01-01

    Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary supplements are otherwise healthy and grow normally. In this study, all vitamin C sources were removed after weaning from the diet of Gulo−/− mice (n = 7) and wild type controls (n = 7) for 12 weeks before collection of serum. A replicate study was performed with similar parameters but animals were harvested pre-symptomatically after 2–3 weeks. The serum concentration of 50 metabolites was determined by quantitative profiling of 1D proton NMR spectra. Multivariate statistical models were used to describe metabolic changes as compared to control animals; replicate study animals were used for external validation of the resulting models. The results of the study highlight the metabolites and pathways known to require ascorbate for proper flux.

  18. Proton NMR metabolic profiling of CSF reveals distinct differentiation of meningitis from negative controls.

    Science.gov (United States)

    Chatterji, Tanushri; Singh, Suruchi; Sen, Manodeep; Singh, Ajai Kumar; Agarwal, Gaurav Raj; Singh, Deepak Kumar; Srivastava, Janmejai Kumar; Singh, Alka; Srivastava, Rajeshwar Nath; Roy, Raja

    2017-06-01

    Cerebrospinal fluid (CSF) is an essential bio-fluid of the central nervous system (CNS), playing a vital role in the protection of CNS and performing neuronal function regulation. The chemical composition of CSF varies during onset of meningitis, neurodegenerative disorders (positive controls) and in traumatic cases (negative controls). The study design was broadly categorized into meningitis cases, negative controls and positive controls. Further differentiation among the three groups was carried out using Principal Component Analysis (PCA) followed by supervised Partial Least Square Discriminant Analysis (PLS-DA). The statistical analysis of meningitis vs. negative controls using PLS-DA model resulted in R 2 of 0.97 and Q 2 of 0.85. There was elevation in the levels of ketone bodies, total free amino acids, glutamine, creatine, citrate and choline containing compounds (choline and GPC) in meningitis cases. Similarly, meningitis vs. positive controls resulted in R 2 of 0.80 and Q 2 of 0.60 and showed elevation in the levels of total free amino acids, glutamine, creatine/creatinine and citrate in the meningitis group. Four cases of HIV were identified by PLS-DA model as well as by clinical investigations. On the basis of metabolic profile it was found that negative control CSF samples are more appropriate for differentiation of meningitis than positive control CSF samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Metabolic Profiling Directly from the Petri Dish Using Nanospray Desorption Electrospray Ionization Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Jeramie D.; Roach, Patrick J.; Heath, Brandi S.; Alexandrov, Theodore; Laskin, Julia; Dorrestein, Pieter C.

    2013-11-05

    Understanding molecular interaction pathways in complex biological systems constitutes a treasure trove of knowledge that might facilitate the specific, chemical manipulation of the countless microbiological systems that occur throughout our world. However, there is a lack of methodologies that allow the direct investigation of chemical gradients and interactions in living biological systems, in real time. Here, we report the use of nanospray desorption electrospray ionization (nanoDESI) imaging mass spectrometry for in vivo metabolic profiling of living bacterial colonies directly from the Petri dish with absolutely no sample preparation needed. Using this technique, we investigated single colonies of Shewanella oneidensis MR-1, Bacillus subtilis 3610, and Streptomyces coelicolor A3(2) as well as a mixed biofilm of S. oneidensis MR-1 and B. subtilis 3610. Data from B. subtilis 3610 and S. coelicolor A3(2) provided a means of validation for the method while data from S. oneidensis MR-1 and the mixed biofilm showed a wide range of compounds that this bacterium uses for the dissimilatory reduction of extracellular metal oxides, including riboflavin, iron-bound heme and heme biosynthetic intermediates, and the siderophore putrebactin.

  20. Physical Fitness and Metabolic Profile among Malay Undergraduates of a Public University in Selangor Malaysia

    Directory of Open Access Journals (Sweden)

    M. Emad

    2017-12-01

    Full Text Available This study investigated health-related components of physical fitness consisting of morphological fitness (body fat % or BF %; Body Mass Index or BMI; and waist circumference or WC, metabolic fitness (blood glucose, lipid profiles and haemoglobin and aerobic capacity (VO2max. This crosssectional study involved 324 undergraduates recruited voluntarily by systematic random sampling from a public university in the city Shah Alam, Selangor Malaysia. The respondents’ aerobic capacity was measured by field fitness tests and anthropometric measurements using standard protocols. The mean BMI of respondents was 22.51 ± 4.18 kg/m2, and majority of the respondents (93% are within normal range of WC. The prevalence of underweight was 13.5% and overweight/obese was 20.2%. The blood glucose levels of respondents were within the normal range (94.4% and about 5% of female respondents had moderate anaemia. More than 70% of the males and 25% of the females had poor VO2max levels (aerobic capacity. In summary, the present results suggest the necessity of health promotion programme focusing on physical activity and nutrition for university students.

  1. Influence of physical and emotional activity on the metabolic profile of blood serum of race horses

    Directory of Open Access Journals (Sweden)

    T. I. Bayeva

    2016-09-01

    Full Text Available In the article data are presented on dynamics of the level of indicators of metabolic profile of blood serum of race horses of the Ukrainian riding breed in the conditions of physical and emotional loading. Clinically healthy race horses were the object of  research. Blood was taken from the jugular vein to obtain serum and for further biochemical research. For the research 12 race horses from a training group were chosen. From time to time the animals took part in competitions; they were not specially used in races and were mostly used for the training of junior riders and sportsmen of different levels. Blood was taken in conditions of relative rest after ordinary training and after emotional stress during the entertainment performances when a large number of people were present and loud music was played. In the blood serum the following biochemical indicators were defined: whole protein, urea, creatinine, uric acid, total bilirubin and its fractions, glucose, cholestererol, triacylglycerol, calcium, ferrum, lactate, pyruvate, activity of the AlAT, SGOT, GGTP, LDH, an alkaline phosphatase – which makes it possible to determine reasonably accurately the adaptation potential of a horse under various types of loading. We established that during training and psychoemotional loading of racing horses of the training group of the Ukrainian riding breed, multidirectional changes in the level of biochemical indicators of blood serum occurred, which is evidence of stress in the metabolic processes in the animals’ organisms. Concentration of a biomarker of an oxidative stress, uric acid, increased after physical loading by 8.6%, and after emotional loading by 55.1%, which demonstrates that emotional stress had the more negative effect, indicating insufficient adaptation by the horses before demonstration performances. After physical loading, reaction of transamination in the horses’ liver cells intensified, and after emotional loading its intensity

  2. Rapid adaptation of the stimulatory effect of CO2 on brain norepinephrine metabolism.

    Science.gov (United States)

    Stone, E A

    1983-12-01

    The present study examined the effects of exposure of rats to elevated environmental levels of CO2 on norepinephrine metabolism in the hypothalamus and other regions of the brain. In confirmation of previous findings by others CO2 at 10 or 15% was found to elevate both dopa accumulation after dopa decarboxylase inhibition and norepinephrine utilization after tyrosine hydroxylase inhibition. These effects however were found to be transient occurring only during the first 30 min of 2.5 h exposure. In this regard CO2 differs from another form of stress, restraint which produces a sustained 2.5 h increase of dopa accumulation and NE accumulation. Restraint was also more effective than CO2 in depleting endogenous stores of hypothalamic NE. The factor responsible for the adaptation of the catecholamine response to CO2 was not identified although it was shown not to be hypothermia and it was reversed by a 2 h CO2-free recovery period.

  3. Metabolic Profiling Analysis of the Alleviation Effect of Treatment with Baicalin on Cinnabar Induced Toxicity in Rats Urine and Serum

    Directory of Open Access Journals (Sweden)

    Guangyue Su

    2017-05-01

    Full Text Available Objectives: Baicalin is the main bioactive flavonoid constituent isolated from Scutellaria baicalensis Georgi. The mechanisms of protection of liver remain unclear. In this study, 1H NMR-based metabonomics approach has been used to investigate the alleviation effect of Baicalin.Method:1H NMR metabolomics analyses of urine and serum from rats, was performed to illuminate the alleviation effect of Baicalin on mineral medicine (cinnabar-induced liver and kidney toxicity.Results: The metabolic profiles of groups receiving Baicalin at a dose of 80 mg/kg were remarkably different from cinnabar, and meanwhile, the level of endogenous metabolites returned to normal compared to group cinnabar. PLS-DA scores plots demonstrated that the variation tendency of control and Baicalein are apart from Cinnabar. The metabolic profiles of group Baicalein were similar to those of group control. Statistics results were confirmed by the histopathological examination and biochemical assay.Conclusion: Baicalin have the alleviation effect to the liver and kidney damage induced by cinnabar. The Baicalin could regulate endogenous metabolites associated with the energy metabolism, choline metabolism, amino acid metabolism, and gut flora.

  4. Characterization of the serum metabolic profile of dairy cows with milk fever using 1H-NMR spectroscopy.

    Science.gov (United States)

    Sun, Yuhang; Xu, Chuchu; Li, Changsheng; Xia, Cheng; Xu, Chuang; Wu, Ling; Zhang, Hongyou

    2014-01-01

    Milk fever (MF) is a common calcium metabolism disorder in perinatal cows. Currently, information regarding the detailed metabolism in cows suffering from MF is scant. The purpose was to study the metabolic profiling of serum samples from cows with MF in comparison to control cows, and thereby exploring other underlying pathological mechanisms of this disease. In the current study, we compared the serum metabolomic profile of dairy cows with MF (n = 8) to that of healthy dairy cows (n = 24) using a 500-MHz digital (1)H-nuclear magnetic resonance ((1)H-NMR) spectrometer. Based on their clinical presentation and serum calcium concentration, cows were assigned either to the control group (no MF symptoms and serum calcium concentration >2.5 mmol/L) or to the MF group (MF symptoms and serum calcium concentration cows with MF. Most of these were carbohydrates and amino acids involved in various energy metabolism pathways. The different metabolites in cows with MF reflected the pathological features of negative energy balance and fat mobilization, suggesting that MF is associated with altered energy metabolism. The (1)H-NMR spectroscopy can be used to understand the pathogenesis of MF and identify biomarkers of the disease.

  5. Comparison of Metabolic and Hormonal Profiles of Women With and Without Premenstrual Syndrome: A Community Based Cross-Sectional Study.

    Science.gov (United States)

    Hashemi, Somayeh; Ramezani Tehrani, Fahimeh; Mohammadi, Nader; Rostami Dovom, Marzieh; Torkestani, Farahnaz; Simbar, Masumeh; Azizi, Fereidoun

    2016-04-01

    Premenstrual syndrome (PMS) is reported by up to 85% of women of reproductive age. Although several studies have focused on the hormone and lipid profiles of females with PMS, the results are controversial. This study was designed to investigate the association of hormonal and metabolic factors with PMS among Iranian women of reproductive age. This study was a community based cross-sectional study. Anthropometric measurements, biochemical parameters, and metabolic disorders were compared between 354 women with PMS and 302 healthy controls selected from among 1126 women of reproductive age who participated in the Iranian PCOS prevalence study. P values high density lipoprotein (HDL) and 17-hydroxyprogesterone (17-OHP) levels were significantly less than they were in women without the syndrome (P rise in the probability of having metabolic syndrome (P = 0.033). There was a significant association between PMS scores and the prevalence of metabolic syndrome. Further studies are needed to confirm and validate the relationships between lipid profile abnormalities and metabolic disorders with PMS.

  6. Monorail Piccolino catheter: a new rapid exchange/ultralow profile coronary angioplasty system.

    Science.gov (United States)

    Mooney, M R; Douglas, J S; Mooney, J F; Madison, J D; Brandenburg, R O; Fernald, R; Van Tassel, R A

    1990-06-01

    The Monorail Piccolino coronary angioplasty balloon catheter (MBC) was evaluated on 118 patients at two centers. Technical success was achieved in 110 patients (93%). Time for catheter exchange and total fluoroscopy time were significantly lower for the Monorail catheter than with standard equipment (exchange time 97 vs. 170 seconds P less than .05 and fluoroscopy time 17 vs. 88 seconds P less than .001). The advantages of rapid exchange and the ability of utilize 2 Monorail balloon catheters through one 9F guiding catheter for simultaneous inflations allowed for maximal flexibility in treating patients with bifurcation lesions. The double wire approach utilizing one Monorail balloon catheter with a 7F guiding catheter was also technically successful. The Monorail Piccolino balloon catheter has unique features that allow for greater ease of operator use, rapid catheter exchange, and optimal angiographic visualization. It is felt that this catheter design provides distinct advantages over standard angioplasty equipment.

  7. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules

    OpenAIRE

    Nonejuie, Poochit; Burkart, Michael; Pogliano, Kit; Pogliano, Joe

    2013-01-01

    Some bacteria have evolved resistance to nearly every known class of antibiotic, creating an urgent need for new ones that work by different mechanisms. However, there has been no simple way to determine how new antibiotics work. We have developed a unique method that provides a shortcut for understanding how antibiotics kill bacteria. This method can be used to sift through compounds to rapidly identify and characterize antibiotics that work against multidrug-resistant pathogens.

  8. Metabolic targets of endocrine disrupting chemicals assessed by cord blood transcriptome profiling

    DEFF Research Database (Denmark)

    Remy, Sylvie; Govarts, Eva; Wens, Britt

    2016-01-01

    Early life exposure to endocrine disrupting chemicals (EDCs) has been frequently associated with impaired perinatal growth, an important risk factor for later onset of metabolic disorders. We analyzed whether the cord blood transcriptome showed early indications of alterations in metabolic...

  9. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans

    NARCIS (Netherlands)

    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Weijer, van de T.; Goossens, G.H.; Hoeks, J.; Krieken, van der S.; Ryu, D.; Kersten, A.H.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P.

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind

  10. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans

    NARCIS (Netherlands)

    Timmers, Silvie; Konings, Ellen; Bilet, Lena; Houtkooper, Riekelt H.; Weijer, van de Tineke; Hoeks, Joris; Krieken, van der Sophie; Ryu, Dongryeol; Kersten, Sander; Moonen-Kornips, Esther; Goossens, Gijs H.; Hesselink, Matthijs K.; Kunz, Iris; Schrauwen-Hinderling, Vera B.; Blaak, Ellen E.; Auwerx, Johan; Schrauwen, Patrick

    2011-01-01

    Resveratrol is a naturally occurring compound that profoundly affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here we treated 10 healthy, obese men with placebo and 150 mg/day resveratrol in a randomized

  11. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans

    NARCIS (Netherlands)

    Timmers, Silvie; Konings, Ellen; Bilet, Lena; Houtkooper, Riekelt H.; van de Weijer, Tineke; Goossens, Gijs H.; Hoeks, Joris; van der Krieken, Sophie; Ryu, Dongryeol; Kersten, Sander; Moonen-Kornips, Esther; Hesselink, Matthijs K. C.; Kunz, Iris; Schrauwen-Hinderling, Vera B.; Blaak, Ellen E.; Auwerx, Johan; Schrauwen, Patrick

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind

  12. Catch-up growth following fetal growth restriction promotes rapid restoration of fat mass but without metabolic consequences at one year of age.

    Directory of Open Access Journals (Sweden)

    Jacques Beltrand

    Full Text Available BACKGROUND: Fetal growth restriction (FGR followed by rapid weight gain during early life has been suggested to be the initial sequence promoting central adiposity and insulin resistance. However, the link between fetal and early postnatal growth and the associated anthropometric and metabolic changes have been poorly studied. METHODOLOGY/PRINCIPAL FINDINGS: Over the first year of post-natal life, changes in body mass index, skinfold thickness and hormonal concentrations were prospectively monitored in 94 infants in whom the fetal growth velocity had previously been measured using a repeated standardized procedure of ultrasound fetal measurements. 45 infants, thinner at birth, had experienced previous FGR (FGR+ regardless of birth weight. Growth pattern in the first four months of life was characterized by greater change in BMI z-score in FGR+ (+1.26+/-1.2 vs +0.58 +/-1.17 SD in FGR- resulting in the restoration of BMI and of fat mass to values similar to FGR-, independently of caloric intakes. Growth velocity after 4 months was similar and BMI z-score and fat mass remained similar at 12 months of age. At both time-points, fetal growth velocity was an independent predictor of fat mass in FGR+. At one year, fasting insulin levels were not different but leptin was significantly higher in the FGR+ (4.43+/-1.41 vs 2.63+/-1 ng/ml in FGR-. CONCLUSION: Early catch-up growth is related to the fetal growth pattern itself, irrespective of birth weight, and is associated with higher insulin sensitivity and lower leptin levels after birth. Catch-up growth promotes the restoration of body size and fat stores without detrimental consequences at one year of age on body composition or metabolic profile. The higher leptin concentration at one year may reflect a positive energy balance in children who previously faced fetal growth restriction.

  13. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Wildschiødtz, Gordon

    1991-01-01

    on examination of this question. We have now measured CBF and CMRO2 in young healthy volunteers using the Kety-Schmidt technique with 133Xe as the inert gas. Measurements were performed during wakefulness, deep sleep (stage 3/4), and rapid-eye-movement (REM) sleep as verified by standard polysomnography...... associated with light anesthesia. During REM sleep (dream sleep) CMRO2 was practically the same as in the awake state. Changes in CBF paralleled changes in CMRO2 during both deep and REM sleep.......It could be expected that the various stages of sleep were reflected in variation of the overall level of cerebral activity and thereby in the magnitude of cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). The elusive nature of sleep imposes major methodological restrictions...

  14. β-oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels.

    Science.gov (United States)

    Chen, Chuck T; Bazinet, Richard P

    2015-01-01

    The brain has a unique polyunsaturated fatty acid composition, with high levels of arachidonic and docosahexaenoic acids (DHA) while levels of eicosapentaenoic acid (EPA) are several orders of magnitude lower. As evidence accumulated that fatty acid entry into the brain was not selective and, in fact, that DHA and EPA enter the brain at similar rates, new mechanisms were required to explain their large concentration differences in the brain. Here we summarize recent research demonstrating that EPA is rapidly and extensively β-oxidized upon entry into the brain. Although the ATP generated from the β-oxidation of EPA is low compared to the use of glucose, fatty acid β-oxidation may serve to regulate brain fatty acid levels in the absence of selective transportation. Furthermore, when β-oxidation of EPA is blocked, desaturation of EPA increases and Land׳s recycling decreases to maintain low EPA levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Rapid synthesis and metabolism of glutamate in N2-fixing bacteroids

    International Nuclear Information System (INIS)

    Salminen, S.O.; Streeter, J.G.

    1987-01-01

    Symbiotic nodule bacteroids are thought to support N 2 fixation mainly by metabolizing dicarboxylic acids to CO 2 , generating reductant and ATP required by nitrogenase. Bradyrhizobium japonicum bacteroids were isolated anaerobically and incubated at 2% O 2 with 14 C-labeled succinate, malate, glutamate, or aspartate. 14 CO 2 was collected, and the bacteroid contents separated into neutral, organic acid, and amino acid fractions. The respiration of substrates, relative to their uptake, was malate > glutamate > succinate > aspartate. Analysis of the fractions revealed that will all substrates the radioactivity was found mostly in the amino acid fraction. The labeling of the neutral fraction was negligible and only a small amount of label was found in the organic acid fraction indicating a small pool size. TLC of the amino acid fraction showed the label to be principally in glutamate. Glutamate contained 67, 80, 97, and 88% of the 14 C in the amino acid fraction in bacteroids fed with succinate, malate, glutamate and aspartate, respectively. The data suggest that glutamate may play an important role in the bacteroid function

  16. Changes in the metabolic profile of pregnant ewes to an acute feed restriction in late gestation.

    Science.gov (United States)

    Cal-Pereyra, L; Benech, A; González-Montaña, J R; Acosta-Dibarrat, J; Da Silva, S; Martín, A

    2015-05-01

    To detect early changes in the metabolic profile of pregnant ewes subject to acute feed restriction at 130 days of gestation, and to establish indicators of risk for ovine pregnancy toxaemia (OPT) for diagnostic purposes. Twenty Corriedale ewes with known mating dates, carrying a single fetus, were used. Ewes were maintained on meadow grasslands and at 130 days of gestation were randomly divided in two groups of 10 ewes. The control group had ad libitum access to pasture. Ewes in the restricted group were subjected to an acute feed restriction for a maximum of 144 hours (6 days), with free access to water. From the start (0 hours) until the end of feed restriction, blood samples were collected from all ewes to monitor concentrations of cortisol, non-esterified fatty acids (NEFA), ß-hydroxybutyrate (BOHB) daily, and glucose in plasma every 6 hours; urinary pH was also measured. Every 6 hours the food restricted ewes were observed to detect clinical signs of OPT e.g. apathy, grinding teeth, empty chewing movements, head leaning against the wall, tachypnea and not drinking water. In food-restricted ewes, concentrations of glucose decreased and differed from control ewes from 54 to 90 hours (pewes after 48 to 144 hours (pewes showed clinical signs of OPT after 102-132 hours. Mean concentrations of glucose, BOHB and cortisol differed between control and restricted ewes prior to the onset of clinical signs of OPT, after 48-96 hours of feed restriction (p<0.01). Mean gestational length, and time from birth to placental expulsion was not affected by the feed restriction. Our results suggest that concentrations of glucose, BOHB and cortisol in plasma may provide a precocious diagnosis of subclinical OPT, using values of 1.59 (SD 0.24) mmol/L, 2.26 (SD 1.03) mmol/L and 15.09 (SD 7.75) nmol/L, respectively. The identification of a potentially harmful metabolic imbalance could lead to the improvement of treatment success.

  17. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2008-10-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  18. RAPID AND AUTOMATED PROCESSING OF MALDI-FTICR/MS DATA FOR N-METABOLIC LABELING IN A SHOTGUN PROTEOMICS ANALYSIS.

    Science.gov (United States)

    Jing, Li; Amster, I Jonathan

    2009-10-15

    Offline high performance liquid chromatography combined with matrix assisted laser desorption and Fourier transform ion cyclotron resonance mass spectrometry (HPLC-MALDI-FTICR/MS) provides the means to rapidly analyze complex mixtures of peptides, such as those produced by proteolytic digestion of a proteome. This method is particularly useful for making quantitative measurements of changes in protein expression by using (15)N-metabolic labeling. Proteolytic digestion of combined labeled and unlabeled proteomes produces complex mixtures that with many mass overlaps when analyzed by HPLC-MALDI-FTICR/MS. A significant challenge to data analysis is the matching of pairs of peaks which represent an unlabeled peptide and its labeled counterpart. We have developed an algorithm and incorporated it into a compute program which significantly accelerates the interpretation of (15)N metabolic labeling data by automating the process of identifying unlabeled/labeled peak pairs. The algorithm takes advantage of the high resolution and mass accuracy of FTICR mass spectrometry. The algorithm is shown to be able to successfully identify the (15)N/(14)N peptide pairs and calculate peptide relative abundance ratios in highly complex mixtures from the proteolytic digest of a whole organism protein extract.

  19. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  20. Metabolic syndrome according to different definitions in a rapidly developing country of the African region

    Directory of Open Access Journals (Sweden)

    Paccaud Fred

    2008-09-01

    Full Text Available Abstract Aims We examined, in a country of the African region, i the prevalence of the metabolic syndrome (MetS according to three definitions (ATP, WHO and IDF; ii the distribution of the MetS criteria; iii the level of agreement between these three definitions and iv we also examined these issues upon exclusion of people with diabetes. Methods We conducted an examination survey on a sample representative of the general population aged 25–64 years in the Seychelles (Indian Ocean, African region, attended by 1255 participants (participation rate of 80.3%. Results The prevalence of MetS increased markedly with age. According to the ATP, WHO and IDF definitions, the prevalence of MetS was, respectively, 24.0%, 25.0%, 25.1% in men and 32.2%, 24.6%, 35.4% in women. Approximately 80% of participants with diabetes also had MetS and the prevalence of MetS was approximately 7% lower upon exclusion of diabetic individuals. High blood pressure and adiposity were the criteria found most frequently among MetS holders irrespective of the MetS definitions. Among people with MetS based on any of the three definitions, 78% met both ATP and IDF criteria, 67% both WHO and IDF criteria, 54% both WHO and ATP criteria and only 37% met all three definitions. Conclusion We identified a high prevalence of MetS in this population in epidemiological transition. The prevalence of MetS decreased by approximately 32% upon exclusion of persons with diabetes. Because of limited agreement between the MetS definitions, the fairly similar proportions of MetS based on any of the three MetS definitions classified, to a substantial extent, different subjects as having MetS.

  1. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    Science.gov (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Mutational profiles of breast cancer metastases from a rapid autopsy series reveal multiple evolutionary trajectories.

    Science.gov (United States)

    Avigdor, Bracha Erlanger; Cimino-Mathews, Ashley; DeMarzo, Angelo M; Hicks, Jessica L; Shin, James; Sukumar, Saraswati; Fetting, John; Argani, Pedram; Park, Ben H; Wheelan, Sarah J

    2017-12-21

    Heterogeneity within and among tumors in a metastatic cancer patient is a well-established phenomenon that may confound treatment and accurate prognosis. Here, we used whole-exome sequencing to survey metastatic breast cancer tumors from 5 patients in a rapid autopsy program to construct the origin and genetic development of metastases. Metastases were obtained from 5 breast cancer patients using a rapid autopsy protocol and subjected to whole-exome sequencing. Metastases were evaluated for sharing of somatic mutations, correlation of copy number variation and loss of heterozygosity, and genetic similarity scores. Pathological features of the patients' disease were assessed by immunohistochemical analyses. Our data support a monoclonal origin of metastasis in 3 cases, but in 2 cases, metastases arose from at least 2 distinct subclones in the primary tumor. In the latter 2 cases, the primary tumor presented with mixed histologic and pathologic features, suggesting early divergent evolution within the primary tumor with maintenance of metastatic capability in multiple lineages. We used genetic and histopathological evidence to demonstrate that metastases can be derived from a single or multiple independent clones within a primary tumor. This underscores the complexity of breast cancer clonal evolution and has implications for how best to determine and implement therapies for early- and late-stage disease.

  3. Metabolic risk in schoolchildren is associated with low levels of cardiorespiratory fitness, obesity, and parents' nutritional profile.

    Science.gov (United States)

    Todendi, Pâmela Ferreira; Valim, Andréia Rosane de Moura; Reuter, Cézane Priscila; Mello, Elza Daniel de; Gaya, Anelise Reis; Burgos, Miria Suzana

    2016-01-01

    Verify the association between metabolic risk profile in students with different levels of cardiorespiratory fitness and body mass index, as well as the nutritional status of their parents. A cross-sectional study comprising 1.254 schoolchildren aged between seven and 17 years. The metabolic risk profile was calculated by summing the standardized values of high density lipoproteins and low density lipoproteins, triglycerides, glucose and systolic blood pressure. The parents' nutritional status was evaluated by self-reported weight and height data, for body mass index calculating. The body mass index of schoolchildren was classified as underweight/normal weight and overweight/obesity. The cardiorespiratory fitness was assessed by 9-minute running/walk test, being categorized as fit (good levels) and unfit (low levels). Data were analyzed using prevalence ratio values (PR). The data indicates a higher occurrence of developing metabolic risk in schoolchildren whose mother is obese (PR: 1.50; 95% CI: 1.01, 2.23), and even higher for those whose father and mother are obese (PR: 2, 79, 95% CI: 1.41; 5.51). Students who have low levels of cardiorespiratory fitness and overweight/obesity have higher occurrence of presenting metabolic risk profile (PR: 5.25; 95% CI: 3.31; 8.16). the occurrence of developing metabolic risk in schoolchildren increase when they have low levels of cardiorespiratory fitness and overweight/obesity, and the presence of parental obesity. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    OpenAIRE

    Iagher Fabiola; Aikawa Julia; Rocha Ricelli ER; Machado Juliano; Kryczyk Marcelo; Schiessel Dalton; Borghetti Gina; Yamaguchi Adriana A; Pequitto Danielle CT; Coelho Isabela; Brito Gleisson AP; Yamazaki Ricardo K; Naliwaiko Katya; Tanhoffer Ricardo A; Nunes Everson A

    2011-01-01

    Abstract Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish...

  5. Concurrent and aerobic exercise training promote similar benefits in body composition and metabolic profiles in obese adolescents.

    Science.gov (United States)

    Monteiro, Paula Alves; Chen, Kong Y; Lira, Fabio Santos; Saraiva, Bruna Thamyres Cicotti; Antunes, Barbara Moura Mello; Campos, Eduardo Zapaterra; Freitas, Ismael Forte

    2015-11-26

    The prevalence of obesity in pediatric population is increasing at an accelerated rate in many countries, and has become a major public health concern. Physical activity, particularly exercise training, remains to be a cornerstone of pediatric obesity interventions. The purpose of our current randomized intervention trial was to compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. Thus the aim of the study was compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. 32 obese adolescents participated in two randomized training groups, concurrent or aerobic, for 20 weeks (50 mins x 3 per week, supervised), and were compared to a 16-subject control group. We measured the percentage body fat (%BF, primary outcome), fat-free mass, percentage of android fat by dual energy x-ray absorptiometry, and others metabolic profiles at baseline and after interventions, and compared them between groups using the Intent-to-treat design. In 20 weeks, both exercise training groups significantly reduced %BF by 2.9-3.6% as compare to no change in the control group (p = 0.042). There were also positive changes in lipid levels in exercise groups. No noticeable changes were found between aerobic and concurrent training groups. The benefits of exercise in reducing body fat and metabolic risk profiles can be achieved by performing either type of training in obese adolescents. RBR-4HN597.

  6. Tumour xenograft detection through quantitative analysis of the metabolic profile of urine in mice

    International Nuclear Information System (INIS)

    Moroz, Jennifer; Turner, Joan; Slupsky, Carolyn; Fallone, Gino; Syme, Alasdair

    2011-01-01

    The metabolic content of urine from NIH III nude mice (n = 22) was analysed before and after inoculation with human glioblastoma multiforme (GBM) cancer cells. An age- and gender-matched control population (n = 14) was also studied to identify non-tumour-related changes. Urine samples were collected daily for 6 weeks, beginning 1 week before cell injection. Metabolite concentrations were obtained via targeted profiling with Chenomx Suite 5.1, based on nuclear magnetic resonance (NMR) spectra acquired on an Oxford 800 MHz cold probe NMR spectrometer. The Wilcoxon rank sum test was used to evaluate the significance of the change in metabolite concentration between the two time points. Both the metabolite concentrations and the ratios of pairs of metabolites were studied. The complicated inter-relationships between metabolites were assessed through partial least-squares discriminant analysis (PLS-DA). Receiver operating characteristic (ROC) curves were generated for all variables and the area under the curve (AUC) calculated. The data indicate that the number of statistically significant changes in metabolite concentrations was more pronounced in the tumour-bearing population than in the control animals. This was also true of the ratios of pairs of metabolites. ROC analysis suggests that the ratios were better able to differentiate between the pre- and post-injection samples compared to the metabolite concentrations. PLS-DA models produced good separation between the populations and had the best AUC results (all models exceeded 0.937). These results demonstrate that metabolomics may be used as a screening tool for GBM cells grown in xenograft models in mice.

  7. Cardiac, Metabolic and Molecular Profiles of Sedentary Rats in the Initial Moment of Obesity

    Directory of Open Access Journals (Sweden)

    Bruno Barcellos Jacobsen

    2017-10-01

    Full Text Available Abstract Background: Different types of high-fat and/or high-energy diets have been used to induce obesity in rodents. However, few studies have reported on the effects observed at the initial stage of obesity induced by high-fat feeding on cardiac functional and structural remodelling. Objective: To characterize the initial moment of obesity and investigate both metabolic and cardiac parameters. In addition, the role of Ca2+ handling in short-term exposure to obesity was verified. Methods: Thirty-day-old male Wistar rats were randomized into two groups (n = 19 each: control (C; standard diet and high-fat diet (HF, unsaturated high-fat diet. The initial moment of obesity was defined by weekly measurement of body weight (BW complemented by adiposity index (AI. Cardiac remodelling was assessed by morphological, histological, echocardiographic and papillary muscle analysis. Ca2+ handling proteins were determined by Western Blot. Results: The initial moment of obesity occurred at the 3rd week. Compared with C rats, the HF rats had higher final BW (4%, body fat (20%, AI (14.5%, insulin levels (39.7%, leptin (62.4% and low-density lipoprotein cholesterol (15.5% but did not exhibit alterations in systolic blood pressure. Echocardiographic evaluation did not show alterations in cardiac parameters. In the HF group, muscles were observed to increase their +dT/dt (C: 52.6 ± 9.0 g/mm2/s and HF: 68.0 ± 17.0 g/mm2/s; p < 0.05. In addition, there was no changes in the cardiac expression of Ca2+ handling proteins. Conclusion: The initial moment of obesity promotes alterations to hormonal and lipid profiles without cardiac damage or changes in Ca2+ handling.

  8. (1H-NMR spectroscopy revealed Mycobacterium tuberculosis caused abnormal serum metabolic profile of cattle.

    Directory of Open Access Journals (Sweden)

    Yingyu Chen

    Full Text Available To re-evaluate virulence of Mycobacterium tuberculosis (M. tb in cattle, we experimentally infected calves with M. tb andMycobacterium bovisvia intratracheal injection at a dose of 2.0×10(7 CFU and observed the animals for 33 weeks. The intradermal tuberculin test and IFN-γin vitro release assay showed that both M. tb and M. bovis induced similar responses. Immunohistochemical staining of pulmonary lymph nodes indicated that the antigen MPB83 of both M. tb and M. bovis were similarly distributed in the tissue samples. Histological examinations showed all of the infected groups exhibited neutrophil infiltration to similar extents. Although the infected cattle did not develop granulomatous inflammation, the metabolic profiles changed significantly, which were characterized by a change in energy production pathways and increased concentrations of N-acetyl glycoproteins. Glycolysis was induced in the infected cattle by decreased glucose and increased lactate content, and enhanced fatty acid β-oxidation was induced by decreased TG content, and decreased gluconeogenesis indicated by the decreased concentration of glucogenic and ketogenic amino acids promoted utilization of substances other than glucose as energy sources. In addition, an increase in acute phase reactive serum glycoproteins, together with neutrophil infiltration and increased of IL-1β production indicated an early inflammatory response before granuloma formation. In conclusion, this study indicated that both M. tb and M.bovis were virulent to cattle. Therefore, it is likely that cattle with M. tb infections would be critical to tuberculosis transmission from cattle to humans. Nuclear magnetic resonance was demonstrated to be an efficient method to systematically evaluate M. tb and M. bovi sinfection in cattle.

  9. Effects of different acute hypoxic regimens on tissue oxygen profiles and metabolic outcomes.

    Science.gov (United States)

    Reinke, Christian; Bevans-Fonti, Shannon; Drager, Luciano F; Shin, Mi-Kyung; Polotsky, Vsevolod Y

    2011-09-01

    Obstructive sleep apnea (OSA) causes intermittent hypoxia (IH) during sleep. Both obesity and OSA are associated with insulin resistance and systemic inflammation, which may be attributable to tissue hypoxia. We hypothesized that a pattern of hypoxic exposure determines both oxygen profiles in peripheral tissues and systemic metabolic outcomes, and that obesity has a modifying effect. Lean and obese C57BL6 mice were exposed to 12 h of intermittent hypoxia 60 times/h (IH60) [inspired O₂ fraction (Fi(O₂)) 21-5%, 60/h], IH 12 times/h (Fi(O₂) 5% for 15 s, 12/h), sustained hypoxia (SH; Fi(O₂) 10%), or normoxia while fasting. Tissue oxygen partial pressure (Pti(O₂)) in liver, skeletal muscle and epididymal fat, plasma leptin, adiponectin, insulin, blood glucose, and adipose tumor necrosis factor-α (TNF-α) were measured. In lean mice, IH60 caused oxygen swings in the liver, whereas fluctuations of Pti(O₂) were attenuated in muscle and abolished in fat. In obese mice, baseline liver Pti(O₂) was lower than in lean mice, whereas muscle and fat Pti(O₂) did not differ. During IH, Pti(O₂) was similar in obese and lean mice. All hypoxic regimens caused insulin resistance. In lean mice, hypoxia significantly increased leptin, especially during SH (44-fold); IH60, but not SH, induced a 2.5- to 3-fold increase in TNF-α secretion by fat. Obesity was associated with striking increases in leptin and TNF-α, which overwhelmed effects of hypoxia. In conclusion, IH60 led to oxygen fluctuations in liver and muscle and steady hypoxia in fat. IH and SH induced insulin resistance, but inflammation was increased only by IH60 in lean mice. Obesity caused severe inflammation, which was not augmented by acute hypoxic regimens.

  10. Dietary glycemic index, glycemic load and metabolic profile in children with phenylketonuria.

    Science.gov (United States)

    Moretti, F; Pellegrini, N; Salvatici, E; Rovelli, V; Banderali, G; Radaelli, G; Scazzina, F; Giovannini, M; Verduci, E

    2017-02-01

    No data exist in the current literature on the glycemic index (GI) and glycemic load (GL) of the diet of phenylketonuric (PKU) children. The aims of this study were to examine the dietary GI and GL in PKU children on a low-phenylalanine (Phe)-diet and to evaluate whether an association may exist between the carbohydrate quality and the metabolic profile. Twenty-one PKU children (age 5-11 years) and 21 healthy children, gender and age matched, were enrolled. Dietary (including GI and GL) and blood biochemical assessments were performed. No difference was observed for daily energy intake between PKU and healthy children. Compared to healthy controls, PKU children consumed less protein (p = 0.001) and fat (p = 0.028), and more carbohydrate (% of total energy, p = 0.004) and fiber (p = 0.009). PKU children had higher daily GI than healthy children (mean difference (95% confidence interval), 13.7 (9.3-18.3)) and higher GL (31.7 (10.1-53.2)). PKU children exhibited lower blood total and low density lipoprotein cholesterol (LDL) levels (p triglyceride level (p = 0.014) than healthy children, while glucose and insulin concentrations did not differ. In PKU children the dietary GL was associated with triglyceride glucose index (Spearman's correlation coefficient = 0.515, p = 0.034). In PKU children a relationship of the dietary treatment with GI and GL, blood triglycerides and triglyceride glucose index may exist. Improvement towards an optimal diet for PKU children could include additional attention to the management of dietary carbohydrate quality. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  11. Effects of different starch sources on metabolic profile, production and fertility parameters in dairy cows.

    Science.gov (United States)

    Mikuła, R; Nowak, W; Jaśkowski, J M; Maćkowiak, P; Oszmałek, E Pruszyńska

    2011-01-01

    The objective of the study was to determine the effect of replacing triticale (high rumen degradable starch) with maize grain (low rumen degradable starch) during the transition period and the first 120 days of lactation on metabolic and hormonal profile indices, milk production and fertility performance in cows. Forty-eight Holstein-Friesian dairy cows were divided into 4 groups: TT (2.5 kg triticale grain/cow per day supplemented from 14 days prepartum to day 120 postpartum), TM (2.5 kg triticale grain/cow per day supplemented from day 14 before parturition to calving, and then 2.5 kg maize grain to 120 days of lactation), MT (2.5 kg maize grain/cow per day supplemented from day 14 before parturition to calving, and then 2.5 kg triticale grain to 120 days of lactation), MM (2.5 kg maize grain/cow per day supplemented from 14 days prepartum to day 120 postpartum). Blood samples were collected 3 weeks and 1 week before calving and on days 14, 56 and 70 of lactation, and they were analyzed in terms of concentrations of glucose, insulin, leptin, insulin-like growth factor I, nonesterified fatty acids, triglycerides, cholesterol, blood urea nitrogen and activities of aspartate aminotransferase and gamma glutamyl transpeptidase. Milk samples were collected twice a day at weekly intervals and analyzed for fat, protein and lactose. Milk yield and individual dry mater intake were recorded at weekly intervals. Body condition was estimated 3 weeks before calving, on parturition day and on days 14, 56 and 120 of lactation. Replacing triticale grain with maize grain in the transition period and during lactation positively affected fertility of lactating cows. An increased first service conception rate and shortening of the days open period was observed in MM and TM groups in comparison to those found in group MT (P cows than triticale grain.

  12. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte

    2006-01-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle....... Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  13. The interactive effects of mercury and selenium on metabolic profiles, gene expression and antioxidant enzymes in halophyte Suaeda salsa.

    Science.gov (United States)

    Liu, Xiaoli; Lai, Yongkai; Sun, Hushan; Wang, Yiyan; Zou, Ning

    2016-04-01

    Suaeda salsa is the pioneer halophyte in the Yellow River Delta and was consumed as a popular vegetable. Mercury has become a highly risky contaminant in the sediment of intertidal zones of the Yellow River Delta. In this work, we investigated the interactive effects of mercury and selenium in S. salsa on the basis of metabolic profiling, antioxidant enzyme activities and gene expression quantification. Our results showed that mercury exposure (20 μg L(-1)) inhibited plant growth of S. salsa and induced significant metabolic responses and altered expression levels of INPS, CMO, and MDH in S. salsa samples, together with the increased activities of antioxidant enzymes including SOD and POD. Overall, these results indicated osmotic and oxidative stresses, disturbed protein degradation and energy metabolism change in S. salsa after mercury exposures. Additionally, the addition of selenium could induce both antagonistic and synergistic effects including alleviating protein degradation and aggravating osmotic stress caused by mercury. © 2014 Wiley Periodicals, Inc.

  14. Effects of lifestyle intervention in pregnancy and anthropometrics at birth on offspring metabolic profile at 2.8 years

    DEFF Research Database (Denmark)

    Tanvig, Mette; Vinter, Christina A; Jørgensen, Jan S

    2015-01-01

    Context: Maternal obesity and gestational weight gain are linked to offspring adverse metabolic profile, and lifestyle intervention during pregnancy in obese women may have long-term positive effect on their children. Furthermore, although the association between birth weight and later metabolic...... outcomes is well established, little is known about the predictive value of abdominal circumference at birth. Objectives: To study: i) effects of lifestyle intervention during pregnancy in obese women on offspring metabolic risk factors and ii) predictive values of birth weight (BW) and birth abdominal...... circumference (BAC). Design: Follow-up of a randomized controlled trial; the Lifestyle in Pregnancy (LiP) study Setting: Odense and Aarhus University Hospitals, Denmark Participants: Offspring of LiP study participants (n=157) and offspring of normal weight mothers (external reference group, ER, n=97...

  15. Comparison of metabolic, hematological, and peripheral blood leukocyte cytokine profiles of dairy cows and heifers during the periparturient period.

    Science.gov (United States)

    Jonsson, N N; Fortes, M R S; Piper, E K; Vankan, D M; de Cisneros, J Prada J; Wittek, T

    2013-04-01

    The periparturient period presents major physiological challenges for the dairy cow. It is a period that is affected by metabolic stressors, major changes in endocrine status, and altered immune function, which together result in an increased risk of disease. Immunological, hematological, and metabolic profiles from the periparturient period of heifers (primipara) were compared with those of cows (pluripara) to test the hypothesis that at the time of calving they have qualitatively different peripheral blood profiles. Blood samples were collected from 22 Holstein-Friesian animals on 3 occasions: approximately 2 wk before calving, within 24h after calving, and approximately 2 wk after calving. Quantitative PCR was used to measure the expression of a selected set of cytokines and receptors by peripheral blood leukocytes. Additional analyses included hemoglobin concentration, red cell, platelet and white cell counts (total and differentiated), and clinical diagnostic biochemical profiles. Total leukocyte counts, neutrophils, and lymphocytes were higher in heifers than cows before calving and within 24h after calving. Alkaline phosphatase was consistently higher in heifers than cows and several significant differences were observed between the 2 groups with regards to cytokine and cytokine-receptor mRNA expression. The results warrant further investigation from the perspective of identifying risk factors for metabolic and parturient disease in dairy cattle. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Metabolic Profiling Analysis of the Alleviation Effect of the Fractions of Niuhuang Jiedu Tablet on Realgar Induced Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Wenfeng Xu

    2018-01-01

    Full Text Available Niuhuang Jiedu Tablet (NJT is a classical formula in treating acute tonsillitis, pharyngitis, and so on. In the formula, significant level of Realgar as a potentially toxic element is contained. Our previous experiments revealed that it was less toxic for combined Realgar in NJT. However, the active fraction of this prescription with toxicity alleviation effect on Realgar was still obscure. NJT was divided into five different polar fractions (NJT-PET, NJT-25, NJT-50, NJT-75, and NJT-95, and we explored the toxicity alleviation effect on Realgar. Based on 1H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. With pattern recognition analysis of metabolites in urine and serum, Realgar group showed a clear separation from control group, while the metabolic profiles of NJT-PET, NJT-25, NJT-50, and NJT-95 groups were similar to Realgar group, and the metabolic profiles of NJT and NJT-75 groups were very close to control group. Statistics results were confirmed by the histopathological examination and biochemical assay. The present work indicated that 75% EtOH fraction of NJT was the most valid fraction with the toxicity alleviation effect on Realgar.

  17. Profiling the Metabolism of Astragaloside IV by Ultra Performance Liquid Chromatography Coupled with Quadrupole/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xu-Dong Cheng

    2014-11-01

    Full Text Available Astragaloside IV is a compound isolated from the Traditional Chinese Medicine Astragalus membranaceus, that has been reported to have bioactivities against cardiovascular disease and kidney disease. There is limited information on the metabolism of astragaloside IV, which impedes comprehension of its biological actions and pharmacology. In the present study, an ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS-based approach was developed to profile the metabolites of astragaloside IV in rat plasma, bile, urine and feces samples. Twenty-two major metabolites were detected. The major components found in plasma, bile, urine and feces included the parent chemical and phases I and II metabolites. The major metabolic reactions of astragaloside IV were hydrolysis, glucuronidation, sulfation and dehydrogenation. These results will help to improve understanding the metabolism and reveal the biotransformation profiling of astragaloside IV in vivo. The metabolic information obtained from our study will guide studies into the pharmacological activity and clinical safety of astragaloside IV.

  18. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach.

    Science.gov (United States)

    Thouvenot, Lise; Deleu, Carole; Berardocco, Solenne; Haury, Jacques; Thiébaut, Gabrielle

    2015-03-01

    The effects of salt stress on freshwater plants has been little studied up to now, despite the fact that they are expected to present different levels of salt sensitivity or salt resistance depending on the species. The aim of this work was to assess the effect of NaCl at two concentrations on three invasive freshwater species, Elodea canadensis, Myriophyllum aquaticum and Ludwigia grandiflora, by examining morphological and physiological parameters and using metabolic profiling. The growth rate (biomass and stem length) was reduced for all species, whatever the salt treatment, but the response to salt differed between the three species, depending on the NaCl concentration. For E. canadensis, the physiological traits and metabolic profiles were only slightly modified in response to salt, whereas M. aquaticum and L. grandiflora showed great changes. In both of these species, root number, photosynthetic pigment content, amino acids and carbohydrate metabolism were affected by the salt treatments. Moreover, we are the first to report the salt-induced accumulation of compatible solutes in both species. Indeed, in response to NaCl, L. grandiflora mainly accumulated sucrose. The response of M. aquaticum was more complex, because it accumulated not only sucrose and myo-inositol whatever the level of salt stress, but also amino acids such as proline and GABA, but only at high NaCl concentrations. These responses are the metabolic responses typically found in terrestrial plants. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Characterizing the metatranscriptomic profile of archaeal metabolic genes at deep-sea hydrothermal vents in the Mid-Cayman Rise

    Science.gov (United States)

    Galambos, D.; Reveillaud, J. C.; Anderson, R.; Huber, J. A.

    2017-12-01

    Deep-sea hydrothermal vent systems host a wide diversity of bacteria, archaea and viruses. Although the geochemical conditions at these vents are well-documented, the relative metabolic activity of microbial lineages, especially among archaea, remains poorly characterized. The deep, slow-spreading Mid-Cayman Rise, which hosts the mafic-influenced Piccard and ultramafic-influenced Von Damm vent fields, allows for the comparison of vent sites with different geochemical characteristics. Previous metagenomic work indicated that despite the distinct geochemistry at Von Damm and Piccard, the functional profile of microbial communities between the two sites was similar. We examined relative metabolic gene activity using a metatranscriptomic analysis and observed functional similarity between Von Damm and Piccard, which is consistent with previous results. Notably, the relative expression of the methyl-coenzyme M reductase (mcr) gene was elevated in both vent fields. Additionally, we analyzed the ratio of RNA expression to DNA abundance of fifteen archaeal metagenome-assembled genomes (MAGs) across the two fields. Previous work showed higher archaeal diversity at Von Damm; our results indicate relatively even expression among archaeal lineages at Von Damm. In contrast, we observed lower archaeal diversity at Piccard, but individual archaeal lineages were very highly expressed; Thermoprotei showed elevated transcriptional activity, which is consistent with higher temperatures and sulfur levels at Piccard. At both Von Damm and Piccard, specific Methanococcus lineages were more highly expressed than others. Future analyses will more closely examine metabolic genes in these Methanococcus MAGs to determine why some lineages are more active at a vent field than others. We will conduct further statistical analyses to determine whether significant differences exist between Von Damm and Piccard and whether there are correlations between geochemical metadata and metabolic gene or

  20. A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes.

    Science.gov (United States)

    Fye, Haddy K S; Mrosso, Paul; Bruce, Lesley; Thézénas, Marie-Laëtitia; Davis, Simon; Fischer, Roman; Rwegasira, Gration L; Makani, Julie; Kessler, Benedikt M

    2018-01-01

    Red blood cell (RBC) physiology is directly linked to many human disorders associated with low tissue oxygen levels or anemia including chronic obstructive pulmonary disease, congenital heart disease, sleep apnea and sickle cell anemia. Parasites such as Plasmodium spp. and phylum Apicomplexa directly target RBCs, and surface molecules within the RBC membrane are critical for pathogen interactions. Proteomics of RBC membrane 'ghost' fractions has therefore been of considerable interest, but protocols described to date are either suboptimal or too extensive to be applicable to a larger set of clinical cohorts. Here, we describe an optimised erythrocyte isolation protocol from blood, tested for various storage conditions and explored using different fractionation conditions for isolating ghost RBC membranes. Liquid chromatography mass spectrometry (LC-MS) analysis on a Q-Exactive Orbitrap instrument was used to profile proteins isolated from the comparative conditions. Data analysis was run on the MASCOT and MaxQuant platforms to assess their scope and diversity. The results obtained demonstrate a robust method for membrane enrichment enabling consistent MS based characterisation of > 900 RBC membrane proteins in single LC-MS/MS analyses. Non-detergent based membrane solubilisation methods using the tissue and supernatant fractions of isolated ghost membranes are shown to offer effective haemoglobin removal as well as diverse recovery including erythrocyte membrane proteins of high and low abundance. The methods described in this manuscript propose a medium to high throughput framework for membrane proteome profiling by LC-MS of potential applicability to larger clinical cohorts in a variety of disease contexts.

  1. Measurement of urinary free and acylcarnitines: quantitative acylcarnitine profiling in normal humans and in several patients with metabolic errors

    International Nuclear Information System (INIS)

    Montgomery, J.A.; Mamer, O.A.

    1989-01-01

    A method for determining urinary concentrations of carnitine and acylcarnitine esters is described that employs fast atom bombardment mass spectrometry, stable isotope dilution techniques, and a novel deutero-methyl esterification that permits unambiguous identification and quantitation of free carnitine and acylcarnitines. It is rapid, does not require chromatographic or other isolation procedures, and is immune to analyte losses in sample preparation. Urinary concentrations are reported for adult control subjects and for others with various metabolic disorders

  2. Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis

    Directory of Open Access Journals (Sweden)

    Stengärde Lena

    2008-08-01

    Full Text Available Abstract Background Body condition score and blood profiles have been used to monitor management and herd health in dairy cows. The aim of this study was to examine BCS and extended metabolic profiles, reflecting both energy metabolism and liver status around calving in high-producing herds with a high incidence of abomasal displacement and ketosis and to evaluate if such profiles can be used at herd level to pinpoint specific herd problems. Methods Body condition score and metabolic profiles around calving in five high-producing herds with high incidences of abomasal displacement and ketosis were assessed using linear mixed models (94 cows, 326 examinations. Cows were examined and blood sampled every three weeks from four weeks ante partum (ap to nine weeks postpartum (pp. Blood parameters studied were glucose, fructosamine, non-esterified fatty acids (NEFA, insulin, β-hydroxybutyrate, aspartate aminotransferase, glutamate dehydrogenase, haptoglobin and cholesterol. Results All herds had overconditioned dry cows that lost body condition substantially the first 4–6 weeks pp. Two herds had elevated levels of NEFA ap and three herds had elevated levels pp. One herd had low levels of insulin ap and low levels of cholesterol pp. Haptoglobin was detected pp in all herds and its usefulness is discussed. Conclusion NEFA was the parameter that most closely reflected the body condition losses while these losses were not seen in glucose and fructosamine levels. Insulin and cholesterol were potentially useful in herd profiles but need further investigation. Increased glutamate dehydrogenase suggested liver cell damage in all herds.

  3. Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis

    Science.gov (United States)

    Stengärde, Lena; Tråvén, Madeleine; Emanuelson, Ulf; Holtenius, Kjell; Hultgren, Jan; Niskanen, Rauni

    2008-01-01

    Background Body condition score and blood profiles have been used to monitor management and herd health in dairy cows. The aim of this study was to examine BCS and extended metabolic profiles, reflecting both energy metabolism and liver status around calving in high-producing herds with a high incidence of abomasal displacement and ketosis and to evaluate if such profiles can be used at herd level to pinpoint specific herd problems. Methods Body condition score and metabolic profiles around calving in five high-producing herds with high incidences of abomasal displacement and ketosis were assessed using linear mixed models (94 cows, 326 examinations). Cows were examined and blood sampled every three weeks from four weeks ante partum (ap) to nine weeks postpartum (pp). Blood parameters studied were glucose, fructosamine, non-esterified fatty acids (NEFA), insulin, β-hydroxybutyrate, aspartate aminotransferase, glutamate dehydrogenase, haptoglobin and cholesterol. Results All herds had overconditioned dry cows that lost body condition substantially the first 4–6 weeks pp. Two herds had elevated levels of NEFA ap and three herds had elevated levels pp. One herd had low levels of insulin ap and low levels of cholesterol pp. Haptoglobin was detected pp in all herds and its usefulness is discussed. Conclusion NEFA was the parameter that most closely reflected the body condition losses while these losses were not seen in glucose and fructosamine levels. Insulin and cholesterol were potentially useful in herd profiles but need further investigation. Increased glutamate dehydrogenase suggested liver cell damage in all herds. PMID:18687108

  4. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  5. Vitamin C improves basal metabolic rate and lipid profile in alloxan ...

    Indian Academy of Sciences (India)

    MADU

    3.1 Effect of vitamin C administration on basal metabolic rate. The basal metabolic rate values in diabetic rats and control are presented in figure 1. The basal metabolic rate (BMR) in diabetic rats was 1.19 ± 0.15 ml/h/g, while the BMR in control rats was 0.76 ± 0.89 ml/h/g. The BMR value in diabetic rats treated with vitamin ...

  6. Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats.

    Science.gov (United States)

    Nunes, Ana R; Alves, Marco G; Tomás, Gonçalo D; Conde, Vanessa R; Cristóvão, Ana C; Moreira, Paula I; Oliveira, Pedro F; Silva, Branca M

    2015-03-14

    Diabetes mellitus (DM) is a major public health problem and its incidence is rising dramatically. The brain, particularly the cerebral cortex, is very susceptible to glucose fluctuations and hyperglycaemia-induced oxidative stress. Tea (Camellia sinensis (L.)) is widely consumed; however, the antidiabetic properties of white tea remain largely unexplored. In the present study, we investigated the effects of daily consumption of white tea on the cerebral cortex of prediabetic rats. The cerebral cortex metabolic profile was evaluated, and the expression levels of GLUT, phosphofructokinase-1, lactate dehydrogenase (LDH) and monocarboxylate transporter 4 were assessed. LDH activity was also determined. The cerebral cortex oxidative profile was determined by evaluating its antioxidant power, lipid peroxidation and protein oxidation levels. Catalase, glutathione, glutamate, N-acetylaspartate, aspartate, choline, γ-aminobutyric acid, taurine and valine contents were determined. Daily consumption of white tea ameliorated glucose tolerance and insulin sensitivity. Moreover, white tea altered the cortex glycolytic profile, modulating GLUT expression and lactate and alanine contents. Finally, white tea consumption restored protein oxidation and lipid peroxidation levels and catalase expression, and improved antioxidant capacity. In conclusion, daily consumption of white tea improved the cerebral cortex metabolic and oxidative profile in prediabetic rats, suggesting it as a good, safe and inexpensive strategy to prevent DM-related effects in the cerebral cortex.

  7. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions

    DEFF Research Database (Denmark)

    Østrup, Olga; Olbricht, Gayla; Østrup, Esben

    2013-01-01

    produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and human embryos showed striking overlap in functional annotation of transcripts during the EGA, suggesting conserved basic mechanisms...... a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv) and in vitro produced (ivt) porcine embryos before (2-cell stage) and after (late 4-cell...... from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos...

  8. Measurement of Rapid Protein Diffusion in the Cytoplasm by Photo-Converted Intensity Profile Expansion

    Directory of Open Access Journals (Sweden)

    Rotem Gura Sadovsky

    2017-03-01

    Full Text Available The fluorescence microscopy methods presently used to characterize protein motion in cells infer protein motion from indirect observables, rather than measuring protein motion directly. Operationalizing these methods requires expertise that can constitute a barrier to their broad utilization. Here, we have developed PIPE (photo-converted intensity profile expansion to directly measure the motion of tagged proteins and quantify it using an effective diffusion coefficient. PIPE works by pulsing photo-convertible fluorescent proteins, generating a peaked fluorescence signal at the pulsed region, and analyzing the spatial expansion of the signal. We demonstrate PIPE’s success in measuring accurate diffusion coefficients in silico and in vitro and compare effective diffusion coefficients of native cellular proteins and free fluorophores in vivo. We apply PIPE to measure diffusion anomality in the cell and use it to distinguish free fluorophores from native cellular proteins. PIPE’s direct measurement and ease of use make it appealing for cell biologists.

  9. Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina

    KAUST Repository

    Wang, Hao

    2010-06-10

    Non-model organisms represent the majority of life forms in our planet. However, the lack of genetic information hinders us to understand the unique biological phenomena in non-model organisms at the molecular level. In this study, we applied a tandem transcriptome and proteome profiling on a non-model marine fouling organism, Bugula neritina. Using a 454 pyrosequencing platform with the updated titanium reagents, we generated a total of 48M bp transcriptome data consisting of 131 450 high-quality reads. Of these, 122 650 reads (93%) were assembled to produce 6392 contigs with an average length of 538 bases and the remaining 8800 reads were singletons. Of the total 15 192 unigenes, 13 863 ORFs were predicated, of which 6917 were functionally annotated based on gene ontology and eukaryotic orthologous groups. Subsequent proteome analysis identified and quantified 882 proteins from B. neritina. These results would provide fundamental and important information for the subsequent studies of molecular mechanism in larval biology, development, antifouling research. Furthermore, we demonstrated, for the first time, the combined use of two high-throughput technologies as a powerful approach for accelerating the studies of non-model but otherwise important species. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Metabolic profile and cardiovascular risk factors in adult patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Mouna Feki Mnif

    2012-01-01

    Full Text Available Background: In congenital adrenal hyperplasia (CAH, long-term glucocorticoid treatment coupled with increased androgens may lead to undesirable metabolic effects. The aim of our report was to determine the prevalence of metabolic abnormalities and cardiovascular risk factors in a population of adult patients with CAH due to 21 hydroxylase deficiency. Materials and Methods: Twenty-six patients (11 males and 15 females, mean age ± SD=27.4±8.2 years were recruited. Anthropometry, body composition, metabolic parameters and cardiovascular risk factors were studied. Results: Obesity (overweight included was noted in 16 patients (61.5%, with android distribution in all cases. Bioelectrical impedance showed increased body fat mass in 12 patients (46.1%. Lipid profile alterations and carbohydrate metabolism disorders were detected in seven (26.9% and five (19.2% patients respectively. Moderate hepatic cytolysis, associated with hepatic steatosis, was found in one patient. Seven patients (27% had insulin resistance. Ambulatory blood pressure monitoring showed abnormalities in six patients (23%. Increased carotid intima media thickness was found in 14 patients (53.8%. Conclusion: Adult CAH patients tend to have altered metabolic parameters and a higher prevalence of cardiovascular risk factors. Lifelong follow-up, lifestyle modifications, and attempts to adjust and reduce the glucocorticoid doses seem important.

  11. Rapid production of hollow SS316 profiles by extrusion based additive manufacturing

    Science.gov (United States)

    Rane, Kedarnath; Cataldo, Salvatore; Parenti, Paolo; Sbaglia, Luca; Mussi, Valerio; Annoni, Massimiliano; Giberti, Hermes; Strano, Matteo

    2018-05-01

    Complex shaped stainless steel tubes are often required for special purpose biomedical equipment. Nevertheless, traditional manufacturing technologies, such as extrusion, lack the ability to compete in a market of customized complex components because of associated expenses towards tooling and extrusion presses. To rapid manufacture few of such components with low cost and high precision, a new Extrusion based Additive Manufacturing (EAM) process, is proposed in this paper, and as an example, short stainless steel 316L complex shaped and sectioned tubes were prepared by EAM. Several sample parts were produced using this process; the dimensional stability, surface roughness and chemical composition of sintered samples were investigated to prove process competence. The results indicate that feedstock with a 316L particle content of 92.5 wt. % can be prepared with a sigma blade mixing, whose rheological behavior is fit for EAM. The green samples have sufficient strength to handle them for subsequent treatments. The sintered samples considerably shrunk to designed dimensions and have a homogeneous microstructure to impart mechanical strength. Whereas, maintaining comparable dimensional accuracy and chemical composition which are required for biomedical equipment still need iterations, a kinematic correction and modification in debinding cycle was proposed.

  12. Metabolic Myopathies.

    Science.gov (United States)

    Tarnopolsky, Mark A

    2016-12-01

    Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.

  13. Ultra high resolution SFC-MS as a high throughput platform for metabolic phenotyping: application to metabolic profiling of rat and dog bile.

    Science.gov (United States)

    Jones, Michael D; Rainville, Paul D; Isaac, Giorgis; Wilson, Ian D; Smith, Norman W; Plumb, Robert S

    2014-09-01

    Ultra high resolution SFC-MS (on sub-2μm particles) coupled to mass spectrometry has been evaluated for the metabolic profiling of rat and dog bile. The selectivity of the SFC separation differed from that seen in previous reversed-phase UPLC-MS studies on bile, with the order of elution for analytes such as e.g., the bile acids showing many differences. The chromatography system showed excellent stability, reproducibility and robustness with relative standard deviation of less than 1% for retention time obtained over the course of the analysis. SFC showed excellent chromatographic performance with chromatographic peak widths in the order of 3s at the base of the peak. The use of supercritical fluid carbon dioxide as a mobile phase solvent also reduced the overall consumption of organic solvent by a factor of 3 and also reduced the overall analysis time by a factor of 30% compared to reversed-phase gradient LC. SFC-MS appear complementary to RPLC for the metabolic profiling of complex samples such as bile. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Comprehensive analysis of PPARα-dependent regulation of hepatic lipid metabolism by expression profiling - 5

    NARCIS (Netherlands)

    Rakhshandehroo, Maryam; Sanderson-Kjellberg, L.M.; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; Groot, de Philip; Muller, Michael; Kersten, Sander

    2007-01-01

    PPARα is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARα in hepatic lipid metabolism, many PPARα-dependent pathways and genes have yet to be discovered. In order to obtain an

  15. Comprehensive analysis of PPARa-dependent regulation of hepatic lipid metabolism by expression profiling

    NARCIS (Netherlands)

    Rakhshandehroo, Maryam; Sanderson-Kjellberg, L.M.; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; Groot, de Philip; Muller, Michael; Kersten, Sander

    2007-01-01

    PPARalpha is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARalpha in hepatic lipid metabolism, many PPARalpha-dependent pathways and genes have yet to be discovered. In order to

  16. Metabolic profile and cardiovascular risk patterns of an Indian tribe living in the Amazon Region of Brazil.

    Science.gov (United States)

    Tavares, Edelweiss F; Vieira-Filho, João P B; Andriolo, Adagmar; Sañudo, Adriana; Gimeno, Suely G A; Franco, Laércio J

    2003-02-01

    The Parkatêjê Indians, belonging to the Jê group and inhabiting the Mãe Maria Reservation in the southeast of the state of Pará in the Amazon Region of Brazil, have suffered rapid and intensive cultural changes in recent years. This survey was designed to characterize the metabolic profile and the frequency of cardiovascular risk factors in this community. Ninety subjects (90.0% of the adult population without admixture) were investigated. Anthropometric measurements were performed and the following clinical characteristics measured: glycemia, serum insulin and proinsulin (fasting and 2-hr post 75 g of glucose load), beta-cell function (%B) and insulin sensitivity (%S) estimated by HOMA, HbA1c, GAD65 antibody, serum lipids, uric acid, creatinine, leptin, and blood pressure. Information about alcohol use, smoking, and medical history was obtained through individual interviews. The prevalences were: overweight, 67.8%; obesity, 14.4%; central obesity, 72.2%; hypertension, 4.4%; dyslipidemia, 44.4%; hyperuricemia, 5.6%; GAD65 antibody positivity, 4.4%; smoking, 25.6%; chronic alcohol use, 0.0%. One case of impaired glucose tolerance (1.1%) and one case of impaired fasting glycemia (1.1%) were diagnosed during this study and one case of diabetes (1.1%) was diagnosed previously. The diabetic woman was excluded from the analyses involving HbA1c, glycemia, insulin, proinsulin, %B, and %S. All creatinine values were normal. Blood pressure did not correlate with age, anthropometric measurements, insulin, proinsulin, and natural logarithm (ln) transformed %S. After adjustment for age and sex, there were positive correlations between total cholesterol and body mass index (BMI; r = 0.24), triglycerides and BMI (r = 0.44), triglycerides and waist-to-hip ratio (WHR; r = 0.52), In leptin and BMI (r = 0.41), In leptin and WHR (r = 0.29), uric acid and systolic blood pressure (r = 0.34), uric acid and triglycerides (r = 0.22). Systolic (r = 0.04; r = 0.70) and diastolic (r = 0

  17. Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and non-vegetarian subjects: a matched cohort study.

    Science.gov (United States)

    Chiu, Yen-Feng; Hsu, Chih-Cheng; Chiu, Tina H T; Lee, Chun-Yi; Liu, Ting-Ting; Tsao, Chwen Keng; Chuang, Su-Chun; Hsiung, Chao A

    2015-10-28

    Several previous cross-sectional studies have shown that vegetarians have a better metabolic profile than non-vegetarians, suggesting that a vegetarian dietary pattern may help prevent chronic degenerative diseases. However, longitudinal studies on the impact of vegetarian diets on metabolic traits are scarce. We studied how several sub-types of vegetarian diets affect metabolic traits, including waist circumference, BMI, systolic blood pressure (SBP), diastolic blood pressure, fasting blood glucose, total cholesterol (TC), HDL, LDL, TAG and TC:HDL ratio, through both cross-sectional and longitudinal study designs. The study used the MJ Health Screening database, with data collected from 1994 to 2008 in Taiwan, which included 4415 lacto-ovo-vegetarians, 1855 lacto-vegetarians and 1913 vegans; each vegetarian was matched with five non-vegetarians based on age, sex and study site. In the longitudinal follow-up, each additional year of vegan diet lowered the risk of obesity by 7 % (95 % CI 0·88, 0·99), whereas each additional year of lacto-vegetarian diet lowered the risk of elevated SBP by 8 % (95 % CI 0·85, 0·99) and elevated glucose by 7 % (95 % CI 0·87, 0·99), and each additional year of ovo-lacto-vegetarian diet increased abnormal HDL by 7 % (95 % CI 1·03, 1·12), compared with non-vegetarians. In the cross-sectional comparisons, all sub-types of vegetarians had lower likelihoods of abnormalities compared with non-vegetarians on all metabolic traits (Pvegetarians is partially attributable to lower BMI. With proper management of TAG and HDL, along with caution about the intake of refined carbohydrates and fructose, a plant-based diet may benefit all aspects of the metabolic profile.

  18. Effects of whole grain, fish and bilberries on serum metabolic profile and lipid transfer protein activities: a randomized trial (Sysdimet.

    Directory of Open Access Journals (Sweden)

    Maria Lankinen

    Full Text Available We studied the combined effects of wholegrain, fish and bilberries on serum metabolic profile and lipid transfer protein activities in subjects with the metabolic syndrome.Altogether 131 subjects (40-70 y, BMI 26-39 kg/m(2 with impaired glucose metabolism and features of the metabolic syndrome were randomized into three groups with 12-week periods according to a parallel study design. They consumed either: a wholegrain and low postprandial insulin response grain products, fatty fish 3 times a week, and bilberries 3 portions per day (HealthyDiet, b wholegrain and low postprandial insulin response grain products (WGED, or c refined wheat breads as cereal products (Control. Altogether 106 subjects completed the study. Serum metabolic profile was studied using an NMR-based platform providing information on lipoprotein subclasses and lipids as well as low-molecular-weight metabolites.There were no significant differences in clinical characteristics between the groups at baseline or at the end of the intervention. Mixed model analyses revealed significant changes in lipid metabolites in the HealthyDiet group during the intervention compared to the Control group. All changes reflected increased polyunsaturation in plasma fatty acids, especially in n-3 PUFAs, while n-6 and n-7 fatty acids decreased. According to tertiles of changes in fish intake, a greater increase of fish intake was associated with increased concentration of large HDL particles, larger average diameter of HDL particles, and increased concentrations of large HDL lipid components, even though total levels of HDL cholesterol remained stable.The results suggest that consumption of diet rich in whole grain, bilberries and especially fatty fish causes changes in HDL particles shifting their subclass distribution toward larger particles. These changes may be related to known protective functions of HDL such as reverse cholesterol transport and could partly explain the known protective

  19. Relationship between habitat, densities and metabolic profile in brown hares (Lepus europaeus Pallas

    Directory of Open Access Journals (Sweden)

    Marco Bagliacca

    2010-01-01

    and best body conditions can be found in highlands, open fields with low tree presence and wooded borders, medium mixture soils, scarce predator presence and limited anthropogenic presence and with abundant water availability and shrubbiness. The study of the absolute values of metabolic profile, indicator of the physiological and nutritional condition of the reared animals, did not show any nutritional winter deficiency in wild hares and, as census data, should be repeated for several years since, probably, only their variations can be used as indicators of preliminary problems.

  20. Effect of energy balance profiles on metabolic and reproductive response in Holstein and Swedish Red cows.

    Science.gov (United States)

    Ntallaris, T; Humblot, P; Båge, R; Sjunnesson, Y; Dupont, J; Berglund, B

    2017-03-01

    This study examined the effect of two feeding levels during the antepartum and postpartum period on reproductive performance and blood metabolites (glucose, non-esterified fatty acids (NEFA), insulin) in primiparous Holstein and Swedish Red (SRB) cows, in order to identify possible differences in the way these breeds respond to negative energy balance after calving. A total of 44 cows (22 Holstein, 22 SRB) kept in a loose housing system were included in the study. The control group (HE, n = 23) was fed a diet for high-producing cows (target 35 kg/d energycorrected milk, ECM). A lower feeding intensity (LE, n = 21) was achieved by giving -50% concentrate to target 25 kg/d ECM. Diets were implemented 30 days before expected calving and the cows were monitored for 120 days postpartum. Milk yield and composition, dry matter intake (DMI), live body weight and body condition score (BCS) were assessed to calculate the weekly energy balance (residual feed intake). Blood sampling started before diet implementation and was repeated every 2 weeks until Day 60 postpartum and then once monthly until Day 120. Plasma was kept at -20 °C until analysis for glucose, insulin and NEFA concentrations. Mixed linear models were used to analyse data (SAS 9.3; PROC MIXED). Holstein cows had lower mean energy balance than SRB cows (-4.7 ± 1.4 and -0.9 ± 1.4 MJ, respectively; p = 0.05). SRB cows had higher (pcows (2.7 ± 0.1) and also higher plasma glucose concentrations from Day -30 to Day 120 relative to parturition (4.1 ± 0.1 and 4.2 ± 0.1 log ; mg/100 ml, respectively; p cows than in Holsteins at Day -14 before calving, indicating higher mobilisation of lipid from adipose tissue already before calving. In contrast, Holstein cows had higher NEFA at Day 14 postpartum than SRB cows (p cows prioritise milk production to a larger extent than SRB cows, resulting in a less balanced metabolic profile. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. One year follow-up of the cardio-metabolic profile evolution in renal transplant patients treated with alemtuzumab, cyclosporine, and steroids in a reference hospital in Colombia

    OpenAIRE

    Nieto-Ríos, John Fredy; Gómez-Rueda, Narly Viviana; Serna-Higuita, Lina María; Ocampo-Kohn, Catalina; Aristizábal-Alzate, Arbey; Abadía-Guzmán, Harry; Yepes-Delgado, Carlos Enrique; Zuluaga-Valencia, Gustavo

    2015-01-01

    Introduction: Cardiovascular events occur 50 times more often in kidney transplant patients than in the general population and are the leading cause of death. The aim of the study was to evaluate the behavior of cardio-metabolic profile and determine the incidence of major cardiovascular events in the first year after transplantation. Methods: This prospective study evaluated the behavior of cardio-metabolic profile in adult patients that were transplanted during 2011. Results: The median age...

  2. Effects of short- and long-term Mediterranean-based dietary treatment on plasma LC-QTOF/MS metabolic profiling of subjects with metabolic syndrome features: The Metabolic Syndrome Reduction in Navarra (RESMENA) randomized controlled trial.

    Science.gov (United States)

    Bondia-Pons, Isabel; Martinez, José Alfredo; de la Iglesia, Rocio; Lopez-Legarrea, Patricia; Poutanen, Kaisa; Hanhineva, Kati; Zulet, Maria de los Ángeles

    2015-04-01

    Adherence to the Mediterranean diet has been associated with a reduced risk of metabolic syndrome (MetS). Metabolomics approach may contribute to identify beneficial associations of metabolic changes affected by Mediterranean diet-based interventions with inflammatory and oxidative-stress markers related to the etiology and development of the MetS. Liquid chromatography coupled to quadrupole-time of flight-MS metabolic profiling was applied to plasma from a 6-month randomized intervention with two sequential periods, a 2-month nutritional-learning intervention period, and a 4-month self-control period, with two energy-restricted diets; the RESMENA diet (based on the Mediterranean dietary pattern) and the Control diet (based on the American Heart Association guidelines), in 72 subjects with a high BMI and at least two features of MetS. The major contributing biomarkers of each sequential period were lipids, mainly phospholipids and lysophospholipids. Dependency network analysis showed a different pattern of associations between metabolic changes and clinical variables after 2 and 6 month of intervention, with a highly interconnected network during the nutritional-learning intervention period of the study. The 2-month RESMENA diet produced significant changes in the plasma metabolic profile of subjects with MetS features. However, at the end of the 6-month study, most of the associations between metabolic and clinical variables disappeared; suggesting that adherence to healthy dietary habits had declined during the self-control period. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rapid Chemometric X-Ray Fluorescence approaches for spectral Diagnostics of Cancer utilizing Tissue Trace Metals and Speciation profiles

    International Nuclear Information System (INIS)

    Okonda, J.J.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectroscopy is an analytical method for identification and quantification of elements in materials by measurement of their spectral energy and intensity. EDXRFS spectroscopic technique involves simultaneous non-invasive acquisition of both fluorescence and scatter spectra from samples for quantitative determination of trace elemental content in complex matrix materials. The objective is develop a chemometric-aided EDXRFS method for rapid diagnosis of cancer and its severity (staging) based on analysis of trace elements (Cu, Zn, Fe, Se and Mn), their speciation and multivariate alterations of the elements in cancerous body tissue samples as cancer biomarkers. The quest for early diagnosis of cancer is based on the fact that early intervention translates to higher survival rate and better quality of life. Chemometric aided EDXRFS cancer diagnostic model has been evaluated as a direct and rapid superior alternative for the traditional quantitative methods used in XRF such as FP method. PCA results of cultured samples indicate that it is possible to characterize cancer at early and late stage of development based on trace elemental profiles

  4. iSRAP – a one-touch research tool for rapid profiling of small RNA-seq data

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-hee; Bellingham, Shayne A.; Lonie, Andrew; Hill, Andrew F.

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes. PMID:26561006

  5. iSRAP - a one-touch research tool for rapid profiling of small RNA-seq data.

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-Hee; Bellingham, Shayne A; Lonie, Andrew; Hill, Andrew F

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.

  6. Distribution of Metabolically Active Prokaryotes (Archaea and Bacteria) throughout the Profiles of Chernozem and Brown Semidesert Soil

    Science.gov (United States)

    Semenov, M. V.; Manucharova, N. A.; Stepanov, A. L.

    2016-02-01

    The distribution of metabolically active cells of archaea and bacteria in the profiles of typical chernozems (Voronezh oblast) and brown semidesert soils (Astrakhan oblast) of natural and agricultural ecosystems was studied using the method of fluorescent in situ hybridization (FISH). The studied soils differed sharply in the microbial biomass and in the numbers of metabolically active cells of archaea and bacteria. The number of active bacterial cells was 3.5-7.0 times greater than that of archaea. In the arable chernozem, the numbers of active cells of archaea and bacteria were 2.6 and 1.5 times, respectively, lower than those in the chernozem under the shelterbelt. The agricultural use of the brown semidesert soil had little effect on the abundances of bacteria and archaea. The soil organic carbon content was the major factor controlling the numbers of metabolically active cells of both domains. However, the dependence of the abundance of bacteria on the organic matter content was more pronounced. The decrease in the organic carbon and total nitrogen contents down the soil profiles was accompanied by the decrease in the bacteria: archaea ratio attesting to a better adaptation of archaea to the permanent deficiency of carbon and nitrogen. The bacteria: archaea ratio can serve as an ecotrophic indicator of the state of soil microbial communities.

  7. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J.; Nicoli, F.; Gastaut, J.L.

    1996-01-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer's disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer's disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs

  8. Cerebrospinal fluid metabolic profiles in multiple sclerosis and degenerative dementias obtained by high resolution proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vion-Dury, J.; Confort-Gouny, S.; Maillet, S.; Cozzone, P.J. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France); Nicoli, F. [Centre Hospitalier Universitaire de la Timone, 13 - Marseille (France)]|[Hopital Sainte-Marguerite, 13 - Marseille (France); Gastaut, J.L. [Hopital Sainte-Marguerite, 13 - Marseille (France)

    1996-07-01

    We have analyzed the cerebrospinal fluid (CSF) of 19 patients with multiple sclerosis (MS), 12 patients with degenerative dementia and 17 control patients using in vitro high resolution proton magnetic resonance spectroscopy (MRS) at 400 MHz. The CSF metabolic profile is slightly modified in MS patients (increased lactate and fructose concentrations, decreased creatinine and phenylalanine concentrations) and is not correlated with the intensity of the intrathecal inflammation. Proton MRS of CSF does not differentiate relapsing-remitting MS and primary progressive MS. We have not detected any specific abnormal resonance in native or lyophilized CSF. The CSF metabolic profile of demented patients is much more altered (increased concentration of lactate, pyruvate, alanine, lysine, valine, leucine-isoleucine, tyrosine, glutamine) and is in agreement with a brain oxidative metabolism impairment as already described in Alzheimer`s disease. Unassigned abnormal but non specific or constant resonances have been detected on MR spectra of demented patients. CSF inositol concentration is also increased in the CSF of patients with Alzheimer`s disease. In vitro high resolution proton MRS of the CSF constitutes a new and original way to explore CSF for the differential and/or early diagnosis of dementias, as a complement to in vivo proton cerebral MRS. (authors). 22 refs., 4 figs., 2 tabs.

  9. Biometric and metabolic profiles associated to different rearing conditions in offshore farmed gilthead sea bream (Sparus aurata L.).

    Science.gov (United States)

    Melis, Riccardo; Anedda, Roberto

    2014-06-01

    Modern multivariate methods are applied to both biometric measurements and NMR metabolic profiling of fillet to discriminate farmed gilthead sea bream reared in different farming conditions. Two fish groups having the same average size, from the same farm, were caught in May and October. Biometric data demonstrate that condition factor is higher for the leaner fish, sampled in May, while liver somatic index is lower in fish sampled in October. Biometric features are related to metabolic changes that involve lipid storage from May to September, and their mobilization from muscle and liver during prespawning season (September, October). Structural phospholipids (phosphatidylcholine, phosphatidylethanolamine) and essential fatty acids (eicosapentaenoic and docosahexaenoic acids) characterize the lipid profile of the May catch, while triglycerides, monounsaturated and diunsaturated fatty acids, likely from absorption of vegetable oil components of feeds, suggest fish fattening in the warm season and discriminate fish caught in October. Among polar metabolites, taurine, glutamine, glycine, alanine, and creatine/phosphocreatine confirm their role as good biomarkers for the discrimination among fish produced in different farming conditions, especially involving feed digestion and metabolism, chronic stress, and alteration of energetic balance in cage-reared fish. Qualitative traits of farmed fish are therefore the result of a complex combination of environmental factors and farming practices, which should be analyzed to increase consumers' and farmers' awareness. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The impact of body condition after calving on metabolism and milk progesterone profiles in two breeds of dairy cows.

    Science.gov (United States)

    O'Hara, Lisa A; Båge, Renée; Holtenius, Kjell

    2016-10-20

    Optimal body condition in early lactation is generally accepted as a prerequisite for good reproductive performance. Examination of milk progesterone profiles offers an objective method for characterization of postpartum ovarian activity in dairy cows. The present study investigated the relationship between body condition after calving, some metabolic parameters in blood plasma, and fertility, as reflected by milk progesterone profiles in the two dairy breeds Swedish Red (SR) and Swedish Holstein (SH). Multiparous dairy cows (n = 73) of SR and SH breeds were selected and divided into three groups based on their body condition score (BCS) after parturition. Selected plasma metabolites were determined, milk progesterone profiles were identified and body condition was scored. Over-conditioned cows and atypical progesterone profiles were more common among SR cows. Insulin sensitivity was lower and IGF 1 higher among SR cows. Insulin was positively related to body condition, but not related to breed. Atypical progesterone profiles were more common and insulin sensitivity lower in SR than in SH cows, but the SR breed had a higher proportion of over-conditioned SR cows. It is reasonable to assume that breed differences in body condition contributed to these results.

  11. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  12. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile.

    Science.gov (United States)

    Mueller, Melanie; Maldonado-Adrian, Concepcion; Yuan, Jie; McCann, Una D; Ricaurte, George A

    2013-02-01

    The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.

  13. Body size, body composition, and metabolic profile explain higher energy expenditure in overweight children

    Science.gov (United States)

    Lower relative rates of energy expenditure (EE), increased energetic efficiency, and altered fuel utilization purportedly associated with obesity have not been demonstrated indisputably in overweight children. We hypothesized that differences in energy metabolism between nonoverweight and overweight...

  14. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Science.gov (United States)

    2012-01-01

    Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w) mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed

  15. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Directory of Open Access Journals (Sweden)

    Jordà Joel

    2012-05-01

    Full Text Available Abstract Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic

  16. Multiple correlation analyses of metabolic and endocrine profiles with fertility in primiparous and multiparous cows.

    Science.gov (United States)

    Wathes, D C; Bourne, N; Cheng, Z; Mann, G E; Taylor, V J; Coffey, M P

    2007-03-01

    Results from 4 studies were combined (representing a total of 500 lactations) to investigate the relationships between metabolic parameters and fertility in dairy cows. Information was collected on blood metabolic traits and body condition score at 1 to 2 wk prepartum and at 2, 4, and 7 wk postpartum. Fertility traits were days to commencement of luteal activity, days to first service, days to conception, and failure to conceive. Primiparous and multiparous cows were considered separately. Initial linear regression analyses were used to determine relationships among fertility, metabolic, and endocrine traits at each time point. All metabolic and endocrine traits significantly related to fertility were included in stepwise multiple regression analyses alone (model 1), including peak milk yield and interval to commencement of luteal activity (model 2), and with the further addition of dietary group (model 3). In multiparous cows, extended calving to conception intervals were associated prepartum with greater concentrations of leptin and lesser concentrations of nonesterified fatty acids and urea, and postpartum with reduced insulin-like growth factor-I at 2 wk, greater urea at 7 wk, and greater peak milk yield. In primiparous cows, extended calving to conception intervals were associated with more body condition and more urea prepartum, elevated urea postpartum, and more body condition loss by 7 wk. In conclusion, some metabolic measurements were associated with poorer fertility outcomes. Relationships between fertility and metabolic and endocrine traits varied both according to the lactation number of the cow and with the time relative to calving.

  17. Metabolite profiling approach reveals the interface of primary and secondary metabolism in colored cauliflowers (Brassica oleracea L. ssp. botrytis).

    Science.gov (United States)

    Park, Soo-Yun; Lim, Sun-Hyung; Ha, Sun-Hwa; Yeo, Yunsoo; Park, Woo Tae; Kwon, Do Yeon; Park, Sang Un; Kim, Jae Kwang

    2013-07-17

    In the present study, carotenoids, anthocyanins, and phenolic acids of cauliflowers ( Brassica oleracea L. ssp. botrytis) with various colored florets (white, yellow, green, and purple) were characterized to determine their phytochemical diversity. Additionally, 48 metabolites comprising amino acids, organic acids, sugars, and sugar alcohols were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). Carotenoid content was considerably higher in green cauliflower; anthocyanins were detected only in purple cauliflower. Phenolic acids were higher in both green and purple cauliflower. Results of partial least-squares discriminant, Pearson correlation, and hierarchical clustering analyses showed that green cauliflower is distinct on the basis of the high levels of amino acids and clusters derived from common or closely related biochemical pathways. These results suggest that GC-TOFMS-based metabolite profiling, combined with chemometrics, is a useful tool for determining phenotypic variation and identifying metabolic networks connecting primary and secondary metabolism.

  18. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hauwaert, Cynthia; Savary, Grégoire [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Buob, David [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Leroy, Xavier; Aubert, Sébastien [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); Flamand, Vincent [Service d' Urologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Hennino, Marie-Flore [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Service de Néphrologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Perrais, Michaël [Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  19. Metabolomic analysis based on 1H-nuclear magnetic resonance spectroscopy metabolic profiles in tuberculous, malignant and transudative pleural effusion

    Science.gov (United States)

    Wang, Cheng; Peng, Jingjin; Kuang, Yanling; Zhang, Jiaqiang; Dai, Luming

    2017-01-01

    Pleural effusion is a common clinical manifestation with various causes. Current diagnostic and therapeutic methods have exhibited numerous limitations. By involving the analysis of dynamic changes in low molecular weight catabolites, metabolomics has been widely applied in various types of disease and have provided platforms to distinguish many novel biomarkers. However, to the best of our knowledge, there are few studies regarding the metabolic profiling for pleural effusion. In the current study, 58 pleural effusion samples were collected, among which 20 were malignant pleural effusions, 20 were tuberculous pleural effusions and 18 were transudative pleural effusions. The small molecule metabolite spectrums were obtained by adopting 1H nuclear magnetic resonance technology, and pattern-recognition multi-variable statistical analysis was used to screen out different metabolites. One-way analysis of variance, and Student-Newman-Keuls and the Kruskal-Wallis test were adopted for statistical analysis. Over 400 metabolites were identified in the untargeted metabolomic analysis and 26 metabolites were identified as significantly different among tuberculous, malignant and transudative pleural effusions. These metabolites were predominantly involved in the metabolic pathways of amino acids metabolism, glycometabolism and lipid metabolism. Statistical analysis revealed that eight metabolites contributed to the distinction between the three groups: Tuberculous, malignant and transudative pleural effusion. In the current study, the feasibility of identifying small molecule biochemical profiles in different types of pleural effusion were investigated reveal novel biological insights into the underlying mechanisms. The results provide specific insights into the biology of tubercular, malignant and transudative pleural effusion and may offer novel strategies for the diagnosis and therapy of associated diseases, including tuberculosis, advanced lung cancer and congestive heart

  20. A Healthy Nordic Diet Alters the Plasma Lipidomic Profile in Adults with Features of Metabolic Syndrome in a Multicenter Randomized Dietary Intervention

    DEFF Research Database (Denmark)

    Lankinen, Maria; Schwab, Ursula; Kolehmainen, Marjukka

    2016-01-01

    Background: A healthy Nordic diet is associated with improvements in cardiometabolic risk factors, but the effect on lipidomic profile is not known. Objective: The aim was to investigate how a healthy Nordic diet affects the fasting plasma lipidomic profile in subjects with metabolic syndrome. Me...

  1. Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles.

    Science.gov (United States)

    Sanders, John M; Beshore, Douglas C; Culberson, J Christopher; Fells, James I; Imbriglio, Jason E; Gunaydin, Hakan; Haidle, Andrew M; Labroli, Marc; Mattioni, Brian E; Sciammetta, Nunzio; Shipe, William D; Sheridan, Robert P; Suen, Linda M; Verras, Andreas; Walji, Abbas; Joshi, Elizabeth M; Bueters, Tjerk

    2017-08-24

    High-throughput screening (HTS) has enabled millions of compounds to be assessed for biological activity, but challenges remain in the prioritization of hit series. While biological, absorption, distribution, metabolism, excretion, and toxicity (ADMET), purity, and structural data are routinely used to select chemical matter for further follow-up, the scarcity of historical ADMET data for screening hits limits our understanding of early hit compounds. Herein, we describe a process that utilizes a battery of in-house quantitative structure-activity relationship (QSAR) models to generate in silico ADMET profiles for hit series to enable more complete characterizations of HTS chemical matter. These profiles allow teams to quickly assess hit series for desirable ADMET properties or suspected liabilities that may require significant optimization. Accordingly, these in silico data can direct ADMET experimentation and profoundly impact the progression of hit series. Several prospective examples are presented to substantiate the value of this approach.

  2. Deciphering the Differential Effective and Toxic Responses of Bupleuri Radix following the Induction of Chronic Unpredictable Mild Stress and in Healthy Rats Based on Serum Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Xiaoxia Gao

    2018-01-01

    Full Text Available The petroleum ether fraction of Bupleuri Radix which is contained in the traditional Chinese medicine prescription of Xiaoyaosan (XYS may have a therapeutic effect in depressed subjects based on the results of our previous study. It has been reported that Bupleuri Radix can cause liver toxicity following overdosing or long-term use. Therefore, this study aimed to decipher the differential effective and toxic responses of Bupleuri Radix in chronic unpredictable mild stress (CUMS (with depression and healthy rats based on serum metabolic profiles. Serum metabolic profiles were obtained using the UHPLC- Q Exactive Orbitrap-MS technique. Our results demonstrated that the petroleum ether fraction of Bupleuri Radix (PBR produces an antidepressant effect through regulating glycometabolism, amino acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism. It also induces more severe toxic reactions in the liver or kidney in healthy rats than in CUMS rats, which exhibited a comparatively mild drug-induced toxic reaction. The altered lysine degradation, sphingolipid metabolism, glycerophospholipid metabolism, fatty acid metabolism, and bile acid metabolism could be at least partly responsible for the PBR toxic responses in healthy rats. The differential effective and toxic response of PBR in CUMS rats and healthy rats provide a new standard for the more rational and safer application of clinical drugs in the future.

  3. Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making.

    Science.gov (United States)

    Wang, Peng; Wu, Qun; Jiang, Xuejian; Wang, Zhiqiang; Tang, Jingli; Xu, Yan

    2017-06-05

    Chinese liquor is produced from spontaneous fermentation starter (Daqu) that provides the microbes, enzymes and flavors for liquor fermentation. To improve the flavor character of Daqu, we inoculated Bacillus licheniformis and studied the effect of this strain on the community structure and metabolic profile in Daqu fermentation. The microbial relative abundance changed after the inoculation, including the increase in Bacillus, Clavispora and Aspergillus, and the decrease in Pichia, Saccharomycopsis and some other genera. This variation was also confirmed by pure culture and coculture experiments. Seventy-three metabolites were identified during Daqu fermentation process. After inoculation, the average content of aromatic compounds were significantly enriched from 0.37mg/kg to 0.90mg/kg, and the average content of pyrazines significantly increased from 0.35mg/kg to 5.71mg/kg. The increase in pyrazines was positively associated with the metabolism of the inoculated Bacillus and the native genus Clavispora, because they produced much more pyrazines in their cocultures. Whereas the increase in aromatic compounds might be related to the change of in situ metabolic activity of several native genera, in particular, Aspergillus produced more aromatic compounds in cocultures with B. licheniformis. It indicated that the inoculation of B. licheniformis altered the flavor character of Daqu by both its own metabolic activity and the variation of in situ metabolic activity. Moreover, B. licheniformis inoculation influenced the enzyme activity of Daqu, including the significant increase in amylase activity (from 1.3gstarch/g/h to 1.7gstarch/g/h), and the significant decrease in glucoamylase activity (from 627.6mgglucose/g/h to 445.6mgglucose/g/h) and esterase activity (from 28.1mgethylcaproate/g/100h to 17.2mgethylcaproate/g/100h). These effects of inoculation were important factors for regulating the metabolism of microbial communities, hence for improving the flavor profile

  4. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    Science.gov (United States)

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia ( Alphaproteobacteria ; Rickettsiaceae ). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. IMPORTANCE A hallmark of obligate intracellular

  5. 1H NMR Metabolic Profiling of Biofluids from Rats with Gastric Mucosal Lesion and Electroacupuncture Treatment

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-01-01

    Full Text Available Gastric mucosal lesion (GML is a common gastrointestinal disorder with multiple pathogenic mechanisms in clinical practice. In traditional Chinese medicine (TCM, electroacupuncture (EA treatment has been proven as an effective therapy for GML, although the underlying healing mechanism is not yet clear. Here, we used proton nuclear magnetic resonance- (1H NMR- based metabolomic method to investigate the metabolic perturbation induced by GML and the therapeutic effect of EA treatment on stomach meridian (SM acupoints. Clear metabolic differences were observed between GML and control groups, and related metabolic pathways were discussed by means of online metabolic network analysis toolbox. By comparing the endogenous metabolites from GML and GML-SM groups, the disturbed pathways were partly recovered towards healthy state via EA treated on SM acupoints. Further comparison of the metabolic variations induced by EA stimulated on SM and the control gallbladder meridian (GM acupoints showed a quite similar metabolite composition except for increased phenylacetylglycine, 3,4-dihydroxymandelate, and meta-hydroxyphenylacetate and decreased N-methylnicotinamide in urine from rats with EA treated on SM acupoints. The current study showed the potential application of metabolomics in providing further insight into the molecular mechanism of acupuncture.

  6. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis.

    Science.gov (United States)

    Hanson, Erin K; Ballantyne, Jack

    2013-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive

  7. Absolute quantitative profiling of the key metabolic pathways in slow and fast skeletal muscle

    DEFF Research Database (Denmark)

    Rakus, Dariusz; Gizak, Agnieszka; Deshmukh, Atul

    2015-01-01

    . Proteomic analysis of mouse slow and fast muscles allowed estimation of the titers of enzymes involved in the carbohydrate, lipid, and energy metabolism. Notably, we observed that differences observed between the two muscle types occur simultaneously for all proteins involved in a specific process......Slow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion...... and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches. Here we describe a simple analytical and computational approach to estimate titers of enzymes of basic metabolic pathways and proteins of the contractile machinery in the skeletal muscles...

  8. Metabolic Profiling Provides a System Understanding of Hypothyroidism in Rats and Its Application

    Science.gov (United States)

    Dong, Xin; Zhu, Zhenyu; Li, Wuhong; Lou, Ziyang; Chai, Yifeng

    2013-01-01

    Background Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND) is a well-known formula of Traditional Chinese Medicine (TCM) and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. Methodology/Principal Findings A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism) were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. Conclusions/Significance Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on hypothyroidism. PMID

  9. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre.

    Directory of Open Access Journals (Sweden)

    Hervé Colinet

    Full Text Available BACKGROUND: Diapause, a condition of developmental arrest and metabolic depression exhibited by a wide range of animals is accompanied by complex physiological and biochemical changes that generally enhance environmental stress tolerance and synchronize reproduction. Even though some aspects of diapause have been well characterized, very little is known about the full range of molecular and biochemical modifications underlying diapause in non-model organisms. METHODOLOGY/PRINCIPAL FINDINGS: In this study we focused on the parasitic wasp, Praon volucre that exhibits a pupal diapause in response to environmental signals. System-wide metabolic changes occurring during diapause were investigated using GC-MS metabolic fingerprinting. Moreover, proteomic changes were studied in diapausing versus non-diapausing phenotypes using a combination of two-dimensional differential gel electrophoresis (2D-DIGE and mass spectrometry. We found a reduction of Krebs cycle intermediates which most likely resulted from the metabolic depression. Glycolysis was galvanized, probably to favor polyols biosynthesis. Diapausing parasitoids accumulated high levels of cryoprotective polyols, especially sorbitol. A large set of proteins were modulated during diapause and these were involved in various functions such as remodeling of cytoskeleton and cuticle, stress tolerance, protein turnover, lipid metabolism and various metabolic enzymes. CONCLUSIONS/SIGNIFICANCE: The results presented here provide some first clues about the molecular and biochemical events that characterize the diapause syndrome in aphid parasitoids. These data are useful for probing potential commonality of parasitoids diapause with other taxa and they will help creating a general understanding of diapause underpinnings and a background for future interpretations.

  10. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens

    DEFF Research Database (Denmark)

    Pineda, Lane Manalili; Chwalibog, André; Sawosz, Ewa

    2012-01-01

    and intestinal content were collected to evaluate the effects of AgNano on plasma concentration of immunoglobulins and the intestinal microflora, respectively. The provision of water solutions containing different concentrations of AgNano had no effect on postnatal growth performance and the energy metabolism...... (IgG) in the blood plasma of broilers supplemented with AgNano decreased at day 36 (p = 0.012). The results demonstrated that AgNano affects N utilisation and plasma IgG concentration; however, it does not influence the microbial populations in the digestive tract, the energy metabolism and growth...

  11. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    Science.gov (United States)

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  12. A rapid, sensitive, reproducible and cost-effective method for mutation profiling of colon cancer and metastatic lymph nodes

    International Nuclear Information System (INIS)

    Fumagalli, Debora; Gavin, Patrick G; Taniyama, Yusuke; Kim, Seung-Il; Choi, Hyun-Joo; Paik, Soonmyung; Pogue-Geile, Katherine L

    2010-01-01

    An increasing number of studies show that genetic markers can aid in refining prognostic information and predicting the benefit from systemic therapy. Our goal was to develop a high throughput, cost-effective and simple methodology for the detection of clinically relevant hot spot mutations in colon cancer. The Maldi-Tof mass spectrometry platform and OncoCarta panel from Sequenom were used to profile 239 colon cancers and 39 metastatic lymph nodes from NSABP clinical trial C-07 utilizing routinely processed FFPET (formalin-fixed paraffin-embedded tissue). Among the 238 common hot-spot cancer mutations in 19 genes interrogated by the OncoCarta panel, mutations were detected in 7 different genes at 26 different nucleotide positions in our colon cancer samples. Twenty-four assays that detected mutations in more than 1% of the samples were reconfigured into a new multiplexed panel, termed here as ColoCarta. Mutation profiling was repeated on 32 mutant samples using ColoCarta and the results were identical to results with OncoCarta, demonstrating that this methodology was reproducible. Further evidence demonstrating the validity of the data was the fact that the mutation frequencies of the most common colon cancer mutations were similar to the COSMIC (Catalog of Somatic Mutations in Cancer) database. The frequencies were 43.5% for KRAS, 20.1% for PIK3CA, and 12.1% for BRAF. In addition, infrequent mutations in NRAS, AKT1, ABL1, and MET were detected. Mutation profiling of metastatic lymph nodes and their corresponding primary tumors showed that they were 89.7% concordant. All mutations found in the lymph nodes were also found in the corresponding primary tumors, but in 4 cases a mutation was present in the primary tumor only. This study describes a high throughput technology that can be used to interrogate DNAs isolated from routinely processed FFPET and identifies the specific mutations that are common to colon cancer. The development of this technology and the Colo

  13. Association between muscle mass and adipo-metabolic profile: a cross-sectional study in older subjects

    Directory of Open Access Journals (Sweden)

    Perna S

    2015-02-01

    Full Text Available Simone Perna,1,* Davide Guido,2,* Mario Grassi,2 Mariangela Rondanelli1 1Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia, Italy; 2Medical and Genomic Statistics Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy *These authors contributed equally to this work Background: Sarcopenia, the decrease in muscle mass and function, may lead to various negative health outcomes in elderly. The association among sarcopenia with adiposity and metabolic markers has rarely been studied in the elderly population, with controversial results. The aim of this study is to evaluate this relationship in older subjects.Methods: A cross-sectional study was conducted in 290 elderly patients, focusing on the possible association between muscle mass loss, assessed by relative skeletal muscle mass (RSMM, and an adipo-metabolic profile (AMP defined by adiposity and metabolic biochemical markers. Measurements of body composition were assessed by dual energy X-ray absorptiometry. Biochemical parameters, such as albumin, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, triglycerides, C-reactive protein, and homocysteine and its related markers (folate and vitamin B12 were measured. Using canonical correlation analysis and structural equation modeling, an individual score of AMP was created and correlated with RSMM.Results: The AMP–RSMM correlation was equal to +0.642 (95% confidence interval, +0.512 to +0.773; P<0.001. Hence, a negative association between sarcopenia severity and adiposity/metabolic biochemical markers was highlighted.Conclusion: This study contained a novel way to examine the relationship between the variables of interest based on a composite index of adiposity and metabolic conditions. Results shed light on the orientation and magnitude of

  14. Metabolic profiling using HPLC allows classification of drugs according to their mechanisms of action in HL-1 cardiomyocytes

    International Nuclear Information System (INIS)

    Strigun, Alexander; Wahrheit, Judith; Beckers, Simone; Heinzle, Elmar; Noor, Fozia

    2011-01-01

    Along with hepatotoxicity, cardiotoxic side effects remain one of the major reasons for drug withdrawals and boxed warnings. Prediction methods for cardiotoxicity are insufficient. High content screening comprising of not only electrophysiological characterization but also cellular molecular alterations are expected to improve the cardiotoxicity prediction potential. Metabolomic approaches recently have become an important focus of research in pharmacological testing and prediction. In this study, the culture medium supernatants from HL-1 cardiomyocytes after exposure to drugs from different classes (analgesics, antimetabolites, anthracyclines, antihistamines, channel blockers) were analyzed to determine specific metabolic footprints in response to the tested drugs. Since most drugs influence energy metabolism in cardiac cells, the metabolite 'sub-profile' consisting of glucose, lactate, pyruvate and amino acids was considered. These metabolites were quantified using HPLC in samples after exposure of cells to test compounds of the respective drug groups. The studied drug concentrations were selected from concentration response curves for each drug. The metabolite profiles were randomly split into training/validation and test set; and then analysed using multivariate statistics (principal component analysis and discriminant analysis). Discriminant analysis resulted in clustering of drugs according to their modes of action. After cross validation and cross model validation, the underlying training data were able to predict 50%-80% of conditions to the correct classification group. We show that HPLC based characterisation of known cell culture medium components is sufficient to predict a drug's potential classification according to its mode of action.

  15. Osteosarcopenic Visceral Obesity and Osteosarcopenic Subcutaneous Obesity, Two New Phenotypes of Sarcopenia: Prevalence, Metabolic Profile, and Risk Factors

    Science.gov (United States)

    Spadaccini, Daniele; Nichetti, Mara; Avanzato, Ilaria; Faliva, Milena Anna

    2018-01-01

    Background The main criticism of the definition of “osteosarcopenic obesity” (OSO) is the lack of division between subcutaneous and visceral fat. This study describes the prevalence, metabolic profile, and risk factors of two new phenotypes of sarcopenia: osteosarcopenic visceral obesity (OSVAT) and osteosarcopenic subcutaneous obesity (OSSAT). Methods A standardized geriatric assessment was performed by anthropometric and biochemical measures. Dual-energy X-ray absorptiometry (DXA) was used to assess body composition, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), osteoporosis, and sarcopenia. Results A sample of 801 subjects were assessed (247 men; 554 women). The prevalence of osteosarcopenic obesity (OSO) was 6.79%; OSSAT and OSOVAT were, respectively, 2.22% and 4.56%. OSVAT (versus the others) showed a higher level of inflammation (CRP and ESR, p < 0.05), bilirubin (p < 0.05), and risk of fractures (FRAX index over 15%, p < 0.001). Subjects with OSSAT did not show any significant risk factors associated to obesity. Conclusions The osteosarcopenic visceral obesity phenotype (OSVAT) seems to be associated with a higher risk of fractures, inflammation, and a worse metabolic profile. These conditions in OSVAT cohort are associated with an increase of visceral adipose tissue, while patients with OSSAT seem to benefit related to the “obesity paradox”. PMID:29862078

  16. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach.

    Directory of Open Access Journals (Sweden)

    Luz A Betancur

    Full Text Available Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.

  17. Preliminary studies of urinary metabolic profile in rats after acute total body homogeneous irradiation by 60Co γ-rays

    International Nuclear Information System (INIS)

    Zhang Huifang; Yang Biao; Guo Yuefeng; Guo Wanlong; Xing Lihong

    2011-01-01

    To detect the metabolic profile of rats urinary by use of 1 h-NMR, the rats were irradiated by 60 Cy γ-rays with a dose of 7 Gy (0.7 Gy/min). And the data was processed by principal components analysis (PCA) and partial least square discriminate analysis (PLS-DA). The results demonstrated that there were obvious differences in urine metabolites before and after irradiation, and the main metabolites included lactate, acetate, succinate, citrate, creatinine, trimethylamine-N-oxide and taurine. The relative content of lactate, acetate, creatinine and trimethylamine-N-oxide increased significantly on the first day following quickly decreasing on the second and third days, but increasing on the fourth day after irradiation. On the first three days after irradiation, the relative content of succinate and citrate had trending down, but had an ascending tendency on the fourth day. The relative content of taurine was basically stable but higher than pre-radiation. In conclusion, 1 H-NMR combined with PCA and PLS-DA provides a good research method to detect the urinary metabolic profile in rats before and after irradiation. (authors)

  18. Inactivation and changes in metabolic profile of selected foodborne bacteria by 460 nm LED illumination.

    Science.gov (United States)

    Kumar, Amit; Ghate, Vinayak; Kim, Min-Jeong; Zhou, Weibiao; Khoo, Gek Hoon; Yuk, Hyun-Gyun

    2017-05-01

    The objective of this study was to investigate the effect of 460 nm light-emitting diode (LED) on the inactivation of foodborne bacteria. Additionally, the change in the endogenous metabolic profile of LED illuminated cells was analyzed to understand the bacterial response to the LED illumination. Six different species of bacteria (Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella Typhimurium) were illuminated with 460 nm LED to a maximum dose of 4080 J/cm 2 at 4, 10 and 25 °C. Inactivation curves were modeled using Hom model. Metabolic profiling of the non-illuminated and illuminated cells was performed using a Liquid chromatography-mass spectrometry system. Results indicate that the 460 nm LED significantly (p illuminated cells indicated that several metabolites e.g. 11-deoxycortisol, actinonin, coformycin, tyramine, chitobiose etc. were regulated during LED illumination. These results elucidate the effectiveness of 460 nm LED against foodborne bacteria and hence, its suitability as a novel antimicrobial control method to ensure food safety. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach

    Science.gov (United States)

    Betancur, Luz A.; Naranjo-Gaybor, Sandra J.; Vinchira-Villarraga, Diana M.; Moreno-Sarmiento, Nubia C.; Maldonado, Luis A.; Suarez-Moreno, Zulma R.; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F.; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A.

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities. PMID:28225766

  20. Metabolic profile of long-distance migratory flight and stopover in a shorebird

    NARCIS (Netherlands)

    Landys, MM; Piersma, T; Guglielmo, CG; Jukema, J; Ramenofsky, M; Wingfield, JC; Guglielmo, Christopher G.; Wingfield, John C.

    2005-01-01

    Migrating birds often complete long non-stop flights during which body energy stores exclusively support energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km

  1. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production.

    Science.gov (United States)

    Carinhas, Nuno; Pais, Daniel A M; Koshkin, Alexey; Fernandes, Paulo; Coroadinha, Ana S; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P

    2016-03-23

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-(13)C]glucose and [U-(13)C]glutamine, we apply for the first time (13)C-Metabolic flux analysis ((13)C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells metabolism during growth and CAV2 production. MDCK cells displayed a marked glycolytic and ammoniagenic metabolism, and (13)C data revealed a large fraction of glutamine-derived labelling in TCA cycle intermediates, emphasizing the role of glutamine anaplerosis. (13)C-MFA demonstrated the importance of pyruvate cycling in balancing glycolytic and TCA cycle activities, as well as occurrence of reductive alphaketoglutarate (AKG) carboxylation. By turn, CAV2 infection significantly upregulated fluxes through most central metabolism, including glycolysis, pentose-phosphate pathway, glutamine anaplerosis and, more prominently, reductive AKG carboxylation and cytosolic acetyl-coenzyme A formation, suggestive of increased lipogenesis. Based on these results, we suggest culture supplementation strategies to stimulate nucleic acid and lipid biosynthesis for improved canine adenoviral vector production.

  2. Determinants of maternal pregnancy one-carbon metabolism and newborn human DNA methylation profiles

    NARCIS (Netherlands)

    N.H. van Mil (Nina); M.I. Bouwl-Both (Marieke I.); L. Stolk (Lisette); M.M.P.J. Verbiest (Michael); A. Hofman (Albert); V.W.V. Jaddoe (Vincent); F.C. Verhulst (Frank); P.H.C. Eilers (Paul); A.G. Uitterlinden (André); E.A.P. Steegers (Eric); H.W. Tiemeier (Henning); R.P.M. Steegers-Theunissen (Régine)

    2014-01-01

    textabstractMaternal one-carbon (1-C) metabolism provides methylgroups for fetal development and programing by DNA methylation as one of the underlying epigenetic mechanisms. We aimed to investigate maternal 1-C biomarkers, folic acid supplement use, and MTHFR C677T genotype as determinants of 1-C

  3. Inflammatory Cytokine Profile Associated with Metabolic Syndrome in Adult Patients with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Aldo Ferreira-Hermosillo

    2015-01-01

    Full Text Available Objective. To compare the serum concentration of IL-6, IL-10, TNF, IL-8, resistin, and adiponectin in type 1 diabetic patients with and without metabolic syndrome and to determine the cut-off point of the estimated glucose disposal rate that accurately differentiated these groups. Design. We conducted a cross-sectional evaluation of all patients in our type 1 diabetes clinic from January 2012 to January 2013. Patients were considered to have metabolic syndrome when they fulfilled the joint statement criteria and were evaluated for clinical, biochemical, and immunological features. Methods. We determined serum IL-6, IL-8, IL-10, and TNF with flow cytometry and adiponectin and resistin concentrations with enzyme linked immunosorbent assay in patients with and without metabolic syndrome. We also compared estimated glucose disposal rate between groups. Results. We tested 140 patients. Forty-four percent fulfilled the metabolic syndrome criteria (n=61, 54% had central obesity, 30% had hypertriglyceridemia, 29% had hypoalphalipoproteinemia, and 19% had hypertension. We observed that resistin concentrations were higher in patients with MS. Conclusion. We found a high prevalence of MS in Mexican patients with T1D. The increased level of resistin may be related to the increased fat mass and could be involved in the development of insulin resistance.

  4. Transcriptional and metabolic flux profiling of triadimefon effects on cultured hepatocytes

    International Nuclear Information System (INIS)

    Iyer, Vidya V.; Ovacik, Meric A.; Androulakis, Ioannis P.; Roth, Charles M.; Ierapetritou, Marianthi G.

    2010-01-01

    Conazoles are a class of azole fungicides used to prevent fungal growth in agriculture, for treatment of fungal infections, and are found to be tumorigenic in rats and/or mice. In this study, cultured primary rat hepatocytes were treated to two different concentrations (0.3 and 0.15 mM) of triadimefon, which is a tumorigenic conazole in rat and mouse liver, on a temporal basis with daily media change. Following treatment, cells were harvested for microarray data ranging from 6 to 72 h. Supernatant was collected daily for three days, and the concentrations of various metabolites in the media and supernatant were quantified. Gene expression changes were most significant following exposure to 0.3 mM triadimefon and were characterized mainly by metabolic pathways related to carbohydrate, lipid and amino acid metabolism. Correspondingly, metabolic network flexibility analysis demonstrated a switch from fatty acid synthesis to fatty acid oxidation in cells exposed to triadimefon. It is likely that fatty acid oxidation is active in order to supply energy required for triadimefon detoxification. In 0.15 mM triadimefon treatment, the hepatocytes are able to detoxify the relatively low concentration of triadimefon with less pronounced changes in hepatic metabolism.

  5. Rapid changes in transcription profiles of the Plasmodium yoelii yir multigene family in clonal populations: lack of epigenetic memory?

    Directory of Open Access Journals (Sweden)

    Deirdre Cunningham

    Full Text Available The pir multigene family, found in the genomes of Plasmodium vivax, P. knowlesi and the rodent malaria species, encode variant antigens that could be targets of the immune response. Individual parasites of the rodent malaria Plasmodium yoelii, selected by micromanipulation, transcribe only 1 to 3 different pir (yir suggesting tight transcriptional control at the level of individual cells. Using microarray and quantitative RT-PCR, we show that despite this very restricted transcription in a single cell, many yir genes are transcribed throughout the intra-erythrocytic asexual cycle. The timing and level of transcription differs between genes, with some being more highly transcribed in ring and trophozoite stages, whereas others are more highly transcribed in schizonts. Infection of immunodeficient mice with single infected erythrocytes results in populations of parasites each with transcriptional profiles different from that of the parent parasite population and from each other. This drift away from the original 'set' of transcribed genes does not appear to follow a preset pattern and "epigenetic memory" of the yir transcribed in the parent parasite can be rapidly lost. Thus, regulation of pir gene transcription may be different from that of the well-characterised multigene family, var, of Plasmodium falciparum.

  6. Rapid sensory profiling and hedonic rating of whole grain sorghum-cowpea composite biscuits by low income consumers.

    Science.gov (United States)

    Dovi, Koya Ap; Chiremba, Constance; Taylor, John Rn; de Kock, Henriëtta L

    2018-02-01

    The challenges of malnutrition and urbanization in Africa demand the development of acceptable, affordable, nutritious complementary-type foods. Biscuits (i.e. cookies; a popular snack) from whole grain staples are an option. The present study aimed to relate check-all-that-applies (CATA) sensory profiles of sorghum-cowpea composite biscuits compared to economic commercial refined wheat biscuits with hedonic ratings by low income consumers. In addition, the nutritional composition and protein quality, L * a * b * colour and texture of the biscuits were determined. The CATA method is suitable for rapidly determining which attributes consumers perceive in food products and relating these to acceptability. Consumers preferred the lighter, more yellow wheat biscuits with ginger, vanilla, sweet and cinnamon flavours compared to the stronger flavours (sorghum, beany and nutty) and harder but brittle, grittier, dry and rough textured sorghum or sorghum-cowpea biscuits. However, a substantial proportion of consumers also liked the latter biscuits. The composite biscuits had higher dietary fibre content and a similar protein quality to the standards. Whole grain sorghum-cowpea biscuits could serve as acceptable value-added nutritious complementary snacks for consumers in sub-Saharan Africa. The biscuits are simple to produce for the creation of viable small enterprises. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Characterization of differential cocaine metabolism in mouse and rat through metabolomics-guided metabolite profiling.

    Science.gov (United States)

    Yao, Dan; Shi, Xiaolei; Wang, Lei; Gosnell, Blake A; Chen, Chi

    2013-01-01

    Rodent animal models have been widely used for studying neurologic and toxicological events associated with cocaine abuse. It is known that the mouse is more susceptible to cocaine-induced hepatotoxicity (CIH) than the rat. However, the causes behind this species-dependent sensitivity to cocaine have not been elucidated. In this study, cocaine metabolism in the mouse and rat was characterized through LC-MS-based metabolomic analysis of urine samples and were further compared through calculating the relative abundance of individual cocaine metabolites. The results showed that the levels of benzoylecgonine, a major cocaine metabolite from ester hydrolysis, were comparable in the urine from the mice and rats treated with the same dose of cocaine. However, the levels of the cocaine metabolites from oxidative metabolism, such as N-hydroxybenzoylnorecgonine and hydroxybenzoylecgonine, differed dramatically between the two species, indicating species-dependent cocaine metabolism. Subsequent structural analysis through accurate mass analysis and LC-MS/MS fragmentation revealed that N-oxidation reactions, including N-demethylation and N-hydroxylation, are preferred metabolic routes in the mouse, while extensive aryl hydroxylation reactions occur in the rat. Through stable isotope tracing and in vitro enzyme reactions, a mouse-specific α-glucoside of N-hydroxybenzoylnorecgonine and a group of aryl hydroxy glucuronides high in the rat were identified and structurally elucidated. The differences in the in vivo oxidative metabolism of cocaine between the two rodent species were confirmed by the in vitro microsomal incubations. Chemical inhibition of P450 enzymes further revealed that different P450-mediated oxidative reactions in the ecgonine and benzoic acid moieties of cocaine contribute to the species-dependent biotransformation of cocaine.

  8. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome.

    Science.gov (United States)

    de Souza Zanchet, Mayara Zagonel; Nardi, Geisson Marcos; de Oliveira Souza Bratti, Letícia; Filippin-Monteiro, Fabíola Branco; Locatelli, Claudriana

    2017-01-01

    Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB) in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C) and supplemented (S), and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome.

  9. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles.

    Science.gov (United States)

    Hu, Xiangang; Ouyang, Shaohu; Mu, Li; An, Jing; Zhou, Qixing

    2015-09-15

    Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.

  10. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD.

    Science.gov (United States)

    Li, He; Li, Xin; Smerin, Stanley E; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.

  11. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Mayara Zagonel de Souza Zanchet

    2017-01-01

    Full Text Available Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C and supplemented (S, and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome.

  12. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat†

    Science.gov (United States)

    Perrine, Shane A.; Michaels, Mark S.; Ghoddoussi, Farhad; Hyde, Elisabeth M.; Tancer, Manuel E.; Galloway, Matthew P.

    2010-01-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy (1H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  13. Cardiac effects of MDMA on the metabolic profile determined with 1H-magnetic resonance spectroscopy in the rat.

    Science.gov (United States)

    Perrine, Shane A; Michaels, Mark S; Ghoddoussi, Farhad; Hyde, Elisabeth M; Tancer, Manuel E; Galloway, Matthew P

    2009-05-01

    Despite the potential for deleterious (even fatal) effects on cardiac physiology, 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) abuse abounds driven mainly by its euphoric effects. Acute exposure to MDMA has profound cardiovascular effects on blood pressure and heart rate in humans and animals. To determine the effects of MDMA on cardiac metabolites in rats, MDMA (0, 5, or 10 mg/kg) was injected every 2 h for a total of four injections; animals were sacrificed 2 h after the last injection (8 h drug exposure), and their hearts removed and tissue samples from left ventricular wall dissected. High resolution magic angle spinning proton magnetic resonance spectroscopy ((1)H-MRS) at 11.7 T, a specialized version of MRS aptly suited for analysis of semi-solid materials such as intact tissue samples, was used to measure the cardiac metabolomic profile, including alanine, lactate, succinate, creatine, and carnitine, in heart tissue from rats treated with MDMA. MDMA effects on MR-visible choline, glutamate, glutamine, and taurine were also determined. Body temperature was measured following each MDMA administration and serotonin and norepinephrine (NE) levels were measured by high pressure liquid chromatography (HPLC) in heart tissue from treated animals. MDMA significantly and dose-dependently increased body temperature, a hallmark of amphetamines. Serotonin, but not NE, levels were significantly and dose-dependently decreased by MDMA in the heart wall. MDMA significantly altered the MR-visible profile with an increase in carnitine and no change in other key compounds involved in cardiomyocyte energy metabolomics. Finally, choline levels were significantly decreased by MDMA in heart. The results are consistent with the notion that MDMA has significant effects on cardiovascular serotonergic tone and disrupts the metabolic homeostasis of energy regulation in cardiac tissue, potentially increasing utilization of fatty acid metabolism. The contributions of serotonergic

  14. Differential metabolic profiles associated to movement behaviour of stream-resident brown trout (Salmo trutta.

    Directory of Open Access Journals (Sweden)

    Neus Oromi

    Full Text Available The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta, in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain. The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol according to the home range classification (pattern of movements: sedentary or mobile. The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms.

  15. Differential metabolic profiles associated to movement behaviour of stream-resident brown trout (Salmo trutta).

    Science.gov (United States)

    Oromi, Neus; Jové, Mariona; Pascual-Pons, Mariona; Royo, Jose Luis; Rocaspana, Rafel; Aparicio, Enric; Pamplona, Reinald; Palau, Antoni; Sanuy, Delfi; Fibla, Joan; Portero-Otin, Manuel

    2017-01-01

    The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta), in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain). The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol) according to the home range classification (pattern of movements: sedentary or mobile). The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms.

  16. Profiles

    International Nuclear Information System (INIS)

    2004-01-01

    Profiles is a synthetic overview of more than 100 national energy markets in the world, providing insightful facts and key energy statistics. A Profile is structured around 6 main items and completed by key statistics: Ministries, public agencies, energy policy are concerned; main companies in the oil, gas, electricity and coal sectors, status, shareholders; reserve, production, imports and exports, electricity and refining capacities; deregulation of prices, subsidies, taxes; consumption trends by sector, energy market shares; main energy projects, production and consumption prospects. Statistical Profiles are present in about 3 pages the main data and indicators on oil, gas, coal and electricity. (A.L.B.)

  17. In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin.

    Science.gov (United States)

    Ntie-Kang, Fidele; Lifongo, Lydia L; Mbah, James A; Owono Owono, Luc C; Megnassan, Eugene; Mbaze, Luc Meva'a; Judson, Philip N; Sippl, Wolfgang; Efange, Simon M N

    2013-01-01

    Drug metabolism and pharmacokinetics (DMPK) assessment has come to occupy a place of interest during the early stages of drug discovery today. The use of computer modelling to predict the DMPK and toxicity properties of a natural product library derived from medicinal plants from Central Africa (named ConMedNP). Material from some of the plant sources are currently employed in African Traditional Medicine. Computer-based methods are slowly gaining ground in this area and are often used as preliminary criteria for the elimination of compounds likely to present uninteresting pharmacokinetic profiles and unacceptable levels of toxicity from the list of potential drug candidates, hence cutting down the cost of discovery of a drug. In the present study, we present an in silico assessment of the DMPK and toxicity profile of a natural product library containing ~3,200 compounds, derived from 379 species of medicinal plants from 10 countries in the Congo Basin forests and savannas, which have been published in the literature. In this analysis, we have used 46 computed physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and elimination and toxicity (ADMET) of the compounds. This survey demonstrated that about 45% of the compounds within the ConMedNP compound library are compliant, having properties which fall within the range of ADME properties of 95% of currently known drugs, while about 69% of the compounds have ≤ 2 violations. Moreover, about 73% of the compounds within the corresponding "drug-like" subset showed compliance. In addition to the verified levels of "drug-likeness", diversity and the wide range of measured biological activities, the compounds from medicinal plants in Central Africa show interesting DMPK profiles and hence could represent an important starting point for hit/lead discovery.

  18. Quantitative determination of five metabolites of aspirin by UHPLC-MS/MS coupled with enzymatic reaction and its application to evaluate the effects of aspirin dosage on the metabolic profile.

    Science.gov (United States)

    Li, Jian-Ping; Guo, Jian-Ming; Shang, Er-Xin; Zhu, Zhen-Hua; Liu, Yang; Zhao, Bu-Chang; Zhao, Jing; Tang, Zhi-Shu; Duan, Jin-Ao

    2017-05-10

    Acetylsalicylic acid (Aspirin, ASA) is a famous drug for cardiovascular diseases in recent years. Effects of ASA dosage on the metabolic profile have not been fully understood. The purpose of our study is to establish a rapid and reliable method to quantify ASA metabolites in biological matrices, especially for glucuronide metabolites whose standards are not commercially available. Then we applied this method to evaluate the effects of ASA dosage on the metabolic and excretion profile of ASA metabolites in rat urine. Salicylic acid (SA), gentisic acid (GA) and salicyluric acid (SUA) were determined directly by UHPLC-MS/MS, while salicyl phenolic glucuronide (SAPG) and salicyluric acid phenolic glucuronide (SUAPG) were quantified indirectly by measuring the released SA and SUA from SAPG and SUAPG after β-glucuronidase digestion. SUA and SUAPG were the major metabolites of ASA in rat urine 24h after ASA administration, which accounted for 50% (SUA) and 26% (SUAPG). When ASA dosage was increased, the contributions dropped to 32% and 18%, respectively. The excretion of other three metabolites (GA, SA and SAPG) however showed remarkable increases by 16%, 6% and 4%, respectively. In addition, SUA and SUAPG were mainly excreted in the time period of 12-24h, while GA was excreted in the earlier time periods (0-4h and 4-8h). SA was mainly excreted in the time period of 0-4h and 12-24h. And the excretion of SAPG was equally distributed in the four time periods. We went further to show that the excretion of five metabolites in rat urine was delayed when ASA dosage was increased. In conclusion, we have developed a rapid and sensitive method to determine the five ASA metabolites (SA, GA, SUA, SAPG and SUAPG) in rat urine. We showed that ASA dosage could significantly influence the metabolic and excretion profile of ASA metabolites in rat urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates.

    Directory of Open Access Journals (Sweden)

    Biju Sam Kamalam

    Full Text Available The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L and the fat (F line were fed vegetable oil based diets with or without gelatinised starch (17.1% for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.

  20. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates.

    Science.gov (United States)

    Kamalam, Biju Sam; Médale, Françoise; Larroquet, Laurence; Corraze, Geneviève; Panserat, Stephane

    2013-01-01

    The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L) and the fat (F) line were fed vegetable oil based diets with or without gelatinised starch (17.1%) for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.

  1. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Directory of Open Access Journals (Sweden)

    Carlos Pozo

    Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study

  2. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Science.gov (United States)

    Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano

    2012-01-01

    Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the

  3. Does metformin treatment during pregnancy modify future metabolic profile in women with PCOS?

    DEFF Research Database (Denmark)

    Underdal, Maria Othelie; Stridsklev, Solhild; Oppen, Ingrid Hennum

    2018-01-01

    with PCOS. Design: Follow-up study of a randomized controlled trial, which compared metformin to placebo in women with PCOS. Mean follow-up period was 8 years (5-11). Setting: Three university hospitals, seven local hospitals, and one gynecological specialist practice. Participants: Women with PCOS......Context: Worldwide, metformin is prescribed in an attempt to improve pregnancy outcome in PCOS. Metformin may also benefit future health by modulating the increased metabolic stress during pregnancy. Objective: To investigate if metformin during pregnancy modified future metabolic health in women......-up period. Weight, body mass index, waist and hip circumferences and blood pressure were registered. Body composition was assessed by bioelectrical impedance analysis, and fasting lipids, glucose and insulin were analysed. Results: 131 out of 239 (55%) invited women participated in the follow-up. Weight...

  4. Metabolic Profiling of Food Protective Cultures by in vitro NMR Spectroscopy

    DEFF Research Database (Denmark)

    Ebrahimi, Parvaneh

    Food spoilage is of major concern to the food industry, because it leads to considerable economic losses, a deteriorated environmental food-print, and to possible public health hazards. In order to limit food spoilage, research on the preservation of food products has always received particular......-called protective cultures) has unexploited potential to inhibit the growth of pathogenic microorganisms and enhance the shelf life of the final food product. In order to apply biopreservation in food products effectively, detailed knowledge on the metabolism of protective cultures is required. The present Ph......D project is mainly focused on the application of in vitro NMR spectroscopy for studying the metabolism of protective cultures. As an important part of this work, an analytical protocol was developed for realtime in vitro NMR measurements of bacterial fermentation, which includes guidelines from the sample...

  5. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    OpenAIRE

    Samman S; Crossett B; Somers M; Bell KJ; Lai NT; Sullivan DR; Petocz P

    2014-01-01

    Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA) status is determined by facto...

  6. Neurodegeneration Alters Metabolic Profile and Sirt 1 Signaling in High-Fat-Induced Obese Mice.

    Science.gov (United States)

    Lima, Leandro Ceotto Freitas; Saliba, Soraya Wilke; Andrade, João Marcus Oliveira; Cunha, Maria Luisa; Cassini-Vieira, Puebla; Feltenberger, John David; Barcelos, Lucíola Silva; Guimarães, André Luiz Sena; de-Paula, Alfredo Mauricio Batista; de Oliveira, Antônio Carlos Pinheiro; Santos, Sérgio Henrique Sousa

    2017-07-01

    Different factors may contribute to the development of neurodegenerative diseases. Among them, metabolic syndrome (MS), which has reached epidemic proportions, has emerged as a potential element that may be involved in neurodegeneration. Furthermore, studies have shown the importance of the sirtuin family in neuronal survival and MS, which opens the possibility of new pharmacological targets. This study investigates the influence of sirtuin metabolic pathways by examining the functional capacities of glucose-induced obesity in an excitotoxic state induced by a quinolinic acid (QA) animal model. Mice were divided into two groups that received different diets for 8 weeks: one group received a regular diet, and the other group received a high-fat diet (HF) to induce MS. The animals were submitted to a stereotaxic surgery and subdivided into four groups: Standard (ST), Standard-QA (ST-QA), HF and HF-QA. The QA groups were given a 250 nL quinolinic acid injection in the right striatum and PBS was injected in the other groups. Obese mice presented with a weight gain of 40 % more than the ST group beyond acquiring an insulin resistance. QA induced motor impairment and neurodegeneration in both ST-QA and HF-QA, although no difference was observed between these groups. The HF-QA group showed a reduction in adiposity when compared with the groups that received PBS. Therefore, the HF-QA group demonstrated a commitment-dependent metabolic pathway. The results suggest that an obesogenic diet does not aggravate the neurodegeneration induced by QA. However, the excitotoxicity induced by QA promotes a sirtuin pathway impairment that contributes to metabolic changes.

  7. Physical activity, heart rate, metabolic profile, and estradiol in premenopausal women

    DEFF Research Database (Denmark)

    Emaus, Aina; Veierød, Marit B; Furberg, Anne-Sofie

    2008-01-01

    PURPOSE: To study whether physical inactive women with a tendency to develop metabolic syndrome have high levels of 17beta-estradiol (E2) of importance for breast cancer risk. METHODS: Two hundred and four healthy women of reproductive age were assessed for self-reported leisure-time physical...... to important biologic mechanisms operating between a sedentary lifestyle and an increased breast cancer risk....

  8. Targeted Serum Metabolite Profiling Identifies Metabolic Signatures in Patients with Alzheimer's Disease, Normal Pressure Hydrocephalus and Brain Tumor

    Directory of Open Access Journals (Sweden)

    Matej Orešič

    2018-01-01

    Full Text Available Progression to AD is preceded by elevated levels of 2,4-dihydroxybutanoic acid (2,4-DHB, implicating hypoxia in early pathogenesis. Since hypoxia may play a role in multiple CNS disorders, we investigated serum metabolite profiles across three disorders, AD, Normal Pressure Hydrocephalus (NPH and brain tumors (BT. Blood samples were collected from 27 NPH and 20 BT patients. The profiles of 21 metabolites were examined. Additionally, data from 37 AD patients and 46 controls from a previous study were analyzed together with the newly acquired data. No differences in 2,4-DHB were found across AD, NPH and BT samples. In the BT group, the fatty acids were increased as compared to HC and NPH groups, while the ketone body 3-hydroxybutyrate was increased as compared to AD. Glutamic acid was increased in AD as compared to the HC group. In the AD group, 3-hydroxybutyrate tended to be decreased with respect to all other groups (mean values −30% or more, but the differences were not statistically significant. Serine was increased in NPH as compared to BT. In conclusion, AD, NPH and BT have different metabolic profiles. This preliminary study may help in identifying the blood based markers that are specific to these three CNS diseases.

  9. Metabolic profiling of goldfish (Carassius auratis) after long-term glyphosate-based herbicide exposure.

    Science.gov (United States)

    Li, Ming-Hui; Ruan, Ling-Yu; Zhou, Jin-Wei; Fu, Yong-Hong; Jiang, Lei; Zhao, He; Wang, Jun-Song

    2017-07-01

    Glyphosate is an efficient herbicide widely used worldwide. However, its toxicity to non-targeted organisms has not been fully elucidated. In this study, the toxicity of glyphosate-based herbicide was evaluated on goldfish (Carassius auratus) after long-term exposure. Tissues of brains, kidneys and livers were collected and submitted to NMR-based metabolomics analysis and histopathological inspection. Plasma was collected and the blood biochemical indexes of AST, ALT, BUN, CRE, LDH, SOD, GSH-Px, GR and MDA were measured. Long-term glyphosate exposure caused disorders of blood biochemical indexes and renal tissue injury in goldfish. Metabolomics analysis combined with correlation network analysis uncovered significant perturbations in oxidative stress, energy metabolism, amino acids metabolism and nucleosides metabolism in glyphosate dosed fish, which provide new clues to the toxicity of glyphosate. This integrated metabolomics approach showed its applicability in discovering the toxic mechanisms of pesticides, which provided new strategy for the assessment of the environmental risk of herbicides to non-target organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Metabolic profile and cardiovascular risk factors among Latin American HIV-infected patients receiving HAART

    Directory of Open Access Journals (Sweden)

    P Cahn

    Full Text Available OBJECTIVE: Determine the prevalence of metabolic abnormalities (MA and estimate the 10-year risk for cardiovascular disease (CVD among Latin American HIV-infected patients receiving highly active anti-retroviral therapy (HAART. METHODS: A cohort study to evaluate MA and treatment practices to reduce CVD has been conducted in seven Latin American countries. Adult HIV-infected patients with at least one month of HAART were enrolled. Baseline data are presented in this analysis. RESULTS: A total of 4,010 patients were enrolled. Mean age (SD was 41.9 (10 years; median duration of HAART was 35 (IQR: 10-51 months, 44% received protease inhibitors. The prevalence of dyslipidemia and metabolic syndrome was 80.2% and 20.2%, respectively. The overall 10-year risk of CVD, as measured by the Framingham risk score (FRF, was 10.4 (24.7. Longer exposure to HAART was documented in patients with dyslipidemia, metabolic syndrome and type 2 diabetes mellitus. The FRF score increased with duration of HAART. Male patients had more dyslipidemia, high blood pressure, smoking habit and higher 10-year CVD than females. CONCLUSIONS: Traditional risk factors for CVD are prevalent in this setting leading to intermediate 10-year risk of CVD. Modification of these risk factors through education and intervention programs are needed to reduce CVD.

  11. Metabolic Profiling of Dendrobium officinale in Response to Precursors and Methyl Jasmonate

    Directory of Open Access Journals (Sweden)

    Chunyan Jiao

    2018-03-01

    Full Text Available Alkaloids are the main active ingredients in the medicinal plant Dendrobium officinale. Based on the published genomic and transcriptomic data, a proposed terpenoid indole alkaloid (TIA biosynthesis pathway may be present in D. officinale. In this study, protocorm-like bodies (PLBs with a high-yielding production of alkaloids were obtained by the optimization of tryptophan, secologanin and methyl jasmonate (MeJA treatment. The results showed that the total alkaloid content was 2.05 times greater than that of the control group when the PLBs were fed with 9 µM tryptophan, 6 µM secologanin and 100 µM MeJA after 36 days. HPLC analysis showed that strictosidine synthase (STR activity also increased in the treated plants. A total of 78 metabolites were identified using gas chromatography-mass spectrometry (GC-MS in combination with liquid chromatography-mass spectrometry (LC-MS methods; 29 differential metabolites were identified according to the multivariate statistical analysis. Among them, carapanaubine, a kind of TIA, exhibited dramatically increased levels. In addition, a possible underlying process of the metabolic flux from related metabolism to the TIA biosynthetic pathway was enhanced. These results provide a comprehensive view of the metabolic changes related to alkaloid biosynthesis, especially TIA biosynthesis, in response to tryptophan, secologanin and MeJA treatment.

  12. Drug metabolism: Comparison of biodistribution profile of holmium in three different compositions in healthy Wistar rats

    International Nuclear Information System (INIS)

    Cerqueira-Coutinho, Cristal; Vidal, Lluis Pascual; Pinto, Suyene Rocha; Santos-Oliveira, Ralph

    2016-01-01

    Radioisotope holmium is a candidate to be used in cancer treatment and diagnosis. There are different holmium salts and they present distinct solubility and consequently different biodistribution profiles. In this work, we aimed to evaluate the biodistribution profiles of two holmium salts (chloride and sulfate) and holmium nanoparticles (oxide) through an in vivo biodistribution assay using animal model. Samples were labeled with technetium-99m and administered in Wistar rats by retro-orbital route. Holmium chloride is highly soluble in water and it was quickly filtered by the kidneys while holmium sulfate that presents lower solubility in water was mainly found in the liver and the spleen. However, both the salts showed a similar biodistribution profile. On the other hand, holmium oxide showed a very different biodistribution profile since it seemed to interact with all organs. Due to its particle size range (approximately 100 nm) it was not intensively filtered by the kidneys being found in high quantities in many organs, for this reason its use as a nanoradiopharmaceutical could be promising in the oncology field. - Highlights: • This article brings the biodistribution of holmium in 3 different compositions. • The results, as a technical note may help other researchers around the world to elucidate the mechanism (biological behavior) and the best strategy to use holmium as radiopharmaceutical.

  13. The effects of parity, litter size, physiological state, and milking frequency on the metabolic profile of Lacaune dairy ewes.

    Science.gov (United States)

    González-García, E; Tesniere, A; Camous, S; Bocquier, F; Barillet, F; Hassoun, P

    2015-01-01

    Effects of parity (primiparous, PRIM vs multiparous, MULT) and litter size (singletons, SING vs twins, TWIN) on metabolic profiles from 1 wk before lambing to the end of lactation were studied in 48 Lacaune dairy ewes reared in confinement during most of the year and grazed on improved pastures at the end of lactation (summer). Another group of 48 ewes was incorporated during the milking period (ie, from 1 wk after weaning), to measure the effects of milking frequency (1 vs 2 milkings per day) on intake, milk production and composition, and body energy usage. Thus, in a 2 × 2 × 2 factorial design, ewes (n = 96) were allocated to homogeneous groups according to body weight (BW) and body condition score (BCS) and were monitored from late pregnancy to late lactation as a function of parity (PRIM, n = 48; MULT, n = 48), litter size (LSi) (SING, n = 40; TWIN, n = 56) and daily milking frequency (FREQ; milked once, ONE; n = 48; or twice, TWO; n = 48). Individual BW, BCS, plasma metabolites, and metabolic hormones were measured regularly (ie, 9 consecutive sampling dates). The BW was higher in MULT but no differences because of LSi or FREQ were detected at the intra-parity group level. The BCS was higher in MULT and in ewes with SING throughout the experiment. The latter was related to the demands for body reserves mobilization, as expressed by higher nonesterified fatty acids and β-hydroxybutyrate concentrations in ewes with TWIN from late pregnancy to weaning (35 d postpartum) in both PRIM and MULT ewes. This was consistent with higher insulin in MULT and higher triiodothyronine, leptin and insulin-like growth factor 1 in ewes with SING during this period. Differences in energy balance because of FREQ were evident after interpretation of plasma nonesterified fatty acids, glucose, insulin, and leptin concentration during the milking period. At similar feed intakes, ewes in ONE were in positive balance with regard to TWO. Overall, clear effects of parity, LSi

  14. Deducing hybrid performance from parental metabolic profiles of young primary roots of maize by using a multivariate diallel approach.

    Directory of Open Access Journals (Sweden)

    Kristen Feher

    Full Text Available Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100 years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental maize inbred lines and their corresponding twelve hybrids, along with the roots' biomass as a heterotic trait. Because the parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the Combined Relative Level (CRL. Our modeling strategy includes a feature selection step on the parental levels which are demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate fashion, whereby we attempt to not only predict macroscopic phenotype (biomass, but also molecular phenotype (metabolite profiles. Therefore, our study provides the first steps for further investigations of the genetic determinants to metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training set to predict biomass of all possible hybrids.

  15. Acylcarnitine Profiles in Acetaminophen Toxicity in the Mouse: Comparison to Toxicity, Metabolism and Hepatocyte Regeneration

    Directory of Open Access Journals (Sweden)

    Jack Hinson

    2013-08-01

    Full Text Available High doses of acetaminophen (APAP result in hepatotoxicity that involves metabolic activation of the parent compound, covalent binding of the reactive intermediate N-acetyl-p-benzoquinone imine (NAPQI to liver proteins, and depletion of hepatic glutathione. Impaired fatty acid β-oxidation has been implicated in previous studies of APAP-induced hepatotoxicity. To better understand relationships between toxicity and fatty acid β-oxidation in the liver in APAP toxicity, metabolomic assays for long chain acylcarnitines were examined in relationship to established markers of liver toxicity, oxidative metabolism, and liver regeneration in a time course study in mice. Male B6C3F1 mice were treated with APAP (200 mg/kg IP or saline and sacrificed at 1, 2, 4, 8, 24 or 48 h after APAP. At 1 h, hepatic glutathione was depleted and APAP protein adducts were markedly increased. Alanine aminotransferase (ALT levels were elevated at 4 and 8 h, while proliferating cell nuclear antigen (PCNA expression, indicative of hepatocyte regeneration, was apparent at 24 h and 48 h. Elevations of palmitoyl, oleoyl and myristoyl carnitine were apparent by 2–4 h, concurrent with the onset of Oil Red O staining in liver sections. By 8 h, acylcarnitine levels were below baseline levels and remained low at 24 and 48 h. A partial least squares (PLS model suggested a direct association of acylcarnitine accumulation in serum to APAP protein adduct and hepatic glutathione levels in mice. Overall, the kinetics of serum acylcarnitines in APAP toxicity in mice followed a biphasic pattern involving early elevation after the metabolism phases of toxicity and later depletion of acylcarnitines.

  16. Role of body composition and metabolic profile in Barrett's oesophagus and progression to cancer.

    Science.gov (United States)

    Di Caro, Simona; Cheung, Wui Hang; Fini, Lucia; Keane, Margaret G; Theis, Belinda; Haidry, Rehan; Di Renzo, Laura; De Lorenzo, Antonino; Lovat, Laurence; Batterham, Rachel L; Banks, Matthew

    2016-03-01

    The aim of this study was to evaluate the risk for Barrett's oesophagus (BE) on the basis of body composition, metabolic pathways, adipokines and metabolic syndrome (MS), as well as their role in cancer progression. In patients with and without BE at gastroscopy, data on MS, BMI, waist/hip ratio for abdominal obesity (AO) and body fat percentage by bioimpedance were obtained. Fasting plasma glucose, insulin, HbA1c, lipid, serum adiponectin and leptin levels were measured. The homoeostasis model assessment (HOMA-IR) was used to estimate insulin resistance. Histological findings for BE were correlated with the above parameters. Risk factors for BE identified using univariate analysis were entered into a multivariate logistic regression analysis. A total of 250 patients and 224 controls (F/M: 189/285, mean age 58.08±15.51 years) were enroled. In the BE and control groups, 39.6 versus 31.3% were overweight, 32 versus 22.8% were obese, 75.6 versus 51.3% had AO, and 28.1 versus 18.9% were metabolically obese, respectively. AO [odds ratio (OR) 3.08], increased body fat percentage (OR 2.29), and higher BMI (overweight: OR 2.04; obese: OR 2.26) were significantly associated with BE. A positive trend was found in Normal Weight Obese Syndrome (OR 1.69). MS was associated with BE (overweight: OR 3.05; obese: OR 5.2; AO: OR 8.08). Insulin levels (P=0.05) and HOMA-IR (Pbody composition.

  17. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature

    Directory of Open Access Journals (Sweden)

    Maria eBenina

    2013-12-01

    Full Text Available Haberlea rhodopensis is a resurrection species with extreme resistance to drought stress and desiccation but also with ability to withstand low temperatures and freezing stress. In order to identify biochemical strategies which contribute to Haberlea’s remarkable stress tolerance, the metabolic reconfiguration of H. rhodopensis during low temperature (4°C and subsequent return to optimal temperatures was investigated and compared with that of the stress tolerant Thellungiella halophyla and the stress sensitive A. thaliana. The effect of the low temperature treatment in the three species was confirmed by gene expression of low-temperature- and dehydration-inducible genes. Metabolic analysis by GC-MS revealed intrinsic differences in the metabolite levels of the three species even at 21°C. H. rhodopensis had significantly more raffinose, melibiose, trehalose, myo-inositol, sorbitol, and galactinol than the other two species. A. thaliana had the highest levels of putrescine and fumarate, while T. halophila had much higher levels of several amino acids, including alanine, asparagine, beta-alanine, histidine, isoleucine, phenylalanine, serine, threonine, and valine. In addition, the three species responded differently to the low temperature treatment and the subsequent recovery, especially with regard to the sugar metabolism. Chilling induced accumulation of maltose in Haberlea and raffinose in A. thaliana, but raffinose levels in low temperature exposed Arabidopsis were still much lower than these in unstressed Haberlea. While all species accumulated sucrose during chilling, that accumulation was transient in Haberlea and Arabidopsis but sustained in T. halophila after the return to optimal temperature. In T. halophila, the levels of proline and hydroxyproline drastically increased upon recovery. Collectively, these results show inherent. differences in the metabolomes under the ambient temperature and the strategies to respond to low

  18. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

    International Nuclear Information System (INIS)

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing; Pei Fengkui; Li Weisheng; Wu Yijie

    2008-01-01

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The 1 H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time- and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Kreb's cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-D-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine

  19. Metabolic flux profiling of MDCK cells during growth and canine adenovirus vector production

    OpenAIRE

    Nuno Carinhas; Daniel A. M. Pais; Alexey Koshkin; Paulo Fernandes; Ana S. Coroadinha; Manuel J. T. Carrondo; Paula M. Alves; Ana P. Teixeira

    2016-01-01

    Canine adenovirus vector type 2 (CAV2) represents an alternative to human adenovirus vectors for certain gene therapy applications, particularly neurodegenerative diseases. However, more efficient production processes, assisted by a greater understanding of the effect of infection on producer cells, are required. Combining [1,2-13C]glucose and [U-13C]glutamine, we apply for the first time 13C-Metabolic flux analysis (13C-MFA) to study E1-transformed Madin-Darby Canine Kidney (MDCK) cells meta...

  20. Metabolic Profiling of Primary and Secondary Biosynthetic Pathways in Angiosperms: Comparative Metabonomics and Applications of Hyphenated LC-NMR and LC-MS

    OpenAIRE

    Kaiser, Kayla Anne

    2012-01-01

    The goal of this dissertation was to advance plant metabolomics through optimization of biological experimental design, sampling and sample preparation, data acquisition and pre-processing, and multivariable data analysis. The analytical platform most employed for comparative metabonomics was nuclear magnetic resonance (NMR). Liquid-chromatography (LC) coupled to NMR and mass spectrometry (MS) extended metabolic profile coverage from primary into secondary metabolic pathways. Comparative p...

  1. Expression profiling of skeletal muscle following acute and chronic β2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm

    Directory of Open Access Journals (Sweden)

    Lynch Gordon S

    2009-09-01

    Full Text Available Abstract Background Systemic administration of β-adrenoceptor (β-AR agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of β-AR signaling has been highlighted by the inability of β1-3-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic (acute and chronic administration of the β2-AR agonist formoterol. Results Skeletal muscle gene expression (from murine tibialis anterior was profiled at both 1 and 4 hours following systemic administration of the β2-AR agonist formoterol, using Illumina 46K mouse BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress. Differentially expressed genes relevant to the regulation of muscle mass and metabolism (in the context of the hypertrophic phenotype were further validated by quantitative RT-PCR to examine gene expression in response to both acute (1-24 h and chronic administration (1-28 days of formoterol at multiple timepoints. In terms of skeletal muscle hypertrophy, attenuation of myostatin signaling (including differential expression of myostatin, activin receptor IIB, phospho-Smad3 etc was observed following acute and chronic administration of formoterol. Acute (but not chronic administration of formoterol also significantly induced the expression of genes involved in oxidative metabolism, including hexokinase 2, sorbin and SH3 domain containing 1, and uncoupling protein 3. Interestingly, formoterol

  2. Metabolic Profiling and Quantification of Neurotransmitters in Mouse Brain by Gas Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Jäger, Christian; Hiller, Karsten; Buttini, Manuel

    2016-09-01

    Metabolites are key mediators of cellular functions, and have emerged as important modulators in a variety of diseases. Recent developments in translational biomedicine have highlighted the importance of not looking at just one disease marker or disease inducing molecule, but at populations thereof to gain a global understanding of cellular function in health and disease. The goal of metabolomics is the systematic identification and quantification of metabolite populations. One of the most pressing issues of our times is the understanding of normal and diseased nervous tissue functions. To ensure high quality data, proper sample processing is crucial. Here, we present a method for the extraction of metabolites from brain tissue, their subsequent preparation for non-targeted gas chromatography-mass spectrometry (GC-MS) measurement, as well as giving some guidelines for processing of raw data. In addition, we present a sensitive screening method for neurotransmitters based on GC-MS in selected ion monitoring mode. The precise multi-analyte detection and quantification of amino acid and monoamine neurotransmitters can be used for further studies such as metabolic modeling. Our protocol can be applied to shed light on nervous tissue function in health, as well as neurodegenerative disease mechanisms and the effect of experimental therapeutics at the metabolic level. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  3. Effect of Ethephon as an Ethylene-Releasing Compound on the Metabolic Profile of Chlorella vulgaris.

    Science.gov (United States)

    Kim, So-Hyun; Lim, Sa Rang; Hong, Seong-Joo; Cho, Byung-Kwan; Lee, Hookeun; Lee, Choul-Gyun; Choi, Hyung-Kyoon

    2016-06-15

    In this study, Chlorella vulgaris (C. vulgaris) was treated with ethephon at low (50 μM) and high (200 μM) concentrations in medium and harvested at 0, 7, and 14 days, respectively. The presence of ethephon led to significant metabolic changes in C. vulgaris, with significantly higher levels of α-tocopherol, γ-aminobutyric acid (GABA), asparagine, and proline, but lower levels of glycine, citrate, and galactose relative to control. Ethephon induced increases in saturated fatty acids but decreases in unsaturated fatty acids. The levels of highly saturated sulfoquinovosyldiacylglycerol species and palmitic acid bound phospholipids were increased on day 7 of ethephon treatment. Among the metabolites, the productivities of α-tocopherol (0.70 μg/L/day) and GABA (1.90 μg/L/day) were highest for 50 and 200 μM ethephon on day 7, respectively. We propose that ethephon treatment involves various metabolic processes in C. vulgaris and can be an efficient way to enrich the contents of α-tocopherol and GABA.

  4. Accumulation of Carotenoids and Metabolic Profiling in Different Cultivars of Tagetes Flowers

    Directory of Open Access Journals (Sweden)

    Yun Ji Park

    2017-02-01

    Full Text Available Species of Tagetes, which belong to the family Asteraceae show different characteristics including, bloom size, shape, and color; plant size; and leaf shape. In this study, we determined the differences in primary metabolites and carotenoid yields among six cultivars from two Tagetes species, T. erecta and T. patula. In total, we detected seven carotenoids in the examined cultivars: violaxanthin, lutein, zeaxanthin, α-carotene, β-carotene, 9-cis-β-carotene, and 13-cis-β-carotene. In all the cultivars, lutein was the most abundant carotenoid. Furthermore, the contents of each carotenoid in flowers varied depending on the cultivar. Principal component analysis (PCA facilitated metabolic discrimination between Tagetes cultivars, with the exception of Inca Yellow and Discovery Orange. Moreover, PCA and orthogonal projection to latent structure-discriminant analysis (OPLS-DA results provided a clear discrimination between T. erecta and T. patula. Primary metabolites, including xylose, citric acid, valine, glycine, and galactose were the main components facilitating separation of the species. Positive relationships were apparent between carbon-rich metabolites, including those of the TCA cycle and sugar metabolism, and carotenoids.

  5. Metabolic Profile of Obeticholic Acid and Endogenous Bile Acids in Rats with Decompensated Liver Cirrhosis.

    Science.gov (United States)

    Roda, A; Aldini, R; Camborata, C; Spinozzi, S; Franco, P; Cont, M; D'Errico, A; Vasuri, F; Degiovanni, A; Maroni, L; Adorini, L

    2017-07-01

    Obeticholic acid (OCA) is a semisynthetic bile acid (BA) analog and potent farnesoid X receptor agonist approved to treat cholestasis. We evaluated the biodistribution and metabolism of OCA administered to carbon tetrachloride-induced cirrhotic rats. This was to ascertain if plasma and hepatic concentrations of OCA are potentially more harmful than those of endogenous BAs. After administration of OCA (30 mg/kg), we used liquid chromatography-mass spectrometry to measure OCA, its metabolites, and BAs at different timepoints in various organs and fluids. Plasma and hepatic concentrations of OCA and BAs were higher in cirrhotic rats than in controls. OCA and endogenous BAs had similar metabolic pathways in cirrhotic rats, although OCA hepatic and intestinal clearance were lower than in controls. BAs' qualitative and quantitative compositions were not modified by a single administration of OCA. In all the matrices studied, OCA concentrations were significantly lower than those of endogenous BAs, potentially much more cytotoxic. © 2017 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  6. Comparison of the Effects of Goat Dairy and Cow Dairy Based Breakfasts on Satiety, Appetite Hormones, and Metabolic Profile.

    Science.gov (United States)

    Rubio-Martín, Elehazara; García-Escobar, Eva; Ruiz de Adana, Maria-Soledad; Lima-Rubio, Fuensanta; Peláez, Laura; Caracuel, Angel-María; Bermúdez-Silva, Francisco-Javier; Soriguer, Federico; Rojo-Martínez, Gemma; Olveira, Gabriel

    2017-08-15

    The satiating effects of cow dairy have been thoroughly investigated; however, the effects of goat dairy on appetite have not been reported so far. Our study investigates the satiating effect of two breakfasts based on goat or cow dairy and their association with appetite related hormones and metabolic profile. Healthy adults consumed two breakfasts based on goat (G-Breakfast) or cow (C-Breakfast) dairy products. Blood samples were taken and VAS tests were performed at different time points. Blood metabolites were measured and Combined Satiety Index (CSI) and areas under the curves (AUC) were calculated. Desire to eat rating was significantly lower (breakfast & time interaction p cow dairy products, and pointed to a potential association of GLP-1 and triglyceride levels with the mechanisms by which dairy products might affect satiety after the G-Breakfast and C-Breakfast, respectively.

  7. Metabolic profiling of lymph from pigs fed with ß-glucan by high-resolution 1H NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Flemming Hofmann; Jørgensen, Henry Johs. Høgh; Engelsen, Søren Balling

    2010-01-01

    To gain information about the effect of ingesting different β-glucan sources on intestinal lymph metabolic profile, 10 growing pigs (30-36 kg) were fitted with a catheter in the jejunal lymphatic trunk, and lymph samples collected continuously -1 to 8 h postprandial and again at 24 h after feeding...... a diet containing either 0.4% added yeast or barley β-glucan and compared to a Control diet. The lymph samples were analysed by proton nuclear magnetic resonance (1H NMR) spectroscopy and subsequently subjected to chemometric analysis. The dominant resonances in the 1H NMR spectra of lymph arose...... of increased lymph viscosity induced by barley β-glucan compared to yeast β-glucan were observed...

  8. Impaired fasting glucose and the metabolic profile in Danish children and adolescents with normal weight, overweight, or obesity

    DEFF Research Database (Denmark)

    Kloppenborg, Julie T; Fonvig, Cilius E; Nielsen, Tenna R H

    2017-01-01

    OBJECTIVE: Whether the definitions of impaired fasting glucose (IFG) from the American Diabetes Association (ADA) and the World Health Organization (WHO) differentially impact estimates of the metabolic profile and IFG-related comorbidities in Danish children and adolescents is unknown. METHODS......: Two thousand one hundred and fifty four (979 boys) children and adolescents with overweight or obesity (median age 12 years) and 1824 (728 boys) children with normal weight (median age 12 years) from The Danish Childhood Obesity Biobank were studied. Anthropometrics, blood pressure, puberty......, and fasting concentrations of glucose, insulin, glycosylated hemoglobin (HbA1c), and lipids were measured. RESULTS: About 14.1% of participants with overweight or obesity exhibited IFG according to the ADA and 3.5% according to the WHO definition. Among individuals with normal weight, the corresponding...

  9. Obese with higher FNDC5/Irisin levels have a better metabolic profile, lower lipopolysaccharide levels and type 2 diabetes risk.

    Science.gov (United States)

    Bonfante, Ivan Luiz Padilha; Chacon-Mikahil, Mara Patricia Traina; Brunelli, Diego Trevisan; Gáspari, Arthur Fernandes; Duft, Renata Garbellini; Oliveira, Alexandre Gabarra; Araujo, Tiago Gomes; Saad, Mario Jose Abdalla; Cavaglieri, Cláudia Regina

    2017-12-01

    Thus, the aim of this study was to compare if higher or smaller fibronectin type 3 domain-containing protein 5 (FNDC5)/irisin levels are associated with inflammatory and metabolic markers, caloric/macronutrient intake, physical fitness and type 2 diabetes mellitus (T2DM) risk in obese middle-aged men, and also to correlate all variables analyzed with FNDC5/irisin. On the basis of a cluster study, middle-aged obese men (IMC: 31.01 ± 1.64 kg/m2) were divided into groups of higher and smaller levels of FNDC5/irisin. The levels of leptin, resistin, adiponectin, tumor necrosis factor alpha (TNFα), interleukin 6 and 10 (IL6, IL10), lipopolysaccharide (LPS), glucose, insulin, glycated hemoglobin, insulin resistance and sensibility, lipid profile, risk of T2DM development, body composition, rest energy expenditure, caloric/macronutrient intake and physical fitness were measured. The higher FNDC5/ irisin group presented improved insulin sensibility (homeostasis model assessment - sensibility (HOMA-S) (p = 0.01) and QUICKI index (p risk of T2DM development (p = 0.02), tendency to decrease serum resistin (p = 0.08) and significant lower LPS levels (p = 0.02). Inverse correlations between FNDC5/irisin and body weight (r -0.46, p = 0.04), neck circumference (r -0.51, p = 0.02), free fat mass (r -0.49, p = 0.02), triglycerides (r -0.43, p = 0.05) and risk of developing T2DM (r -0.61, p = 0.04) were observed. These results suggest that higher FNDC5/irisin levels in obese middle-aged men are related to a better metabolic profile and lower risk of T2DM development and serum LPS, a potential inducer of insulin resistance.

  10. LIPID METABOLISM INDICES AND FATTY ACIDS PROFILE IN THE BLOOD SERUM OF BROILER CHICKENS FED A DIET WITH LIGNOCELLULOSE

    Directory of Open Access Journals (Sweden)

    M Bogusławska-Tryk

    Full Text Available ABSTRACT The aim of the research was to determine lipid metabolism indices and fatty acid profile in the blood serum of Ross 308 chickens (n = 48, fed a finisher mixture supplemented with 0, 0.25, 0.5 and 1.0% of lignocellulose. The feeding trial lasted from 21 to 42 d of the birds' age. Blood samples were collected from each chicken at 42d of age from the pterygoid canal vein. In the blood serum the content of triglycerides (TG, total cholesterol (TCHOL and high density lipoprotein (HDL fraction was determined by the spectrophotometric method. The fatty acids concentration was estimated with the use of the gas chromatography method. Lignocellulose in doses of 0.5 and 1.0% significantly reduced the concentration of triglycerides and low density lipoprotein (LDL fraction. Saturated fatty acids (SFA and monounsaturated fatty acids (MUFA content was not affected by dietary treatments whereas lignocellulose significantly influenced the profile of polyunsaturated fatty acids (PUFA from n-3 and n-6 families. Insoluble fiber decreased (p< 0.05 serum concentration of a-linolenic acid (C18:3n-3 and increased share of docosahexaenoic acid (C22:6n-3, dihomogammalinolenic acid (C20:3n-6 and arachidonic acid (C20:4n-6 in total PUFA, compared to the control birds. The results of the present study have shown that the incorporation of limited amounts of lignocellulose into the broiler diet can influence the lipid metabolism in the chickens.

  11. [An analysis of the diabetic population in a Spanish rural are: morbidity profile, use of resources, complications and metabolic control].

    Science.gov (United States)

    Inoriza, José M; Pérez, Marc; Cols, Montse; Sánchez, Inma; Carreras, Marc; Coderch, Jordi

    2013-11-01

    To describe the characteristics of a diabetic population, morbidity profile, resource consumption, complications and degree of metabolic control. Cross-sectional study during 2010. Four Health Areas (91.301 people) where the integrated management organization Serveis de Salut integrated Baix Empordà completely provide healthcare assistance. 4.985 diabetic individuals, identified through clinical codes using the ICD-9-MC classification and the 3M? Clinical Risk Groups software. Morbidity profile, related complications and degree of metabolic control were obtained for the target diabetic population. We analyzed the consumption of healthcare resources, pharmaceutical and blood glucose reagent strips. All measurements obtained at individual level. 99.3% of the diabetic population were attended at least once at a primary care center (14.9% of visits). 39.5% of primary care visits and less than 10% of the other scanned resources were related to the management of diabetes. The pharmaceutical expenditure was 25.4% of the population consumption (average cost ?1.014,57). 36.5% of diabetics consumed reagents strips (average cost ?120,65). The more frequent CRG are 5424-Diabetes (27%); 6144-Diabetes and Hypertension (25,5%) and 6143-Diabetes and Other Moderate Chronic Disease (17,2%). The degree of disease control is better in patients not consumers of antidiabetic drugs or treated with oral antidiabetic agents not secretagogues. Comorbidity is decisive in the consumption of resources. Just a few part of this consumption is specifically related to the management of diabetes. Results obtained provide a whole population approach to the main existing studies in our national and regional context. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  12. (1)H-Nuclear magnetic resonance-based plasma metabolic profiling of dairy cows with clinical and subclinical ketosis.

    Science.gov (United States)

    Sun, L W; Zhang, H Y; Wu, L; Shu, S; Xia, C; Xu, C; Zheng, J S

    2014-03-01

    The purpose of this study was to assess the metabolic profile of plasma samples from cows with clinical and subclinical ketosis. According to clinical signs and 3-hydroxybutyrate plasma levels, 81 multiparous Holstein cows were selected from a dairy farm 7 to 21 d after calving. The cows were divided into 3 groups: cows with clinical ketosis, cows with subclinical ketosis, and healthy control cows. (1)H-Nuclear magnetic resonance-based metabolomics was used to assess the plasma metabolic profiles of the 3 groups. The data were analyzed by principal component analysis, partial least squares discriminant analysis, and orthogonal partial least-squares discriminant analysis. The differences in metabolites among the 3 groups were assessed. The orthogonal partial least-squares discriminant analysis model differentiated the 3 groups of plasma samples. The model predicted clinical ketosis with a sensitivity of 100% and a specificity of 100%. In the case of subclinical ketosis, the model had a sensitivity of 97.0% and specificity of 95.7%. Twenty-five metabolites, including acetoacetate, acetone, lactate, glucose, choline, glutamic acid, and glutamine, were different among the 3 groups. Among the 25 metabolites, 4 were upregulated, 7 were downregulated, and 14 were both upregulated and downregulated. The results indicated that plasma (1)H-nuclear magnetic resonance-based metabolomics, coupled with pattern recognition analytical methods, not only has the sensitivity and specificity to distinguish cows with clinical and subclinical ketosis from healthy controls, but also has the potential to be developed into a clinically useful diagnostic tool that could contribute to a further understanding of the disease mechanisms. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Prevalence of Metabolic Syndrome and Associations with Lipid Profiles in Iranian Men: A Population-Based Screening Program

    Directory of Open Access Journals (Sweden)

    Abolfazl Mohammadbeigi

    2018-01-01

    Full Text Available Purpose: Metabolic syndrome (MS is characterized by a collection of interdependent disorders, including abdominal obesity, dyslipidemia, hyperglycemia, hypertension, and diabetes. The current study aimed to estimate the prevalence of MS in Qom, Iran. Materials and Methods: A population-based screening program was conducted in the city of Qom, in 845 urban adult men over 25 years old in 2014. Abdominal obesity, fasting blood glucose (FBG, blood pressure, and the serum lipid profile were measured in subjects after fasting for at least 8 hours. MS was defined according to the Adult Treatment Panel III criteria. Data were analyzed using the chi-square test, t-test, and multiple logistic regression. Results: The overall prevalence of MS was 23.0%, and the most common prevalent metabolic abnormalities associated with MS were low high-density lipoprotein cholesterol (<40 mg/dL in 34.3% of subjects, a waist circumference >102 cm in 33.9%, blood pressure ≥130/85 mmHg in 27.6%, fasting triglycerides (TG ≥150 mg/dL in 25%, and FBG ≥110 mg/dL in 20.6%. A FBG level ≥110 mg/dL (odds ratio [OR]=4.85; 95% confidence interval [CI], 2.14∼8.24, dyslipidemia (OR=3.51; 95% CI, 2.10∼5.89, and a fasting TG ≥150 mg/dL were the most important factors contributing to MS. Conclusions: The prevalence of MS in men in Qom was higher than has been reported in other countries, but it was lower than the mean values that have been reported elsewhere in Iran. FBG was the most important factor contributing to MS, and all elements of the lipid profile showed important associations with MS.

  14. Clinical and metabolic profile of patients with latent autoimmune diabetes in adults in specialized care in Madrid.

    Science.gov (United States)

    Arranz Martín, Alfonso; Lecumberri Pascual, Edurne; Brito Sanfiel, Miguel Ángel; Andía Melero, Víctor; Nattero Chavez, Lia; Sánchez López, Iván; Cánovas Molina, Gloria; Arrieta Blanco, Francisco; González Perez Del Villar, Noemí

    2017-01-01

    To report the clinical characteristics of patients with latent autoimmune diabetes in adults (LADA), and to ascertain their metabolic control and associated chronic complications. Patients with DM attending specialized medical care in Madrid who met the following criteria: age at diagnosis of DM >30years, initial insulin independence for at least 6months and positive GAD antibodies were enrolled. Clinical profiles, data on LADA diagnosis, associated autoimmunity, C-peptide levels, therapeutic regimen, metabolic control, and presence of chronic complications were analyzed. Number of patients; 193; 56% females. Family history of DM: 62%. Age at DM diagnosis: 49years. Delay in confirmation of LADA: 3.5years. Insulin-independence time: 12months. Baseline serum C-peptide levels: 0.66ng/ml. Basal-bolus regimen: 76.7%. Total daily dose: 35.1U/day, corresponding to 0.51U/Kg. With no associated oral antidiabetic drugs: 33.5%. Other autoimmune diseases: 57%. Fasting plasma glucose: 160.5mg/dL. HbA1c: 7.7%. BMI: 25.4kg/m 2 (overweight, 31.5%; obesity, 8%). Blood pressure: 128/75. HDL cholesterol: 65mg/dL. LDL cholesterol: 96mg/dL. Triglycerides: 89mg/dL. Known chronic complications: 28%. Recognition of LADA may be delayed by several years. There is a heterogeneous pancreatic insulin reserve which is negative related to glycemic parameters. Most patients are poorly controlled despite intensive insulin therapy. They often have overweight, but have adequate control of BP and lipid profile and a low incidence of macrovascular complications. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Serum Leptin Levels in Polycystic Ovary Syndrome and Its Relationship with Metabolic and Hormonal Profile in Pakistani Females

    Directory of Open Access Journals (Sweden)

    Mukhtiar Baig

    2014-01-01

    Full Text Available The study aimed to investigate the levels of serum leptin in PCOS females and to correlate it with metabolic and hormonal parameters. Sixty-two PCOS and ninety normal cycling (NC females with matched age and body mass index (BMI were recruited for this cross-sectional study. Serum leptin, FSH, LH, E2, free testosterone, progesterone, thyroid profile, and FBG levels were measured. The mean leptin levels in PCOS and NC were not significantly different (45.56 ng/mL ± 1.49 vs 41.78 ± 1.31 ng/mL, P>0.05; however, leptin levels showed a strong correlation with BMI in PCOS and NC group (r=0.77, P<0.0001; r=0.82, P<0.0001, resp.. High E2 levels in NC had a significant correlation with leptin whereas FBG correlated with leptin in PCOS (r=0.51, P=0.005. TSH had a substantial correlation (r=0.49, P<0.005; r=0.69, P<0.005 in PCOS and NC, respectively. There was no significant difference found in circulating leptin concentration between PCOS and NC subjects. Leptin levels in PCOS were related with metabolic impairments manifested by disturbance in FBG levels and impairment of reproductive functions in terms of reduced E2 secretion.

  16. Metabolic profile of Kudiezi injection in rats by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Zhang, Jingdan; Zhang, Xiaoxue; Zhao, Yangyang; Song, Aihua; Sun, Wei; Yin, Ran

    2018-02-01

    In this study, a reliable and sensitive ultra-high performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry method was developed for the systematic study of the metabolic profile of Kudiezi injection in rat plasma, bile, urine, and feces after intravenous administration of a single dose. The chromatographic separation was performed on an Agilent Eclipse Plus C 18 column (4.6 mm × 50 mm, 1.8 μm) and the identification of prototype components and metabolites was achieved on a Bruker Solarix 7.0 T ultra-high resolution spectrometer in negative ion mode. Results indicated that a total of 76 constituents including 29 prototype compounds and 47 metabolites (10 phase I metabolites and 37 phase II metabolites) were tentatively identified. And the metabolic pathways of these prototype compounds including hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. In conclusion, the developed method with high resolution and sensitivity was effective for screening and identification of prototypes and metabolites of Kudiezi injection in vivo. Moreover, these results would provide significant information for further pharmacokinetic and pharmacological research of Kudiezi injection in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    KAUST Repository

    Mojib, Nazia; Amad, Maan H.; Thimma, Manjula; Aldanondo, Naroa; Kumaran, Mande; Irigoien, Xabier

    2014-01-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid–protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin–protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton.

  18. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    KAUST Repository

    Mojib, Nazia

    2014-06-01

    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue-pigmented organisms from the phylum Arthropoda, subclass Copepoda (Acartia fossae) and the phylum Chordata, class Appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid–protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and nontargeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all the species. The pathway analysis showed that all the species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass Copepoda), we identified highly expressed homologous β-carotene hydroxylase enzymes and putative carotenoid-binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class Appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin–protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton.

  19. Indoor Heating Drives Water Bacterial Growth and Community Metabolic Profile Changes in Building Tap Pipes during the Winter Season.

    Science.gov (United States)

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Shang, Pan-Lu; Yang, Xiao; Ma, Wei-Xing

    2015-10-27

    The growth of the bacterial community harbored in indoor drinking water taps is regulated by external environmental factors, such as indoor temperature. However, the effect of indoor heating on bacterial regrowth associated with indoor drinking water taps is poorly understood. In the present work, flow cytometry and community-level sole-carbon-source utilization techniques were combined to explore the effects of indoor heating on water bacterial cell concentrations and community carbon metabolic profiles in building tap pipes during the winter season. The results showed that the temperature of water stagnated overnight ("before") in the indoor water pipes was 15-17 °C, and the water temperature decreased to 4-6 °C after flushing for 10 min ("flushed"). The highest bacterial cell number was observed in water stagnated overnight, and was 5-11 times higher than that of flushed water. Meanwhile, a significantly higher bacterial community metabolic activity (AWCD590nm) was also found in overnight stagnation water samples. The significant "flushed" and "taps" values indicated that the AWCD590nm, and bacterial cell number varied among the taps within the flushed group (p heating periods.

  20. Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets.

    Science.gov (United States)

    Rotches-Ribalta, Maria; Andres-Lacueva, Cristina; Estruch, Ramon; Escribano, Elvira; Urpi-Sarda, Mireia

    2012-11-01

    A pharmacokinetic study of the metabolic profile of resveratrol has been performed in healthy men after moderate red wine (RW) consumption. The bioavailability of resveratrol is highly influenced by several factors such as the food matrix and, therefore, this study has been compared with a pilot study in which men ingested grape extract (GE) tablets as a nutraceutical, containing similar total amounts of resveratrol than RW. Blood and urine samples were taken before and at several time points after intervention and then analyzed by SPE and LC-ESI-MS/MS. Up to 17 resveratrol and piceid derivatives were identified, including those formed by the intestinal microbiota. Resveratrol glucosides were found in plasma as intact forms and reached the lowest maximum concentrations 1h after both interventions. Higher plasma concentrations and longer times (t(max)) were observed for resveratrol glucuronides due to phase II metabolism and even higher values for conjugates derived from microbiota, such as dihydroresveratrol-glucuronides. The same trend was observed for total excreted amounts in urine samples. When both treatments were compared, statistically significant differences for some metabolites were obtained, which may be due to the different composition of resveratrol and piceid in both sources. However, GE formulation seems to delay resveratrol absorption, staying longer in the gut where could be metabolized to a greater degree, since 2.1-3.6-fold higher urinary concentrations of microbial metabolites were observed after GE intervention at 12-24h urinary fraction. Therefore, supplement intake could be also a way to bring resveratrol benefits to human health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Eating patterns and food choice as determinant of weight loss and improvement of metabolic profile after RYGB.

    Science.gov (United States)

    Molin Netto, Bárbara Dal; Earthman, Carrie P; Farias, Gisele; Landi Masquio, Deborah Cristina; Grotti Clemente, Ana Paula; Peixoto, Priscilla; Bettini, Solange Cravo; von Der Heyde, Maria Emilia; Dâmaso, Ana R

    2017-01-01

    Significant changes in the preference for different dietary components have been observed after Roux-en-Y gastric bypass (RYGB). The aim of this study was to evaluate the early post-RYGB changes in quality of eating patterns and their relationship to weight loss and metabolic parameters. The sample was composed of 41 extremely obese individuals undergoing RYGB. Dietary data were collected using a validated food frequency questionnaire in Brazil. A food intake evaluation was conducted with a focus on the frequency of consumption (≥4 times/wk) of markers for healthy eating and markers for unhealthy eating. Furthermore, anthropometric and metabolic markers were collected before surgery and 6 mo post-RYGB. Compared with baseline, the postsurgery body mass index was reduced by 12.9 kg/m 2 , corresponding to an excess weight loss of 63.5%. Blood glucose, insulin, ferritin, cholesterol, low-density lipoprotein-cholesterol, triacylglycerol (TG), and hemoglobin were reduced 6 mo after RYGB (P hamburger), and some healthy food increased (e.g., from 0% to 5.1% for fish and from 0% to 25.6% for plain yogurt). There was a decrease in the frequency of individuals who reported consuming fruit and vegetables. Conversely, insulin, glucose, and TG levels were positively associated with intake of chocolates/truffles and ice cream/sundaes. Participants in the present study appeared to develop a healthier dietary pattern by 6 mo after RYGB. These results show that a healthier dietary pattern is associated with a significant improvement of metabolic profile and weight loss. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring.

    Science.gov (United States)

    Park, Youngja H; Lee, Kichun; Soltow, Quinlyn A; Strobel, Frederick H; Brigham, Kenneth L; Parker, Richard E; Wilson, Mark E; Sutliff, Roy L; Mansfield, Keith G; Wachtman, Lynn M; Ziegler, Thomas R; Jones, Dean P

    2012-05-16

    High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses, we applied HPMP and bioinformatics analysis to plasma of humans, rhesus macaques, marmosets, pigs, sheep, rats and mice to determine: (1) whether more chemicals are detected in humans living in a less controlled environment than captive species and (2) whether a subset of plasma chemicals with similar inter-species and intra-species variation could be identified for use in comparative toxicology. Results show that the number of chemicals detected was similar in humans (3221) and other species (range 2537-3373). Metabolite patterns were most similar within species and separated samples according to family and order. A total of 1485 chemicals were common to all species; 37% of these matched chemicals in human metabolomic databases and included chemicals in 137 out of 146 human metabolic pathways. Probability-based modularity clustering separated 644 chemicals, including many endogenous metabolites, with inter-species variation similar to intra-species variation. The remaining chemicals had greater inter-species variation and included environmental chemicals as well as GSH and methionine. Together, the data suggest that HPMP provides a platform that can be useful within human populations and controlled animal studies to simultaneously evaluate environmental exposures and biological responses to such exposures. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Metabolic profiles and cDNA-AFLP analysis of Salvia miltiorrhiza and Salvia castanea Diel f. tomentosa Stib.

    Directory of Open Access Journals (Sweden)

    Dongfeng Yang

    Full Text Available Plants of the genus Salvia produce various types of phenolic compounds and tanshinones which are effective for treatment of coronary heart disease. Salvia miltiorrhiza and S. castanea Diels f. tomentosa Stib are two important members of the genus. In this study, metabolic profiles and cDNA-AFLP analysis of four samples were employed to identify novel genes potentially involved in phenolic compounds and tanshinones biosynthesis, including the red roots from the two species and two tanshinone-free roots from S. miltiorrhiza. The results showed that the red roots of S. castanea Diels f. tomentosa Stib produced high contents of rosmarinic acid (21.77 mg/g and tanshinone IIA (12.60 mg/g, but low content of salvianolic acid B (1.45 mg/g. The red roots of S. miltiorrhiza produced high content of salvianolic acid B (18.69 mg/g, while tanshinones accumulation in this sample was much less than that in S. castanea Diels f. tomentosa Stib. Tanshinones were not detected in the two tanshinone-free samples, which produced high contents of phenolic compounds. A cDNA-AFLP analysis with 128 primer pairs revealed that 2300 transcript derived fragments (TDFs were differentially expressed among the four samples. About 323 TDFs were sequenced, of which 78 TDFs were annotated with known functions through BLASTX searching the Genbank database and 14 annotated TDFs were assigned into secondary metabolic pathways through searching the KEGGPATHWAY database. The quantitative real-time PCR analysis indicated that the expression of 9 TDFs was positively correlated with accumulation of phenolic compounds and tanshinones. These TDFs additionally showed coordinated transcriptional response with 6 previously-identified genes involved in biosynthesis of tanshinones and phenolic compounds in S. miltiorrhiza hairy roots treated with yeast extract. The sequence data in the present work not only provided us candidate genes involved in phenolic compounds and tanshinones biosynthesis

  4. Prevalence and clinical profile of metabolic syndrome among type 1 diabetes mellitus patients in southern India.

    Science.gov (United States)

    Billow, Amy; Anjana, Ranjit Mohan; Ngai, Michelle; Amutha, Anandakumar; Pradeepa, Rajendra; Jebarani, Saravanan; Unnikrishnan, Ranjit; Michael, Edwin; Mohan, Viswanathan

    2015-07-01

    To assess the prevalence of metabolic syndrome (MetS) among patients with type 1 diabetes mellitus(T1DM) and to look at prevalence of diabetes complications in T1DM with and without MetS. We studied 451 T1DM patients attending a tertiary diabetes centre in Chennai, South India. T1DM was diagnosed based on absence of beta cell reserve and requirement of insulin from the time of diagnosis. Data on clinical and biochemical characteristics as well as complications details to study the prevalence were also extracted from electronic records. T1DM patients were divided into those with and without MetS[diagnosed according to the harmonizing the metabolic syndrome criteria(IDF/NHLBI/AHA/WHF/IAS/IASO)]. The overall prevalence of MetS among T1DM was 22.2%(100/451). Patients with MetS were older, had longer diabetes duration, acanthosis nigricans, and increased serum cholesterol. In the unadjusted logistic regression analysis, retinopathy, nephropathy and neuropathy were associated with MetS. However after adjustment for age, gender, diabetes duration, HbA1C and BMI significant association was seen only between MetS and retinopathy [odds ratio (OR) 2.82, 95% CI 1.18-6.74, p = 0.020] and nephropathy [OR 4.92, 95% CI 2.59-9.33, p < 0.001]. Prevalence of MetS is high among Asian Indian T1DM patients, and its presence is associated with increased risk of diabetic retinopathy and nephropathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Metabolic profiling studies on the toxicological effects of realgar in rats by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing; Pei Fengkui; Li Weisheng; Wu Yijie

    2009-01-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of 1 H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. 1 H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine

  6. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    Directory of Open Access Journals (Sweden)

    Bruno Rodrigues

    2014-01-01

    Full Text Available The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week and detraining (DT on inflammatory and metabolic profile after myocardial infarction (MI in rats. Male Wistar rats were divided into control (C, n=8, sedentary infarcted (SI, n=9, trained infarcted (TI,  n=10; 3 months of ET, and detrained infarcted (DI, n=11; 2 months of ET + 1 month of DT. After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis, and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in expe