WorldWideScience

Sample records for rapid metabolic profiling

  1. Targeted metabolic profiling rapidly differentiates Escherichia coli and Staphylococcus aureus at species and strain level.

    Science.gov (United States)

    Li, Haorong; Zhu, Jiangjiang

    2017-10-15

    Pathogenic foodborne bacteria have been associated with severe infectious disease in humans and animals worldwide. Rapid detection and screening of these foodborne pathogens are critical for our food safety. This study aimed at detecting Escherichia coli and Staphylococcus aureus, two important foodborne bacteria, at the species and strain/serovar level using a mass spectrometry (MS)-based targeted metabolic profiling approach. Ten E. coli strains (8 out of 10 were foodborne outbreak isolates) and four S. aureus strains were tested at two growth time points. A high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS)-based targeted metabolomics approach was applied for metabolic profile based bacteria detection. A total of 108 metabolites from multiple metabolic pathways were confidently detected from these bacteria. Our study demonstrated that with only 4 h of enrichment in the same medium, the metabolic profiles from E. coli and S. aureus showed significant difference. Furthermore, seven out of ten E. coli strains and all four tested S. aureus strains showed strain/serovar-level differentiation at the 4-h time point, which indicated great potential for strain level stratification in future food screening using our MS-based targeted metabolic profiling approach. A targeted metabolomics method was developed to demonstrate the utility of HPLC/MS/MS-based metabolic profiling in rapidly (4 h) differentiating E. coli and S. aureus bacteria, two of the most notorious foodborne bacteria, at both the species and strain/serovar levels. The results indicated that our approach has great potential in the future for fast and specific detection of foodborne pathogenic bacteria based on their metabolic diversity. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Profiling metabolic networks to study cancer metabolism.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian M

    2013-02-01

    Cancer is a disease of unregulated cell growth and survival, and tumors reprogram biochemical pathways to aid these processes. New capabilities in the computational and bioanalytical characterization of metabolism have now emerged, facilitating the identification of unique metabolic dependencies that arise in specific cancers. By understanding the metabolic phenotype of cancers as a function of their oncogenic profiles, metabolic engineering may be applied to design synthetically lethal therapies for some tumors. This process begins with accurate measurement of metabolic fluxes. Here we review advanced methods of quantifying pathway activity and highlight specific examples where these approaches have uncovered potential opportunities for therapeutic intervention.

  3. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes

    Science.gov (United States)

    Liao, Yi-Hung; Sung, Yu-Chi

    2016-01-01

    Changes in an athlete’s physiological and health metabolic profiles after detraining have not been studied in elite Taekwondo (TKD) athletes. To enable a better understanding of these physiological changes to training cessation, this study examined the effects of 8-weeks detraining on the aerobic capacity, body composition, inflammatory status and health metabolic profile in elite TKD athletes. Sixteen elite TKD athletes (age: 21.0 ± 0.8 yrs, BMI: 22.4 ± 3.9 kg/m2; Mean ± SD; 11 males and 5 females) participated in this study. Physical activity level assessment using computerized physical activity logs was performed during the competitive preparation season (i.e. one-week before national competition) and at two week intervals throughout the detraining period. Participant aerobic capacity, body fat, and blood biomarkers were measured before and after detraining, and the blood biomarker analyses included leukocyte subpopulations, blood glucose, insulin, dehydroepiandrosterone-sulfate (DHEA-S), and cortisol. Eight-week detraining increased DHEA-S/cortisol ratio (+57.3%, p = 0.004), increased insulin/cortisol ratio (+59.9%, p = 0.004), reduced aerobic power (–2.43%, p = 0.043), increased body fat accumulation (body fat%: +21.3%, p < 0.001), decreased muscle mass (muscle mass%: –4.04%, p < 0.001), and elevated HOMA-IR (the biomarker of systemic insulin resistance; +34.2%, p = 0.006). The neutrophil-to-lymphocyte ratio (NLR), a systemic inflammatory index, increased by 48.2% (p = 0.005). The change in aerobic capacity was correlated with the increased fat mass (r = –0.429, p = 0.049) but not with muscle loss. An increase in the NLR was correlated to the changes in HOMA-IR (r = 0.44, p = 0.044) and aerobic capacity (r = –0.439, p = 0.045). We demonstrate that 8-week detraining suppresses physiological stress but rapidly results in declines in athletic performance and health metabolic profiles, including reduced aerobic capacity, increased body fat, muscle

  4. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes.

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liao

    Full Text Available Changes in an athlete's physiological and health metabolic profiles after detraining have not been studied in elite Taekwondo (TKD athletes. To enable a better understanding of these physiological changes to training cessation, this study examined the effects of 8-weeks detraining on the aerobic capacity, body composition, inflammatory status and health metabolic profile in elite TKD athletes. Sixteen elite TKD athletes (age: 21.0 ± 0.8 yrs, BMI: 22.4 ± 3.9 kg/m2; Mean ± SD; 11 males and 5 females participated in this study. Physical activity level assessment using computerized physical activity logs was performed during the competitive preparation season (i.e. one-week before national competition and at two week intervals throughout the detraining period. Participant aerobic capacity, body fat, and blood biomarkers were measured before and after detraining, and the blood biomarker analyses included leukocyte subpopulations, blood glucose, insulin, dehydroepiandrosterone-sulfate (DHEA-S, and cortisol. Eight-week detraining increased DHEA-S/cortisol ratio (+57.3%, p = 0.004, increased insulin/cortisol ratio (+59.9%, p = 0.004, reduced aerobic power (-2.43%, p = 0.043, increased body fat accumulation (body fat%: +21.3%, p < 0.001, decreased muscle mass (muscle mass%: -4.04%, p < 0.001, and elevated HOMA-IR (the biomarker of systemic insulin resistance; +34.2%, p = 0.006. The neutrophil-to-lymphocyte ratio (NLR, a systemic inflammatory index, increased by 48.2% (p = 0.005. The change in aerobic capacity was correlated with the increased fat mass (r = -0.429, p = 0.049 but not with muscle loss. An increase in the NLR was correlated to the changes in HOMA-IR (r = 0.44, p = 0.044 and aerobic capacity (r = -0.439, p = 0.045. We demonstrate that 8-week detraining suppresses physiological stress but rapidly results in declines in athletic performance and health metabolic profiles, including reduced aerobic capacity, increased body fat, muscle loss

  5. Eight-Week Training Cessation Suppresses Physiological Stress but Rapidly Impairs Health Metabolic Profiles and Aerobic Capacity in Elite Taekwondo Athletes.

    Science.gov (United States)

    Liao, Yi-Hung; Sung, Yu-Chi; Chou, Chun-Chung; Chen, Chung-Yu

    2016-01-01

    Changes in an athlete's physiological and health metabolic profiles after detraining have not been studied in elite Taekwondo (TKD) athletes. To enable a better understanding of these physiological changes to training cessation, this study examined the effects of 8-weeks detraining on the aerobic capacity, body composition, inflammatory status and health metabolic profile in elite TKD athletes. Sixteen elite TKD athletes (age: 21.0 ± 0.8 yrs, BMI: 22.4 ± 3.9 kg/m2; Mean ± SD; 11 males and 5 females) participated in this study. Physical activity level assessment using computerized physical activity logs was performed during the competitive preparation season (i.e. one-week before national competition) and at two week intervals throughout the detraining period. Participant aerobic capacity, body fat, and blood biomarkers were measured before and after detraining, and the blood biomarker analyses included leukocyte subpopulations, blood glucose, insulin, dehydroepiandrosterone-sulfate (DHEA-S), and cortisol. Eight-week detraining increased DHEA-S/cortisol ratio (+57.3%, p = 0.004), increased insulin/cortisol ratio (+59.9%, p = 0.004), reduced aerobic power (-2.43%, p = 0.043), increased body fat accumulation (body fat%: +21.3%, p < 0.001), decreased muscle mass (muscle mass%: -4.04%, p < 0.001), and elevated HOMA-IR (the biomarker of systemic insulin resistance; +34.2%, p = 0.006). The neutrophil-to-lymphocyte ratio (NLR), a systemic inflammatory index, increased by 48.2% (p = 0.005). The change in aerobic capacity was correlated with the increased fat mass (r = -0.429, p = 0.049) but not with muscle loss. An increase in the NLR was correlated to the changes in HOMA-IR (r = 0.44, p = 0.044) and aerobic capacity (r = -0.439, p = 0.045). We demonstrate that 8-week detraining suppresses physiological stress but rapidly results in declines in athletic performance and health metabolic profiles, including reduced aerobic capacity, increased body fat, muscle loss, insulin

  6. Metabolic Profiling of Alpine and Ecuadorian Lichens

    Directory of Open Access Journals (Sweden)

    Verena K. Mittermeier

    2015-10-01

    Full Text Available Non-targeted 1H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA internal transcribed spacer (ITS sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.

  7. Metabolic Profiling of Alpine and Ecuadorian Lichens.

    Science.gov (United States)

    Mittermeier, Verena K; Schmitt, Nicola; Volk, Lukas P M; Suárez, Juan Pablo; Beck, Andreas; Eisenreich, Wolfgang

    2015-10-01

    Non-targeted ¹H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA) were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.

  8. The evolution of metabolic profiling in parasitology.

    Science.gov (United States)

    Holmes, E

    2010-08-01

    The uses of metabolic profiling technologies such as mass spectrometry and nuclear magnetic resonance spectroscopy in parasitology have been multi-faceted. Traditional uses of spectroscopic platforms focused on determining the chemical composition of drugs or natural products used for treatment of parasitic infection. A natural progression of the use of these tools led to the generation of chemical profiles of the parasite in in vitro systems, monitoring the response of the parasite to chemotherapeutics, profiling metabolic consequences in the host organism and to deriving host-parasite interactions. With the dawn of the post-genomic era the paradigm in many research areas shifted towards Systems Biology and the integration of biomolecular interactions at the level of the gene, protein and metabolite. Although these technologies have yet to deliver their full potential, metabolic profiling has a key role to play in defining diagnostic or even prognostic metabolic signatures of parasitic infection and in deciphering the molecular mechanisms underpinning the development of parasite-induced pathologies. The strengths and weaknesses of the various spectroscopic technologies and analytical strategies are summarized here with respect to achieving these goals.

  9. Rapid Measurement of Nanoparticle Thickness Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Katz-Boon, Hadas, E-mail: hadas.katz@monash.edu [Department of Materials Engineering, Monash University, VIC 3800 (Australia); Rossouw, Chris J. [Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia); Dwyer, Christian; Etheridge, Joanne [Department of Materials Engineering, Monash University, VIC 3800 (Australia); Monash Centre for Electron Microscopy, Monash University, VIC 3800 (Australia)

    2013-01-15

    A method to measure the thickness of a single-crystal nanoparticle in the direction parallel to the incident beam from annular dark field scanning transmission electron microscope (ADF-STEM) images is reported, providing a map of thickness versus position across the nanoparticle-a 'thickness profile' image. The method is rapid and hence suitable for surveying large numbers of nanoparticles. The method measures the intensity scattered to a characterised ADF detector and compares this to the incident beam intensity, to obtain a normalized ADF image. The normalised intensity is then converted to thickness via dynamical ADF image simulations. The method is accurate within 10% and the precision is dominated primarily by 'shot noise'. Merits and limitations of this method are discussed. A method to calibrate the response function of the ADF detector without external equipment is also described, which is applicable to the entire range of gain and background settings. -- Highlights: Black-Right-Pointing-Pointer A method is developed to convert ADF-STEM images to 'thickness profile' images. Black-Right-Pointing-Pointer It is applicable in particles survey, facets determination and discrete tomography. Black-Right-Pointing-Pointer A method to calibrate the response of the ADF detector is described. Black-Right-Pointing-Pointer The response in analysed across a range of conditions. Black-Right-Pointing-Pointer Dynamical ADF image simulations are presented, demonstrating intensity vs. thickness dependence.

  10. Liquid Chromatography-Mass Spectrometry-Based In Vitro Metabolic Profiling Reveals Altered Enzyme Expressions in Eicosanoid Metabolism

    OpenAIRE

    Lee, Su Hyeon; Kim, Eung Ju; Lee, Dong-Hyoung; Lee, Won-Yong; Chung, Bong Chul; Seo, Hong Seog; Choi, Man Ho

    2016-01-01

    Background Eicosanoids are metabolites of arachidonic acid that are rapidly biosynthesized and degraded during inflammation, and their metabolic changes reveal altered enzyme expression following drug treatment. We developed an eicosanoid profiling method and evaluated their changes on drug treatment. Methods Simultaneous quantitative profiling of 32 eicosanoids in liver S9 fractions obtained from rabbits with carrageenan-induced inflammation was performed and validated by liquid chromatograp...

  11. Microfluidic gene arrays for rapid genomic profiling

    Science.gov (United States)

    West, Jay A.; Hukari, Kyle W.; Hux, Gary A.; Shepodd, Timothy J.

    2004-12-01

    Genomic analysis tools have recently become an indispensable tool for the evaluation of gene expression in a variety of experiment protocols. Two of the main drawbacks to this technology are the labor and time intensive process for sample preparation and the relatively long times required for target/probe hybridization. In order to overcome these two technological barriers we have developed a microfluidic chip to perform on chip sample purification and labeling, integrated with a high density genearray. Sample purification was performed using a porous polymer monolithic material functionalized with an oligo dT nucleotide sequence for the isolation of high purity mRNA. These purified mRNA"s can then rapidly labeled using a covalent fluorescent molecule which forms a selective covalent bond at the N7 position of guanine residues. These labeled mRNA"s can then released from the polymer monolith to allow for direct hybridization with oligonucletide probes deposited in microfluidic channel. To allow for rapid target/probe hybridization high density microarray were printed in microchannels. The channels can accommodate array densities as high as 4000 probes. When oligonucleotide deposition is complete, these channels are sealed using a polymer film which forms a pressure tight seal to allow sample reagent flow to the arrayed probes. This process will allow for real time target to probe hybridization monitoring using a top mounted CCD fiber bundle combination. Using this process we have been able to perform a multi-step sample preparation to labeled target/probe hybridization in less than 30 minutes. These results demonstrate the capability to perform rapid genomic screening on a high density microfluidic microarray of oligonucleotides.

  12. The metabolic profile of long-lived Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Pedersen, Simon Metz; Nielsen, Niels Christian

    2012-01-01

    We investigated the age-related changes in the metabolic profile of male Drosophila melanogaster and compared the metabolic profile of flies selected for increased longevity to that of control flies of equal age. We found clear differences in metabolite composition between selection regimes...

  13. Observability of plant metabolic networks is reflected in the correlation of metabolic profiles

    DEFF Research Database (Denmark)

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel James

    2016-01-01

    -of-the-art genome-scale metabolic networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability, we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern was confirmed...

  14. Metabolism profiling of amino-noscapine.

    Science.gov (United States)

    Qu, Hua-Jun; Qian, Yang

    2016-04-01

    Amino-noscapine is a promising noscapine derivative undergoing R&D as an efficient anti-tumor drug. In vitro phase I metabolism incubation system was employed. In vitro samples were analyzed using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. In vitro recombinant CYP isoforms screening was used to identify the drug-metabolizing enzymes involved in the metabolism of amino-noscapine. Multiple metabolics were formed, including the formation of metabolite undergoing cleavage of methylenedioxy group, hydroxylated metabolites, demethylated metabolites, and metabolites undergoing C-C cleavage. Nearly, all the CYP isoforms were involved in the metabolism of metabolites II, III, VII, IX, and X. CYP1A1 was demonstrated to be the major CYP isoform for the formation of metabolites IV and V. CYP1A1 and CYP3A4 mainly catalyzed the formation of metabolite VI. The metabolic formation of VIII was mainly catalyzed by CYP2C19 and CYP3A4. CYP3A4 was the main enzyme for the formation of XI. CYP2C9 mainly catalyzed the generation of metabolite XII. In conclusion, the metabolic pathway of amino-noscapine was elucidated in the present study using in vitro phase I incubation experiment, including the structural elucidation of metabolites and involved phase I drug-metabolizing enzymes. This information was helpful for the R&D of amino-noscapine.

  15. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status.

    Science.gov (United States)

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Garneau, Véronique; Cormier, Hubert; Barbier, Olivier; Pérusse, Louis; Vohl, Marie-Claude

    2016-05-27

    Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW) and overweight/obese (Ov/Ob) individuals, with or without metabolic syndrome (MetS). Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1's (long chain glycerophospholipids) metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C) and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C) among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine) was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3's (medium chain acylcarnitines) metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile.

  16. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  17. Serum metabolic profiles of pregnant women with burdened obstetrical history.

    Science.gov (United States)

    Khaustova, S A; Senyavina, N V; Tonevitsky, A G; Eremina, O V; Pavlovich, S V

    2013-11-01

    The content of low-molecular-weight components in blood serum was studied by tandem mass-spectrometry in pregnant women. Serum metabolic profiles of patients with a grave obstetrical history were detected. The most significant changes were observed for the concentrations of low-molecular-weight substances involved in glucogenesis and β-oxidation processes and in metabolic chains involving carbohydrates, carnitines, amino acids, and lipids.

  18. Staphylococcus aureus methicillin resistance detected by HPLC-MS/MS targeted metabolic profiling.

    Science.gov (United States)

    Schelli, Katie; Rutowski, Joshua; Roubidoux, Julia; Zhu, Jiangjiang

    2017-03-15

    Recently, novel bioanalytical methods, such as NMR and mass spectrometry based metabolomics approaches, have started to show promise in providing rapid, sensitive and reproducible detection of Staphylococcus aureus antibiotic resistance. Here we performed a proof-of-concept study focused on the application of HPLC-MS/MS based targeted metabolic profiling for detecting and monitoring the bacterial metabolic profile changes in response to sub-lethal levels of methicillin exposure. One hundred seventy-seven targeted metabolites from over 20 metabolic pathways were specifically screened and one hundred and thirty metabolites from in vitro bacterial tests were confidently detected from both methicillin susceptible and methicillin resistant Staphylococcus aureus (MSSA and MRSA, respectively). The metabolic profiles can be used to distinguish the isogenic pairs of MSSA strains from MRSA strains, without or with sub-lethal levels of methicillin exposure. In addition, better separation between MSSA and MRSA strains can be achieved in the latter case using principal component analysis (PCA). Metabolite data from isogenic pairs of MSSA and MRSA strains were further compared without and with sub-lethal levels of methicillin exposure, with metabolic pathway analyses additionally performed. Both analyses suggested that the metabolic activities of MSSA strains were more susceptible to the perturbation of the sub-lethal levels of methicillin exposure compared to the MRSA strains.

  19. Evaluating metabolic response to light exposure in Lactobacillus species via targeted metabolic profiling.

    Science.gov (United States)

    Xu, Mengyang; Zhong, Fanyi; Zhu, Jiangjiang

    2017-02-01

    This study reported metabolic profiles of three representative strains from Lactobacillus species, and explored their metabolic response to visible light exposure. We utilized strains from three Lactobacillus species, Lactobacillus acidophilus, Lactobacillus fermentum and Lactobacillus delbrueckii as our model bacteria and applied mass spectrometry base targeted metabolomics to specifically investigate 221 metabolites within multiple metabolic pathways. Similar and diverse metabolome from three tested strains were discovered. Furthermore, all three Lactobacillus strains demonstrated different metabolic profiles in comparison between light expose verse control. In all three strains, 12 metabolites were detected to have significant differences (p-value<0.01) in light exposure culture compared to the control samples (culture grown without light exposure). Principal components analysis using these significantly changed metabolites clearly separated the exposure and control groups in all three studied Lactobacillus strains. Additionally, metabolic pathway impact analysis indicated that several commonly impacted pathways can be observed.

  20. HPLC-MS/MS targeted metabolic profiling reveals distinct metabolic profiles from Staphylococcus aureus small-colony variants.

    Science.gov (United States)

    Wang, Chen; Zhu, Jiangjiang

    2017-08-15

    Staphylococcus aureus is a world-wide health threat due to its prevalence and possible resistance to antibiotic treatment. A variety reasons can contribute to S. aureus antibiotic resistance and one group of phenotypes that may be discovered from S. aureus is named small-colony variants (SCVs). This study focused on applying a HPLC-MS/MS based targeted metabolic profiling approach to detect a set of metabolites that are dysregulated during S. aureus SCVs formation. Over one hundred and eighty metabolites were confidently detected and their difference between S. aureus SCVs and wild type control groups was compared via univariate and multivariate statistical analyses. Twenty metabolites, including 3',5'-cyclic AMP, tyrosine and adenine were identified as SCV specific metabolic features in comparison to the control group. Metabolic profile differences between individually isolated SCV were also observed and compared. Principal component analyses demonstrated clear metabolic profile differentiation between wild type control to SCVs. Metabolic pathway impact analysis also identified multiple metabolic pathways, including alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism, that were significantly impacted during SCV formation. To the best of our knowledge, our study is the very first report to detect a large set of altered metabolites induced by S. aureus SCV formation. We believe our method can be used in combination with genomic, transcriptomic and proteomic approaches to achieve a better understanding of the unique physiological and metabolic changes during S. aureus SCV formation, and to assist the potential future development of targeted treatment for S. aureus SCV infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Lipid Profile and Leptin Levels in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    This paper should be cited as: Esmaeili R, Hassanzadeh, T . [ Lipid Profile and Leptin Levels in Patients with Metabolic Syndrome ]. mljgoums . 201 4 ; 8 ( 3 : 23 - 29 [Article in Persian] Esmaeili, R.

    2014-09-01

    Full Text Available Background and Objective: Metabolic syndrome called a cluster of several metabolic disorders is associated with increased risk of cardiovascular diseases. Genetic differences in leptin receptor gene are related with the concentration and activity of leptin in that these discrepancies can influence lipid levels. We aimed to determine the association between the leptin receptor gene polymorphism on serum lipid profile and leptin activity in metabolic syndrome patients. Material and Methods: This case-control study was conducted on 200 patients with metabolic syndrome and 200 healthy individuals. Polymerase Chain Reaction (PCR and Restriction Fragment Length Polymorphisms (RFLP were used to determine genotypic distribution and allelic frequencies of polymorphisms, respectively. The plasma leptin activity was measured by a kit in a fluorescence spectrometer, and Lipid concentration by routine biochemical and enzymatic assays. Results: Two groups had significant differences in all measured factors such as lipid profiles, fast blood sugar, waist circumference, blood pressure and leptin concentration (P< 0.05. Conclusion: Given that the two groups had significant differences in blood and body measurements, no role of K656N polymorphism was observed. Overall, Lys656Asn (K656N polymorphism of leptin receptor gene is not associated with serum lipid profile and leptin activity with metabolic syndrome.

  2. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling

    NARCIS (Netherlands)

    Gulersonmez, M.C.; Lock, S.; Hankemeier, T.; Ramautar, R.

    2016-01-01

    The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration

  3. Expression profiling and comparative sequence derived insights into lipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Callow, Matthew J.; Rubin, Edward M.

    2001-12-19

    Expression profiling and genomic DNA sequence comparisons are increasingly being applied to the identification and analysis of the genes involved in lipid metabolism. Not only has genome-wide expression profiling aided in the identification of novel genes involved in important processes in lipid metabolism such as sterol efflux, but the utilization of information from these studies has added to our understanding of the regulation of pathways participating in the process. Coupled with these gene expression studies, cross species comparison, searching for sequences conserved through evolution, has proven to be a powerful tool to identify important non-coding regulatory sequences as well as the discovery of novel genes relevant to lipid biology. An example of the value of this approach was the recent chance discovery of a new apolipoprotein gene (apo AV) that has dramatic effects upon triglyceride metabolism in mice and humans.

  4. OVCAR-3 spheroid-derived cells display distinct metabolic profiles.

    Directory of Open Access Journals (Sweden)

    Kathleen A Vermeersch

    Full Text Available Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells.To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines.These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines.Overall, we demonstrate for the first time that metabolism

  5. Comparative Metabolic Flux Profiling of Melanoma Cell Lines

    Science.gov (United States)

    Scott, David A.; Richardson, Adam D.; Filipp, Fabian V.; Knutzen, Christine A.; Chiang, Gary G.; Ronai, Ze'ev A.; Osterman, Andrei L.; Smith, Jeffrey W.

    2011-01-01

    Metabolic rewiring is an established hallmark of cancer, but the details of this rewiring at a systems level are not well characterized. Here we acquire this insight in a melanoma cell line panel by tracking metabolic flux using isotopically labeled nutrients. Metabolic profiling and flux balance analysis were used to compare normal melanocytes to melanoma cell lines in both normoxic and hypoxic conditions. All melanoma cells exhibited the Warburg phenomenon; they used more glucose and produced more lactate than melanocytes. Other changes were observed in melanoma cells that are not described by the Warburg phenomenon. Hypoxic conditions increased fermentation of glucose to lactate in both melanocytes and melanoma cells (the Pasteur effect). However, metabolism was not strictly glycolytic, as the tricarboxylic acid (TCA) cycle was functional in all melanoma lines, even under hypoxia. Furthermore, glutamine was also a key nutrient providing a substantial anaplerotic contribution to the TCA cycle. In the WM35 melanoma line glutamine was metabolized in the “reverse” (reductive) direction in the TCA cycle, particularly under hypoxia. This reverse flux allowed the melanoma cells to synthesize fatty acids from glutamine while glucose was primarily converted to lactate. Altogether, this study, which is the first comprehensive comparative analysis of metabolism in melanoma cells, provides a foundation for targeting metabolism for therapeutic benefit in melanoma. PMID:21998308

  6. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.

    Science.gov (United States)

    Ito, Yuma; Hirasawa, Takashi; Shimizu, Hiroshi

    2014-01-01

    We performed metabolic engineering on the budding yeast Saccharomyces cerevisiae for enhanced production of succinic acid. Aerobic succinic acid production in S. cerevisiae was achieved by disrupting the SDH1 and SDH2 genes, which encode the catalytic subunits of succinic acid dehydrogenase. Increased succinic acid production was achieved by eliminating the ethanol biosynthesis pathways. Metabolic profiling analysis revealed that succinic acid accumulated intracellularly following disruption of the SDH1 and SDH2 genes, which suggests that enhancing the export of intracellular succinic acid outside of cells increases succinic acid production in S. cerevisiae. The mae1 gene encoding the Schizosaccharomyces pombe malic acid transporter was introduced into S. cerevisiae, and as a result, succinic acid production was successfully improved. Metabolic profiling analysis is useful in producing chemicals for metabolic engineering of microorganisms.

  7. Integrated intracellular metabolic profiling and pathway analysis approaches reveal complex metabolic regulation by Clostridium acetobutylicum.

    Science.gov (United States)

    Liu, Huanhuan; Huang, Di; Wen, Jianping

    2016-02-15

    Clostridium acetobutylicum is one of the most important butanol producing strains. However, environmental stress in the fermentation process usually leads to a lower yield, seriously hampering its industrialization. In order to systematically investigate the key intracellular metabolites that influence the strain growth and butanol production, and find out the critical regulation nodes, an integrated analysis approach has been carried out in this study. Based on the gas chromatography-mass spectrometry technology, the partial least square discriminant analysis and the pathway analysis, 40 metabolic pathways linked with 43 key metabolic nodes were identified. In-depth analysis showed that lots of amino acids metabolism promoted cell growth but exerted slight influence on butanol production, while sugar metabolism was favorable for cell growth but unfavorable for butanol synthesis. Besides, both lysine and succinic acid metabolism generated a complex effect on the whole metabolic network. Dicarboxylate metabolism exerted an indispensable role on cell growth and butanol production. Subsequently, rational feeding strategies were proposed to verify these conclusions and facilitate the butanol biosynthesis. Feeding amino acids, especially glycine and serine, could obviously improve cell growth while yeast extract, citric acid and ethylene glycol could significantly enhance both growth and butanol production. The feeding experiment confirmed that metabolic profiling combined with pathway analysis provided an accurate, reasonable and practical approach to explore the cellular metabolic activity and supplied a basis for improving butanol production. These strategies can also be extended for the production of other important bio-chemical compounds.

  8. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  9. Microalgal Metabolic Network Model Refinement through High Throughput Functional Metabolic Profiling

    Directory of Open Access Journals (Sweden)

    Amphun eChaiboonchoe

    2014-12-01

    Full Text Available Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The Phenotype Microarray (PM technology (Biolog, Hayward, CA, USA provides an efficient, high throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi but it has not been reported for the phenotyping of microalgae. Here we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of D-amino acids, L-dipeptides, and L-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  10. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    Science.gov (United States)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  11. Prediction of Periodontal Inflammation via Metabolic Profiling of Saliva.

    Science.gov (United States)

    Kuboniwa, M; Sakanaka, A; Hashino, E; Bamba, T; Fukusaki, E; Amano, A

    2016-11-01

    Periodontal disease is characterized by chronic inflammation in subgingival areas, where a vast array of inflammation-associated metabolites are likely produced from tissue breakdown, increased vascular permeability, and microbial metabolism and then eventually show a steady flow into saliva. Thus, prolonged periodontal inflammation is a key feature of disease activity. Although salivary metabolomics has drawn attention for its potential use in diagnosis of periodontal disease, few authors have used that to investigate periodontal inflammation detection. In this pilot study, the authors explored the use of salivary metabolites to reflect periodontal inflammation severity with a recently proposed parameter-periodontal inflamed surface area (PISA)-used to quantify the periodontal inflammatory burden of individual patients with high accuracy. Following PISA determination, whole saliva samples were collected from 19 subjects before and after removal of supragingival plaque and calculus (debridement) with an ultrasonic scaler to assess the influence of the procedure on salivary metabolic profiles. Metabolic profiling of saliva was performed with gas chromatography coupled to time-of-flight mass spectrometry, followed by multivariate regression analysis with orthogonal projections to latent structures (OPLS) to investigate the relationship between PISA and salivary metabolic profiles. Sixty-three metabolites were identified. OPLS analysis showed that postdebridement saliva provided a more refined model for prediction of PISA than did predebridement samples, which indicated that debridement may improve detection of metabolites eluted from subgingival areas in saliva, thus more accurately reflecting the pathophysiology of periodontitis. Based on the variable importance in the projection values obtained via OPLS, 8 metabolites were identified as potential indicators of periodontal inflammation, of which the combination of cadaverine, 5-oxoproline, and histidine yielded

  12. Colorectal cancer detection using targeted serum metabolic profiling.

    Science.gov (United States)

    Zhu, Jiangjiang; Djukovic, Danijel; Deng, Lingli; Gu, Haiwei; Himmati, Farhan; Chiorean, E Gabriela; Raftery, Daniel

    2014-09-05

    Colorectal cancer (CRC) is one of the most prevalent and deadly cancers in the world. Despite an expanding knowledge of its molecular pathogenesis during the past two decades, robust biomarkers to enable screening, surveillance, and therapy monitoring of CRC are still lacking. In this study, we present a targeted liquid chromatography-tandem mass spectrometry-based metabolic profiling approach for identifying biomarker candidates that could enable highly sensitive and specific CRC detection using human serum samples. In this targeted approach, 158 metabolites from 25 metabolic pathways of potential significance were monitored in 234 serum samples from three groups of patients (66 CRC patients, 76 polyp patients, and 92 healthy controls). Partial least-squares-discriminant analysis (PLS-DA) models were established, which proved to be powerful for distinguishing CRC patients from both healthy controls and polyp patients. Receiver operating characteristic curves generated based on these PLS-DA models showed high sensitivities (0.96 and 0.89, respectively, for differentiating CRC patients from healthy controls or polyp patients), good specificities (0.80 and 0.88), and excellent areas under the curve (0.93 and 0.95). Monte Carlo cross validation was also applied, demonstrating the robust diagnostic power of this metabolic profiling approach.

  13. Rapid etiological classification of meningitis by NMR spectroscopy based on metabolite profiles and host response.

    Directory of Open Access Journals (Sweden)

    Uwe Himmelreich

    Full Text Available Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set, provided those with visible blood contamination were excluded from analysis; 6-8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques.

  14. Magnetic resonance imaging of tumor oxygenation and metabolic profile

    DEFF Research Database (Denmark)

    Krishna, Murali C.; Matsumoto, Shingo; Saito, Keita

    2013-01-01

    The tumor microenvironment is distinct from normal tissue as a result of abnormal vascular network characterized by hypoxia, low pH, high interstitial fluid pressure and elevated glycolytic activity. This poses a barrier to treatments including radiation therapy and chemotherapy. Imaging methods...... which can characterize such features non-invasively and repeatedly will be of significant value in planning treatment as well as monitoring response to treatment. The three techniques based on magnetic resonance imaging (MRI) are reviewed here. Tumor pO2 can be measured by two MRI methods requiring...... an exogenous contrast agent: electron paramagnetic resonance imaging (EPRI) and Overhauser magnetic resonance imaging (OMRI). Tumor metabolic profile can be assessed by a third method, hyperpolarized metabolic MR, based on injection of hyperpolarized biological molecules labeled with 13C or 15N and MR...

  15. Metabolic and antioxidant profiles of herbal infusions and decoctions.

    Science.gov (United States)

    Fotakis, Charalambos; Tsigrimani, Diamantina; Tsiaka, Thalia; Lantzouraki, Dimitra Z; Strati, Irini F; Makris, Constantinos; Tagkouli, Dimitra; Proestos, Charalampos; Sinanoglou, Vassilia J; Zoumpoulakis, Panagiotis

    2016-11-15

    This study implements NMR metabolomics and spectrophotometric studies (Folin-Ciocalteu, FRAP, ABTS) to infusions and decoctions of ten plant species in order to assess and compare the metabolic and antioxidant profiles for each botanical family. Multivariate and univariate data analyses highlighted the differences among the samples and pinpointed specific classes of compounds for each plant species as well as infusions and decoctions. The identified phenolic compounds by NMR, as well as the antioxidant profile, framed a trend of increased values in infusions compared to the decoctions. Moreover, the infusion procedure positively affected the extractability of the phenolic compounds compared to decoctions. The highest total phenolic content was found in Mentha spicata, while the lowest in Matricaria chamomilla preparations, irrespective of the preparation method. The preparation time for the decoctions was examined showing that the 15min preparations were generally found richer in phenolics and of higher antioxidant capacity.

  16. BEAP profiles as rapid test system for status analysis and early detection of process incidents in biogas plants.

    Science.gov (United States)

    Refai, Sarah; Berger, Stefanie; Wassmann, Kati; Hecht, Melanie; Dickhaus, Thomas; Deppenmeier, Uwe

    2017-03-01

    A method was developed to quantify the performance of microorganisms involved in different digestion levels in biogas plants. The test system was based on the addition of butyrate (BCON), ethanol (ECON), acetate (ACON) or propionate (PCON) to biogas sludge samples and the subsequent analysis of CH4 formation in comparison to control samples. The combination of the four values was referred to as BEAP profile. Determination of BEAP profiles enabled rapid testing of a biogas plant's metabolic state within 24 h and an accurate mapping of all degradation levels in a lab-scale experimental setup. Furthermore, it was possible to distinguish between specific BEAP profiles for standard biogas plants and for biogas reactors with process incidents (beginning of NH4(+)-N inhibition, start of acidification, insufficient hydrolysis and potential mycotoxin effects). Finally, BEAP profiles also functioned as a warning system for the early prediction of critical NH4(+)-N concentrations leading to a drop of CH4 formation.

  17. Gut microbiota composition modifies fecal metabolic profiles in mice.

    Science.gov (United States)

    Zhao, Ying; Wu, Junfang; Li, Jia V; Zhou, Ning-Yi; Tang, Huiru; Wang, Yulan

    2013-06-07

    The gut microbiome is known to be extensively involved in human health and disease. In order to reveal the metabolic relationship between host and microbiome, we monitored recovery of the gut microbiota composition and fecal profiles of mice after gentamicin and/or ceftriaxone treatments. This was performed by employing (1)H nuclear magnetic resonance (NMR)-based metabonomics and denaturing gradient gel electrophoresis (DGGE) fingerprint of gut microbiota. The common features of fecal metabolites postantibiotic treatment include decreased levels of short chain fatty acids (SCFAs), amino acids and primary bile acids and increased oligosaccharides, d-pinitol, choline and secondary bile acids (deoxycholic acid). This suggests suppressed bacterial fermentation, protein degradation and enhanced gut microbial modification of bile acids. Barnesiella, Prevotella, and Alistipes levels were shown to decrease as a result of the antibiotic treatment, whereas levels of Bacteroides, Enterococcus and Erysipelotrichaceae incertae sedis, and Mycoplasma increased after gentamicin and ceftriaxone treatment. In addition, there was a strong correlation between fecal profiles and levels of Bacteroides, Barnesiella, Alistipes and Prevotella. The integration of metabonomics and gut microbiota profiling provides important information on the changes of gut microbiota and their impact on fecal profiles during the recovery after antibiotic treatment. The correlation between gut microbiota and fecal metabolites provides important information on the function of bacteria, which in turn could be important in optimizing therapeutic strategies, and developing potential microbiota-based disease preventions and therapeutic interventions.

  18. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  19. Piecewise multivariate modelling of sequential metabolic profiling data

    Directory of Open Access Journals (Sweden)

    Nicholson Jeremy K

    2008-02-01

    Full Text Available Abstract Background Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. Results A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. Conclusion The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA for modelling and analysis of short time-series data.

  20. Clinical Usefulness of Response Profiles to Rapidly Incremental Cardiopulmonary Exercise Testing

    Directory of Open Access Journals (Sweden)

    Roberta P. Ramos

    2013-01-01

    Full Text Available The advent of microprocessed “metabolic carts” and rapidly incremental protocols greatly expanded the clinical applications of cardiopulmonary exercise testing (CPET. The response normalcy to CPET is more commonly appreciated at discrete time points, for example, at the estimated lactate threshold and at peak exercise. Analysis of the response profiles of cardiopulmonary responses at submaximal exercise and recovery, however, might show abnormal physiologic functioning which would not be otherwise unraveled. Although this approach has long been advocated as a key element of the investigational strategy, it remains largely neglected in practice. The purpose of this paper, therefore, is to highlight the usefulness of selected submaximal metabolic, ventilatory, and cardiovascular variables in different clinical scenarios and patient populations. Special care is taken to physiologically justify their use to answer pertinent clinical questions and to the technical aspects that should be observed to improve responses’ reproducibility and reliability. The most recent evidence in favor of (and against these variables for diagnosis, impairment evaluation, and prognosis in systemic diseases is also critically discussed.

  1. Metabolic profiling of breast cancer: Differences in central metabolism between subtypes of breast cancer cell lines.

    Science.gov (United States)

    Willmann, Lucas; Schlimpert, Manuel; Halbach, Sebastian; Erbes, Thalia; Stickeler, Elmar; Kammerer, Bernd

    2015-09-01

    Although the concept of aerobic glycolysis in cancer was already reported in the 1930s by Otto Warburg, the understanding of metabolic pathways remains challenging especially due to the heterogeneity of cancer. In consideration of four different time points (1, 2, 4, and 7 days of incubation), GC-MS profiling of metabolites was performed on cell extracts and supernatants of breast cancer cell lines (MDA-MB-231, -453, BT-474) with different sub classification and the breast epithelial cell line MCF-10A. To the exclusion of trypsinization, direct methanolic extraction, cell scraping and cell disruption was executed to obtain central metabolites. Major differences in biochemical pathways have been observed in the breast cancer cell lines compared to the breast epithelial cell line, as well as between the breast cancer cell lines themselves. Characteristics of breast cancer subtypes could be correlated to their individual metabolic profiles. PLS-DA revealed the discrimination of breast cancer cell lines from MCF-10A based on elevated amino acid levels. The observed metabolic signatures have great potential as biomarker for breast cancer as well as an improved understanding of subtype specific phenomenons of breast cancer.

  2. INFLUENCE FEEDING AND TRAINING ON THE METABOLIC PROFIL SPORT HORSES

    Directory of Open Access Journals (Sweden)

    M HALO

    2010-06-01

    Full Text Available In a group of 11 sport horses, the effect of the traianig process, inclunding training and resting periods, on the metabolic profile. Training proces was divided into four part: I. End of the sport season, II. End of the resting period, III. End of the quantitative training charged and IV. End of the qualitative training charged. The level glucose in the blood serum of the observed horses was stated within the reference limits, with the tendency towards the inncreased values in the 2-st and 4-st period (4,34 – 5,03 mmol.l-1. The average values global lipid and cholesterol was stated whitin the reference limits.

  3. CSF metabolic and proteomic profiles in patients prodromal for psychosis.

    Directory of Open Access Journals (Sweden)

    Jeffrey T-J Huang

    Full Text Available BACKGROUND: The initial prodromal state of psychosis (IPS is defined as an early disease stage prior to the onset of overt psychosis characterized by sub-threshold or more unspecific psychiatric symptoms. Little is known regarding the biochemical changes during this period. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the metabolic/proteomic profiles of cerebrospinal fluid (CSF of first-onset drug naïve paranoid schizophrenia patients (n = 54 and individuals presenting with initial prodromal symptoms (n = 24, alongside healthy volunteers (n = 70 using proton nuclear magnetic resonance ((1H-NMR spectroscopy and surface enhanced laser desorption ionization (SELDI mass spectrometry, respectively. Partial least square discriminant analysis (PLS-DA showed that 36%/29% of IPS patients displayed proteomic/metabolic profiles characteristic of first-onset, drug naïve schizophrenia, i.e., changes in levels of glucose and lactate as well as changes in a VGF-derived peptide (VGF23-62 and transthyretin protein concentrations. However, only 29% (n = 7 of the investigated IPS patients (who to date have been followed up for up to three years have so far received a diagnosis of schizophrenia. The presence of biochemical alterations in the IPS group did not correlate with the risk to develop schizophrenia. CONCLUSIONS/SIGNIFICANCE: Our results imply that schizophrenia-related biochemical disease processes can be traced in CSF of prodromal patients. However, the biochemical disturbances identified in IPS patients, at least when measured at a single time point, may not be sufficient to predict clinical outcome.

  4. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    Directory of Open Access Journals (Sweden)

    Alagna Fiammetta

    2012-09-01

    Full Text Available Abstract Background Olive (Olea europaea L. fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF, suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the

  5. Effects of rapidly and slowly permeating osmotica on metabolism.

    Science.gov (United States)

    Greenway, H; Leahy, M

    1970-08-01

    Zea mays was exposed to solutions of low water potentials by addition of ethylene glycol or mannitol. Intact seedlings were treated for 1 hr at potentials between -10 and -20 atmospheres and then returned to high water potentials. Subsequent root extension was slow after mannitol treatment, but rapid when ethylene glycol had been used as the osmoticum. Cellular activity of excised roots was also affected much less by ethylene glycol than by mannitol. Processes studied included respiration, glucose uptake, and synthesis of methanol-insoluble compounds. These differences in response to various osmotica applied both during and after treatment at low water potentials.Ethylene glycol penetrated the tissues much more rapidly than mannitol. Rapid penetration of the osmoticum would minimize turgor loss and plasmolysis. Thus, the data suggest that adverse effects were induced by water loss or structural changes, or both, during plasmolysis, rather than by low water potentials, demonstrating the crucial importance of osmotic adjustment.

  6. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    Directory of Open Access Journals (Sweden)

    Lishan Xiao

    Full Text Available The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas.

  7. Characterizing Urban Household Waste Generation and Metabolism Considering Community Stratification in a Rapid Urbanizing Area of China.

    Science.gov (United States)

    Xiao, Lishan; Lin, Tao; Chen, Shaohua; Zhang, Guoqin; Ye, Zhilong; Yu, Zhaowu

    2015-01-01

    The relationship between social stratification and municipal solid waste generation remains uncertain under current rapid urbanization. Based on a multi-object spatial sampling technique, we selected 191 households in a rapidly urbanizing area of Xiamen, China. The selected communities were classified into three types: work-unit, transitional, and commercial communities in the context of housing policy reform in China. Field survey data were used to characterize household waste generation patterns considering community stratification. Our results revealed a disparity in waste generation profiles among different households. The three community types differed with respect to family income, living area, religious affiliation, and homeowner occupation. Income, family structure, and lifestyle caused significant differences in waste generation among work-unit, transitional, and commercial communities, respectively. Urban waste generation patterns are expected to evolve due to accelerating urbanization and associated community transition. A multi-scale integrated analysis of societal and ecosystem metabolism approach was applied to waste metabolism linking it to particular socioeconomic conditions that influence material flows and their evolution. Waste metabolism, both pace and density, was highest for family structure driven patterns, followed by lifestyle and income driven. The results will guide community-specific management policies in rapidly urbanizing areas.

  8. Rapid peptide metabolism: A major component of soil nitrogen cycling?

    Science.gov (United States)

    Farrell, Mark; Hill, Paul W.; Wanniarachchi, Sudas D.; Farrar, John; Bardgett, Richard D.; Jones, Davey L.

    2011-09-01

    Proteinaceous and peptidic nitrogen is a potential direct nutrient source for both plants and microbes in the soil, without prior degradation to amino acids and mineralization. We used a series of five sites along an elevation gradient from 15 m a.s.l. to 710 m a.s.l. along which primary productivity decreases to investigate peptide utilization rates by soil microbes. Using 14C-labeled L-alanine, L-dialanine, and L-trialanine in a series of incubation experiments, we show that peptides are directly and rapidly assimilated by soil microbes, and that they are utilized for both biomass production and respiration. Alanine, dialanine, and trialanine were mineralized rapidly by soil microbes from the five sites along the gradient. Across all five sites, dialanine and trialanine were mineralized faster than alanine. In competition experiments, a 100-fold excess of alanine had no effect on the rate of trialanine mineralization in four of the five sites, and the same excess of trialanine had no effect on alanine mineralization. This is indicative of uptake of the intact peptide by the soil microbial community. Our findings have implications for understanding terrestrial nitrogen cycling because they point to a short-circuit whereby large peptides and proteins need only be extracellularly cleaved to short chain length peptides before direct assimilation by microbes.

  9. Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of 'Jonagold' apple to low oxygen stress.

    Science.gov (United States)

    Bekele, Elias A; Beshir, Wasiye F; Hertog, Maarten L A T M; Nicolai, Bart M; Geeraerd, Annemie H

    2015-11-01

    Apples are predominantly stored in controlled atmosphere (CA) storage to delay ripening and prolong their storage life. Profiling the dynamics of metabolic changes during ripening and CA storage is vital for understanding the governing molecular mechanism. In this study, the dynamics of the primary metabolism of 'Jonagold' apples during ripening in regular air (RA) storage and initiation of CA storage was profiled. 1-Methylcyclopropene (1-MCP) was exploited to block ethylene receptors and to get insight into ethylene mediated metabolic changes during ripening of the fruit and in response to hypoxic stress. Metabolic changes were quantified in glycolysis, the tricarboxylic acid (TCA) cycle, the Yang cycle and synthesis of the main amino acids branching from these metabolic pathways. Partial least square discriminant analysis of the metabolic profiles of 1-MCP treated and control apples revealed a metabolic divergence in ethylene, organic acid, sugar and amino acid metabolism. During RA storage at 18°C, most amino acids were higher in 1-MCP treated apples, whereas 1-aminocyclopropane-1-carboxylic acid (ACC) was higher in the control apples. The initial response of the fruit to CA initiation was accompanied by an increase of alanine, succinate and glutamate, but a decline in aspartate. Furthermore, alanine and succinate accumulated to higher levels in control apples than 1-MCP treated apples. The observed metabolic changes in these interlinked metabolites may indicate a coordinated adaptive strategy to maximize energy production.

  10. Cutting Edge: Murine Mast Cells Rapidly Modulate Metabolic Pathways Essential for Distinct Effector Functions.

    Science.gov (United States)

    Phong, Binh; Avery, Lyndsay; Menk, Ashley V; Delgoffe, Greg M; Kane, Lawrence P

    2017-01-15

    There is growing appreciation that cellular metabolic and bioenergetic pathways do not play merely passive roles in activated leukocytes. Rather, metabolism has important roles in controlling cellular activation, differentiation, survival, and effector function. Much of this work has been performed in T cells; however, there is still very little information regarding mast cell metabolic reprogramming and its effect on cellular function. Mast cells perform important barrier functions and help control type 2 immune responses. In this study we show that murine bone marrow-derived mast cells rapidly alter their metabolism in response to stimulation through the FcεRI. We also demonstrate that specific metabolic pathways appear to be differentially required for the control of mast cell function. Manipulation of metabolic pathways may represent a novel point for the manipulation of mast cell activation.

  11. Rapid Optimization of Engineered Metabolic Pathways with Serine Integrase Recombinational Assembly (SIRA).

    Science.gov (United States)

    Merrick, C A; Wardrope, C; Paget, J E; Colloms, S D; Rosser, S J

    2016-01-01

    Metabolic pathway engineering in microbial hosts for heterologous biosynthesis of commodity compounds and fine chemicals offers a cheaper, greener, and more reliable method of production than does chemical synthesis. However, engineering metabolic pathways within a microbe is a complicated process: levels of gene expression, protein stability, enzyme activity, and metabolic flux must be balanced for high productivity without compromising host cell viability. A major rate-limiting step in engineering microbes for optimum biosynthesis of a target compound is DNA assembly, as current methods can be cumbersome and costly. Serine integrase recombinational assembly (SIRA) is a rapid DNA assembly method that utilizes serine integrases, and is particularly applicable to rapid optimization of engineered metabolic pathways. Using six pairs of orthogonal attP and attB sites with different central dinucleotide sequences that follow SIRA design principles, we have demonstrated that ΦC31 integrase can be used to (1) insert a single piece of DNA into a substrate plasmid; (2) assemble three, four, and five DNA parts encoding the enzymes for functional metabolic pathways in a one-pot reaction; (3) generate combinatorial libraries of metabolic pathway constructs with varied ribosome binding site strengths or gene orders in a one-pot reaction; and (4) replace and add DNA parts within a construct through targeted postassembly modification. We explain the mechanism of SIRA and the principles behind designing a SIRA reaction. We also provide protocols for making SIRA reaction components and practical methods for applying SIRA to rapid optimization of metabolic pathways.

  12. Analytical challenges for conducting rapid metabolism characterization for QIVIVE.

    Science.gov (United States)

    Tolonen, Ari; Pelkonen, Olavi

    2015-06-05

    For quantitative in vitro-in vivo extrapolation (QIVIVE) of metabolism for the purposes of toxicokinetics prediction, a precise and robust analytical technique for identifying and measuring a chemical and its metabolites is an absolute prerequisite. Currently, high-resolution mass spectrometry (HR-MS) is a tool of choice for a majority of organic relatively lipophilic molecules, linked with a LC separation tool and simultaneous UV-detection. However, additional techniques such as gas chromatography, radiometric measurements and NMR, are required to cover the whole spectrum of chemical structures. To accumulate enough reliable and robust data for the validation of QIVIVE, there are some partially opposing needs: Detailed delineation of the in vitro test system to produce a reliable toxicokinetic measure for a studied chemical, and a throughput capacity of the in vitro set-up and the analytical tool as high as possible. We discuss current analytical challenges for the identification and quantification of chemicals and their metabolites, both stable and reactive, focusing especially on LC-MS techniques, but simultaneously attempting to pinpoint factors associated with sample preparation, testing conditions and strengths and weaknesses of a particular technique available for a particular task. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Viticultural practice and winemaking effects on metabolic profile of Negroamaro.

    Science.gov (United States)

    De Pascali, Sandra Angelica; Coletta, Antonio; Del Coco, Laura; Basile, Teodora; Gambacorta, Giuseppe; Fanizzi, Francesco Paolo

    2014-10-15

    Metabolic profiles of 32 Negroamaro red wines were analysed using (1)H NMR spectroscopy and multivariate statistical analyses (Principal Component Analysis, PCA, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Among winemaking technologies three were compared: ultrasounds (U; 12 samples), cryomaceration using dry ice (C; 12 samples) and traditional (T; 8 samples). Moreover, each vinification technology was used for grapes grown by two different soil management practices, soil tillage (ST; 16 samples) and cover crop (CC; 16 samples), and by two different training systems, monolateral (M; 16 samples) and bilateral Guyot (B; 16 samples). All statistical models applied on NMR data revealed a good separation between ST (soil tillage) and CC (cover crop), showing a higher influence of the soil management practices compared to the winemaking technologies (ultrasound, cryomaceration and traditional). The differentiation among samples, due to soil management practices, was mainly caused by metabolites such as glycerol, 2,3-butanediol, malic acid, α/β-glucose and phenolic compounds, such as tyrosine and caffeic acid.

  14. Metabolic and biological profile of autochthonous Vitis vinifera L. ecotypes.

    Science.gov (United States)

    Impei, Stefania; Gismondi, Angelo; Canuti, Lorena; Canini, Antonella

    2015-05-01

    Vitis vinifera L. is a plant species rich in phenolic compounds that are usually associated with the health benefits of wine and grape consumption in the diet. Anthocyanins, catechins, flavonol, phenolic acids and stilbenes are key molecular constituents of the Vitis berries, affecting the quality of grape products. The purpose of this work was to identify the metabolic profiles of 37 genetically certified V. vinifera Latial accessions. In particular, qualitative and quantitative analyses of specific secondary metabolites and total phenolic and tannin contents were performed by LC-MS and spectrophotometric analysis. In addition, since plant molecules are well-known for their free radical scavenging properties, the antioxidant effects of the sample extracts were evaluated through two different antiradical assays: DPPH and FRAP tests. Finally, a preliminary screening of the antiproliferative activity of each specimen on HCT-116 human colorectal cancer cells was conducted. All the results showed a great variety and amount of phenolic compounds in all accessions; moreover, we observed a significant correlation in the extracts between the metabolite concentration and bioactivity. Besides, some samples presented extraordinary biological effects, such as reduction of tumor cell growth not associated with cytotoxicity, supporting their use as possible future adjuvants for cancer therapy. In conclusion, the present research increased the scientific knowledge about Italian autochthonous vine ecotypes in order to valorize them and support their reintroduction in the local economic system.

  15. Kinetic and metabolic profiles of synthetic cannabinoids NNEI and MN-18.

    Science.gov (United States)

    Kevin, Richard C; Lefever, Timothy W; Snyder, Rodney W; Patel, Purvi R; Gamage, Thomas F; Fennell, Timothy R; Wiley, Jenny L; McGregor, Iain S; Thomas, Brian F

    2017-08-18

    In 2014 and 2015, synthetic cannabinoid receptor agonists NNEI (N-1-naphthalenyl-1-pentyl-1H-indole-3-carboxamide) and MN-18 (N-1-naphthalenyl-1-pentyl-1H-indazole-3-carboxamide) were detected in recreationally used and abused products in multiple countries, and were implicated in episodes of poisoning and toxicity. Despite this, the pharmacokinetic profiles of NNEI and MN-18 have not been characterized. In the present study NNEI and MN-18 were incubated in rat and human liver microsomes and hepatocytes, to estimate kinetic parameters and to identify potential metabolic pathways, respectively. These parameters and pathways were then examined in vivo, via analysis of blood and urine samples from catheterized male rats following intraperitoneal (3 mg/kg) administration of NNEI and MN-18. Both NNEI and MN-18 were rapidly cleared by rat and human liver microsomes, and underwent a range of oxidative transformations during incubation with rat and human hepatocytes. Several unique metabolites were identified for the forensic identification of NNEI and MN-18 intake. Interestingly, NNEI underwent a greater number of biotransformations (20 NNEI metabolites versus 10 MN-18 metabolites), yet parent MN-18 was eliminated at a faster rate than NNEI in vivo. Additionally, in vivo elimination was more rapid than in vitro estimates. These data highlight that even closely related synthetic cannabinoids can possess markedly distinct pharmacokinetic profiles, which can vary substantially between in vitro and in vivo models. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Metabolic profiling of body fluids and multivariate data analysis.

    Science.gov (United States)

    Trezzi, Jean-Pierre; Jäger, Christian; Galozzi, Sara; Barkovits, Katalin; Marcus, Katrin; Mollenhauer, Brit; Hiller, Karsten

    2017-01-01

    Metabolome analyses of body fluids are challenging due pre-analytical variations, such as pre-processing delay and temperature, and constant dynamical changes of biochemical processes within the samples. Therefore, proper sample handling starting from the time of collection up to the analysis is crucial to obtain high quality samples and reproducible results. A metabolomics analysis is divided into 4 main steps: 1) Sample collection, 2) Metabolite extraction, 3) Data acquisition and 4) Data analysis. Here, we describe a protocol for gas chromatography coupled to mass spectrometry (GC-MS) based metabolic analysis for biological matrices, especially body fluids. This protocol can be applied on blood serum/plasma, saliva and cerebrospinal fluid (CSF) samples of humans and other vertebrates. It covers sample collection, sample pre-processing, metabolite extraction, GC-MS measurement and guidelines for the subsequent data analysis. Advantages of this protocol include: •Robust and reproducible metabolomics results, taking into account pre-analytical variations that may occur during the sampling process•Small sample volume required•Rapid and cost-effective processing of biological samples•Logistic regression based determination of biomarker signatures for in-depth data analysis.

  17. Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of GHSR deleted mice.

    Directory of Open Access Journals (Sweden)

    Patric J D Delhanty

    Full Text Available BACKGROUND: There is increasing evidence that unacylated ghrelin (UAG improves insulin sensitivity and glucose homeostasis; however, the mechanism for this activity is not fully understood since a UAG receptor has not been discovered. METHODOLOGY/PRINCIPAL FINDINGS: To assess potential mechanisms of UAG action in vivo, we examined rapid effects of UAG on genome-wide expression patterns in fat, muscle and liver of growth hormone secretagogue receptor (GHSR-ablated mice using microarrays. Expression data were analyzed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Regulation of subsets of these genes was verified by quantitative PCR in an independent experiment. UAG acutely regulated clusters of genes involved in glucose and lipid metabolism in all three tissues, consistent with enhancement of insulin sensitivity. CONCLUSIONS/SIGNIFICANCE: Fat, muscle and liver are central to the control of lipid and glucose homeostasis. UAG rapidly modulates the expression of metabolically important genes in these tissues in GHSR-deleted mice indicating a direct, GHSR-independent, action of UAG to improve insulin sensitivity and metabolic profile.

  18. A Computational Model for the Analysis of Lipoprotein Distributions in the Mouse : Translating FPLC Profiles to Lipoprotein Metabolism

    NARCIS (Netherlands)

    Sips, Fianne L. P.; Tiemann, Christian A.; Oosterveer, Maaike H.; Groen, Albert K.; Hilbers, Peter A. J.; van Riel, Natal A. W.

    Disturbances of lipoprotein metabolism are recognized as indicators of cardiometabolic disease risk. Lipoprotein size and composition, measured in a lipoprotein profile, are considered to be disease risk markers. However, the measured profile is a collective result of complex metabolic interactions,

  19. Metabolic and inflammatory profiles of biomarkers in obesity, metabolic syndrome, and diabetes in a Mediterranean population. DARIOS Inflammatory study.

    Science.gov (United States)

    Fernández-Bergés, Daniel; Consuegra-Sánchez, Luciano; Peñafiel, Judith; Cabrera de León, Antonio; Vila, Joan; Félix-Redondo, Francisco Javier; Segura-Fragoso, Antonio; Lapetra, José; Guembe, María Jesús; Vega, Tomás; Fitó, Montse; Elosua, Roberto; Díaz, Oscar; Marrugat, Jaume

    2014-08-01

    There is a paucity of data regarding the differences in the biomarker profiles of patients with obesity, metabolic syndrome, and diabetes mellitus as compared to a healthy, normal weight population. We aimed to study the biomarker profile of the metabolic risk continuum defined by the transition from normal weight to obesity, metabolic syndrome, and diabetes mellitus. We performed a pooled analysis of data from 7 cross-sectional Spanish population-based surveys. An extensive panel comprising 20 biomarkers related to carbohydrate metabolism, lipids, inflammation, coagulation, oxidation, hemodynamics, and myocardial damage was analyzed. We employed age- and sex-adjusted multinomial logistic regression models for the identification of those biomarkers associated with the metabolic risk continuum phenotypes: obesity, metabolic syndrome, and diabetes mellitus. A total of 2851 subjects were included for analyses. The mean age was 57.4 (8.8) years, 1269 were men (44.5%), and 464 participants were obese, 443 had metabolic syndrome, 473 had diabetes mellitus, and 1471 had a normal weight (healthy individuals). High-sensitivity C-reactive protein, apolipoprotein B100, leptin, and insulin were positively associated with at least one of the phenotypes of interest. Apolipoprotein A1 and adiponectin were negatively associated. There are differences between the population with normal weight and that having metabolic syndrome or diabetes with respect to certain biomarkers related to the metabolic, inflammatory, and lipid profiles. The results of this study support the relevance of these mechanisms in the metabolic risk continuum. When metabolic syndrome and diabetes mellitus are compared, these differences are less marked. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  20. Metabolic profiling for detection of Staphylococcus aureus infection and antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Henrik Antti

    Full Text Available Due to slow diagnostics, physicians must optimize antibiotic therapies based on clinical evaluation of patients without specific information on causative bacteria. We have investigated metabolomic analysis of blood for the detection of acute bacterial infection and early differentiation between ineffective and effective antibiotic treatment. A vital and timely therapeutic difficulty was thereby addressed: the ability to rapidly detect treatment failures because of antibiotic-resistant bacteria. Methicillin-resistant Staphylococcus aureus (MRSA and methicillin-sensitive S. aureus (MSSA were used in vitro and for infecting mice, while natural MSSA infection was studied in humans. Samples of bacterial growth media, the blood of infected mice and of humans were analyzed with combined Gas Chromatography/Mass Spectrometry. Multivariate data analysis was used to reveal the metabolic profiles of infection and the responses to different antibiotic treatments. In vitro experiments resulted in the detection of 256 putative metabolites and mice infection experiments resulted in the detection of 474 putative metabolites. Importantly, ineffective and effective antibiotic treatments were differentiated already two hours after treatment start in both experimental systems. That is, the ineffective treatment of MRSA using cloxacillin and untreated controls produced one metabolic profile while all effective treatment combinations using cloxacillin or vancomycin for MSSA or MRSA produced another profile. For further evaluation of the concept, blood samples of humans admitted to intensive care with severe sepsis were analyzed. One hundred thirty-three putative metabolites differentiated severe MSSA sepsis (n = 6 from severe Escherichia coli sepsis (n = 10 and identified treatment responses over time. Combined analysis of human, in vitro, and mice samples identified 25 metabolites indicative of effective treatment of S. aureus sepsis. Taken together, this

  1. Metabolomic and proteomic profiles reveal the dynamics of primary metabolism during seed development of lotus (Nelumbo nucifera

    Directory of Open Access Journals (Sweden)

    Pingfang eYang

    2016-06-01

    Full Text Available Sacred lotus (Nelumbo nucifera belongs to Nelumbonaceae family. Its seeds are widely consumed in Asia countries as snacks or even medicine. Besides the market values, lotus seed also plays crucial roles in lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP which was corresponding to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal the metabolism adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acids metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide reference data set for the evaluation of primary metabolism during lotus seed development.

  2. Metabolomic and Proteomic Profiles Reveal the Dynamics of Primary Metabolism during Seed Development of Lotus (Nelumbo nucifera).

    Science.gov (United States)

    Wang, Lei; Fu, Jinlei; Li, Ming; Fragner, Lena; Weckwerth, Wolfram; Yang, Pingfang

    2016-01-01

    Sacred lotus (Nelumbo nucifera) belongs to the Nelumbonaceae family. Its seeds are widely consumed in Asian countries as snacks or even medicine. Besides the market value, lotus seed also plays a crucial role in the lotus life cycle. Consequently, it is essential to gain a comprehensive understanding of the development of lotus seed. During its development, lotus seed undergoes cell division, expansion, reserve accumulation, desiccation, and maturation phases. We observed morphological and biochemical changes from 10 to 25 days after pollination (DAP) which corresponded to the reserve synthesis and accumulation phase. The volume of the seed expanded until 20 DAP with the color of the seed coat changing from yellow-green to dark green and gradually fading again. Starch and protein rapidly accumulated from 15 to 20 DAP. To further reveal metabolic adaptation, primary metabolites and proteins profiles were obtained using mass spectrometry based platforms. Metabolites and enzymes involved in sugar metabolism, glycolysis, TCA cycle and amino acid metabolism showed sequential dynamics enabling the clear separation of the different metabolic states during lotus seed development. The integration of the data revealed a highly significant metabolic switch at 15 DAP going through a transition of metabolically highly active tissue to the preparation of storage tissue. The results provide a reference data set for the evaluation of primary metabolism during lotus seed development.

  3. Abdominal obesity has the highest impact on metabolic profile in an overweight African population

    DEFF Research Database (Denmark)

    Handlos, L. N.; Witte, D. R.; Mwaniki, D. L.

    2012-01-01

    Aim: The aim of this study was to determine the association between different anthropometric parameters and metabolic profile in an overweight, adult, black Kenyan population. Methods: An opportunity sample of 245 overweight adult Kenyans (body mass index (BMI) ≥ 25 kg/m2) was analysed. A score...... anthropometric variables tested, WC and VAT thickness had the strongest negative association with the metabolic profile (β = 0.17 (0.09; 0.24) and 0.15 (0.08; 0.23), respectively). Conclusions: WC and VAT thickness were the strongest anthropometric predictors for the metabolic profile in overweight adult Kenyans...

  4. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    Science.gov (United States)

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  5. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  6. Low Birthweight, Rapid Weight Gain and Metabolic Syndrome in Adolescence: An Illustrative Case Report

    Directory of Open Access Journals (Sweden)

    Onyiriuka Alphonsus N.

    2015-12-01

    Full Text Available A 16-year-old boy whose diabetes mellitus was diagnosed 3 months previously in a private hospital but was not placed on medication. The presenting complaints were fast breathing for 24 hours, weakness for 2 hours, and unresponsiveness to calls for 0.5 hours. His father was obese with type 2 diabetes mellitus and died 8 months earlier from cardiac arrest. His birthweight was low, 2.2kg. At first presentation, his weight, BMI and blood pressure were 60kg (25th-50th percentile, 19.4kg/m2 (25thpercentile and 110/70mmHg (systolic BP 50th percentile, diastolic BP 50th-90th percentile, respectively. He was managed for diabetic ketoacidosis and was discharged on subcutaneous premixed insulin, 1 Unit/kg/day. At point of discharge, weight and BP were 60.5 kg and 120/70 mmHg, respectively. The patient defaulted but presented again 6 months later at the age of 17 years. At second presentation, his weight, BMI and BP were 89 kg (95th percentile, 27.5 kg/m2 (90th-95th percentile and 180/80 mmHg (systolic 99th percentile; diastolic 90th percentile, respectively. His waist circumference was 98.7cm (> 90th percentile. We had no record of previous waist circumference. His lipid profile showed low HDL-cholesterol 0.7252 mmol/L [(28mg/dl; <5thpercentile]. His fasting blood glucose and HbA1C were 6.5 mmol/L (117mg/dl and 34 mol/mol (5.3%, respectively. A diagnosis of metabolic syndrome in a patient with ketosis-prone type 2 diabetes was made. He was referred to the pediatric cardiologist for management of his hypertension. He defaulted again and was lost to follow up. Conclusion: This report illustrates the association of low birth weight and rapid weight gain with metabolic syndrome in adolescence.

  7. Preadipocyte factor-1 is associated with metabolic profile in severe obesity.

    LENUS (Irish Health Repository)

    O'Connell, J

    2011-04-01

    Dysfunctional adipose tissue has been proposed as a key pathological process linking obesity and metabolic disease. Preadipocyte factor-1 (Pref-1) has been shown to inhibit differentiation in adipocyte precursor cells and could thereby play a role in determining adipocyte size, adipose tissue functioning, and metabolic profile in obese individuals.

  8. Metabolic Profiles in Ovulatory and Anovulatory Primiparous Dairy Cows During the First Follicular Wave Postpartum

    OpenAIRE

    Kawashima, Chiho; Sakaguchi, Minoru; Suzuki, Takahiro; Sasamoto, Yoshihiko; TAKAHASHI, Yoshiyuki; MATSUI, Motozumi; MIYAMOTO, Akio

    2007-01-01

    Metabolic hormones affect ovarian function in the cow. However, the relationship between metabolic factors and ovarian function is not clear in the postpartum primiparous cow because they are still growing. The aim of the present study was to investigate in detail the time-dependent profile of the metabolic hormones, metabolites, and milk yields of ovulatory and anovulatory primiparous cows during the first follicular wave postpartum. We used 16 primiparous Holstein cows and obtained blood sa...

  9. Antihypertensive Drugs Metabolism: An Update to Pharmacokinetic Profiles and Computational Approaches

    Science.gov (United States)

    Zisaki, Aikaterini; Miskovic, Ljubisa; Hatzimanikatis, Vassily

    2015-01-01

    Drug discovery and development is a high-risk enterprise that requires significant investments in capital, time and scientific expertise. The studies of xenobiotic metabolism remain as one of the main topics in the research and development of drugs, cosmetics and nutritional supplements. Antihypertensive drugs are used for the treatment of high blood pressure, which is one the most frequent symptoms of the patients that undergo cardiovascular diseases such as myocardial infraction and strokes. In current cardiovascular disease pharmacology, four drug clusters - Angiotensin Converting Enzyme Inhibitors, Beta-Blockers, Calcium Channel Blockers and Diuretics - cover the major therapeutic characteristics of the most antihypertensive drugs. The pharmacokinetic and specifically the metabolic profile of the antihypertensive agents are intensively studied because of the broad inter-individual variability on plasma concentrations and the diversity on the efficacy response especially due to the P450 dependent metabolic status they present. Several computational methods have been developed with the aim to: (i) model and better understand the human drug metabolism; and (ii) enhance the experimental investigation of the metabolism of small xenobiotic molecules. The main predictive tools these methods employ are rule-based approaches, quantitative structure metabolism/activity relationships and docking approaches. This review paper provides detailed metabolic profiles of the major clusters of antihypertensive agents, including their metabolites and their metabolizing enzymes, and it also provides specific information concerning the computational approaches that have been used to predict the metabolic profile of several antihypertensive drugs. PMID:25341854

  10. Adverse Metabolic Risk Profiles in Greenlandic Inuit Children Compared to Danish Children

    DEFF Research Database (Denmark)

    Munch-Andersen, T.; Sorensen, K.; Andersen, L. B.

    2013-01-01

    Objective During recent decades, the prevalence of metabolic morbidity has increased rapidly in adult Greenlandic Inuit. To what extent this is also reflected in the juvenile Inuit population is unknown. The objective was, therefore, in the comparison with Danish children, to evaluate metabolic p...

  11. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation

    OpenAIRE

    Rioux, Vincent; Daval, Stéphanie; Guillou, Hervé; Jan, Sophie; Legrand, Philippe

    2003-01-01

    International audience; This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [ 1-$^{14}$C] -lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells ($94.8 \\pm 2.2\\%$ of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low ($24.6 \\pm 4.2\\%$ of initial radioactivity after...

  12. Distinct Metabolic Profile of Inhaled Budesonide and Salbutamol in Asthmatic Children during Acute Exacerbation.

    Science.gov (United States)

    Quan-Jun, Yang; Jian-Ping, Zhang; Jian-Hua, Zhang; Yong-Long, Han; Bo, Xin; Jing-Xian, Zhang; Bona, Dai; Yuan, Zhang; Cheng, Guo

    2017-03-01

    Inhaled budesonide and salbutamol represent the most important and frequently used drugs in asthmatic children during acute exacerbation. However, there is still no consensus about their resulting metabolic derangements; thus, this study was conducted to determine the distinct metabolic profiles of these two drugs. A total of 69 children with asthma during acute exacerbation were included, and their serum and urine were investigated using high-resolution nuclear magnetic resonance (NMR). A metabolomics analysis was performed using a principal component analysis and orthogonal signal correction-partial least squares using SIMCA-P. The different metabolites were identified, and the distinct metabolic profiles were analysed using MetPA. A high-resolution NMR-based serum and urine metabolomics approach was established to study the overall metabolic changes after inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. The perturbed metabolites included 22 different metabolites in the serum and 21 metabolites in the urine. Based on an integrated analysis, the changed metabolites included the following: increased 4-hydroxybutyrate, lactate, cis-aconitate, 5-hydroxyindoleacetate, taurine, trans-4-hydroxy-l-proline, tiglylglycine, 3-hydroxybutyrate, 3-methylhistidine, glucose, cis-aconitate, 2-deoxyinosine and 2-aminoadipate; and decreased alanine, glycerol, arginine, glycylproline, 2-hydroxy-3-methylvalerate, creatine, citrulline, glutamate, asparagine, 2-hydroxyvalerate, citrate, homoserine, histamine, sn-glycero-3-phosphocholine, sarcosine, ornithine, creatinine, glycine, isoleucine and trimethylamine N-oxide. The MetPA analysis revealed seven involved metabolic pathways: arginine and proline metabolism; taurine and hypotaurine metabolism; glycine, serine and threonine metabolism; glyoxylate and dicarboxylate metabolism; methane metabolism; citrate cycle; and pyruvate metabolism. The perturbed metabolic profiles suggest potential metabolic

  13. Profiling of ARDS Pulmonary Edema Fluid Identifies a Metabolically Distinct Subset.

    Science.gov (United States)

    Rogers, Angela J; Contrepois, Kevin; Wu, Manhong; Zheng, Ming; Peltz, Gary; Ware, Lorraine B; Matthay, Michael A

    2017-03-03

    There is considerable biologic and physiologic heterogeneity among patients who meet standard clinical criteria for acute respiratory distress syndrome (ARDS). In this study, we tested the hypothesis that there exists a sub-group of ARDS patients who exhibit a metabolically distinct profile. We examined undiluted pulmonary edema fluid obtained at the time of endotracheal intubation from 16 clinically phenotyped ARDS patients and 13 control patients with hydrostatic pulmonary edema. Non-targeted metabolic profiling was carried out on the undiluted edema fluid. Univariate and multivariate statistical analyses including principal components analysis (PCA) and partial least squares discriminant analysis (PLSDA) were conducted to find discriminant metabolites. 760 unique metabolites were identified in the pulmonary edema fluid of these 29 patients. We found that a subset of ARDS patients (6/16, 38%) presented a distinct metabolic profile with the overrepresentation of 235 metabolites compared to edema fluid from the other 10 ARDS patients, whose edema fluid metabolic profile was indistinguishable from those of the 13 control patients with hydrostatic edema. This "high metabolite" endotype was characterized by higher concentrations of metabolites belonging to all of the main metabolic classes including lipids, amino acids, and carbohydrates. This distinct group with high metabolite levels in the edema fluid was also associated with a higher mortality rate. Thus, metabolic profiling of the edema fluid of ARDS patients supports the hypothesis that there is considerable biologic heterogeneity among ARDS patients who meet standard clinical and physiologic criteria for ARDS.

  14. Towards real-time metabolic profiling of a biopsy specimen during a surgical operation by 1H high resolution magic angle spinning nuclear magnetic resonance: a case report

    Directory of Open Access Journals (Sweden)

    Piotto Martial

    2012-01-01

    Full Text Available Abstract Introduction Providing information on cancerous tissue samples during a surgical operation can help surgeons delineate the limits of a tumoral invasion more reliably. Here, we describe the use of metabolic profiling of a colon biopsy specimen by high resolution magic angle spinning nuclear magnetic resonance spectroscopy to evaluate tumoral invasion during a simulated surgical operation. Case presentation Biopsy specimens (n = 9 originating from the excised right colon of a 66-year-old Caucasian women with an adenocarcinoma were automatically analyzed using a previously built statistical model. Conclusions Metabolic profiling results were in full agreement with those of a histopathological analysis. The time-response of the technique is sufficiently fast for it to be used effectively during a real operation (17 min/sample. Metabolic profiling has the potential to become a method to rapidly characterize cancerous biopsies in the operation theater.

  15. Metabolite profiling identifies pathways associated with metabolic risk in humans.

    Science.gov (United States)

    Cheng, Susan; Rhee, Eugene P; Larson, Martin G; Lewis, Gregory D; McCabe, Elizabeth L; Shen, Dongxiao; Palma, Melinda J; Roberts, Lee D; Dejam, Andre; Souza, Amanda L; Deik, Amy A; Magnusson, Martin; Fox, Caroline S; O'Donnell, Christopher J; Vasan, Ramachandran S; Melander, Olle; Clish, Clary B; Gerszten, Robert E; Wang, Thomas J

    2012-05-08

    Although metabolic risk factors are known to cluster in individuals who are prone to developing diabetes mellitus and cardiovascular disease, the underlying biological mechanisms remain poorly understood. To identify pathways associated with cardiometabolic risk, we used liquid chromatography/mass spectrometry to determine the plasma concentrations of 45 distinct metabolites and to examine their relation to cardiometabolic risk in the Framingham Heart Study (FHS; n=1015) and the Malmö Diet and Cancer Study (MDC; n=746). We then interrogated significant findings in experimental models of cardiovascular and metabolic disease. We observed that metabolic risk factors (obesity, insulin resistance, high blood pressure, and dyslipidemia) were associated with multiple metabolites, including branched-chain amino acids, other hydrophobic amino acids, tryptophan breakdown products, and nucleotide metabolites. We observed strong associations of insulin resistance traits with glutamine (standardized regression coefficients, -0.04 to -0.22 per 1-SD change in log-glutamine; Prisk of incident diabetes mellitus in FHS (odds ratio, 0.79; adjusted P=0.03) but not in MDC. In experimental models, administration of glutamine in mice led to both increased glucose tolerance (P=0.01) and decreased blood pressure (Pprofiling identified circulating metabolites not previously associated with metabolic traits. Experimentally interrogating one of these pathways demonstrated that excess glutamine relative to glutamate, resulting from exogenous administration, is associated with reduced metabolic risk in mice.

  16. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking.

    Science.gov (United States)

    Nofzinger, Eric A; Buysse, Daniel J; Miewald, Jean M; Meltzer, Carolyn C; Price, Julie C; Sembrat, Robert C; Ombao, Hernando; Reynolds, Charles F; Monk, Timothy H; Hall, Martica; Kupfer, David J; Moore, Robert Y

    2002-05-01

    Sleep is an essential human function. Although the function of sleep has generally been regarded to be restorative, recent data indicate that it also plays an important role in cognition. The neurobiology of human sleep is most effectively analysed with functional imaging, and PET studies have contributed substantially to our understanding of both rapid eye movement (REM) and non-rapid eye movement (NREM) sleep. In this study, PET was used to determine patterns of regional glucose metabolism in NREM sleep compared with waking. We hypothesized that brain structures related to waking cognitive function would show a persistence of function into the NREM sleep state. Fourteen healthy subjects (age range 21-49 years; 10 women, 4 men) underwent concurrent EEG sleep studies and [(18)F]fluoro-2-deoxy-D-glucose PET scans during waking and NREM sleep. Whole-brain glucose metabolism declined significantly from waking to NREM sleep. Relative decreases in regional metabolism from waking to NREM sleep occurred in wide areas of frontal, parietal, temporal and occipital association cortex, primary visual cortex, and in anterior/dorsomedial thalamus. After controlling for the whole-brain declines in absolute metabolism, relative increases in regional metabolism from waking to NREM were found bilaterally in the dorsal pontine tegmentum, hypothalamus, basal forebrain, ventral striatum, anterior cingulate cortex and extensive regions of the mesial temporal lobe, including the amygdala and hippocampus, and in the right dorsal parietal association cortex and primary somatosensory and motor cortices. The reductions in relative metabolism in NREM sleep compared with waking are consistent with prior findings from blood flow studies. The relative increases in glucose utilization in the basal forebrain, hypothalamus, ventral striatum, amygdala, hippocampus and pontine reticular formation are new observations that are in accordance with the view that NREM sleep is important to brain

  17. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation

    Energy Technology Data Exchange (ETDEWEB)

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M.; Young, Vincent B.; Jansson, Janet K.; Fredricks, David N.; Borenstein, Elhanan; Sanchez, Laura M.

    2015-12-22

    ABSTRACT

    Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in

  18. Metabolic Model-Based Integration of Microbiome Taxonomic and Metabolomic Profiles Elucidates Mechanistic Links between Ecological and Metabolic Variation.

    Science.gov (United States)

    Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M; Young, Vincent B; Jansson, Janet K; Fredricks, David N; Borenstein, Elhanan

    2016-01-01

    Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites' abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. Studies

  19. Inborn errors of metabolism revealed by organic acid profile analysis ...

    African Journals Online (AJOL)

    Objective: To determine the prevalence and types of inborn errors of amino ... of a metabolic disorder were studied, their ages ranged from 3 days to 12 years. ... cases (54 %), glutaric aciduria type I 3cases (13 %), phenylketonuria 2 cases (9 ...

  20. Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells.

    Directory of Open Access Journals (Sweden)

    Heather C Jensen-Smith

    Full Text Available Aminoglycosides (AG, including gentamicin (GM, are the most frequently used antibiotics in the world and are proposed to cause irreversible cochlear damage and hearing loss (HL in 1/4 of the patients receiving these life-saving drugs. Akin to the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs preferentially succumb to multiple HL pathologies while inner hair cells (IHCs are much more resilient. To determine if endogenous differences in IHC and OHC mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH fluorescence during acute (1 h GM treatment were compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate differences in HC fate during multiple HL pathologies.

  1. Metabolic profile at first-time schizophrenia diagnosis: a population-based cross-sectional study

    Science.gov (United States)

    Horsdal, Henriette Thisted; Benros, Michael Eriksen; Köhler-Forsberg, Ole; Krogh, Jesper; Gasse, Christiane

    2017-01-01

    Objective Schizophrenia and/or antipsychotic drug use are associated with metabolic abnormalities; however, knowledge regarding metabolic status and physician’s monitoring of metabolic status at first schizophrenia diagnosis is sparse. We assessed the prevalence of monitoring for metabolic blood abnormalities and characterized the metabolic profiles in people with a first-time schizophrenia diagnosis. Methods This is a population-based cross-sectional study including all adults born in Denmark after January 1, 1955, with their first schizophrenia diagnosis between 2000 and 2012 in the Central Denmark Region. Information on metabolic parameters was obtained from a clinical laboratory information system. Associations were calculated using Wilcoxon rank-sum tests, chi-square tests, logistic regression, and Spearman’s correlation coefficients. Results A total of 2,452 people with a first-time schizophrenia diagnosis were identified, of whom 1,040 (42.4%) were monitored for metabolic abnormalities. Among those monitored, 58.4% had an abnormal lipid profile and 13.8% had an abnormal glucose profile. People who had previously filled prescription(s) for antipsychotic drugs were more likely to present an abnormal lipid measure (65.7% vs 46.8%, Pmanagement. PMID:28280344

  2. Although it is rapidly metabolized in cultured rat hepatocytes, lauric acid is used for protein acylation.

    Science.gov (United States)

    Rioux, Vincent; Daval, Stéphanie; Guillou, Hervé; Jan, Sophie; Legrand, Philippe

    2003-01-01

    This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [14C]-lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells (94.8 +/- 2.2% of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low (24.6 +/- 4.2% of initial radioactivity after 4 h), due to the high beta-oxidation of lauric acid in hepatocytes (38.7 +/- 4.4% after the same time). Among cellular lipids, lauric acid was preferentially incorporated into triglycerides (10.6 +/- 4.6% of initial radioactivity after 4 h). Lauric acid was also rapidly converted to palmitic acid by two successive elongations. Protein acylation was detected after metabolic labeling of the cells with [11,12-3H]-lauric acid. Two-dimensional electrophoresis separation of the cellular proteins and autoradiography evidenced the incorporation of radioactivity into 35 well-resolved proteins. Radiolabeling of several proteins resulted from covalent linkage to the precursor [11,12-3H]-lauric acid or to its elongation product, myristic acid. The covalent linkages between these proteins and lauric acid were broken by base hydrolysis, indicating that the linkage was of the thioester or ester-type. Endogenous myristic acid produced by lauric acid elongation was used for both protein N-myristoylation and protein S-acylation. Therefore, these results show for the first time that, although it is rapidly metabolized in hepatocytes, exogenous lauric acid is a substrate for the acylation of liver proteins.

  3. Gene expression profiles of auxin metabolism in maturing apple fruit

    Science.gov (United States)

    Variation exists among apple genotypes in fruit maturation and ripening patterns that influences at-harvest fruit firmness and postharvest storability. Based on the results from our previous large-scale transcriptome profiling on apple fruit maturation and well-documented auxin-ethylene crosstalk, t...

  4. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks

    Energy Technology Data Exchange (ETDEWEB)

    Fliniaux, Ophelie [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Gaillard, Gwenaelle [Biobanque de Picardie (France); Lion, Antoine [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Cailleu, Dominique [Batiment Serres-Transfert, rue de Mai/rue Dallery, Plateforme Analytique (France); Mesnard, Francois, E-mail: francois.mesnard@u-picardie.fr [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Betsou, Fotini [Integrated Biobank of Luxembourg (Luxembourg)

    2011-12-15

    A blood pre-centrifugation delay of 24 h at room temperature influenced the proton NMR spectroscopic profiles of human serum. A blood pre-centrifugation delay of 24 h at 4 Degree-Sign C did not influence the spectroscopic profile as compared with 4 h delays at either room temperature or 4 Degree-Sign C. Five or ten serum freeze-thaw cycles also influenced the proton NMR spectroscopic profiles. Certain common in vitro preanalytical variations occurring in biobanks may impact the metabolic profile of human serum.

  5. Altered circadian rhythm and metabolic gene profile in rats subjected to advanced light phase shifts.

    Directory of Open Access Journals (Sweden)

    Laura Herrero

    Full Text Available The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT, brown adipose tissue (BAT and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level.

  6. Metabolic disturbances, side effect profile and effectiveness of clozapine in adolescents

    Directory of Open Access Journals (Sweden)

    Sandeep Grover

    2016-01-01

    Full Text Available Introduction: Data on effect of clozapine on metabolic syndrome in adolescent patients with psychosis are limited. This study aimed to evaluate the prevalence and incidence of metabolic syndrome in children and adolescents with psychotic disorders prior to clozapine and while receiving clozapine. Secondary aims were to study the effectiveness and side effect profile of clozapine. Materials and Methods: Thirteen child and adolescent patients were evaluated at baseline, 3 months, and a follow-up beyond 6 months. Assessments were made for metabolic profile, effectiveness by positive and negative syndrome scale (PANSS, and side effects. Results: Prior to starting of clozapine, the prevalence of metabolic syndrome was 23%. After 3 months on clozapine, 38.5% (5/13 patients fulfilled criteria of metabolic syndrome and further on follow-up beyond 6 months (with last observation carried forward 46.2% (6/13 had developed metabolic syndrome. There was a significant reduction in PANSS scores at 3 months and follow-up more so in those who developed metabolic syndrome at 3 months. Among the other side effects, hypersalivation was the most common side effect (100% followed by sedation (69%. Conclusion: Half the prevalence of metabolic syndrome in adolescents on clozapine can be attributed to other factors prior to starting of clozapine, and another half can be attributed to clozapine. Clozapine is effective in an adolescent population.

  7. Metabolic profiles of countries and ecological distribution conflicts.

    OpenAIRE

    Martínez Alier, Joan

    2004-01-01

    “Social metabolism” is a notion that links up the natural sciences and the social sciences, and also human history. Work has been done by some groups in Europe in order to operationalize the old idea of looking at the economy from the point of view of “social metabolism”. That idea arose in the 1850s. (Marx used the word Stoffwechsel, and referred explicitly to the metabolism of cells and organisms which also existed in human society. However, neither himself nor Marxist authors did calculati...

  8. Metabolic profiling of recombinant Escherichia coli cultivations based on high-throughput FT-MIR spectroscopic analysis.

    Science.gov (United States)

    Sales, Kevin C; Rosa, Filipa; Cunha, Bernardo R; Sampaio, Pedro N; Lopes, Marta B; Calado, Cecília R C

    2016-10-03

    Escherichia coli is one of the most used host microorganism for the production of recombinant products, such as heterologous proteins and plasmids. However, genetic, physiological and environmental factors influence the plasmid replication and cloned gene expression in a highly complex way. To control and optimize the recombinant expression system performance, it is very important to understand this complexity. Therefore, the development of rapid, highly sensitive and economic analytical methodologies, which enable the simultaneous characterization of the heterologous product synthesis and physiologic cell behavior under a variety of culture conditions, is highly desirable. For that, the metabolic profile of recombinant E. coli cultures producing the pVAX-lacZ plasmid model was analyzed by rapid, economic and high-throughput Fourier Transform Mid-Infrared (FT-MIR) spectroscopy. The main goal of the present work is to show as the simultaneous multivariate data analysis by principal component analysis (PCA) and direct spectral analysis could represent a very interesting tool to monitor E. coli culture processes and acquire relevant information according to current quality regulatory guidelines. While PCA allowed capturing the energetic metabolic state of the cell, e.g. by identifying different C-sources consumption phases, direct FT-MIR spectral analysis allowed obtaining valuable biochemical and metabolic information along the cell culture, e.g. lipids, RNA, protein synthesis and turnover metabolism. The information achieved by spectral multivariate data and direct spectral analyses complement each other and may contribute to understand the complex interrelationships between the recombinant cell metabolism and the bioprocess environment towards more economic and robust processes design according to Quality by Design framework. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016.

  9. Hypoadiponectinemia in overweight children contributes to a negative metabolic risk profile 6 years later

    DEFF Research Database (Denmark)

    Kynde, Iben; Heitmann, Berit L; Bygbjerg, Ib C;

    2009-01-01

    -density lipoprotein cholesterol ratio, serum triglycerides, systolic blood pressure, and the reciprocal value of fitness (maximum watts per kilogram). Overweight was defined using international classification of body mass index cutoff points for children. Plasma adiponectin, leptin, interleukin-8, and hepatocyte...... adiponectin at baseline was inversely associated with metabolic risk score 6 years later (P = .04). In childhood, both hypoadiponectinemia and hyperleptinemia accompany a negative metabolic risk profile. In addition, circulating plasma adiponectin may be a useful biomarker to identify overweight children...

  10. From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes.

    Science.gov (United States)

    Cortassa, Sonia; Caceres, Viviane; Bell, Lauren N; O'Rourke, Brian; Paolocci, Nazareno; Aon, Miguel A

    2015-01-06

    We describe a believed-novel procedure for translating metabolite profiles (metabolome) into the set of metabolic fluxes (fluxome) from which they originated. Methodologically, computational modeling is integrated with an analytical platform comprising linear optimization, continuation and dynamic analyses, and metabolic control. The procedure was tested with metabolite profiles obtained from ex vivo mice Langendorff-heart preparations perfused with glucose. The metabolic profiles were analyzed using a detailed kinetic model of the glucose catabolic pathways including glycolysis, pentose phosphate (PP), glycogenolysis, and polyols to translate the glucose metabolome of the heart into the fluxome. After optimization, the ability of the model to simulate the initial metabolite profile was confirmed, and metabolic fluxes as well as the structure of control and regulation of the glucose catabolic network could be calculated. We show that the step catalyzed by phosphofructokinase together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The negative flux control exerted by phosphofructokinase on the PP and polyol pathways revealed that the extent of glycolytic flux directly affects flux redirection through these pathways, i.e., the higher the glycolytic flux the lower the PP and polyols. This believed-novel methodological approach represents a step forward that may help in designing therapeutic strategies targeted to diagnose, prevent, and treat metabolic diseases.

  11. Biochemical association of metabolic profile and microbiome in chronic pressure ulcer wounds.

    Directory of Open Access Journals (Sweden)

    Mary Cloud B Ammons

    Full Text Available Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment.

  12. Biochemical association of metabolic profile and microbiome in chronic pressure ulcer wounds.

    Science.gov (United States)

    Ammons, Mary Cloud B; Morrissey, Kathryn; Tripet, Brian P; Van Leuven, James T; Han, Anne; Lazarus, Gerald S; Zenilman, Jonathan M; Stewart, Philip S; James, Garth A; Copié, Valérie

    2015-01-01

    Chronic, non-healing wounds contribute significantly to the suffering of patients with co-morbidities in the clinical population with mild to severely compromised immune systems. Normal wound healing proceeds through a well-described process. However, in chronic wounds this process seems to become dysregulated at the transition between resolution of inflammation and re-epithelialization. Bioburden in the form of colonizing bacteria is a major contributor to the delayed headlining in chronic wounds such as pressure ulcers. However how the microbiome influences the wound metabolic landscape is unknown. Here, we have used a Systems Biology approach to determine the biochemical associations between the taxonomic and metabolomic profiles of wounds colonized by bacteria. Pressure ulcer biopsies were harvested from primary chronic wounds and bisected into top and bottom sections prior to analysis of microbiome by pyrosequencing and analysis of metabolome using 1H nuclear magnetic resonance (NMR) spectroscopy. Bacterial taxonomy revealed that wounds were colonized predominantly by three main phyla, but differed significantly at the genus level. While taxonomic profiles demonstrated significant variability between wounds, metabolic profiles shared significant similarity based on the depth of the wound biopsy. Biochemical association between taxonomy and metabolic landscape indicated significant wound-to-wound similarity in metabolite enrichment sets and metabolic pathway impacts, especially with regard to amino acid metabolism. To our knowledge, this is the first demonstration of a statistically robust correlation between bacterial colonization and metabolic landscape within the chronic wound environment.

  13. t-10, c-12 CLA dietary supplementation inhibits atherosclerotic lesion development despite adverse cardiovascular and hepatic metabolic marker profiles.

    Science.gov (United States)

    Mitchell, Patricia L; Karakach, Tobias K; Currie, Deborah L; McLeod, Roger S

    2012-01-01

    Animal and human studies have indicated that fatty acids such as the conjugated linoleic acids (CLA) found in milk could potentially alter the risk of developing metabolic disorders including diabetes and cardiovascular disease (CVD). Using susceptible rodent models (apoE(-/-) and LDLr(-/-) mice) we investigated the interrelationship between mouse strain, dietary conjugated linoleic acids and metabolic markers of CVD. Despite an adverse metabolic risk profile, atherosclerosis (measured directly by lesion area), was significantly reduced with t-10, c-12 CLA and mixed isomer CLA (Mix) supplementation in both apoE(-/-) (pCLA supplemented animals having distinct patterns, suggestive of hepatic insulin resistance, regardless of mouse strain. The effect of CLA supplementation on hepatic lipid and fatty acid composition was explored in the LDLr(-/-) strain. Dietary supplementation with t-10, c-12 CLA significantly increased liver weight (pCLA also increased the ratio of 18∶1 to 18∶0 fatty acid in the liver suggesting an increase in the activity of stearoyl-CoA desaturase. Changes in plasma adiponectin and liver weight with t-10, c-12 CLA supplementation were evident within 3 weeks of initiation of the diet. These observations provide evidence that the individual CLA isomers have divergent mechanisms of action and that t-10, c-12 CLA rapidly changes plasma and liver markers of metabolic syndrome, despite evidence of reduction in atherosclerosis.

  14. Untargeted Metabolomics Analysis of ABCC6-Deficient Mice Discloses an Altered Metabolic Liver Profile

    DEFF Research Database (Denmark)

    Rasmussen, Mie Rostved; Nielsen, Kirstine Lykke; Christensen, Mia Benedicte Lykke Roest

    2016-01-01

    Loss-of-function mutations in the transmembrane ABCC6 transport protein cause pseudoxanthoma elasticum (PXE), an ectopic, metabolic mineralization disorder that affects the skin, eye, and vessels. ABCC6 is assumed to mediate efflux of one or several small molecule compounds from the liver cytosol...... in acetylation reactions, were accumulated in the liver. None of the identified metabolites seems to explain mineralization in extrahepatic tissues, but the present study now shows that abrogated ABCC6 function does cause alterations in the metabolic profile of the liver in accordance with PXE being a metabolic...

  15. Metabolic profiles of planktonic and biofilm cells of Candida orthopsilosis.

    Science.gov (United States)

    Pires, Regina Helena; Cataldi, Thaís Regiani; Franceschini, Livia Maria; Labate, Mônica Veneziano; Fusco-Almeida, Ana Marisa; Labate, Carlos Alberto; Palma, Mario Sérgio; Soares Mendes-Giannini, Maria José

    2016-10-01

    This study aims to understand which Candida orthopsilosis protein aids fungus adaptation upon its switching from planktonic growth to biofilm. Ion mobility separation within mass spectrometry analysis combination were used. Proteins mapped for different biosynthetic pathways showed that selective ribosome autophagy might occur in biofilms. Glucose, used as a carbon source in the glycolytic flux, changed to glycogen and trehalose. Candida orthopsilosis expresses proteins that combine a variety of mechanisms to provide yeasts with the means to adjust the catalytic properties of enzymes. Adjustment of the enzymes helps modulate the biosynthesis/degradation rates of the available nutrients, in order to control and coordinate the metabolic pathways that enable cells to express an adequate response to nutrient availability.

  16. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy's metabolite profiling.

    Science.gov (United States)

    Lee, AeJin; Jang, Han Byul; Ra, Moonjin; Choi, Youngshim; Lee, Hye-Ja; Park, Ju Yeon; Kang, Jae Heon; Park, Kyung-Hee; Park, Sang Ick; Song, Jihyun

    2015-01-01

    Childhood obesity is strongly related to future insulin resistance and metabolic syndrome. Thus, identifying early biomarkers of obesity-related diseases based on metabolic profiling is useful to control future metabolic disorders. We compared metabolic profiles between obese and normal-weight children and investigated specific biomarkers of future insulin resistance and metabolic syndrome. In all, 186 plasma metabolites were analysed at baseline and after 2 years in 109 Korean boys (age 10.5±0.4 years) from the Korean Child Obesity Cohort Study using the AbsoluteIDQ™ p180 Kit. We observed that levels of 41 metabolites at baseline and 40 metabolites at follow-up were significantly altered in obese children (prisk score at the 2-year follow-up. In logistic regression analyses with adjustments for degree of obesity at baseline, baseline BCAA concentration, greater than the median value, was identified as a predictor of future risk of insulin resistance and metabolic syndrome. High BCAA concentration could be "early" biomarkers for predicting future metabolic diseases. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  17. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    Science.gov (United States)

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells.

  18. The diagnosis of inherited metabolic diseases by microarray gene expression profiling

    Directory of Open Access Journals (Sweden)

    Taanman Jan-Willem

    2010-12-01

    Full Text Available Abstract Background Inherited metabolic diseases (IMDs comprise a diverse group of generally progressive genetic metabolic disorders of variable clinical presentations and severity. We have undertaken a study using microarray gene expression profiling of cultured fibroblasts to investigate 68 patients with a broad range of suspected metabolic disorders, including defects of lysosomal, mitochondrial, peroxisomal, fatty acid, carbohydrate, amino acid, molybdenum cofactor, and purine and pyrimidine metabolism. We aimed to define gene expression signatures characteristic of defective metabolic pathways. Methods Total mRNA extracted from cultured fibroblast cell lines was hybridized to Affymetrix U133 Plus 2.0 arrays. Expression data was analyzed for the presence of a gene expression signature characteristic of an inherited metabolic disorder and for genes expressing significantly decreased levels of mRNA. Results No characteristic signatures were found. However, in 16% of cases, disease-associated nonsense and frameshift mutations generating premature termination codons resulted in significantly decreased mRNA expression of the defective gene. The microarray assay detected these changes with high sensitivity and specificity. Conclusion In patients with a suspected familial metabolic disorder where initial screening tests have proven uninformative, microarray gene expression profiling may contribute significantly to the identification of the genetic defect, shortcutting the diagnostic cascade.

  19. Flash Profile for rapid descriptive analysis in sensory characterization of passion fruit juice

    Directory of Open Access Journals (Sweden)

    Flávia Daiana Montanuci

    2015-07-01

    Full Text Available The Flash Profile is a descriptive analysis method derived from Free-Choice Profile, in which each taster chooses and uses his/her own words to evaluate the product while comparing several attributes. Four passion fruit juices were analyzed, two juices were produced with concentrated juice, one with pulp and one with reconstituted juice; all juices had different levels of sugar, some had gum and dyes. This study aimed to evaluate the physicochemical properties (color, titratable acidity and solid content as well as sensory analysis like Flash profile and affective test. In physicochemical characterization and in Flash Profile, the juice A (pulp had higher solid content and consistence, the juice B (concentrated juice was the least acidic and presented the lowest value of soluble solids and presented strong aroma and flavor of passion-fruit, the juice C (reconstituted juice was pale yellow and showed artificial flavor and the juice D (concentrated juice was the most acidic, consistent with the natural flavor. In the acceptance test, all the juices scored 5-6, indicating that panelists tasters neither liked nor disliked. Flash Profile proved to be an easy and rapid technique showing a good correlation between panelists and the attributes and confirmed the results of physicochemical characterization.

  20. The effect of combined inositol supplementation on maternal metabolic profile in pregnancies complicated by metabolic syndrome and obesity.

    Science.gov (United States)

    Ferrari, Francesca; Facchinetti, Fabio; Ontiveros, Alejandra E; Roberts, Robyn P; Saade, Mia M; Blackwell, Sean C; Sibai, Baha M; Refuerzo, Jerrie S; Longo, Monica

    2016-10-01

    Myoinositol and D-chiroinositol improve insulin resistance in women with obesity and gestational diabetes and in postmenopausal women with metabolic syndrome. We previously reported that offspring born to hypertensive dams lacking endothelial nitric oxide synthase and fed a high-fat diet develop metabolic-like syndrome phenotype. The objective of the study was to investigate the effect of a mixture of myoinositol/D-chiroinositol supplementation during pregnancy on the maternal metabolic profile in pregnancies complicated by the metabolic-like syndrome and obesity using a pregnant mouse model. Female heterozygous endothelial nitric oxide synthase(-/+) mice with moderate hypertension were placed on a high-fat diet for 4 weeks to induce a metabolic-like syndrome phenotype. Similarly, wild-type C57BL/6 mice were placed on a high-fat diet for 4 weeks to induce a murine obesity model. Mice were then bred with wild-type males. On gestational day 1, dams were randomly allocated to receive either a mixture of myoinositol/D-chiroinositol in water (7.2/0.18 mg/mL, respectively) or water as control (placebo). At term (gestational day 18), maternal weights, systolic blood pressure, and a glucose tolerance test were obtained. Dams were then killed; pups and placentas were weighed and maternal blood collected. Serum levels of metabolic biomarkers relevant to diabetes and obesity (ghrelin, gastric inhibitory peptide, glucagon-like peptide 1, glucagon, insulin, leptin, resistin) were measured by a multiplex enzyme-linked immunosorbent assay. Analysis was done comparing metabolic-like syndrome-myoinositol/D-chiroinositol-treated vs metabolic-like syndrome-nontreated mice and obese-myoinositol/D-chiroinositol-treated vs obese nontreated mice. Mean systolic blood pressure was lower in metabolic-like syndrome pregnant mice treated with myoinositol/D-chiroinositol compared with placebo (P = .04), whereas there was no difference in systolic blood pressure between treated and placebo

  1. A RAPID THIN-LAYER CHROMATOGRAPHIC PROCEDURE TO IDENTIFY POOR AND EXTENSIVE OXIDATIVE DRUG METABOLIZERS IN MAN USING DEXTROMETHORPHAN

    NARCIS (Netherlands)

    DEZEEUW, RA; EIKEMA, D; FRANKE, JP; JONKMAN, JHG

    1992-01-01

    A rapid TLC method is presented to distinguish poor oxidative drug metabolizers from extensive oxidative drug metabolizers. Dextromethorphan (1) is used as test probe because it is safe, well characterized, generally available and easy to measure. The method is based on the extraction of 1 and its m

  2. Estimation of dynamic flux profiles from metabolic time series data

    Directory of Open Access Journals (Sweden)

    Chou I-Chun

    2012-07-01

    Full Text Available Abstract Background Advances in modern high-throughput techniques of molecular biology have enabled top-down approaches for the estimation of parameter values in metabolic systems, based on time series data. Special among them is the recent method of dynamic flux estimation (DFE, which uses such data not only for parameter estimation but also for the identification of functional forms of the processes governing a metabolic system. DFE furthermore provides diagnostic tools for the evaluation of model validity and of the quality of a model fit beyond residual errors. Unfortunately, DFE works only when the data are more or less complete and the system contains as many independent fluxes as metabolites. These drawbacks may be ameliorated with other types of estimation and information. However, such supplementations incur their own limitations. In particular, assumptions must be made regarding the functional forms of some processes and detailed kinetic information must be available, in addition to the time series data. Results The authors propose here a systematic approach that supplements DFE and overcomes some of its shortcomings. Like DFE, the approach is model-free and requires only minimal assumptions. If sufficient time series data are available, the approach allows the determination of a subset of fluxes that enables the subsequent applicability of DFE to the rest of the flux system. The authors demonstrate the procedure with three artificial pathway systems exhibiting distinct characteristics and with actual data of the trehalose pathway in Saccharomyces cerevisiae. Conclusions The results demonstrate that the proposed method successfully complements DFE under various situations and without a priori assumptions regarding the model representation. The proposed method also permits an examination of whether at all, to what degree, or within what range the available time series data can be validly represented in a particular functional format of

  3. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    OpenAIRE

    2014-01-01

    Background UDP-glucose pyrophosphorylase (UGPase) is a sugar-metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and UTP. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in perennial woody plants is poorly understood. Results We characterized the functional role of a UGPase gene in Populus deltoides, PdUGPase2. Overexpression of the native gene ...

  4. Metabolic profiling of strawberry (Fragaria x ananassa Duch.) during fruit development and maturation.

    Science.gov (United States)

    Zhang, Juanjuan; Wang, Xin; Yu, Oliver; Tang, Juanjuan; Gu, Xungang; Wan, Xiaochun; Fang, Congbing

    2011-01-01

    Strawberry (Fragaria × ananassa Duch), a fruit of economic and nutritional importance, is also a model species for fleshy fruits and genomics in Rosaceae. Strawberry fruit quality at different harvest stages is a function of the fruit's metabolite content, which results from physiological changes during fruit growth and ripening. In order to investigate strawberry fruit development, untargeted (GC-MS) and targeted (HPLC) metabolic profiling analyses were conducted. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were employed to explore the non-polar and polar metabolite profiles from fruit samples at seven developmental stages. Different cluster patterns and a broad range of metabolites that exerted influence on cluster formation of metabolite profiles were observed. Significant changes in metabolite levels were found in both fruits turning red and fruits over-ripening in comparison with red-ripening fruits. The levels of free amino acids decreased gradually before the red-ripening stage, but increased significantly in the over-ripening stage. Metabolite correlation and network analysis revealed the interdependencies of individual metabolites and metabolic pathways. Activities of several metabolic pathways, including ester biosynthesis, the tricarboxylic acid cycle, the shikimate pathway, and amino acid metabolism, shifted during fruit growth and ripening. These results not only confirmed published metabolic data but also revealed new insights into strawberry fruit composition and metabolite changes, thus demonstrating the value of metabolomics as a functional genomics tool in characterizing the mechanism of fruit quality formation, a key developmental stage in most economically important fruit crops.

  5. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rahbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    Background: This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. Material and methods: To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated

  6. Monitoring of metabolic profiling and water status of Hayward kiwifruits by nuclear magnetic resonance.

    Science.gov (United States)

    Capitani, D; Mannina, L; Proietti, N; Sobolev, A P; Tomassini, A; Miccheli, A; Di Cocco, M E; Capuani, G; De Salvador, R; Delfini, M

    2010-10-15

    The metabolic profiling of kiwifruit (Actinidia deliciosa, Hayward cultivar) aqueous extracts and the water status of entire kiwifruits were monitored over the season (June-December) using nuclear magnetic resonance (NMR) methodologies. The metabolic profiling of aqueous kiwifruit extracts was investigated by means of high field NMR spectroscopy. A large number of water-soluble metabolites were assigned by means of 1D and 2D NMR experiments. The change in the metabolic profiles monitored over the season allowed the kiwifruit development to be investigated. Specific temporal trends of aminoacids, sugars, organic acids and other metabolites were observed. The water status of kiwifruits was monitored directly on the intact fruit measuring the T(2) spin-spin relaxation time by means of a portable unilateral NMR instrument, fully non-invasive. Again, clear trends of the relaxation time were observed during the monitoring period. The results show that the monitoring of the metabolic profiling and the monitoring of the water status are two complementary means suitable to have a complete view of the investigated fruit.

  7. Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs

    Science.gov (United States)

    New generation lipid emulsions comprised of fish oil or blends of soybean/fish/medium chain triglyceride/olive oil are emerging that result in favorable clinical metabolic outcomes in pediatric populations. Our aim was to characterize the lipidodomic, metabolomic, and transcriptomic profiles these ...

  8. Association of altered cardiac autonomic function with psychopathology and metabolic profiles in schizophrenia.

    Science.gov (United States)

    Chung, Ming-Shun; Yang, Albert C; Lin, Yu-Chung; Lin, Chieh-Nan; Chang, Fang-Rong; Shen, Shu-hua; Ouyang, Wen-Chen; Loh, El-Wui; Chiu, Hsien-Jane

    2013-12-30

    Schizophrenia has been associated with autonomic dysregulation and increased cardiovascular co-morbidity. We hypothesised that autonomic dysregulation in patients with schizophrenia is associated with psychopathology and metabolic profiles. In this study, we aimed to evaluate psychopathology, comprehensive metabolic profiles and cardiac autonomic function using heart-rate variability (HRV) analysis in patients with schizophrenia. A total of 94 patients with schizophrenia and 51 healthy controls were recruited. Each patient underwent a physical examination, laboratory tests and rating scale evaluation, and all subjects underwent a 1-h electrocardiogram monitoring. Analysis of variance was used to compare demographic and HRV variables between control and patient groups. We applied multiple regression analysis with backward selection to examine the association between HRV indices and demographic, metabolic and psychopathology profiles. A decreased HRV was found in patient groups, compared to controls. Reduced vagal-related and complexity domain of HRV indices in patient groups were correlated with increased body mass indices, diastolic pressure, triglycerides, high- and low-density lipoprotein and severity of psychosis mainly in the negative symptom domain. This study provides evidence that altered autonomic function is associated with both psychopathology and metabolic profiles in patients with schizophrenia. These findings may warrant future research in using HRV as objective markers to monitor cardiovascular health and the severity of psychosis in patients with schizophrenia.

  9. Obese Patients With a Binge Eating Disorder Have an Unfavorable Metabolic and Inflammatory Profile.

    Science.gov (United States)

    Succurro, Elena; Segura-Garcia, Cristina; Ruffo, Mariafrancesca; Caroleo, Mariarita; Rania, Marianna; Aloi, Matteo; De Fazio, Pasquale; Sesti, Giorgio; Arturi, Franco

    2015-12-01

    To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese.A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile.BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits.

  10. Metabolomic profiles of lipid metabolism, arterial stiffness and hemodynamics in male coronary artery disease patients

    Directory of Open Access Journals (Sweden)

    Kaido Paapstel

    2016-06-01

    Conclusions: We demonstrated an independent association between the serum medium- and long-chain acylcarnitine profile and aortic stiffness for the CAD patients. In addition to the lipid-related classical CVD risk markers, the intermediates of lipid metabolism may serve as novel indicators for altered vascular function.

  11. Effect of opium on glucose metabolism and lipid profiles in rats with streptozotocin-induced diabetes

    NARCIS (Netherlands)

    Sadeghian, Saeed; Boroumand, Mohammad Ali; Sotoudeh-Anvari, Maryam; Rahbani, Shahram; Sheikhfathollahi, Mahmood; Abbasi, Ali

    2009-01-01

    Background: This experimental study was performed to determine the impact of opium use on serum lipid profile and glucose metabolism in rats with streptozotocin-induced diabetes. Material and methods: To determine the effect of opium, 20 male rats were divided into control (n = 10) and opium-treated

  12. [Barometer of type 2 diabetes in primary care. Metabolic control, styles of life and morbidity profile].

    Science.gov (United States)

    Pérez-Manchón, David; Rodríguez-Álvarez, María Lorena; Alcívar-Arteaga, Claudia; Redondo-Pico, Mercedes; Ramos-Quirós, Elena

    2016-12-28

    Knowing the profile of cardiovascular morbidity, degree of control and lifestyles in type 2 diabetes. Randomized multicenter cross-sectional study conducted in 2015 in primary care with 129 diabetics. It included sociodemographic variables, microvascular and macrovascular complications, organic damage, comorbidity and lifestyles of smoking, exercise and adherence to Mediterranean diet. Metabolic control was assessed with the latest annual glycosylated haemoglobin. 57% were men and 43% women. Metabolic control was acceptable (HbAc1%, 7.15%) without differences by town. 74.4% had cardiovascular comorbidity and the 99.2% risk factors. 23% were smokers and 41% sedentary with a 56% adherence to Mediterranean diet. The cardiometabolic profile of diabetes includes retinopathy, peripheral arterial disease, comorbidity of hypertension and cardiovascular risk factors. Individual or group health education in self-care and healthy lifestyles can improve metabolic control. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  13. Reproductive activity in cows following parturition against values of certain parameters of metabolic profile

    Directory of Open Access Journals (Sweden)

    Otava Gabriel

    2006-01-01

    Full Text Available Data from literature indicate that there is a correlation between the values of reproductive parameters and the values of parameters of the metabolic profile, even though this cannot be confirmed in many cases. The objective of this work was to examine the connection between certain parameters of the metabolic profile and the restoration of reproductive activity in the postpartal period. Blood samples were taken from the cows involved in the experiment and values of parameters of the metabolic state were determined in 27 cows, of which 14 were primiparous and 13 multiparous. In the blood serum samples, we determined the concentration of glucose, total proteins, albumin, urea, and the activities of certain enzymes (alkaline phosphatase, ASAT and ALAT. It was established on the grounds of the obtained results that the delay in the establishment of reproductive activity in the postpartal period was in correlation with the blood concentrations of urea and albumin. .

  14. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues.

    Directory of Open Access Journals (Sweden)

    Valerio Mori

    Full Text Available NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the "amidated" and "deamidated" routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT, which in mammals comprises three distinct isozymes, and NAD synthetase (NADS. First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes'rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme's substrate NaAD (nicotinic acid adenine dinucleotide. In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease.

  15. Metabolic Profiles in Ovine Carotid Arteries with Developmental Maturation and Long-Term Hypoxia.

    Directory of Open Access Journals (Sweden)

    Ravi Goyal

    Full Text Available Long-term hypoxia (LTH is an important stressor related to health and disease during development. At different time points from fetus to adult, we are exposed to hypoxic stress because of placental insufficiency, high-altitude residence, smoking, chronic anemia, pulmonary, and heart disorders, as well as cancers. Intrauterine hypoxia can lead to fetal growth restriction and long-term sequelae such as cognitive impairments, hypertension, cardiovascular disorders, diabetes, and schizophrenia. Similarly, prolonged hypoxic exposure during adult life can lead to acute mountain sickness, chronic fatigue, chronic headache, cognitive impairment, acute cerebral and/or pulmonary edema, and death.LTH also can lead to alteration in metabolites such as fumarate, 2-oxoglutarate, malate, and lactate, which are linked to epigenetic regulation of gene expression. Importantly, during the intrauterine life, a fetus is under a relative hypoxic environment, as compared to newborn or adult. Thus, the changes in gene expression with development from fetus to newborn to adult may be as a consequence of underlying changes in the metabolic profile because of the hypoxic environment along with developmental maturation. To examine this possibility, we examined the metabolic profile in carotid arteries from near-term fetus, newborn, and adult sheep in both normoxic and long-term hypoxic acclimatized groups.Our results demonstrate that LTH differentially regulated glucose metabolism, mitochondrial metabolism, nicotinamide cofactor metabolism, oxidative stress and antioxidants, membrane lipid hydrolysis, and free fatty acid metabolism, each of which may play a role in genetic-epigenetic regulation.

  16. A thin and conformal metasurface for illusion acoustics of rapidly changing profiles

    Science.gov (United States)

    Dubois, Marc; Shi, Chengzhi; Wang, Yuan; Zhang, Xiang

    2017-04-01

    Recently developed metasurfaces have been used for surface engineering applications. However, the ability to cloak or mimic reflective surfaces with a large in-plane phase gradient remains unexplored. One major challenge is that even with a small incidence angle, the strong acoustic impedance variation induced by the random height profile creates additional scattering and increases the complexity of the analysis and design of the metasurface. Here, we introduce an acoustic metasurface with 1/12 wavelength thickness to realize an acoustic carpet cloak for a randomly rapid-change surface and a virtual acoustic diffuser from a flat surface using a set of Helmholtz resonators. The limitation of the metasurface for large phase gradient application is explored based on a nonlocal model that considers the contributions from neighboring surface profiles. This study extends the integration of smart acoustic surface and may find applications of surface engineering such as in architectural acoustics.

  17. Carotta: Revealing Hidden Confounder Markers in Metabolic Breath Profiles

    Directory of Open Access Journals (Sweden)

    Anne-Christin Hauschild

    2015-06-01

    Full Text Available Computational breath analysis is a growing research area aiming at identifying volatile organic compounds (VOCs in human breath to assist medical diagnostics of the next generation. While inexpensive and non-invasive bioanalytical technologies for metabolite detection in exhaled air and bacterial/fungal vapor exist and the first studies on the power of supervised machine learning methods for profiling of the resulting data were conducted, we lack methods to extract hidden data features emerging from confounding factors. Here, we present Carotta, a new cluster analysis framework dedicated to uncovering such hidden substructures by sophisticated unsupervised statistical learning methods. We study the power of transitivity clustering and hierarchical clustering to identify groups of VOCs with similar expression behavior over most patient breath samples and/or groups of patients with a similar VOC intensity pattern. This enables the discovery of dependencies between metabolites. On the one hand, this allows us to eliminate the effect of potential confounding factors hindering disease classification, such as smoking. On the other hand, we may also identify VOCs associated with disease subtypes or concomitant diseases. Carotta is an open source software with an intuitive graphical user interface promoting data handling, analysis and visualization. The back-end is designed to be modular, allowing for easy extensions with plugins in the future, such as new clustering methods and statistics. It does not require much prior knowledge or technical skills to operate. We demonstrate its power and applicability by means of one artificial dataset. We also apply Carotta exemplarily to a real-world example dataset on chronic obstructive pulmonary disease (COPD. While the artificial data are utilized as a proof of concept, we will demonstrate how Carotta finds candidate markers in our real dataset associated with confounders rather than the primary disease (COPD

  18. A comprehensive metabolic profile of cultured astrocytes using isotopic transient metabolic flux analysis and 13C-labeled glucose

    Directory of Open Access Journals (Sweden)

    Ana I Amaral

    2011-09-01

    Full Text Available Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA to estimate intracellular fluxes of cultured astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time-points were then analyzed by mass spectrometry and/or HPLC. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase (PC (PC/pyruvate dehydrogenase (PDH ratio = 0.5, malic enzyme (5% of the total pyruvate production and catabolism of branched-chained amino acids (contributing with ~40% to total acetyl-CoA produced confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate-aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange rate (~0.7 µmol.mg prot-1.h-1 was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of isotopic transient MFA for a comprehensive analysis of

  19. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Directory of Open Access Journals (Sweden)

    Ellis James K

    2012-06-01

    Full Text Available Abstract Background The 'exposome' represents the accumulation of all environmental exposures across a lifetime. Top-down strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics defines an individual's metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods High-resolution 1H NMR spectroscopy (metabonomics was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4-deoxy-erythronic acid or one-carbon metabolism (dimethylglycine, creatinine, creatine, were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental

  20. Metabolic Profiling and Identification of Shikonins in Root Periderm of Two Invasive Echium spp. Weeds in Australia.

    Science.gov (United States)

    Skoneczny, Dominik; Weston, Paul A; Zhu, Xiaocheng; Gurr, Geoff M; Callaway, Ragan M; Barrow, Russel A; Weston, Leslie A

    2017-02-21

    Metabolic profiling can be successfully implemented to analyse a living system's response to environmental conditions by providing critical information on an organism's physiological state at a particular point in time and allowing for both quantitative and qualitative assessment of a specific subset(s) of key metabolites. Shikonins are highly reactive chemicals that affect various cell signalling pathways and possess antifungal, antibacterial and allelopathic activity. Based on previous bioassay results, bioactive shikonins, are likely to play important roles in the regulation of rhizosphere interactions with neighbouring plants, microbes and herbivores. An effective platform allowing for rapid identification and accurate profiling of numerous structurally similar, difficult-to-separate bioactive isohexenylnaphthazarins (shikonins) was developed using UHPLC Q-TOF MS. Root periderm tissues of the invasive Australian weeds Echium plantagineum and its congener E. vulgare were extracted overnight in ethanol for shikonin profiling. Shikonin production was evaluated at seedling, rosette and flowering stages. Five populations of each species were compared for qualitative and quantitative differences in shikonin formation. Each species showed little populational variation in qualitative shikonin production; however, shikonin was considerably low in one population of E. plantagineum from Western New South Wales. Seedlings of all populations produced the bioactive metabolite acetylshikonin and production was upregulated over time. Mature plants of both species produced significantly higher total levels of shikonins and isovalerylshikonin > dimethylacrylshikonin > shikonin > acetylshikonin in mature E. plantagineum. Although qualitative metabolic profiles in both Echium spp. were nearly identical, shikonin abundance in mature plant periderm was approximately 2.5 times higher in perennial E. vulgare extracts in comparison to those of the annual E. plantagineum. These findings

  1. Body weight regulation and obesity: dietary strategies to improve the metabolic profile.

    Science.gov (United States)

    Munsters, M J M; Saris, W H M

    2014-01-01

    This review discusses dietary strategies that may improve the metabolic profile and body weight regulation in obesity. Recent evidence demonstrated that long-term health effects seem to be more beneficial for low-glycemic index (GI) diets compared to high-protein diets. Still, these results need to be confirmed by other prospective cohort studies and long-term clinical trials, and the discrepancy between these study designs needs to be explored in more detail. Furthermore, the current literature is mixed with regard to the efficacy of increased meal frequency (or snacking) regimens in causing metabolic alterations, particularly in relation to body weight control. In conclusion, a growing body of evidence suggests that dietary strategies with the aim to reduce postprandial insulin response and increase fat oxidation, and that tend to restore metabolic flexibility, have a place in the prevention and treatment of obesity and associated metabolic disorders.

  2. Metabolic Profiling of Human Peripheral Blood Mononuclear Cells: Influence of Vitamin D Status and Gender

    Directory of Open Access Journals (Sweden)

    Magdalena Stepien

    2014-04-01

    Full Text Available Metabolic profiling of peripheral blood mononuclear cells (PBMC could serve as a less invasive and more direct alternative to tissue biopsies or serum in metabolomic research. We conducted two exploratory independent studies in order to characterise PBMC’s metabolomic profile following short-term vitamin D3 supplementation and to determine gender effects. In the first study, eight healthy males and females aged 40–65 y were randomly selected for profiling of PBMCs after receiving either 15 µg of vitamin D3 or placebo for four weeks. In the second study, twenty younger healthy males and females were studied. Cell metabolites were extracted and deproteinised using methanol/chloroform/water method and analysed by GC-MS. Higher vitamin D status had no effect on the fatty acid profile of PBMCs, but inflammatory biomarkers and adipokines correlated positively with stearic acid levels. In the second study, no gender-specific metabolites were identified. Valine, leucine and aspartic acid were identified as potential BMI-sensitive amino acids. Larger studies are needed to confirm the influence of BMI on these parameters. This work clearly demonstrates the utility of metabolomics profiling of PBMCs and paves the way for future applications of metabolomics in identifying metabolic profiles of blood cells as a measure for dietary intakes or physiological status.

  3. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    Science.gov (United States)

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.

  4. Antimicrobial peptide FF/CAP18 induces apoptotic cell death in HCT116 colon cancer cells via changes in the metabolic profile.

    Science.gov (United States)

    Kuroda, Kengo; Fukuda, Tomokazu; Isogai, Hiroshi; Okumura, Kazuhiko; Krstic-Demonacos, Marija; Isogai, Emiko

    2015-04-01

    Metabolic reprogramming is one of the hallmarks of cancer and can be targeted by therapeutic agents. We previously reported that cathelicidin-related or modified antimicrobial peptides, such as FF/CAP18, have antiproliferative effects on the squamous cell carcinoma cell line SAS-H1, and the colon carcinoma cell line HCT116. Although antimicrobial peptides have potential use in the development of new therapeutic strategies, their effects on the metabolism of cancer cells are poorly understood. Here, we investigated changes in the levels of metabolites in HCT116 cells caused by FF/CAP18, via capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Analysis of the 177 intracellular metabolites and 113 metabolites in conditioned medium that were detected by CE-TOFMS, revealed dramatic changes in the metabolic profile of HCT116 cells after treatment with FF/CAP18. The metabolic profile showed that the levels of most metabolites in the major metabolic pathways supported the rapid proliferation of cancer cells. Purine metabolism, glycolysis, and the TCA cycle, were altered in FF/CAP18-treated cells in a dose-dependent manner. Our present study provides mechanistic insights into the anticancer effects of antimicrobial peptides that show great potential as new therapies for colon cancer.

  5. Multi-Organ Contribution to the Metabolic Plasma Profile Using Hierarchical Modelling.

    Directory of Open Access Journals (Sweden)

    Frida Torell

    Full Text Available Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA and orthogonal projections to latent structures (OPLS. The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.

  6. Metabolic Syndrome, Insulin Resistance and Cognitive Dysfunction: Does your metabolic profile affect your brain?

    DEFF Research Database (Denmark)

    Neergaard, Jesper S; Møller, Katrine Dragsbæk; Christiansen, Claus

    2017-01-01

    Dementia and type 2 diabetes are both characterized by long prodromal phases challenging the study of potential risk factors and their temporal relation. The progressive relation between metabolic syndrome, insulin resistance, and dementia has recently been questioned, wherefore the aim...... of this study was to assess the potential association between these precursors of type 2 diabetes and cognitive dysfunction. Using data from the Prospective Epidemiological Risk Factor study (n=2,103), a prospective study of elderly women in Denmark, we found that impaired fasting plasma glucose was associated...

  7. Rapid Identification of Potential Drugs for Diabetic Nephropathy Using Whole-Genome Expression Profiles of Glomeruli

    Directory of Open Access Journals (Sweden)

    Jingsong Shi

    2016-01-01

    Full Text Available Objective. To investigate potential drugs for diabetic nephropathy (DN using whole-genome expression profiles and the Connectivity Map (CMAP. Methodology. Eighteen Chinese Han DN patients and six normal controls were included in this study. Whole-genome expression profiles of microdissected glomeruli were measured using the Affymetrix human U133 plus 2.0 chip. Differentially expressed genes (DEGs between late stage and early stage DN samples and the CMAP database were used to identify potential drugs for DN using bioinformatics methods. Results. (1 A total of 1065 DEGs (FDR 1.5 were found in late stage DN patients compared with early stage DN patients. (2 Piperlongumine, 15d-PGJ2 (15-delta prostaglandin J2, vorinostat, and trichostatin A were predicted to be the most promising potential drugs for DN, acting as NF-κB inhibitors, histone deacetylase inhibitors (HDACIs, PI3K pathway inhibitors, or PPARγ agonists, respectively. Conclusion. Using whole-genome expression profiles and the CMAP database, we rapidly predicted potential DN drugs, and therapeutic potential was confirmed by previously published studies. Animal experiments and clinical trials are needed to confirm both the safety and efficacy of these drugs in the treatment of DN.

  8. A rapid profiling assay for avian leukosis virus subgroup E proviruses in chickens.

    Science.gov (United States)

    Rutherford, Katherine; McLean, Nancy; Benkel, Bernhard F

    2014-03-01

    Endogenous retroviral elements (ERVs) are prolific components of the genomes of complex species, typically occupying more sequence space than do essential, protein-encoding genes. Much of what we know today about the structure and function, as well as the evolution and pathogenic potential, of ERVs was fleshed out over several decades during the last century using the avian leukosis virus subgroup E-related (ALVE) family of endogenous retroviruses of chickens as a model system. A critical enabling factor in the elucidation of ALVE structure and function is the ability to detect and unambiguously identify specific ALVE proviral elements and to develop accurate element profiles for individual chickens under study. Currently, the most common approach for ALVE locus detection involves element-specific PCR assays carried out using primers that target host DNA near the insertion site of the provirus (i.e., the upstream and downstream flanks of the unoccupied site). Here we describe a new approach for proviral detection that exploits restriction enzyme sites in flanking DNA to develop ALVE element profiles more rapidly than with assays currently in use. Moreover, unlike element-specific PCR tests, the "profiling" assay detects novel ALVEs for which insertion sites have not yet been identified as well as previously characterized elements.

  9. Metabolic Profiling of Retrograde Pathway Transcription Factors Rtg1 and Rtg3 Knockout Yeast

    Directory of Open Access Journals (Sweden)

    Zanariah Hashim

    2014-07-01

    Full Text Available Rtg1 and Rtg3 are two basic helix-loop-helix (bHLH transcription factors found in yeast Saccharomyces cerevisiae that are involved in the regulation of the mitochondrial retrograde (RTG pathway. Under RTG response, anaplerotic synthesis of citrate is activated, consequently maintaining the supply of important precursors necessary for amino acid and nucleotide synthesis. Although the roles of Rtg1 and Rtg3 in TCA and glyoxylate cycles have been extensively reported, the investigation of other metabolic pathways has been lacking. Characteristic dimer formation in bHLH proteins, which allows for combinatorial gene expression, and the link between RTG and other regulatory pathways suggest more complex metabolic signaling involved in Rtg1/Rtg3 regulation. In this study, using a metabolomics approach, we examined metabolic alteration following RTG1 and RTG3 deletion. We found that apart from TCA and glyoxylate cycles, which have been previously reported, polyamine biosynthesis and other amino acid metabolism were significantly altered in RTG-deficient strains. We revealed that metabolic alterations occurred at various metabolic sites and that these changes relate to different growth phases, but the difference can be detected even at the mid-exponential phase, when mitochondrial function is repressed. Moreover, the effect of metabolic rearrangements can be seen through the chronological lifespan (CLS measurement, where we confirmed the role of the RTG pathway in extending the yeast lifespan. Through a comprehensive metabolic profiling, we were able to explore metabolic phenotypes previously unidentified by other means and illustrate the possible correlations of Rtg1 and Rtg3 in different pathways.

  10. Metabolic profile of injured human spinal cord determined using surface microdialysis.

    Science.gov (United States)

    Chen, Suliang; Phang, Isaac; Zoumprouli, Argyro; Papadopoulos, Marios C; Saadoun, Samira

    2016-12-01

    The management of patients having traumatic spinal cord injury would benefit from understanding and monitoring of spinal cord metabolic states. We hypothesized that the metabolism of the injured spinal cord could be visualized using Kohonen self-organizing maps. Sixteen patients with acute, severe spinal cord injuries were studied. Starting within 72 h of the injury, and for up to a week, we monitored the injury site hourly for tissue glucose, lactate, pyruvate, glutamate, and glycerol using microdialysis as well as intraspinal pressure and spinal cord perfusion pressure. A Kohonen map, which is an unsupervised, self-organizing topology-preserving neural network, was used to analyze 3366 h of monitoring data. We first visualized the different spinal cord metabolic states. Our data show that the injured cord assumes one or more of four metabolic states. On the basis of their metabolite profiles, we termed these states near-normal, ischemic, hypermetabolic, and distal. We then visualized how patients' intraspinal pressure and spinal cord perfusion pressure affect spinal cord metabolism. This revealed that for more than 60% of the time, spinal cord metabolism is patient-specific; periods of high intraspinal pressure or low perfusion pressure are not associated with specific spinal cord metabolic patterns. Finally, we determined relationships between spinal cord metabolism and neurological status. Patients with complete deficits have shorter periods of near-normal spinal cord metabolic states (7 ± 4% vs. 58 ± 12%, p injured spinal cord and may thus aid us in treating patients with acute spinal cord injuries.

  11. Metabolic profiling reveals potential metabolic markers associated with Hypoxia Inducible Factor-mediated signalling in hypoxic cancer cells.

    Science.gov (United States)

    Armitage, Emily G; Kotze, Helen L; Allwood, J William; Dunn, Warwick B; Goodacre, Royston; Williams, Kaye J

    2015-10-28

    Hypoxia inducible factors (HIFs) plays an important role in oxygen compromised environments and therefore in tumour survival. In this research, metabolomics has been applied to study HIFs metabolic function in two cell models: mouse hepatocellular carcinoma and human colon carcinoma, whereby the metabolism has been profiled for a range of oxygen potentials. Wild type cells have been compared to cells deficient in HIF signalling to reveal its effect on cellular metabolism under normal oxygen conditions as well as low oxygen, hypoxic and anoxic environments. Characteristic responses to hypoxia that were conserved across both cell models involved the anti-correlation between 2-hydroxyglutarate, 2-oxoglutarate, fructose, hexadecanoic acid, hypotaurine, pyruvate and octadecenoic acid with 4-hydroxyproline, aspartate, cysteine, glutamine, lysine, malate and pyroglutamate. Further to this, network-based correlation analysis revealed HIF specific pathway responses to each oxygen condition that were also conserved between cell models. From this, 4-hydroxyproline was revealed as a regulating hub in low oxygen survival of WT cells while fructose appeared to be in HIF deficient cells. Pathways surrounding these hubs were built from the direct connections of correlated metabolites that look beyond traditional pathways in order to understand the mechanism of HIF response to low oxygen environments.

  12. Lipoprotein particle subclass profiles among metabolically healthy and unhealthy obese and non-obese adults: does size matter?

    Science.gov (United States)

    Phillips, Catherine M; Perry, Ivan J

    2015-10-01

    No data regards lipoprotein particle profiles in obese and non-obese metabolic health subtypes exist. We characterised lipoprotein size, particle and subclass concentrations among metabolically healthy and unhealthy obese and non-obese adults. Cross-sectional sample of 1834 middle-aged Irish adults were classified as obese (BMI ≥30 kg/m(2)) and non-obese (BMI Lipoprotein size, particle and subclass concentrations were determined using nuclear magnetic resonance (NMR) spectroscopy. Lipoprotein profiling identified a range of adverse phenotypes among the metabolically unhealthy individuals, regardless of BMI and metabolic health definition, including increased numbers of small low density lipoprotein (LDL) (P lipoprotein (HDL) particles (P lipoprotein (VLDL) particles (P lipoprotein related insulin resistance (P lipoprotein particle profiles, irrespective of BMI and metabolic health definition. These findings underscore the importance of maintaining a healthy lipid profile in the context of overall cardiometabolic health. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Effect of long-distance transportation on serum metabolic profiles of steer calves.

    Science.gov (United States)

    Takemoto, Satoshi; Tomonaga, Shozo; Funaba, Masayuki; Matsui, Tohru

    2017-07-19

    Long-distance transportation is sometimes inevitable in the beef industry because of the geographic separation of major breeding and fattening areas. Long-distance transportation negatively impacts production and health of cattle, which may, at least partly, result from the disturbance of metabolism during and after transportation. However, alteration of metabolism remains elusive in transported cattle. We investigated the effects of transportation on the metabolomic profiles of Holstein steer calves. Non-targeted analysis of serum concentrations of low molecular weight metabolites was performed by gas chromatography mass spectrometry. Transportation affected 38 metabolites in the serum. A pathway analysis suggested that 26, 10, and 10 pathways were affected immediately after transportation, and 3 and 7 days after transportation, respectively. Some pathways were disturbed only immediately after transportation, likely because of feed and water withdrawal during transit. Nicotinate and nicotinamide metabolism, and citric acid cycle were affected for 3 days after transportation, whereas propionate metabolism, phenylalanine and tyrosine metabolism were affected throughout the experiment. Four pathways were not affected immediately after transportation, but were altered thereafter. These results suggested that many metabolic pathways had marked perturbations during transportation. Metabolites such as citric acid, propionate, tyrosine and niacin can be candidate supplements for mitigating transportation-induced adverse effects. © 2017 Japanese Society of Animal Science.

  14. Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance.

    Science.gov (United States)

    Wu, Wei; Zhang, Qing; Zhu, Yanming; Lam, Hon-Ming; Cai, Zongwei; Guo, Dianjing

    2008-12-10

    High-performance liquid chromatography-ultraviolet-electrospray ionization mass spectrometry (HPLC-UV-ESI-MS) and HPLC-ESI-MS(n) analysis methods were used for metabolic profiling and simultaneous identification of isoflavonoids and saponins in soybean seeds. Comparative targeted metabolic profiling revealed marked differences in the metabolite composition between salt-sensitive and salt-tolerant soybean varieties. Principle component analysis clearly demonstrated that it is possible to use secondary metabolites, for example, isoflavones and saponins, to discriminate between closely related soybean genotypes. Genistin and group B saponins were identified as the key secondary metabolites correlated with salt tolerance. These individual metabolites may provide additional insight into the salt tolerance and adaptation of plants.

  15. Metabolic profiling and outer pericarp water state in Zespri, CI.GI, and Hayward kiwifruits.

    Science.gov (United States)

    Capitani, Donatella; Mannina, Luisa; Proietti, Noemi; Sobolev, Anatoly P; Tomassini, Alberta; Miccheli, Alfredo; Di Cocco, Maria E; Capuani, Giorgio; De Salvador, Flavio Roberto; Delfini, Maurizio

    2013-02-27

    The metabolic profiling of aqueous extracts of Zespri Gold ( Actinidia chinensis ) and CI.GI (a controlled crossbreed from different species of Actinidia deliciosa ) kiwifruits and the water state of the outer pericarp of entire fruits were monitored over the season by means of high-field NMR spectroscopy and T(2) relaxation time measurements, respectively, and compared with the corresponding ones of Hayward kiwifruits previously investigated. A more complete assignment of the (1)H spectrum with respect to that obtained previously was reported: histidine, phenylalanine, quercetin 3-rhamnoside, and epicatechin were identified. Metabolic profiling confirmed Zespri's earlier maturation compared with the two other varieties. The water state of entire kiwifruits was measured nondestructively on fruits attached to the plants or detached from the plants. T(2) relaxation times were found to be sensitive to the kiwifruit developmental stage.

  16. Rapid decline in lung function is temporally associated with greater metabolically active adiposity in a longitudinal study of healthy adults.

    Science.gov (United States)

    Moualla, Maan; Qualls, Clifford; Arynchyn, Alexander; Thyagarajan, Bharat; Kalhan, Ravi; Smith, Lewis J; Carr, John J; Jacobs, David R; Sood, Akshay

    2017-07-20

    Adiposity is associated with low lung function, but the longitudinal relationship between lung function and adiposity is inadequately studied. To examine the bidirectional longitudinal associations between rapid decline in lung function and adiposity phenotypes in healthy adults. This secondary analysis used a 25-year longitudinal dataset from the Coronary Artery Risk Development in Young Adults (CARDIA) study that enrolled 5115 participants. In the first analysis, metabolic syndrome at or before CARDIA year (Y) 10 (Y10) was the predictor, and subsequent rapid decline in forced vital capacity (FVC) or forced expiratory volume in 1 s (FEV1) between Y10 and Y20 was the outcome. In the second analysis, rapid decline was the predictor, and incident metabolic syndrome at Y20 and/or Y25 was the outcome. In the third analysis, rapid decline was the predictor, and subsequent CT-assessed regional fat depots at Y25 were the outcome. Metabolic syndrome at or before Y10 is temporally associated with rapid decline in FVC between Y10 and Y20 (adjusted p=0.04), but this association was explained by body mass index (BMI) at Y10. Rapid decline in FVC or FEV1 is temporally associated with greater incident metabolic syndrome at Y20 and/or Y25 (adjusted OR 2.10 (1.69, 2.61); prapid decline in lung function are at risk for developing metabolic syndrome and for disproportionate accumulation of intrathoracic visceral fat. Metabolic abnormalities may be an early extrapulmonary manifestation of lung impairment that may be preventable by improving lung health. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Depth Profile of Bacterial Metabolism and PAH Biodegradation in Bioturbated and Unbioturbated Marine Sediments

    Science.gov (United States)

    2007-11-02

    Reactivity of Terriginous Organic Matter in this Study Phenolic Group Phenol suite (code) Remarks Vanillyl vanillin (Vl), acetovanillone (Vn), vanillic...is degraded in the sediment has been measured using a degradation index (Fig. 4). The ratio of acid to aldehyde for the vanillin family of lignin...is not statistically significant. The ratio of 3,5-dihydroxybenzoic acid to vanillin (DHBd/V) is Depth Profile of Bacterial Metabolism 5

  18. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Jasmina Saric

    Full Text Available BACKGROUND: Metabolic profiling holds promise with regard to deepening our understanding of infection biology and disease states. The objectives of our study were to assess the global metabolic responses to an Echinostoma caproni infection in the mouse, and to compare the biomarkers extracted from different biofluids (plasma, stool, and urine in terms of characterizing acute and chronic stages of this intestinal fluke infection. METHODOLOGY/PRINCIPAL FINDINGS: Twelve female NMRI mice were infected with 30 E. caproni metacercariae each. Plasma, stool, and urine samples were collected at 7 time points up to day 33 post-infection. Samples were also obtained from non-infected control mice at the same time points and measured using (1H nuclear magnetic resonance (NMR spectroscopy. Spectral data were subjected to multivariate statistical analyses. In plasma and urine, an altered metabolic profile was already evident 1 day post-infection, characterized by reduced levels of plasma choline, acetate, formate, and lactate, coupled with increased levels of plasma glucose, and relatively lower concentrations of urinary creatine. The main changes in the urine metabolic profile started at day 8 post-infection, characterized by increased relative concentrations of trimethylamine and phenylacetylglycine and lower levels of 2-ketoisocaproate and showed differentiation over the course of the infection. CONCLUSION/SIGNIFICANCE: The current investigation is part of a broader NMR-based metabonomics profiling strategy and confirms the utility of this approach for biomarker discovery. In the case of E. caproni, a diagnosis based on all three biofluids would deliver the most comprehensive fingerprint of an infection. For practical purposes, however, future diagnosis might aim at a single biofluid, in which case urine would be chosen for further investigation, based on quantity of biomarkers, ease of sampling, and the degree of differentiation from the non

  19. Intraspecific variability in allelopathy of Heracleum mantegazzianum is linked to the metabolic profile of root exudates.

    Science.gov (United States)

    Jandová, Kateřina; Dostál, Petr; Cajthaml, Tomáš; Kameník, Zdeněk

    2015-04-01

    Allelopathy may drive invasions of some exotic plants, although empirical evidence for this theory remains largely inconclusive. This could be related to the large intraspecific variability of chemically mediated plant-plant interactions, which is poorly studied. This study addressed intraspecific variability in allelopathy of Heracleum mantegazzianum (giant hogweed), an invasive species with a considerable negative impact on native communities and ecosystems. Bioassays were carried out to test the alleopathic effects of H. mantegazzianum root exudates on germination of Arabidopsis thaliana and Plantago lanceolata. Populations of H. mantegazzianum from the Czech Republic were sampled and variation in the phytotoxic effects of the exudates was partitioned between areas, populations within areas, and maternal lines. The composition of the root exudates was determined by metabolic profiling using ultra-high-performance liquid chromatography with time-of-flight mass spectrometry, and the relationships between the metabolic profiles and the effects observed in the bioassays were tested using orthogonal partial least-squares analysis. Variance partitioning indicated that the highest variance in phytotoxic effects was within populations. The inhibition of germination observed in the bioassay for the co-occurring native species P. lanceolata could be predicted by the metabolic profiles of the root exudates of particular maternal lines. Fifteen compounds associated with this inhibition were tentatively identified. The results present strong evidence that intraspecific variability needs to be considered in research on allelopathy, and suggest that metabolic profiling provides an efficient tool for studying chemically mediated plant-plant interactions whenever unknown metabolites are involved. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. A Computational Model for the Analysis of Lipoprotein Distributions in the Mouse: Translating FPLC Profiles to Lipoprotein Metabolism

    Science.gov (United States)

    Sips, Fianne L. P.; Tiemann, Christian A.; Oosterveer, Maaike H.; Groen, Albert K.; Hilbers, Peter A. J.; van Riel, Natal A. W.

    2014-01-01

    Disturbances of lipoprotein metabolism are recognized as indicators of cardiometabolic disease risk. Lipoprotein size and composition, measured in a lipoprotein profile, are considered to be disease risk markers. However, the measured profile is a collective result of complex metabolic interactions, which complicates the identification of changes in metabolism. In this study we aim to develop a method which quantitatively relates murine lipoprotein size, composition and concentration to the molecular mechanisms underlying lipoprotein metabolism. We introduce a computational framework which incorporates a novel kinetic model of murine lipoprotein metabolism. The model is applied to compute a distribution of plasma lipoproteins, which is then related to experimental lipoprotein profiles through the generation of an in silico lipoprotein profile. The model was first applied to profiles obtained from wild-type C57Bl/6J mice. The results provided insight into the interplay of lipoprotein production, remodelling and catabolism. Moreover, the concentration and metabolism of unmeasured lipoprotein components could be determined. The model was validated through the prediction of lipoprotein profiles of several transgenic mouse models commonly used in cardiovascular research. Finally, the framework was employed for longitudinal analysis of the profiles of C57Bl/6J mice following a pharmaceutical intervention with a liver X receptor (LXR) agonist. The multifaceted regulatory response to the administration of the compound is incompletely understood. The results explain the characteristic changes of the observed lipoprotein profile in terms of the underlying metabolic perturbation and resultant modifications of lipid fluxes in the body. The Murine Lipoprotein Profiler (MuLiP) presented here is thus a valuable tool to assess the metabolic origin of altered murine lipoprotein profiles and can be applied in preclinical research performed in mice for analysis of lipid fluxes and

  1. A computational model for the analysis of lipoprotein distributions in the mouse: translating FPLC profiles to lipoprotein metabolism.

    Science.gov (United States)

    Sips, Fianne L P; Tiemann, Christian A; Oosterveer, Maaike H; Groen, Albert K; Hilbers, Peter A J; van Riel, Natal A W

    2014-05-01

    Disturbances of lipoprotein metabolism are recognized as indicators of cardiometabolic disease risk. Lipoprotein size and composition, measured in a lipoprotein profile, are considered to be disease risk markers. However, the measured profile is a collective result of complex metabolic interactions, which complicates the identification of changes in metabolism. In this study we aim to develop a method which quantitatively relates murine lipoprotein size, composition and concentration to the molecular mechanisms underlying lipoprotein metabolism. We introduce a computational framework which incorporates a novel kinetic model of murine lipoprotein metabolism. The model is applied to compute a distribution of plasma lipoproteins, which is then related to experimental lipoprotein profiles through the generation of an in silico lipoprotein profile. The model was first applied to profiles obtained from wild-type C57Bl/6J mice. The results provided insight into the interplay of lipoprotein production, remodelling and catabolism. Moreover, the concentration and metabolism of unmeasured lipoprotein components could be determined. The model was validated through the prediction of lipoprotein profiles of several transgenic mouse models commonly used in cardiovascular research. Finally, the framework was employed for longitudinal analysis of the profiles of C57Bl/6J mice following a pharmaceutical intervention with a liver X receptor (LXR) agonist. The multifaceted regulatory response to the administration of the compound is incompletely understood. The results explain the characteristic changes of the observed lipoprotein profile in terms of the underlying metabolic perturbation and resultant modifications of lipid fluxes in the body. The Murine Lipoprotein Profiler (MuLiP) presented here is thus a valuable tool to assess the metabolic origin of altered murine lipoprotein profiles and can be applied in preclinical research performed in mice for analysis of lipid fluxes and

  2. Normo- and hyperandrogenic women with polycystic ovary syndrome exhibit an adverse metabolic profile through life

    DEFF Research Database (Denmark)

    Pinola, Pekka; Puukka, Katri; Piltonen, Terhi

    2017-01-01

    , and the highest prevalence was observed in hyperandrogenic women with PCOS at late reproductive age. CONCLUSION(S): When evaluating metabolic risks in women with PCOS, androgenic status, especially abdominal obesity and age, should be taken into account, which would allow tailored management of the syndrome from......OBJECTIVE: To compare the metabolic profiles of normo- and hyperandrogenic women with polycystic ovary syndrome (PCOS) with those of control women at different ages during reproductive life. DESIGN: Case-control study. SETTING: Not applicable. PATIENT(S): In all, 1,550 women with normoandrogenic (n......, and lower high-density lipoprotein levels independently from BMI compared with the control population as early as from young adulthood until menopause. The prevalence of metabolic syndrome was two- to fivefold higher in women with PCOS compared with control women, depending on age and phenotype...

  3. 1H NMR-based serum metabolic profiling in compensated and decompensated cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Su-Wen Qi; Zhi-Guang Tu; Wu-Jian Peng; Lin-Xian Wang; Xin Ou-Yang; An-Ji Cai; Yong Dai

    2012-01-01

    AIM: To study the metabolic profiling of serum samples from compensated and decompensated cirrhosis patients.METHODS: A pilot metabolic profiling study was conducted using three groups: compensated cirrhosis patients (n = 30), decompensated cirrhosis patients (n = 30) and healthy controls (n = 30). A 1H nuclear magnetic resonance (NMR)-based metabonomics approach was used to obtain the serum metabolic profiles of the samples. The acquired data were processed by multivariate principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA). RESULTS: The OPLS-DA model was capable of distinguishing between decompensated and compensated cirrhosis patients, with an R2Y of 0.784 and a Q2Y of 0.598. Twelve metabolites, such as pyruvate, phenylalanine and succinate, were identified as the most influential factors for the difference between the two groups. The validation of the diagnosis prediction showed that the accuracy of the OPLSDA model was 85% (17/20). CONCLUSION: 1H NMR spectra combined with pattern recognition analysis techniques offer a new way to diagnose compensated and decompensated cirrhosis in the future.

  4. t-10, c-12 CLA dietary supplementation inhibits atherosclerotic lesion development despite adverse cardiovascular and hepatic metabolic marker profiles.

    Directory of Open Access Journals (Sweden)

    Patricia L Mitchell

    Full Text Available Animal and human studies have indicated that fatty acids such as the conjugated linoleic acids (CLA found in milk could potentially alter the risk of developing metabolic disorders including diabetes and cardiovascular disease (CVD. Using susceptible rodent models (apoE(-/- and LDLr(-/- mice we investigated the interrelationship between mouse strain, dietary conjugated linoleic acids and metabolic markers of CVD. Despite an adverse metabolic risk profile, atherosclerosis (measured directly by lesion area, was significantly reduced with t-10, c-12 CLA and mixed isomer CLA (Mix supplementation in both apoE(-/- (p<0.05, n = 11 and LDLr(-/- mice (p<0.01, n = 10. Principal component analysis was utilized to delineate the influence of multiple plasma and tissue metabolites on the development of atherosclerosis. Group clustering by dietary supplementation was evident, with the t-10, c-12 CLA supplemented animals having distinct patterns, suggestive of hepatic insulin resistance, regardless of mouse strain. The effect of CLA supplementation on hepatic lipid and fatty acid composition was explored in the LDLr(-/- strain. Dietary supplementation with t-10, c-12 CLA significantly increased liver weight (p<0.05, n = 10, triglyceride (p<0.01, n = 10 and cholesterol ester content (p<0.01, n = 10. Furthermore, t-10, c-12 CLA also increased the ratio of 18∶1 to 18∶0 fatty acid in the liver suggesting an increase in the activity of stearoyl-CoA desaturase. Changes in plasma adiponectin and liver weight with t-10, c-12 CLA supplementation were evident within 3 weeks of initiation of the diet. These observations provide evidence that the individual CLA isomers have divergent mechanisms of action and that t-10, c-12 CLA rapidly changes plasma and liver markers of metabolic syndrome, despite evidence of reduction in atherosclerosis.

  5. A Pilot Metabolic Profiling Study of Patients With Neonatal Jaundice and Response to Phototherapy.

    Science.gov (United States)

    Cai, A; Qi, S; Su, Z; Shen, H; Yang, Y; Cai, W; Dai, Y

    2016-08-01

    Phototherapy has been widely used in treating neonatal jaundice, but detailed metabonomic profiles of neonatal jaundice patients and response to phototherapy have not been characterized. Our aim was to depict the serum metabolic characteristics of neonatal jaundice patients relative to controls and changes in response to phototherapy. A (1) H nuclear magnetic resonance (NMR)-based metabonomic approach was employed to study the metabolic profiling of serum from healthy infants (n = 25) and from infants with neonatal jaundice (n = 30) pre- and postphototherapy. The acquired data were processed by multivariate principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA). The PLS-DA and OPLS-DA model identified nine metabolites capable of distinguishing patients from controls. In addition, 28 metabolites such as β-glucose, α-glucose, valine, and pyruvate changed in response to phototherapy. This study offers useful information on metabolic disorders in neonatal jaundice patients and the effects of phototherapy on lipids, amino acid, and energy metabolism.

  6. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    Directory of Open Access Journals (Sweden)

    Yue-Yue Zhou

    Full Text Available D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs, reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  7. Follicular adenomas exhibit a unique metabolic profile. ¹H NMR studies of thyroid lesions.

    Directory of Open Access Journals (Sweden)

    Stanisław Deja

    Full Text Available Thyroid cancer is the most common endocrine malignancy. However, more than 90% of thyroid nodules are benign. It remains unclear whether thyroid carcinoma arises from preexisting benign nodules. Metabolomics can provide valuable and comprehensive information about low molecular weight compounds present in living systems and further our understanding of the biology regulating pathological processes. Herein, we applied ¹H NMR-based metabolic profiling to identify the metabolites present in aqueous tissue extracts of healthy thyroid tissue (H, non-neoplastic nodules (NN, follicular adenomas (FA and malignant thyroid cancer (TC as an alternative way of investigating cancer lesions. Multivariate statistical methods provided clear discrimination not only between healthy thyroid tissue and pathological thyroid tissue but also between different types of thyroid lesions. Potential biomarkers common to all thyroid lesions were identified, namely, alanine, methionine, acetone, glutamate, glycine, lactate, tyrosine, phenylalanine and hypoxanthine. Metabolic changes in thyroid cancer were mainly related to osmotic regulators (taurine and scyllo- and myo-inositol, citrate, and amino acids supplying the TCA cycle. Thyroid follicular adenomas were found to display metabolic features of benign non-neoplastic nodules and simultaneously displayed a partial metabolic profile associated with malignancy. This finding allows the discrimination of follicular adenomas from benign non-neoplastic nodules and thyroid cancer with similar accuracy. Moreover, the presented data indicate that follicular adenoma could be an individual stage of thyroid cancer development.

  8. Metagenomic and metabolic profiling of nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas.

    Directory of Open Access Journals (Sweden)

    Christina L M Khodadad

    Full Text Available BACKGROUND: Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. METHODOLOGY/PRINCIPAL FINDINGS: The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1 and lithifying (Type 3 microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. CONCLUSION/SIGNIFICANCE: The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon

  9. Metagenomic and metabolic profiling of nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas.

    Science.gov (United States)

    Khodadad, Christina L M; Foster, Jamie S

    2012-01-01

    Stromatolites are laminated carbonate build-ups formed by the metabolic activity of microbial mats and represent one of the oldest known ecosystems on Earth. In this study, we examined a living stromatolite located within the Exuma Sound, The Bahamas and profiled the metagenome and metabolic potential underlying these complex microbial communities. The metagenomes of the two dominant stromatolitic mat types, a nonlithifying (Type 1) and lithifying (Type 3) microbial mat, were partially sequenced and compared. This deep-sequencing approach was complemented by profiling the substrate utilization patterns of the mats using metabolic microarrays. Taxonomic assessment of the protein-encoding genes confirmed previous SSU rRNA analyses that bacteria dominate the metagenome of both mat types. Eukaryotes comprised less than 13% of the metagenomes and were rich in sequences associated with nematodes and heterotrophic protists. Comparative genomic analyses of the functional genes revealed extensive similarities in most of the subsystems between the nonlithifying and lithifying mat types. The one exception was an increase in the relative abundance of certain genes associated with carbohydrate metabolism in the lithifying Type 3 mats. Specifically, genes associated with the degradation of carbohydrates commonly found in exopolymeric substances, such as hexoses, deoxy- and acidic sugars were found. The genetic differences in carbohydrate metabolisms between the two mat types were confirmed using metabolic microarrays. Lithifying mats had a significant increase in diversity and utilization of carbon, nitrogen, phosphorus and sulfur substrates. The two stromatolitic mat types retained similar microbial communities, functional diversity and many genetic components within their metagenomes. However, there were major differences detected in the activity and genetic pathways of organic carbon utilization. These differences provide a strong link between the metagenome and the

  10. Serum metabolic profiling of human gastric cancer based on gas chromatography/mass spectrometry

    Directory of Open Access Journals (Sweden)

    Hu Song

    2012-01-01

    Full Text Available Research on molecular mechanisms of carcinogenesis plays an important role in diagnosing and treating gastric cancer. Metabolic profiling may offer the opportunity to understand the molecular mechanism of carcinogenesis and help to non-invasively identify the potential biomarkers for the early diagnosis of human gastric cancer. The aims of this study were to explore the underlying metabolic mechanisms of gastric cancer and to identify biomarkers associated with morbidity. Gas chromatography/mass spectrometry (GC/MS was used to analyze the serum metabolites of 30 Chinese gastric cancer patients and 30 healthy controls. Diagnostic models for gastric cancer were constructed using orthogonal partial least squares discriminant analysis (OPLS-DA. Acquired metabolomic data were analyzed by the nonparametric Wilcoxon test to find serum metabolic biomarkers for gastric cancer. The OPLS-DA model showed adequate discrimination between cancer and non-cancer cohorts while the model failed to discriminate different pathological stages (I-IV of gastric cancer patients. A total of 44 endogenous metabolites such as amino acids, organic acids, carbohydrates, fatty acids, and steroids were detected, of which 18 differential metabolites were identified with significant differences. A total of 13 variables were obtained for their greatest contribution in the discriminating OPLS-DA model [variable importance in the projection (VIP value >1.0], among which 11 metabolites were identified using both VIP values (VIP >1 and the Wilcoxon test. These metabolites potentially revealed perturbations of glycolysis and of amino acid, fatty acid, cholesterol, and nucleotide metabolism of gastric cancer patients. These results suggest that gastric cancer serum metabolic profiling has great potential in detecting this disease and helping to understand its metabolic mechanisms.

  11. Change in Metabolic Profile after 1-Year Nutritional-Behavioral Intervention in Obese Children

    Directory of Open Access Journals (Sweden)

    Elvira Verduci

    2015-12-01

    Full Text Available Research findings are inconsistent about improvement of specific cardio-metabolic variables after lifestyle intervention in obese children. The aim of this trial was to evaluate the effect of a 1-year intervention, based on normocaloric diet and physical activity, on body mass index (BMI, blood lipid profile, glucose metabolism and metabolic syndrome. Eighty-five obese children aged ≥6 years were analyzed. The BMI z-score was calculated. Fasting blood samples were analyzed for lipids, insulin and glucose. The homeostatic model assessment of insulin resistance (HOMA-IR was calculated and insulin resistance was defined as HOMA-IR >3.16. HOMA-β%, quantitative insulin sensitivity check index and triglyceride glucose index were calculated. The metabolic syndrome was defined in accordance with the International Diabetes Federation criteria. At the end of intervention children showed a reduction (mean (95% CI in BMI z-score (−0.58 (−0.66; −0.50, triglycerides (−0.35 (−0.45; −0.25 mmol/L and triglyceride glucose index (−0.29 (−0.37; −0.21, and an increase in HDL cholesterol (0.06 (0.01; 0.11 mmol/L. Prevalence of insulin resistance declined from 51.8% to 36.5% and prevalence of metabolic syndrome from 17.1% to 4.9%. Nutritional-behavioral interventions can improve the blood lipid profile and insulin sensitivity in obese children, and possibly provide benefits in terms of metabolic syndrome.

  12. Metabolic pathway profiling of the derivative of important herbal component noscapine.

    Science.gov (United States)

    Yao, Yonghua; Xiong, Yang

    2016-02-01

    The present study aims to investigate the influence of metabolic behavior by the introduction of bromo atom into the structure of noscapine. Oral gavage of 50 mg/kg bromo-noscapine for 6- to 8-week-old male mice with C57BL/6 background resulted in the detection of the metabolite undergoing cleavage of methylenedioxy group (II), demethylated bromo-noscapine (III, IV), meconine (V), bromo-cotarnine (VI), bisdemethylated bromo-noscapine (VII), and their corresponding glucuronides (G1-G4) in urine, feces, and serum (24 h). In vitro human liver microsomes or mice liver microsomes incubation system can also give the formation of phase I metabolites. Furthermore, the phase I drug-metabolizing enzymes involved in the metabolism of bromo-noscapine was screened. Many CYP isoforms were involved in the formation of metabolite II, and CYP3A4, CYP1A1, CYP2C19, and CYP2D6 were major CYP isoforms. All the determined CYP isoforms showed the catalytic activity towards the formation of metabolites III, V, and VI. The major CYP isoforms involved in the catalytic formation of metabolite IV were CYP2C19, CYP2D6, and CYP2E1. In conclusion, to date, many structural derivatives of noscapine have been synthesized based on the efficiency. However, the metabolic behavior remains to be elucidated, and the present study gave an example through the investigation of metabolic pathway of bromo-noscapine. The introduction of bromo atom into the structure of noscapine did not alter the metabolites profile, but changed the drug-metabolizing enzyme profiles.

  13. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  14. Changes in Dietary Fat Content Rapidly Alters the Mouse Plasma Coagulation Profile without Affecting Relative Transcript Levels of Coagulation Factors.

    Directory of Open Access Journals (Sweden)

    Audrey C A Cleuren

    Full Text Available Obesity is associated with a hypercoagulable state and increased risk for thrombotic cardiovascular events.Establish the onset and reversibility of the hypercoagulable state during the development and regression of nutritionally-induced obesity in mice, and its relation to transcriptional changes and clearance rates of coagulation factors as well as its relation to changes in metabolic and inflammatory parameters.Male C57BL/6J mice were fed a low fat (10% kcal as fat; LFD or high fat diet (45% kcal as fat; HFD for 2, 4, 8 or 16 weeks. To study the effects of weight loss, mice were fed the HFD for 16 weeks and switched to the LFD for 1, 2 or 4 weeks. For each time point analyses of plasma and hepatic mRNA levels of coagulation factors were performed after overnight fasting, as well as measurements of circulating metabolic and inflammatory parameters. Furthermore, in vivo clearance rates of human factor (F VII, FVIII and FIX proteins were determined after 2 weeks of HFD-feeding.HFD feeding gradually increased the body and liver weight, which was accompanied by a significant increase in plasma glucose levels from 8 weeks onwards, while insulin levels were affected after 16 weeks. Besides a transient rise in cytokine levels at 2 weeks after starting the HFD, no significant effect on inflammation markers was present. Increased plasma levels of fibrinogen, FII, FVII, FVIII, FIX, FXI and FXII were observed in mice on a HFD for 2 weeks, which in general persisted throughout the 16 weeks of HFD-feeding. Interestingly, with the exception of FXI the effects on plasma coagulation levels were not paralleled by changes in relative transcript levels in the liver, nor by decreased clearance rates. Switching from HFD to LFD reversed the HFD-induced procoagulant shift in plasma, again not coinciding with transcriptional modulation.Changes in dietary fat content rapidly alter the mouse plasma coagulation profile, thereby preceding plasma metabolic changes, which

  15. Mass Spectral Profile for Rapid Differentiating Beta-Lactams from Their Ring-Opened Impurities

    Directory of Open Access Journals (Sweden)

    Hecheng Wang

    2015-01-01

    Full Text Available High performance liquid chromatography tandem mass spectrometry (HPLC MS has been widely used for β-lactam antibiotics determination. However, its application to identify impurities of these frequently used drugs is not sufficient at present. In this job, characteristic profiles of the collision induced dissociation (CID spectra of both β-lactams and ring-opened β-lactams were extracted from the MS data of six β-lactam antibiotics and their forty-five impurities, and were confirmed by the MS data reported in the literature. These characteristics have been successfully applied to rapid differentiation of β-lactam and ring-opened β-lactam impurities in cefixime, cefdinir, and cefaclor. However, these characteristic profiles can only be obtained under low activating voltage. They did not display in the high energy activated CID spectra. Diagnostic fragmentations for determining the localization of double bond and substituents on the thiazine ring and the side chain were also observed. In addition, several characteristic fragmentations are hopeful to be used to differentiate the configurations of C-2 on the thiazine ring of ring-opened impurities, which is generally disadvantageous of mass spectrometry. Taken together, forty-five impurities were identified from the capsules of cefixime, cefdinir, and cefaclor.

  16. Mass Spectral Profile for Rapid Differentiating Beta-Lactams from Their Ring-Opened Impurities.

    Science.gov (United States)

    Wang, Hecheng; Huang, Haiwei; Cao, Jin; Chui, Dehua; Xiao, Shengyuan

    2015-01-01

    High performance liquid chromatography tandem mass spectrometry (HPLC MS) has been widely used for β-lactam antibiotics determination. However, its application to identify impurities of these frequently used drugs is not sufficient at present. In this job, characteristic profiles of the collision induced dissociation (CID) spectra of both β-lactams and ring-opened β-lactams were extracted from the MS data of six β-lactam antibiotics and their forty-five impurities, and were confirmed by the MS data reported in the literature. These characteristics have been successfully applied to rapid differentiation of β-lactam and ring-opened β-lactam impurities in cefixime, cefdinir, and cefaclor. However, these characteristic profiles can only be obtained under low activating voltage. They did not display in the high energy activated CID spectra. Diagnostic fragmentations for determining the localization of double bond and substituents on the thiazine ring and the side chain were also observed. In addition, several characteristic fragmentations are hopeful to be used to differentiate the configurations of C-2 on the thiazine ring of ring-opened impurities, which is generally disadvantageous of mass spectrometry. Taken together, forty-five impurities were identified from the capsules of cefixime, cefdinir, and cefaclor.

  17. Rapid tomato volatile profiling by using proton-transfer reaction mass spectrometry (PTR-MS).

    Science.gov (United States)

    Farneti, Brian; Cristescu, Simona M; Costa, Guglielmo; Harren, Frans J M; Woltering, Ernst J

    2012-05-01

    The availability of rapid and accurate methods to assess fruit flavor is of utmost importance to support quality control especially in the breeding phase. Breeders need more information and analytical tools to facilitate selection for complex multigenic traits such as flavor quality. In this study, it is shown that proton-transfer reaction mass spectrometry (PTR-MS) is a suitable method to monitor at high sensitivity the emission of volatiles determining the tomato aromatic profile such as hexanal, hexenals, methanol, ethanol, and acetaldehyde. The volatiles emitted by 14 tomato varieties (at red stage) were analyzed by 2 solvent-free headspace methods: solid-phase microextraction/gas chromatography MS and PTR-MS. Multivariate statistics (principal component analysis and cluster analysis) of the PTR-MS results allow an unambiguous separation between varieties, especially with a clear fingerprinting separation between the different tomato types: round truss, cocktail, and cherry tomatoes. PTR-MS was also successfully used to monitor the changes in volatile profiles during postharvest ripening and storage.

  18. Exploring metabolic syndrome serum profiling based on gas chromatography mass spectrometry and random forest models.

    Science.gov (United States)

    Lin, Zhang; Vicente Gonçalves, Carlos M; Dai, Ling; Lu, Hong-mei; Huang, Jian-hua; Ji, Hongchao; Wang, Dong-sheng; Yi, Lun-zhao; Liang, Yi-zeng

    2014-05-27

    Metabolic syndrome (MetS) is a constellation of the most dangerous heart attack risk factors: diabetes and raised fasting plasma glucose, abdominal obesity, high cholesterol and high blood pressure. Analysis and representation of the variances of metabolic profiles is urgently needed for early diagnosis and treatment of MetS. In current study, we proposed a metabolomics approach for analyzing MetS based on GC-MS profiling and random forest models. The serum samples from healthy controls and MetS patients were characterized by GC-MS. Then, random forest (RF) models were used to visually discriminate the serum changes in MetS based on these GC-MS profiles. Simultaneously, some informative metabolites or potential biomarkers were successfully discovered by means of variable importance ranking in random forest models. The metabolites such as 2-hydroxybutyric acid, inositol and d-glucose, were defined as potential biomarkers to diagnose the MetS. These results obtained by proposed method showed that the combining GC-MS profiling with random forest models was a useful approach to analyze metabolites variances and further screen the potential biomarkers for MetS diagnosis.

  19. Bacterial Cytological Profiling (BCP as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    D.T. Quach

    2016-02-01

    Full Text Available Successful treatment of bacterial infections requires the timely administration of appropriate antimicrobial therapy. The failure to initiate the correct therapy in a timely fashion results in poor clinical outcomes, longer hospital stays, and higher medical costs. Current approaches to antibiotic susceptibility testing of cultured pathogens have key limitations ranging from long run times to dependence on prior knowledge of genetic mechanisms of resistance. We have developed a rapid antimicrobial susceptibility assay for Staphylococcus aureus based on bacterial cytological profiling (BCP, which uses quantitative fluorescence microscopy to measure antibiotic induced changes in cellular architecture. BCP discriminated between methicillin-susceptible (MSSA and -resistant (MRSA clinical isolates of S. aureus (n = 71 within 1–2 h with 100% accuracy. Similarly, BCP correctly distinguished daptomycin susceptible (DS from daptomycin non-susceptible (DNS S. aureus strains (n = 20 within 30 min. Among MRSA isolates, BCP further identified two classes of strains that differ in their susceptibility to specific combinations of beta-lactam antibiotics. BCP provides a rapid and flexible alternative to gene-based susceptibility testing methods for S. aureus, and should be readily adaptable to different antibiotics and bacterial species as new mechanisms of resistance or multidrug-resistant pathogens evolve and appear in mainstream clinical practice.

  20. Increases in myocardial workload induced by rapid atrial pacing trigger alterations in global metabolism.

    Directory of Open Access Journals (Sweden)

    Aslan T Turer

    Full Text Available To determine whether increases in cardiac work lead to alterations in the plasma metabolome and whether such changes arise from the heart or peripheral organs.There is growing evidence that the heart influences systemic metabolism through endocrine effects and affecting pathways involved in energy homeostasis.Nineteen patients referred for cardiac catheterization were enrolled. Peripheral and selective coronary sinus (CS blood sampling was performed at serial timepoints following the initiation of pacing, and metabolite profiling was performed by liquid chromatography-mass spectrometry (LC-MS.Pacing-stress resulted in a 225% increase in the median rate·pressure product from baseline. Increased myocardial work induced significant changes in the peripheral concentration of 43 of 125 metabolites assayed, including large changes in purine [adenosine (+99%, p = 0.006, ADP (+42%, p = 0.01, AMP (+79%, p = 0.004, GDP (+69%, p = 0.003, GMP (+58%, p = 0.01, IMP (+50%, p = 0.03, xanthine (+61%, p = 0.0006], and several bile acid metabolites. The CS changes in metabolites qualitatively mirrored those in the peripheral blood in both timing and magnitude, suggesting the heart was not the major source of the metabolite release.Isolated increases in myocardial work can induce changes in the plasma metabolome, but these changes do not appear to be directly cardiac in origin. A number of these dynamic metabolites have known signaling functions. Our study provides additional evidence to a growing body of literature on metabolic 'cross-talk' between the heart and other organs.

  1. Caenorhabditis elegans diet significantly affects metabolic profile, mitochondrial DNA levels, lifespan and brood size.

    Science.gov (United States)

    Reinke, S N; Hu, X; Sykes, B D; Lemire, B D

    2010-07-01

    Diet can have profound effects on an organism's health. Metabolic studies offer an effective way to measure and understand the physiological effects of diet or disease. The metabolome is very sensitive to dietary, lifestyle and genetic changes. Caenorhabditis elegans, a soil nematode, is an attractive model organism for metabolic studies because of the ease with which genetic and environmental factors can be controlled. In this work, we report significant effects of diet, mutation and RNA interference on the C.elegans metabolome. Two strains of Escherichia coli, OP50 and HT115 are commonly employed as food sources for maintaining and culturing the nematode. We studied the metabolic and phenotypic effects of culturing wild-type and mutant worms on these two strains of E. coli. We report significant effects of diet on metabolic profile, on mitochondrial DNA copy number and on phenotype. The dietary effects we report are similar in magnitude to the effects of mutations or RNA interference-mediated gene suppression. This is the first critical evaluation of the physiological and metabolic effects on C.elegans of two commonly used culture conditions.

  2. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    Science.gov (United States)

    te Pas, Marinus F W; Koopmans, Sietse-Jan; Kruijt, Leo; Calus, Mario P L; Smits, Mari A

    2013-01-01

    Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean) diet or a high saturated fat/cholesterol/sugar (cafeteria) diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (patho)physiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA) and diabetes (Glucose) and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes) and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  3. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model.

    Directory of Open Access Journals (Sweden)

    Marinus F W te Pas

    Full Text Available Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean diet or a high saturated fat/cholesterol/sugar (cafeteria diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (pathophysiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA and diabetes (Glucose and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.

  4. Rapid countermeasure discovery against Francisella tularensis based on a metabolic network reconstruction.

    Directory of Open Access Journals (Sweden)

    Sidhartha Chaudhury

    Full Text Available In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of

  5. Disposition and metabolic profiling of [(14)C]cerlapirdine using accelerator mass spectrometry.

    Science.gov (United States)

    Tse, Susanna; Leung, Louis; Raje, Sangeeta; Seymour, Mark; Shishikura, Yoko; Obach, R Scott

    2014-12-01

    Cerlapirdine (SAM-531, PF-05212365) is a selective, potent, full antagonist of the 5-hydroxytryptamine 6 (5-HT6) receptor. Cerlapirdine and other 5-HT6 receptor antagonists have been in clinical development for the symptomatic treatment of Alzheimer's disease. A human absorption, distribution, metabolism, and excretion study was conducted to gain further understanding of the metabolism and disposition of cerlapirdine. Because of the low amount of radioactivity administered, total (14)C content and metabolic profiles in plasma, urine, and feces were determined using accelerator mass spectrometry (AMS). After a single, oral 5-mg dose of [(14)C]cerlapirdine (177 nCi), recovery of total (14)C was almost complete, with feces being the major route of elimination of the administered dose, whereas urinary excretion played a lesser role. The extent of absorption was estimated to be at least 70%. Metabolite profiling in pooled plasma samples showed that unchanged cerlapirdine was the major drug-related component in circulation, representing 51% of total (14)C exposure in plasma. One metabolite (M1, desmethylcerlapirdine) was detected in plasma, and represented 9% of the total (14)C exposure. In vitro cytochrome P450 reaction phenotyping studies showed that M1 was formed primarily by CYP2C8 and CYP3A4. In pooled urine samples, three major drug-related peaks were detected, corresponding to cerlapirdine-N-oxide (M3), cerlapirdine, and desmethylcerlapirdine. In feces, cerlapirdine was the major (14)C component excreted, followed by desmethylcerlapirdine. The results of this study demonstrate that the use of the AMS technique enables comprehensive quantitative elucidation of the disposition and metabolic profiles of compounds administered at a low radioactive dose.

  6. Impact of a synbiotic food on the gut microbial ecology and metabolic profiles.

    Science.gov (United States)

    Vitali, Beatrice; Ndagijimana, Maurice; Cruciani, Federica; Carnevali, Paola; Candela, Marco; Guerzoni, Maria Elisabetta; Brigidi, Patrizia

    2010-01-07

    The human gut harbors a diverse community of microorganisms which serve numerous important functions for the host wellbeing. Functional foods are commonly used to modulate the composition of the gut microbiota contributing to the maintenance of the host health or prevention of disease. In the present study, we characterized the impact of one month intake of a synbiotic food, containing fructooligosaccharides and the probiotic strains Lactobacillus helveticus Bar13 and Bifidobacterium longum Bar33, on the gut microbiota composition and metabolic profiles of 20 healthy subjects. The synbiotic food did not modify the overall structure of the gut microbiome, as indicated by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The ability of the probiotic L. helveticus and B. longum strains to pass through the gastrointestinal tract was hypothesized on the basis of real-time PCR data. In spite of a stable microbiota, the intake of the synbiotic food resulted in a shift of the fecal metabolic profiles, highlighted by the Gas Chromatography Mass Spectrometry Solid Phase Micro-Extraction (GC-MS/SPME) analysis. The extent of short chain fatty acids (SCFA), ketones, carbon disulfide and methyl acetate was significantly affected by the synbiotic food consumption. Furthermore, the Canonical discriminant Analysis of Principal coordinates (CAP) of GC-MS/SPME profiles allowed a separation of the stool samples recovered before and after the consumption of the functional food. In this study we investigated the global impact of a dietary intervention on the gut ecology and metabolism in healthy humans. We demonstrated that the intake of a synbiotic food leads to a modulation of the gut metabolic activities with a maintenance of the gut biostructure. In particular, the significant increase of SCFA, ketones, carbon disulfide and methyl acetate following the feeding period suggests potential health promoting effects of the synbiotic food.

  7. Impact of a synbiotic food on the gut microbial ecology and metabolic profiles

    Directory of Open Access Journals (Sweden)

    Candela Marco

    2010-01-01

    Full Text Available Abstract Background The human gut harbors a diverse community of microorganisms which serve numerous important functions for the host wellbeing. Functional foods are commonly used to modulate the composition of the gut microbiota contributing to the maintenance of the host health or prevention of disease. In the present study, we characterized the impact of one month intake of a synbiotic food, containing fructooligosaccharides and the probiotic strains Lactobacillus helveticus Bar13 and Bifidobacterium longum Bar33, on the gut microbiota composition and metabolic profiles of 20 healthy subjects. Results The synbiotic food did not modify the overall structure of the gut microbiome, as indicated by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE. The ability of the probiotic L. helveticus and B. longum strains to pass through the gastrointestinal tract was hypothesized on the basis of real-time PCR data. In spite of a stable microbiota, the intake of the synbiotic food resulted in a shift of the fecal metabolic profiles, highlighted by the Gas Chromatography Mass Spectrometry Solid Phase Micro-Extraction (GC-MS/SPME analysis. The extent of short chain fatty acids (SCFA, ketones, carbon disulfide and methyl acetate was significantly affected by the synbiotic food consumption. Furthermore, the Canonical discriminant Analysis of Principal coordinates (CAP of GC-MS/SPME profiles allowed a separation of the stool samples recovered before and after the consumption of the functional food. Conclusion In this study we investigated the global impact of a dietary intervention on the gut ecology and metabolism in healthy humans. We demonstrated that the intake of a synbiotic food leads to a modulation of the gut metabolic activities with a maintenance of the gut biostructure. In particular, the significant increase of SCFA, ketones, carbon disulfide and methyl acetate following the feeding period suggests potential health

  8. Serum global metabolomics profiling reveals profound metabolic impairments in patients with MPS IIIA and MPS IIIB.

    Science.gov (United States)

    Fu, Haiyan; Meadows, Aaron S; Pineda, Ricardo J; Mohney, Robert P; Stirdivant, Steve; McCarty, Douglas M

    2017-04-05

    The monogenic defects in specific lysosomal enzymes in mucopolysaccharidosis (MPS) III lead to lysosomal storage of glycosaminoglycans and complex CNS and somatic pathology, for which the detailed mechanisms remain unclear. In this study, serum samples from patients with MPS IIIA (age 2-9 yr) and MPS IIIB (2-13 yr) and healthy controls (age 2-9 yr) were assayed by global metabolomics profiling of 658 metabolites using mass spectrometry. Significant alterations were detected in 423 metabolites in all MPS III patients, of which 366 (86.5%) decreased and 57 (13.5%) increased. Similar profiles were observed when analyzing data from MPS IIIA and MPS IIIB samples separately, with only limited age variations in 36 metabolites. The observed metabolic disturbances in MPS III patients involve virtually all major pathways of amino acid (101/150), peptide (17/21), carbohydrate (19/23), lipid (221/325), nucleotide (15/25), energy (8/9), vitamins and co-factors (8/21), and xenobiotics (34/84) metabolism. Notably, detected serum metabolite decreases involved all key amino acids, all major neurotransmitter pathways, and broad neuroprotective compounds. The elevated metabolites are predominantly lipid derivatives, and also include cysteine metabolites and a fibrinogen peptide fragment, consistent with the status of oxidative stress and inflammation in MPS III. This study demonstrates that the lysosomal glycosaminoglycans storage triggers profound metabolic disturbances in patients with MPS III disorders, leading to severe functional depression of virtually all metabolic pathways, which emerge early during the disease progression. Serum global metabolomics profiling may provide an important and minimally invasive tool for better understanding the disease mechanisms and identification of potential biomarkers for MPS III.

  9. Transcriptional profiling of rats subjected to gestational undernourishment: implications for the developmental variations in metabolic traits.

    Directory of Open Access Journals (Sweden)

    Tiffany J Morris

    Full Text Available A link has been established between prenatal nutrition and the development of metabolic and cardiovascular diseases later in life, a process referred to as developmental programming. It has been suggested that the trajectory of development is shifted by alterations in the maternal nutritional state leading to changes in developmental plasticity, in part underpinned by epigenetic changes in gene regulation. However, to date, only candidate gene approaches have been used to assess expression and molecular changes in the offspring of maternally undernourished animals. Furthermore, most work has focused on animals at an age where the programmed phenotype is already manifest and little is known about changes in gene expression in the offspring prior to development of obesity and related metabolic disorders. Gene expression profiles of liver, retroperitoneal white adipose fat, and biceps femoris skeletal muscle tissue from young adult male rats (55 days old in which nutritional status had been manipulated in utero by maternal undernutrition (UN were compared to the profiles of offspring of ad libitum fed mothers serving as the control group (AD (8 offspring/group. The expression profiles were determined using the Illumina RatRef-12 BeadChip. No significant changes in expression were identified for skeletal muscle or white adipose tissue. However, studies of liver tissue showed 249 differentially expressed genes (143 up regulated, 106 down regulated. Although the animals at day 55 have yet to develop obesity they already show biochemical abnormalities and by day 110 express a phenotype characterized by increased adiposity and altered insulin sensitivity. An analysis of pathways affected suggests that intrauterine programming of UN animals to favor fat as an energy source results in mitochondrial dysfunction which initially affects the postnatal hepatic function and subsequently, via the resultant metabolic changes in other organs leads to the evolution

  10. Transcriptional profiling of rats subjected to gestational undernourishment: implications for the developmental variations in metabolic traits.

    Science.gov (United States)

    Morris, Tiffany J; Vickers, Mark; Gluckman, Peter; Gilmour, Stewart; Affara, Nabeel

    2009-09-29

    A link has been established between prenatal nutrition and the development of metabolic and cardiovascular diseases later in life, a process referred to as developmental programming. It has been suggested that the trajectory of development is shifted by alterations in the maternal nutritional state leading to changes in developmental plasticity, in part underpinned by epigenetic changes in gene regulation. However, to date, only candidate gene approaches have been used to assess expression and molecular changes in the offspring of maternally undernourished animals. Furthermore, most work has focused on animals at an age where the programmed phenotype is already manifest and little is known about changes in gene expression in the offspring prior to development of obesity and related metabolic disorders. Gene expression profiles of liver, retroperitoneal white adipose fat, and biceps femoris skeletal muscle tissue from young adult male rats (55 days old) in which nutritional status had been manipulated in utero by maternal undernutrition (UN) were compared to the profiles of offspring of ad libitum fed mothers serving as the control group (AD) (8 offspring/group). The expression profiles were determined using the Illumina RatRef-12 BeadChip. No significant changes in expression were identified for skeletal muscle or white adipose tissue. However, studies of liver tissue showed 249 differentially expressed genes (143 up regulated, 106 down regulated). Although the animals at day 55 have yet to develop obesity they already show biochemical abnormalities and by day 110 express a phenotype characterized by increased adiposity and altered insulin sensitivity. An analysis of pathways affected suggests that intrauterine programming of UN animals to favor fat as an energy source results in mitochondrial dysfunction which initially affects the postnatal hepatic function and subsequently, via the resultant metabolic changes in other organs leads to the evolution of a phenotype

  11. Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and non-vegetarian subjects: a matched cohort study

    National Research Council Canada - National Science Library

    Chiu, Yen-Feng; Hsu, Chih-Cheng; Chiu, Tina H T; Lee, Chun-Yi; Liu, Ting-Ting; Tsao, Chwen Keng; Chuang, Su-Chun; Hsiung, Chao A

    2015-01-01

    Several previous cross-sectional studies have shown that vegetarians have a better metabolic profile than non-vegetarians, suggesting that a vegetarian dietary pattern may help prevent chronic degenerative diseases...

  12. Genomic and Metabolomic Profile Associated to Clustering of Cardio-Metabolic Risk Factors

    Science.gov (United States)

    Marrachelli, Vannina G.; Rentero, Pilar; Mansego, María L.; Morales, Jose Manuel; Galan, Inma; Pardo-Tendero, Mercedes; Martinez, Fernando; Martin-Escudero, Juan Carlos; Briongos, Laisa; Chaves, Felipe Javier; Redon, Josep; Monleon, Daniel

    2016-01-01

    Background To identify metabolomic and genomic markers associated with the presence of clustering of cardiometabolic risk factors (CMRFs) from a general population. Methods and Findings One thousand five hundred and two subjects, Caucasian, > 18 years, representative of the general population, were included. Blood pressure measurement, anthropometric parameters and metabolic markers were measured. Subjects were grouped according the number of CMRFs (Group 1: <2; Group 2: 2; Group 3: 3 or more CMRFs). Using SNPlex, 1251 SNPs potentially associated to clustering of three or more CMRFs were analyzed. Serum metabolomic profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600 spectrometer. From the total population, 1217 (mean age 54±19, 50.6% men) with high genotyping call rate were analysed. A differential metabolomic profile, which included products from mitochondrial metabolism, extra mitochondrial metabolism, branched amino acids and fatty acid signals were observed among the three groups. The comparison of metabolomic patterns between subjects of Groups 1 to 3 for each of the genotypes associated to those subjects with three or more CMRFs revealed two SNPs, the rs174577_AA of FADS2 gene and the rs3803_TT of GATA2 transcription factor gene, with minimal or no statistically significant differences. Subjects with and without three or more CMRFs who shared the same genotype and metabolomic profile differed in the pattern of CMRFS cluster. Subjects of Group 3 and the AA genotype of the rs174577 had a lower prevalence of hypertension compared to the CC and CT genotype. In contrast, subjects of Group 3 and the TT genotype of the rs3803 polymorphism had a lower prevalence of T2DM, although they were predominantly males and had higher values of plasma creatinine. Conclusions The results of the present study add information to the metabolomics profile and to the potential impact of genetic factors on the variants of clustering of cardiometabolic risk factors

  13. Gas chromatographic metabolic profiling: a sensitive tool for functional microbial ecology.

    Science.gov (United States)

    Coucheney, Elsa; Daniell, Tim J; Chenu, Claire; Nunan, Naoise

    2008-12-01

    Microbial metabolomics, which consists of a non-targeted analysis of the metabolites released from ('exometabolome') or existing in ('endometabolome') a cell has mostly been used to study the metabolism of particular microbes. Metabolomes also represent a picture of microbial activity and we suggest that the exometabolome may also contain pertinent information for studying microbial interaction networks. Gas chromatography coupled to mass spectrometry is the most commonly used technique in metabolomics studies. It allows a wide range of metabolites to be detected but requires the derivatisation of compounds prior to detection. This type of non-targeted analysis can introduce biases to the detection and quantification of the different metabolites, particularly at the extraction and derivatisation steps. The aims of this study, therefore, were to quantify the sources of variability and to test the sensitivity of the GC metabolic profiling approach to small environmental changes such as shifts in temperature. The temperature sensitivity of metabolic profiles was compared with that of catabolic profiles obtained using Biolog microplates. Analytical variability was compared with biological variability by incubating bacterial strains isolated from soil with fructose at 20 degrees C and by replicating each step of the protocol (incubation, extraction and derivatisation). For both the endo- and the exometabolome, more than 70% of the total variability was of biological origin and principal components analysis clearly separated the strains along the first ordination axis. The endometabolome distinguished bacterial strains at the species level only, whereas separation was evident at the species and group level with the exometabolome. Temperature had a significant but differential effect on the metabolite production of the bacterial strains whilst their catabolic profiles remained relatively unaffected. The exometabolome was more sensitive to temperature shifts than the

  14. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork.

    Science.gov (United States)

    Samman, Samir; Crossett, Ben; Somers, Miles; Bell, Kirstine J; Lai, Nicole T; Sullivan, David R; Petocz, Peter

    2014-01-01

    Amino acid (AA) status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM) or chicken (CM), and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014), with consistently higher changes observed after 60 minutes (P<0.001). Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the postprandial state. The sustained increase in histidine following the consumption of a PM is consistent with the reported effects of lean pork on cardiometabolic risk factors.

  15. Characterization of a novel, brain-penetrating CB1 receptor inverse agonist: metabolic profile in diet-induced obese models and aspects of central activity.

    Science.gov (United States)

    Jacobson, Laura H; Commerford, S Renee; Gerber, Sarah P; Chen, Yu Alice; Dardik, Beatriz; Chaperon, Frederique; Schwartzkopf, Chad; Nguyen-Tran, Van; Hollenbeck, Thomas; McNamara, Peter; He, Xiaohui; Liu, Hong; Seidel, H Martin; Jaton, Anne-Liese; Gromada, Jesper; Teixeira, Sandra

    2011-12-01

    Pharmacologic antagonism of cannabinoid 1 receptors (CB1 receptors) in the central nervous system (CNS) suppresses food intake, promotes weight loss, and improves the metabolic profile. Since the CB1 receptor is expressed both in the CNS and in peripheral tissues, therapeutic value may be gained with CB1 receptor inverse agonists acting on receptors in both domains. The present report examines the metabolic and CNS actions of a novel CB1 receptor inverse agonist, compound 64, a 1,5,6-trisubstituted pyrazolopyrimidinone. Compound 64 showed similar or superior binding affinity, in vitro potency, and pharmacokinetic profile compared to rimonabant. Both compounds improved the metabolic profile in diet-induced obese (DIO) rats and obese cynomolgus monkeys. Weight loss tended to be greater in compound 64-treated DIO rats compared to pair-fed counterparts, suggesting that compound 64 may have metabolic effects beyond those elicited by weight loss alone. In the CNS, reversal of agonist-induced hypothermia and hypolocomotion indicated that compound 64 possessed an antagonist activity in vivo. Dosed alone, compound 64 suppressed extinction of conditioned freezing (10 mg/kg) and rapid eye movement (REM) sleep (30 mg/kg), consistent with previous reports for rimonabant, although for REM sleep, compound 64 was greater than threefold less potent than for metabolic effects. Together, these data suggested that (1) impairment of extinction learning and REM sleep suppression are classic, centrally mediated responses to CB1 receptor inverse agonists, and (2) some separation may be achievable between central and peripheral effects with brain-penetrating CB1 receptor inverse agonists while maintaining metabolic efficacy. Furthermore, chronic treatment with compound 64 contributes to evidence that peripheral CB1 receptor blockade may yield beneficial outcomes that exceed those elicited by weight loss alone.

  16. Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Wan, Jin-Yi; Liu, Peng; Wang, Huai-You; Qi, Lian-Wen; Wang, Chong-Zhi; Li, Ping; Yuan, Chun-Su

    2013-04-19

    American ginseng is a widely used natural product. Ginseng products are usually taken orally, and human intestinal microflora may metabolize ginsenosides. Existing publications report the metabolite fates of ginsenosides. However, investigations on the comprehensive metabolic profile of American ginseng extract are absent because of the chemical complexity and limitation of analytical methods. In this work, we studied the biotransformation and metabolic profile of American ginseng extract by human intestinal microflora. Human fecal microflora was prepared from a healthy Chinese man and then anaerobically incubated with American ginseng sample at 37 °C for 24 h. A rapid and simple liquid-liquid extraction method was used for sample pretreatment. A highly sensitive and selective liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) method was used to characterize ginsenosides and related metabolites in the reaction samples. The LC-Q-TOF-MS provides superior data quality and advanced analytical capabilities for profiling, identifying, and characterizing complex metabolites in matrix-based biological samples. A total of 25 metabolites were detected, 13 of which were undoubtedly assigned by comparison with reference compounds, and 12 others were tentatively identified. The three most abundant metabolites are 20S-ginsenoside Rg3, ginsenoside F2 and compound K. The main metabolic pathways of ginseng saponins are deglycosylation reactions by intestinal microflora through stepwise cleavage of sugar moieties. Subsequent dehydration reactions also occur. Protopanaxadiol- and oleanane-type triterpenoids are easy to metabolize. The intestinal microbiota may play an important role in mediating the metabolism bioactivity of American ginseng. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia—A Case of Novel Weapons?

    Science.gov (United States)

    Skoneczny, Dominik; Weston, Paul A.; Zhu, Xiaocheng; Gurr, Geoff M.; Callaway, Ragan M.; Weston, Leslie A.

    2015-01-01

    Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17) by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant’s capacity to deter natural enemies in its invaded range through production of novel weapons. PMID:26561809

  18. Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia--A Case of Novel Weapons?

    Science.gov (United States)

    Skoneczny, Dominik; Weston, Paul A; Zhu, Xiaocheng; Gurr, Geoff M; Callaway, Ragan M; Weston, Leslie A

    2015-11-06

    Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs) and their N-oxides (PANOs) was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17) by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant's capacity to deter natural enemies in its invaded range through production of novel weapons.

  19. Metabolic Profiling of Pyrrolizidine Alkaloids in Foliage of Two Echium spp. Invaders in Australia—A Case of Novel Weapons?

    Directory of Open Access Journals (Sweden)

    Dominik Skoneczny

    2015-11-01

    Full Text Available Metabolic profiling allows for simultaneous and rapid annotation of biochemically similar organismal metabolites. An effective platform for profiling of toxic pyrrolizidine alkaloids (PAs and their N-oxides (PANOs was developed using ultra high pressure liquid chromatography quadrupole time-of-flight (UHPLC-QTOF mass spectrometry. Field-collected populations of invasive Australian weeds, Echium plantagineum and E. vulgare were raised under controlled glasshouse conditions and surveyed for the presence of related PAs and PANOs in leaf tissues at various growth stages. Echium plantagineum possessed numerous related and abundant PANOs (>17 by seven days following seed germination, and these were also observed in rosette and flowering growth stages. In contrast, the less invasive E. vulgare accumulated significantly lower levels of most PANOs under identical glasshouse conditions. Several previously unreported PAs were also found at trace levels. Field-grown populations of both species were also evaluated for PA production and highly toxic echimidine N-oxide was amongst the most abundant PANOs in foliage of both species. PAs in field and glasshouse plants were more abundant in the more widely invasive species, E. plantagineum, and may provide competitive advantage by increasing the plant’s capacity to deter natural enemies in its invaded range through production of novel weapons.

  20. Urinary Metabolite Profiles in Premature Infants Show Early Postnatal Metabolic Adaptation and Maturation

    Directory of Open Access Journals (Sweden)

    Sissel J. Moltu

    2014-05-01

    Full Text Available Objectives: Early nutrition influences metabolic programming and long-term health. We explored the urinary metabolite profiles of 48 premature infants (birth weight < 1500 g randomized to an enhanced or a standard diet during neonatal hospitalization. Methods: Metabolomics using nuclear magnetic resonance spectroscopy (NMR was conducted on urine samples obtained during the first week of life and thereafter fortnightly. Results: The intervention group received significantly higher amounts of energy, protein, lipids, vitamin A, arachidonic acid and docosahexaenoic acid as compared to the control group. Enhanced nutrition did not appear to affect the urine profiles to an extent exceeding individual variation. However, in all infants the glucogenic amino acids glycine, threonine, hydroxyproline and tyrosine increased substantially during the early postnatal period, along with metabolites of the tricarboxylic acid cycle (succinate, oxoglutarate, fumarate and citrate. The metabolite changes correlated with postmenstrual age. Moreover, we observed elevated threonine and glycine levels in first-week urine samples of the small for gestational age (SGA; birth weight < 10th percentile for gestational age as compared to the appropriate for gestational age infants. Conclusion: This first nutri-metabolomics study in premature infants demonstrates that the physiological adaptation during the fetal-postnatal transition as well as maturation influences metabolism during the breastfeeding period. Elevated glycine and threonine levels were found in the first week urine samples of the SGA infants and emerged as potential biomarkers of an altered metabolic phenotype.

  1. Metabolic profiles and free radical scavenging activity of Cordyceps bassiana fruiting bodies according to developmental stage.

    Directory of Open Access Journals (Sweden)

    Sun-Hee Hyun

    Full Text Available The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana.

  2. Metabolic Profiles and Free Radical Scavenging Activity of Cordyceps bassiana Fruiting Bodies According to Developmental Stage

    Science.gov (United States)

    Hyun, Sun-Hee; Lee, Seok-Young; Sung, Gi-Ho; Kim, Seong Hwan; Choi, Hyung-Kyoon

    2013-01-01

    The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana. PMID:24058459

  3. Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L. Pers].

    Directory of Open Access Journals (Sweden)

    Yan Xie

    Full Text Available Metabolic responses to cadmium (Cd may be associated with variations in Cd tolerance in plants. The objectives of this study were to examine changes in metabolic profiles in bermudagrass in response to Cd stress and to identify predominant metabolites associated with differential Cd tolerance using gas chromatography-mass spectrometry. Two genotypes of bermudagrass with contrasting Cd tolerance were exposed to 0 and 1.5 mM CdSO4 for 14 days in hydroponics. Physiological responses to Cd were evaluated by determining turf quality, growth rate, chlorophyll content and normalized relative transpiration. All these parameters exhibited higher tolerance in WB242 than in WB144. Cd treated WB144 transported more Cd to the shoot than in WB242. The metabolite analysis of leaf polar extracts revealed 39 Cd responsive metabolites in both genotypes, mainly consisting of amino acids, organic acids, sugars, fatty acids and others. A difference in the metabolic profiles was observed between the two bermudagrass genotypes exposed to Cd stress. Seven amino acids (norvaline, glycine, proline, serine, threonine, glutamic acid and gulonic acid, four organic acids (glyceric acid, oxoglutaric acid, citric acid and malic acid, and three sugars (xylulose, galactose and talose accumulated more in WB242 than WB144. However, compared to the control, WB144 accumulated higher quantities of sugars than WB242 in the Cd regime. The differential accumulation of these metabolites could be associated with the differential Cd tolerance in bermudagrass.

  4. Chronic unpredictive mild stress leads to altered hepatic metabolic profile and gene expression.

    Science.gov (United States)

    Jia, Hong-Mei; Li, Qi; Zhou, Chao; Yu, Meng; Yang, Yong; Zhang, Hong-Wu; Ding, Gang; Shang, Hai; Zou, Zhong-Mei

    2016-03-23

    Depression is a complex disease characterized by a series of pathological changes. Research on depression is mainly focused on the changes in brain, but not on liver. Therefore, we initially explored the metabolic profiles of hepatic extracts from rats treated with chronic unpredictive mild stress (CUMS) by UPLC-Q-TOF/MS. Using multivariate statistical analysis, a total of 26 altered metabolites distinguishing CUMS-induced depression from normal control were identified. Using two-stage receiver operating characteristic (ROC) analysis, 18 metabolites were recognized as potential biomarkers related to CUMS-induced depression via 12 metabolic pathways. Subsequently, we detected the mRNA expressions levels of apoptosis-associated genes such as Bax and Bcl-2 and four key enzymes including Pla2g15, Pnpla6, Baat and Gad1 involved in phospholipid and primary bile acid biosynthesis in liver tissues of CUMS rats by real-time qRT-PCR assay. The expression levels of Bax, Bcl-2, Pla2g15, Pnpla6 and Gad1 mRNA were 1.43,1.68, 1.74, 1.67 and 1.42-fold higher, and those of Baat, Bax/Bcl-2 ratio mRNA were 0.83, 0.85-fold lower in CUMS rats compared with normal control. Results of liver-targeted metabonomics and mRNA expression demonstrated that CUMS-induced depression leads to variations in hepatic metabolic profile and gene expression, and ultimately results in liver injury.

  5. Metabolic profile of nebivolol, a beta-adrenoceptor antagonist with unique characteristics.

    Science.gov (United States)

    Agabiti Rosei, Enrico; Rizzoni, Damiano

    2007-01-01

    beta-Adrenoceptor antagonists (beta-blockers) have historically been considered an effective and safe option for first-line treatment of hypertension. However, very recently, it has been proposed that beta-blockers should no longer be considered suitable for first-line therapy in the patient with uncomplicated hypertension because of unfavourable morbidity and mortality data. New evidence from recent clinical studies of nebivolol, a third-generation highly selective beta(1)-blocker with additional endothelial nitric oxide (NO)-mediated vasodilating activity, confirms previous findings that this drug differs from other beta-blockers. The combined mechanisms of beta-adrenoceptor antagonism and NO-mediated vasodilation may potentiate the blood pressure-lowering effect of this agent, and confer a broader favourable metabolic profile, which may be clinically relevant for hypertensive patients. The antioxidant properties of nebivolol and its neutral or even favourable effects on both carbohydrate and lipid metabolism are well documented. These properties consistently differentiate nebivolol from nonvasodilating beta-blockers such as atenolol, metoprolol or bisoprolol. Therapeutic indications for beta-blockers include a wide range of co-morbidities found in hypertensive patients, including ischaemic heart disease, tachyarrhythmias and heart failure. Given that the majority of hypertensive patients require more than one drug to control blood pressure, the multiple mechanisms of action and favourable metabolic profile of nebivolol could make it an alternative therapeutic option for hypertensive patients requiring beta-adrenoceptor therapy.

  6. Metabolic profile of santa inês ewes whith low body condition score during peripartum

    Directory of Open Access Journals (Sweden)

    Nayara Resende Nasciutti

    2012-02-01

    Full Text Available The objective of this study was to analyse the variations in the metabolic profile of protein, energy enzyme and mineral of Santa Inês ewes with low body condition score (BCS during peripartum. Blood samples were collected from 12 animals by jugular venipuncture to determine the serum biochemical profiles of protein, energy, mineral and enzyme metabolisms. Samples were collected on the following days: days 28, 21, 14, and 7 before lambing, at birth and, at days 2, 4, 7, 14, 21, and 28 postpartum (dpp. The samples were centrifuged and the serum analysed by Automated-Analyser. There was no alteration of the BCS during the 28 dpp, between 0.6 and 2.1 ± 2.4 ± 0.5, and was considered, as lean. The values of the total serum protein, globulin, albumin, and albumin/globulin ratio were reduced effective from the period before birth until 28dpp. The values of beta-hydroxybutyrate, calcium, phosphorus and magnesium remained below those of reference values. The concentrations of alanin aminotransferase (ALT were decreased particularly during the weeks before delivery. It was concluded that Santa Inês sheep with low body condition score demonstrated a reduction in the metabolism of proteins, energy, mineral and enzyme during peripartum.

  7. Adenovirus-36 Seropositivity and Its Relation with Obesity and Metabolic Profile in Children

    Directory of Open Access Journals (Sweden)

    Isela Parra-Rojas

    2013-01-01

    Full Text Available The human adenovirus 36 (Ad-36 is causally and correlatively associated in animals and humans, respectively, with increased adiposity and altered metabolic profile. In previous studies, the relationship between Ad-36 seropositivity with obesity was established in adults and children. We evaluated the association of positive antibodies to Ad-36 with obesity and metabolic profile in Mexican children. Seventy-five children with normal-weight and 82 with obesity were studied in this research. All children had a clinic assessment which included weight, height, body circumferences, and skinfold thickness. Laboratory analyzes included triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, and glucose and insulin levels. An enzyme-linked immunosorbent assay (ELISA was used to determine the antibodies to Ad-36 in the serum samples. The overall Ad-36 seroprevalence was 73.9%. Ad-36 seropositivity had a higher prevalence in obese children than in normal weight group (58.6 versus 41.4%, P=0.007. Ad-36 seropositivity was associated with obesity (OR=2.66, P=0.01 and high-density lipoprotein <40 mg/dL (OR=2.85, P=0.03. The Ad-36 seropositive group had greater risk of 4 metabolic abnormalities compared with those children without none alteration. In summary, Ad-36 seropositivity was associated with obesity and low HDL-c levels in the sample of children studied.

  8. Adenovirus-36 Seropositivity and Its Relation with Obesity and Metabolic Profile in Children

    Science.gov (United States)

    Del Moral-Hernández, Oscar; Salgado-Bernabé, Aralia B.; Guzmán-Guzmán, Iris P.; Salgado-Goytia, Lorenzo; Muñoz-Valle, José F.

    2013-01-01

    The human adenovirus 36 (Ad-36) is causally and correlatively associated in animals and humans, respectively, with increased adiposity and altered metabolic profile. In previous studies, the relationship between Ad-36 seropositivity with obesity was established in adults and children. We evaluated the association of positive antibodies to Ad-36 with obesity and metabolic profile in Mexican children. Seventy-five children with normal-weight and 82 with obesity were studied in this research. All children had a clinic assessment which included weight, height, body circumferences, and skinfold thickness. Laboratory analyzes included triglycerides, total cholesterol, high-density lipoprotein, low-density lipoprotein, and glucose and insulin levels. An enzyme-linked immunosorbent assay (ELISA) was used to determine the antibodies to Ad-36 in the serum samples. The overall Ad-36 seroprevalence was 73.9%. Ad-36 seropositivity had a higher prevalence in obese children than in normal weight group (58.6 versus 41.4%, P = 0.007). Ad-36 seropositivity was associated with obesity (OR = 2.66, P = 0.01) and high-density lipoprotein <40 mg/dL (OR = 2.85, P = 0.03). The Ad-36 seropositive group had greater risk of 4 metabolic abnormalities compared with those children without none alteration. In summary, Ad-36 seropositivity was associated with obesity and low HDL-c levels in the sample of children studied. PMID:24324491

  9. Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study.

    Science.gov (United States)

    Zhao, Qi; Zhu, Yun; Best, Lyle G; Umans, Jason G; Uppal, Karan; Tran, ViLinh T; Jones, Dean P; Lee, Elisa T; Howard, Barbara V; Zhao, Jinying

    2016-01-01

    Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography-mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine) have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups.

  10. Raman-based noninvasive metabolic profile evaluation of in vitro bovine embryos

    Science.gov (United States)

    dos Santos, Érika Cristina; Martinho, Herculano; Annes, Kelly; da Silva, Thais; Soares, Carlos Alexandre; Leite, Roberta Ferreira; Milazzotto, Marcella Pecora

    2016-07-01

    The timing of the first embryonic cell divisions may predict the ability of an embryo to establish pregnancy. Similarly, metabolic profiles may be markers of embryonic viability. However, in bovine, data about the metabolomics profile of these embryos are still not available. In the present work, we describe Raman-based metabolomic profiles of culture media of bovine embryos with different developmental kinetics (fast x slow) throughout the in vitro culture. The principal component analysis enabled us to classify embryos with different developmental kinetics since they presented specific spectroscopic profiles for each evaluated time point. We noticed that bands at 1076 cm-1 (lipids), 1300 cm-1 (Amide III), and 2719 cm-1 (DNA nitrogen bases) gave the most relevant spectral features, enabling the separation between fast and slow groups. Bands at 1001 cm-1 (phenylalanine) and 2892 cm-1 (methylene group of the polymethylene chain) presented specific patterns related to embryonic stage and can be considered as biomarkers of embryonic development by Raman spectroscopy. The culture media analysis by Raman spectroscopy proved to be a simple and sensitive technique that can be applied with high efficiency to characterize the profiles of in vitro produced bovine embryos with different development kinetics and different stages of development.

  11. Hydrophilic interaction chromatography-mass spectrometry for anionic metabolic profiling of urine from antibiotic-treated rats

    NARCIS (Netherlands)

    Kok, Miranda G M; Swann, Jonathan R; Wilson, Ian D; Somsen, Govert W; de Jong, Gerhardus J

    2014-01-01

    Hydrophilic interaction chromatography-mass spectrometry (HILIC-MS) was used for anionic metabolic profiling of urine from antibiotic-treated rats to study microbial-host co-metabolism. Rats were treated with the antibiotics penicillin G and streptomycin sulfate for four or eight days and compared t

  12. Spatially matched in vivo and ex vivo MR metabolic profiles of prostate cancer - investigation of a correlation with Gleason score

    NARCIS (Netherlands)

    Selnaes, K.M.; Gribbestad, I.S.; Bertilsson, H.; Wright, A.; Angelsen, A.; Heerschap, A.; Tessem, M.B.

    2013-01-01

    MR metabolic profiling of the prostate is promising as an additional diagnostic approach to separate indolent from aggressive prostate cancer. The objective of this study was to assess the relationship between the Gleason score and the metabolic biomarker (choline + creatine + spermine)/citrate (CCS

  13. Protocol for quality control in metabolic profiling of biological fluids by U(H)PLC-MS.

    Science.gov (United States)

    Gika, Helen G; Zisi, Chrysostomi; Theodoridis, Georgios; Wilson, Ian D

    2016-01-01

    The process of untargeted metabolic profiling/phenotyping of complex biological matrices, i.e., biological fluids such as blood plasma/serum, saliva, bile, and tissue extracts, provides the analyst with a wide range of challenges. Not the least of these challenges is demonstrating that the acquired data are of "good" quality and provide the basis for more detailed multivariate, and other, statistical analysis necessary to detect, and identify, potential biomarkers that might provide insight into the process under study. Here straightforward and pragmatic "quality control (QC)" procedures are described that allow investigators to monitor the analytical processes employed for global, untargeted, metabolic profiling. The use of this methodology is illustrated with an example from the analysis of human urine where an excel spreadsheet of the preprocessed LC-MS output is provided with embedded macros, calculations and visualization plots that can be used to explore the data. Whilst the use of these procedures is exemplified on human urine samples, this protocol is generally applicable to metabonomic/metabolomic profiling of biofluids, tissue and cell extracts from many sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Rapid response to lipids profile and leukocyte gene expression after rosuvastatin administration in Chinese healthy volunteers

    Institute of Scientific and Technical Information of China (English)

    HUA Cong-xiao; LI Yi-shi; LIU Yu-qing; LIU Hong; LI Na; WU Ying; XU Li; HUANG Yi-ling

    2008-01-01

    Background Statins are potent lipid-lowering agents widely used in medicaI practice.There has been growing evidence suggesting the pleiotropic effects of statins In addition to the lipid-lowering effect.However,it is still unclear how rapidly the beneficial effects of statins occur.The transcriptome of peripheral blood cells can be used as a sensor to drug therapy.The purpose of the study was to investigate the acute effects of rosuvastatin both on lipids profile and gene expression of peripheral leukocytes following therapy with a single dose of rosuvastatin.Methods Thirty healthy Chinese male volunteers were enrolled.The serum lipids,high-sensitivity C-reactive protein,and plasma fibrinogen were determined before and 72 hours after administration of 20 mg of rosuvastatin.The differentially expressed genes of peripheral leukocytes after administration of rosuvastatin were screened using human oligonucleotide microarray gene expression chips.Then four of the differentially expressed genes including ATM,CASP8,IL8RB and S100B were verified by real-time polymerase chain reaction(PCR).Results Rosuvastatin decreased both serum total cholesterol and low-density lipoprotein cholesterol significantly 72 hours after administration of a single dose of 20 mg rosuvastatin.However,no significant changes occurred in blood high-density lipoprotein cholesterol,triglycerides,C-reactive protein and fibrinogen after the treatment.A total of 24 genes were differentially expressed after the treatment.They were involved in important cell biological processes such as cytokine-cytokine receptor interaction,apoptosis signaling,etc.Conclusions Rosuvastatin rapidly modulates the serum lipids and affects the gene expression of peripheral leukocytes in healthy volunteers.This finding provides some new clues for further studies on its potential pleiotropic effects.

  15. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens.

    Directory of Open Access Journals (Sweden)

    Konstantinos A Aliferis

    Full Text Available Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS and gas chromatography-mass spectrometry (GC/MS for the monitoring of soybean's (Glycine max L. global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, α-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries.

  16. A Metabolic Profiling Strategy for the Dissection of Plant Defense against Fungal Pathogens

    Science.gov (United States)

    Aliferis, Konstantinos A.; Faubert, Denis; Jabaji, Suha

    2014-01-01

    Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS) and gas chromatography-mass spectrometry (GC/MS) for the monitoring of soybean's (Glycine max L.) global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, α-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries. PMID:25369450

  17. Iron metabolism and oxidative profile of dogs naturally infected by Ehrlichia canis: Acute and subclinical disease.

    Science.gov (United States)

    Bottari, Nathieli B; Crivellenti, Leandro Z; Borin-Crivellenti, Sofia; Oliveira, Jéssica R; Coelho, Stefanie B; Contin, Catarina M; Tatsch, Etiane; Moresco, Rafael N; Santana, Aureo E; Tonin, Alexandre A; Tinucci-Costa, Mirela; Da Silva, Aleksandro S

    2016-03-01

    The aim of this study was to evaluate the oxidant profile and iron metabolism in serum of dogs infected by Ehrlichia canis. Banked sera samples of dogs were divided into two groups: negative control (n = 17) and infected by E. canis on acute (n = 24), and subclinical (n = 18) phases of the disease. The eritrogram, leucogram, and platelet counts were evaluate as well as iron, ferritin, and transferrin levels, latent iron binding capacity (LIBC), and transferrin saturation index (TSI) concentration. In addition, the advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP) in sera were also analyzed. Blood samples were examined for the presence of E. canis by PCR techniques. History and clinical signals were recorded for each dog. During the acute phase of the disease, infected animals showed thrombocytopenia and anemia when compared to healthy animals (P canis showed changes in the iron metabolism and developed an oxidant status in consequence of disease pathophysiology.

  18. The relationship of metabolic syndrome and health-promoting lifestyle profiles of Latinos in the Northwest.

    Science.gov (United States)

    Sutherland, Leonie L; Simonson, Shawn; Weiler, Dawn M; Reis, Janet; Channel, Amara

    2014-01-01

    Latinos are at elevated risk for metabolic syndrome (MetS), a cluster of metabolic factors predictive of cardiovascular disease and diabetes. This study summarizes the association of MetS risk factors with self-reported health behaviors for 225 low-income, Northwest Latino men and women according to age and gender. The Health-Promoting Lifestyle Profile II (HPLP II) in English and Spanish was used to measure the extent to which participants engaged in health-promoting behavior. Biophysical measures included body composition, blood pressure, and fasting venous blood analysis. Men had significantly higher triglycerides, blood glucose, and systolic and diastolic blood pressure readings. Both men and women had central obesity measurements above the recommended cutoffs. There were no statistically significant differences except for physical activity on the HPLP II scores according to level of risk for MetS.

  19. [Adults with an inherited metabolic disorder: a rapidly growing population with unique challenges

    NARCIS (Netherlands)

    Brouwers, M.C.; Linthorst, G.E.; Karstens, F.P.; Rennings, A.J.M.; Alkemade, G.; Meersseman, W.; Cassiman, D.; Thijs, A.M.; Wolffenbuttel, B.H.R.; Hollak, C.E.M.; Janssen, M.C.; Langendonk, J.G.

    2014-01-01

    Inherited metabolic disorders consist of a diverse group of more than 800 rare disorders. Metabolic disorders used to be principally the clinical domain of paediatricians, because of their inherited character and the frequently limited life expectancy. Not all metabolic disorders are revealed during

  20. Multivariate data analysis and metabolic profiling of artemisinin and related compounds in high yielding varieties of Artemisia annua field-grown in Madagascar.

    Science.gov (United States)

    Suberu, John; Gromski, Piotr S; Nordon, Alison; Lapkin, Alexei

    2016-01-05

    An improved liquid chromatography-tandem mass spectrometry (LC-MS/MS) protocol for rapid analysis of co-metabolites of A. annua in raw extracts was developed and extensively characterized. The new method was used to analyse metabolic profiles of 13 varieties of A. annua from an in-field growth programme in Madagascar. Several multivariate data analysis techniques consistently show the association of artemisinin with dihydroartemisinic acid. These data support the hypothesis of dihydroartemisinic acid being the late stage precursor to artemisinin in its biosynthetic pathway. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. [Profile of free fatty acids (FFA) in serum of young Colombians with obesity and metabolic syndrome].

    Science.gov (United States)

    Bermudez, J A; Velásquez, C M

    2014-12-01

    Obesity produces greater circulation of free fatty acids (FFA). In adults, the FFA composition changes in states of obesity; in adolescents, the results are contradictory. This study compare the FFA profile of obese youth with and without Metabolic Syndrome (MetS) and explore the association between FFA and metabolic alterations of obesity and MetS. A cross-sectional study with 96 young people between 10 and 18 years old was divided into three groups: 1) obese youth with MetS, 2) obese youth without MetS; and 3) adequate weight (AW), matched according to age, gender, pubertal maturation and socioeconomic stratum. The nutritional status was classified according to the body-mass index (BMI), according to the World Health Organization 2007 (WHO, 2007); the waist circumference (WC), adiposity, lipid profile, highly-sensitive reactive C protein (hsRCP), glucose, insulin and insulin resistance (IR), according to the homeostatic model assessment (HOMA Calculator Version 2.2.2). The FFA serum concentration was determined by gas chromatography. Both obese groups had higher adiposity, inflamation (hsRCP), FFA totals and frequency palmitoleic-16:Jn7, compared to AW. The obese with MetS presented more metabolic alterations, a greater amount of dihomo-γ-linolenic (DHGL-20:3n6) and a 20:3n6/18:2n6 relation, indicative of increased activity of A6 desaturase (D6D). The FFA totals, palmitoleic-l6:1n7, DHGL-20:3n6, D6D activity and hsRCP significantly correlated with variables of adiposity, IR and triglicerides. The results in obese with MetS corroborate the association among central obesity, inflammation and increased lipolysis in visceral adipose tissue and metabolic alterations.

  2. BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists.

    Science.gov (United States)

    dos Santos Silva, Cintia M; Barbosa, Flavia R P; Lima, Giovanna A B; Warszawski, Leila; Fontes, Rosita; Domingues, Romeu C; Gadelha, Mõnica R

    2011-04-01

    Hyperprolactinemia might be related to weight gain, metabolic syndrome (MS), and insulin resistance (IR). Treatment with dopamine agonist (DA) has been shown to reduce body weight and improve metabolic parameters. The objectives of this study were to determine the prevalence of obesity, overweight, MS, and IR in patients with prolactinoma before and after therapy with DA and to evaluate the relation between prolactin (PRL), body weight, fat distribution, leptin levels, IR, and lipid profile before treatment. In addition, we investigated the correlation of the reduction in PRL levels with weight loss and metabolic profile improvement. Twenty-two patients with prolactinoma completed 6 months of treatment with DA. These patients were submitted to clinical (BMI, waist circumference, blood pressure (BP)), laboratory evaluation (leptin, glucose, low-density lipoprotein (LDL)-cholesterol, and triglyceride (TG) levels) and abdominal computed tomography (CT) before and after treatment. The statistical analyses were done by nonparametric tests. At the beginning of the study, the prevalence of obesity, overweight, MS, and IR was 45, 27, 27, and 18%, respectively. After 6 months of treatment with DA, PRL levels normalized, but no significant difference in BMI was observed. However, there was a significant decrease on homeostasis model assessment of insulin resistance (HOMA(IR)) index, glucose, LDL-cholesterol, and TG levels. This study suggests a possible involvement of prolactinoma on the prevalence of obesity. We should consider that DA may be effective on improving metabolic parameters, and we speculate that a period longer than 6 months of treatment is necessary to conclude whether this drug can interfere in the body weight of patients with prolactinoma.

  3. Metabolic profiles in ovulatory and anovulatory primiparous dairy cows during the first follicular wave postpartum.

    Science.gov (United States)

    Kawashima, Chiho; Sakaguchi, Minoru; Suzuki, Takahiro; Sasamoto, Yoshihiko; Takahashi, Yoshiyuki; Matsui, Motozumi; Miyamoto, Akio

    2007-02-01

    Metabolic hormones affect ovarian function in the cow. However, the relationship between metabolic factors and ovarian function is not clear in the postpartum primiparous cow because they are still growing. The aim of the present study was to investigate in detail the time-dependent profile of the metabolic hormones, metabolites, and milk yields of ovulatory and anovulatory primiparous cows during the first follicular wave postpartum. We used 16 primiparous Holstein cows and obtained blood samples for the profiles of metabolites (glucose; non-esterified fatty acid, NEFA; ketone body; total cholesterol; and aspartate aminotransferase), metabolic hormones (growth hormone, GH; insulin-like growth factor-I, IGF-1; and insulin), and progesterone every other day from 1 to 21 days postpartum. In addition, all ovaries were observed using ultrasound. Dairy milk yield was recorded during the experimental period. In all cows, the first follicular wave postpartum was observed and 6 of the cows ovulated. The plasma glucose (Pketone bodies (P<0.0001) concentrations and daily milk yield (P<0.0001) were higher in the anovulatory cows compared to the ovulatory cows. However, the GH levels, which enhance lipolysis for milk production, insulin and other metabolites did not differ between the two groups. In conclusion, the present study suggests that anovulation of the dominant follicle during the first follicular wave postpartum in primiparous cows is induced by low IGF-1 levels that are similar to those of multiparous cows. In addition, anovulatory cows are likely to mobilize body fat stores for milk production more easily than ovulatory cows.

  4. Metabolic profiling of residents in the vicinity of a petrochemical complex

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Tzu-Hsuen; Chung, Ming-Kei [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Lin, Ching-Yu [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chen, Shu-Ting; Wu, Kuen-Yuh [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chan, Chang-Chuan, E-mail: ccchan@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2016-04-01

    No previous studies have simultaneously measured the biomarkers of environmental exposure and metabolome perturbation in residents affected by industrial pollutants. This study aimed to investigate the metabolic effects of environmental pollutants such as vanadium and polycyclic aromatic hydrocarbons (PAHs) on residents in the vicinity of a petrochemical complex. The study subjects were 160 residents, including 80 high-exposure subjects exposed to high levels of vanadium and PAHs and 80 age- and gender-matched low-exposure subjects living within a 40-km radius of a petrochemical complex. The exposure biomarkers vanadium and 1-hydroxypyrene and four oxidative/nitrosative stress biomarkers were measured in these subjects. Plasma samples from the study subjects were also analyzed using {sup 1}H NMR spectroscopy for metabolic profiling. The results showed that the urinary levels of vanadium and 1-hydroxypyrene in the high-exposure subjects were 40- and 20-fold higher, respectively, than those in the low-exposure subjects. Higher urinary levels of stress biomarkers, including 8-OHdG, HNE-MA, 8-isoPF2α, and 8-NO{sub 2}Gua, were also observed among the high-exposure subjects compared with the low-exposure subjects. Partial least squares discriminant analysis of the plasma metabolome demonstrated a clear separation between the high- and low-exposure subjects; the intensities of amino acids and carbohydrate metabolites were lower in the high-exposure subjects compared with the low-exposure subjects. The exposure to vanadium and PAHs may cause a reduction in the levels of amino acids and carbohydrates by elevating PPAR and insulin signaling, as well as oxidative/nitrosative stress. - Highlights: • Metabolic effects when exposure to pollutants near a petrochemical complex • V and PAHs exposure associated with elevated oxidative/nitrosative stress responses • V and PAHs exposure related to reduced amino acid and carbohydrate levels • V and PAHs affect metabolic

  5. Metabolism

    Science.gov (United States)

    ... Surgery? Choosing the Right Sport for You Shyness Metabolism KidsHealth > For Teens > Metabolism Print A A A ... food through a process called metabolism. What Is Metabolism? Metabolism (pronounced: meh-TAB-uh-lih-zem) is ...

  6. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus

    Science.gov (United States)

    Li, Caifeng; Li, Xin; Han, Hongqiu; Cui, Hailong; Peng, Min; Wang, Guolin; Wang, Zhiqiang

    2016-01-01

    Abstract Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease which is imposing heavy burden on global health and economy. Recent studies indicate gut microbiota play important role on the pathogenesis and metabolic disturbance of T2DM. As an effective mean of regulating gut microbiota, probiotics are live micro-organisms that are believed to provide a specific health benefit on the host. Whether probiotic supplementation could improve metabolic profiles by modifying gut microbiota in T2DM or not is still in controversy. The aim of the study is to assess the effect of probiotic supplementation on metabolic profiles in T2DM. We searched PubMed, EMBASE, and Cochrane Library up to 12 April 2016. Two review authors independently assessed study eligibility, extracted data, and evaluated risk of bias of included studies. Data were pooled by using the random-effect model and expressed as standardized mean difference (SMD) with 95% confidence interval (CI). Heterogeneity was assessed and quantified (I2). A total of 12 randomized controlled trials (RCTs) were included. Lipid profiles (n = 508) and fasting blood glucose (FBG) (n = 520) were reported in 9 trials; the homeostasis model of assessment for insulin resistance index (HOMA-IR) (n = 368) and glycosylated hemoglobin (HbA1c) (n = 380) were reported in 6 trials. Probiotics could alleviate FBG (SMD –0.61 mmol/L, 95% CI [–0.92, –0.30], P = 0.0001). Probiotics could increase high-density lipoprotein-cholesterol (HDL-C) (SMD 0.42 mmol/L, 95% CI [0.08, 0.76], P = 0.01). There were no significant differences in low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), HbA1c and HOMA-IR between the treatment group and the control group. Probiotics may improve glycemic control and lipid metabolism in T2DM. Application of probiotic agents might become a new method for glucose management in T2DM. PMID:27368052

  7. Metabolic profile of different Italian cultivars of hazelnut (Corylus avellana) by nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Sciubba, Fabio; Di Cocco, Maria Enrica; Gianferri, Raffaella; Impellizzeri, Danilo; Mannina, Luisa; De Salvador, Flavio Roberto; Venditti, Alessandro; Delfini, Maurizio

    2014-01-01

    High-resolution proton NMR spectroscopy was performed on three Italian hazelnut cultivars, Tonda di Giffoni, Mortarella and Tonda Gentile Romana, and it allowed to define their metabolic profile. The hazelnuts were grown in the same pedoclimatic conditions in the Monti Cimini (Latium) area. The samples were obtained by using a modified Bligh-Dyer extraction protocol which did not give rise to artefacts arising from the demolition of macromolecular structures such as proteins and polysaccharides. Metabolites belonging to different chemical classes (amino acids, organic acids, carbohydrates, lipids and miscellaneous compounds) were identified and quantified. The three cultivars were discriminated by means of univariate (ANOVA) and multivariate (PCA) statistical analysis.

  8. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster.

    Science.gov (United States)

    Stinziano, Joseph R; Sové, Richard J; Rundle, Howard D; Sinclair, Brent J

    2015-02-01

    The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress. Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. A distinct fatty acid profile underlies the reduced inflammatory state of metabolically healthy obese individuals.

    Directory of Open Access Journals (Sweden)

    Maude Perreault

    Full Text Available BACKGROUND: Obesity is associated with numerous health complications; however, a subgroup of obese individuals (termed the metabolically healthy obese or MHO appear to have lower risk for complications such as type 2 diabetes and cardiovascular disease. Emerging evidence suggests that MHO individuals have reduced inflammation compared to their metabolically unhealthy obese (MUO counterparts. As it is recognized that fatty acids (FAs have a strong relationship with inflammation, the current study aimed to uncover if the reduced inflammation observed in MHO individuals is mirrored by a more favourable FA profile. METHODS: Fasted serum samples were collected from lean healthy (LH, MHO, and MUO participants (n = 10/group recruited from the Diabetes Risk Assessment study. A panel of pro- and anti-inflammatory markers were measured by immunoassay. Total serum FA profiling, as well as the FA composition of circulating phospholipids (PL and triglycerides (TG, was measured by gas chromatography. ANOVA and Mann-Whitney-Wilcoxon tests were used to assess statistical significance between the groups (P<0.05. RESULTS: MHO and MUO individuals had similar BMI and body fat %; however, lipid parameters in MHO individuals more closely resembled that of LH individuals. MHO individuals had circulating levels of high sensitivity C-reactive protein (hsCRP and interleukin-6 (IL-6 similar to LH individuals, while levels of platelet derived growth factor-ββ (PDGF-ββ were intermediate to that of LH and MUO individuals. FA profiling analysis combined with discriminant analysis modelling highlighted a panel of nine FAs (consisting of three saturated, three monounsaturated, and three polyunsaturated FAs in PL and TG fractions that distinguished the three groups. Specifically, saturated FA (myristic and stearic acids levels in MHO individuals resembled that of LH individuals. CONCLUSION: Our results suggest that the reduced inflammatory state of MHO individuals compared

  10. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Directory of Open Access Journals (Sweden)

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  11. Vitamin C improves basal metabolic rate and lipid profile in alloxan-induced diabetes mellitus in rats

    Indian Academy of Sciences (India)

    D U Owu; A B Antai; K H Udofia; A O Obembe; K O Obasi; M U Eteng

    2006-12-01

    Diabetes mellitus (DM) is a multi-factorial disease which is characterized by hyperglycaemia, lipoprotein abnormalities and oxidative stress. This study evaluated effect of oral vitamin C administration on basal metabolic rate and lipid profile of alloxan-induced diabetic rats. Vitamin C was administered at 200 mg/kg body wt. by gavage for four weeks to diabetic rats after which the resting metabolic rate and plasma lipid profile was determined. The results showed that vitamin C administration significantly ( < 0.01) reduced the resting metabolic rate in diabetic rats; and also lowered plasma triglyceride, total cholesterol and low-density lipoprotein cholesterol. These results suggest that the administration of vitamin C in this model of established diabetes mellitus might be beneficial for the restoration of basal metabolic rate and improvement of lipid profile. This may at least in part reduce the risk of cardiovascular events seen in diabetes mellitus.

  12. Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency.

    Science.gov (United States)

    Liu, Guidong; Dong, Xiaochang; Liu, Leichao; Wu, Lishu; Peng, Shu'ang; Jiang, Cuncang

    2015-04-01

    We focused on the changes of metabolite profiles in navel orange plants under long-term boron (B) deficiency using a gas chromatography-mass spectrometry (GC-MS) approach. Curling of the leaves and leaf chlorosis were observed only in the upper leaves (present before start of the treatment) of B-deficient plants, while the lower leaves (grown during treatment) did not show any visible symptoms. The metabolites with up-accumulation in B-deficient leaves were mainly proline, l-ornithine, lysine, glucoheptonic acid, fucose, fumarate, oxalate, quinate, myo-inositol and allo-inositol, while the metabolites with down-accumulation in B-deficient leaves were mainly serine, asparagine, saccharic acid, citrate, succinate, shikimate and phytol. The levels of glucose and fructose were increased only in the upper leaves by B deficiency, while starch content was increased in all the leaves and in roots. The increased levels of malate, ribitol, gluconic acid and glyceric acid occurred only in the lower leaves of B-deficient plants. The increased levels of phenols only in the upper leaves indicated that the effects of B on phenol metabolism in citrus plants may be a consequence of disruptions in leaf structure. Metabolites with opposite reactions in upper and lower leaves were mainly glutamine, glycine and pyrrole-2-carboxylic acid. To our knowledge, the phenomena of allo-inositol even higher than myo-inositol occurred characterized for the first time in this species. These results suggested that the altered pattern of central metabolism may be either specific or adaptive responses of navel orange plants to B deficiency. © 2014 Scandinavian Plant Physiology Society.

  13. Improved pharmacokinetic and pharmacodynamic profile of rapid-acting insulin using needle-free jet injection technology

    NARCIS (Netherlands)

    Engwerda, E.E.; Abbink, E.J.; Tack, C.J.J.; Galan, B.E. de

    2011-01-01

    OBJECTIVE: Insulin administered by jet injectors is dispensed over a larger subcutaneous area than insulin injected with a syringe, which may facilitate a more rapid absorption. This study compared the pharmacologic profile of administration of insulin aspart by jet injection to that by conventional

  14. Real Time Extraction Kinetics of Electro Membrane Extraction Verified by Comparing Drug Metabolism Profiles Obtained from a Flow-Flow Electro Membrane Extraction-Mass Spectrometry System with LC-MS

    DEFF Research Database (Denmark)

    Fuchs, David; Jensen, Henrik; Pedersen-Bjergaard, Stig

    2015-01-01

    A simple to construct and operate, "dip-in" electromembrane extraction (EME) probe directly coupled to electrospray ionization-mass spectrometry (ESI-MS) for rapid extraction and real time analysis of various analytes was developed. The setup demonstrated that EME-MS can be used as a viable...... alternative to conventional protein precipitation followed by liquid chromatography-mass spectrometry (LC-MS) for studying drug metabolism. Comparison of EME-MS with LC-MS for drug metabolism analysis demonstrated for the first time that real time extraction of analytes by EME is possible. Metabolism kinetics...... were investigated for three different drugs: amitriptyline, promethazine, and methadone. By comparing the EME-MS extraction profiles of the drug substances and formed drug metabolites with the metabolism profiles obtained by conventional protein precipitation followed by LC-MS good correlation...

  15. Effect of creatine supplementation during rapid body mass reduction on metabolism and isokinetic muscle performance capacity.

    Science.gov (United States)

    Oöpik, V; Pääsuke, M; Timpmann, S; Medijainen, L; Ereline, J; Smirnova, T

    1998-06-01

    Well-trained subjects (n = 6) were studied before and after losing a mean 3.0%-4.3% of body mass to determine whether muscle performance could be maintained or even enhanced by dietary creatine supplementation. During a 5-day period of loss of mass the subjects were randomly assigned to a creatine or placebo supplemented diet. All the subjects were measured before and after loss of mass on both supplements for isokinetic peak torque (PT) and work at peak torque (W(PT)) of knee extensors, also for intermittent high intensity working capacity of the same muscle group. The latter test consisted of submaximal isokinetic knee extensions at an angular velocity of 1.57 rad x s(-1) for 45 s at the rate of 30 contractions each min (submaximal work, Ws max) followed by 15-s maximal effort (maximal work, Wmax). Total duration of the test was 3 min. Haematocrit was measured and haemoglobin, ammonia, lactate, glucose and urea concentrations were analysed in blood samples obtained at rest and after cessation of muscle performance tests. The results indicated that creatine supplementation in comparison with placebo treatment during rapid body mass reduction may help to maintain muscle PT and W(PT)1 at high angular velocities, not influencing Wmax and the rate of fatigue development during Wmax, but affecting adversely Ws max. Within the limitations of the present study the reasons for the partially detrimental effect of creatine administration remain obscure, but it is suggested that impaired creatine uptake in muscle during body mass loss as well as creatine induced changes in muscle glucose and glycogen metabolism may be involved.

  16. Rapid descriptive sensory methods – Comparison of Free Multiple Sorting, Partial Napping, Napping, Flash Profiling and conventional profiling

    DEFF Research Database (Denmark)

    Dehlholm, Christian; Brockhoff, Per B.; Meinert, Lene;

    2012-01-01

    Two new rapid descriptive sensory evaluation methods are introduced to the field of food sensory evaluation. The first method, free multiple sorting, allows subjects to perform ad libitum free sortings, until they feel that no more relevant dissimilarities among products remain. The second method...... sessions are dependent on the assessors’ personal semantic skills. Comparisons of the methods’ practical differences highlight the time advantage of the rapid approaches and their individual differences in the number of attributes generated....

  17. The Antagonistic Effect of Mycotoxins Deoxynivalenol and Zearalenone on Metabolic Profiling in Serum and Liver of Mice

    Directory of Open Access Journals (Sweden)

    Jian Ji

    2017-01-01

    Full Text Available Metabolic profiling in liver and serum of mice was studied for the combined toxic effects of deoxynivalenol (DON and zearalenone (ZEN, through gas chromatography mass spectrum. The spectrum of serum and liver sample of mice, treated with individual 2 mg/kg DON, 20 mg/kg ZEN, and the combined DON + ZEN with final concentration 2 mg/kg DON and 20 mg/kg ZEN for 21 days, were deconvoluted, aligned and identified with MS DIAL. The data matrix was processed with univariate analysis and multivariate analysis for selection of metabolites with variable importance for the projection (VIP > 1, t-test p value < 0.05. The metabolic pathway analysis was performed with MetaMapp and drawn by CytoScape. Results show that the combined DON and ZEN treatment has an obvious “antagonistic effect” in serum and liver tissue metabolic profiling of mice. The blood biochemical indexes, like alkaline phosphatase, alanine transaminase, and albumin (ALB/globulin (GLO, reveal a moderated trend in the combined DON + ZEN treatment group, which is consistent with histopathological examination. The metabolic pathway analysis demonstrated that the combined DON and ZEN treatment could down-regulate the valine, leucine and isoleucine biosynthesis, glycine, serine and threonine metabolism, and O-glycosyl compounds related glucose metabolism in liver tissue. The metabolic profiling in serum confirmed the finding that the combined DON and ZEN treatment has an “antagonistic effect” on liver metabolism of mice.

  18. The Antagonistic Effect of Mycotoxins Deoxynivalenol and Zearalenone on Metabolic Profiling in Serum and Liver of Mice

    Science.gov (United States)

    Ji, Jian; Zhu, Pei; Cui, Fangchao; Pi, Fuwei; Zhang, Yinzhi; Li, Yun; Wang, Jiasheng; Sun, Xiulan

    2017-01-01

    Metabolic profiling in liver and serum of mice was studied for the combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEN), through gas chromatography mass spectrum. The spectrum of serum and liver sample of mice, treated with individual 2 mg/kg DON, 20 mg/kg ZEN, and the combined DON + ZEN with final concentration 2 mg/kg DON and 20 mg/kg ZEN for 21 days, were deconvoluted, aligned and identified with MS DIAL. The data matrix was processed with univariate analysis and multivariate analysis for selection of metabolites with variable importance for the projection (VIP) > 1, t-test p value < 0.05. The metabolic pathway analysis was performed with MetaMapp and drawn by CytoScape. Results show that the combined DON and ZEN treatment has an obvious “antagonistic effect” in serum and liver tissue metabolic profiling of mice. The blood biochemical indexes, like alkaline phosphatase, alanine transaminase, and albumin (ALB)/globulin (GLO), reveal a moderated trend in the combined DON + ZEN treatment group, which is consistent with histopathological examination. The metabolic pathway analysis demonstrated that the combined DON and ZEN treatment could down-regulate the valine, leucine and isoleucine biosynthesis, glycine, serine and threonine metabolism, and O-glycosyl compounds related glucose metabolism in liver tissue. The metabolic profiling in serum confirmed the finding that the combined DON and ZEN treatment has an “antagonistic effect” on liver metabolism of mice. PMID:28075412

  19. Effects of α-Tocopherol on Oxidative Status and Metabolic Profile in Overweight Women

    Science.gov (United States)

    Ble-Castillo, J. L.; Cleva-Villanueva, G.; Díaz-Zagoya, J. C.; Medina-Santillán, R.; Rubio-Arias, H. O.; Méndez, J. D.

    2007-01-01

    Despite extensive research, the effects of α-tocopherol supplementation remain controversial. Few studies have been focused on obese and overweight people. We examined the effects of α-tocopherol (AT) on the oxidative status and metabolic profile in overweight women. Sixteen overweight women between the ages of 40–60 years old, received AT, 800 IU/day during 12 weeks, followed by a 6-week washout period. Blood samples were taken at the beginning and then every 6 weeks until the end of the study. AT, retinol, malondialdehyde (MDA), total antioxidant status (TAS), selenium-dependent glutathione peroxidase (GPx) and CuZn-superoxide dismutase (SOD) were quantified to evaluate the oxidative stress. The metabolic profile was estimated by measuring glycated hemoglobin (HbA1c) in erythrocytes and glucose, phosphate, magnesium, lipid and lipoprotein concentrations in serum. Under AT administration HbA1c, serum-MDA levels and erythrocyte GPx activity were markedly reduced. TAS, AT and Mg2+ concentrations in serum and SOD activity in erythrocytes were higher after AT treatment. Body weight; glucose, lipid and retinol concentrations, or blood cells count were unchanged. Lipid peroxidation was considerably reduced in AT treated women and also improved serum antioxidant status was observed, but the imbalanced response between erythrocyte SOD and GPx activities could affect normal response to oxidative stress. PMID:18180536

  20. Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation.

    Directory of Open Access Journals (Sweden)

    Ghulam Jeelani

    Full Text Available Encystation, which is cellular differentiation from the motile, proliferative, labile trophozoite form to the dormant, resistant cyst form, is a crucial process found in parasitic and free-living protozoa such as Entamoeba, Giardia, Acanthamoeba, and Balamuthia. Since encystation is an essential process to deal with the adverse external environmental changes during the life cycle, and often integral to the transmission of the diseases, biochemical understanding of the process potentially provides useful measures against the infections caused by this group of protozoa. In this study, we investigated metabolic and transcriptomic changes that occur during encystation in Entamoeba invadens, the reptilian sibling of mammal-infecting E. histolytica, using capillary electrophoresis-tandem mass spectrometry-based metabolite profiling and DNA microarray-based expression profiling. As the encystation progressed, the levels of majority of metabolites involved in glycolysis and nucleotides drastically decreased, indicating energy generation is ceased. Furthermore, the flux of glycolysis was redirected toward chitin wall biosynthesis. We found remarkable temporal increases in biogenic amines such as isoamylamine, isobutylamine, and cadaverine, during the early period of encystation, when the trophozoites form large multicellular aggregates (precyst. We also found remarkable induction of γ-aminobutyric acid (GABA during encystation. This study has unveiled for the first time the dynamics of the transcriptional and metabolic regulatory networks during encystation, and should help in better understanding of the process in pathogenic eukaryotes, and further development of measures controlling infections they cause.

  1. Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation.

    Science.gov (United States)

    Jeelani, Ghulam; Sato, Dan; Husain, Afzal; Escueta-de Cadiz, Aleyla; Sugimoto, Masahiro; Soga, Tomoyoshi; Suematsu, Makoto; Nozaki, Tomoyoshi

    2012-01-01

    Encystation, which is cellular differentiation from the motile, proliferative, labile trophozoite form to the dormant, resistant cyst form, is a crucial process found in parasitic and free-living protozoa such as Entamoeba, Giardia, Acanthamoeba, and Balamuthia. Since encystation is an essential process to deal with the adverse external environmental changes during the life cycle, and often integral to the transmission of the diseases, biochemical understanding of the process potentially provides useful measures against the infections caused by this group of protozoa. In this study, we investigated metabolic and transcriptomic changes that occur during encystation in Entamoeba invadens, the reptilian sibling of mammal-infecting E. histolytica, using capillary electrophoresis-tandem mass spectrometry-based metabolite profiling and DNA microarray-based expression profiling. As the encystation progressed, the levels of majority of metabolites involved in glycolysis and nucleotides drastically decreased, indicating energy generation is ceased. Furthermore, the flux of glycolysis was redirected toward chitin wall biosynthesis. We found remarkable temporal increases in biogenic amines such as isoamylamine, isobutylamine, and cadaverine, during the early period of encystation, when the trophozoites form large multicellular aggregates (precyst). We also found remarkable induction of γ-aminobutyric acid (GABA) during encystation. This study has unveiled for the first time the dynamics of the transcriptional and metabolic regulatory networks during encystation, and should help in better understanding of the process in pathogenic eukaryotes, and further development of measures controlling infections they cause.

  2. Cytokine profile and clinical metabolic alterations in HIV-1 infected individuals with and without lipodistrophy

    Directory of Open Access Journals (Sweden)

    L. C. R. Pontes-Cardoso

    2007-01-01

    Full Text Available The extensive use of Highly Active Antiretroviral Therapy (HAART has transformed HIV infection into a chronic condition. Thus, metabolic alterations including lipodystrophy and dyslipidemia have been associated with the use of such medications. The objective of the present study was to analyze clinical metabolic alterations and the profile of TNF-alpha, IFN-Y, IL-2, IL-10, and TNF-alpha type II soluble receptor in serum of HIV-1 individuals with and without lipodystrophy. Eighty-four adults were evaluated, 42 males and 42 females, mean age 37 years, and HAART time of at least 15 months. Two groups were formed, G1: 42 individuals with lipodystrophy, and G2: 42 without lipodistropy. From the HAART used, stavudine was more associated with the lipodystrophy group and zidovudine with the non-lipodystrophy group. CD4 and CD8 values, viral load, glucose, albumin, and lipids were not different between groups, except for triglycerides, which were high in the lipodystrophy group, and HDL, whose concentration was reduced in G1. TNF-alpha, TNF-RII, and IL-10 profiles were high and had positive correlation; IL-2 and IFN-gamma had reduced levels in the lipodystrophy group. High TNF-alpha and its receptor levels seem to be associated with lipodystrophy development in individuals under HAART therapy.

  3. Rapid identification and antimicrobial susceptibility profiling of Gram-positive cocci in blood cultures with the Vitek 2 system.

    Science.gov (United States)

    Lupetti, A; Barnini, S; Castagna, B; Capria, A-L; Nibbering, P H

    2010-01-01

    Rapid identification and antimicrobial susceptibility profiling of the bacteria in blood cultures can result in clinical and financial benefits. Addition of saponin to the fluid from blood culture bottles promotes the recovery of the bacteria and thus may shorten the turnaround time of the microbiological analyses. In this study we compared the identification and susceptibility profiles of saponin-treated and untreated (standard method) blood cultures monomicrobial for Gram-positive cocci using Vitek 2. We concordantly identified 49 (89%) of 55 monobacterial cultures using the results with the standard method as reference. Complete categorical agreement between the susceptibility profiles with the new and the standard method was found for 26 (53%) of 49 isolates, while discrepancies were seen for 23 (47%) cultures. E-tests indicated that the new method resulted in a correct susceptibility profile for 8 (35%) of these 23 blood cultures. Therefore, 34 (69%) of 49 cultures showed a concordant/correct susceptibility profile for all antimicrobials with an overall error rate of 2.3%. Thus, addition of saponin to the fluid from blood culture bottles of the Bactec 9240 leads to the rapid (results available >or=12 hours earlier) and reliable identification and susceptibility profiling of Gram-positive cocci in blood cultures with Vitek 2.

  4. Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum.

    Science.gov (United States)

    Beisser, Daniela; Grohme, Markus A; Kopka, Joachim; Frohme, Marcus; Schill, Ralph O; Hengherr, Steffen; Dandekar, Thomas; Klau, Gunnar W; Dittrich, Marcus; Müller, Tobias

    2012-06-19

    Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source

  5. Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

    Directory of Open Access Journals (Sweden)

    Beisser Daniela

    2012-06-01

    Full Text Available Abstract Background Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. Results In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites and 4,378 edges (reactions. Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from

  6. Metabolic profiling of presymptomatic Huntington’s disease sheep reveals novel biomarkers

    Science.gov (United States)

    Skene, Debra J.; Middleton, Benita; Fraser, Cara K.; Pennings, Jeroen L. A.; Kuchel, Timothy R.; Rudiger, Skye R.; Bawden, C. Simon; Morton, A. Jennifer

    2017-01-01

    The pronounced cachexia (unexplained wasting) seen in Huntington’s disease (HD) patients suggests that metabolic dysregulation plays a role in HD pathogenesis, although evidence of metabolic abnormalities in HD patients is inconsistent. We performed metabolic profiling of plasma from presymptomatic HD transgenic and control sheep. Metabolites were quantified in sequential plasma samples taken over a 25 h period using a targeted LC/MS metabolomics approach. Significant changes with respect to genotype were observed in 89/130 identified metabolites, including sphingolipids, biogenic amines, amino acids and urea. Citrulline and arginine increased significantly in HD compared to control sheep. Ten other amino acids decreased in presymptomatic HD sheep, including branched chain amino acids (isoleucine, leucine and valine) that have been identified previously as potential biomarkers of HD. Significant increases in urea, arginine, citrulline, asymmetric and symmetric dimethylarginine, alongside decreases in sphingolipids, indicate that both the urea cycle and nitric oxide pathways are dysregulated at early stages in HD. Logistic prediction modelling identified a set of 8 biomarkers that can identify 80% of the presymptomatic HD sheep as transgenic, with 90% confidence. This level of sensitivity, using minimally invasive methods, offers novel opportunities for monitoring disease progression in HD patients. PMID:28223686

  7. Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells

    Energy Technology Data Exchange (ETDEWEB)

    Xu Qiuwei, E-mail: qiuwei_xu@merck.com; Vu, Heather; Liu Liping; Wang, Ting-Chuan; Schaefer, William H. [Merck Research Laboratories (United States)

    2011-04-15

    Mitochondrial toxicity has been a serious concern, not only in preclinical drug development but also in clinical trials. In mitochondria, there are several distinct metabolic processes including fatty acid {beta}-oxidation, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS), and each process contains discrete but often intimately linked steps. Interruption in any one of those steps can cause mitochondrial dysfunction. Detection of inhibition to OXPHOS can be complicated in vivo because intermediate endogenous metabolites can be recycled in situ or circulated systemically for metabolism in other organs or tissues. Commonly used assays for evaluating mitochondrial function are often applied to ex vivo or in vitro samples; they include various enzymatic or protein assays, as well as functional assays such as measurement of oxygen consumption rate, membrane potential, or acidification rates. Metabolomics provides quantitative profiles of overall metabolic changes that can aid in the unraveling of explicit biochemical details of mitochondrial inhibition while providing a holistic view and heuristic understanding of cellular bioenergetics. In this paper, we showed the application of quantitative NMR metabolomics to in vitro myotube cells treated with mitochondrial toxicants, rotenone and antimycin A. The close coupling of the TCA cycle to the electron transfer chain (ETC) in OXPHOS enables specific diagnoses of inhibition to ETC complexes by discrete biochemical changes in the TCA cycle.

  8. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells

    Directory of Open Access Journals (Sweden)

    Yan Yin

    2012-11-01

    Developmental exposure to diethylstilbestrol (DES causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities.

  9. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Directory of Open Access Journals (Sweden)

    Horia Todor

    Full Text Available Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  10. Comparative metabolic profiling of mce1 operon mutant vs wild-type Mycobacterium tuberculosis strains.

    Science.gov (United States)

    Queiroz, Adriano; Medina-Cleghorn, Daniel; Marjanovic, Olivera; Nomura, Daniel K; Riley, Lee W

    2015-11-01

    Mycobacterium tuberculosis disrupted in a 13-gene operon (mce1) accumulates free mycolic acids (FM) in its cell wall and causes accelerated death in mice. Here, to more comprehensively analyze differences in their cell wall lipid composition, we used an untargeted metabolomics approach to compare the lipid profiles of wild-type and mce1 operon mutant strains. By liquid chromatography-mass spectrometry, we identified >400 distinct lipids significantly altered in the mce1 mutant compared to wild type. These lipids included decreased levels of saccharolipids and glycerophospholipids, and increased levels of alpha-, methoxy- and keto mycolic acids (MA), and hydroxyphthioceranic acid. The mutant showed reduced expression of mmpL8, mmpL10, stf0, pks2 and papA2 genes involved in transport and metabolism of lipids recognized to induce proinflammatory response; these lipids were found to be decreased in the mutant. In contrast, the transcripts of mmpL3, fasI, kasA, kasB, acpM and RV3451 involved in MA transport and metabolism increased; MA inhibits inflammatory response in macrophages. Since the mce1 operon is known to be regulated in intracellular M. tuberculosis, we speculate that the differences we observed in cell wall lipid metabolism and composition may affect host response to M. tuberculosis infection and determine the clinical outcome of such an infection.

  11. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Yun Chen

    Full Text Available As a key intracellular metabolite, acetyl-coenzyme A (acetyl-CoA plays a major role in various metabolic pathways that link anabolism and catabolism. In the yeast Saccharomyces cerevisiae, acetyl-CoA involving metabolism is compartmentalized, and may vary with the nutrient supply of a cell. Membranes separating intracellular compartments are impermeable to acetyl-CoA and no direct transport between the compartments occurs. Thus, without carnitine supply the glyoxylate shunt is the sole possible route for transferring acetyl-CoA from the cytosol or the peroxisomes into the mitochondria. Here, we investigate the physiological profiling of different deletion mutants of ACS1, ACS2, CIT2 and MLS1 individually or in combination under alternative carbon sources, and study how various mutations alter carbon distribution. Based on our results a detailed model of carbon distribution about cytosolic and peroxisomal acetyl-CoA metabolism in yeast is suggested. This will be useful to further develop yeast as a cell factory for the biosynthesis of acetyl-CoA-derived products.

  12. Metabolic parameters and blood leukocyte profiles in cows from herds with high or low mastitis incidence.

    Science.gov (United States)

    Holtenius, K; Persson Waller, K; Essén-Gustavsson, B; Holtenius, P; Hallén Sandgren, C

    2004-07-01

    The objective of this study was to determine whether there were differences in metabolic parameters and blood leukocyte profiles between cows in herds with high or low yearly mastitis incidence. In this study, 271 cows from 20 high yielding dairy herds were examined. According to the selection criteria, all herds had low somatic cell counts. Ten of the selected herds represented low mastitis treatment incidence (LMI) and ten herds had high mastitis treatment incidence (HMI). The farms were visited once and blood samples were taken from each cow that was in the interval from three weeks before to 15 weeks after parturition. The eosinophil count was significantly lower among cows from the HMI herds in the period from four weeks to 15 weeks after parturition. The plasma concentrations of beta-hydroxybutyrate, glucose, insulin and urea did not differ between groups, but the concentration of nonesterified fatty acids was significantly higher among HMI cows during the period three weeks after parturition. The concentration of the amino acid tryptophan in plasma was significantly lower among the HMI cows prior to parturition. Glutamine was significantly lower in cows from HMI herds during the first three weeks after parturition. Arginine was consistently lower in HMI cows, although the decrease was only significant during the period from four to fifteen weeks after parturition. The results suggest that there were differences in the metabolism and immune status between herds with high or low yearly mastitis treatment incidence indicating an increased metabolic stress in HMI cows.

  13. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    Science.gov (United States)

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  14. Effects of phototherapy plus physical training on metabolic profile and quality of life in postmenopausal women.

    Science.gov (United States)

    Paolillo, Fernanda Rossi; Borghi-Silva, Audrey; Arena, Ross; Parizotto, Nivaldo Antonio; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2017-10-01

    A cluster of metabolic abnormalities are markedly higher among postmenopausal women. The present study evaluated the effects of infrared light emitting diode (LED) during treadmill training on multiple metabolic markers, body fat, dietary habits and quality of life in postmenopausal women. Forty-five postmenopausal women aged 50-60 years were randomly assigned to one of three groups, and of these, 30 women successfully completed the full study. The three groups were as follows: (i) the LED group, which performed treadmill training associated with phototherapy (n = 10); (ii) the exercise group, which carried out treadmill training only (n = 10); and (iii) the sedentary group, which neither performed physical training nor underwent phototherapy (n = 10). Training was performed over a period of six months, twice a week for 45 min per session at 85-90% of maximal heart rate (HRmax), which was obtained during a progressive exercise testing. The average HR and velocity during treadmill training were 144 ± 9 bpm and 5.8 ± 1.3 km/h for both trained groups. The irradiation parameters were 100 mW, 39 mW/cm(2) and 108 J/cm(2) for 45 min. Anthropometric data, skinfolds thickness, biochemical exams (lipid profile, glucose and insulin levels), dietary habits and quality of life were evaluated. The sum of skinfolds significantly improved in the exercise and sedentary groups (p Physical training with or without phototherapy may improve the metabolic profile. In addition, phototherapy together with treadmill training prevented an increase in subcutaneous fat and facilitated an improved quality of life in postmenopausal women.

  15. Liver metabolic and histopathological profile in finishing lambs fed licuri (Syagrus coronata(Mart.)Becc.) cake.

    Science.gov (United States)

    Costa, Jonival Barreto; Oliveira, Ronaldo Lopes; Silva, Thadeu Mariniello; Ayres, Maria Consuêlo Caribé; Estrela-Lima, Alessandra; Carvalho, Silvana Texeira; Ribeiro, Rebeca Dantas Xavier; de Cruz, Géssica Ariane Melo

    2016-03-01

    The objective of this study was to determine the impact of including licuri cake in the diet of Santa Inês crossbred finishing lambs by examining their liver metabolic and histopathological profile. Forty-four uncastrated lambs with an average age of 6 months and an average weight of 21.2 kg ± 2.7 kg. The animals were fed diets with 40 % Tifton 85 hay and 60 % of a mixture consisting of corn and soybean meal, 1 % urea, a mineral-vitamin premix, and an inclusion of licuri cake at a level of 0, 8, 16, and 24 % of the dietary dry matter (DM), which composed the treatments. The experimental design was completely randomized, and the data were analyzed by variance and regression analyses. The animals were confined in individual stalls for 70 days. Blood was collected on the last day of the experimental period, and metabolite, protein, energy, and enzyme profiles of the liver were determined for these samples. Histopathological evaluations of the liver parenchyma were also undertaken. The increase in the level of the licuri cake in the diet caused a linear increase (P cake inclusion levels in the diet. Regarding energy metabolism, a linear increase (P cake had no effect on the enzymatic activities, except on gamma-glutamyltransferase, which decreased linearly (P cake. The use of the licuri cake in composing up to 24 % of the diet did not cause metabolic or liver disorders in the lambs.

  16. Effects of black raspberry on lipid profiles and vascular endothelial function in patients with metabolic syndrome.

    Science.gov (United States)

    Jeong, Han Saem; Hong, Soon Jun; Lee, Tae-Bum; Kwon, Ji-Wung; Jeong, Jong Tae; Joo, Hyung Joon; Park, Jae Hyoung; Ahn, Chul-Min; Yu, Cheol Woong; Lim, Do-Sun

    2014-10-01

    Black raspberry (Rubus occidentalis) has been known for its anti-inflammatory and anti-oxidant effects. However, short-term effects of black raspberry on lipid profiles and vascular endothelial function have not been investigated in patients with metabolic syndrome. Patients with metabolic syndrome (n = 77) were prospectively randomized into a group with black raspberry (n = 39, 750 mg/day) and a placebo group (n = 38) during a 12-week follow-up. Lipid profiles, brachial artery flow-mediated dilatation (baFMD), and inflammatory cytokines such as IL-6, TNF-α, C-reactive protein, adiponectin, sICAM-1, and sVCAM-1 were measured at the baseline and at the 12-week follow-up. Decreases from the baseline in the total cholesterol level (-22.8 ± 30.4 mg/dL vs. -1.9 ± 31.8 mg/dL, p raspberry than in the placebo group. Increases in baFMD at the 12-week follow-up were significantly greater in the group with black raspberry than in the placebo group (0.33 ± 0.44 mm vs. 0.10 ± 0.35 mm, p raspberry. The use of black raspberry significantly decreased serum total cholesterol level and inflammatory cytokines, thereby improving vascular endothelial function in patients with metabolic syndrome during the 12-week follow-up.

  17. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice.

    Directory of Open Access Journals (Sweden)

    Melissa K Friswell

    Full Text Available BACKGROUND: The gastrointestinal tract microbiota (GTM of mammals is a complex microbial consortium, the composition and activities of which influences mucosal development, immunity, nutrition and drug metabolism. It remains unclear whether the composition of the dominant GTM is conserved within animals of the same strain and whether stable GTMs are selected for by host-specific factors or dictated by environmental variables. METHODOLOGY/PRINCIPAL FINDINGS: The GTM composition of six highly inbred, genetically distinct strains of mouse (C3H, C57, GFEC, CD1, CBA nu/nu and SCID was profiled using eubacterial -specific PCR-DGGE and quantitative PCR of feces. Animals exhibited strain-specific fecal eubacterial profiles that were highly stable (c. >95% concordance over 26 months for C57. Analyses of mice that had been relocated before and after maturity indicated marked, reproducible changes in fecal consortia and that occurred only in young animals. Implantation of a female BDF1 mouse with genetically distinct (C57 and Agoutie embryos produced highly similar GTM profiles (c. 95% concordance between mother and offspring, regardless of offspring strain, which was also reflected in urinary metabolite profiles. Marked institution-specific GTM profiles were apparent in C3H mice raised in two different research institutions. CONCLUSION/SIGNIFICANCE: Strain-specific data were suggestive of genetic determination of the composition and activities of intestinal symbiotic consortia. However, relocation studies and uterine implantation demonstrated the dominance of environmental influences on the GTM. This was manifested in large variations between isogenic adult mice reared in different research institutions.

  18. Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy.

    Directory of Open Access Journals (Sweden)

    Ji Soo Choi

    Full Text Available The purpose of this study was to determine whether metabolic profiling of core needle biopsy (CNB samples using high-resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS could be used for predicting pathologic response to neoadjuvant chemotherapy (NAC in patients with locally advanced breast cancer. After institutional review board approval and informed consent were obtained, CNB tissue samples were collected from 37 malignant lesions in 37 patients before NAC treatment. The metabolic profiling of CNB samples were performed by HR-MAS MRS. Metabolic profiles were compared according to pathologic response to NAC using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA. Various metabolites including choline-containing compounds were identified and quantified by HR-MAS MRS in all 37 breast cancer tissue samples obtained by CNB. In univariate analysis, the metabolite concentrations and metabolic ratios of CNB samples obtained with HR-MAS MRS were not significantly different between different pathologic response groups. However, there was a trend of lower levels of phosphocholine/creatine ratio and choline-containing metabolite concentrations in the pathologic complete response group compared to the non-pathologic complete response group. In multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles showed visible discrimination between the pathologic response groups. This study showed OPLS-DA multivariate analysis using metabolic profiles of pretreatment CNB samples assessed by HR- MAS MRS may be used to predict pathologic response before NAC, although we did not identify the metabolite showing statistical significance in univariate analysis. Therefore, our preliminary results raise the necessity of further study on HR-MAS MR metabolic profiling of CNB samples for a large number of cancers.

  19. Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats

    Science.gov (United States)

    Allaway, David; Gilham, Matthew S.; Colyer, Alison; Jönsson, Thomas J.; Swanson, Kelly S.; Morris, Penelope J.

    2016-01-01

    Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS) was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN), n = 8) or at 31 weeks of age (Conventional Neuter (CN), n = 7). Univariate and multivariate analyses were used to compare plasma metabolites (n = 370) from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR p<0.05). Pathway Enrichment Analysis also identified significant effects in 20 pathways, dominated by amino acid, sterol and fatty acid metabolism. Most changes were interpretable within the context of male sexual development, and changed following neutering in the CN group. Felinine metabolism in CN cats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion. PMID:27942045

  20. Comprehensive Analysis of PPARα-Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling

    Directory of Open Access Journals (Sweden)

    Maryam Rakhshandehroo

    2007-01-01

    Full Text Available PPARα is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARα in hepatic lipid metabolism, many PPARα-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARα-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPARα target genes, livers from several animal studies in which PPARα was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPARα-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPARα-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip, electron-transferring-flavoprotein β polypeptide (Etfb, electron-transferring-flavoprotein dehydrogenase (Etfdh, phosphatidylcholine transfer protein (Pctp, endothelial lipase (EL, Lipg, adipose triglyceride lipase (Pnpla2, hormone-sensitive lipase (HSL, Lipe, and monoglyceride lipase (Mgll. Using an in silico screening approach, one or more PPAR response elements (PPREs were identified in each of these genes. Regulation of Pnpla2, Lipe, and Mgll, which are involved in triglyceride hydrolysis, was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPARα agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPARα. Our study illustrates the power of transcriptional profiling to uncover novel PPARα-regulated genes and pathways in liver.

  1. Comprehensive Analysis of PPARα-Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling

    Science.gov (United States)

    Rakhshandehroo, Maryam; Sanderson, Linda M.; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; de Groot, Philip J.; Müller, Michael; Kersten, Sander

    2007-01-01

    PPARα is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARα in hepatic lipid metabolism, many PPARα-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARα-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPARα target genes, livers from several animal studies in which PPARα was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPARα-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPARα-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein β polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (HSL, Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Regulation of Pnpla2, Lipe, and Mgll, which are involved in triglyceride hydrolysis, was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPARα agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPARα. Our study illustrates the power of transcriptional profiling to uncover novel PPARα-regulated genes and pathways in liver. PMID:18288265

  2. Comprehensive analysis of PPARalpha-dependent regulation of hepatic lipid metabolism by expression profiling.

    Science.gov (United States)

    Rakhshandehroo, Maryam; Sanderson, Linda M; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; de Groot, Philip J; Müller, Michael; Kersten, Sander

    2007-01-01

    PPARalpha is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARalpha in hepatic lipid metabolism, many PPARalpha-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARalpha-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPARalpha target genes, livers from several animal studies in which PPARalpha was activated and/or disabled were analyzed by Affymetrix GeneChips. Numerous novel PPARalpha-regulated genes relevant to lipid metabolism were identified. Out of this set of genes, eight genes were singled out for study of PPARalpha-dependent regulation in mouse liver and in mouse, rat, and human primary hepatocytes, including thioredoxin interacting protein (Txnip), electron-transferring-flavoprotein beta polypeptide (Etfb), electron-transferring-flavoprotein dehydrogenase (Etfdh), phosphatidylcholine transfer protein (Pctp), endothelial lipase (EL, Lipg), adipose triglyceride lipase (Pnpla2), hormone-sensitive lipase (HSL, Lipe), and monoglyceride lipase (Mgll). Using an in silico screening approach, one or more PPAR response elements (PPREs) were identified in each of these genes. Regulation of Pnpla2, Lipe, and Mgll, which are involved in triglyceride hydrolysis, was studied under conditions of elevated hepatic lipids. In wild-type mice fed a high fat diet, the decrease in hepatic lipids following treatment with the PPARalpha agonist Wy14643 was paralleled by significant up-regulation of Pnpla2, Lipe, and Mgll, suggesting that induction of triglyceride hydrolysis may contribute to the anti-steatotic role of PPARalpha. Our study illustrates the power of transcriptional profiling to uncover novel PPARalpha-regulated genes and pathways in liver.

  3. Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up.

    Science.gov (United States)

    Muhamadali, Howbeer; Xu, Yun; Ellis, David I; Allwood, J William; Rattray, Nicholas J W; Correa, Elon; Alrabiah, Haitham; Lloyd, Jonathan R; Goodacre, Royston

    2015-05-15

    During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However

  4. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).

    Science.gov (United States)

    Katahira, Riko; Ashihara, Hiroshi

    2009-12-01

    As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.

  5. Hepatic drug metabolizing profile of Flinders Sensitive Line rat model of depression.

    Science.gov (United States)

    Kotsovolou, Olga; Ingelman-Sundberg, Magnus; Lang, Matti A; Marselos, Marios; Overstreet, David H; Papadopoulou-Daifoti, Zoi; Johanson, Inger; Fotopoulos, Andrew; Konstandi, Maria

    2010-08-16

    The Flinders Sensitive Line (FSL) rat model of depression exhibits some behavioral, neurochemical, and pharmacological features that have been reported in depressed patients and has been very effective in screening antidepressants. Major factor that determines the effectiveness and toxicity of a drug is the drug metabolizing capacity of the liver. Therefore, in order to discriminate possible differentiation in the hepatic drug metabolism between FSL rats and Sprague-Dawley (SD) controls, their hepatic metabolic profile was investigated in this study. The data showed decreased glutathione (GSH) content and glutathione S-transferase (GST) activity and lower expression of certain major CYP enzymes, including the CYP2B1, CYP2C11 and CYP2D1 in FSL rats compared to SD controls. In contrast, p-nitrophenol hydroxylase (PNP), 7-ethoxyresorufin-O-dealkylase (EROD) and 16alpha-testosterone hydroxylase activities were higher in FSL rats. Interestingly, the wide spread environmental pollutant benzo(alpha)pyrene (B(alpha)P) induced CYP1A1, CYP1A2, CYP2B1/2 and ALDH3c at a lesser extend in FSL than in SD rats, whereas the antidepressant mirtazapine (MIRT) up-regulated CYP1A1/2, CYP2C11, CYP2D1, CYP2E1 and CYP3A1/2, mainly, in FSL rats. The drug also further increased ALDH3c whereas suppressed GSH content in B(alpha)P-exposed FSL rats. In conclusion, several key enzymes of the hepatic biotransformation machinery are differentially expressed in FSL than in SD rats, a condition that may influence the outcome of drug therapy. The MIRT-induced up-regulation of several drug-metabolizing enzymes indicates the critical role of antidepressant treatment that should be always taken into account in the designing of treatment and interpretation of insufficient pharmacotherapy or drug toxicity.

  6. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival.

    Directory of Open Access Journals (Sweden)

    Christian Frezza

    Full Text Available Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography-mass spectrometry (LC-MS, to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours.

  7. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions

    Directory of Open Access Journals (Sweden)

    Fenja Klevenhusen

    2015-10-01

    Full Text Available Left displaced abomasum (LDA is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1 evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2 establish an Animals 2015, 5 1022 association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca, but greater concentrations of non-esterified fatty acids (NEFA and beta-hydroxy-butyrate (BHBA, in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA, regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA.

  8. Intracellular CHO cell metabolite profiling reveals steady-state dependent metabolic fingerprints in perfusion culture.

    Science.gov (United States)

    Karst, Daniel J; Steinhoff, Robert; Kopp, Marie R G; Serra, Elisa; Soos, Miroslav; Zenobi, Renato; Morbidelli, Massimo

    2016-12-20

    Perfusion cell culture processes allow the steady-state culture of mammalian cells at high viable cell density, which is beneficial for overall product yields and homogeneity of product quality in the manufacturing of therapeutic proteins. In this study, the extent of metabolic steady state and the change of the metabolite profile between different steady states of an industrial Chinese hamster ovary (CHO) cell line producing a monoclonal antibody (mAb) was investigated in stirred tank perfusion bioreactors. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) of daily cell extracts revealed more than a hundred peaks, among which 76 metabolites were identified by tandem MS (MS/MS) and high resolution Fourier transform ion cyclotron resonance (FT-ICR) MS. Nucleotide ratios (Uridine (U)-ratio, Nucleotide triphosphate (NTP)-ratio and energy charge (EC)) and multivariate analysis of all features indicated a consistent metabolite profile for a stable culture performed at 40 × 10(6) cells/mL over 26 days of culture. On the other hand the reactor was operated continuously so as to reach three distinct steady states one after the other at 20, 60 and 40 × 10(6) cells/mL. In each case, a stable metabolite profile was achieved after an initial transient phase of approximately three days at constant cell density when varying between these set points. Clear clustering according to cell density was observed by principal component analysis, indicating steady state dependent metabolite profiles. In particular, varying levels of nucleotides, nucleotide sugar and lipid precursors explained most of the variance between the different cell density set points. This article is protected by copyright. All rights reserved.

  9. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus).

    Science.gov (United States)

    Park, Chang Ha; Baskar, Thanislas Bastin; Park, Soo-Yun; Kim, Sun-Ju; Valan Arasu, Mariadhas; Al-Dhabi, Naif Abdullah; Kim, Jae Kwang; Park, Sang Un

    2016-01-28

    A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS)-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g), phenolics (0.0664 ± 0.0033 mg/g) and flavonoids (0.0096 ± 0.0004 mg/g). Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA), hierarchical clustering analysis (HCA), Pearson's correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87%) at 1000 μg/mL, and DPPH activity (20.78%), followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might provide

  10. VOC-based metabolic profiling for food spoilage detection with the application to detecting Salmonella typhimurium-contaminated pork.

    Science.gov (United States)

    Xu, Yun; Cheung, William; Winder, Catherine L; Goodacre, Royston

    2010-07-01

    In this study, we investigated the feasibility of using a novel volatile organic compound (VOC)-based metabolic profiling approach with a newly devised chemometrics methodology which combined rapid multivariate analysis on total ion currents with in-depth peak deconvolution on selected regions to characterise the spoilage progress of pork. We also tested if such approach possessed enough discriminatory information to differentiate natural spoiled pork from pork contaminated with Salmonella typhimurium, a food poisoning pathogen commonly recovered from pork products. Spoilage was monitored in this study over a 72-h period at 0-, 24-, 48- and 72-h time points after the artificial contamination with the salmonellae. At each time point, the VOCs from six individual pork chops were collected for spoiled vs. contaminated meat. Analysis of the VOCs was performed by gas chromatography/mass spectrometry (GC/MS). The data generated by GC/MS analysis were initially subjected to multivariate analysis using principal component analysis (PCA) and multi-block PCA. The loading plots were then used to identify regions in the chromatograms which appeared important to the separation shown in the PCA/multi-block PCA scores plot. Peak deconvolution was then performed only on those regions using a modified hierarchical multivariate curve resolution procedure for curve resolution to generate a concentration profiles matrix C and the corresponding pure spectra matrix S. Following this, the pure mass spectra (S) of the peaks in those region were exported to NIST 02 mass library for chemical identification. A clear separation between the two types of samples was observed from the PCA models, and after deconvolution and univariate analysis using N-way ANOVA, a total of 16 significant metabolites were identified which showed difference between natural spoiled pork and those contaminated with S. typhimurium.

  11. Metabolic profiles of male meat eaters, fish eaters, vegetarians, and vegans from the EPIC-Oxford cohort12

    Science.gov (United States)

    Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C

    2015-01-01

    Background: Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. Objective: We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Design: In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate–controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Results: Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Conclusions: Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of

  12. Metabolic Profiling of Chicken Embryos Exposed to Perfluorooctanoic Acid (PFOA and Agonists to Peroxisome Proliferator-Activated Receptors.

    Directory of Open Access Journals (Sweden)

    Anna Mattsson

    Full Text Available Untargeted metabolic profiling of body fluids in experimental animals and humans exposed to chemicals may reveal early signs of toxicity and indicate toxicity pathways. Avian embryos develop separately from their mothers, which gives unique possibilities to study effects of chemicals during embryo development with minimal confounding factors from the mother. In this study we explored blood plasma and allantoic fluid from chicken embryos as matrices for revealing metabolic changes caused by exposure to chemicals during embryonic development. Embryos were exposed via egg injection on day 7 to the environmental pollutant perfluorooctanoic acid (PFOA, and effects on the metabolic profile on day 12 were compared with those caused by GW7647 and rosiglitazone, which are selective agonists to peroxisome-proliferator activated receptor α (PPARα and PPARγ, respectively. Analysis of the metabolite concentrations from allantoic fluid by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA showed clear separation between the embryos exposed to GW7647, rosiglitazone, and vehicle control, respectively. In blood plasma only GW7647 caused a significant effect on the metabolic profile. PFOA induced embryo mortality and increased relative liver weight at the highest dose. Sublethal doses of PFOA did not significantly affect the metabolic profile in either matrix, although single metabolites appeared to be altered. Neonatal mortality by PFOA in the mouse has been suggested to be mediated via activation of PPARα. However, we found no similarity in the metabolite profile of chicken embryos exposed to PFOA with those of embryos exposed to PPAR agonists. This indicates that PFOA does not activate PPAR pathways in our model at concentrations in eggs and embryos well above those found in wild birds. The present study suggests that allantoic fluid and plasma from chicken embryos are useful and complementary matrices for exploring effects on the metabolic

  13. Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics

    OpenAIRE

    Diamond, Deborah L.; Syder, Andrew J; Jacobs, Jon M.; Sorensen, Christina M.; Kathie-Anne Walters; Sean C Proll; Jason E. McDermott; Gritsenko, Marina A.; Qibin Zhang; Rui Zhao; Metz, Thomas O.; David G Camp; Waters, Katrina M.; Smith, Richard D.; Rice, Charles M.

    2010-01-01

    Author Summary As parasites, viruses rely on the cells they infect to provide the energy and building blocks required for their survival and propagation. However, relatively little is known about the extent to which viruses modulate host cell metabolism and the consequences of these disruptions. Here we integrate proteomic and lipidomic profiling with computational modeling approaches to probe the impact of HCV infection on the global metabolism of cultured hepatoma cells, and to understand t...

  14. Urinary Metabolomic Approach Provides New Insights into Distinct Metabolic Profiles of Glutamine and N-Carbamylglutamate Supplementation in Rats

    OpenAIRE

    Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing

    2016-01-01

    Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution 1H NMR metabolic profiling combined with...

  15. NMR-based metabolic profiling of rice wines by F(2)-selective total correlation spectra.

    Science.gov (United States)

    Koda, Masanori; Furihata, Kazuo; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2012-05-16

    In this study, we performed NMR-based metabolic profiling of major rice wines (Japanese sake, Chinese Shaoxing wine, and Korean makgeolli). In the (1)H NMR spectra, the rice wines showed broad resonances in the region of about 7.9-9.0 ppm. These resonances showed many and complex correlations with approximately 0.5-4.5 ppm in the F(2)-selective TOCSY (total correlation spectroscopy) spectra, and these correlations were attributed mainly to peptides. These spectral patterns were characteristic of individual rice wines, and the combination of F(2)-selective TOCSY spectra and principal component analysis enabled us to classify the rice wine species. Furthermore, it also provided information about raw materials, namely, what type of koji (rice koji or wheat koji) was used. These spectra may be useful as a new "fingerprint" for quality control or food authentication.

  16. Metabolic profiling identification of metabolites formed in Mediterranean mussels (Mytilus galloprovincialis) after diclofenac exposure.

    Science.gov (United States)

    Bonnefille, Bénilde; Arpin-Pont, Lauren; Gomez, Elena; Fenet, Hélène; Courant, Frédérique

    2017-04-01

    Despite the growing concern on the presence of pharmaceutically active compounds in the environment, few studies have been conducted on their metabolism in marine organisms. In this study, a non-targeted strategy based on the generation of chemical profiles generated by liquid chromatography combined with high resolution mass spectrometry was used to highlight metabolite production by the Mediterranean mussel (Mytilus galloprovincialis) after diclofenac exposure. This method allowed revealing the production of 13 metabolites in mussel tissues. Three of them were phase I metabolites, including 4'-hydroxy-diclofenac and 5-hydroxy-diclofenac. The remaining 10 were phase II metabolites, including sulfate and amino acids conjugates. Among all of the metabolites highlighted, 5 were reported for the first time in an aquatic organism exposed to diclofenac.

  17. Characterisation of metabolic profile of banana genotypes, aiming at biofortified Musa spp. cultivars.

    Science.gov (United States)

    Borges, Cristine Vanz; Amorim, Vanusia Batista de Oliveira; Ramlov, Fernanda; Ledo, Carlos Alberto da Silva; Donato, Marcela; Maraschin, Marcelo; Amorim, Edson Perito

    2014-02-15

    The banana is an important, widely consumed fruit, especially in areas of rampant undernutrition. Twenty-nine samples were analysed, including 9 diploids, 13 triploids and 7 tetraploids, in the Active Germplasm Bank, at Embrapa Cassava & Fruits, to evaluate the bioactive compounds. The results of this study reveal the presence of a diversity of bioactive compounds, e.g., catechins; they are phenolic compounds with high antioxidant potential and antitumour activity. In addition, accessions with appreciable amounts of pVACs were identified, especially compared with the main cultivars that are currently marketed. The ATR-FTIR, combined with principal components analysis, identified accessions with distinct metabolic profiles in the fingerprint regions of compounds important for human health. Likewise, starch fraction characterisation allowed discrimination of accessions according to their physical, chemical, and functional properties. The results of this study demonstrate that the banana has functional characteristics endowing it with the potential to promote human health.

  18. A STUDY OF METABOLIC PARAMETER AND MORBIDITY PROFILE AMONG ELDERLY POPULATION IN RURAL COASTAL ANDHRA PRADESH

    Directory of Open Access Journals (Sweden)

    Shakeela

    2016-01-01

    Full Text Available Global population ageing is an important challenge and opportunity faced by all countries. With advances in medicine helping more people to live longer lives, the number of people over age 60 years is expected to double by 2050 and will require radical social change according to a new report released by the WHO for the international day. Present study is designed to evaluate metabolic parameter and morbidity profile in elderly people in rural coastal Andhra Pradesh; 30% of male and 31% of the female was diabetic; 26.4% of the male and 37.5% of the female was having osteoarthritis; 41.18% of the male and 37.5% of the female have acid peptic disease; 10.1% of male and 12.75% of the female have ischemic heart disease. So it is required to provide promotional, preventive, curative and rehabilitative services in an integrated manner for the elderly

  19. Metabolic profile of the bioactive compounds of burdock (Arctium lappa) seeds, roots and leaves.

    Science.gov (United States)

    Ferracane, Rosalia; Graziani, Giulia; Gallo, Monica; Fogliano, Vincenzo; Ritieni, Alberto

    2010-01-20

    In this work the bioactive metabolic profile, the antioxidant activity and total phenolic content of burdock (Arctium lappa) seeds, leaves and roots were obtained. TEAC values and total phenolic content for hydro-alcoholic extracts of burdock ranged from 67.39 to 1.63 micromol Trolox equivalent/100g dry weight (DW), and from 2.87 to 45 g of gallic acid equivalent/100g DW, respectively. Phytochemical compounds were analyzed by liquid chromatography coupled to electrospray tandem mass spectrometry (LC/MS/MS) in negative mode. The main compounds of burdock extracts were caffeoylquinic acid derivatives, lignans (mainly arctiin) and various flavonoids. The occurrence of some phenolic acids (caffeic acid, chlorogenic acid and cynarin) in burdock seeds; arctiin, luteolin and quercetin rhamnoside in burdock roots; phenolic acids, quercetin, quercitrin and luteolin in burdock leaves was reported for the first time.

  20. Metagenomic insights into anaerobic metabolism along an Arctic peat soil profile.

    Directory of Open Access Journals (Sweden)

    David A Lipson

    Full Text Available A metagenomic analysis was performed on a soil profile from a wet tundra site in northern Alaska. The goal was to link existing biogeochemical knowledge of the system with the organisms and genes responsible for the relevant metabolic pathways. We specifically investigated how the importance of iron (Fe oxides and humic substances (HS as terminal electron acceptors in this ecosystem is expressed genetically, and how respiratory and fermentative processes varied with soil depth into the active layer and into the upper permafrost. Overall, the metagenomes reflected a microbial community enriched in a diverse range of anaerobic pathways, with a preponderance of known Fe reducing species at all depths in the profile. The abundance of sequences associated with anaerobic metabolic processes generally increased with depth, while aerobic cytochrome c oxidases decreased. Methanogenesis genes and methanogen genomes followed the pattern of CH4 fluxes: they increased steeply with depth into the active layer, but declined somewhat over the transition zone between the lower active layer and the upper permafrost. The latter was relatively enriched in fermentative and anaerobic respiratory pathways. A survey of decaheme cytochromes (MtrA, MtrC and their homologs revealed that this is a promising approach to identifying potential reducers of Fe(III or HS, and indicated a possible role for Acidobacteria as Fe reducers in these soils. Methanogens appear to coexist in the same layers, though in lower abundance, with Fe reducing bacteria and other potential competitors, including acetogens. These observations provide a rich set of hypotheses for further targeted study.

  1. Distinct metabolic profile of primary focal segmental glomerulosclerosis revealed by NMR-based metabolomics.

    Directory of Open Access Journals (Sweden)

    Xu Hao

    Full Text Available BACKGROUND: Primary focal segmental glomerulosclerosis (FSGS is pathological entity which is characterized by idiopathic steroid-resistant nephrotic syndrome (SRNS and progression to end-stage renal disease (ESRD in the majority of affected individuals. Currently, there is no practical noninvasive technique to predict different pathological types of glomerulopathies. In this study, the role of urinary metabolomics in the diagnosis and pathogenesis of FSGS was investigated. METHODS: NMR-based metabolomics was applied for the urinary metabolic profile in the patients with FSGS (n = 25, membranous nephropathy (MN, n = 24, minimal change disease (MCD, n = 14 and IgA nephropathy (IgAN, n = 26, and healthy controls (CON, n = 35. The acquired data were analyzed using principal component analysis (PCA followed by orthogonal projections to latent structure discriminant analysis (OPLS-DA. Model validity was verified using permutation tests. RESULTS: FSGS patients were clearly distinguished from healthy controls and other three types of glomerulopathies with good sensitivity and specificity based on their global urinary metabolic profiles. In FSGS patients, urinary levels of glucose, dimethylamine and trimethylamine increased compared with healthy controls, while pyruvate, valine, hippurate, isoleucine, phenylacetylglycine, citrate, tyrosine, 3-methylhistidine and β-hydroxyisovalerate decreased. Additionally, FSGS patients had lower urine N-methylnicotinamide levels compared with other glomerulopathies. CONCLUSIONS: NMR-based metabonomic approach is amenable for the noninvasive diagnosis and differential diagnosis of FSGS as well as other glomerulopathies, and it could indicate the possible mechanisms of primary FSGS.

  2. Effects of meal frequency on metabolic profiles and substrate partitioning in lean healthy males.

    Directory of Open Access Journals (Sweden)

    Marjet J M Munsters

    Full Text Available The daily number of meals has an effect on postprandial glucose and insulin responses, which may affect substrate partitioning and thus weight control. This study investigated the effects of meal frequency on 24 h profiles of metabolic markers and substrate partitioning.Twelve (BMI:21.6 ± 0.6 kg/m(2 healthy male subjects stayed after 3 days of food intake and physical activity standardization 2 × 36 hours in a respiration chamber to measure substrate partitioning. All subjects randomly received two isoenergetic diets with a Low meal Frequency (3 ×; LFr or a High meal Frequency (14 ×; HFr consisting of 15 En% protein, 30 En% fat, and 55 En% carbohydrates. Blood was sampled at fixed time points during the day to measure metabolic markers and satiety hormones.Glucose and insulin profiles showed greater fluctuations, but a lower AUC of glucose in the LFr diet compared with the HFr diet. No differences between the frequency diets were observed on fat and carbohydrate oxidation. Though, protein oxidation and RMR (in this case SMR + DIT were significantly increased in the LFr diet compared with the HFr diet. The LFr diet increased satiety and reduced hunger ratings compared with the HFr diet during the day.The higher rise and subsequently fall of insulin in the LFr diet did not lead to a higher fat oxidation as hypothesized. The LFr diet decreased glucose levels throughout the day (AUC indicating glycemic improvements. RMR and appetite control increased in the LFr diet, which can be relevant for body weight control on the long term.ClinicalTrials.gov NCT01034293.

  3. Determining virus-host interactions and glycerol metabolism profiles in geographically diverse solar salterns with metagenomics

    Science.gov (United States)

    Moller, Abraham G.

    2017-01-01

    Solar salterns are excellent model ecosystems for studying virus-microbial interactions because of their low microbial diversity, environmental stability, and high viral density. By using the power of CRISPR spacers to link viruses to their prokaryotic hosts, we explored virus-host interactions in geographically diverse salterns. Using taxonomic profiling, we identified hosts such as archaeal Haloquadratum, Halorubrum, and Haloarcula and bacterial Salinibacter, and we found that community composition related to not only salinity but also local environmental dynamics. Characterizing glycerol metabolism genes in these metagenomes suggested Halorubrum and Haloquadratum possess most dihydroxyacetone kinase genes while Salinibacter possesses most glycerol-3-phosphate dehydrogenase genes. Using two different methods, we detected fewer CRISPR spacers in Haloquadratum-dominated compared with Halobacteriaceae-dominated saltern metagenomes. After CRISPR detection, spacers were aligned against haloviral genomes to map virus to host. While most alignments for each saltern metagenome linked viruses to Haloquadratum walsbyi, there were also alignments indicating interactions with the low abundance taxa Haloarcula and Haloferax. Further examination of the dinucleotide and trinucleotide usage differences between paired viruses and their hosts confirmed viruses and hosts had similar nucleotide usage signatures. Detection of cas genes in the salterns supported the possibility of CRISPR activity. Taken together, our studies suggest similar virus-host interactions exist in different solar salterns and that the glycerol metabolism gene dihydroxyacetone kinase is associated with Haloquadratum and Halorubrum. PMID:28097058

  4. Metabolic profiles in serum of mouse after chronic exposure to drinking water.

    Science.gov (United States)

    Zhang, Yan; Wu, Bing; Zhang, Xuxiang; Li, Aimin; Cheng, Shupei

    2011-08-01

    The toxicity of Nanjing drinking water on mouse (Mus musculus) was detected by (1)H nuclear magnetic resonance (NMR)-based metabonomic method. Three groups of mice were fed with drinking water (produced by Nanjing BHK Water Plant), 3.8 μg/L benzo(a)pyrene as contrast, and clean water as control, respectively, for 90 days. It was observed that the levels of lactate, alanine, and creatinine in the mice fed with drinking water were increased and that of valine was decreased. The mice of drinking water group were successfully separated from control. The total concentrations of polycyclic aromatic hydrocarbons (PAHs), phthalates (PAEs), and other organic pollutants in the drinking water were 0.23 μg/L, 4.57 μg/L, and 0.34 μg/L, respectively. In this study, Nanjing drinking water was found to induce distinct perturbations of metabolic profiles on mouse including disorders of glucose-alanine cycle, branched-chain amino acid and energy metabolism, and dysfunction of kidney. This study suggests that metabonomic method is feasible and sensitive to evaluate potential toxic effects of drinking water.

  5. 1H NMR based metabolic profiling in Crohn's disease by random forest methodology.

    Science.gov (United States)

    Fathi, Fariba; Majari-Kasmaee, Laleh; Mani-Varnosfaderani, Ahmad; Kyani, Anahita; Rostami-Nejad, Mohammad; Sohrabzadeh, Kaveh; Naderi, Nosratollah; Zali, Mohammad Reza; Rezaei-Tavirani, Mostafa; Tafazzoli, Mohsen; Arefi-Oskouie, Afsaneh

    2014-07-01

    The present study was designed to search for metabolic biomarkers and their correlation with serum zinc in Crohn's disease patients. Crohn's disease (CD) is a form of inflammatory bowel disease that may affect any part of the gastrointestinal tract and can be difficult to diagnose using the clinical tests. Thus, introduction of a novel diagnostic method would be a major step towards CD treatment. Proton nuclear magnetic resonance spectroscopy ((1)H NMR) was employed for metabolic profiling to find out which metabolites in the serum have meaningful significance in the diagnosis of CD. CD and healthy subjects were correctly classified using random forest methodology. The classification model for the external test set showed a 94% correct classification of CD and healthy subjects. The present study suggests Valine and Isoleucine as differentiating metabolites for CD diagnosis. These metabolites can be used for screening of risky samples at the early stages of CD diagnoses. Moreover, a robust random forest regression model with good prediction outcomes was developed for correlating serum zinc level and metabolite concentrations. The regression model showed the correlation (R(2)) and root mean square error values of 0.83 and 6.44, respectively. This model suggests valuable clues for understanding the mechanism of zinc deficiency in CD patients.

  6. Metabolic Profiling of Central Nervous System Disease in Trypanosoma brucei rhodesiense infection.

    Science.gov (United States)

    Lamour, Sabrina D; Alibu, Vincent P; Holmes, Elaine; Sternberg, Jeremy M

    2017-09-12

    The progression of Human African Trypanosomiasis from the early hemolymphatic stage to the late meningoencephalitic stage is of critical diagnostic importance as it determines the choice of potentially toxic drug regimens. Current diagnostic criteria involving analysis of cerebrospinal fluid (CSF) for parasites and/or pleiocytosis are sensitive, but recent evidence suggests that specificity may be poor. We used an untargeted global metabolic profiling approach for the discovery of novel candidate stage diagnostic markers in CSF from Trypanosoma brucei rhodesiense patients using 1H nuclear magnetic resonance (NMR) spectroscopy. Metabolic markers did not resolve early and late stage cases but were associated with neuro-inflammatory responses and the presentation of neurological disturbances. In particular increased 3-hydroxybutyrate and alanine and reduced concentrations of mannose and urea were discriminatory for the presentation of daytime somnolence and gait ataxia. CSF metabolite concentrations provide markers for neuroinflammatory responses during CNS invasion by trypanosomes and are associated with the presentation of neurological disturbances independently of disease stage determined by current criteria. This suggests that applying a dichotomous stage diagnosis on the basis of CSF pleiocytosis does not accurately reflect the biological changes occurring as parasites invade the CNS and has implications for biomarker discovery strategies.

  7. Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling.

    Science.gov (United States)

    Pillai, Bhinu V S; Swarup, Sanjay

    2002-01-01

    Flavonoids are 15-carbon plant secondary metabolites exuded in the rhizosphere that hosts several flavonoid-degrading bacteria. We studied flavonoid catabolism in a plant growth-promoting rhizobacterial strain of Pseudomonas by using a combination of biochemical and genetic approaches. Transposants carrying mini-Tn5gfp insertions were screened for flavonoid auxotrophy, and these mutant strains were found to be unable to grow in the flavonols naringenin and quercetin, while their growth in glycerol was comparable to that of the parental strain. In order to understand flavonoid catabolism, culture supernatants, whole-cell fractions, cell lysate, and cell debris of the wild-type and mutant strains were analyzed. Intermediates that accumulated intracellularly and those secreted in the medium were identified by a combination of reversed-phase high-pressure liquid chromatography and electrospray ionization-mass spectrometry. Structures of four key intermediates were confirmed by one-dimensional nuclear magnetic resonance spectroscopy. Comparative metabolic profiling of the compounds in the wild-type and mutant strains allowed us to understand the degradation events and to identify six metabolic intermediates. The first step in the pathway involves 3,3'-didehydroxylation, followed by hydrolysis and cleavage of the C-ring, leading via subsequent oxidations to the formation of protocatechuate. This is the first report on quercetin dehydroxylation in aerobic conditions leading to naringenin accumulation.

  8. Determining virus-host interactions and glycerol metabolism profiles in geographically diverse solar salterns with metagenomics

    Directory of Open Access Journals (Sweden)

    Abraham G. Moller

    2017-01-01

    Full Text Available Solar salterns are excellent model ecosystems for studying virus-microbial interactions because of their low microbial diversity, environmental stability, and high viral density. By using the power of CRISPR spacers to link viruses to their prokaryotic hosts, we explored virus-host interactions in geographically diverse salterns. Using taxonomic profiling, we identified hosts such as archaeal Haloquadratum, Halorubrum, and Haloarcula and bacterial Salinibacter, and we found that community composition related to not only salinity but also local environmental dynamics. Characterizing glycerol metabolism genes in these metagenomes suggested Halorubrum and Haloquadratum possess most dihydroxyacetone kinase genes while Salinibacter possesses most glycerol-3-phosphate dehydrogenase genes. Using two different methods, we detected fewer CRISPR spacers in Haloquadratum-dominated compared with Halobacteriaceae-dominated saltern metagenomes. After CRISPR detection, spacers were aligned against haloviral genomes to map virus to host. While most alignments for each saltern metagenome linked viruses to Haloquadratum walsbyi, there were also alignments indicating interactions with the low abundance taxa Haloarcula and Haloferax. Further examination of the dinucleotide and trinucleotide usage differences between paired viruses and their hosts confirmed viruses and hosts had similar nucleotide usage signatures. Detection of cas genes in the salterns supported the possibility of CRISPR activity. Taken together, our studies suggest similar virus-host interactions exist in different solar salterns and that the glycerol metabolism gene dihydroxyacetone kinase is associated with Haloquadratum and Halorubrum.

  9. Metabolomics-proteomics profiles delineate metabolic changes in kidney fibrosis disease.

    Science.gov (United States)

    Cao, Hongxin; Zhang, Aihua; Sun, Hui; Zhou, Xiaohang; Guan, Yu; Liu, Qi; Kong, Ling; Wang, Xijun

    2015-11-01

    Kidney fibrosis (KF) is a common process that leads to the progression of various types of kidney disease including kidney-yang deficiency syndrome, however, little is known regarding the underlying biology of this disorder. Fortunately, integrated omics approaches provide the molecule fingerprints related to the disease. In an attempt to address this issue, we integrated metabolomics-proteomics profiles analyzed pathogenic mechanisms of KF based on rat model. A total 37 serum differential metabolites were contributed to KF progress, involved several important metabolic pathways. Using iTRAQ-based quantitative proteomics analysis, 126 differential serum proteins were identified and provide valuable insight into the underlying mechanisms of KF. These proteins appear to be involved in complement and coagulation cascades, regulation of actin cytoskeleton, MAPK signaling pathway, RNA transport, etc. Interestingly, pathway/network analysis of integrated proteomics and metabolomics data firstly reveals that these signaling pathways were closely related with KF. It further indicated that most of these proteins play a pivotal role in the regulation of metabolism pathways.

  10. Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats.

    Science.gov (United States)

    Allaway, David; Gilham, Matthew S; Colyer, Alison; Jönsson, Thomas J; Swanson, Kelly S; Morris, Penelope J

    2016-01-01

    Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS) was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN), n = 8) or at 31 weeks of age (Conventional Neuter (CN), n = 7). Univariate and multivariate analyses were used to compare plasma metabolites (n = 370) from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR pcats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion.

  11. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    Science.gov (United States)

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  12. Evaluation of hyperandrogenemia and metabolic risk profile in women with postadolescent acne

    Directory of Open Access Journals (Sweden)

    Leyla Baykal Selçuk

    2016-06-01

    Full Text Available Background and Design: Postadolescent acne is a disease with relapses frequently seen in women. Treatment is difficult. In our study, we aimed to investigate the clinical and biochemical characteristics of hyperandrogenism and the prevalence of metabolic disorders, such as metabolic syndrome (MS and dyslipidemia in women with postadolescent acne. Materials and Methods: This study was conducted on 50 women who attended our department with the complaint of postadolescent acne between July 2014 and December 2014. The presence of androgenetic alopecia (AGA, hirsutism, polycystic ovary syndrome (PCOS, MS, dyslipidemia, and obesity was evaluated. Results: Seborrhea was present in 56%, hirsutism in 40%, AGA in 26%, and PCOS in 24% of women with postadolescent acne. The prevalence of MS and dyslipidemia was 24% and 44%, respectively. The prevalence of MS was significantly higher in patients with AGA and hirsutism. There was no association of MS with menstrual irregularity and PCOS. There was no significant association of dyslipidemia with AGA, hirsutism, PCOS, and menstrual irregularity. Conclusion: Clinical symptoms of hyperandrogenism, such as hirsutism, AGA, and PCOS were more common in women with postadolescent acne but androgenic hormone profile abnormalities were minimal. As a result, postadolescent acne resistant to treatment may be considered as an early marker in the early diagnosis of PCOS in women to prevent the development of type 2 diabetes mellitus, MS and hypercholesterolemia.

  13. Profile and prevalence of aspirin resistance in patients with metabolic syndrome

    Institute of Scientific and Technical Information of China (English)

    Zhaoping Liu; Yang Yu; Yuanjie Mao; Xinhua Wang; Jianzhong Wang; Yong Huo

    2008-01-01

    Objective Aspirin has been used extensively in primary and secondary prevention of cardiovascular disease,particularly for subjects at high risk such as metabolic syndrome.However,the responsiveness to aspirin treatment may vary among individuals.The present study was conducted to investigate the profile and prevalence of aspirin resistance in patients with metabolic syndrome.Methods In 221 consecutive patients,platelet aggregation induced by arachidonic acid (0.5mg/ml) was assessed after 10 days of aspirin treatment (200mg/d).Aspirin resistance was defined as mean optical platelet aggregation =20%.Results Aspirin resistance occurred in 39 patients (17.6%).Serum fibrinogen level was higher in patients with than in those without aspirin resistance (2.6_+0.4g/l vs 2.4±0.4g/L,P=0.017).The 2 groups,aspirin resistance group and no aspirin resistance group,did not differ significantly,with regard to gender,age,body mass index,waist-hip ratio,blood pressure level,serum cholesterol level and history of myocardial or cerebral infarction.Multivariate logistic regression analysis revealed that only serum fibrinogen level entered the model (odds ratio 2.973,p=0.023).Subgroup analysis further showed that aspirin resistance occurred more in male patients with myocardial infarction (50% vs14.5%,P=0.02) and in female patients with diastolic blood pressure=85mmHg (34% vs 15.5%,P=0.043).But after multifactor logistic regression,in women blood pressure=85mmHg was not a predictor any more.Conclusions In patients with metabolic syndrome,aspirin resistance is not uncommon,especially for men with history of myocardial infarction.Patients with aspirin resistance have an increased serum fibrinogen level.(J Geriatr Cardio12008;5:7-10)

  14. Use of endometrial cytology and metabolic profiles for selection of embryo donor cows

    Directory of Open Access Journals (Sweden)

    F. Ismael Fernandez-Sanchez

    2014-07-01

    Full Text Available The aim of this study was to evaluate the use of endometrial cytology and metabolic profiles for selection of donor cows in embryo transfer programmes. For this purpose, 69 clinically healthy Holstein cows were enrolled in the study. At the start of the superovulation procedure (Day 0, blood and endometrial samples were obtained to determine metabolic and uterine status, respectively. The cows were then subjected to porcine follicle stimulating hormone (pFSH superovulation treatment, and embryos were recovered after 7 days. The mean number of embryos obtained per flush was 9.89±8.21 (4.63±5.34 viable embryos, 0.82±2.01 degenerated embryos and 4.57±6.44 unfertilized ova. The following statistically significant variables were entered in a regression model: beta-hydroxybutyrate, serum cholesterol, body condition, number of calvings and percentage of neutrophils. In almost all cases, the model explained some percentage of the variance: total number of embryos, 4.8% (p<0.05; number of degenerate embryos, 4.2% (p=0.051; and number of unfertilized ova, 14.2% (p<0.01. Statistical models for the percentage of viable embryos and unfertilized ova accounted for 24.0% and 29.4% of the variance, respectively, and both were statistically significant (p<0.01. The model for the percentage of degenerated embryos was statistically significant (p<0.05 and explained 4.4% of the variance. In conclusion, we have demonstrated that positive energy balance and healthy uterus can improve ovarian response and the proportion of viable embryos in cows. Efficient tools for monitoring the metabolic and uterine status should therefore be used in bovine embryo transfer programmes.

  15. Heat exposure of Cannabis sativa extracts affects the pharmacokinetic and metabolic profile in healthy male subjects.

    Science.gov (United States)

    Eichler, Martin; Spinedi, Luca; Unfer-Grauwiler, Sandra; Bodmer, Michael; Surber, Christian; Luedi, Markus; Drewe, Juergen

    2012-05-01

    The most important psychoactive constituent of CANNABIS SATIVA L. is Δ (9)-tetrahydrocannabinol (THC). Cannabidiol (CBD), another important constituent, is able to modulate the distinct unwanted psychotropic effect of THC. In natural plant extracts of C. SATIVA, large amounts of THC and CBD appear in the form of THCA-A (THC-acid-A) and CBDA (cannabidiolic acid), which can be transformed to THC and CBD by heating. Previous reports of medicinal use of cannabis or cannabis preparations with higher CBD/THC ratios and use in its natural, unheated form have demonstrated that pharmacological effects were often accompanied with a lower rate of adverse effects. Therefore, in the present study, the pharmacokinetics and metabolic profiles of two different C. SATIVA extracts (heated and unheated) with a CBD/THC ratio > 1 were compared to synthetic THC (dronabinol) in a double-blind, randomized, single center, three-period cross-over study involving 9 healthy male volunteers. The pharmacokinetics of the cannabinoids was highly variable. The metabolic pattern was significantly different after administration of the different forms: the heated extract showed a lower median THC plasma AUC (24 h) than the unheated extract of 2.84 vs. 6.59 pmol h/mL, respectively. The later was slightly higher than that of dronabinol (4.58 pmol h/mL). On the other hand, the median sum of the metabolites (THC, 11-OH-THC, THC-COOH, CBN) plasma AUC (24 h) was higher for the heated than for the unheated extract. The median CBD plasma AUC (24 h) was almost 2-fold higher for the unheated than for the heated extract. These results indicate that use of unheated extracts may lead to a beneficial change in metabolic pattern and possibly better tolerability.

  16. Residual feed intake and hematological and metabolic blood profiles of lle de France lambs

    Directory of Open Access Journals (Sweden)

    Edson Ferraz Evaristo de Paula

    2013-11-01

    Full Text Available The objectives of this study were to estimate the phenotypic correlations of residual feed intake (RFI and gross feed efficiency (GFE with hematological and metabolic blood profiles of lambs and to determine the differences for these traits in animals of different RFI classes. Twenty Ile de France male lambs, 115±8 days of age and 31.3±4.1 kg of body weight (means ± SD, were individually housed and their dry matter intake was measured over 65 days. They were weighed every 13 days to determine the average daily weight gain and two blood samples were collected at the last two weighings (at 07h30 for analysis of blood variables. The animals were divided into two classes: negative RFI (most efficient: 0.5 SD above the mean; n=8. There were associations among RFI and the serum metabolic variables for albumin (rRFI = 0.74 and creatinine (rRFI = -0.45 and between GFE and serum albumin (rGFE = -0.70. Less efficient animals as measured by RFI had higher serum albumin and lower creatinine levels and showed a tendency to have a greater concentration of total plasma protein. Other serum biochemical parameters were not correlated with GFE and RFI, and no differences between RFI classes were found. There was a correlation between the percentage of eosinophils and RFI (rRFI = -0.65, and such more efficient animals had a higher proportion of these cells and a trend to have a lower percentage of monocytes. This study provided evidence indicating associations between RFI and protein metabolism, as reflected by the serum albumin and creatinine. The hematological findings suggest that RFI is related to susceptibility of lambs to stressand should provide a basis for further research in this regard.

  17. The Impact of Rapid Weight Loss on Oxidative Stress Markers and the Expression of the Metabolic Syndrome in Obese Individuals

    Directory of Open Access Journals (Sweden)

    Eva Tumova

    2013-01-01

    Full Text Available Objective. Obesity is linked with a state of increased oxidative stress, which plays an important role in the etiology of atherosclerosis and type 2 diabetes mellitus. The aim of our study was to evaluate the effect of rapid weight loss on oxidative stress markers in obese individuals with metabolic syndrome (MetS. Design and Methods. We measured oxidative stress markers in 40 obese subjects with metabolic syndrome (MetS+, 40 obese subjects without metabolic syndrome (MetS−, and 20 lean controls (LC at baseline and after three months of very low caloric diet. Results. Oxidized low density lipoprotein (ox-LDL levels decreased by 12% in MetS+ subjects, associated with a reduction in total cholesterol (TC, even after adjustment for age and sex. Lipoprotein associated phospholipase A2 (Lp-PLA2 activity decreased by 4.7% in MetS+ subjects, associated with a drop in LDL-cholesterol (LDL-C, TC, and insulin levels. Multivariate logistic regression analysis showed that a model including ox-LDL, LpPLA2 activity, and myeloperoxidase (MPO improved prediction of MetS status among obese individuals compared to each oxidative stress marker alone. Conclusions. Oxidative stress markers were predictive of MetS in obese subjects, suggesting a higher oxidative stress. Rapid weight loss resulted in a decline in oxidative stress markers, especially in MetS+ patients.

  18. Distinct metabolic network states manifest in the gene expression profiles of pediatric inflammatory bowel disease patients and controls

    Science.gov (United States)

    Knecht, Carolin; Fretter, Christoph; Rosenstiel, Philip; Krawczak, Michael; Hütt, Marc-Thorsten

    2016-09-01

    Information on biological networks can greatly facilitate the function-orientated interpretation of high-throughput molecular data. Genome-wide metabolic network models of human cells, in particular, can be employed to contextualize gene expression profiles of patients with the goal of both, a better understanding of individual etiologies and an educated reclassification of (clinically defined) phenotypes. We analyzed publicly available expression profiles of intestinal tissues from treatment-naive pediatric inflammatory bowel disease (IBD) patients and age-matched control individuals, using a reaction-centric metabolic network derived from the Recon2 model. By way of defining a measure of ‘coherence’, we quantified how well individual patterns of expression changes matched the metabolic network. We observed a bimodal distribution of metabolic network coherence in both patients and controls, albeit at notably different mixture probabilities. Multidimensional scaling analysis revealed a bisectional pattern as well that overlapped widely with the metabolic network-based results. Expression differences driving the observed bimodality were related to cellular transport of thiamine and bile acid metabolism, thereby highlighting the crosstalk between metabolism and other vital pathways. We demonstrated how classical data mining and network analysis can jointly identify biologically meaningful patterns in gene expression data.

  19. Soy Germ Protein With or Without-Zn Improve Plasma Lipid Profile in Metabolic Syndrome Women

    Directory of Open Access Journals (Sweden)

    SIWI PRAMATAMA MARS WIJAYANTI

    2012-03-01

    Full Text Available The aim of this research was to determine the effect of soy germ protein on lipid profile of metabolic syndrome (MetS patients. Respondents were 30 women with criteria, i.e. blood glucose level > normal, body mass index > 25 kg/m2, hypertriglyceridemia, low cholesterol-HDL level, 40-65 years old, living in Purwokerto, and signed the informed consent. The project was approved by the ethics committee of the Medical Faculty from Gadjah Mada University-Yogyakarta. Respondents were divided into three randomly chosen groups consisting of ten women each. The first, second, and third groups were treated, respectively, with milk enriched soy germ protein plus Zn, milk enriched soy germ protein (without Zn, and placebo for two months. Blood samples were taken at baseline, one and two months after observation. Two months after observation the groups consuming milk enriched with soy germ protein, both with or without Zn, had their level of cholesterol-total decrease from 215.8 to 180.2 mg/dl (P = 0.03, triglyceride from 240.2 to 162.5 mg/dl (P = 0.02, and LDL from 154.01 to 93.85 mg/dl (P = 0.03. In contrast, HDL increased from 38.91 to 49.49 mg/dl (P = 0.0008. In conclusion, soy germ protein can improve lipid profile, thus it can inhibit atherosclerosis incident.

  20. Isoflavones profiling of soybean [Glycine max (L.) Merrill] germplasms and their correlations with metabolic pathways.

    Science.gov (United States)

    Kim, Jae Kwang; Kim, Eun-Hye; Park, Inmyoung; Yu, Bo-Ra; Lim, Jung Dae; Lee, Young-Sang; Lee, Joo-Hyun; Kim, Seung-Hyun; Chung, Ill-Min

    2014-06-15

    The isoflavone diversity (44 varieties) of the soybean, Glycine max (L.) Merrill, from China, Japan, and Korea was examined by high-performance liquid chromatography. The profiles of 12 isoflavones identified from the grains were subjected to data-mining processes, including partial least-squares discriminant analysis (PLS-DA), Pearson's correlation analysis, and hierarchical clustering analysis (HCA). Although PLS-DA did not reveal significant differences among extracts of soybean from 3 countries, the results clearly show that the variation between varieties was low. The CS02554 variety was separate from the others in the first 2 principal components of PLS-DA. HCA of these phytochemicals resulted in clusters derived from closely related biochemical pathways. Daidzin, genistin, and glycitin contents were significantly correlated with their respective malonyl glycoside contents. Daidzein content correlated positively with genistein content (r=0.8189, P<0.0001). The CS02554 variety appears to be a good candidate for future breeding programs, as it contains high levels of isoflavone compounds. These results demonstrate the use of metabolite profiling combined with chemometrics as a tool for assessing the quality of food and identifying metabolic links in biological systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Sex Steroid Metabolism in Benign and Malignant Intact Prostate Biopsies: Individual Profiling of Prostate Intracrinology

    Directory of Open Access Journals (Sweden)

    Daniele Gianfrilli

    2014-01-01

    Full Text Available In vitro studies reveal that androgens, oestrogens, and their metabolites play a crucial role in prostate homeostasis. Most of the studies evaluated intraprostatic hormone metabolism using cell lines or preprocessed specimens. Using an ex vivo model of intact tissue cultures with preserved architecture, we characterized the enzymatic profile of biopsies from patients with benign prostatic hyperplasia (BPH or cancer (PC, focusing on 17β-hydroxy-steroid-dehydrogenases (17β-HSDs and aromatase activities. Samples from 26 men who underwent prostate needle core biopsies (BPH n = 14; PC n = 12 were incubated with radiolabeled 3H-testosterone or 3H-androstenedione. Conversion was evaluated by TLC separation and beta-scanning of extracted supernatants. We identified three major patterns of conversion. The majority of BPHs revealed no active testosterone/oestradiol conversion as opposed to prostate cancer. Conversion correlated with histology and PSA, but not circulating hormones. Highest Gleason scores had a higher androstenedion-to-testosterone conversion and expression of 17β-HSD-isoenzymes-3/5. Conclusions. We developed an easy tool to profile individual intraprostatic enzymatic activity by characterizing conversion pathways in an intact tissue environment. In fresh biopsies we found that 17β-HSD-isoenzymes and aromatase activities correlate with biological behaviour allowing for morphofunctional phenotyping of pathology specimens and clinical monitoring of novel enzyme-targeting drugs.

  2. Metabolic profiling and biological capacity of Pieris brassicae fed with kale (Brassica oleracea L. var. acephala).

    Science.gov (United States)

    Ferreres, Federico; Fernandes, Fátima; Oliveira, Jorge M A; Valentão, Patrícia; Pereira, José A; Andrade, Paula B

    2009-06-01

    Phenolic and organic acid profiles of aqueous extracts from Pieris brassicae material and the host kale (Brassica oleracea L. var. acephala) leaves were determined by HPLC/UV-DAD/MS(n)-ESI and HPLC-UV, respectively. The identified phenolics included acylated and nonacylated flavonoid glycosides, hydroxycinnamic acyl gentiobiosides, and sulphate phenolics. Kale exhibited the highest content (11g/kg lyophilized extract), while no phenolics were identified in the butterflies or exuviae. Nine different organic acids were characterized in the materials, with kale showing the highest amount (112g/kg lyophilized extract). With the exception of the exuviae extract, the rest were screened for bioactivity. Using spectrophotometric microassays, all exhibited antiradical capacity against DPPH and NO in a concentration-dependent way, whereas only kale and excrement extracts were active against superoxide. All displayed activity on intestinal smooth muscle, albeit with distinct relaxation-contraction profiles. Larvae and butterfly extracts were more efficacious for intestinal relaxation than was kale extract, whereas excrement extract evoked only contractions, thus evidencing their different compositions. Collectively, these results show that P. brassicae sequesters and metabolizes kale's phenolic compounds. Moreover, the extract's bioactivities suggest that they may constitute an interesting source of bioactive compounds whose complex chemical structures preclude either synthesis or isolation.

  3. Metabolic syndrome prevalence in different affective temperament profiles in bipolar-I disorder

    Directory of Open Access Journals (Sweden)

    Kursat Altinbas

    2013-06-01

    Full Text Available Objective: Temperament originates in the brain structure, and individual differences are attributable to neural and physiological function differences. It has been suggested that temperament is associated with metabolic syndrome (MetS markers, which may be partly mediated by lifestyle and socioeconomic status. Therefore, we aim to compare MetS prevalence between different affective temperamental profiles for each season in bipolar patients. Methods: Twenty-six bipolar type-I patients of a specialized outpatient mood disorder unit were evaluated for MetS according to new definition proposed by the International Diabetes Federation in the four seasons of a year. Temperament was assessed using the Temperament Evaluation of Memphis, Pisa, Paris and San Diego - autoquestionnaire version (TEMPS-A. Results: The proportions of MetS were 19.2, 23.1, 34.6, and 38.5% in the summer, fall, spring, and winter, respectively. Only depressive temperament scores were higher (p = 0.002 during the winter in patients with MetS. Conclusion: These data suggest that depressive temperament profiles may predispose an individual to the development of MetS in the winter.

  4. Metabolic profile of normal glucose-tolerant subjects with elevated 1-h plasma glucose values

    Science.gov (United States)

    Pramodkumar, Thyparambil Aravindakshan; Priya, Miranda; Jebarani, Saravanan; Anjana, Ranjit Mohan; Mohan, Viswanathan; Pradeepa, Rajendra

    2016-01-01

    Aim: The aim of this study was to compare the metabolic profiles of subjects with normal glucose tolerance (NGT) with and without elevated 1-h postglucose (1HrPG) values during an oral glucose tolerance test (OGTT). Methodology: The study group comprised 996 subjects without known diabetes seen at tertiary diabetes center between 2010 and 2014. NGT was defined as fasting plasma glucose <100 mg/dl (5.5 mmol/L) and 2-h plasma glucose <140 mg/dl (7.8 mmol/L) after an 82.5 g oral glucose (equivalent to 75 g of anhydrous glucose) OGTT. Anthropometric measurements and biochemical investigations were done using standardized methods. The prevalence rate of generalized and central obesity, hypertension, dyslipidemia, and metabolic syndrome (MS) was determined among the NGT subjects stratified based on their 1HrPG values as <143 mg/dl, ≥143–<155 mg/dl, and ≥155 mg/dl, after adjusting for age, sex, body mass index (BMI), waist circumference, alcohol consumption, smoking, and family history of diabetes. Results: The mean age of the 996 NGT subjects was 48 ± 12 years and 53.5% were male. The mean glycated hemoglobin for subjects with 1HrPG <143 mg/dl was 5.5%, for those with 1HrPG ≥143–<155 mg/dl, 5.6% and for those with 1HrPG ≥155 mg/dl, 5.7%. NGT subjects with 1HrPG ≥143–<155 mg/dl and ≥155 mg/dl had significantly higher BMI, waist circumference, systolic and diastolic blood pressure, triglyceride, total cholesterol/high-density lipoprotein (HDL) ratio, triglyceride/HDL ratio, leukocyte count, and gamma glutamyl aminotransferase (P < 0.05) compared to subjects with 1HrPG <143 mg/dl. The odds ratio for MS for subjects with 1HrPG ≥143 mg/dl was 1.84 times higher compared to subjects with 1HrPG <143 mg/dl taken as the reference. Conclusion: NGT subjects with elevated 1HrPG values have a worse metabolic profile than those with normal 1HrPG during an OGTT. PMID:27730069

  5. Metabolic Profile as a Potential Modifier of Long-Term Radiation Effects on Peripheral Lymphocyte Subsets in Atomic Bomb Survivors.

    Science.gov (United States)

    Yoshida, Kengo; Nakashima, Eiji; Kyoizumi, Seishi; Hakoda, Masayuki; Hayashi, Tomonori; Hida, Ayumi; Ohishi, Waka; Kusunoki, Yoichiro

    2016-09-01

    Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic

  6. Observational study of lipid profile and LDL particle size in patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Martínez-Mernández Pedro

    2011-09-01

    Full Text Available Abstract Background The atherogenic lipoprotein phenotype is characterized by an increase in plasma triglycerides, a decrease in high-density lipoprotein cholesterol (HDLc, and the prevalence of small, dense-low density lipoprotein cholesterol (LDLc particles. The aim of this study was to establish the importance of LDL particle size measurement by gender in a group of patients with Metabolic Syndrome (MS attending at a Cardiovascular Risk Unit in Primary Care and their classification into phenotypes. Subjects and methods One hundred eighty-five patients (93 men and 92 women from several areas in the South of Spain, for a period of one year in a health centre were studied. Laboratory parameters included plasma lipids, lipoproteins, low-density lipoprotein size and several atherogenic rates were determinated. Results We found differences by gender between anthropometric parameters, blood pressure and glucose measures by MS status. Lipid profile was different in our two study groups, and gender differences in these parameters within each group were also remarkable, in HDLc and Apo A-I values. According to LDL particle size, we found males had smaller size than females, and patients with MS had also smaller than those without MS. We observed inverse relationship between LDL particle size and triglycerides in patients with and without MS, and the same relationship between all atherogenic rates in non-MS patients. When we considered our population in two classes of phenotypes, lipid profile was worse in phenotype B. Conclusion In conclusion, we consider worthy the measurement of LDL particle size due to its relationship with lipid profile and cardiovascular risk.

  7. A rapid method for direct detection of metabolic conversion and magnetization exchange with application to hyperpolarized substrates

    Science.gov (United States)

    Larson, Peder E. Z.; Kerr, Adam B.; Leon Swisher, Christine; Pauly, John M.; Vigneron, Daniel B.

    2012-12-01

    In this work, we present a new MR spectroscopy approach for directly observing nuclear spins that undergo exchange, metabolic conversion, or, generally, any frequency shift during a mixing time. Unlike conventional approaches to observe these processes, such as exchange spectroscopy (EXSY), this rapid approach requires only a single encoding step and thus is readily applicable to hyperpolarized MR in which the magnetization is not replenished after T1 decay and RF excitations. This method is based on stimulated-echoes and uses phase-sensitive detection in conjunction with precisely chosen echo times in order to separate spins generated during the mixing time from those present prior to mixing. We are calling the method Metabolic Activity Decomposition Stimulated-echo Acquisition Mode or MAD-STEAM. We have validated this approach as well as applied it in vivo to normal mice and a transgenic prostate cancer mouse model for observing pyruvate-lactate conversion, which has been shown to be elevated in numerous tumor types. In this application, it provides an improved measure of cellular metabolism by separating [1-13C]-lactate produced in tissue by metabolic conversion from [1-13C]-lactate that has flowed into the tissue or is in the blood. Generally, MAD-STEAM can be applied to any system in which spins undergo a frequency shift.

  8. Rapidity Profile of the Initial Energy Density in Heavy-Ion Collisions

    CERN Document Server

    Ozonder, Sener

    2013-01-01

    The rapidity dependence of the initial energy density in heavy-ion collisions is calculated from a three-dimensional McLerran-Venugopalan model (3dMVn) introduced by Lam and Mahlon. This model is infrared safe since global color neutrality is enforced. In this non-boost-invariant framework, the nuclei have non-zero thickness in the longitudinal direction. This results in Bjorken-x dependent unintegrated gluon distribution functions which lead to a rapidity-dependent initial energy density after the collision. The initial energy density and its rapidity dependence are important initial conditions for the quark gluon plasma and its hydrodynamic evolution.

  9. Rapid reprogramming of epigenetic and transcriptional profiles in mammalian culture systems.

    OpenAIRE

    Nestor, Colm E; Ottaviano, Raffaele; Reinhardt, Diana; Cruickshanks, Hazel A; Mjoseng, Heidi K.; McPherson, Rhoanne C; Lentini, Antonio; Thomson, John P; Dunican, Donncha S; Pennings, Sari; Anderton, Stephen M.; Benson, Mikael; Meehan, Richard R

    2015-01-01

    BackgroundThe DNA methylation profile of mammalian cell lines differs from the primary tissue from which they were derived, exhibiting increasing divergence from the in vivo methylation profile with extended time in culture. Few studies have directly examined the initial epigenetic and transcriptional consequences of adaptation of primary mammalian cells to culture, and the potential mechanisms through which this epigenetic dysregulation occurs is unknown.ResultsWe demonstrate that adaptation...

  10. Plasma proteome profiles predict diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model

    NARCIS (Netherlands)

    Pas, te M.F.W.; Koopmans, S.J.; Kruijt, L.; Smits, M.A.

    2013-01-01

    Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25 % of all diabetic patients are unaware of their patho-physiological condition. Feeding behavior is often associated with the onset of the metabolic syndrome. We have deve

  11. Metabolic profiling of a myalgic encephalomyelitis/chronic fatigue syndrome discovery cohort reveals disturbances in fatty acid and lipid metabolism.

    Science.gov (United States)

    Germain, Arnaud; Ruppert, David; Levine, Susan M; Hanson, Maureen R

    2017-01-31

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) remains a continuum spectrum disease without biomarkers or simple objective tests, and therefore relies on a diagnosis from a set of symptoms to link the assortment of brain and body disorders to ME/CFS. Although recent studies show various affected pathways, the underlying basis of ME/CFS has yet to be established. In this pilot study, we compare plasma metabolic signatures in a discovery cohort, 17 patients and 15 matched controls, and explore potential metabolic perturbations as the aftermath of the complex interactions between genes, transcripts and proteins. This approach to examine the complex array of symptoms and underlying foundation of ME/CFS revealed 74 differentially accumulating metabolites, out of 361 (P metabolism and glycerophospholipid metabolism, combined with primary bile acid metabolism, as well as glyoxylate and dicarboxylate metabolism and a few other pathways, all involved broadly in fatty acid metabolism. Purines, including ADP and ATP, pyrimidines and several amino acid metabolic pathways were found to be significantly disturbed. Finally, glucose and oxaloacetate were two main metabolites affected that have a major effect on sugar and energy levels. Our work provides a prospective path for diagnosis and understanding of the underlying mechanisms of ME/CFS.

  12. Global profiling and rapid matching of natural products using diagnostic product ion network and in silico analogue database: Gastrodia elata as a case study.

    Science.gov (United States)

    Lai, Chang-Jiang-Sheng; Zha, Liangping; Liu, Da-Hui; Kang, Liping; Ma, Xiaojing; Zhan, Zhi-Lai; Nan, Tie-Gui; Yang, Jian; Li, Fajie; Yuan, Yuan; Huang, Lu-Qi

    2016-07-22

    Rapid discovery of novel compounds of a traditional herbal medicine is of vital significance for pharmaceutical industry and plant metabolic pathway analysis. However, discovery of unknown or trace natural products is an ongoing challenge. This study presents a universal targeted data-independent acquisition and mining strategy to globally profile and effectively match novel natural product analogues from an herbal extract. The famous medical plant Gastrodia elata was selected as an example. This strategy consists of three steps: (i) acquisition of accurate parent and adduct ions (PAIs) and the product ions data of all eluting compounds by untargeted full-scan MS(E) mode; (ii) rapid compound screening using diagnostic product ions (DPIs) network and in silico analogue database with SUMPRODUCT function to find novel candidates; and (iii) identification and isomerism discrimination of multiple types of compounds using ClogP and ions fragment behavior analyses. Using above data mining methods, a total of 152 compounds were characterized, and 70 were discovered for the first time, including series of phospholipids and novel gastroxyl derivatives. Furthermore, a number of gastronucleosides and phase II metabolites of gastrodin and parishins were discovered, including glutathionylated, cysteinylglycinated and cysteinated compounds, and phosphatidylserine analogues. This study extended the application of classical DPIs filter strategy and developed a structure-based screening approach with the potential for significant increase of efficiency for discovery and identification of trace novel natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparative study of metabolic profile of women presenting with polycystic ovary syndrome in relation to body mass index

    Directory of Open Access Journals (Sweden)

    Akshaya S.

    2016-08-01

    Conclusions: The study concludes that obese PCOS were at higher risk of developing hypertension, deranged lipid profile and insulin resistance than lean PCOS as obesity is significant contributor to metabolic syndrome. Glucose intolerance was present in both obese and lean PCOS. [Int J Reprod Contracept Obstet Gynecol 2016; 5(8.000: 2561-2565

  14. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2017-01-01

    Full Text Available In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA and partitial least-squares discriminant analysis (PLS-DA directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.

  15. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics.

    Science.gov (United States)

    Zhang, Ping; Zhu, Wentao; Wang, Dezhen; Yan, Jin; Wang, Yao; He, Lin

    2017-01-12

    In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF) based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA) and partitial least-squares discriminant analysis (PLS-DA) directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.

  16. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus

    Directory of Open Access Journals (Sweden)

    Chang Ha Park

    2016-01-01

    Full Text Available A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC and gas chromatography time-of-flight mass spectrometry (GC-TOFMS-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g, phenolics (0.0664 ± 0.0033 mg/g and flavonoids (0.0096 ± 0.0004 mg/g. Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA, hierarchical clustering analysis (HCA, Pearson’s correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87% at 1000 μg/mL, and DPPH activity (20.78%, followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might

  17. {sup 1}H NMR-based metabolic profiling reveals inherent biological variation in yeast and nematode model systems

    Energy Technology Data Exchange (ETDEWEB)

    Szeto, Samuel S. W.; Reinke, Stacey N.; Lemire, Bernard D., E-mail: bernard.lemire@ualberta.ca [University of Alberta, Department of Biochemistry, School of Molecular and Systems Medicine (Canada)

    2011-04-15

    The application of metabolomics to human and animal model systems is poised to provide great insight into our understanding of disease etiology and the metabolic changes that are associated with these conditions. However, metabolomic studies have also revealed that there is significant, inherent biological variation in human samples and even in samples from animal model systems where the animals are housed under carefully controlled conditions. This inherent biological variability is an important consideration for all metabolomics analyses. In this study, we examined the biological variation in {sup 1}H NMR-based metabolic profiling of two model systems, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Using relative standard deviations (RSD) as a measure of variability, our results reveal that both model systems have significant amounts of biological variation. The C. elegans metabolome possesses greater metabolic variance with average RSD values of 29 and 39%, depending on the food source that was used. The S. cerevisiae exometabolome RSD values ranged from 8% to 12% for the four strains examined. We also determined whether biological variation occurs between pairs of phenotypically identical yeast strains. Multivariate statistical analysis allowed us to discriminate between pair members based on their metabolic phenotypes. Our results highlight the variability of the metabolome that exists even for less complex model systems cultured under defined conditions. We also highlight the efficacy of metabolic profiling for defining these subtle metabolic alterations.

  18. A method of rapidly obtaining concentration-depth profiles from X-ray diffraction

    Science.gov (United States)

    Wiedemann, K. E.; Unnam, J.

    1985-01-01

    A broadened diffraction peak, or intensity band, is observed in the case diffraction from a nonhomogeneous phase in which the variations in compositions result in a range of lattice spacings. An intriguing aspect regarding the relationship between the X-ray diffraction band and the composition-depth profile is the hypersensitivity of the intensity band to the shape of the profile. A number of investigators have sought to use this sensitivity to construct high-precision profiles. Difficulties encountered are related to complications due to intensity broadening, and prohibitive computational requirements. Simulation techniques have provided the most accurate interpretation of the intensity band. However, the involved calculations have been prohibitively long. The present study discusses a technique which has simple computational requirements and is as accurate and flexible as the simulation techniques.

  19. Global metabolic profiling and its role in systems biology to advance personalized medicine in the 21st century.

    Science.gov (United States)

    Schnackenberg, Laura K

    2007-05-01

    Systems biology attempts to elucidate the complex interaction between genes, proteins and metabolites to provide a mechanistic understanding of cellular function and how this function is affected by disease processes, drug toxicity or drug efficacy effects. Global metabolic profiling is an important component of systems biology that can be applied in both preclinical and clinical settings for drug discovery and development, and to study disease mechanisms. The metabolic profile encodes the phenotype, which is composed of the genotype and environmental factors. The phenotypic profile can be used to make decisions about the best course of treatment for an individual patient. Understanding the combined effects of genetics and environment through a systems biology framework will enable the advancement of personalized medicine.

  20. Rapid Revival of a Patient after very Severe Metabolic Acidosis: A Case Report

    Directory of Open Access Journals (Sweden)

    Sajad Ahmadi

    2013-01-01

    Full Text Available Background: Metabolic acidosis is a fatal finding in trauma patients thatcomplicates the process of resuscitation.Case: The case was a 37-year-old man with open fracture in both legs and fracturein second lumbar vertebral (L2. The serial arterial blood gas (ABG test resultsshowed a pH value of 6.7 indicating a very severe and special case of metabolicacidosis. The rate of mortality for such a case was very high. The patient wastreated with sodium bicarbonate and successfully revived after four hours posttreatment and metabolic acidosis was resolved.Conclusion: This indicated that bicarbonate administration is useful for verysevere cases. The good condition of the patient after survival from the severeacademia allowed for extubation.

  1. Effects of 3-styrylchromones on metabolic profiles and cell death in oral squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakagami

    2015-01-01

    Full Text Available 4H-1-benzopyran-4-ones (chromones are important naturally-distributing compounds. As compared with flavones, isoflavones and 2-styrylchromones, there are only few papers of 3-styrylchromones that have been published. We have previously reported that among fifteen 3-styrylchromone derivatives, three new synthetic compounds that have OCH3 group at the C-6 position of chromone ring, (E-3-(4-hydroxystyryl-6-methoxy-4H-chromen-4-one (compound 11, (E-6-methoxy-3-(4-methoxystyryl-4H-chromen-4-one (compound 4, (E-6-methoxy-3-(3,4,5-trimethoxystyryl-4H-chromen-4-one (compound 6 showed much higher cytotoxicities against four epithelial human oral squamous cell carcinoma (OSCC lines than human normal oral mesenchymal cells. In order to further confirm the tumor specificities of these compounds, we compared their cytotoxicities against both human epithelial malignant and non-malignant cells, and then investigated their effects on fine cell structures and metabolic profiles and cell death in human OSCC cell line HSC-2. Cytotoxicities of compounds 4, 6, 11 were assayed with MTT method. Fine cell structures were observed under transmission electron microscope. Cellular metabolites were extracted with methanol and subjected to CE-TOFMS analysis. Compounds 4, 6, 11 showed much weaker cytotoxicity against human oral keratinocyte and primary human gingival epithelial cells, as compared with HSC-2, confirming their tumor-specificity, whereas doxorubicin and 5-FU were highly cytotoxic to these normal epithelial cells, giving unexpectedly lower tumor-specificity. The most cytotoxic compound 11, induced the mitochondrial vacuolization, autophagy suppression followed by apoptosis induction, and changes in the metabolites involved in amino acid and glycerophospholipid metabolisms. Chemical modification of lead compound 11 may be a potential choice for designing new type of anticancer drugs.

  2. Metabolic profiling of the resurrection plant Haberlea rhodopensis during desiccation and recovery.

    Science.gov (United States)

    Moyankova, Daniela; Mladenov, Petko; Berkov, Strahil; Peshev, Darin; Georgieva, Desislava; Djilianov, Dimitar

    2014-12-01

    Desiccation tolerance is among the most important parameters for crop improvement under changing environments. Resurrection plants are useful models for both theoretical and practical studies. We performed metabolite profiling via gas chromatography coupled with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) and analyzed the antioxidant capacity of the endemic resurrection plant Haberlea rhodopensis at desiccation and recovery. More than 100 compounds were evaluated. Stress response included changes in both primary and secondary metabolic pathways. The high amounts of the specific glycoside myconoside and some phenolic acids - e.g. syringic and dihydrocaffeic acid under normal conditions tend to show their importance for the priming of H. rhodopensis to withstand severe desiccation and oxidative stress. The accumulation of sucrose (resulting from starch breakdown), total phenols, β-aminoisobutyric acid, β-sitosterol and α-tocopherol increased up to several times at later stages of desiccation. Extracts of H. rhodopensis showed high antioxidant capacity at stress and normal conditions. Myconoside was with the highest antioxidant properties among tested phenolic compounds. Probably, the evolution of resurrection plants under various local environments has resulted in unique desiccation tolerance with specific metabolic background. In our case, it includes the accumulation of a relatively rare compound (myconoside) that contributes alone and together with other common metabolites. Further systems biology studies on the involvement of carbohydrates, phenolic acids and glycosides in the desiccation tolerance and antioxidant capacity of H. rhodopensis will definitely help in achieving the final goal - improving crop drought tolerance. © 2014 Scandinavian Plant Physiology Society.

  3. The effect of weight loss by energy restriction on metabolic profile and glucose tolerance in ponies.

    Science.gov (United States)

    Van Weyenberg, S; Hesta, M; Buyse, J; Janssens, G P J

    2008-10-01

    In nine initially obese ponies, a weekly weight loss according to 1% of their ideal body weight was evaluated for its impact on insulin sensitivity and metabolic profile. Weight loss was obtained solely through energy restriction, initially at 70% of maintenance energy requirements, but to maintain constant weight loss, feed amount had to be decreased to 50% and 35% of maintenance energy requirement during the course of the trial. An oral glucose tolerance test (OGTT) was performed at weeks 0, 10 and 17. Fasted blood samples were taken on weeks 0, 3, 10, 17 for analysis of triglycerides (TG), non-esterified fatty acids (NEFA), creatine phosphokinase (CPK), lactate dehydrogenase (LDH), T(3), T(4) and leptin. Total average weight loss was 18.2%. When the OGTT was performed at weeks 0, 10 and 17, ponies had lost 0.22%, 9.9% and 16.3% of their initial weight respectively. Weight loss was associated with a decreased AUC for glucose and insulin. Moreover, greater % weight loss was associated with a significantly lower glucose peak and a lower area under the curve (AUC glucose). The lower glucose response after an OGTT in lean ponies was not the result of an increased insulin secretion, but an improved insulin sensitivity. Restricted feeding led to mobilization of TG and NEFA and to a reduced basal metabolism, with lower LDH, CPK, T(3) and leptin. in obese Shetland ponies, weight loss at a rate of 1% of ideal body weight per week through restricted energy intake, ameliorated insulin sensitivity.

  4. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling

    Energy Technology Data Exchange (ETDEWEB)

    R. Quatrini; C. Appia-Ayme; Y. Denis; J. Ratouchniak; F. Veloso; J. Valdes; C. Lefimil; S. Silver; F. Roberto; O. Orellana; F. Denizot; E. Jedlicki; D. Holmes; V. Bonnefoy

    2006-09-01

    Acidithiobacillus ferrooxidans is a well known acidophilic, chemolithoautotrophic, Gram negative, bacterium involved in bioleaching and acid mine drainage. In aerobic conditions, it gains energy mainly from the oxidation of ferrous iron and/or reduced sulfur compounds present in ores. After initial oxidation of the substrate, electrons from ferrous iron or sulfur enter respiratory chains and are transported through several redox proteins to oxygen. However, the oxidation of ferrous iron and reduced sulfur compounds has also to provide electrons for the reduction of NAD(P) that is subsequently required for many metabolic processes including CO2 fixation. To help to unravel the enzymatic pathways and the electron transfer chains involved in these processes, a genome-wide microarray transcript profiling analysis was carried out. Oligonucleotides corresponding to approximately 3000 genes of the A. ferrooxidans type strain ATCC23270 were spotted onto glass-slides and hybridized with cDNA retrotranscribed from RNA extracted from ferrous iron and sulfur grown cells. The genes which are preferentially transcribed in ferrous iron conditions and those preferentially transcribed in sulfur conditions were analyzed. The expression of a substantial number of these genes has been validated by real-time PCR, Northern blot hybridization and/or immunodetection analysis. Our results support and extend certain models of iron and sulfur oxidation and highlight previous observations regarding the possible presence of alternate electron pathways. Our findings also suggest ways in which iron and sulfur oxidation may be co-ordinately regulated. An accompanying paper (Appia-Ayme et al.) describes results pertaining to other metabolic functions.

  5. Use of metabolic profiles in dairy cattle in tropical and subtropical countries on smallholder dairy farms.

    Science.gov (United States)

    Whitaker, D A; Goodger, W J; Garcia, M; Perera, B M; Wittwer, F

    1999-01-27

    Metabolic profile testing has generally been used as part of a multidisciplinary approach for dairy herds in temperate climates. Our goal was to evaluate the effectiveness of the technique for identifying constraints on productivity in small herds in environments less favorable for milk production. Metabolites tested were chosen for stability in the sample after collection of blood, ease of analysis and practical knowledge of the meaning of the results. Blood levels of five different metabolites in low-producing dairy cows belonging to smallholders in tropical and subtropical environments were measured. The study involved 13 projects with 80 cows in each, carried out in six Latin American, six Asian, and one southern European countries. Data were also collected on feeding, body condition score (BCS) and weight change, parasitism, and reproduction. In Chile, Mexico, Paraguay, Philippines, Uruguay, and Venezuela, globulin levels were high in > 17% of cows sampled on each occasion. Globulin levels were also high in Turkey and Vietnam on one or more occasions. In Paraguay, 49% of cows had high globulin levels at two to three months after calving. These results suggest that inflammatory disease was present to a potentially important degree, although this was not always investigated and not always taken into account. In all countries except Mexico and Venezuela, high beta-hydroxybutyrate (BHB) levels before calving in many cows highlighted the presence of condition loss in late pregnancy, an important potential constraint on productivity and fertility. Fewer cows showed high BHB levels in lactation, whereas change in BCS and weight was more sensitive for measuring negative energy balance. Urea concentrations were low in only small numbers of cows suggesting that dietary protein shortages were not common. Albumin values were low mainly in cows where globulin values were high and, hence, did not generally provide additional information. The exception was in China where

  6. Gender effect on the metabolic profile of ostriches (Struthio camelus domesticus

    Directory of Open Access Journals (Sweden)

    Carmelo Di Meo

    2010-01-01

    Full Text Available In order to better define the effect of the sex on the metabolic profile of young ostriches (Struthio camelus domesticus, forty birds were divided into two groups by sex (20 males vs20 females. The animals were fed ad libitumnatural pasture and corn silage. The daily ration was completed by administering 1200 g/head of a commercial concentrate with the following chemical composition expressed as a percentage of dry mat- ter: crude protein 18.8, crude fibre 8.4, ether extract 3.6, ash 7.5. After about 12 h of fasting, in the mor- ning the blood was collected from the wing vein. The following biochemical parameters were determined: glu- cose, cholesterol, triglycerides, lactate (LAC, total protein (TP, uric acid, total bilirubin (Tbil, creatinine (CREA, calcium (Ca, magnesium (Mg, phosphorus (P, natrium (Na, potassium (K, chloride (Cl, iron (Fe, aspartate aminotransferase (AST, alanine aminotransferase (ALT, alkaline phosphatase (AP, choline- sterase (ChE; α-amylase (Amyl, lipase (LIPA; γ-glutamyltransferase (GGT. Sex significantly affected only some haematic parameters: in the females total protein and calcium were higher than in the males (TP, 43.3 vs38.9 g/l, respectively for females and males, P< 0.05; Ca, 2.99 vs2.59 mmol/l, respectively for females and males, P< 0.01. The other haematic parameters did not show signifi- cant differences by sex, and the average values were: glucose (9.87 mmol/l, cholesterol (1.96 mmol/l, triglycerides (1.56 mmol/l, LAC (6.60 mmol/l, uric acid (361 mmol/l, CREA (31.95 µmol/l, Na (144.8 mmol/l, K (3.27 mmol/l, Cl (109.7 mmol/l, P (1.47 mmol/l, Mg (1.10 mmol/l, Fe (9.22 µmol/l, Tbil (9.28 µmol/l, AST (341.3 U/l, ALT (11.42 U/l, AP (75.8 U/l, GGT (10.07 U/l, Amyl (6.97 U/l, LIPA (241.2 U/l, ChE (385.1 U/l. The results of our study, in agreement with previous findings, contribute to enhance the knowledge on the metabolic profile of ostriches in function of the sex.

  7. Serum metabolic and minerals profile in norgestomet primed postpartum anestrous surti buffaloes

    Directory of Open Access Journals (Sweden)

    Sanjay C. Parmar

    2015-05-01

    Full Text Available Aim: The study was undertaken to find out the serum metabolic and minerals profile in postpartum anestrous surti buffaloes treated with norgestomet ear implants alone and in combination with pregnant mare serum gonadotropin (PMSG. Materials and Methods: The study was conducted on 18 postpartum anestrous Surti buffaloes divided into three groups of six animals each at random to conduct the experiment. The buffaloes in Group-I and Group-II were implanted with Crestar ear implant for 9 days together with 2 ml injection of Crestar solution given i/m on the day of the implant insertion. In Group-II, additionally 500 IU PMSG was given i/m on the day of implant removal, whereas the buffaloes in Group-III served as anestrous control group and received 5 ml Normal Saline i/m on day 0 and 9 as a placebo treatment. Results: The overall serum total protein values did not differ significantly (p > 0.05 between time (days intervals in any of the groups. The mean serum total cholesterol levels at 10th day and on the day of estrus were found significantly lower (p 0.05 at 10th day and on the day of estrus between treatment groups (T1 and T2. The overall mean serum cobalt, zinc, iron, and manganese values did not differ significantly (p > 0.05 between different time intervals among any of the groups, except copper which was significantly lower (p < 0.05 at 10th day in control group as compared to treatment groups. Conclusion: Microelements cannot be synthesized in the body. Hence, it is concluded that the mineral mixture should be supplied daily in the animals ration to suffice the requirement of the trace elements. The mean serum metabolic and micro-minerals profiles in treatment and control groups revealed that overall mean serum total protein, cholesterol, copper, and zinc levels were apparently higher in treatment groups whereas, mean serum cobalt, iron, and manganese concentration had no consistent trend between treatment and control groups of Surti

  8. A proton nuclear magnetic resonance-based metabonomics study of metabolic profiling in immunoglobulin a nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Weiguo; Che, Wenti; Guimai, Zuo; Chen, Jiejing [181st Hospital Guangxi, Central Laboratory, Laboratory of Metabolic Diseases Research, Guangxi Province (China); Li, Liping [Guangxi Normal University, The Life Science College, Guangxi Province (China); Li, Wuxian [Key Laboratory of Laboratory Medical Diagnostics of Education Ministry, Chongqiong Medical University, Chongqing (China); Dai, Yong [Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People' s Hospital), Shenzhen, Guangdong Province (China)

    2012-07-01

    Objectives: Immunoglobulin A nephropathy is the most common cause of chronic renal failure among primary glomerulonephritis patients. The ability to diagnose immunoglobulin A nephropathy remains poor. However, renal biopsy is an inconvenient, invasive, and painful examination, and no reliable biomarkers have been developed for use in routine patient evaluations. The aims of the present study were to identify immunoglobulin A nephropathy patients, to identify useful biomarkers of immunoglobulin A nephropathy and to establish a human immunoglobulin A nephropathy metabolic profile. Methods: Serum samples were collected from immunoglobulin A nephropathy patients who were not using immunosuppressants. A pilot study was undertaken to determine disease-specific metabolite biomarker profiles in three groups: healthy controls (N = 23), low-risk patients in whom immunoglobulin A nephropathy was confirmed as grades I-II by renal biopsy (N = 23), and high-risk patients with nephropathies of grades IV-V (N = 12). Serum samples were analyzed using proton nuclear magnetic resonance spectroscopy and by applying multivariate pattern recognition analysis for disease classification. Results: Compared with the healthy controls, both the low-risk and high-risk patients had higher levels of phenylalanine, myo-inositol, lactate, L6 lipids ( CH-CH{sub 2}-CH = O), L5 lipids (-CH{sub 2}-C = O), and L3 lipids (-CH{sub 2}-CH{sub 2}-C = O) as well as lower levels of {beta}-glucose, {alpha}-glucose, valine, tyrosine, phosphocholine, lysine, isoleucine, glycerolphosphocholine, glycine, glutamine, glutamate, alanine, acetate, 3-hydroxybutyrate, and 1-methylhistidine. Conclusions: These metabolites investigated in this study may serve as potential biomarkers of immunoglobulin A nephropathy. Point scoring of pattern recognition analysis was able to distinguish immunoglobulin A nephropathy patients from healthy controls. However, there were no obvious differences between the low-risk and high

  9. NMR Metabolic profiling of green tea (Camellia sinensis L.) leaves grown at Kemuning, Indonesia

    Science.gov (United States)

    Wahyuni, D. S. C.; Kristanti, M. W.; Putri, R. K.; Rinanto, Y.

    2017-01-01

    Green tea (Camellia sinensis L.) has been famous as a beverage and natural medicine. It contains a broad range of primary and secondary metabolites i.e. polyphenols. Nuclear Magnetic Resonance (NMR) has been widely used for metabolic profiling in medicinal plants. It provides a very fast and detailed analysis of the biomolecular composition of crude extracts. Moreover, an NMR spectrum is a physical characteristic of a compound and thus highly reproducible. Therefore, this study aims to profile metabolites of three different varieties of green tea C. Sinensis grown in Kemuning, Middle Java. Three varieties of green tea collected on Kemuning (TR1 2025, Gambung 4/5, and Chiaruan 143) were used in this study. 1H-NMR spectra were recorded at 230C on a 400 MHz Agilent WB (Widebore). The analysis was performed on dried green tea leaves and analyzed by 1H-NMR, 2D-J-resolved and 1H-1H correlated spectroscopy (COSY). MestRenova version 11.0.0 applied to identify metabolites in samples. A 1H-NMR spectrum of tea showed amino acids and organic acids signal at the area δ 0.8-4.0. These were theanine, alanine, threonine, succinic acid, aspartic acid, lactic acid. Anomeric protons of carbohydrate were shown by the region of β-glucose, α-glucose, fructose and sucrose. The phenolic region was depicted at area δ 5.5-8.5. Epigallocatechin derivates and caffeine were detected in the tea leaves. The detail compound identification was observed and discussed in the text.

  10. A proton nuclear magnetic resonance-based metabonomics study of metabolic profiling in immunoglobulin a nephropathy

    Directory of Open Access Journals (Sweden)

    Weiguo Sui

    2012-01-01

    Full Text Available OBJECTIVES: Immunoglobulin A nephropathy is the most common cause of chronic renal failure among primary glomerulonephritis patients. The ability to diagnose immunoglobulin A nephropathy remains poor. However, renal biopsy is an inconvenient, invasive, and painful examination, and no reliable biomarkers have been developed for use in routine patient evaluations. The aims of the present study were to identify immunoglobulin A nephropathy patients, to identify useful biomarkers of immunoglobulin A nephropathy and to establish a human immunoglobulin A nephropathy metabolic profile. METHODS: Serum samples were collected from immunoglobulin A nephropathy patients who were not using immunosuppressants. A pilot study was undertaken to determine disease-specific metabolite biomarker profiles in three groups: healthy controls (N = 23, low-risk patients in whom immunoglobulin A nephropathy was confirmed as grades I-II by renal biopsy (N = 23, and high-risk patients with nephropathies of grades IV-V (N = 12. Serum samples were analyzed using proton nuclear magnetic resonance spectroscopy and by applying multivariate pattern recognition analysis for disease classification. RESULTS: Compared with the healthy controls, both the low-risk and high-risk patients had higher levels of phenylalanine, myo-Inositol, lactate, L6 lipids ( = CH-CH2-CH = O, L5 lipids (-CH2-C = O, and L3 lipids (-CH2-CH2-C = O as well as lower levels of β -glucose, α-glucose, valine, tyrosine, phosphocholine, lysine, isoleucine, glycerolphosphocholine, glycine, glutamine, glutamate, alanine, acetate, 3-hydroxybutyrate, and 1-methylhistidine. CONCLUSIONS: These metabolites investigated in this study may serve as potential biomarkers of immunoglobulin A nephropathy. Point scoring of pattern recognition analysis was able to distinguish immunoglobulin A nephropathy patients from healthy controls. However, there were no obvious differences between the low-risk and high-risk groups in our

  11. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression

    Directory of Open Access Journals (Sweden)

    Rydzak Thomas

    2012-09-01

    Full Text Available Abstract Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative

  12. Offspring body size and metabolic profile - effects of lifestyle intervention in obese pregnant women.

    Science.gov (United States)

    Tanvig, Mette

    2014-07-01

    detected between the RCT offspring and the external reference group of offspring of lean mothers. Lifestyle intervention in obese pregnant women has the potential to modify the intrauterine environment and confer long-term benefits to the child. In this follow-up study, lifestyle intervention in pregnancy did not result in changes in offspring body composition or metabolic risk factors at 2.8 years. This might be due to a limited difference in gestational weight gain between follow-up attendees. When comparing offspring of obese women with offspring of normal weight mothers all outcomes were similar. We speculate that obese mothers entering a lifestyle intervention RCT regardless of the intervention have a high motivation to focus on healthy lifestyle during pregnancy, which makes it difficult to determine the effects of the randomized lifestyle intervention compared to an unselected control group of obese women. Our studies (paper I and III) on birth abdominal circumference show that abdominal size at birth is a good predictor of later adverse metabolic profile. Abdominal circumference at birth may reflect visceral adiposity and this measurement together with birth weight are strongly associated to later adverse metabolic outcome. Future studies should be performed in other populations to confirm this.

  13. Predator-induced phenotypic plasticity in metabolism and rate of growth: rapid adaptation to a novel environment.

    Science.gov (United States)

    Handelsman, Corey A; Broder, E Dale; Dalton, Christopher M; Ruell, Emily W; Myrick, Christopher A; Reznick, David N; Ghalambor, Cameron K

    2013-12-01

    Novel environments often impose directional selection for a new phenotypic optimum. Novel environments, however, can also change the distribution of phenotypes exposed to selection by inducing phenotypic plasticity. Plasticity can produce phenotypes that either align with or oppose the direction of selection. When plasticity and selection are parallel, plasticity is considered adaptive because it provides a better pairing between the phenotype and the environment. If the plastic response is incomplete and falls short of producing the optimum phenotype, synergistic selection can lead to genetic divergence and bring the phenotype closer to the optimum. In contrast, non-adaptive plasticity should increase the strength of selection, because phenotypes will be further from the local optimum, requiring antagonistic selection to overcome the phenotype-environment mismatch and facilitate adaptive divergence. We test these ideas by documenting predator-induced plasticity for resting metabolic rate and growth rate in populations of the Trinidadian guppy (Poecilia reticulata) adapted to high and low predation. We find reduced metabolic rates and growth rates when cues from a predator are present during development, a pattern suggestive of adaptive and non-adaptive plasticity, respectively. When we compared populations recently transplanted from a high-predation environment into four streams lacking predators, we found evidence for rapid adaptive evolution both in metabolism and growth rate. We discuss the implications for predicting how traits will respond to selection, depending on the type of plasticity they exhibit.

  14. Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders.

    Science.gov (United States)

    Chen, Zhimin; Wang, Guo-Xiao; Ma, Sara L; Jung, Dae Young; Ha, Hyekyung; Altamimi, Tariq; Zhao, Xu-Yun; Guo, Liang; Zhang, Peng; Hu, Chun-Rui; Cheng, Ji-Xin; Lopaschuk, Gary D; Kim, Jason K; Lin, Jiandie D

    2017-08-01

    Brown and white adipose tissue exerts pleiotropic effects on systemic energy metabolism in part by releasing endocrine factors. Neuregulin 4 (Nrg4) was recently identified as a brown fat-enriched secreted factor that ameliorates diet-induced metabolic disorders, including insulin resistance and hepatic steatosis. However, the physiological mechanisms through which Nrg4 regulates energy balance and glucose and lipid metabolism remain incompletely understood. The aims of the current study were: i) to investigate the regulation of adipose Nrg4 expression during obesity and the physiological signals involved, ii) to elucidate the mechanisms underlying Nrg4 regulation of energy balance and glucose and lipid metabolism, and iii) to explore whether Nrg4 regulates adipose tissue secretome gene expression and adipokine secretion. We examined the correlation of adipose Nrg4 expression with obesity in a cohort of diet-induced obese mice and investigated the upstream signals that regulate Nrg4 expression. We performed metabolic cage and hyperinsulinemic-euglycemic clamp studies in Nrg4 transgenic mice to dissect the metabolic pathways regulated by Nrg4. We investigated how Nrg4 regulates hepatic lipid metabolism in the fasting state and explored the effects of Nrg4 on adipose tissue gene expression, particularly those encoding secreted factors. Adipose Nrg4 expression is inversely correlated with adiposity and regulated by pro-inflammatory and anti-inflammatory signaling. Transgenic expression of Nrg4 increases energy expenditure and augments whole body glucose metabolism. Nrg4 protects mice from diet-induced hepatic steatosis in part through activation of hepatic fatty acid oxidation and ketogenesis. Finally, Nrg4 promotes a healthy adipokine profile during obesity. Nrg4 exerts pleiotropic beneficial effects on energy balance and glucose and lipid metabolism to ameliorate obesity-associated metabolic disorders. Biologic therapeutics based on Nrg4 may improve both type 2

  15. Metabolic profile in growing buffalo heifers fed diet with different energy content

    Directory of Open Access Journals (Sweden)

    B. Gasparrini

    2010-02-01

    Full Text Available Aim of this study was to verify the relation among the mediators and indicators of nutritional status like insulin, glucagon, urea, cholesterol, triglycerides and total proteins in growing buffalo heifers, fed diets with different energy density. 12 Murrah heifers were randomly allocated into two dietary treatments (High, Group H; Low, Group L that differed in energetic levels (Group H: 5.8 UFL/d; Group L: 3.6 UFL/d. Every 30 days, for a total of five times, blood samples were collected at 08.00 h, before feeding, from the jugular vein in vacutainer tubes and analysed to determine metabolic profile. Data on haematic constants were analysed by ANOVA for repeated measures with treatment as the main factor. Low energy availability and low NSC reduced the glucose and insulin and increased glucagone and urea blood levels. The increase of NSC in the diet of group H during the experiment may caused a reduction of the fibre digestibility after the period of adaptation of the rumen microflora and, as a paradox effect, suffered for an energetic lack with a subsequent activation of lipolysis and mobilization of their body reserves. Liver and muscular synthesis increase in group with a high energy availability.

  16. Leaf Metabolic, Genetic, and Morphophysiological Profiles of Cultivated and Wild Rocket Salad (Eruca and Diplotaxis Spp.).

    Science.gov (United States)

    Taranto, Francesca; Francese, Gianluca; Di Dato, Francesco; D'Alessandro, Antonietta; Greco, Barbara; Onofaro Sanajà, Vincenzo; Pentangelo, Alfonso; Mennella, Giuseppe; Tripodi, Pasquale

    2016-07-27

    Rocket salad (Diplotaxis spp., Eruca spp.) is a leafy vegetable rich in health-promoting compounds and widely consumed. In the present study, metabolic profiles of 40 rocket accessions mainly retrieved from gene banks were assessed. Seven glucosinolates (GLSs) and 15 flavonol compounds were detected across genotypes. Dimeric 4-mercaptobutyl-GLS and 4-(β-d-glucopyranosyldisulfanyl)butyl-GLS were the major components of the total glucosinolate content. Flavonols were different between genera, with the exception of isorhamnetin 3,4'-diglucoside. Morphoagronomic traits and color coordinates were also scored. Results showed a negative correlation between color and GLSs, indicating these last as responsible for the increase of the intensity of green and yellow pigments as well as for the darkness of the leaf, whereas agronomic traits showed positive correlation with GLSs. Genetic diversity was assessed using inter simple sequence repeat (ISSR) markers, allowing separation of the accessions on the basis of the species and elucidating the observations made by means of phenotypic data.

  17. Metabolic profiling of vitamin C deficiency in Gulo-/- mice using proton NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Duggan, Gavin E. [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada); Joan Miller, B.; Jirik, Frank R. [University of Calgary, Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health (Canada); Vogel, Hans J., E-mail: vogel@ucalgary.ca [University of Calgary, Biochemistry Research Group, Department of Biological Sciences (Canada)

    2011-04-15

    Nutrient deficiencies are an ongoing problem in many populations and ascorbic acid is a key vitamin whose mild or acute absence leads to a number of conditions including the famously debilitating scurvy. As such, the biochemical effects of ascorbate deficiency merit ongoing scrutiny, and the Gulo knockout mouse provides a useful model for the metabolomic examination of vitamin C deficiency. Like humans, these animals are incapable of synthesizing ascorbic acid but with dietary supplements are otherwise healthy and grow normally. In this study, all vitamin C sources were removed after weaning from the diet of Gulo-/- mice (n = 7) and wild type controls (n = 7) for 12 weeks before collection of serum. A replicate study was performed with similar parameters but animals were harvested pre-symptomatically after 2-3 weeks. The serum concentration of 50 metabolites was determined by quantitative profiling of 1D proton NMR spectra. Multivariate statistical models were used to describe metabolic changes as compared to control animals; replicate study animals were used for external validation of the resulting models. The results of the study highlight the metabolites and pathways known to require ascorbate for proper flux.

  18. Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy.

    LENUS (Irish Health Repository)

    Horgan, Richard P

    2012-01-31

    Being born small for gestational age (SGA) confers increased risks of perinatal morbidity and mortality and increases the risk of cardiovascular complications and diabetes in later life. Accumulating evidence suggests that the etiology of SGA is usually associated with poor placental vascular development in early pregnancy. We examined metabolomic profiles using ultra performance liquid chromatography-mass spectrometry (UPLC-MS) in three independent studies: (a) venous cord plasma from normal and SGA babies, (b) plasma from a rat model of placental insufficiency and controls, and (c) early pregnancy peripheral plasma samples from women who subsequently delivered a SGA baby and controls. Multivariate analysis by cross-validated Partial Least Squares Discriminant Analysis (PLS-DA) of all 3 studies showed a comprehensive and similar disruption of plasma metabolism. A multivariate predictive model combining 19 metabolites produced by a Genetic Algorithm-based search program gave an Odds Ratio for developing SGA of 44, with an area under the Receiver Operator Characteristic curve of 0.9. Sphingolipids, phospholipids, carnitines, and fatty acids were among this panel of metabolites. The finding of a consistent discriminatory metabolite signature in early pregnancy plasma preceding the onset of SGA offers insight into disease pathogenesis and offers the promise of a robust presymptomatic screening test.

  19. A comparative study on lifestyle and metabolic profile in normal and obese individuals

    Directory of Open Access Journals (Sweden)

    Revathi R, Swetha S, MeghalathaTS, Arunakumari R

    2013-10-01

    Full Text Available Background/Aim: The aim of the present study was to evaluate the lifestyle and metabolic profiles in normal and obese. Material and Methods: A cross sectional study design was employed. Information on body weight, height, body fat, food choices, diet and physical activity behavior were collected by a questionnaire among 100 obese adults aged 18-35 years and compared with healthy individuals as controls. Blood samples were collected to analyze blood glucose, heamoglobin and total cholesterol. Result: Mean BMI for obese were 36.2±5 About 50% reported consuming no fruits or vegetables, while 80% preferred fried food over other forms of cooked food. The majority (60% engaged in 13mg/dl. Blood glucose levels (>100 & total cholesterol levels (>200 significantly higher (p<0.05 in obese individuals compared to control. Conclusions: Dietary and physical activity behaviour of the participants were generally poor. High blood glucose and cholesterol levels found among obese compared to normal. Innovative ways to improve consumption of fruits and vegetables and increase physical activity among the obese are needed.

  20. Effects of Supplemental Exogenous Emulsifier on Performance, Nutrient Metabolism, and Serum Lipid Profile in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Amitava Roy

    2010-01-01

    Full Text Available The effects of an exogenous emulsifier, glyceryl polyethylene glycol ricinoleate, on performance and carcass traits of broiler chickens were assessed. The emulsifier was added to the diet at dose rates of 0 (control, 1 (E1 and 2 (E2 % of added fat (saturated palm oil. Live weight gain (<.07 and feed conversion ratio (<.05 in 39 days were higher in the E1 dietary group. Gain: ME intake and gain: protein intake during the grower phase improved quadratically (<.05. Gross carcass traits were not affected. Body fat content and fat accretion increased (<.05 and liver fat content decreased (<.05 linearly with the level of emulsifier in diet. Fat excretion decreased (<.001 leading to increased ileal fat digestibility (<.06 in the E1 group (quadratic response. Metabolizable intake of N (<.1 and fat (<.05 increased quadratically due to supplementation of emulsifier in diet. Metabolism of trace elements and serum lipid profiles were not affected. The study revealed that supplementation of exogenous emulsifiers in diets containing moderate quantities of added vegetable fats may substantially improve broiler performance.

  1. Metabolic profiling of cholesterol and sex steroid hormones to monitor urological diseases.

    Science.gov (United States)

    Moon, Ju-Yeun; Choi, Man Ho; Kim, Jayoung

    2016-10-01

    Cholesterol and sex steroid hormones including androgens and estrogens play a critical role in the development and progression of urological diseases such as prostate cancer. This disease remains the most commonly diagnosed malignant tumor in men and is the leading cause of death from different cancers. Attempts to understand the role of cholesterol and steroid metabolism in urological diseases have been ongoing for many years, but despite this, our mechanistic and translational understanding remains elusive. In order to further evaluate the problem, we have taken an interest in metabolomics; a discipline dedicated to the systematic study of biologically active metabolites in cells, tissues, hair and biofluids. Recently, we provided evidence that a quantitative measurement of cholesterol and sex steroid metabolites can be successfully achieved using hair of human and mouse models. The overall goal of this short review article is to introduce current metabolomic technologies for the quantitative biomarker assay development and also to provide new insight into understanding the underlying mechanisms that trigger the pathological condition. Furthermore, this review will place a particular emphasis on how to prepare biospecimens (e.g., hair fiber), quantify molecular profiles and assess their clinical significance in various urological diseases.

  2. Metabolic Profiling of Systemic Lupus Erythematosus and Comparison with Primary Sjogren's Syndrome and Systemic Sclerosis.

    Directory of Open Access Journals (Sweden)

    Anders A Bengtsson

    Full Text Available Systemic lupus erythematosus (SLE is a chronic inflammatory autoimmune disease which can affect most organ systems including skin, joints and the kidney. Clinically, SLE is a heterogeneous disease and shares features of several other rheumatic diseases, in particular primary Sjögrens syndrome (pSS and systemic sclerosis (SSc, why it is difficult to diagnose The pathogenesis of SLE is not completely understood, partly due to the heterogeneity of the disease. This study demonstrates that metabolomics can be used as a tool for improved diagnosis of SLE compared to other similar autoimmune diseases. We observed differences in metabolic profiles with a classification specificity above 67% in the comparison of SLE with pSS, SSc and a matched group of healthy individuals. Selected metabolites were also significantly different between studied diseases. Biochemical pathway analysis was conducted to gain understanding of underlying pathways involved in the SLE pathogenesis. We found an increased oxidative activity in SLE, supported by increased xanthine oxidase activity and an increased turnover in the urea cycle. The most discriminatory metabolite observed was tryptophan, with decreased levels in SLE patients compared to control groups. Changes of tryptophan levels were related to changes in the activity of the aromatic amino acid decarboxylase (AADC and/or to activation of the kynurenine pathway.

  3. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress.

    Science.gov (United States)

    Zhang, Jing; Yang, Dongshuang; Li, Mingxia; Shi, Lianxuan

    2016-01-01

    Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max) and wild soybean (Glycine soja) under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrometry (GC-MS)-based metabolomics, to reveal the physiological and molecular differences in salt tolerance. According to comparisons of growth parameters under the two kinds of salt stresses, the level of inhibition in wild soybean was lower than in cultivated soybean, especially under alkali-salt stress. Moreover, wild soybean contained significantly higher amounts of phenylalanine, asparagine, citraconic acid, citramalic acid, citric acid and α-ketoglutaric acid under neutral-salt stress, and higher amounts of palmitic acid, lignoceric acid, glucose, citric acid and α-ketoglutaric acid under alkali-salt stress, than cultivated soybean. Further investigations demonstrated that the ability of wild soybean to salt tolerance was mainly based on the synthesis of organic and amino acids, and the more active tricarboxylic acid cycle under neutral-salt stress. In addition, the metabolite profiling analysis suggested that the energy generation from β-oxidation, glycolysis and the citric acid cycle plays important roles under alkali-salt stress. Our results extend the understanding of mechanisms involved in wild soybean salt tolerance and provide an important reference for increasing yields and developing salt-tolerant soybean cultivars.

  4. Metabolic Profiling Directly from the Petri Dish Using Nanospray Desorption Electrospray Ionization Imaging Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Watrous, Jeramie D.; Roach, Patrick J.; Heath, Brandi S.; Alexandrov, Theodore; Laskin, Julia; Dorrestein, Pieter C.

    2013-11-05

    Understanding molecular interaction pathways in complex biological systems constitutes a treasure trove of knowledge that might facilitate the specific, chemical manipulation of the countless microbiological systems that occur throughout our world. However, there is a lack of methodologies that allow the direct investigation of chemical gradients and interactions in living biological systems, in real time. Here, we report the use of nanospray desorption electrospray ionization (nanoDESI) imaging mass spectrometry for in vivo metabolic profiling of living bacterial colonies directly from the Petri dish with absolutely no sample preparation needed. Using this technique, we investigated single colonies of Shewanella oneidensis MR-1, Bacillus subtilis 3610, and Streptomyces coelicolor A3(2) as well as a mixed biofilm of S. oneidensis MR-1 and B. subtilis 3610. Data from B. subtilis 3610 and S. coelicolor A3(2) provided a means of validation for the method while data from S. oneidensis MR-1 and the mixed biofilm showed a wide range of compounds that this bacterium uses for the dissimilatory reduction of extracellular metal oxides, including riboflavin, iron-bound heme and heme biosynthetic intermediates, and the siderophore putrebactin.

  5. Metabolic Profiles Reveal Changes in Wild and Cultivated Soybean Seedling Leaves under Salt Stress.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Clarification of the metabolic mechanisms underlying salt stress responses in plants will allow further optimization of crop breeding and cultivation to obtain high yields in saline-alkali land. Here, we characterized 68 differential metabolites of cultivated soybean (Glycine max and wild soybean (Glycine soja under neutral-salt and alkali-salt stresses using gas chromatography-mass spectrometry (GC-MS-based metabolomics, to reveal the physiological and molecular differences in salt tolerance. According to comparisons of growth parameters under the two kinds of salt stresses, the level of inhibition in wild soybean was lower than in cultivated soybean, especially under alkali-salt stress. Moreover, wild soybean contained significantly higher amounts of phenylalanine, asparagine, citraconic acid, citramalic acid, citric acid and α-ketoglutaric acid under neutral-salt stress, and higher amounts of palmitic acid, lignoceric acid, glucose, citric acid and α-ketoglutaric acid under alkali-salt stress, than cultivated soybean. Further investigations demonstrated that the ability of wild soybean to salt tolerance was mainly based on the synthesis of organic and amino acids, and the more active tricarboxylic acid cycle under neutral-salt stress. In addition, the metabolite profiling analysis suggested that the energy generation from β-oxidation, glycolysis and the citric acid cycle plays important roles under alkali-salt stress. Our results extend the understanding of mechanisms involved in wild soybean salt tolerance and provide an important reference for increasing yields and developing salt-tolerant soybean cultivars.

  6. Carbon utilization profiles of river bacterial strains facing sole carbon sources suggest metabolic interactions.

    Science.gov (United States)

    Goetghebuer, Lise; Servais, Pierre; George, Isabelle F

    2017-05-01

    Microbial communities play a key role in water self-purification. They are primary drivers of biogenic element cycles and ecosystem processes. However, these communities remain largely uncharacterized. In order to understand the diversity-heterotrophic activity relationship facing sole carbon sources, we assembled a synthetic community composed of 20 'typical' freshwater bacterial species mainly isolated from the Zenne River (Belgium). The carbon source utilization profiles of each individual strain and of the mixed community were measured in Biolog Phenotype MicroArrays PM1 and PM2A microplates that allowed testing 190 different carbon sources. Our results strongly suggest interactions occurring between our planktonic strains as our synthetic community showed metabolic properties that were not displayed by its single components. Finally, the catabolic performances of the synthetic community and a natural community from the same sampling site were compared. The synthetic community behaved like the natural one and was therefore representative of the latter in regard to carbon source consumption. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Influence of physical and emotional activity on the metabolic profile of blood serum of race horses

    Directory of Open Access Journals (Sweden)

    T. I. Bayeva

    2016-09-01

    Full Text Available In the article data are presented on dynamics of the level of indicators of metabolic profile of blood serum of race horses of the Ukrainian riding breed in the conditions of physical and emotional loading. Clinically healthy race horses were the object of  research. Blood was taken from the jugular vein to obtain serum and for further biochemical research. For the research 12 race horses from a training group were chosen. From time to time the animals took part in competitions; they were not specially used in races and were mostly used for the training of junior riders and sportsmen of different levels. Blood was taken in conditions of relative rest after ordinary training and after emotional stress during the entertainment performances when a large number of people were present and loud music was played. In the blood serum the following biochemical indicators were defined: whole protein, urea, creatinine, uric acid, total bilirubin and its fractions, glucose, cholestererol, triacylglycerol, calcium, ferrum, lactate, pyruvate, activity of the AlAT, SGOT, GGTP, LDH, an alkaline phosphatase – which makes it possible to determine reasonably accurately the adaptation potential of a horse under various types of loading. We established that during training and psychoemotional loading of racing horses of the training group of the Ukrainian riding breed, multidirectional changes in the level of biochemical indicators of blood serum occurred, which is evidence of stress in the metabolic processes in the animals’ organisms. Concentration of a biomarker of an oxidative stress, uric acid, increased after physical loading by 8.6%, and after emotional loading by 55.1%, which demonstrates that emotional stress had the more negative effect, indicating insufficient adaptation by the horses before demonstration performances. After physical loading, reaction of transamination in the horses’ liver cells intensified, and after emotional loading its intensity

  8. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions.

    Directory of Open Access Journals (Sweden)

    Olga Østrup

    Full Text Available Fertilization is followed by complex changes in cytoplasmic composition and extensive chromatin reprogramming which results in the abundant activation of totipotent embryonic genome at embryonic genome activation (EGA. While chromatin reprogramming has been widely studied in several species, only a handful of reports characterize changing transcriptome profiles and resulting metabolic changes in cleavage stage embryos. The aims of the current study were to investigate RNA profiles of in vivo developed (ivv and in vitro produced (ivt porcine embryos before (2-cell stage and after (late 4-cell stage EGA and determine major metabolic changes that regulate totipotency. The period before EGA was dominated by transcripts responsible for cell cycle regulation, mitosis, RNA translation and processing (including ribosomal machinery, protein catabolism, and chromatin remodelling. Following EGA an increase in the abundance of transcripts involved in transcription, translation, DNA metabolism, histone and chromatin modification, as well as protein catabolism was detected. The further analysis of members of overlapping GO terms revealed that despite that comparable cellular processes are taking place before and after EGA (RNA splicing, protein catabolism, different metabolic pathways are involved. This strongly suggests that a complex metabolic switch accompanies EGA. In vitro conditions significantly altered RNA profiles before EGA, and the character of these changes indicates that they originate from oocyte and are imposed either before oocyte aspiration or during in vitro maturation. IVT embryos have altered content of apoptotic factors, cell cycle regulation factors and spindle components, and transcription factors, which all may contribute to reduced developmental competence of embryos produced in vitro. Overall, our data are in good accordance with previously published, genome-wide profiling data in other species. Moreover, comparison with mouse and

  9. Metabolic profiling of Gynostemma pentaphyllum extract in rat serum, urine and faeces after oral administration.

    Science.gov (United States)

    Chen, Dao-Jin; Hu, Hua-Gang; Xing, Shao-Fang; Gao, Ya-Jun; Xu, Si-Fan; Piao, Xiang-Lan

    2014-10-15

    Folk drug Gynostemma pentaphyllum (Thunb.) Makino contains many biologically active phytochemicals which have been demonstrated to be effective against chronic diseases. As in vivo anti-tumor experiments of G. pentaphyllum extract (GP) show much stronger antitumor activities than in vitro, it is important and necessary to understand the metabolic study of GP. A sensitive and specific U-HPLC-MS method was utilized for the first time to rapidly identify gypenosides and its possible metabolites in rat serum, urine, and faeces after oral administration. Solid phase extraction was utilized in the sample preparation. Negative Electrospray ionisation (ESI) mass spectrometry was used to discern gypenosides and its possible metabolites in rat samples. As a result, after oral administration, a total of seven metabolites of G. pentaphyllum extract were assigned, two from the rat serum and seven both from the rat urine and faeces. As metabolites of G. pentaphyllum extract, all of them have never been reported before. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effects of Regular Physical Exercises in the Water on the Metabolic Profile of Women with Abdominal Obesity

    Directory of Open Access Journals (Sweden)

    Kasprzak Zbigniew

    2014-07-01

    Full Text Available Recreational physical exercise in the water is predominantly based on aerobic metabolism. Since it involves both carbohydrate and lipid sources of energy, aqua aerobics has a beneficial effect on metabolism of these substrates. The aim of the study was to assess the impact of a 3 month aqua aerobics training program on the metabolic profile of women with abdominal obesity. The study sample comprised 32 women aged 41-72 years. Somatic characteristics and variables characterizing carbohydrate and lipid metabolism were measured before the commencement and after the completion of the training program. During the 2nd measurement all mean anthropometric variables were found to be significantly lower (p<0.01. In the blood lipid profile, the concentrations of total cholesterol, LDL-cholesterol and HOMAIR were significantly lower (p<0.01. Furthermore, the levels of fasting triglycerides, glucose and insulin were reduced significantly (p<0.05 after the training program. The aqua aerobics program contributed to positive changes in lipid metabolism, anthropometric variables, as well as the fasting insulin, glucose levels and insulin resistance index in women with abdominal obesity.

  11. Urinary Metabolomic Approach Provides New Insights into Distinct Metabolic Profiles of Glutamine and N-Carbamylglutamate Supplementation in Rats.

    Science.gov (United States)

    Liu, Guangmang; Cao, Wei; Fang, Tingting; Jia, Gang; Zhao, Hua; Chen, Xiaoling; Wu, Caimei; Wang, Jing

    2016-08-04

    Glutamine and N-carbamylglutamate can enhance growth performance and health in animals, but the underlying mechanisms are not yet elucidated. This study aimed to investigate the effect of glutamine and N-carbamylglutamate supplementation in rat metabolism. Thirty rats were fed a control, glutamine, or N-carbamylglutamate diet for four weeks. Urine samples were analyzed by nuclear magnetic resonance (NMR)-based metabolomics, specifically high-resolution ¹H NMR metabolic profiling combined with multivariate data analysis. Glutamine significantly increased the urine levels of acetamide, acetate, citrulline, creatinine, and methymalonate, and decreased the urine levels of ethanol and formate (p carbamylglutamate significantly increased the urine levels of creatinine, ethanol, indoxyl sulfate, lactate, methymalonate, acetoacetate, m-hydroxyphenylacetate, and sarcosine, and decreased the urine levels of acetamide, acetate, citrulline, creatine, glycine, hippurate, homogentisate, N-acetylglutamate, phenylacetyglycine, acetone, and p-hydroxyphenylacetate (p carbamylglutamate could modify urinary metabolome related to nitrogen metabolism and gut microbiota metabolism. Moreover, N-carbamylglutamate could alter energy and lipid metabolism. These findings indicate that different arginine precursors may lead to differences in the biofluid profile in rats.

  12. Unraveling the role of fermentation in the mode of action of acetolactate synthase inhibitors by metabolic profiling.

    Science.gov (United States)

    Zabalza, Ana; Orcaray, Luis; Igal, María; Schauer, Nicolas; Fernie, Alisdair R; Geigenberger, Peter; van Dongen, Joost T; Royuela, Mercedes

    2011-09-01

    Herbicides that inhibit branched chain amino acid biosynthesis induce aerobic fermentation. The role of fermentation in the mode of action of these herbicides is not known, nor is the importance of this physiological response in the growth inhibition and the lethality caused by them. Metabolic profiling was used to compare the effects of the herbicide imazethapyr (IM) on pea plants with two other treatments that also induce fermentation: hypoxia and the exogenous supply pyruvate for seven days. While hypoxic roots did not show internal anoxia, feeding pyruvate or applying IM to the roots led to internal anoxia, probably related to the respiratory burst detected. The three treatments induced ethanol fermentation, but fermentation induced following herbicide treatment was earlier than that following pyruvate supply and was not associated with a decrease in the energy status. No striking changes were detected in the metabolic profiling of hypoxic roots, indicating that metabolism was only slightly impaired. Feeding pyruvate resulted in marked succinate accumulation and a general amino acid accumulation. IM-treated roots showed a general accumulation of glycolytic metabolites upstream of pyruvate, a decrease in some TCA intermediates and an increase in the free amino acid pool sizes. All treatments caused GABA and putrescine accumulation. Our results indicate that IM supply impairs carbon/nitrogen metabolism and this impaired metabolism is likely to be related to the growth arrest detected. As growth is arrested, carbohydrates and glycolytic intermediates accumulate and energy becomes more available.

  13. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis.

    Science.gov (United States)

    Lu, Kun; Abo, Ryan Phillip; Schlieper, Katherine Ann; Graffam, Michelle E; Levine, Stuart; Wishnok, John S; Swenberg, James A; Tannenbaum, Steven R; Fox, James G

    2014-03-01

    The human intestine is host to an enormously complex, diverse, and vast microbial community-the gut microbiota. The gut microbiome plays a profound role in metabolic processing, energy production, immune and cognitive development, epithelial homeostasis, and so forth. However, the composition and diversity of the gut microbiome can be readily affected by external factors, which raises the possibility that exposure to toxic environmental chemicals leads to gut microbiome alteration, or dysbiosis. Arsenic exposure affects large human populations worldwide and has been linked to a number of diseases, including cancer, diabetes, and cardiovascular disorders. We investigated the impact of arsenic exposure on the gut microbiome composition and its metabolic profiles. We used an integrated approach combining 16S rRNA gene sequencing and mass spectrometry-based metabolomics profiling to examine the functional impact of arsenic exposure on the gut microbiome. 16S rRNA gene sequencing revealed that arsenic significantly perturbed the gut microbiome composition in C57BL/6 mice after exposure to 10 ppm arsenic for 4 weeks in drinking water. Moreover, metabolomics profiling revealed a concurrent effect, with a number of gut microflora-related metabolites being perturbed in multiple biological matrices. Arsenic exposure not only alters the gut microbiome community at the abundance level but also substantially disturbs its metabolic profiles at the function level. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism by which arsenic exposure leads to or exacerbates human diseases. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, Swenberg JA, Tannenbaum SR, Fox JG. 2014. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 122:284-291; http://dx.doi.org/10.1289/ehp.1307429.

  14. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  15. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  16. Metabolic targets of endocrine disrupting chemicals assessed by cord blood transcriptome profiling

    DEFF Research Database (Denmark)

    Remy, Sylvie; Govarts, Eva; Wens, Britt

    2016-01-01

    Early life exposure to endocrine disrupting chemicals (EDCs) has been frequently associated with impaired perinatal growth, an important risk factor for later onset of metabolic disorders. We analyzed whether the cord blood transcriptome showed early indications of alterations in metabolic......’ pathways were significantly enriched in relation to p,p′-DDE. Transcriptional changes at birth suggest a role for specific metabolic targets as a link between prenatal EDC exposure and metabolic disorders later in life. © 2016 Elsevier Inc....

  17. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans

    NARCIS (Netherlands)

    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Weijer, van de T.; Goossens, G.H.; Hoeks, J.; Krieken, van der S.; Ryu, D.; Kersten, A.H.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P.

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind

  18. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans

    NARCIS (Netherlands)

    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Weijer, van de T.; Goossens, G.H.; Hoeks, J.; Krieken, van der S.; Ryu, D.; Kersten, A.H.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P.

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind crossov

  19. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans

    NARCIS (Netherlands)

    Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; Weijer, van de T.; Goossens, G.H.; Hoeks, J.; Krieken, van der S.; Ryu, D.; Kersten, A.H.; Moonen-Kornips, E.; Hesselink, M.K.C.; Kunz, I.; Schrauwen-Hinderling, V.B.; Blaak, E.E.; Auwerx, J.; Schrauwen, P.

    2011-01-01

    Resveratrol is a natural compound that affects energy metabolism and mitochondrial function and serves as a calorie restriction mimetic, at least in animal models of obesity. Here, we treated 11 healthy, obese men with placebo and 150 mg/day resveratrol (resVida) in a randomized double-blind crossov

  20. Photoactivation of Mutant Isocitrate Dehydrogenase 2 Reveals Rapid Cancer-Associated Metabolic and Epigenetic Changes.

    Science.gov (United States)

    Walker, Olivia S; Elsässer, Simon J; Mahesh, Mohan; Bachman, Martin; Balasubramanian, Shankar; Chin, Jason W

    2016-01-27

    Isocitrate dehydrogenase is mutated at a key active site arginine residue (Arg172 in IDH2) in many cancers, leading to the synthesis of the oncometabolite (R)-2-hydroxyglutarate (2HG). To investigate the early events following acquisition of this mutation in mammalian cells we created a photoactivatable version of IDH2(R172K), in which K172 is replaced with a photocaged lysine (PCK), via genetic code expansion. Illumination of cells expressing this mutant protein led to a rapid increase in the levels of 2HG, with 2HG levels reaching those measured in patient tumor samples, within 8 h. 2HG accumulation is closely followed by a global decrease in 5-hydroxymethylcytosine (5-hmC) in DNA, demonstrating that perturbations in epigenetic DNA base modifications are an early consequence of mutant IDH2 in cells. Our results provide a paradigm for rapidly and synchronously uncloaking diverse oncogenic mutations in live cells to reveal the sequence of events through which they may ultimately cause transformation.

  1. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2013-12-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  2. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  3. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-01-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics. PMID:28176860

  4. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling.

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I

    2017-02-08

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  5. Metabolic changes in elicitor-treated bean cells. Enzymic responses associated with rapid changes in cell wall components.

    Science.gov (United States)

    Bolwell, G P; Robbins, M P; Dixon, R A

    1985-05-02

    Treatment of cell suspension cultures of bean (Phaseolus vulgaris c.v. Immuna) with an elicitor preparation heat-released from the cell walls of the phytopathogenic fungus Colletotrichum lindemuthianum resulted in rapid changes in the composition of the bean cell walls. These consisted of (a) increases in phenolic material bound to the cellulosic and hemicellulosic fractions of the wall, (b) loss of material (mainly glucose) from the hemicellulosic fraction and (c) an increase in wall-associated hydroxyproline. The increases in wall-bound phenolics were preceded by (a) rapid decreases in the intracellular levels of free hydroxycinnamic acids and (b) transient increases in the extractable activities of L-phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase. 4-Hydroxycinnamic acid 3-hydroxylase activity was present at a high level in control cultures and was not induced by elicitor. Changes in the levels of cytochrome P-450, as determined by dot blot assays utilising an anti-(P-450) monoclonal antibody, paralleled the changes in cinnamic acid 4-hydroxylase activity. The accumulation of cell wall hydroxyproline was associated with rapid transient increases in the extractable activities of proline 2-oxoglutarate dioxygenase and a protein arabinosyl transferase. An hydroxyproline-rich acceptor protein of Mr 42 500 was the major protein to incorporate [3H]arabinose following elicitation of the bean cells, and the kinetics of the extent of labelling of this protein paralleled the accumulation of hydroxyproline protein in the endomembrane system. The above metabolic changes associated with cell wall components followed rapid kinetics similar to those involved in the formation of the phytoalexin kievitone in the elicited cultures [Robbins, M. P. et al. (1985) Eur. J. Biochem. 148, 563-569]. It is therefore concluded that increased 5-hydroxy-substituted isoflavonoid biosynthesis, wall-bound phenolic synthesis and synthesis of arabinosylated hydroxyproline-rich protein

  6. Global Analysis of Gene Expression Profiles in Brassica napus Developing Seeds Reveals a Conserved Lipid Metabolism Regulation with Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Ya Niu; Guo-Zhang Wu; Rui Ye; Wen-Hui Lin; Qiu-Ming Shi; Liang-Jiao Xue; Xiao-Dong Xu; Yao Li; Yu-Guang; Hong-Wei Xue

    2009-01-01

    In order to study Brassica napus fatty acid (FA) metabolism and relevant regulatory networks, a systematic identification of fatty acid (FA) biosynthesis-related genes was conducted. Following gene identification, gene expression profiles during B. napus seed development and FA metabolism were performed by cDNA chip hybridization (>8000 EST clones from seed). The results showed that FA biosynthesis and regulation, and carbon flux, were conserved between B. napus and Arabidopsis. However, a more critical role of starch metabolism was detected for B. napus seed FA metabolism and storage-component accumulation when compared with Arabidopsis. In addition, a crucial stage for the transition of seed-to-sink tissue was 17-21 d after flowering (DAF), whereas FA biosynthesis-related genes were highly expressed pri-marily at 21 DAF. Hormone (auxin and jasmonate) signaling is found to be important for FA metabolism. This study helps to reveal the global regulatory network of FA metabolism in developing B. napus seeds.

  7. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    Science.gov (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The future of liquid chromatography-mass spectrometry in metabolic profiling and metabolomic studies for biomarker discovery.

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Thomas O.; Zhang, Qibin; Page, Jason S.; Shen, Yufeng; Callister, Stephen J.; Jacobs, Jon M.; Smith, Richard D.

    2007-06-01

    The future utility of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discover will be discussed, beginning with a brief description of the evolution of metabolomics and the utilization of the three most popular analytical platforms in such studies: NMR, GC-MS, and LC-MS. Emphasis is placed on recent developments in high-efficiency LC separations and sensitive electrospray ionization approaches and the benefits to incorporating both in LC-MS-based approaches. The advantages and disadvantages of various quantitative approaches are reviewed, followed by the current LC-MS-based tools available for candidate biomarker characterization and identification. Finally, a brief prediction on the future path of LC-MS-based methods in metabolic profiling and metabolomic studies is given.

  9. The future of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discovery

    Science.gov (United States)

    Metz, Thomas O.; Zhang, Qibin; Page, Jason S.; Shen, Yufeng; Callister, Stephen J.; Jacobs, Jon M.; Smith, Richard D.

    2008-01-01

    SUMMARY The future utility of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and metabolomic studies for biomarker discover will be discussed, beginning with a brief description of the evolution of metabolomics and the utilization of the three most popular analytical platforms in such studies: NMR, GC-MS, and LC-MS. Emphasis is placed on recent developments in high-efficiency LC separations, sensitive electrospray ionization approaches, and the benefits to incorporating both in LC-MS-based approaches. The advantages and disadvantages of various quantitative approaches are reviewed, followed by the current LC-MS-based tools available for candidate biomarker characterization and identification. Finally, a brief prediction on the future path of LC-MS-based methods in metabolic profiling and metabolomic studies is given. PMID:19177179

  10. Calcium ionophore (A-23187 induced peritoneal eicosanoid biosynthesis: a rapid method to evaluate inhibitors of arachidonic acid metabolism in vivo

    Directory of Open Access Journals (Sweden)

    T. S. Rao

    1993-01-01

    Full Text Available The present investigation characterizes calcium ionophore (A-23187 induced peritoneal eicosanoid biosynthesis in the rat. Intraperitoneal injection of A-23187 (20 μg/rat stimulated marked biosynthesis of 6-keto-PGF1α (6-KPA, TxB2, LTC4 and LTB4, with no detectable changes on levels of PGE2. Levels of all eicosanoids decreased rapidly after a peak which was seen as early as 5 min. Enzyme markers of cellular contents of neutrophils and mononuclear cells, MPO and NAG respectively, decreased rapidly after ionophore injection; this was followed by increases after 60 min. Indomethacin, a selective cyclooxygenase inhibitor, and zileuton and ICI D-2138, two selective 5-lipoxygenase inhibitors attenuated prostaglandin and leukotriene pathways respectively. Oral administration of zileuton (20 mg/kg, p.o. inhibited LTB4 biosynthesis for up to 6 h suggesting a long duration of pharmacological activity in the rats consistent with its longer half-life. The rapid onset and the magnitude of increases in levels of eicosanoids render the ionophore induced peritoneal eicosanoid biosynthesis a useful model to evaluate pharmacological profiles of inhibitors of eicosanoid pathways in vivo.

  11. Cerebral O2 metabolism and cerebral blood flow in humans during deep and rapid-eye-movement sleep

    DEFF Research Database (Denmark)

    Madsen, P L; Schmidt, J F; Wildschiødtz, Gordon

    1991-01-01

    It could be expected that the various stages of sleep were reflected in variation of the overall level of cerebral activity and thereby in the magnitude of cerebral metabolic rate of oxygen (CMRO2) and cerebral blood flow (CBF). The elusive nature of sleep imposes major methodological restrictions...... on examination of this question. We have now measured CBF and CMRO2 in young healthy volunteers using the Kety-Schmidt technique with 133Xe as the inert gas. Measurements were performed during wakefulness, deep sleep (stage 3/4), and rapid-eye-movement (REM) sleep as verified by standard polysomnography...... associated with light anesthesia. During REM sleep (dream sleep) CMRO2 was practically the same as in the awake state. Changes in CBF paralleled changes in CMRO2 during both deep and REM sleep....

  12. 1'-Acetoxychavicol acetate-induced cytotoxicity is accompanied by a rapid and drastic modulation of glutathione metabolism.

    Science.gov (United States)

    Higashida, Mami; Xu, Shenghui; Kojima-Yuasa, Akiko; Kennedy, David Opare; Murakami, Akira; Ohigashi, Hajime; Matsui-Yuasa, Isao

    2009-01-01

    The effect of 1'-acetoxychavicol acetate (ACA), an anticarcinogenic compound naturally obtained from rhizomes and seeds of South East Asia plants, on the intracellular concentration of glutathione and the activities of enzymes related to glutathione metabolism was studied in Ehrlich ascites tumor cells. We showed in a previous study that ACA induced apoptosis in tumor cells and the cell death was reversed by the addition of N-acetlycysteine or glutathione ethylester. Here we found that ACA caused a rapid decrease in glutathione level in less than 10 min after ACA exposure. At the time, glutathione reductase activity was significantly inhibited and gamma-glutamyl cysteine increased by ACA exposure. These results show that ACA caused the decrease in the intracellular GSH levels in Ehrlich ascites tumor cells, suggesting that ACA-induced decrease of the cellular GSH levels can lead to growth arrest of cancer and enhancement of the efficacy other anticancer drugs.

  13. Effect of a synbiotic food consumption on human gut metabolic profiles evaluated by (1)H Nuclear Magnetic Resonance spectroscopy.

    Science.gov (United States)

    Ndagijimana, Maurice; Laghi, Luca; Vitali, Beatrice; Placucci, Giuseppe; Brigidi, Patrizia; Guerzoni, M Elisabetta

    2009-08-31

    The capacity of human lactobacilli and bifidobacteria to produce metabolites under conditions that may prevail in the human intestine has been studied "in vitro". However, the effect of systematic probiotic consumption on human metabolic phenotype has not been investigated in faeces. This paper shows the potential for the use of (1)H Nuclear Magnetic Resonance ((1)H NMR) spectroscopy for studying the changes of the metabolic profiles of human faecal slurries. Faeces of 16 subjects, characterized by different natural levels of lactobacilli and bifidobacteria were recovered before and after 1 month of supplementation with a synbiotic food based on Lactobacillus acidophilus, Bifidobacterium longum and fructooligosaccharides, and analyzed by (1)H NMR. Multivariate statistical approach has been applied to the data obtained and particularly Canonical Discriminant Analysis of Principal Coordinates (CAP). More than 150 molecules belonging to short chain fatty acids, organic acids, esters, alcohols and amino acids were detected and quantified in the samples considered. The number and the extent of these molecules in faecal slurries were strongly affected by the synbiotic food consumption and gave rise to characteristic metabolic signature. In particular, the short chain fatty acid concentrations significantly increased while the amino acids contents decreased. The comparison of the data indicated that the intake of the synbiotic food alters the host metabolism in a measure dependent on the initial level of lactobacilli and bifidobacteria detected in the faecal specimens. The analysis of (1)H NMR profiles with CAP allowed a separation of faecal samples of the subjects on the basis of the synbiotic food intake. The multivariate statistical approach used demonstrated the potential of NMR metabolic profiles to provide biomarkers of the gut-microbial activity related to dietary supplementation of probiotics.

  14. The effects of electrical stimulation on body composition and metabolic profile after spinal cord injury--Part II.

    Science.gov (United States)

    Gorgey, Ashraf S; Dolbow, David R; Dolbow, James D; Khalil, Refka K; Gater, David R

    2015-01-01

    Diet and exercise are cornerstones in the management of obesity and associated metabolic complications, including insulin resistance, type 2 diabetes, and disturbances in the lipid profile. However, the role of exercise in managing body composition adaptations and metabolic disorders after spinal cord injury (SCI) is not well established. The current review summarizes evidence about the efficacy of using neuromuscular electrical stimulation or functional electrical stimulation in exercising the paralytic lower extremities to improve body composition and metabolic profile after SCI. There are a number of trials that investigated the effects on muscle cross-sectional area, fat-free mass, and glucose/lipid metabolism. The duration of the intervention in these trials varied from 6 weeks to 24 months. Training frequency ranged from 2 to 5 days/week. Most studies documented significant increases in muscle size but no noticeable changes in adipose tissue. While increases in skeletal muscle size after twice weekly training were greater than those trials that used 3 or 5 days/week, other factors such as differences in the training mode, i.e. resistance versus cycling exercise and pattern of muscle activation may be responsible for this observation. Loading to evoke muscle hypertrophy is a key component in neuromuscular training after SCI. The overall effects on lean mass were modest and did not exceed 10% and the effects of training on trunk or pelvic muscles remain unestablished. Most studies reported improvement in glucose metabolism with the enhancement of insulin sensitivity being the major factor following training. The effect on lipid profile is unclear and warrants further investigation.

  15. Comparative assessment of maize lines produced by different breeding methods using both microbiological and metabolic profiling tools

    CSIR Research Space (South Africa)

    Barros, E

    2006-02-01

    Full Text Available , F; NMR-based metabolomic study of transgenic maize. Phytochemistry (2004), 65: 3187-3198 2. Rabie, CJ; Lübben, A; Marais, GJ; and Jansen van Vuuren, H (1997) Enumeration of fungi in barley. International Journal of Food Microbiology, 35, 117... Biosciences includes the evaluation of different South African and European maize lines, using microbiological and mycotoxin analysis, as well as metabolic profiling through NMR (Nuclear Magnetic Resonance) analysis. This study shows the results obtained...

  16. (1H-NMR spectroscopy revealed Mycobacterium tuberculosis caused abnormal serum metabolic profile of cattle.

    Directory of Open Access Journals (Sweden)

    Yingyu Chen

    Full Text Available To re-evaluate virulence of Mycobacterium tuberculosis (M. tb in cattle, we experimentally infected calves with M. tb andMycobacterium bovisvia intratracheal injection at a dose of 2.0×10(7 CFU and observed the animals for 33 weeks. The intradermal tuberculin test and IFN-γin vitro release assay showed that both M. tb and M. bovis induced similar responses. Immunohistochemical staining of pulmonary lymph nodes indicated that the antigen MPB83 of both M. tb and M. bovis were similarly distributed in the tissue samples. Histological examinations showed all of the infected groups exhibited neutrophil infiltration to similar extents. Although the infected cattle did not develop granulomatous inflammation, the metabolic profiles changed significantly, which were characterized by a change in energy production pathways and increased concentrations of N-acetyl glycoproteins. Glycolysis was induced in the infected cattle by decreased glucose and increased lactate content, and enhanced fatty acid β-oxidation was induced by decreased TG content, and decreased gluconeogenesis indicated by the decreased concentration of glucogenic and ketogenic amino acids promoted utilization of substances other than glucose as energy sources. In addition, an increase in acute phase reactive serum glycoproteins, together with neutrophil infiltration and increased of IL-1β production indicated an early inflammatory response before granuloma formation. In conclusion, this study indicated that both M. tb and M.bovis were virulent to cattle. Therefore, it is likely that cattle with M. tb infections would be critical to tuberculosis transmission from cattle to humans. Nuclear magnetic resonance was demonstrated to be an efficient method to systematically evaluate M. tb and M. bovi sinfection in cattle.

  17. Effect of energy balance profiles on metabolic and reproductive response in Holstein and Swedish Red cows.

    Science.gov (United States)

    Ntallaris, T; Humblot, P; Båge, R; Sjunnesson, Y; Dupont, J; Berglund, B

    2017-03-01

    This study examined the effect of two feeding levels during the antepartum and postpartum period on reproductive performance and blood metabolites (glucose, non-esterified fatty acids (NEFA), insulin) in primiparous Holstein and Swedish Red (SRB) cows, in order to identify possible differences in the way these breeds respond to negative energy balance after calving. A total of 44 cows (22 Holstein, 22 SRB) kept in a loose housing system were included in the study. The control group (HE, n = 23) was fed a diet for high-producing cows (target 35 kg/d energycorrected milk, ECM). A lower feeding intensity (LE, n = 21) was achieved by giving -50% concentrate to target 25 kg/d ECM. Diets were implemented 30 days before expected calving and the cows were monitored for 120 days postpartum. Milk yield and composition, dry matter intake (DMI), live body weight and body condition score (BCS) were assessed to calculate the weekly energy balance (residual feed intake). Blood sampling started before diet implementation and was repeated every 2 weeks until Day 60 postpartum and then once monthly until Day 120. Plasma was kept at -20 °C until analysis for glucose, insulin and NEFA concentrations. Mixed linear models were used to analyse data (SAS 9.3; PROC MIXED). Holstein cows had lower mean energy balance than SRB cows (-4.7 ± 1.4 and -0.9 ± 1.4 MJ, respectively; p = 0.05). SRB cows had higher (pbalanced metabolic profile.

  18. Tumour xenograft detection through quantitative analysis of the metabolic profile of urine in mice

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, Jennifer [Department of Physics, University of Alberta, 11322-89 Avenue, Edmonton, Alberta T6G 2G7 (Canada); Turner, Joan [Department of Experimental Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Slupsky, Carolyn [Department of Nutrition, University of California, One Shields Avenue, Davis, CA 95616-8598 (United States); Fallone, Gino; Syme, Alasdair, E-mail: alasdair.syme@albertahealthservices.ca [Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2011-02-07

    The metabolic content of urine from NIH III nude mice (n = 22) was analysed before and after inoculation with human glioblastoma multiforme (GBM) cancer cells. An age- and gender-matched control population (n = 14) was also studied to identify non-tumour-related changes. Urine samples were collected daily for 6 weeks, beginning 1 week before cell injection. Metabolite concentrations were obtained via targeted profiling with Chenomx Suite 5.1, based on nuclear magnetic resonance (NMR) spectra acquired on an Oxford 800 MHz cold probe NMR spectrometer. The Wilcoxon rank sum test was used to evaluate the significance of the change in metabolite concentration between the two time points. Both the metabolite concentrations and the ratios of pairs of metabolites were studied. The complicated inter-relationships between metabolites were assessed through partial least-squares discriminant analysis (PLS-DA). Receiver operating characteristic (ROC) curves were generated for all variables and the area under the curve (AUC) calculated. The data indicate that the number of statistically significant changes in metabolite concentrations was more pronounced in the tumour-bearing population than in the control animals. This was also true of the ratios of pairs of metabolites. ROC analysis suggests that the ratios were better able to differentiate between the pre- and post-injection samples compared to the metabolite concentrations. PLS-DA models produced good separation between the populations and had the best AUC results (all models exceeded 0.937). These results demonstrate that metabolomics may be used as a screening tool for GBM cells grown in xenograft models in mice.

  19. The interactive effects of mercury and selenium on metabolic profiles, gene expression and antioxidant enzymes in halophyte Suaeda salsa.

    Science.gov (United States)

    Liu, Xiaoli; Lai, Yongkai; Sun, Hushan; Wang, Yiyan; Zou, Ning

    2016-04-01

    Suaeda salsa is the pioneer halophyte in the Yellow River Delta and was consumed as a popular vegetable. Mercury has become a highly risky contaminant in the sediment of intertidal zones of the Yellow River Delta. In this work, we investigated the interactive effects of mercury and selenium in S. salsa on the basis of metabolic profiling, antioxidant enzyme activities and gene expression quantification. Our results showed that mercury exposure (20 μg L(-1)) inhibited plant growth of S. salsa and induced significant metabolic responses and altered expression levels of INPS, CMO, and MDH in S. salsa samples, together with the increased activities of antioxidant enzymes including SOD and POD. Overall, these results indicated osmotic and oxidative stresses, disturbed protein degradation and energy metabolism change in S. salsa after mercury exposures. Additionally, the addition of selenium could induce both antagonistic and synergistic effects including alleviating protein degradation and aggravating osmotic stress caused by mercury.

  20. Metabolic profiling-based data-mining for an effective chemical combination to induce apoptosis of cancer cells.

    Science.gov (United States)

    Kumazoe, Motofumi; Fujimura, Yoshinori; Hidaka, Shiori; Kim, Yoonhee; Murayama, Kanako; Takai, Mika; Huang, Yuhui; Yamashita, Shuya; Murata, Motoki; Miura, Daisuke; Wariishi, Hiroyuki; Maeda-Yamamoto, Mari; Tachibana, Hirofumi

    2015-03-31

    Green tea extract (GTE) induces apoptosis of cancer cells without adversely affecting normal cells. Several clinical trials reported that GTE was well tolerated and had potential anti-cancer efficacy. Epigallocatechin-3-O-gallate (EGCG) is the primary compound responsible for the anti-cancer effect of GTE; however, the effect of EGCG alone is limited. To identify GTE compounds capable of potentiating EGCG bioactivity, we performed metabolic profiling of 43 green tea cultivar panels by liquid chromatography-mass spectrometry (LC-MS). Here, we revealed the polyphenol eriodictyol significantly potentiated apoptosis induction by EGCG in vitro and in a mouse tumour model by amplifying EGCG-induced activation of the 67-kDa laminin receptor (67LR)/protein kinase B/endothelial nitric oxide synthase/protein kinase C delta/acid sphingomyelinase signalling pathway. Our results show that metabolic profiling is an effective chemical-mining approach for identifying botanical drugs with therapeutic potential against multiple myeloma. Metabolic profiling-based data mining could be an efficient strategy for screening additional bioactive compounds and identifying effective chemical combinations.

  1. Profiling the Metabolism of Astragaloside IV by Ultra Performance Liquid Chromatography Coupled with Quadrupole/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Xu-Dong Cheng

    2014-11-01

    Full Text Available Astragaloside IV is a compound isolated from the Traditional Chinese Medicine Astragalus membranaceus, that has been reported to have bioactivities against cardiovascular disease and kidney disease. There is limited information on the metabolism of astragaloside IV, which impedes comprehension of its biological actions and pharmacology. In the present study, an ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS-based approach was developed to profile the metabolites of astragaloside IV in rat plasma, bile, urine and feces samples. Twenty-two major metabolites were detected. The major components found in plasma, bile, urine and feces included the parent chemical and phases I and II metabolites. The major metabolic reactions of astragaloside IV were hydrolysis, glucuronidation, sulfation and dehydrogenation. These results will help to improve understanding the metabolism and reveal the biotransformation profiling of astragaloside IV in vivo. The metabolic information obtained from our study will guide studies into the pharmacological activity and clinical safety of astragaloside IV.

  2. Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity.

    Science.gov (United States)

    Nisani, Zia; Boskovic, Danilo S; Dunbar, Stephen G; Kelln, Wayne; Hayes, William K

    2012-09-01

    We investigated the biochemical profile of regenerated venom of the scorpion Parabuthus transvaalicus in relation to its metabolic cost and toxicity. Using a closed-system respirometer, we compared oxygen consumption between milked and unmilked scorpions to determine the metabolic costs associated with the first 192 h of subsequent venom synthesis. Milked scorpions had a substantially (21%) higher mean metabolic rate than unmilked scorpions, with the largest increases in oxygen consumption occurring at approximately 120 h, 162 h, and 186 h post-milking. Lethality tests in crickets indicated that toxicity of the regenerated venom returned to normal levels within 4 d after milking. However, the chemical profile of the regenerated venom, as evaluated by FPLC and MALDI-TOF mass spectrometry, suggested that regeneration of different venom components was asynchronous. Some peptides regenerated quickly, particularly those associated with the scorpion's "prevenom," whereas others required much or all of this time period for regeneration. This asynchrony could explain the different spikes detected in oxygen consumption of milked scorpions as various peptides and other venom components were resynthesized. These observations confirm the relatively high metabolic cost of venom regeneration and suggest that greater venom complexity can be associated with higher costs of venom production.

  3. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach.

    Science.gov (United States)

    Thouvenot, Lise; Deleu, Carole; Berardocco, Solenne; Haury, Jacques; Thiébaut, Gabrielle

    2015-03-01

    The effects of salt stress on freshwater plants has been little studied up to now, despite the fact that they are expected to present different levels of salt sensitivity or salt resistance depending on the species. The aim of this work was to assess the effect of NaCl at two concentrations on three invasive freshwater species, Elodea canadensis, Myriophyllum aquaticum and Ludwigia grandiflora, by examining morphological and physiological parameters and using metabolic profiling. The growth rate (biomass and stem length) was reduced for all species, whatever the salt treatment, but the response to salt differed between the three species, depending on the NaCl concentration. For E. canadensis, the physiological traits and metabolic profiles were only slightly modified in response to salt, whereas M. aquaticum and L. grandiflora showed great changes. In both of these species, root number, photosynthetic pigment content, amino acids and carbohydrate metabolism were affected by the salt treatments. Moreover, we are the first to report the salt-induced accumulation of compatible solutes in both species. Indeed, in response to NaCl, L. grandiflora mainly accumulated sucrose. The response of M. aquaticum was more complex, because it accumulated not only sucrose and myo-inositol whatever the level of salt stress, but also amino acids such as proline and GABA, but only at high NaCl concentrations. These responses are the metabolic responses typically found in terrestrial plants.

  4. Metabolic profiles in five high-producing Swedish dairy herds with a history of abomasal displacement and ketosis

    Directory of Open Access Journals (Sweden)

    Stengärde Lena

    2008-08-01

    Full Text Available Abstract Background Body condition score and blood profiles have been used to monitor management and herd health in dairy cows. The aim of this study was to examine BCS and extended metabolic profiles, reflecting both energy metabolism and liver status around calving in high-producing herds with a high incidence of abomasal displacement and ketosis and to evaluate if such profiles can be used at herd level to pinpoint specific herd problems. Methods Body condition score and metabolic profiles around calving in five high-producing herds with high incidences of abomasal displacement and ketosis were assessed using linear mixed models (94 cows, 326 examinations. Cows were examined and blood sampled every three weeks from four weeks ante partum (ap to nine weeks postpartum (pp. Blood parameters studied were glucose, fructosamine, non-esterified fatty acids (NEFA, insulin, β-hydroxybutyrate, aspartate aminotransferase, glutamate dehydrogenase, haptoglobin and cholesterol. Results All herds had overconditioned dry cows that lost body condition substantially the first 4–6 weeks pp. Two herds had elevated levels of NEFA ap and three herds had elevated levels pp. One herd had low levels of insulin ap and low levels of cholesterol pp. Haptoglobin was detected pp in all herds and its usefulness is discussed. Conclusion NEFA was the parameter that most closely reflected the body condition losses while these losses were not seen in glucose and fructosamine levels. Insulin and cholesterol were potentially useful in herd profiles but need further investigation. Increased glutamate dehydrogenase suggested liver cell damage in all herds.

  5. Metabolic syndrome according to different definitions in a rapidly developing country of the African region

    Directory of Open Access Journals (Sweden)

    Paccaud Fred

    2008-09-01

    Full Text Available Abstract Aims We examined, in a country of the African region, i the prevalence of the metabolic syndrome (MetS according to three definitions (ATP, WHO and IDF; ii the distribution of the MetS criteria; iii the level of agreement between these three definitions and iv we also examined these issues upon exclusion of people with diabetes. Methods We conducted an examination survey on a sample representative of the general population aged 25–64 years in the Seychelles (Indian Ocean, African region, attended by 1255 participants (participation rate of 80.3%. Results The prevalence of MetS increased markedly with age. According to the ATP, WHO and IDF definitions, the prevalence of MetS was, respectively, 24.0%, 25.0%, 25.1% in men and 32.2%, 24.6%, 35.4% in women. Approximately 80% of participants with diabetes also had MetS and the prevalence of MetS was approximately 7% lower upon exclusion of diabetic individuals. High blood pressure and adiposity were the criteria found most frequently among MetS holders irrespective of the MetS definitions. Among people with MetS based on any of the three definitions, 78% met both ATP and IDF criteria, 67% both WHO and IDF criteria, 54% both WHO and ATP criteria and only 37% met all three definitions. Conclusion We identified a high prevalence of MetS in this population in epidemiological transition. The prevalence of MetS decreased by approximately 32% upon exclusion of persons with diabetes. Because of limited agreement between the MetS definitions, the fairly similar proportions of MetS based on any of the three MetS definitions classified, to a substantial extent, different subjects as having MetS.

  6. Profiles in drug metabolism and toxicology: Richard Tecwyn Williams (1909-1979).

    Science.gov (United States)

    Jones, Alan Wayne

    2015-01-01

    This article pays homage to the life and work of a veritable pioneer in toxicology and drug metabolism, namely a Welshman, Richard Tecwyn Williams, FRS. Professor Williams, or RT as he was known, made major contributions to knowledge about the metabolism and toxicology of drugs and xenobiotics during a scientific career spanning nearly 50 years. Author or coauthor of close to 400 research articles and reviews, including a classic book, entitled Detoxication Mechanisms, Williams and his research school investigated virtually all aspects of drug metabolism, especially conjugations. In particular, the concepts of phase 1 and phase II metabolic pathways were introduced by Williams; the biliary excretion of drugs was extensively studied as were species differences in drug metabolism and detoxication. Besides investigating the metabolism of many pharmaceutical drugs, such as sulfonamides and thalidomide, Williams and his group investigated the disposition and fate in the body of organic pesticides and recreational drugs of abuse, such as amphetamine, methamphetamine and lysergic acid diethylamide (LSD).

  7. Measurement of Rapid Protein Diffusion in the Cytoplasm by Photo-Converted Intensity Profile Expansion

    Directory of Open Access Journals (Sweden)

    Rotem Gura Sadovsky

    2017-03-01

    Full Text Available The fluorescence microscopy methods presently used to characterize protein motion in cells infer protein motion from indirect observables, rather than measuring protein motion directly. Operationalizing these methods requires expertise that can constitute a barrier to their broad utilization. Here, we have developed PIPE (photo-converted intensity profile expansion to directly measure the motion of tagged proteins and quantify it using an effective diffusion coefficient. PIPE works by pulsing photo-convertible fluorescent proteins, generating a peaked fluorescence signal at the pulsed region, and analyzing the spatial expansion of the signal. We demonstrate PIPE’s success in measuring accurate diffusion coefficients in silico and in vitro and compare effective diffusion coefficients of native cellular proteins and free fluorophores in vivo. We apply PIPE to measure diffusion anomality in the cell and use it to distinguish free fluorophores from native cellular proteins. PIPE’s direct measurement and ease of use make it appealing for cell biologists.

  8. Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina

    KAUST Repository

    Wang, Hao

    2010-06-10

    Non-model organisms represent the majority of life forms in our planet. However, the lack of genetic information hinders us to understand the unique biological phenomena in non-model organisms at the molecular level. In this study, we applied a tandem transcriptome and proteome profiling on a non-model marine fouling organism, Bugula neritina. Using a 454 pyrosequencing platform with the updated titanium reagents, we generated a total of 48M bp transcriptome data consisting of 131 450 high-quality reads. Of these, 122 650 reads (93%) were assembled to produce 6392 contigs with an average length of 538 bases and the remaining 8800 reads were singletons. Of the total 15 192 unigenes, 13 863 ORFs were predicated, of which 6917 were functionally annotated based on gene ontology and eukaryotic orthologous groups. Subsequent proteome analysis identified and quantified 882 proteins from B. neritina. These results would provide fundamental and important information for the subsequent studies of molecular mechanism in larval biology, development, antifouling research. Furthermore, we demonstrated, for the first time, the combined use of two high-throughput technologies as a powerful approach for accelerating the studies of non-model but otherwise important species. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Comprehensive Analysis of PPARa-Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling

    OpenAIRE

    Rakhshandehroo, M.; Sanderson-Kjellberg, L.M.; Matilainen, M.; Stienstra, R.

    2007-01-01

    PPARa is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARa in hepatic lipid metabolism, many PPARa-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARa-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPAR¿ target genes, livers from several animal studies in which PPARa was activated and/or disabled were a...

  10. Comprehensive Analysis of PPARα-Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling

    OpenAIRE

    Rakhshandehroo, Maryam; Sanderson, Linda M.; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; Philip J de Groot; Müller, Michael; Kersten, Sander

    2007-01-01

    PPARα is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARα in hepatic lipid metabolism, many PPARα-dependent pathways and genes have yet to be discovered. In order to obtain an overview of PPARα-regulated genes relevant to lipid metabolism, and to probe for novel candidate PPARα target genes, livers from several animal studies in which PPARα was activated and/or disabled were a...

  11. Colonic microbiota can promote rapid local improvement of murine colitis by thioguanine independently of T lymphocytes and host metabolism.

    Science.gov (United States)

    Oancea, I; Movva, R; Das, I; Aguirre de Cárcer, D; Schreiber, V; Yang, Y; Purdon, A; Harrington, B; Proctor, M; Wang, R; Sheng, Y; Lobb, M; Lourie, R; Ó Cuív, P; Duley, J A; Begun, J; Florin, T H J

    2017-01-01

    Mercaptopurine (MP) and pro-drug azathioprine are 'first-line' oral therapies for maintaining remission in IBD. It is believed that their pharmacodynamic action is due to a slow cumulative decrease in activated lymphocytes homing to inflamed gut. We examined the role of host metabolism, lymphocytes and microbiome for the amelioration of colitis by the related thioguanine (TG). C57Bl/6 mice with or without specific genes altered to elucidate mechanisms responsible for TG's actions were treated daily with oral or intrarectal TG, MP or water. Disease activity was scored daily. At sacrifice, colonic histology, cytokine message, caecal luminal and mucosal microbiomes were analysed. Oral and intrarectal TG but not MP rapidly ameliorated spontaneous chronic colitis in Winnie mice (point mutation in Muc2 secretory mucin). TG ameliorated dextran sodium sulfate-induced chronic colitis in wild-type (WT) mice and in mice lacking T and B lymphocytes. Remarkably, colitis improved without immunosuppressive effects in the absence of host hypoxanthine (guanine) phosphoribosyltransferase (Hprt)-mediated conversion of TG to active drug, the thioguanine nucleotides (TGN). Colonic bacteria converted TG and less so MP to TGN, consistent with intestinal bacterial conversion of TG to so reduce inflammation in the mice lacking host Hprt. TG rapidly induced autophagic flux in epithelial, macrophage and WT but not Hprt(-/-) fibroblast cell lines and augmented epithelial intracellular bacterial killing. Treatment by TG is not necessarily dependent on the adaptive immune system. TG is a more efficacious treatment than MP in Winnie spontaneous colitis. Rapid local bacterial conversion of TG correlated with decreased intestinal inflammation and immune activation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells.

    Science.gov (United States)

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2016-10-04

    High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Determination of metabolic profile of anti-malarial trioxane CDRI 99/411 in rat liver microsomes using HPLC.

    Science.gov (United States)

    Mishra, Smriti; Manickavasagam, Lakshmi; Jain, Girish Kumar

    2012-01-01

    CDRI 99/411 is a potent 1,2,4-trioxane anti-malarial candidate compound of the Central Drug Research Institute, India. This study aimed to conduct comprehensive in vitro metabolic investigations of CDRI 99/411 to corroborate its preclinical investigations. Preliminary in vitro metabolic investigations were performed to assess the metabolic stability [in vitro half-life (t(1/2) ) and in vitro hepatic intrinsic clearance (Cl(int) )] of CDRI 99/411 in male Sprague-Dawley rat and human liver microsomes using validated high-performance liquid chromatography with photodiode array detector. The observed in vitro t(1/2) of the compound in rat and human liver microsomes was 13 min with in vitro Cl(int) 130.7±25.0 μL/min/mg and 19 min with in vitro Cl(int) 89.3 ± 17.40 μL/min/mg. These observations suggested moderate metabolic degradation and in vitro Cl(int) with insignificant difference (p>0.05) in the metabolic stability profile in rat and human. Hence, in vitro metabolic investigations were performed with rat liver microsomes. It was observed that CDRI 99/411 exhibited sigmoidal kinetics. At nonlinear regression (r ≥ 0.99) EC(50) and Hill slope values were 17 µm and 1.50, respectively. The metabolism of CDRI 99/411 was primarily mediated by CYP3A2 and was inferred by CYP reaction phenotyping with known potent inhibitors. Two metabolites of CDRI 99/411 were detected which were undetectable on incubation with 1-aminobenzotriazole and ketoconazole.

  14. Ultra high resolution SFC-MS as a high throughput platform for metabolic phenotyping: application to metabolic profiling of rat and dog bile.

    Science.gov (United States)

    Jones, Michael D; Rainville, Paul D; Isaac, Giorgis; Wilson, Ian D; Smith, Norman W; Plumb, Robert S

    2014-09-01

    Ultra high resolution SFC-MS (on sub-2μm particles) coupled to mass spectrometry has been evaluated for the metabolic profiling of rat and dog bile. The selectivity of the SFC separation differed from that seen in previous reversed-phase UPLC-MS studies on bile, with the order of elution for analytes such as e.g., the bile acids showing many differences. The chromatography system showed excellent stability, reproducibility and robustness with relative standard deviation of less than 1% for retention time obtained over the course of the analysis. SFC showed excellent chromatographic performance with chromatographic peak widths in the order of 3s at the base of the peak. The use of supercritical fluid carbon dioxide as a mobile phase solvent also reduced the overall consumption of organic solvent by a factor of 3 and also reduced the overall analysis time by a factor of 30% compared to reversed-phase gradient LC. SFC-MS appear complementary to RPLC for the metabolic profiling of complex samples such as bile.

  15. Comparison of metabolic profile and adiponectin level with pioglitazone versus voglibose in patients with type-2 diabetes mellitus associated with metabolic syndrome.

    Science.gov (United States)

    Fujitaka, Keisuke; Otani, Hajime; Jo, Fusakazu; Jo, Hiromi; Nomura, Emiko; Iwasaki, Masayoshi; Nishikawa, Mitsushige; Iwasaka, Toshiji

    2011-01-01

    Type 2 diabetes mellitus (T2DM) associated with metabolic syndrome (MetS) represents a high risk of cardiovascular disease. We compared the effect of early intervention with pioglitazone versus voglibose on physical and metabolic profiles and serum adiponectin level in patients with T2DM associated with MetS. Sixty patients who were diagnosed for the first time as T2DM associated with MetS were analyzed for insulin sensitivity, lipid profile, serum adiponectin and systemic inflammation. Those patients were randomly assigned to oral pioglitazone group (n = 30) or voglibose group (n = 30) in addition to conventional diet and exercise training. Body mass index and waist circumference did not change in the pioglitazone group, whereas these physical parameters significantly decreased in the voglibose group during a 6-month follow-up period. However, glycosylated hemoglobin, fasting plasma glucose, and HOMA-IR more significantly decreased in the pioglitazone group. The level of serum adiponectin especially high-molecular weight adiponectin markedly increased in the pioglitazone group. Moreover, high sensitive CRP significantly decreased only in the pioglitazone group. These results suggest that voglibose is superior in improving obesity, while pioglitazone is superior in ameliorating insulin sensitivity and increasing serum adiponectin in patients with an early stage of T2DM associated with MetS.

  16. Association between metabolic syndrome and depressive symptom profiles-Sex-specific?

    NARCIS (Netherlands)

    Marijnissen, Radboud M; Smits, Johanna E M P; Schoevers, Robert A; van den Brink, Rob H S; Holewijn, Suzanne; Franke, Barbara; de Graaf, Jacqueline; Oude Voshaar, Richard C

    2013-01-01

    Background: The association between depression and metabolic syndrome is becoming more obvious. Waist circumference (WC) might be the most important metabolic syndrome (MetS) feature in relation to late-life depression, with a possible mediating role for adiponectin. Methods: Cross-sectional populat

  17. Comprehensive Analysis of PPARa-Dependent Regulation of Hepatic Lipid Metabolism by Expression Profiling

    NARCIS (Netherlands)

    Rakhshandehroo, M.; Sanderson-Kjellberg, L.M.; Matilainen, M.; Stienstra, R.

    2007-01-01

    PPARa is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARa in hepatic lipid metabolism, many PPARa-dependent pathways and genes have yet to be discovered. In order to obtain an overvi

  18. Biotransformation and metabolic profile of buddleoside with human intestinal microflora by ultrahigh-performance liquid chromatography coupled to hybrid linear ion trap/orbitrap mass spectrometer.

    Science.gov (United States)

    Tao, Jin-Hua; Duan, Jin-Ao; Jiang, Shu; Qian, Yi-Yun; Qian, Da-Wei

    2016-07-01

    Buddleoside (also known as linarin) as the major flavonoid in Chrysanthemum morifolium Ramat., has been reported to possess a wide range of pharmacological activities. The human intestinal microbiota might have an important impact on drug metabolism and ultimately on the drug oral bioavailability. However, the interaction of the buddleoside with human intestinal bacteria remains unknown. In this study, the conversion of buddleoside by different bacteria from human feces was firstly investigated. A reliable, sensitive and rapid analytical method, ultra performance liquid chromatography was established and successfully applied to investigate the metabolites and metabolic profile of buddleoside by human intestinal bacteria. Among the isolated bacteria, four strains including Escherichia sp. 4, Escherichia sp. 34, Enterococcus sp. 45 and Bacillus sp. 46 showed more powerful conversion capability. Based on the accurate mass data and the characteristic MS(n) product ions, the parent and six metabolites were detected and tentatively identified compared with blank samples. The metabolites were produced by four main metabolic pathways including deglycosylation, acetylation, methylation and hydroxylation. Buddleoside could be firstly converted to its aglycon acacetin (M2) by the majority of the isolated intestinal bacteria. Subsequently, M2 was further metabolize to its methylated (M3), acetylated (M4), hydroxylated (M5) and hydrogenated product (M6). However, acacetin-7-glucosid (M1) was obtained only from the minor bacterial samples like Bacillus sp. 46. To further explain the metabolism of buddleoside, the β-d-glucosidase and α-l-rhamnosidase activities of four strains were analyzed. Bacillus sp. 46 could only produce α-l-rhamnosidase, while the other three strains showed two kinds of enzyme activities. Furthermore, the activities of α-l-rhamnosidase and β-d-glucosidase reached the highest level at 12-18h and 10-12h, respectively. The metabolic routes and metabolites

  19. The role of non-rapid eye movement slow-wave activity in prefrontal metabolism across young and middle-aged adults.

    Science.gov (United States)

    Wilckens, Kristine A; Aizenstein, Howard J; Nofzinger, Eric A; James, Jeffrey A; Hasler, Brant P; Rosario-Rivera, Bedda L; Franzen, Peter L; Germain, Anne; Hall, Martica H; Kupfer, David J; Price, Julie C; Siegle, Greg J; Buysse, Daniel J

    2016-06-01

    Electroencephalographic slow-wave activity (0.5-4 Hz) during non-rapid eye movement (NREM) sleep is a marker for cortical reorganization, particularly within the prefrontal cortex. Greater slow wave activity during sleep may promote greater waking prefrontal metabolic rate and, in turn, executive function. However, this process may be affected by age. Here we examined whether greater NREM slow wave activity was associated with higher prefrontal metabolism during wakefulness and whether this relationship interacted with age. Fifty-two participants aged 25-61 years were enrolled into studies that included polysomnography and a (18) [F]-fluoro-deoxy-glucose positron emission tomography scan during wakefulness. Absolute and relative measures of NREM slow wave activity were assessed. Semiquantitative and relative measures of cerebral metabolism were collected to assess whole brain and regional metabolism, focusing on two regions of interest: the dorsolateral prefrontal cortex and the orbitofrontal cortex. Greater relative slow wave activity was associated with greater dorsolateral prefrontal metabolism. Age and slow wave activity interacted significantly in predicting semiquantitative whole brain metabolism and outside regions of interest in the posterior cingulate, middle temporal gyrus and the medial frontal gyrus, such that greater slow-wave activity was associated with lower metabolism in the younger participants and greater metabolism in the older participants. These results suggest that slow-wave activity is associated with cerebral metabolism during wakefulness across the adult lifespan within regions important for executive function.

  20. A rapid screening method using DNA binding dyes to determine whether hair follicles have sufficient DNA for successful profiling.

    Science.gov (United States)

    Haines, Alicia M; Linacre, Adrian

    2016-05-01

    We report a simple screening method to assess the viability of successful DNA profiling from single hair follicles. A total of 48 hair samples (shed and plucked) were collected from male and female donors and the root tips (0.5cm) were stained using one of three DNA binding dyes (EvaGreen™, Diamond™ Nucleic Acid Dye and RedSafe™) at 20× concentration. The hairs were subsequently viewed under a Nikon Optiphot fluorescent microscope to count the approximate number of nuclei in one plane of view. The hairs were then processed using either (1) a DNA extraction kit (QIAmp(®) Mini Kit) and then amplified using the AmpFLSTR(®) NGM™ kit, which amplifies 15 short tandem repeat (STR) loci plus the gender marker amelogenin, or (2) by direct PCR amplification using the same DNA profiling kit. Diamond™ dye had the lowest background signal and plucked hairs treated with this dye produced full DNA profiles when amplified directly and was chosen to screen a further 150 mixed hair samples. These hairs were separated into one of five categories (1, >100 nuclei; 1.5, 50-99 nuclei; 2, 1-49 nuclei; 2.5, no nuclei but high fluorescent signal; 3, no nuclei and very low fluorescent signal) from which 60 of the hairs were chosen to undergo direct amplification using the NGM™ kit. It was found that there was a direct correlation to the category designation and the ability to obtain a DNA profile up-loadable to the Australian DNA Database. Approximately 91% of category 1 hairs resulted in either a full or high partial (12-29 alleles) profile by direct PCR whereas about 78% of category 3 hairs exhibited no amplification. The results show that this method can be used to predict successful STR amplification from single hair follicles. It is a rapid, sensitive, cheap, non-destructive and easy to perform methodology applicable for screening multiple hairs in order to aid forensic investigators in predicting hairs that will yield DNA results.

  1. Relationship between habitat, densities and metabolic profile in brown hares (Lepus europaeus Pallas

    Directory of Open Access Journals (Sweden)

    Marco Bagliacca

    2010-01-01

    and best body conditions can be found in highlands, open fields with low tree presence and wooded borders, medium mixture soils, scarce predator presence and limited anthropogenic presence and with abundant water availability and shrubbiness. The study of the absolute values of metabolic profile, indicator of the physiological and nutritional condition of the reared animals, did not show any nutritional winter deficiency in wild hares and, as census data, should be repeated for several years since, probably, only their variations can be used as indicators of preliminary problems.

  2. Cross-sectional and longitudinal comparisons of metabolic profiles between vegetarian and non-vegetarian subjects: a matched cohort study.

    Science.gov (United States)

    Chiu, Yen-Feng; Hsu, Chih-Cheng; Chiu, Tina H T; Lee, Chun-Yi; Liu, Ting-Ting; Tsao, Chwen Keng; Chuang, Su-Chun; Hsiung, Chao A

    2015-10-28

    Several previous cross-sectional studies have shown that vegetarians have a better metabolic profile than non-vegetarians, suggesting that a vegetarian dietary pattern may help prevent chronic degenerative diseases. However, longitudinal studies on the impact of vegetarian diets on metabolic traits are scarce. We studied how several sub-types of vegetarian diets affect metabolic traits, including waist circumference, BMI, systolic blood pressure (SBP), diastolic blood pressure, fasting blood glucose, total cholesterol (TC), HDL, LDL, TAG and TC:HDL ratio, through both cross-sectional and longitudinal study designs. The study used the MJ Health Screening database, with data collected from 1994 to 2008 in Taiwan, which included 4415 lacto-ovo-vegetarians, 1855 lacto-vegetarians and 1913 vegans; each vegetarian was matched with five non-vegetarians based on age, sex and study site. In the longitudinal follow-up, each additional year of vegan diet lowered the risk of obesity by 7 % (95 % CI 0·88, 0·99), whereas each additional year of lacto-vegetarian diet lowered the risk of elevated SBP by 8 % (95 % CI 0·85, 0·99) and elevated glucose by 7 % (95 % CI 0·87, 0·99), and each additional year of ovo-lacto-vegetarian diet increased abnormal HDL by 7 % (95 % CI 1·03, 1·12), compared with non-vegetarians. In the cross-sectional comparisons, all sub-types of vegetarians had lower likelihoods of abnormalities compared with non-vegetarians on all metabolic traits (Pvegetarians is partially attributable to lower BMI. With proper management of TAG and HDL, along with caution about the intake of refined carbohydrates and fructose, a plant-based diet may benefit all aspects of the metabolic profile.

  3. Macaques with Rapid Disease Progression and Simian Immunodeficiency Virus Encephalitis Have a Unique Cytokine Profile in Peripheral Lymphoid Tissues

    Science.gov (United States)

    Orandle, Marlene S.; Williams, Kenneth C.; MacLean, Andrew G.; Westmoreland, Susan V.; Lackner, Andrew A.

    2001-01-01

    The influence of host cytokine response on viral load, disease progression, and neurologic lesions was investigated in the simian immunodeficiency virus (SIV)-infected macaque model of AIDS. Cytokine gene expression (interleukin-1β [IL-1β], IL-2, IL-6, IL-10, gamma interferon [IFN-γ], and tumor necrosis factor alpha [TNF-α]) and viral loads were evaluated by semiquantitative reverse transcription-PCR in lymph nodes of 5 control animals and 28 animals infected with SIVmac251 at the terminal stages of AIDS. Infected animals showed higher expression of IFN-γ, IL-6, and IL-10 mRNAs compared with controls. Levels of all cytokines were comparable between animals with rapid (survival, 200 days) disease progression. However, among rapid progressors, the eight animals with SIV encephalitis had a unique cytokine profile (increased IL-2, IL-6, and IFN-γ) that was associated with higher viral loads. These observations provide evidence that host cytokine responses may influence SIV neuropathogenesis independent of disease progression. PMID:11287599

  4. MALDI-TOF-MS Platform for Integrated Proteomic and Peptidomic Profiling of Milk Samples Allows Rapid Detection of Food Adulterations.

    Science.gov (United States)

    Sassi, Mauro; Arena, Simona; Scaloni, Andrea

    2015-07-15

    Adulteration of ovine, caprine, and buffalo milks with more common bovine material occurs for economic reasons and seasonal availability. Frauds are also associated with the use of powdered milk instead of declared, fresh material. In this context, various analytical methods have been adapted to dairy science applications with the aim to evaluate adulteration of milk samples, although time-consuming, suitable only for speciation or thermal treatment analysis, or useful for a specific fraud type. An integrated MALDI-TOF-MS platform for the combined peptidomic and proteomic profiling of milk samples is here presented, which allows rapid detection of illegal adulterations due to the addition of either nondeclared bovine material to water buffalo, goat, and ovine milks or of powdered bovine milk to the fresh counterpart. Peptide and protein markers of each animal milk were identified after direct analysis of a large number of diluted skimmed and/or enriched diluted skimmed filtrate samples. In parallel, markers of thermal treatment were characterized in different types of commercial milks. Principal components scores of ad hoc prepared species- or thermal treatment-associated adulterated milk samples were subjected to partial least-squares regression, permitting a fast accurate estimate of the fraud extents in test samples at either protein and peptide level. With respect to previous reports on MALDI-TOF-MS protein profiling methodologies for milk speciation, this study extends that approach to the analysis of the thermal treatment and introduces an independent, complementary peptide profiling measurement, which integrates protein data with additional information on peptides, validating final results and ultimately broadening the method applicability.

  5. Rolling mill optimization using an accurate and rapid new model for mill deflection and strip thickness profile

    Science.gov (United States)

    Malik, Arif Sultan

    This work presents improved technology for attaining high-quality rolled metal strip. The new technology is based on an innovative method to model both the static and dynamic characteristics of rolling mill deflection, and it applies equally to both cluster-type and non cluster-type rolling mill configurations. By effectively combining numerical Finite Element Analysis (FEA) with analytical solid mechanics, the devised approach delivers a rapid, accurate, flexible, high-fidelity model useful for optimizing many important rolling parameters. The associated static deflection model enables computation of the thickness profile and corresponding flatness of the rolled strip. Accurate methods of predicting the strip thickness profile and strip flatness are important in rolling mill design, rolling schedule set-up, control of mill flatness actuators, and optimization of ground roll profiles. The corresponding dynamic deflection model enables solution of the standard eigenvalue problem to determine natural frequencies and modes of vibration. The presented method for solving the roll-stack deflection problem offers several important advantages over traditional methods. In particular, it includes continuity of elastic foundations, non-iterative solution when using pre-determined elastic foundation moduli, continuous third-order displacement fields, simple stress-field determination, the ability to calculate dynamic characteristics, and a comparatively faster solution time. Consistent with the most advanced existing methods, the presented method accommodates loading conditions that represent roll crowning, roll bending, roll shifting, and roll crossing mechanisms. Validation of the static model is provided by comparing results and solution time with large-scale, commercial finite element simulations. In addition to examples with the common 4-high vertical stand rolling mill, application of the presented method to the most complex of rolling mill configurations is demonstrated

  6. Metabolic and phylogenetic profile of bacterial community in Guishan coastal water (Pearl River Estuary), South China Sea

    Science.gov (United States)

    Hu, Xiaojuan; Liu, Qing; Li, Zhuojia; He, Zhili; Gong, Yingxue; Cao, Yucheng; Yang, Yufeng

    2014-10-01

    Characteristics of a microbial community are important as they indicate the status of aquatic ecosystems. In the present study, the metabolic and phylogenetic profile of the bacterioplankton community in Guishan coastal water (Pearl River Estuary), South China Sea, at 12 sites (S1-S12) were explored by community-level physiological profiling (CLPP) with BIOLOG Eco-plate and denaturing gradient gel electrophoresis (DGGE). Our results showed that the core mariculture area (S6, S7 and S8) and the sites associating with human activity and sewage discharge (S11 and S12) had higher microbial metabolic capability and bacterial community diversity than others (S1-5, S9-10). Especially, the diversity index of S11 and S12 calculated from both CLPP and DGGE data ( H>3.2) was higher than that of others as sewage discharge may increase water nitrogen and phosphorus nutrient. The bacterial community structure of S6, S8, S11 and S12 was greatly influenced by total phosphorous, salinity and total nitrogen. Based on DGGE fingerprinting, proteobacteria, especially γ- and α-proteobacteria, were found dominant at all sites. In conclusion, the aquaculture area and wharf had high microbial metabolic capability. The structure and composition of bacterial community were closely related to the level of phosphorus, salinity and nitrogen.

  7. Metabolite profiling of sucrose effect on the metabolism of Melissa officinalis by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Kim, Sooah; Shin, Min Hye; Hossain, Md Aktar; Yun, Eun Ju; Lee, Hojoung; Kim, Kyoung Heon

    2011-04-01

    The effect of sugar on plant metabolism, which is known to be similar to hormone-like signaling, was metabolomically studied using Melissa officinalis (lemon balm). The metabolite profiles of M. officinalis treated with sucrose were analyzed by gas chromatography-mass spectrometry (GC-MS) and principal component analysis (PCA). A total of 64 metabolites from various chemical classes including alcohols, amines, amino acids, fatty acids, inorganic acids, organic acids, phosphates, and sugars were identified by GC-MS. Three groups treated with different sucrose concentrations were clearly separated by PCA of their metabolite profiles, indicating changes in the levels of many metabolites depending on the sucrose concentration. Metabolite profiling revealed that treatment with a higher sucrose level caused an increase in the levels of metabolites such as sugars, sugar alcohols, and sugar phosphates, which are related to the glycolytic pathway of M. officinalis. Furthermore, proline and succinic acid, which are associated with the proline-linked pentose phosphate pathway, the shikimic acid pathway, and the biosynthesis of phenylpropanoids, also increased with increasing sucrose concentration. Therefore, these metabolic changes induced by sucrose ultimately led to the increased production of flavonoids such as caffeic acid via the biosynthetic pathway of phenylpropanoids. This study demonstrated that the abundance changes in some primary and secondary metabolites were somewhat interlocked with each other in response to sucrose.

  8. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  9. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  10. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Science.gov (United States)

    Tan, Helin; Xie, Qingjun; Xiang, Xiaoe; Li, Jianqiao; Zheng, Suning; Xu, Xinying; Guo, Haolun; Ye, Wenxue

    2015-01-01

    Canola (Brassica napus) is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS). The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld), phloem-peeling (Pe), and selective silique darkening (Sd). Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA), organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms of the oil

  11. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    Science.gov (United States)

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  12. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  13. Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios.

    Science.gov (United States)

    Desnoues, Elsa; Gibon, Yves; Baldazzi, Valentina; Signoret, Véronique; Génard, Michel; Quilot-Turion, Bénédicte

    2014-11-25

    Fruit taste is largely affected by the concentration of soluble sugars and organic acids and non-negligibly by fructose concentration, which is the sweetest-tasting sugar. To date, many studies investigating the sugars in fruit have focused on a specific sugar or enzyme and often on a single variety, but only a few detailed studies addressing sugar metabolism both as a whole and dynamic system are available. In commercial peach fruit, sucrose is the main sugar, followed by fructose and glucose, which have similar levels. Interestingly, low fructose-to-glucose ratios have been observed in wild peach accessions. A cross between wild peach and commercial varieties offers an outstanding possibility to study fruit sugar metabolism. This work provides a large dataset of sugar composition and the capacities of enzymes that are involved in sugar metabolism during peach fruit development and its genetic diversity. A large fraction of the metabolites and enzymes involved in peach sugar metabolism were assayed within a peach progeny of 106 genotypes, of which one quarter displayed a low fructose-to-glucose ratio. This profiling was performed at six stages of growth using high throughput methods. Our results permit drawing a quasi-exhaustive scheme of sugar metabolism in peach. The use of a large number of genotypes revealed a remarkable robustness of enzymatic capacities across genotypes and years, despite strong variations in sugar composition, in particular the fructose-to-glucose ratio, within the progeny. A poor correlation was also found between the enzymatic capacities and the accumulation rates of metabolites. These results invalidate the hypothesis of the straightforward enzymatic control of sugar concentration in peach fruit. Alternative hypotheses concerning the regulation of fructose concentration are discussed based on experimental data. This work lays the foundation for a comprehensive study of the mechanisms involved in sugar metabolism in developing fruit.

  14. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures

    Directory of Open Access Journals (Sweden)

    Jordà Joel

    2012-05-01

    Full Text Available Abstract Background The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. Results The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h−1 using a glucose:methanol 80:20 (w/w mix as carbon source. The MFA performed in this study reveals a significant redistristribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Conclusions Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic

  15. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose:methanol mixtures.

    Science.gov (United States)

    Jordà, Joel; Jouhten, Paula; Cámara, Elena; Maaheimo, Hannu; Albiol, Joan; Ferrer, Pau

    2012-05-08

    The methylotrophic yeast Pichia pastoris has emerged as one of the most promising yeast hosts for the production of heterologous proteins. Mixed feeds of methanol and a multicarbon source instead of methanol as sole carbon source have been shown to improve product productivities and alleviate metabolic burden derived from protein production. Nevertheless, systematic quantitative studies on the relationships between the central metabolism and recombinant protein production in P. pastoris are still rather limited, particularly when growing this yeast on mixed carbon sources, thus hampering future metabolic network engineering strategies for improved protein production. The metabolic flux distribution in the central metabolism of P. pastoris growing on a mixed feed of glucose and methanol was analyzed by Metabolic Flux Analysis (MFA) using 13C-NMR-derived constraints. For this purpose, we defined new flux ratios for methanol assimilation pathways in P. pastoris cells growing on glucose:methanol mixtures. By using this experimental approach, the metabolic burden caused by the overexpression and secretion of a Rhizopus oryzae lipase (Rol) in P. pastoris was further analyzed. This protein has been previously shown to trigger the unfolded protein response in P. pastoris. A series of 13C-tracer experiments were performed on aerobic chemostat cultivations with a control and two different Rol producing strains growing at a dilution rate of 0.09 h(-1) using a glucose:methanol 80:20 (w/w) mix as carbon source.The MFA performed in this study reveals a significant redistribution of carbon fluxes in the central carbon metabolism when comparing the two recombinant strains vs the control strain, reflected in increased glycolytic, TCA cycle and NADH regeneration fluxes, as well as higher methanol dissimilation rates. Overall, a further 13C-based MFA development to characterise the central metabolism of methylotrophic yeasts when growing on mixed methanol:multicarbon sources has been

  16. Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism.

    Science.gov (United States)

    James, Emma L; Lane, James A E; Michalek, Ryan D; Karoly, Edward D; Parkinson, E Kenneth

    2016-12-07

    Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.

  17. Study of metabolic profile of Rhizopus oryzae to enhance fumaric acid production under low pH condition.

    Science.gov (United States)

    Liu, Ying; Xu, Qing; Lv, Chunwei; Yan, Caixia; Li, Shuang; Jiang, Ling; Huang, He; Ouyang, Pingkai

    2015-12-01

    Ensuring a suitable pH is a major problem in industrial organic acid fermentation. To circumvent this problem, we used a metabolic profiling approach to analyze metabolite changes in Rhizopus oryzae under different pH conditions. A correlation between fumaric acid production and intracellular metabolic characteristics of R. oryzae was revealed by principal component analysis. The results showed that to help cell survival in the presence of low pH, R. oryzae altered amino acid and fatty acid metabolism and promoted sugar or sugar alcohol synthesis, corresponding with a suppressing of energy metabolism, phenylalanine, and tyrosine synthesis and finally resulting in the low performance of fumaric acid production. Based on this observation, 1 % linoleic acid was added to the culture medium in pH 3.0 to decrease the carbon demand for cell survival, and the fumaric acid titer was enhanced by 39.7 % compared with the control (pH 3.0 without linoleic acid addition), reaching 18.3 g/L after 84 h of fermentation. These findings provide new insights into the mechanism by which R. oryzae responds to acidic stress and would be helpful for the development of efficient strategies for fumaric acid production at low pH.

  18. Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize.

    Science.gov (United States)

    Song, Jian; Guo, Baojian; Song, Fangwei; Peng, Huiru; Yao, Yingyin; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2011-08-15

    Gibberellin (GA) is an essential phytohormone that controls many aspects of plant development. To enhance our understanding of GA metabolism in maize, we intensively screened and identified 27 candidate genes encoding the seven GA metabolic enzymes including ent-copalyl diphosphate synthase (CPS), ent-kaurene synthase (KS), ent-kaurene oxidase (KO), ent-kaurenoic acid oxidase (KAO), GA 20-oxidase (GA20ox), GA 3-oxidase (GA3ox), and GA 2-oxidase (GA2ox), using all available public maize databases. The results indicate that maize genome contains three CPS, four KS, two KO and one KAO genes, and most of them are arranged separately on the maize genome, which differs from that in rice. In addition, the enzymes catalyzing the later steps (ZmGA20ox, ZmGA3ox and ZmGA2ox) are also encoded by gene families in maize, but GA3ox enzyme is likely to be encoded by single gene. Expression profiling analysis exhibited that transcripts of 15 GA metabolic genes could be detected during maize seed germination, which provides further evidence for the notion that increased synthesis of active GA in the embryo is required for triggering germination events. Moreover, a variety of temporal genes expression patterns of GA metabolic genes were detected, which revealed the complexity of underlying mechanism for GA regulated seed germination.

  19. Evaluation of hyperandrogenemia and metabolic risk profile in women with postadolescent acne

    OpenAIRE

    Leyla Baykal Selçuk; Deniz Aksu Arıca; Savaş Yaylı

    2016-01-01

    Background and Design: Postadolescent acne is a disease with relapses frequently seen in women. Treatment is difficult. In our study, we aimed to investigate the clinical and biochemical characteristics of hyperandrogenism and the prevalence of metabolic disorders, such as metabolic syndrome (MS) and dyslipidemia in women with postadolescent acne. Materials and Methods: This study was conducted on 50 women who attended our department with the complaint of postadolescent acne between July 2014...

  20. METABOLIC PROPERTIES OF RYE PRODUCTS Focusing on insulinaemia, glycaemic profile and appetite regulation in healthy subjects

    OpenAIRE

    Rosén, Liza

    2011-01-01

    The prevalence of metabolic disorders, such as type 2 diabetes, cardiovascular diseases and the insulin resistance syndrome (IRS) are increasing worldwide. However, disturbances in the metabolic status can be prevented by changing the daily diet towards more whole grains, vegetables, legumes and dairy products. Also the dietary glycaemic- and insulinaemic indices of foods may play a role. Rye products are interesting in this context as they are usually consumed in wholegrain form and have bee...

  1. Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum.

    Science.gov (United States)

    Amador-Noguez, Daniel; Feng, Xiao-Jiang; Fan, Jing; Roquet, Nathaniel; Rabitz, Herschel; Rabinowitz, Joshua D

    2010-09-01

    Obligatory anaerobic bacteria are major contributors to the overall metabolism of soil and the human gut. The metabolic pathways of these bacteria remain, however, poorly understood. Using isotope tracers, mass spectrometry, and quantitative flux modeling, here we directly map the metabolic pathways of Clostridium acetobutylicum, a soil bacterium whose major fermentation products include the biofuels butanol and hydrogen. While genome annotation suggests the absence of most tricarboxylic acid (TCA) cycle enzymes, our results demonstrate that this bacterium has a complete, albeit bifurcated, TCA cycle; oxaloacetate flows to succinate both through citrate/alpha-ketoglutarate and via malate/fumarate. Our investigations also yielded insights into the pathways utilized for glucose catabolism and amino acid biosynthesis and revealed that the organism's one-carbon metabolism is distinct from that of model microbes, involving reversible pyruvate decarboxylation and the use of pyruvate as the one-carbon donor for biosynthetic reactions. This study represents the first in vivo characterization of the TCA cycle and central metabolism of C. acetobutylicum. Our results establish a role for the full TCA cycle in an obligatory anaerobic organism and demonstrate the importance of complementing genome annotation with isotope tracer studies for determining the metabolic pathways of diverse microbes.

  2. Metabolic profiling of the tissue-specific responses in mussel Mytilus galloprovincialis towards Vibrio harveyi challenge.

    Science.gov (United States)

    Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wang, Qing; Li, Fei; Wu, Huifeng

    2014-08-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish distributing widely along the coast in north China. In this work, we studied the differential metabolic responses induced by Vibrio harveyi in digestive gland and gill tissues from M. galloprovincialis using NMR-based metabolomics. The differential metabolic responses in the two tissue types were detected, except the similarly altered taurine and betaine. These metabolic responses suggested that V. harveyi mainly induced osmotic disruption and reduced energy demand via the metabolic pathways of glucose synthesis and ATP/AMP conversion in mussel digestive gland. In mussel gill tissues, V. harveyi basically caused osmotic stress and possible reduced energy demand as shown by the elevated phosphocholine that is involved in one of the metabolic pathways of ATP synthesis from ADP and phosphocholine. The altered mRNA expression levels of related genes (superoxide dismutase with copper and zinc, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear oxidative and immune stresses in both digestive gland and gill tissues. However, the mRNA expression levels of both lysozyme and defensin in digestive gland were more significantly up-regulated than those in gill from V. harveyi-challenged mussel M. galloprovincialis, meaning that the immune organ, digestive gland, was more sensitive than gill. Overall, our results indicated that V. harveyi could induce tissue-specific metabolic responses in mussel M. galloprovincialis.

  3. Nut consumption has favorable effects on lipid profiles of Korean women with metabolic syndrome.

    Science.gov (United States)

    Lee, Young Joo; Nam, Ga Eun; Seo, Ji A; Yoon, Taehyung; Seo, Ilwon; Lee, Jin Hee; Im, Donggil; Bahn, Kyeong-Nyeo; Jeong, Si An; Kang, Tae Seok; Ahn, Jae Hee; Kim, Do Hoon; Kim, Nan Hee

    2014-09-01

    Nut consumption has been studied for its cardioprotective effects. However, the findings of clinical intervention studies are inconsistent; and no intervention studies have been conducted in the Korean population. We hypothesized that nut supplementation may have favorable influence on metabolic markers. Therefore, this study aimed to investigate the effects of nut consumption on metabolic parameters and biomarkers related to inflammation, oxidative stress, and endothelial function in Korean adults with metabolic syndrome. To this end, we designed a randomized, parallel, controlled dietary intervention study (ClinicalTrials.gov NCT02023749). Subjects with metabolic syndrome and a body mass index of at least 23 kg/m(2) were randomized to the Control group and the Nut group, which received supplementation with 30 g/d of mixed nuts (walnuts, peanuts, and pine nuts) for 6 weeks. Sixty volunteers were included in the final analysis. Metabolic markers were evaluated at baseline and at the end of the study. Total cholesterol and non-high-density lipoprotein cholesterol levels significantly improved in the Nut group compared to those in the Control group (P = .023 and P = .016, respectively) in women. Biomarkers related to inflammation, oxidative stress, and endothelial function did not significantly change from baseline in either group. Thus, supplementing a usual diet with mixed nuts for 6 weeks had favorable effects on several lipid parameters in Korean women with metabolic syndrome. These findings present a possible mechanism for the cardioprotective effects of nut consumption.

  4. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR

    Science.gov (United States)

    van Schadewijk, R.; de Groot, H. J. M.; Alia, A.

    2016-01-01

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency. PMID:27662620

  5. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR.

    Science.gov (United States)

    Augustijn, D; Roy, U; van Schadewijk, R; de Groot, H J M; Alia, A

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency.

  6. Expression profiles of genes involved in xenobiotic metabolism and disposition in human renal tissues and renal cell models

    Energy Technology Data Exchange (ETDEWEB)

    Van der Hauwaert, Cynthia; Savary, Grégoire [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Buob, David [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Leroy, Xavier; Aubert, Sébastien [Institut de Pathologie, Centre de Biologie Pathologie Génétique, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); Flamand, Vincent [Service d' Urologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Hennino, Marie-Flore [EA4483, Université de Lille 2, Faculté de Médecine de Lille, Pôle Recherche, 59045 Lille (France); Service de Néphrologie, Hôpital Huriez, Centre Hospitalier Régional Universitaire de Lille, 59037 Lille (France); Perrais, Michaël [Institut National de la Santé et de la Recherche Médicale, UMR837, Centre de Recherche Jean-Pierre Aubert, Equipe 5, 59045 Lille (France); and others

    2014-09-15

    Numerous xenobiotics have been shown to be harmful for the kidney. Thus, to improve our knowledge of the cellular processing of these nephrotoxic compounds, we evaluated, by real-time PCR, the mRNA expression level of 377 genes encoding xenobiotic-metabolizing enzymes (XMEs), transporters, as well as nuclear receptors and transcription factors that coordinate their expression in eight normal human renal cortical tissues. Additionally, since several renal in vitro models are commonly used in pharmacological and toxicological studies, we investigated their metabolic capacities and compared them with those of renal tissues. The same set of genes was thus investigated in HEK293 and HK2 immortalized cell lines in commercial primary cultures of epithelial renal cells and in proximal tubular cell primary cultures. Altogether, our data offers a comprehensive description of kidney ability to process xenobiotics. Moreover, by hierarchical clustering, we observed large variations in gene expression profiles between renal cell lines and renal tissues. Primary cultures of proximal tubular epithelial cells exhibited the highest similarities with renal tissue in terms of transcript profiling. Moreover, compared to other renal cell models, Tacrolimus dose dependent toxic effects were lower in proximal tubular cell primary cultures that display the highest metabolism and disposition capacity. Therefore, primary cultures appear to be the most relevant in vitro model for investigating the metabolism and bioactivation of nephrotoxic compounds and for toxicological and pharmacological studies. - Highlights: • Renal proximal tubular (PT) cells are highly sensitive to xenobiotics. • Expression of genes involved in xenobiotic disposition was measured. • PT cells exhibited the highest similarities with renal tissue.

  7. Codeine Ultra-rapid Metabolizers: Age Appears to be a Key Factor in Adverse Effects of Codeine.

    Science.gov (United States)

    Heintze, K; Fuchs, W

    2015-12-01

    Codeine is widely used as an analgesic drug. Taking into account the high consumption of codeine, only few fatal adverse events have been published. A number of reports, where neonates and children showed serious or fatal adverse reactions, led to a restriction of the use of codeine in this patient group. Therefore, we reviewed the safety of codeine in adults. PubMed was systematically searched for clinical studies and case reports, with a special focus on CYP2D6, the enzyme that converts codeine to morphine and exhibits genetic polymorphism.181 cases were identified in adults in conjunction with serious or lethal effects of codeine. In the vast majority of cases, codeine was used in combination with other drugs by drug-dependent individuals or with a suicidal intent. Only 2 cases were found where ultra-rapid metabolizers experienced severe non-lethal adverse events. This is far less than would be predicted from the number of cases reported in children. The discrepancy may be explained by developmental changes in the disposition of codeine.The strategy of regulatory authorities to restrict access to codeine for infants and young children, the apparent highest risk group, has a factual and pharmacological rationale. By the same standards, there is no need for restrictions for adult use of codeine.

  8. Multi-omic profiling of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    2015-01-01

    the existence of production bottlenecks in energy metabolism (i.e., glycolytic metabolites, NAD(P)H/NAD(P)+ and ANPs) in batch culture or in the secretory protein production pathway (i.e., gene dosage, transcription and post-translational processing of EPO) in chemostat culture at specific productivities up...... to 5 pg/cell/day. Time-course analysis of high- and low-producing clones in chemostat culture revealed rapid adaptation of transcription levels of amino acid catabolic genes in favor of EPO production within nine generations. Interestingly, the adaptation was followed by an increase in specific EPO......Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied...

  9. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus: A meta-analysis of randomized, controlled trials.

    Science.gov (United States)

    Li, Caifeng; Li, Xin; Han, Hongqiu; Cui, Hailong; Peng, Min; Wang, Guolin; Wang, Zhiqiang

    2016-06-01

    Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease which is imposing heavy burden on global health and economy. Recent studies indicate gut microbiota play important role on the pathogenesis and metabolic disturbance of T2DM. As an effective mean of regulating gut microbiota, probiotics are live micro-organisms that are believed to provide a specific health benefit on the host. Whether probiotic supplementation could improve metabolic profiles by modifying gut microbiota in T2DM or not is still in controversy.The aim of the study is to assess the effect of probiotic supplementation on metabolic profiles in T2DM.We searched PubMed, EMBASE, and Cochrane Library up to 12 April 2016. Two review authors independently assessed study eligibility, extracted data, and evaluated risk of bias of included studies. Data were pooled by using the random-effect model and expressed as standardized mean difference (SMD) with 95% confidence interval (CI). Heterogeneity was assessed and quantified (I).A total of 12 randomized controlled trials (RCTs) were included. Lipid profiles (n = 508) and fasting blood glucose (FBG) (n = 520) were reported in 9 trials; the homeostasis model of assessment for insulin resistance index (HOMA-IR) (n = 368) and glycosylated hemoglobin (HbA1c) (n = 380) were reported in 6 trials. Probiotics could alleviate FBG (SMD -0.61 mmol/L, 95% CI [-0.92, -0.30], P = 0.0001). Probiotics could increase high-density lipoprotein-cholesterol (HDL-C) (SMD 0.42 mmol/L, 95% CI [0.08, 0.76], P = 0.01). There were no significant differences in low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), HbA1c and HOMA-IR between the treatment group and the control group.Probiotics may improve glycemic control and lipid metabolism in T2DM. Application of probiotic agents might become a new method for glucose management in T2DM.

  10. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species

    DEFF Research Database (Denmark)

    Pičmanová, Martina; Neilson, Elizabeth H.; Motawia, Mohammed S.;

    2015-01-01

    nitrogen at specific developmental stages. To investigate the presence of putative turnover products of cyanogenic glycosides, comparative metabolic profiling using LC-MS/MS and HR-MS complemented by ion-mobility mass spectrometry was carried out in three cyanogenic plant species: cassava, almond...... products in cyanogenic plants open entirely new insights into the multiplicity of biological roles cyanogenic glycosides may play in plants.......Cyanogenic glycosides are phytoanticipins involved in plant defence against herbivores by virtue of their ability to release toxic HCN upon tissue disruption. In addition, endogenous turnover of cyanogenic glycosides without the liberation of HCN may offer plants an important source of reduced...

  11. Metabolic profiling of lymph from pigs fed with ß-glucan by high-resolution 1H NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Flemming Hofmann; Jørgensen, Henry Johs. Høgh; Engelsen, Søren Balling

    2010-01-01

    To gain information about the effect of ingesting different β-glucan sources on intestinal lymph metabolic profile, 10 growing pigs (30-36 kg) were fitted with a catheter in the jejunal lymphatic trunk, and lymph samples collected continuously -1 to 8 h postprandial and again at 24 h after feeding...... primarily from fatty acids and the glycerol backbone in triglycerides. Weak signals from carbohydrates and aromatic compounds were also observed. The chemometric analysis demonstrated that the levels of mono- and poly-unsaturated lipids were reduced by the β-glucan enriched diets. Furthermore, indications...

  12. Predicting chronic copper and nickel reproductive toxicity to Daphnia pulex-pulicaria from whole-animal metabolic profiles.

    Science.gov (United States)

    Taylor, Nadine S; Kirwan, Jennifer A; Johnson, Craig; Yan, Norman D; Viant, Mark R; Gunn, John M; McGeer, James C

    2016-05-01

    The emergence of omics approaches in environmental research has enhanced our understanding of the mechanisms underlying toxicity; however, extrapolation from molecular effects to whole-organism and population level outcomes remains a considerable challenge. Using environmentally relevant, sublethal, concentrations of two metals (Cu and Ni), both singly and in binary mixtures, we integrated data from traditional chronic, partial life-cycle toxicity testing and metabolomics to generate a statistical model that was predictive of reproductive impairment in a Daphnia pulex-pulicaria hybrid that was isolated from an historically metal-stressed lake. Furthermore, we determined that the metabolic profiles of organisms exposed in a separate acute assay were also predictive of impaired reproduction following metal exposure. Thus we were able to directly associate molecular profiles to a key population response - reproduction, a key step towards improving environmental risk assessment and management.

  13. Tumor Necrosis Factor, but Not Neutrophils, Alters the Metabolic Profile in Acute Experimental Arthritis.

    Directory of Open Access Journals (Sweden)

    Marina C Oliveira

    Full Text Available Metabolic alterations are associated with arthritis apart from obesity. However, it is still unclear which is the underlying process behind these metabolic changes. Here, we investigate the role of tumor necrosis factor (TNF in this process in an acute model of antigen-induced arthritis (AIA. Immunized male BALB/c mice received an intra-articular injection of PBS (control or methylated bovine serum albumin (mBSA into their knees, and were also pre-treated with different drugs: Etanercept, an anti-TNF drug, DF2156A, a CXCR1/2 receptor antagonist, or a monoclonal antibody RB6-8C5 to deplete neutrophils. Local challenge with mBSA evoked an acute neutrophil influx into the knee joint, and enhanced the joint nociception, along with a transient systemic metabolic alteration (higher levels of glucose and lipids, and altered adipocytokines. Pre-treatment with the conventional biological Etanercept, an inhibitor of TNF action, ameliorated the nociception and the acute joint inflammation dominated by neutrophils, and markedly improved many of the altered systemic metabolites (glucose and lipids, adipocytokines and PTX3. However, the lessening of metabolic changes was not due to diminished accumulation of neutrophils in the joint by Etanercept. Reduction of neutrophil recruitment by pre-treating AIA mice with DF2156A, or even the depletion of these cells by using RB6-8C5 reduced all of the inflammatory parameters and hypernociception developed after AIA challenge, but could not prevent the metabolic changes. Therefore, the induction of joint inflammation provoked acute metabolic alterations which were involved with TNF. We suggest that the role of TNF in arthritis-associated metabolic changes is not due to local neutrophils, which are the major cells present in this model, but rather due to cytokines.

  14. Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Müller Maren

    2011-11-01

    Full Text Available Abstract Background Plant hormones play a pivotal role in several physiological processes during a plant's life cycle, from germination to senescence, and the determination of endogenous concentrations of hormones is essential to elucidate the role of a particular hormone in any physiological process. Availability of a sensitive and rapid method to quantify multiple classes of hormones simultaneously will greatly facilitate the investigation of signaling networks in controlling specific developmental pathways and physiological responses. Due to the presence of hormones at very low concentrations in plant tissues (10-9 M to 10-6 M and their different chemistries, the development of a high-throughput and comprehensive method for the determination of hormones is challenging. Results The present work reports a rapid, specific and sensitive method using ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UPLC/ESI-MS/MS to analyze quantitatively the major hormones found in plant tissues within six minutes, including auxins, cytokinins, gibberellins, abscisic acid, 1-amino-cyclopropane-1-carboxyic acid (the ethylene precursor, jasmonic acid and salicylic acid. Sample preparation, extraction procedures and UPLC-MS/MS conditions were optimized for the determination of all plant hormones and are summarized in a schematic extraction diagram for the analysis of small amounts of plant material without time-consuming additional steps such as purification, sample drying or re-suspension. Conclusions This new method is applicable to the analysis of dynamic changes in endogenous concentrations of hormones to study plant developmental processes or plant responses to biotic and abiotic stresses in complex tissues. An example is shown in which a hormone profiling is obtained from leaves of plants exposed to salt stress in the aromatic plant, Rosmarinus officinalis.

  15. 1H NMR Metabolic Profiling of Biofluids from Rats with Gastric Mucosal Lesion and Electroacupuncture Treatment

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2015-01-01

    Full Text Available Gastric mucosal lesion (GML is a common gastrointestinal disorder with multiple pathogenic mechanisms in clinical practice. In traditional Chinese medicine (TCM, electroacupuncture (EA treatment has been proven as an effective therapy for GML, although the underlying healing mechanism is not yet clear. Here, we used proton nuclear magnetic resonance- (1H NMR- based metabolomic method to investigate the metabolic perturbation induced by GML and the therapeutic effect of EA treatment on stomach meridian (SM acupoints. Clear metabolic differences were observed between GML and control groups, and related metabolic pathways were discussed by means of online metabolic network analysis toolbox. By comparing the endogenous metabolites from GML and GML-SM groups, the disturbed pathways were partly recovered towards healthy state via EA treated on SM acupoints. Further comparison of the metabolic variations induced by EA stimulated on SM and the control gallbladder meridian (GM acupoints showed a quite similar metabolite composition except for increased phenylacetylglycine, 3,4-dihydroxymandelate, and meta-hydroxyphenylacetate and decreased N-methylnicotinamide in urine from rats with EA treated on SM acupoints. The current study showed the potential application of metabolomics in providing further insight into the molecular mechanism of acupuncture.

  16. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles.

    Science.gov (United States)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte; Pedersen, Bente K; Saltin, Bengt; Pilegaard, Henriette

    2006-09-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle. Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity was more than twofold higher in soleus and vastus than in triceps. Contrary, phosphofructokinase and total lactate dehydrogenase (LDH) activity was approximately three- and twofold higher in triceps than in both soleus and vastus. Expression of metabolic genes was assessed by determining the mRNA content of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly, such mRNA differences were not evident for any of the genes encoding mitochondrial oxidative proteins, 3-hydroxyacyl dehydrogenase, carnitine palmitoyl transferase I, citrate synthase, alpha-ketogluterate dehydrogenase, and cytochrome c, nor for the transcriptional regulators peroxisome proliferator activator receptor gamma coactivator-1alpha, forkhead box O1, or peroxisome proliferator activator receptor-alpha. Thus the mRNA expression of genes encoding mitochondrial proteins and transcriptional regulators does not seem to be fiber type specific as the genes encoding glycolytic and lipid metabolism genes, which suggests that basal mRNA regulation of genes encoding mitochondrial proteins does not match the wide differences in mitochondrial content of these muscles.

  17. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus)

    OpenAIRE

    Chang Ha Park; Thanislas Bastin Baskar; Soo-Yun Park; Sun-Ju Kim; Mariadhas Valan Arasu; Naif Abdullah Al-Dhabi; Jae Kwang Kim; Sang Un Park

    2016-01-01

    A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS)-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in th...

  18. ProReg XL Tool: an easy-to-use computer tool suite for rapidly regrouping a large number of identical electrophoretic profiles.

    Science.gov (United States)

    Massias, Bastien; Urdaci, Maria C

    2009-05-01

    The ProReg XL Tool (Profile Regrouping Excel Tool) is a new tool suite designed to rapidly regroup a large number of identical electrophoretic profiles. This tool suite is coded in Visual Basic Application for Microsoft Excel, and thus requires this spreadsheet software to operate. It was designed for use with a new screening strategy of clones from an rrs (16S rDNA) clone library, but it may also be helpful in other electrophoretic applications. ProReg XL Tool is organized in different steps where the user has the capability--in addition to regrouping electrophoretic profiles--to control gel quality, determine signal attenuation, and draw pie charts.

  19. Metabolic effects of influenza virus infection in cultured animal cells: Intra- and extracellular metabolite profiling

    Directory of Open Access Journals (Sweden)

    Genzel Yvonne

    2010-05-01

    Full Text Available Abstract Background Many details in cell culture-derived influenza vaccine production are still poorly understood and approaches for process optimization mainly remain empirical. More insights on mammalian cell metabolism after a viral infection could give hints on limitations and cell-specific virus production capacities. A detailed metabolic characterization of an influenza infected adherent cell line (MDCK was carried out based on extracellular and intracellular measurements of metabolite concentrations. Results For most metabolites the comparison of infected (human influenza A/PR/8/34 and mock-infected cells showed a very similar behavior during the first 10-12 h post infection (pi. Significant changes were observed after about 12 h pi: (1 uptake of extracellular glucose and lactate release into the cell culture supernatant were clearly increased in infected cells compared to mock-infected cells. At the same time (12 h pi intracellular metabolite concentrations of the upper part of glycolysis were significantly increased. On the contrary, nucleoside triphosphate concentrations of infected cells dropped clearly after 12 h pi. This behaviour was observed for two different human influenza A/PR/8/34 strains at slightly different time points. Conclusions Comparing these results with literature values for the time course of infection with same influenza strains, underline the hypothesis that influenza infection only represents a minor additional burden for host cell metabolism. The metabolic changes observed after12 h pi are most probably caused by the onset of apoptosis in infected cells. The comparison of experimental data from two variants of the A/PR/8/34 virus strain (RKI versus NIBSC with different productivities and infection dynamics showed comparable metabolic patterns but a clearly different timely behavior. Thus, infection dynamics are obviously reflected in host cell metabolism.

  20. Metabolic profiling provides a system understanding of hypothyroidism in rats and its application.

    Directory of Open Access Journals (Sweden)

    Si Wu

    Full Text Available BACKGROUND: Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND is a well-known formula of traditional Chinese medicine (TCM and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. METHODOLOGY/PRINCIPAL FINDINGS: A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. CONCLUSIONS/SIGNIFICANCE: Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on

  1. Metabolic and proteomic profiling of diapause in the aphid parasitoid Praon volucre.

    Directory of Open Access Journals (Sweden)

    Hervé Colinet

    Full Text Available BACKGROUND: Diapause, a condition of developmental arrest and metabolic depression exhibited by a wide range of animals is accompanied by complex physiological and biochemical changes that generally enhance environmental stress tolerance and synchronize reproduction. Even though some aspects of diapause have been well characterized, very little is known about the full range of molecular and biochemical modifications underlying diapause in non-model organisms. METHODOLOGY/PRINCIPAL FINDINGS: In this study we focused on the parasitic wasp, Praon volucre that exhibits a pupal diapause in response to environmental signals. System-wide metabolic changes occurring during diapause were investigated using GC-MS metabolic fingerprinting. Moreover, proteomic changes were studied in diapausing versus non-diapausing phenotypes using a combination of two-dimensional differential gel electrophoresis (2D-DIGE and mass spectrometry. We found a reduction of Krebs cycle intermediates which most likely resulted from the metabolic depression. Glycolysis was galvanized, probably to favor polyols biosynthesis. Diapausing parasitoids accumulated high levels of cryoprotective polyols, especially sorbitol. A large set of proteins were modulated during diapause and these were involved in various functions such as remodeling of cytoskeleton and cuticle, stress tolerance, protein turnover, lipid metabolism and various metabolic enzymes. CONCLUSIONS/SIGNIFICANCE: The results presented here provide some first clues about the molecular and biochemical events that characterize the diapause syndrome in aphid parasitoids. These data are useful for probing potential commonality of parasitoids diapause with other taxa and they will help creating a general understanding of diapause underpinnings and a background for future interpretations.

  2. METABOLISM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective: To determine the allele frequencies of genetic variants 373 Ala→Pro and 451 Arg→Gln of cholesteryl ester transfer protein (CETP) and to explore their potential impacts on serum lipid metabolism. Methods: The genotypes in CETP codon 373 and 451 in 91 German healthy students and 409 an-

  3. Rapid sensory profiling and hedonic rating of whole grain sorghum-cowpea composite biscuits by low income consumers.

    Science.gov (United States)

    Dovi, Koya Ap; Chiremba, Constance; Taylor, John Rn; de Kock, Henriëtta L

    2017-07-10

    The challenges of malnutrition and urbanization in Africa demand the development of acceptable, affordable, nutritious complementary-type foods. Biscuits (i.e. cookies; a popular snack) from whole grain staples are an option. The present study aimed to relate check-all-that-applies (CATA) sensory profiles of sorghum-cowpea composite biscuits compared to economic commercial refined wheat biscuits with hedonic ratings by low income consumers. In addition, the nutritional composition and protein quality, L(*) a(*) b(*) colour and texture of the biscuits were determined. The CATA method is suitable for rapidly determining which attributes consumers perceive in food products and relating these to acceptability. Consumers preferred the lighter, more yellow wheat biscuits with ginger, vanilla, sweet and cinnamon flavours compared to the stronger flavours (sorghum, beany and nutty) and harder but brittle, grittier, dry and rough textured sorghum or sorghum-cowpea biscuits. However, a substantial proportion of consumers also liked the latter biscuits. The composite biscuits had higher dietary fibre content and a similar protein quality to the standards. Whole grain sorghum-cowpea biscuits could serve as acceptable value-added nutritious complementary snacks for consumers in sub-Saharan Africa. The biscuits are simple to produce for the creation of viable small enterprises. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach.

    Science.gov (United States)

    Betancur, Luz A; Naranjo-Gaybor, Sandra J; Vinchira-Villarraga, Diana M; Moreno-Sarmiento, Nubia C; Maldonado, Luis A; Suarez-Moreno, Zulma R; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities.

  5. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling / bioactivity and taxonomical approach

    Science.gov (United States)

    Betancur, Luz A.; Naranjo-Gaybor, Sandra J.; Vinchira-Villarraga, Diana M.; Moreno-Sarmiento, Nubia C.; Maldonado, Luis A.; Suarez-Moreno, Zulma R.; Acosta-González, Alejandro; Padilla-Gonzalez, Gillermo F.; Puyana, Mónica; Castellanos, Leonardo; Ramos, Freddy A.

    2017-01-01

    Marine bacteria are considered as promising sources for the discovery of novel biologically active compounds. In this study, samples of sediment, invertebrate and algae were collected from the Providencia and Santa Catalina coral reef (Colombian Caribbean Sea) with the aim of isolating Actinobateria-like strain able to produce antimicrobial and quorum quenching compounds against pathogens. Several approaches were used to select actinobacterial isolates, obtaining 203 strains from all samples. According to their 16S rRNA gene sequencing, a total of 24 strains was classified within Actinobacteria represented by three genera: Streptomyces, Micromonospora, and Gordonia. In order to assess their metabolic profiles, the actinobacterial strains were grown in liquid cultures, and LC-MS-based analyses from ethyl acetate fractions were performed. Based on taxonomical classification, screening information of activity against phytopathogenic strains and quorum quenching activity, as well as metabolic profiling, six out of the 24 isolates were selected for follow-up with chemical isolation and structure identification analyses of putative metabolites involved in antimicrobial activities. PMID:28225766

  6. Obesity alters immune and metabolic profiles: New insight from obese-resistant mice on high-fat diet.

    Science.gov (United States)

    Boi, Shannon K; Buchta, Claire M; Pearson, Nicole A; Francis, Meghan B; Meyerholz, David K; Grobe, Justin L; Norian, Lyse A

    2016-10-01

    Diet-induced obesity has been shown to alter immune function in mice, but distinguishing the effects of obesity from changes in diet composition is complicated. It was hypothesized that immunological differences would exist between diet-induced obese (DIO) and obese-resistant (OB-Res) mice fed the same high-fat diet (HFD). BALB/c mice were fed either standard chow or HFD to generate lean or DIO and OB-Res mice, respectively. Resulting mice were analyzed for serum immunologic and metabolic profiles and cellular immune parameters. BALB/c mice on HFD were categorized as DIO or OB-Res, based on body weight versus lean controls. DIO mice were physiologically distinct from OB-Res mice, whose serum insulin, leptin, gastric inhibitory polypeptide, and eotaxin concentrations remained similar to lean controls. DIO mice had increased macrophage(+) crown-like structures in white adipose tissue, although macrophage percentages were unchanged from OB-Res and lean mice. DIO mice also had decreased splenic CD4(+) T cells, elevated serum GM-CSF, and increased splenic CD11c(+) dendritic cells, but impaired dendritic cell stimulatory capacity (P Diet-induced obesity results in alterations in immune and metabolic profiles that are distinct from effects caused by HFD alone. © 2016 The Obesity Society.

  7. Plasminogen Activator Inhibitor-1 4G/5G Polymorphism is Associated with Reproductive Failure: Metabolic, Hormonal, and Immune Profiles.

    Science.gov (United States)

    Salazar Garcia, Maria D; Sung, Nayoung; Mullenix, Thomas M; Dambaeva, Svetlana; Beaman, Kenneth; Gilman-Sachs, Alice; Kwak-Kim, Joanne

    2016-07-01

    Association between PAI-1 4G/5G polymorphism and reproductive failures has been postulated. We aimed to investigate its impact on metabolic, hormonal, and immune profiles of women with reproductive failures. A retrospective study was carried out in 208 women with a history of reproductive failure. Study patients were divided into three groups: women with repeated implantation failure (RIF, n = 40), recurrent pregnancy loss (RPL, n = 113), and both RIF and RPL (n = 55). Fertile controls were 92. PAI-1 4G/4G was prevalent in RPL, RIF, and RIF/RPL groups when compared with controls (P = 0.003) and associated with increased risks of RIF, RPL, and RIF with RPL (OR = 4.5, 2.2 and 2.7). Women with PAI-1 4G/4G have significantly higher BMI, glucose, and PAI-1 levels and lower NK cytotoxicity when compared with women without PAI-1 4G/4G. PAI-1 4G/5G polymorphism plays a major role in the pathogenesis of RPL and RIF by altering metabolic and immunological profiles. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Association between muscle mass and adipo-metabolic profile: a cross-sectional study in older subjects

    Directory of Open Access Journals (Sweden)

    Perna S

    2015-02-01

    Full Text Available Simone Perna,1,* Davide Guido,2,* Mario Grassi,2 Mariangela Rondanelli1 1Department of Public Health, Experimental and Forensic Medicine, School of Medicine, Endocrinology and Nutrition Unit, University of Pavia, Azienda di Servizi alla Persona di Pavia, Pavia, Italy; 2Medical and Genomic Statistics Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy *These authors contributed equally to this work Background: Sarcopenia, the decrease in muscle mass and function, may lead to various negative health outcomes in elderly. The association among sarcopenia with adiposity and metabolic markers has rarely been studied in the elderly population, with controversial results. The aim of this study is to evaluate this relationship in older subjects.Methods: A cross-sectional study was conducted in 290 elderly patients, focusing on the possible association between muscle mass loss, assessed by relative skeletal muscle mass (RSMM, and an adipo-metabolic profile (AMP defined by adiposity and metabolic biochemical markers. Measurements of body composition were assessed by dual energy X-ray absorptiometry. Biochemical parameters, such as albumin, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol, triglycerides, C-reactive protein, and homocysteine and its related markers (folate and vitamin B12 were measured. Using canonical correlation analysis and structural equation modeling, an individual score of AMP was created and correlated with RSMM.Results: The AMP–RSMM correlation was equal to +0.642 (95% confidence interval, +0.512 to +0.773; P<0.001. Hence, a negative association between sarcopenia severity and adiposity/metabolic biochemical markers was highlighted.Conclusion: This study contained a novel way to examine the relationship between the variables of interest based on a composite index of adiposity and metabolic conditions. Results shed light on the orientation and magnitude of

  9. Metabolic profile of long-distance migratory flight and stopover in a shorebird

    NARCIS (Netherlands)

    Landys, MM; Piersma, T; Guglielmo, CG; Jukema, J; Ramenofsky, M; Wingfield, JC; Guglielmo, Christopher G.; Wingfield, John C.

    2005-01-01

    Migrating birds often complete long non-stop flights during which body energy stores exclusively support energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km f

  10. Metabolic profiling indicates impaired pyruvate dehydrogenase function in myalgic encephalopathy/chronic fatigue syndrome.

    Science.gov (United States)

    Fluge, Øystein; Mella, Olav; Bruland, Ove; Risa, Kristin; Dyrstad, Sissel E; Alme, Kine; Rekeland, Ingrid G; Sapkota, Dipak; Røsland, Gro V; Fosså, Alexander; Ktoridou-Valen, Irini; Lunde, Sigrid; Sørland, Kari; Lien, Katarina; Herder, Ingrid; Thürmer, Hanne; Gotaas, Merete E; Baranowska, Katarzyna A; Bohnen, Louis M L J; Schäfer, Christoph; McCann, Adrian; Sommerfelt, Kristian; Helgeland, Lars; Ueland, Per M; Dahl, Olav; Tronstad, Karl J

    2016-12-22

    Myalgic encephalopathy/chronic fatigue syndrome (ME/CFS) is a debilitating disease of unknown etiology, with hallmark symptoms including postexertional malaise and poor recovery. Metabolic dysfunction is a plausible contributing factor. We hypothesized that changes in serum amino acids may disclose specific defects in energy metabolism in ME/CFS. Analysis in 200 ME/CFS patients and 102 healthy individuals showed a specific reduction of amino acids that fuel oxidative metabolism via the TCA cycle, mainly in female ME/CFS patients. Serum 3-methylhistidine, a marker of endogenous protein catabolism, was significantly increased in male patients. The amino acid pattern suggested functional impairment of pyruvate dehydrogenase (PDH), supported by increased mRNA expression of the inhibitory PDH kinases 1, 2, and 4; sirtuin 4; and PPARδ in peripheral blood mononuclear cells from both sexes. Myoblasts grown in presence of serum from patients with severe ME/CFS showed metabolic adaptations, including increased mitochondrial respiration and excessive lactate secretion. The amino acid changes could not be explained by symptom severity, disease duration, age, BMI, or physical activity level among patients. These findings are in agreement with the clinical disease presentation of ME/CFS, with inadequate ATP generation by oxidative phosphorylation and excessive lactate generation upon exertion.

  11. Inflammatory Cytokine Profile Associated with Metabolic Syndrome in Adult Patients with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Aldo Ferreira-Hermosillo

    2015-01-01

    Full Text Available Objective. To compare the serum concentration of IL-6, IL-10, TNF, IL-8, resistin, and adiponectin in type 1 diabetic patients with and without metabolic syndrome and to determine the cut-off point of the estimated glucose disposal rate that accurately differentiated these groups. Design. We conducted a cross-sectional evaluation of all patients in our type 1 diabetes clinic from January 2012 to January 2013. Patients were considered to have metabolic syndrome when they fulfilled the joint statement criteria and were evaluated for clinical, biochemical, and immunological features. Methods. We determined serum IL-6, IL-8, IL-10, and TNF with flow cytometry and adiponectin and resistin concentrations with enzyme linked immunosorbent assay in patients with and without metabolic syndrome. We also compared estimated glucose disposal rate between groups. Results. We tested 140 patients. Forty-four percent fulfilled the metabolic syndrome criteria (n=61, 54% had central obesity, 30% had hypertriglyceridemia, 29% had hypoalphalipoproteinemia, and 19% had hypertension. We observed that resistin concentrations were higher in patients with MS. Conclusion. We found a high prevalence of MS in Mexican patients with T1D. The increased level of resistin may be related to the increased fat mass and could be involved in the development of insulin resistance.

  12. Metabolic effects of influenza virus infection in cultured animal cells: Intra- and extracellular metabolite profiling

    NARCIS (Netherlands)

    Ritter, J.B.; Wahl, A.S.; Freund, S.; Genzel, Y.; Reichl, U.

    2010-01-01

    Background: Many details in cell culture-derived influenza vaccine production are still poorly understood and approaches for process optimization mainly remain empirical. More insights on mammalian cell metabolism after a viral infection could give hints on limitations and cell-specific virus

  13. Metabolomic profiling identifies potential pathways involved in the interaction of iron homeostasis with glucose metabolism

    Directory of Open Access Journals (Sweden)

    Lars Stechemesser

    2017-01-01

    Conclusions: Our data suggest that high serum ferritin concentrations are linked to impaired glucose homeostasis in subjects with the MetS. Iron excess is associated to distinct changes in the serum concentrations of phosphatidylcholine subsets. A pathway involving sarcosine and citrulline also may be involved in iron-induced impairment of glucose metabolism.

  14. Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes.

    Science.gov (United States)

    Santi, Lucélia; Beys-da-Silva, Walter O; Berger, Markus; Calzolari, Diego; Guimarães, Jorge A; Moresco, James J; Yates, John R

    2014-03-07

    Cryptococcus neoformans, a pathogenic yeast, causes meningoencephalitis, especially in immunocompromised patients, leading in some cases to death. Microbes in biofilms can cause persistent infections, which are harder to treat. Cryptococcal biofilms are becoming common due to the growing use of brain valves and other medical devices. Using shotgun proteomics we determine the differences in protein abundance between biofilm and planktonic cells. Applying bioinformatic tools, we also evaluated the metabolic pathways involved in biofilm maintenance and protein interactions. Our proteomic data suggest general changes in metabolism, protein turnover, and global stress responses. Biofilm cells show an increase in proteins related to oxidation-reduction, proteolysis, and response to stress and a reduction in proteins related to metabolic process, transport, and translation. An increase in pyruvate-utilizing enzymes was detected, suggesting a shift from the TCA cycle to fermentation-derived energy acquisition. Additionally, we assign putative roles to 33 proteins previously categorized as hypothetical. Many changes in metabolic enzymes were identified in studies of bacterial biofilm, potentially revealing a conserved strategy in biofilm lifestyle.

  15. Metabolic risk profiles created using cluster analysis are differentially associated with physical activity: The ARIC study

    Science.gov (United States)

    Conditions such as hypertension, dyslipidemia, glucose intolerance, and obesity tend to cluster together and predict cardiovascular disease, type 2 diabetes, and premature mortality. This clustering has led to multiple definitions of the Metabolic Syndrome (MetS). While the definitions agree on the ...

  16. Inflammatory Cytokine Profile Associated with Metabolic Syndrome in Adult Patients with Type 1 Diabetes

    Science.gov (United States)

    Ferreira-Hermosillo, Aldo; Molina-Ayala, Mario; Ramírez-Rentería, Claudia; Vargas, Guadalupe; Gonzalez, Baldomero; Isibasi, Armando; Archundia-Riveros, Irma; Mendoza, Victoria

    2015-01-01

    Objective. To compare the serum concentration of IL-6, IL-10, TNF, IL-8, resistin, and adiponectin in type 1 diabetic patients with and without metabolic syndrome and to determine the cut-off point of the estimated glucose disposal rate that accurately differentiated these groups. Design. We conducted a cross-sectional evaluation of all patients in our type 1 diabetes clinic from January 2012 to January 2013. Patients were considered to have metabolic syndrome when they fulfilled the joint statement criteria and were evaluated for clinical, biochemical, and immunological features. Methods. We determined serum IL-6, IL-8, IL-10, and TNF with flow cytometry and adiponectin and resistin concentrations with enzyme linked immunosorbent assay in patients with and without metabolic syndrome. We also compared estimated glucose disposal rate between groups. Results. We tested 140 patients. Forty-four percent fulfilled the metabolic syndrome criteria (n = 61), 54% had central obesity, 30% had hypertriglyceridemia, 29% had hypoalphalipoproteinemia, and 19% had hypertension. We observed that resistin concentrations were higher in patients with MS. Conclusion. We found a high prevalence of MS in Mexican patients with T1D. The increased level of resistin may be related to the increased fat mass and could be involved in the development of insulin resistance. PMID:26273680

  17. Metabolic profile of long-distance migratory flight and stopover in a shorebird

    NARCIS (Netherlands)

    Landys, MM; Piersma, T; Guglielmo, CG; Jukema, J; Ramenofsky, M; Wingfield, JC; Guglielmo, Christopher G.; Wingfield, John C.

    2005-01-01

    Migrating birds often complete long non-stop flights during which body energy stores exclusively support energetic demands. The metabolic correlates of such long-distance travel in free-living migrants are as yet poorly studied. Bar-tailed godwits, Limosa lapponica taymyrensis, undertake a 4500 km

  18. Differential metabolic profiles associated to movement behaviour of stream-resident brown trout (Salmo trutta)

    Science.gov (United States)

    Jové, Mariona; Pascual-Pons, Mariona; Royo, Jose Luis; Rocaspana, Rafel; Aparicio, Enric; Pamplona, Reinald; Palau, Antoni; Sanuy, Delfi; Fibla, Joan; Portero-Otin, Manuel

    2017-01-01

    The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta), in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain). The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol) according to the home range classification (pattern of movements: sedentary or mobile). The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms. PMID:28750027

  19. Differential metabolic profiles associated to movement behaviour of stream-resident brown trout (Salmo trutta).

    Science.gov (United States)

    Oromi, Neus; Jové, Mariona; Pascual-Pons, Mariona; Royo, Jose Luis; Rocaspana, Rafel; Aparicio, Enric; Pamplona, Reinald; Palau, Antoni; Sanuy, Delfi; Fibla, Joan; Portero-Otin, Manuel

    2017-01-01

    The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta), in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain). The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol) according to the home range classification (pattern of movements: sedentary or mobile). The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms.

  20. Glutamine supplementation alleviates vasculopathy and corrects metabolic profile in an in vivo model of endothelial cell dysfunction.

    Directory of Open Access Journals (Sweden)

    Francesco Addabbo

    Full Text Available Endothelial Cell Dysfunction (ECD is a recognized harbinger of a host of chronic cardiovascular diseases. Using a mouse model of ECD triggered by treatment with L-Nω-methylarginine (L-NMMA, we previously demonstrated that renal microvasculature displays a perturbed protein profile, including diminished expression of two key enzymes of the Krebs cycle associated with a Warburg-type suppression of mitochondrial metabolism. We hypothesized that supplementation with L-glutamine (GLN, that can enter the Krebs cycle downstream this enzymatic bottleneck, would normalize vascular function and alleviate mitochondrial dysfunction. To test this hypothesis, mice with chronic L-NMMA-induced ECD were co-treated with GLN at different concentrations for 2 months. Results confirmed that L-NMMA led to a defect in acetylcholine-induced relaxation of aortic rings that was dose-dependently prevented by GLN. In caveolin-1 transgenic mice characterized by eNOS inactivation, L-NMMA further impaired vasorelaxation which was partially rescued by GLN co-treatment. Pro-inflammatory profile induced by L-NMMA was blunted in mice co-treated with GLN. Using an LC/MS platform for metabolite profiling, we sought to identify metabolic perturbations associated with ECD and offset by GLN supplementation. 3453 plasma molecules could be detected with 100% frequency in mice from at least one treatment group. Among these, 37 were found to be differentially expressed in a 4-way comparison of control vs. LNMMA both with and without GLN. One of such molecules, hippuric acid, an "uremic toxin" was found to be elevated in our non-uremic mice receiving L-NMMA, but normalized by treatment with GLN. Ex vivo analysis of hippuric acid effects on vasomotion demonstrated that it significantly reduced acetylcholine-induced vasorelaxation of vascular rings. In conclusion, functional and metabolic profiling of animals with early ECD revealed macrovasculopathy and that supplementation GLN is capable

  1. Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans.

    Science.gov (United States)

    Lennerz, Belinda S; Vafai, Scott B; Delaney, Nigel F; Clish, Clary B; Deik, Amy A; Pierce, Kerry A; Ludwig, David S; Mootha, Vamsi K

    2015-01-01

    Sodium benzoate is a widely used preservative found in many foods and soft drinks. It is metabolized within mitochondria to produce hippurate, which is then cleared by the kidneys. We previously reported that ingestion of sodium benzoate at the generally regarded as safe (GRAS) dose leads to a robust excursion in the plasma hippurate level [1]. Since previous reports demonstrated adverse effects of benzoate and hippurate on glucose homeostasis in cells and in animal models, we hypothesized that benzoate might represent a widespread and underappreciated diabetogenic dietary exposure in humans. Here, we evaluated whether acute exposure to GRAS levels of sodium benzoate alters insulin and glucose homeostasis through a randomized, controlled, cross-over study of 14 overweight subjects. Serial blood samples were collected following an oral glucose challenge, in the presence or absence of sodium benzoate. Outcome measurements included glucose, insulin, glucagon, as well as temporal mass spectrometry-based metabolic profiles. We did not find a statistically significant effect of an acute oral exposure to sodium benzoate on glucose homeostasis. Of the 146 metabolites targeted, four changed significantly in response to benzoate, including the expected rise in benzoate and hippurate. In addition, anthranilic acid, a tryptophan metabolite, exhibited a robust rise, while acetylglycine dropped. Although our study shows that GRAS doses of benzoate do not have an acute, adverse effect on glucose homeostasis, future studies will be necessary to explore the metabolic impact of chronic benzoate exposure.

  2. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Mayara Zagonel de Souza Zanchet

    2017-01-01

    Full Text Available Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C and supplemented (S, and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome.

  3. Mitochondrial gene expression profiles and metabolic pathways in the amygdala associated with exaggerated fear in an animal model of PTSD

    Directory of Open Access Journals (Sweden)

    He eLi

    2014-09-01

    Full Text Available The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 nonstressed control rats and10 stressed rats, 14 days post stress treatment.. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p< 0.01. Ingenuity Pathway Analysis (IPA revealed up or down regulation in the amygdala complex of four signaling networks – one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.

  4. Global profiling of ultraviolet-induced metabolic disruption in Melissa officinalis by using gas chromatography-mass spectrometry.

    Science.gov (United States)

    Kim, Sooah; Yun, Eun Ju; Hossain, Md Aktar; Lee, Hojoung; Kim, Kyoung Heon

    2012-08-01

    Melissa officinalis contains various secondary metabolites that have health benefits. Generally, irradiating plants with ultraviolet (UV)-B induces the accumulation of secondary metabolites in plants. To understand the effect of UV-B irradiation on the metabolism of M. officinalis, metabolomics based on gas chromatography-mass spectrometry (GC-MS) was used in this study. The GC-MS analysis revealed 37 identified metabolites from various chemical classes, including alcohols, amino acids, inorganic acids, organic acids, and sugars. The metabolite profiles of the groups of M. officinalis irradiated with UV-B were separated and differentiated according to their irradiation times (i.e., 0, 1, and 2 h), using principal component analysis (PCA) and hierarchical clustering analysis (HCA), respectively. The PCA score plots of PC1 and PC2 showed that the three groups with different irradiation times followed a certain trajectory with increasing UV-B irradiation. HCA revealed that metabolic patterns differed among the three groups, and the 1 h-irradiated group was more similar to the control group (0 h) than the 2 h-irradiated group. In particular, UV-B irradiation of plants led to a decrease in sugars such as fructose, galactose, sucrose, and trehalose and an increase in metabolites in the tricarboxylic acid cycle, the proline-linked pentose phosphat