WorldWideScience

Sample records for rapid magma ascent

  1. Rapid ascent of rhyolitic magma at Chaitén volcano, Chile.

    Science.gov (United States)

    Castro, Jonathan M; Dingwell, Donald B

    2009-10-08

    Rhyolite magma has fuelled some of the Earth's largest explosive volcanic eruptions. Our understanding of these events is incomplete, however, owing to the previous lack of directly observed eruptions. Chaitén volcano, in Chile's northern Patagonia, erupted rhyolite magma unexpectedly and explosively on 1 May 2008 (ref. 2). Chaitén residents felt earthquakes about 24 hours before ash fell in their town and the eruption escalated into a Plinian column. Although such brief seismic forewarning of a major explosive basaltic eruption has been documented, it is unprecedented for silicic magmas. As precursory volcanic unrest relates to magma migration from the storage region to the surface, the very short pre-eruptive warning at Chaitén probably reflects very rapid magma ascent through the sub-volcanic system. Here we present petrological and experimental data that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly, with velocities of the order of one metre per second. Such rapid ascent implies a transit time from storage depths greater than five kilometres to the near surface in about four hours. This result has implications for hazard mitigation because the rapidity of ascending rhyolite means that future eruptions may provide little warning.

  2. Examining shear processes during magma ascent

    Science.gov (United States)

    Kendrick, J. E.; Wallace, P. A.; Coats, R.; Lamur, A.; Lavallée, Y.

    2017-12-01

    Lava dome eruptions are prone to rapid shifts from effusive to explosive behaviour which reflects the rheology of magma. Magma rheology is governed by composition, porosity and crystal content, which during ascent evolves to yield a rock-like, viscous suspension in the upper conduit. Geophysical monitoring, laboratory experiments and detailed field studies offer the opportunity to explore the complexities associated with the ascent and eruption of such magmas, which rest at a pivotal position with regard to the glass transition, allowing them to either flow or fracture. Crystal interaction during flow results in strain-partitioning and shear-thinning behaviour of the suspension. In a conduit, such characteristics favour the formation of localised shear zones as strain is concentrated along conduit margins, where magma can rupture and heal in repetitive cycles. Sheared magmas often record a history of deformation in the form of: grain size reduction; anisotropic permeable fluid pathways; mineral reactions; injection features; recrystallisation; and magnetic anomalies, providing a signature of the repetitive earthquakes often observed during lava dome eruptions. The repetitive fracture of magma at ( fixed) depth in the conduit and the fault-like products exhumed at spine surfaces indicate that the last hundreds of meters of ascent may be controlled by frictional slip. Experiments on a low-to-high velocity rotary shear apparatus indicate that shear stress on a slip plane is highly velocity dependent, and here we examine how this influences magma ascent and its characteristic geophysical signals.

  3. Failed magmatic eruptions: Late-stage cessation of magma ascent

    Science.gov (United States)

    Moran, S.C.; Newhall, C.; Roman, D.C.

    2011-01-01

    When a volcano becomes restless, a primary question is whether the unrest will lead to an eruption. Here we recognize four possible outcomes of a magmatic intrusion: "deep intrusion", "shallow intrusion", "sluggish/viscous magmatic eruption", and "rapid, often explosive magmatic eruption". We define "failed eruptions" as instances in which magma reaches but does not pass the "shallow intrusion" stage, i. e., when magma gets close to, but does not reach, the surface. Competing factors act to promote or hinder the eventual eruption of a magma intrusion. Fresh intrusion from depth, high magma gas content, rapid ascent rates that leave little time for enroute degassing, opening of pathways, and sudden decompression near the surface all act to promote eruption, whereas decreased magma supply from depth, slow ascent, significant enroute degassing and associated increases in viscosity, and impingement on structural barriers all act to hinder eruption. All of these factors interact in complex ways with variable results, but often cause magma to stall at some depth before reaching the surface. Although certain precursory phenomena, such as rapidly escalating seismic swarms or rates of degassing or deformation, are good indicators that an eruption is likely, such phenomena have also been observed in association with intrusions that have ultimately failed to erupt. A perpetual difficulty with quantifying the probability of eruption is a lack of data, particularly on instances of failed eruptions. This difficulty is being addressed in part through the WOVOdat database. Papers in this volume will be an additional resource for scientists grappling with the issue of whether or not an episode of unrest will lead to a magmatic eruption.

  4. Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.

    Science.gov (United States)

    La Spina, G; Burton, M; De' Michieli Vitturi, M; Arzilli, F

    2016-12-12

    Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.

  5. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions.

    Science.gov (United States)

    Girona, Társilo; Costa, Fidel; Schubert, Gerald

    2015-12-15

    Understanding the mechanisms that control the start-up of volcanic unrest is crucial to improve the forecasting of eruptions at active volcanoes. Among the most active volcanoes in the world are the so-called persistently degassing ones (e.g., Etna, Italy; Merapi, Indonesia), which emit massive amounts of gas during quiescence (several kilotonnes per day) and erupt every few months or years. The hyperactivity of these volcanoes results from frequent pressurizations of the shallow magma plumbing system, which in most cases are thought to occur by the ascent of magma from deep to shallow reservoirs. However, the driving force that causes magma ascent from depth remains unknown. Here we demonstrate that magma ascent can be triggered by the passive release of gas during quiescence, which induces the opening of pathways connecting deep and shallow magma reservoirs. This top-down mechanism for volcanic eruptions contrasts with the more common bottom-up mechanisms in which magma ascent is only driven by processes occurring at depth. A cause-effect relationship between passive degassing and magma ascent can explain the fact that repose times are typically much longer than unrest times preceding eruptions, and may account for the so frequent unrest episodes of persistently degassing volcanoes.

  6. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    Science.gov (United States)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  7. Temperature evolution during magma ascent in basaltic effusive eruptions: A numerical application to Stromboli volcano

    Science.gov (United States)

    La Spina, G.; Burton, M.; de'Michieli Vitturi, M.

    2015-09-01

    The dynamics of magma ascent are controlled by the complex, interdependent processes of crystallisation, rheological evolution, gas exsolution, outgassing, non-ideal gas expansion and temperature evolution. Temperature changes within the conduit, in particular, play a key role on ascent dynamics, since temperature strongly controls the crystallisation process, which in turn has an impact on viscosity and thus on magma ascent rate. The cooling produced by gas expansion is opposed by the heat produced by crystallisation, and therefore the temperature profile within the conduit is quite complex. This complexity means that unravelling the dynamics controlling magma ascent requires a numerical model. Unfortunately, comprehensive, integrated models with full thermodynamic treatment of multiple phases and rheological evolution are challenging to produce, due to the numerical challenges involved. Until now, models have tended to focus on aspects of the problem, without a holistic approach in which petrological, thermodynamic, rheological and degassing processes, and their interactions, were all explicitly addressed and quantified. Here, we present a new, multiphase steady-state model for magma ascent in which the main physical and chemical processes, such as crystallisation, degassing, outgassing, rheological evolution and temperature variations, are quantitatively calculated. Basaltic magma's crystallisation and flow are sensitive to initial temperature and volatile content, and therefore we investigate temperature variations during magma ascent in a basaltic system with a range of volatile contents. As a test case, we use one of the most well-studied recent basaltic effusive eruptions: the 2007 eruption of Stromboli, Italy. Assuming equilibrium crystallisation and exsolution, we compare the solutions obtained both with and without an isothermal constraint, finding that temperature variations within the conduit have a significant influence on the ascent dynamics and

  8. Challenging dyke ascent models using novel laboratory experiments: Implications for reinterpreting evidence of magma ascent and volcanism

    Science.gov (United States)

    Kavanagh, Janine L.; Burns, Alec J.; Hilmi Hazim, Suraya; Wood, Elliot P.; Martin, Simon A.; Hignett, Sam; Dennis, David J. C.

    2018-04-01

    Volcanic eruptions are fed by plumbing systems that transport magma from its source to the surface, mostly fed by dykes. Here we present laboratory experiments that model dyke ascent to eruption using a tank filled with a crust analogue (gelatine, which is transparent and elastic) that is injected from below by a magma analogue (dyed water). This novel experimental setup allows, for the first time, the simultaneous measurement of fluid flow, sub-surface and surface deformation during dyke ascent. During injection, a penny-shaped fluid-filled crack is formed, intrudes, and traverses the gelatine slab vertically to then erupt at the surface. Polarised light shows the internal stress evolution as the dyke ascends, and an overhead laser scanner measures the surface elevation change in the lead-up to dyke eruption. Fluorescent passive-tracer particles that are illuminated by a laser sheet are monitored, and the intruding fluid's flow dynamics and gelatine's sub-surface strain evolution is measured using particle image velocimetry and digital image correlation, respectively. We identify 4 previously undescribed stages of dyke ascent. Stage 1, early dyke growth: the initial dyke grows from the source, and two fluid jets circulate as the penny-shaped crack is formed. Stage 2, pseudo-steady dyke growth: characterised by the development of a rapidly uprising, central, single pseudo-steady fluid jet, as the dyke grows equally in length and width, and the fluid down-wells at the dyke margin. Sub-surface host strain is localised at the head region and the tail of the dyke is largely static. Stage 3, pre-eruption unsteady dyke growth: an instability in the fluid flow appears as the central fluid jet meanders, the dyke tip accelerates towards the surface and the tail thins. Surface deformation is only detected in the immediate lead-up to eruption and is characterised by an overall topographic increase, with axis-symmetric topographic highs developed above the dyke tip. Stage 4 is

  9. A Tale of Two Olivines: Magma Ascent in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Smid, E. R.; McGee, L. E.; Smith, I. E.; Lindsay, J. M.

    2013-12-01

    The Auckland Volcanic Field (AVF) is a nephelinitic to subalkali basaltic monogenetic field centered on the city of Auckland, New Zealand. Lavas are olivine-phyric, and the deposits of several volcanoes in the field contain olivine crystals with chrome spinel (Cr-spinel) inclusions. Microprobe analyses show at least two populations of olivine, categorised by their Mg# and their spinel inclusion compositions: the first has olivines that are euhedral, have compositions slightly less forsteritic than expected for whole rock Mg#, and have Cr-spinel inclusions with relatively low Cr2O3 contents of ~20%. These are interpreted as antecrysts inherited from the mantle source that yielded their host magma. The second population is characterised by olivines that are sub- to euhedral, are significantly more forsteritic than expected from their host whole rock Mg#, and have Cr-spinel inclusons with relatively high Cr2O3 contents of ~50%. These are interpreted as xenocrysts. The composition of these high Cr2O3 spinels very closely resembles the composition of spinels within olivines in dunite sampled from the Dun Mountain Ophiolite on the South Island of New Zealand. The northward extension of the Dun Mountain complex beneath the North Island is defined by the Junction Magnetic Anomaly, marking a crustal terrane boundary that underlies the Auckland Volcanic Field. These data indicate that the magmas that have risen to produce the volcanoes of the Auckland Volcanic Field have carried crystals from an underlying ultramafic crust as well as from their asthenospheric source. Euhedral olivine crystals which do not contain Cr-spinel are also present in AVF lavas and these are interpreted as true phenocrysts that crystallised directly from their host magmas. The lack of reaction textures at crystal margins suggests rapid ascent rates. A crustal origin for the xenocrysts not only has large implications for ascent rate modelling of olivines, but also for the crustal structure of the

  10. NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions

    Science.gov (United States)

    Lloyd, Alexander S.; Ruprecht, Philipp; Hauri, Erik H.; Rose, William; Gonnermann, Helge M.; Plank, Terry

    2014-08-01

    The explosivity of volcanic eruptions is governed in part by the rate at which magma ascends and degasses. Because the time scales of eruptive processes can be exceptionally fast relative to standard geochronometers, magma ascent rate remains difficult to quantify. Here we use as a chronometer concentration gradients of volatile species along open melt embayments within olivine crystals. Continuous degassing of the external melt during magma ascent results in diffusion of volatile species from embayment interiors to the bubble located at their outlets. The novel aspect of this study is the measurement of concentration gradients in five volatile elements (CO2, H2O, S, Cl, F) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. We focus on four 100-200 μm, olivine-hosted embayments erupted on October 17, 1974 during the sub-Plinian eruption of Volcán de Fuego. H2O, CO2, and S all decrease toward the embayment outlet bubble, while F and Cl increase or remain roughly constant. Compared to an extensive melt inclusion suite from the same day of the eruption, the embayments have lost both H2O and CO2 throughout the entire length of the embayment. We fit the profiles with a 1-D numerical diffusion model that allows varying diffusivities and external melt concentrations as a function of pressure. Assuming a constant decompression rate from the magma storage region at approximately 220 MPa to the surface, H2O, CO2 and S profiles for all embayments can be fit with a relatively narrow range in decompression rates of 0.3-0.5 MPa/s, equivalent to 11-17 m/s ascent velocity and an 8 to 12 minute duration of magma ascent from ~ 10 km depth. A two stage decompression model takes advantage of the different depth ranges over which CO2 and H2O degas, and produces good fits given an initial stage of slow decompression (0.05-0.3 MPa/s) at high

  11. The evolution and ascent paths of mantle xenolith-bearing magma: Observations and insights from Cenozoic basalts in Southeast China

    Science.gov (United States)

    Sun, Pu; Niu, Yaoling; Guo, Pengyuan; Cui, Huixia; Ye, Lei; Liu, Jinju

    2018-06-01

    Studies have shown that mantle xenolith-bearing magmas must ascend rapidly to carry mantle xenoliths to the surface. It has thus been inferred inadvertently that such rapid ascending melt must have undergone little crystallization or evolution. However, this inference is apparently inconsistent with the widespread observation that xenolith-bearing alkali basalts are variably evolved with Mg# ≤72. In this paper, we discuss this important, yet overlooked, petrological problem and offer new perspectives with evidence. We analyzed the Cenozoic mantle xenolith-bearing alkali basalts from several locations in Southeast China that have experienced varying degrees of fractional crystallization (Mg# = 48-67). The variably evolved composition of host alkali basalts is not in contradiction with rapid ascent, but rather reflects inevitability of crystallization during ascent. Thermometry calculations for clinopyroxene (Cpx) megacrysts give equilibrium temperatures of 1238-1390 °C, which is consistent with the effect of conductive cooling and melt crystallization during ascent because TMelt > TLithosphere. The equilibrium pressure (18-27 kbar) of these Cpx megacrysts suggests that the crystallization takes place under lithospheric mantle conditions. The host melt must have experienced limited low-pressure residence in the shallower levels of lithospheric mantle and crust. This is in fact consistent with the rapid ascent of the host melt to bring mantle xenoliths to the surface.

  12. Fractionation, ascent, and extrusion of magma at the Santiaguito volcanic dome, Guatemala

    Science.gov (United States)

    Scott, J.; Mather, T. A.; Pyle, D. M.

    2011-12-01

    The silicic dome complex of Santiaguito, Guatemala has exhibited continuous low-level activity for nearly 90 years[1]. Despite its longevity, remarkably little is known about the magmatic plumbing system beneath Santiaguito. We present preliminary constraints on this system, based on petrological analyses of lava samples. Amphibole thermobarometry suggests magma evolves during slow ascent through a phenocryst fractionation zone - a complex of dikes and sills, extending from at least ~24 km to at most ~12 km beneath Santiaguito. Discontinuous plagioclase size distributions suggest this slow fractionation ends at depth, and degassing-induced crystallization of microlites begins. The texture and geochemistry of microlites is consistent with uninterrupted final ascent; there is no evidence of shallow magma storage beneath Santiaguito. The normative composition of matrix glass, and the morphology and volume of plagioclase microlites suggests ascending magma crosses the rigidification threshold within preserved, and ductile behaviour is replaced by dominantly brittle behaviour, previously referred to as "final melt quench". We suggest rigidification slows the ascent of magma and may create the conduit plug previously observed at Santiaguito[2]. This rigid mass of magma may begin to fracture almost immediately to form a semi-permeable plug, before extruding onto the surface as blocky lava. The extrusion rate may be reflected in the extent of matrix glass decomposition to crystalline silica and alkali feldspar. This preliminary picture of the plumbing system beneath Santiaguito may lead to a greater understanding of the behaviour of this enigmatic volcano, and of the danger it poses to the region. However, our findings raise many further questions about the dynamics within silicic dome-forming systems that need to be addressed if we are to work towards a broad and more universal understanding of similar systems worldwide and the hazards they represent. [1] Rose, W.I., 1972

  13. Silicic magma differentiation in ascent conduits. Experimental constraints

    Science.gov (United States)

    Rodríguez, Carmen; Castro, Antonio

    2017-02-01

    Crystallization of water-bearing silicic magmas in a dynamic thermal boundary layer is reproduced experimentally by using the intrinsic thermal gradient of piston-cylinder assemblies. The standard AGV2 andesite under water-undersaturated conditions is set to crystallize in a dynamic thermal gradient of about 35 °C/mm in 10 mm length capsules. In the hotter area of the capsule, the temperature is initially set at 1200 °C and decreases by programmed cooling at two distinct rates of 0.6 and 9.6 °C/h. Experiments are conducted in horizontally arranged assemblies in a piston cylinder apparatus to avoid any effect of gravity settling and compaction of crystals in long duration runs. The results are conclusive about the effect of water-rich fluids that are expelled out the crystal-rich zone (mush), where water saturation is reached by second boiling in the interstitial liquid. Expelled fluids migrate to the magma ahead of the solidification front contributing to a progressive enrichment in the fluxed components SiO2, K2O and H2O. The composition of water-rich fluids is modelled by mass balance using the chemical composition of glasses (quenched melt). The results are the basis for a model of granite magma differentiation in thermally-zoned conduits with application of in-situ crystallization equations. The intriguing textural and compositional features of the typical autoliths, accompanying granodiorite-tonalite batholiths, can be explained following the results of this study, by critical phenomena leading to splitting of an initially homogeneous magma into two magma systems with sharp boundaries. Magma splitting in thermal boundary layers, formed at the margins of ascent conduits, may operate for several km distances during magma transport from deep sources at the lower crust or upper mantle. Accordingly, conduits may work as chromatographic columns contributing to increase the silica content of ascending magmas and, at the same time, leave behind residual mushes that

  14. Magma buoyancy and volatile ascent driving autocyclic eruptivity at Hekla Volcano (Iceland)

    Science.gov (United States)

    Hautmann, Stefanie; Sacks, I. Selwyn; Linde, Alan T.; Roberts, Matthew J.

    2017-09-01

    Volcanic eruptions are typically accompanied by ground deflation due to the withdrawal of magma from depth and its effusion at the surface. Here, based on continuous high-resolution borehole strain data, we show that ground deformation was absent during the major effusion phases of the 1991 and 2000 eruptions of Hekla Volcano, Iceland. This lack of surface deformation challenges the classic model of magma intrusion/withdrawal as source for volcanic ground uplift/subsidence. We incorporate geodetic and geochemical observables into theoretical models of magma chamber dynamics in order to constrain quantitatively alternative co- and intereruptive physical mechanisms that govern magma propagation and system pressurization. We find the lack of surface deformation during lava effusion to be linked to chamber replenishment from below whilst magma migrates as a buoyancy-driven flow from the magma chamber towards the surface. We further demonstrate that intereruptive pressure build-up is likely to be generated by volatile ascent within the chamber rather than magma injection. Our model explains the persistent periodic eruptivity at Hekla throughout historic times with self-initiating cycles and is conceptually relevant to other volcanic systems.

  15. Degassing during magma ascent in the Mule Creek vent (USA)

    Science.gov (United States)

    Stasiuk, M.V.; Barclay, J.; Carroll, M.R.; Jaupart, Claude; Ratte, J.C.; Sparks, R.S.J.; Tait, S.R.

    1996-01-01

    The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5-3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20-40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable

  16. Eruptive dynamics during magma decompression: a laboratory approach

    Science.gov (United States)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of

  17. Ascent Rates from Melt Embayments: Insights into the Eruption Dynamics of Arc Volcanoes

    Science.gov (United States)

    Ruprecht, P.; Lloyd, A. S.; Hauri, E.; Rose, W. I.; Gonnermann, H. M.; Plank, T. A.

    2014-12-01

    A significant fraction of the magma that is added from the mantle to the subvolcanic plumbing system ultimately erupts at the surface. The initial volatile content of the magmas as well as the interplay between volatile loss and magma ascent plays a significant role in determining the eruption style (effusive versus explosive) as well as the magnitude of the eruption. The October 17, 1974 sub-Plinian eruption of Volcán de Fuego represents a particularly well-characterized system in terms of volatile content and magma chemistry to investigate the relation between initial water content of the magmas and the ascent rate. By modeling volatile element distribution in melt embayments through diffusion and degassing during ascent we can estimate magma ascent from the storage region in the crust to the surface. The novel aspect is the measurement of concentration gradients multiple volatile elements (in particular CO2, H2O, S) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. H2O, CO2, and S all decrease toward the embayment outlet bubble documenting the loss of H2O and CO2 compared to an extensive melt inclusion suite from the same day of the eruption. The data is best described by a two-stage model. At high pressure (>145 MPa) decompression is slow (0.05- 0.3 MPa/s) and CO2 is bled off predominantly. At shallow levels decompression accelerates to 0.3-0.5 MPa/s at the point of H2O exsolution, which strongly affects the buoyancy of the ascending magma. The magma ascent rates presented are among the first for explosive basaltic eruptions and demonstrate the potential of the embayment method for quantifying magmatic timescales associated with eruptions of different vigor. [1] Lloyd et al. (2014) JVGR, http://dx.doi.org/10.1016/j.jvolgeores.2014.06.002

  18. Bulk rock and mineral chemistries and ascent rates of high-K calc-alkalic epidote-bearing magmas, Northeastern Brazil

    Science.gov (United States)

    Brasilino, R. G.; Sial, A. N.; Ferreira, V. P.; Pimentel, M. M.

    2011-12-01

    A manifestation of the Pan-African-Brasiliano orogeny (700-550 Ma) in northeastern Brazil was the emplacement of widespread Neoproterozoic granitoids in diverse tectonic terranes. Among these plutons are the magmatic epidote-bearing Conceição das Creoulas, Caldeirão Encantado, Murici, and Boqueirão plutons, located close to the boundary between the Alto Pajeú and Cachoeirinha-Salgueiro terranes. The plutons are high-K calc-alkalic granodiorites to monzogranites, with tabular K-feldspar megacrysts. Pistacite [atomic Fe+ 3/(Fe3++ Al)] in epidote in these granitoids ranges from 21 to 27%. High oxygen fugacity (log fO2 - 19 to - 13) and the preservation of epidote suggest that the magma was oxidized. Al-in-hornblende barometry indicates hornblende solidification between 6 and 8 kbar, at 620 to 780 °C according to the hornblende-plagioclase thermometer. Zircon saturation thermometry attests to a near-liquidus temperature range from 794 to 853 °C. Partial corrosion of magmatic epidote in these four plutons occurred during an interval of no more than 10-30 years, which corresponds to maximum magma ascent rates of 650-1000 m/year. Diking, associated with regional shearing, probably facilitated rapid transport of granitic magma through hot continental crust at peak metamorphism, and permitted survival of epidote that was out of equilibrium at the low pressure of final emplacement. Similarities between mineralogical composition, chemistry, and isotopic compositions (εNd(0.60Ga) between - 2 and - 5,TDM from 1.2 to 1.3 Ga, δ18O values > 10‰, V-SMOW) of these four plutons and Neoproterozoic magmatic epidote-bearing plutons elsewhere in northeastern Brazil, argue for similar metabasaltic/mafic sources that had previously experienced low-temperature alteration.

  19. A review of the ascent and emplacement of granitoid bodies into the crust

    Directory of Open Access Journals (Sweden)

    Katarína Bónová

    2005-03-01

    Full Text Available This paper relates to basic information (i.e. mechanical aspects of ascent, indicators faciliting the discriminability of various ascent styles about the models of ascent and emplacement of granitoid bodies, since the purely mechanical aspect of intrusion of magmas is a fascinating subject and it has generated a considerable controversy over many years. Individual models are demonstrated by world-known occurrences and examples from Western Carpathian’s region. The conditions of magma migration are demonstrated as well.

  20. Radiographic visualization of magma dynamics in an erupting volcano.

    Science.gov (United States)

    Tanaka, Hiroyuki K M; Kusagaya, Taro; Shinohara, Hiroshi

    2014-03-10

    Radiographic imaging of magma dynamics in a volcanic conduit provides detailed information about ascent and descent of magma, the magma flow rate, the conduit diameter and inflation and deflation of magma due to volatile expansion and release. Here we report the first radiographic observation of the ascent and descent of magma along a conduit utilizing atmospheric (cosmic ray) muons (muography) with dynamic radiographic imaging. Time sequential radiographic images show that the top of the magma column ascends right beneath the crater floor through which the eruption column was observed. In addition to the visualization of this magma inflation, we report a sequence of images that show magma descending. We further propose that the monitoring of temporal variations in the gas volume fraction of magma as well as its position in a conduit can be used to support existing eruption prediction procedures.

  1. Platinum-bearing chromite layers are caused by pressure reduction during magma ascent.

    Science.gov (United States)

    Latypov, Rais; Costin, Gelu; Chistyakova, Sofya; Hunt, Emma J; Mukherjee, Ria; Naldrett, Tony

    2018-01-31

    Platinum-bearing chromitites in mafic-ultramafic intrusions such as the Bushveld Complex are key repositories of strategically important metals for human society. Basaltic melts saturated in chromite alone are crucial to their generation, but the origin of such melts is controversial. One concept holds that they are produced by processes operating within the magma chamber, whereas another argues that melts entering the chamber were already saturated in chromite. Here we address the problem by examining the pressure-related changes in the topology of a Mg 2 SiO 4 -CaAl 2 Si 2 O 8 -SiO 2 -MgCr 2 O 4 quaternary system and by thermodynamic modelling of crystallisation sequences of basaltic melts at 1-10 kbar pressures. We show that basaltic melts located adjacent to a so-called chromite topological trough in deep-seated reservoirs become saturated in chromite alone upon their ascent towards the Earth's surface and subsequent cooling in shallow-level chambers. Large volumes of these chromite-only-saturated melts replenishing these chambers are responsible for monomineralic layers of massive chromitites with associated platinum-group elements.

  2. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations)

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    2017-02-01

    rapidly decreasing integrated flux of mare basalts is a result of the thermal evolution of the Moon; continued cooling decreased diapiric rise and mantle melting, thickened the lithosphere, and caused the global state of stress to be increasingly contractional, all factors progressively inhibiting the generation, ascent and eruption of basaltic magma. Late-stage volcanic eruptions are typically widely separated in time and characterized by high-volume, high-effusion rate eruptions producing extensive volume-limited flows, a predictable characteristic of deep source regions below a thick lithosphere late in lunar history. This improved paradigm for the generation, ascent, intrusion and eruption of basaltic magma provides the basis for the broader interpretation of the lunar volcanic record in terms of variations in eruption conditions in space and time, and their relation to mantle heterogeneity and a more detailed understanding of lunar thermal evolution.

  3. Magmatic Ascent and Eruption Processes on Mercury

    Science.gov (United States)

    Head, J. W.; Wilson, L.

    2018-05-01

    MESSENGER volcanic landform data and information on crustal composition allow us to model the generation, ascent, and eruption of magma; Mercury explosive and effusive eruption processes differ significantly from other terrestrial planetary bodies.

  4. Timing magma migration through the Icelandic Crust: from the Moho to the surface

    Science.gov (United States)

    Mutch, E. J. F.; Maclennan, J.; Edmonds, M.

    2017-12-01

    The rate of magma transfer throughout the crust, particularly the amount of time it takes for melt to travel from the upper mantle to the surface, is largely unknown. Only one previous study has investigated the timescales of transport of crystals that were in equilibrium with mantle melts [1]. Despite estimating timescales on the order of months to years, the depths from which these crystals were entrained is poorly constrained. Borgarhraun is an exceptionally well-characterised picrite lava flow in the Theistareykir Volcanic System of Northern Iceland. The crystal-cargo of this lava includes macrocrysts of olivine (Fo86-90), plagioclase (An84-90), clinopyroxene and spinel with much rarer wehrlitic nodules. Crystallisation has been estimated to have taken place in deep sub-Moho magma chambers ( 24 km). Melt inclusions in primitive olivine macrocrysts (Fo88-90) are the result of mixing a suite of geochemically distinct mantle melts that were CO2 undersaturated [2-3]. Zoning in the macrocrysts holds a record of concurrent crystallisation and mixing of these variable mantle melts, as well as ascent through the crust prior to eruption [4]. We have conducted a multi-phase, multi-element approach by applying finite-element diffusion models to wehrlite olivines and plagioclase macrocrysts to constrain the timescales of crystal residence and magma ascent prior to eruption. Model results suggest that at 1250 °C the timescale of final ascent was on the order of 20-50 days, whilst longer-term crystal residence times can exceed 700 years. This analysis shows that magma can ascend from the base of the crust to the surface in under a couple of months, suggesting picrites such as Borgarhraun are the result of high speed conduits to sub-Moho magma chambers. These rapid ascent timescales have important implications for the physical modelling of primitive magmas as well as for understanding the architecture of magma-plumbing systems in the temporal domain. References [1] Ruprecht

  5. Magma ascent, fragmentation and depositional characteristics of "dry" maar volcanoes: Similarities with vent-facies kimberlite deposits

    Science.gov (United States)

    Berghuijs, Jaap F.; Mattsson, Hannes B.

    2013-02-01

    Several maar craters within the Lake Natron-Engaruka monogenetic volcanic field (LNE-MVF) of northern Tanzania show compelling evidence for magmatic fragmentation and dry deposition. This is in contradiction of the common belief that most maars are formed through the explosive interaction between ascending magma and ground- or surface water. We here present a detailed study on the eruptive and depositional characteristics of the Loolmurwak and Eledoi maar volcanoes, two of the largest craters in the LNE-MVF, focusing on high-resolution stratigraphy, sedimentology, grain size distribution, pyroclast textures and morphologies, bulk geochemistry and mineral chemistry. At both maars, ejected material has been emplaced by a combination of pyroclastic surges and fallout. Indicators of phreatomagmatic fragmentation and wet deposition, such as impact sags, accretionary lapilli, vesiculated tuffs and plastering against obstacles, are absent in the deposits. Juvenile material predominantly occurs as fluidal-shaped vesicular melt droplets and contains no glass shards produced by the breakage of bubble walls. The Eledoi deposits comprise a large amount of inversely graded beds and lenses, which result from grain flow in a dry depositional environment. Preferential deposition of fine material toward the northern side of its crater can be related to effective wind winnowing in a dry eruption plume. This large variety of observations testifies to the dominance of magmatic fragmentation as well as dry deposition at the Loolmurwak and Eledoi maars, which is in line with what has been found for other structures in the LNE-MVF but contrasts with current ideas on maar formation. We infer that a volatile-rich, olivine melilitic magma was formed by small amounts of partial melting at upper mantle depths. With minimum average ascent rates of 5.3 m s- 1 for Loolmurwak and 26.2 m s- 1 for Eledoi, this magma rapidly moved toward the surface and exsolved a substantial amount of volatiles

  6. Magma emplacement in 3D

    Science.gov (United States)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  7. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    Science.gov (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  8. Magma Dynamics in Dome-Building Volcanoes

    Science.gov (United States)

    Kendrick, J. E.; Lavallée, Y.; Hornby, A. J.; Schaefer, L. N.; Oommen, T.; Di Toro, G.; Hirose, T.

    2014-12-01

    The frequent and, as yet, unpredictable transition from effusive to explosive volcanic behaviour is common to active composite volcanoes, yet our understanding of the processes which control this evolution is poor. The rheology of magma, dictated by its composition, porosity and crystal content, is integral to eruption behaviour and during ascent magma behaves in an increasingly rock-like manner. This behaviour, on short timescales in the upper conduit, provides exceptionally dynamic conditions that favour strain localisation and failure. Seismicity released by this process can be mimicked by damage accumulation that releases acoustic signals on the laboratory scale, showing that the failure of magma is intrinsically strain-rate dependent. This character aids the development of shear zones in the conduit, which commonly fracture seismogenically, producing fault surfaces that control the last hundreds of meters of ascent by frictional slip. High-velocity rotary shear (HVR) experiments demonstrate that at ambient temperatures, gouge behaves according to Byerlee's rule at low slip velocities. At rock-rock interfaces, mechanical work induces comminution of asperities and heating which, if sufficient, may induce melting and formation of pseudotachylyte. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The bulk composition, mineralogy and glass content of the magma all influence frictional behaviour, which supersedes buoyancy as the controlling factor in magma ascent. In the conduit of dome-building volcanoes, the fracture and slip processes are further complicated: slip-rate along the conduit margin fluctuates. The shear-thinning frictional melt yields a tendency for extremely unstable slip thanks to its pivotal position with regard to the glass transition. This thermo-kinetic transition bestows the viscoelastic melt with the ability to either flow or

  9. Magma Expansion and Fragmentation in a Propagating Dike (Invited)

    Science.gov (United States)

    Jaupart, C. P.; Taisne, B.

    2010-12-01

    The influence of magma expansion due to volatile exsolution and gas dilation on dike propagation is studied using a new numerical code. Many natural magmas contain sufficient amounts of volatiles for fragmentation to occur well below Earth's surface. Magma fragmentation has been studied for volcanic flows through open conduits but it should also occur within dikes that rise towards Earth's surface. We consider the flow of a volatile-rich magma in a hydraulic fracture. The mixture of melt and gas is treated as a compressible viscous fluid below the fragmentation level and as a gas phase carrying melt droplets above it. A numerical code solves for elastic deformation of host rocks, the flow of the magmatic mixture and fracturing at the dike tip. With volatile-free magma, a dike fed at a constant rate in a uniform medium adopts a constant shape and width and rises at a constant velocity. With volatiles involved, magma expands and hence the volume flux of magma increases. With no fragmentation, this enhanced flux leads to acceleration of the dike. Simple scaling laws allow accurate predictions of dike width and ascent rate for a wide range of conditions. With fragmentation, dike behavior is markedly different. Due to the sharp drop of head loss that occurs in gas-rich fragmented material, large internal overpressures develop below the tip and induce swelling of the nose region, leading to deceleration of the dike. Thus, the paradoxical result is that, with no viscous impediment on magma flow and a large buoyancy force, the dike stalls. This process may account for some of the tuffisite veins and intrusions that are found in and around magma conduits, notably in the Unzen drillhole, Japan. We apply these results to the two-month long period of volcanic unrest that preceded the May 1980 eruption of Mount St Helens. An initial phase of rapid earthquake migration from the 7-8 km deep reservoir to shallow levels was followed by very slow progression of magma within the

  10. Halogen degassing during ascent and eruption of water-poor basaltic magma

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.; Herd, Richard A.

    2009-01-01

    A study of volcanic gas composition and matrix glass volatile concentrations has allowed a model for halogen degassing to be formulated for K??lauea Volcano, Hawai'i. Volcanic gases emitted during 2004-2005 were characterised by a molar SO2/HCl of 10-64, with a mean of 33; and a molar HF/HCl of 0-5, with a mean of 1.0 (from approximately 2500 measurements). The HF/HCl ratio was more variable than the SO2/HCl ratio, and the two correlate weakly. Variations in ratio took place over rapid timescales (seconds). Matrix glasses of Pele's tears erupted in 2006 have a mean S, Cl and F content of 67, 85 and 173??ppm respectively, but are associated with a large range in S/F. A model is developed that describes the open system degassing of halogens from parental magmas, using the glass data from this study, previously published results and parameterisation of sulphur degassing from previous work. The results illustrate that halogen degassing takes place at pressures of < 1??MPa, equivalent to < ~ 35??m in the conduit. Fluid-melt partition coefficients for Cl and F are low (< 1.5); F only degasses appreciably at < 0.1??MPa above atmospheric pressure, virtually at the top of the magma column. This model reproduces the volcanic gas data and other observations of volcanic activity well and is consistent with other studies of halogen degassing from basaltic magmas. The model suggests that variation in volcanic gas halogen ratios is caused by exsolution and gas-melt separation at low pressures in the conduit. There is no evidence that either diffusive fractionation or near-vent chemical reactions involving halogens is important in the system, although these processes cannot be ruled out. The fluxes of HCl and HF from K??lauea during 2004-5 were ~ 25 and 12??t/d respectively. ?? 2008 Elsevier B.V.

  11. The Boycott effect in magma chambers

    Science.gov (United States)

    Blanchette, F.; Peacock, T.; Bush, J. W. M.

    2004-03-01

    We investigate the plausibility of the stratified Boycott effect as a source of layering in magma chambers. Crystal settling within the magma chamber will generate buoyant fluid near the sloping sidewalls whose vertical ascent may be limited by the ambient stratification associated with vertical gradients in SiO2. The resulting flow may be marked by a layered structure, each layer taking the form of a convection cell spanning the lateral extent of the magma chamber. Using parameters relevant to magma chambers, we estimate that such convection cells would be established over a timescale of a month and have a depth on the order of 4m, which is roughly consistent with field observations of strata within solidified chambers.

  12. Compressible magma flow in a two-dimensional elastic-walled dike

    NARCIS (Netherlands)

    Woods, A.W.; Bokhove, Onno; de Boer, A; Hill, B.E.

    2006-01-01

    The ascent of magma to the Earth's surface is commonly modeled by assuming a fixed dike or flow geometry from a deep subsurface reservoir to the surface. In practice, however, this flow geometry is produced by deformation of the crust by ascending overpressured magma. Here, we explore how this

  13. Magma shearing and friction in the volcanic conduit: A crystal constraint

    Science.gov (United States)

    Wallace, P. A.; Kendrick, J. E.; Henton De Angelis, S.; Ashworth, J. D.; Coats, R.; Miwa, T.; Mariani, E.; Lavallée, Y.

    2017-12-01

    Magma shearing and friction processes in the shallow volcanic conduit are typical manifestations of strain localisation, which in turn can have an influential role on magma ascent dynamics. The thermal consequences of such events could drive the destabilisation of magma and thus dictate the style of activity at the surface. Shear heating and fault friction are prime candidates for the generation of significant quantities of heat. Here we use a combination of field and experimental evidence to investigate how crystals can act as sensitive recorders of both physical and chemical processes occurring in the shallow volcanic conduit. Spine extrusion during the closing of the 1991-95 eruption at Unzen volcano, Japan, provided the unique opportunity to investigate marginal shear zone formation, which preserves a relic of the deformation during magma ascent. Our results show that crystals can effectively act as a deformation marker during magma ascent through the viscous-brittle transition by accommodating strain in the form of crystal plasticity before fracturing (comminution). Electron backscatter diffraction (EBSD) reveals up to 40° lattice distortion of biotite phenocrysts in zones of high shear, with negligible plasticity further away. Plagioclase microlites display a systematic plastic response to an increase in shear intensity, as recorded by an increase in lattice distortion towards the spine margin of up to 9°. This localisation of strain within the shear zone is also accompanied by the destabilisation of hydrous mineral phases (i.e. amphibole), compaction of pores (23-13% Φ), glass devitrification and magnetic anomalies. The narrow zone of disequilibrium textures suggests the likely effect of a thermal input due to strain localisation being the contributing factor. These observations are complimented by high-temperature high-velocity rotary shear experiments which simulate the deformation evolution during shear. Hence, understanding these shallow volcanic

  14. Timescales of mixing and storage for Keanakāko`i Tephra magmas (1500-1820 C.E.), Kīlauea Volcano, Hawai`i

    Science.gov (United States)

    Lynn, Kendra J.; Garcia, Michael O.; Shea, Thomas; Costa, Fidel; Swanson, Donald A.

    2017-09-01

    The last 2500 years of activity at Kīlauea Volcano (Hawai`i) have been characterized by centuries-long periods dominated by either effusive or explosive eruptions. The most recent period of explosive activity produced the Keanakāko`i Tephra (KT; ca. 1500-1820 C.E.) and occurred after the collapse of the summit caldera (1470-1510 C.E.). Previous studies suggest that KT magmas may have ascended rapidly to the surface, bypassing storage in crustal reservoirs. The storage conditions and rapid ascent hypothesis are tested here using chemical zoning in olivine crystals and thermodynamic modeling. Forsterite contents (Fo; [Mg/(Mg + Fe) × 100]) of olivine core and rim populations are used to identify melt components in Kīlauea's prehistoric (i.e., pre-1823) plumbing system. Primitive (≥Fo88) cores occur throughout the 300+ years of the KT period; they originated from mantle-derived magmas that were first mixed and stored in a deep crustal reservoir. Bimodal olivine populations (≥Fo88 and Fo83-84) record repeated mixing of primitive magmas and more differentiated reservoir components shallower in the system, producing a hybrid composition (Fo85-87). Phase equilibria modeling using MELTS shows that liquidus olivine is not stable at depths >17 km. Thus, calculated timescales likely record mixing and storage within the crust. Modeling of Fe-Mg and Ni zoning patterns (normal, reverse, complex) reveal that KT magmas were mixed and stored for a few weeks to several years before eruption, illustrating a more complex storage history than direct and rapid ascent from the mantle as previously inferred for KT magmas. Complexly zoned crystals also have smoothed compositional reversals in the outer 5-20 µm rims that are out of Fe-Mg equilibrium with surrounding glasses. Diffusion models suggest that these rims formed within a few hours to a few days, indicating that at least one additional, late-stage mixing event may have occurred shortly prior to eruption. Our study

  15. Shallow magma diversions during explosive maar-diatreme eruptions in mafic volcanic fields

    Science.gov (United States)

    Le Corvec, N.; Muirhead, J.; White, J. D. L.

    2017-12-01

    Maar-diatremes are inverted conical structures formed by subterranean excavation and remobilization of country rocks during explosive volcanism and common in mafic volcanic fields. We focus on impacts of excavation and filling of maar-diatremes on the local state of stress, and its subsequent influence on underlying feeder dikes, which are critical for understanding the development of intrusive networks that feed surface eruptions. We address this issue using finite element models in COMSOL Multiphysics®. Inverted conical structures of varying sizes are excavated in a gravitationally loaded elastic half-space, and then progressively filled with volcaniclastic material, resulting in changes in the orientations and magnitudes of stresses generated within surrounding rocks and within the filling portion of the maar-diatreme. Our results show that rapid unloading during maar-diatreme excavation generates a horizontal compressive stress state beneath diatremes. These stresses allow magma to divert laterally as saucer-shaped sills and circumferential dikes at varying depths in the shallow feeder system, and produce intrusion geometries consistent with both field observations from exhumed volcanic fields and conceptual models of diatreme growth. Stresses generated in these models also provide an explanation for the evolving locations of fragmentation zones over the course of diatreme's filling. In particular, results from this study suggest that: (1) extensional stresses at the base of the diatreme fill favor magma ascent in the lower half of the structure, and possibly promote volatile exsolution and magma fragmentation; and (2) increased filling of diatremes creates a shallow compressive stress state that can inhibit magma ascent to the surface, promoting widespread intra-diatreme explosions, efficient mixing of host rock, and upward widening of the diatreme structure.

  16. The implications of gas slug ascent in a stratified magma for acoustic and ground deformation source mechanisms in Strombolian eruptions

    Science.gov (United States)

    Capponi, Antonio; Lane, Stephen J.; James, Mike R.

    2017-06-01

    The interpretation of geophysical measurements at active volcanoes is vital for hazard assessment and for understanding fundamental processes such as magma degassing. For Strombolian activity, interpretations are currently underpinned by first-order fluid dynamic models which give relatively straightforward relationships between geophysical signals and gas and magma flow. However, recent petrological and high-speed video evidence has indicated the importance of rheological stratification within the conduit and, here, we show that under these conditions, the straightforward relationships break down. Using laboratory analogue experiments to represent a rheologically-stratified conduit we characterise the distinct variations in the shear stress exerted on the upper sections of the flow tube and in the gas pressures measured above the liquid surface, during different degassing flow configurations. These signals, generated by varying styles of gas ascent, expansion and burst, can reflect field infrasonic measurements and ground motion proximal to a vent. The shear stress signals exhibit timescales and trends in qualitative agreement with the near-vent inflation-deflation cycles identified at Stromboli. Therefore, shear stress along the uppermost conduit may represent a plausible source of near-vent tilt, and conduit shear contributions should be considered in the interpretation of ground deformation, which is usually attributed to pressure sources only. The same range of flow processes can produce different experimental infrasonic waveforms, even for similar masses of gas escape. The experimental data resembled infrasonic waveforms acquired from different vents at Stromboli associated with different eruptive styles. Accurate interpretation of near-vent ground deformation, infrasonic signal and eruptive style therefore requires detailed understanding of: a) spatiotemporal magma rheology in the shallow conduit, and b) shallow conduit geometry, as well as bubble

  17. Petrological constraints on the recycling of mafic crystal mushes, magma ascent and intrusion of braided sills in the Torres del Paine mafic complex (Patagonia)

    Science.gov (United States)

    Leuthold, Julien; Müntener, Othmar; Baumgartner, Lukas; Putlitz, Benita

    2014-05-01

    Cumulate and crystal mush disruption and reactivation are difficult to recognise in coarse grained shallow plutonic rocks. Mafic minerals included in hornblende and zoned plagioclase provide snapshots of early crystallization and cumulate formation, but are difficult to interpret in terms of the dynamics of magma ascent and possible links between silicic and mafic rock emplacement. We will present the field relations, the microtextures and the mineral chemistry of the Miocene mafic sill complex of the Torres del Paine intrusive complex (Patagonia, Chile) and its sub-vertical feeder-zone. The mafic sill complex was built up by a succession of braided sills of shoshonitic and high-K calc-alkaline porphyritic hornblende-gabbro and fine grained monzodioritic sills. The mafic units were over-accreted over 41±11 ka, underplating the overlying granite. Local diapiric structures and felsic magma accumulation between sills indicate limited separation of intercumulus liquid from the mafic sills. Anhedral hornblende cores, with olivine + clinopyroxene ± plagioclase ± apatite inclusions, crystallized at temperatures >900°C and pressures of ~300 to ~500 MPa. The corresponding rims and monzodiorite matrix crystallized at 950°C) from the middle crust reservoir to the emplacement level. We show that hornblende-plagioclase thermobarometry is a useful monitor for the determination of segregation conditions of granitic magmas from gabbroic crystal mushes, and for monitoring the evolution of shallow crustal magmatic crystallization, decompression and cooling.

  18. The link between multistep magma ascent and eruption intensity: examples from the recent activity of Piton de la Fournaise (La Réunion Island).

    Science.gov (United States)

    Di Muro, Andrea

    2014-05-01

    Caldera collapses represent catastrophic events, which induce drastic modification in a volcano plumbing system and can result in major and fast evolution of the system dynamics. At Piton de la Fournaise (PdF) volcano, the 2007 eruptive sequence extruded the largest lava volume (240 Mm3) since at least 3 centuries, provoking the collapse of a small (1 km wide; 340 m deep) summit caldera. In about 35 days, the 2007 major eruption generated i) the greatest lava output rate, ii) the strongest lava fountaining activity (> 200 m high), iii) the largest SO2 volume (> 230 kt) ever documented at PdF. This event ended a 9 year-long period (1998-2007) of continuous edifice inflation and sustained eruptive activity (3 eruptions per year on average). Unexpectedly and in spite of the large volume of magma erupted in 2007, volcano unrest and eruptive activity resumed quickly in 2008, soon after caldera collapse, and produced several closely spaced intracaldera eruptions and shallow intrusions. The post-2007 activity is associated with a trend of continuous volcano deflation and consists in small-volume (Pele's hairs, coarse ash fragments produced by lava-sea water interaction, glassy crust of lavas, high-temperature lavas quenched in water, matrix glasses) with the geophysical record of volcano unrest. Petro-chemical data suggest that the shallow PdF plumbing system is formed by a network of small sized magma pockets (sills). We explicitly link its formation and emptying with periodic magma recharges from deeper levels and repeated caldera collapses, which frequently affect the central cone of PdF. In spite of the large range in fountain intensity, dissolved volatiles contents are low and almost constant. Multistep ascent of magma inputs is identified as the key mechanism determining the evolution towards open system degassing and in fine controlling eruptive behavior.

  19. Lunar magma transport phenomena

    Science.gov (United States)

    Spera, Frank J.

    1992-01-01

    An outline of magma transport theory relevant to the evolution of a possible Lunar Magma Ocean and the origin and transport history of the later phase of mare basaltic volcanism is presented. A simple model is proposed to evaluate the extent of fractionation as magma traverses the cold lunar lithosphere. If Apollo green glasses are primitive and have not undergone significant fractionation en route to the surface, then mean ascent rates of 10 m/s and cracks of widths greater than 40 m are indicated. Lunar tephra and vesiculated basalts suggest that a volatile component plays a role in eruption dynamics. The predominant vapor species appear to be CO CO2, and COS. Near the lunar surface, the vapor fraction expands enormously and vapor internal energy is converted to mixture kinetic energy with the concomitant high-speed ejection of vapor and pyroclasts to form lunary fire fountain deposits such as the Apollo 17 orange and black glasses and Apollo 15 green glass.

  20. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies.

    Science.gov (United States)

    Burgisser, Alain; Bergantz, George W

    2011-03-10

    The largest products of magmatic activity on Earth, the great bodies of granite and their corresponding large eruptions, have a dual nature: homogeneity at the large scale and spatial and temporal heterogeneity at the small scale. This duality calls for a mechanism that selectively removes the large-scale heterogeneities associated with the incremental assembly of these magmatic systems and yet occurs rapidly despite crystal-rich, viscous conditions seemingly resistant to mixing. Here we show that a simple dynamic template can unify a wide range of apparently contradictory observations from both large plutonic bodies and volcanic systems by a mechanism of rapid remobilization (unzipping) of highly viscous crystal-rich mushes. We demonstrate that this remobilization can lead to rapid overturn and produce the observed juxtaposition of magmatic materials with very disparate ages and complex chemical zoning. What distinguishes our model is the recognition that the process has two stages. Initially, a stiff mushy magma is reheated from below, producing a reduction in crystallinity that leads to the growth of a subjacent buoyant mobile layer. When the thickening mobile layer becomes sufficiently buoyant, it penetrates the overlying viscous mushy magma. This second stage rapidly exports homogenized material from the lower mobile layer to the top of the system, and leads to partial overturn within the viscous mush itself as an additional mechanism of mixing. Model outputs illustrate that unzipping can rapidly produce large amounts of mobile magma available for eruption. The agreement between calculated and observed unzipping rates for historical eruptions at Pinatubo and at Montserrat demonstrates the general applicability of the model. This mechanism furthers our understanding of both the formation of periodically homogenized plutons (crust building) and of ignimbrites by large eruptions.

  1. Rapid Crystallization of the Bishop Magma

    Science.gov (United States)

    Gualda, G. A.; Anderson, A. T.; Sutton, S. R.

    2007-12-01

    Substantial effort has been made to understand the longevity of rhyolitic magmas, and particular attention has been paid to the systems in the Long Valley area (California). Recent geochronological data suggest discrete magma bodies that existed for hundreds of thousands of years. Zircon crystallization ages for the Bishop Tuff span 100-200 ka, and were interpreted to reflect slow crystallization of a liquid-rich magma. Here we use the diffusional relaxation of Ti zoning in quartz to investigate the longevity of the Bishop magma. We have used such an approach to show the short timescales of crystallization of Ti-rich rims on quartz from early- erupted Bishop Tuff. We have now recognized Ti-rich cores in quartz that can be used to derive the timescales of their crystallization. We studied four samples of the early-erupted Bishop. Hand-picked crystals were mounted on glass slides and polished. Cathodoluminescence (CL) images were obtained using the electron microprobe at the University of Chicago. Ti zoning was documented using the GeoSoilEnviroCARS x-ray microprobe at the Advanced Photon Source (Argonne National Lab). Quartz crystals in all 4 samples include up to 3 Ti-bearing zones: a central core (50-100 μm in diameter, ca. 50 ppm Ti), a volumetrically predominant interior (~40 ppm Ti), and in some crystals a 50-100 μm thick rim (50 ppm Ti). Maximum estimates of core residence times were calculated using a 1D diffusion model, as the time needed to smooth an infinitely steep profile to fit the observed profile. Surprisingly, even for the largest crystals studied - ca. 2 mm in diameter - core residence times are less than 1 ka. Calculated growth rates imply that even cm-sized crystals crystallized in less than 10 ka. Crystal size distribution data show that crystals larger than 3 mm are exceedingly rare, such that the important inference is that the bulk of the crystallization of the early-erupted Bishop magma occurred in only a few thousand years. This timescale

  2. Juvenile pumice and pyroclastic obsidian reveal the eruptive conditions necessary for the stability of Plinian eruption of rhyolitic magma

    Science.gov (United States)

    Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.

    2016-12-01

    Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.

  3. Polycrystalline magma behaviour in dykes: Insights from high-resolution numerical models

    Science.gov (United States)

    Yamato, Philippe; Duretz, Thibault; Tartèse, Romain; May, Dave

    2013-04-01

    The presence of a crystalline load in magmas modifies their effective rheology and thus their flow behaviour. In dykes, for instance, the presence of crystals denser than the melt reduces the ascent velocity and modifies the shape of the velocity profile from a Newtonian Poiseuille flow to a Bingham type flow. Nevertheless, several unresolved issues still remain poorly understood and need to be quantified: (1) What are the mechanisms controlling crystals segregation during magma ascent in dykes? (2) How does crystals transportation within a melt depend on their concentration, geometry, size and density? (3) Do crystals evolve in isolation to each other or as a cluster? (4) What is the influence of considering inertia of the melt within the system? In this study, we present numerical models following the setup previously used in Yamato et al. (2012). Our model setup simulates an effective pressure gradient between the base and the top of a channel (representing a dyke), by pushing a rigid piston into a magmatic mush that comprised crystals and melt and perforated by a hole. The initial resolution of the models (401x1551 nodes) has been doubled in order to ensure that the smallest crystalline fractions are sufficiently well resolved. Results show that the melt phase can be squeezed out from a crystal-rich magma when subjected to a given pressure gradient range and that clustering of crystals might be an important parameter controlling their behaviour. This demonstrates that crystal-melt segregation in dykes during magma ascent constitutes a viable mechanism for magmatic differentiation of residual melts. These results also explain how isolated crystal clusters and melt pockets, with different chemistry, can be formed. In addition, we discuss the impact of taking into account inertia in our models. Reference: Yamato, P., Tartèse, R., Duretz, T., May, D.A., 2012. Numerical modelling of magma transport in dykes. Tectonophysics 526-529, 97-109.

  4. Outgassing From Open And Closed Magma Foams

    Science.gov (United States)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  5. Outgassing from Open and Closed Magma Foams

    Directory of Open Access Journals (Sweden)

    Felix W. von Aulock

    2017-06-01

    Full Text Available During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The reorganization, failing and sealing of bubble walls may contribute to the opening and closing of the volcanic system. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950°C for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens non-linearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace to allow open system outgassing, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e., skin removal occurs, then rapid outgassing and consequent foam collapse modulate gas pressurization in the vesiculated magma. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas.

  6. The decompression of basaltic magma into a sub-surface repository

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.

    2002-01-01

    We examine the ascent of volatile-rich basaltic magma through a vertical dike that intersects a horizontal tunnel of comparable cross-sectional area to the dike and located 300 $m$ below the surface and initially filled with air at atmospheric pressure. This process is a simplified representation of

  7. Shallow magma diversions during explosive diatreme-forming eruptions.

    Science.gov (United States)

    Le Corvec, Nicolas; Muirhead, James D; White, James D L

    2018-04-13

    The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.

  8. Storage, Ascent, and Release of Silicic Magma in Caldera-forming Eruptions

    Science.gov (United States)

    Myers, Madison Logan

    The mechanisms and timescales associated with the triggering of caldera-forming eruptions remain ambiguous and poorly constrained. Do such eruptions start vigorously, then escalate, or can there be episodicity? Are they triggered through internal processes (e.g. recharge, buoyancy), or can external modulations play an important role? Key to answering these questions is the ability to reconstruct the state of the magma body immediately prior to eruption. My dissertation research seeks to answer these questions through detailed investigation of four voluminous caldera-forming eruptions: (1) 650 km3, 0.767 Ma Bishop Tuff, Long Valley, (2) 530 km3, 25.4 ka Oruanui eruption, Taupo, (3) 2,500 km3, 2.08 Ma Huckleberry Ridge Tuff, Yellowstone and (4) 250 km3, 26.91 Ma Cebolla Creek Tuff, Colorado. The main techniques I applied integrated glass geochemistry (major, trace and volatile), diffusion modeling, and detailed field sampling. In chapters two, three, and four these methods are applied to the initial fall deposits of three supereruptions (Bishop, Oruanui and Huckleberry Ridge) that preserve field-evidence for different opening behaviors. These behaviors range from continuous deposition of fall deposits and ignimbrite (Bishop), to repetitive start/stop behavior, with time breaks between eruptive episodes on the order of weeks to months (Oruanui, Huckleberry Ridge). To reconstruct the timescales of opening activity and relate this to conduit processes, I used two methods that exploit diffusion of volatiles through minerals and melt, providing estimates for the rate at which magmas ascended to the surface. This knowledge is then integrated with the pre-eruptive configuration of the magma body, based on melt inclusion chemistry, to interpret what triggered these systems into unrest. Finally, in chapter five I take a different approach by integrating geochemical data for melt inclusions and phenocryst minerals to test whether the mechanism of heat and volatile recharge

  9. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    Science.gov (United States)

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  10. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-01-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  11. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-10-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  12. Rapid differentiation in a sill-like magma reservoir: a case study from the campi flegrei caldera.

    Science.gov (United States)

    Pappalardo, Lucia; Mastrolorenzo, Giuseppe

    2012-01-01

    In recent decades, geophysical investigations have detected wide magma reservoirs beneath quiescent calderas. However, the discovery of partially melted horizons inside the crust is not sufficient to put constraints on capability of reservoirs to supply cataclysmic eruptions, which strictly depends on the chemical-physical properties of magmas (composition, viscosity, gas content etc.), and thus on their differentiation histories. In this study, by using geochemical, isotopic and textural records of rocks erupted from the high-risk Campi Flegrei caldera, we show that the alkaline magmas have evolved toward a critical state of explosive behaviour over a time span shorter than the repose time of most volcanic systems and that these magmas have risen rapidly toward the surface. Moreover, similar results on the depth and timescale of magma storage were previously obtained for the neighbouring Somma-Vesuvius volcano. This consistency suggests that there might be a unique long-lived magma pool beneath the whole Neapolitan area.

  13. Magma flow instability and cyclic activity at soufriere hills volcano, montserrat, british west indies

    Science.gov (United States)

    Voight; Sparks; Miller; Stewart; Hoblitt; Clarke; Ewart; Aspinall; Baptie; Calder; Cole; Druitt; Hartford; Herd; Jackson; Lejeune; Lockhart; Loughlin; Luckett; Lynch; Norton; Robertson; Watson; Watts; Young

    1999-02-19

    Dome growth at the Soufriere Hills volcano (1996 to 1998) was frequently accompanied by repetitive cycles of earthquakes, ground deformation, degassing, and explosive eruptions. The cycles reflected unsteady conduit flow of volatile-charged magma resulting from gas exsolution, rheological stiffening, and pressurization. The cycles, over hours to days, initiated when degassed stiff magma retarded flow in the upper conduit. Conduit pressure built with gas exsolution, causing shallow seismicity and edifice inflation. Magma and gas were then expelled and the edifice deflated. The repeat time-scale is controlled by magma ascent rates, degassing, and microlite crystallization kinetics. Cyclic behavior allows short-term forecasting of timing, and of eruption style related to explosivity potential.

  14. H Diffusion in Olivine and Pyroxene from Peridotite Xenoliths and a Hawaiian Magma Speedometer

    Science.gov (United States)

    Peslier, A. H.; Bizimis, M.

    2014-01-01

    Hydrogen is present as a trace element in olivine and pyroxene and its content distribution in the mantle results from melting and metasomatic processes. Here we examine how these H contents can be disturbed during decompression. Hydrogen was analyzed by FTIR in olivine and pyroxene of spinel peridotite xenoliths from Salt Lake Crater (SLC) nephelinites which are part of the rejuvenated volcanism at Oahu (Hawaii) [1,2]. H mobility in pyroxene resulting from spinel exsolution during mantle upwelling Most pyroxenes in SLC peridotites exhibit exsolutions, characterized by spinel inclusions. Pyroxene edges where no exsolution are present have less H then their core near the spinel. Given that H does not enter spinel [3], subsolidus requilibration may have concentrated H in the pyroxene adjacent to the spinel exsolution during mantle upwelling. H diffusion in olivine during xenolith transport by its host magma and host magma ascent rates Olivines have lower water contents at the edge and near fractures compared to at their core, while the concentrations of all other chemical elements appear homogeneous. This suggests that some of the initial water has diffused out of the olivine. Water loss from the olivine is thought to occur during host-magma ascent and xenolith transport to the surface [4-6]. Diffusion modeling matches best the data when the initial water content used is that measured at the core of the olivines, implying that mantle water contents are preserved at the core of the olivines. The 3225 cm(sup -1) OH band at times varies independantly of other OH bands, suggesting uneven H distribution in olivine defects likely acquired during mantle metasomatism just prior to eruption and unequilibrated. Diffusion times (1-48 hrs) combined with depths of peridotite equilibration or of magma start of degassing allow to calculate ascent rates for the host nephelinite of 0.1 to 27 m/s.

  15. RAPID TIMESCALES FOR MAGMA OCEAN CRYSTALLIZATION ON THE HOWARDITE-EUCRITE-DIOGENITE PARENT BODY

    International Nuclear Information System (INIS)

    Schiller, Martin; Paton, Chad; Bizzarro, Martin; Baker, Joel; Creech, John; Millet, Marc-Alban; Irving, Anthony

    2011-01-01

    Asteroid 4 Vesta has long been postulated as the source for the howardite-eucrite-diogenite (HED) achondrite meteorites. Here we show that Al-free diogenite meteorites record variability in the mass-independent abundance of 26 Mg ( 26 Mg*) that is correlated with their mineral chemistry. This suggests that these meteorites captured the Mg-isotopic evolution of a large-scale differentiating magma body with increasing 27 Al/ 24 Mg during the lifespan of the short-lived 26 Al nuclide (t 1/2 ∼ 730,000 yr). Thus, diogenites and eucrites represent crystallization products of a large-scale magma ocean associated with the differentiation and magmatic evolution of the HED parent body. The 26 Mg* composition of the most primitive diogenites requires onset of the magma ocean crystallization within 0.6 -0.4 +0.5 Myr of solar system formation. Moreover, 26 Mg* variations among diogenites and eucrites imply that near complete solidification of the HED parent body occurred within the following 2-3 Myr. Thermal models predict that such rapid cooling and magma ocean crystallization could only occur on small asteroids (<100 km), implying that 4 Vesta is not the source of the HED meteorites.

  16. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals.

    Science.gov (United States)

    Rubin, Allison E; Cooper, Kari M; Till, Christy B; Kent, Adam J R; Costa, Fidel; Bose, Maitrayee; Gravley, Darren; Deering, Chad; Cole, Jim

    2017-06-16

    Silicic volcanic eruptions pose considerable hazards, yet the processes leading to these eruptions remain poorly known. A missing link is knowledge of the thermal history of magma feeding such eruptions, which largely controls crystallinity and therefore eruptability. We have determined the thermal history of individual zircon crystals from an eruption of the Taupo Volcanic Zone, New Zealand. Results show that although zircons resided in the magmatic system for 10 3 to 10 5 years, they experienced temperatures >650° to 750°C for only years to centuries. This implies near-solidus long-term crystal storage, punctuated by rapid heating and cooling. Reconciling these data with existing models of magma storage requires considering multiple small intrusions and multiple spatial scales, and our approach can help to quantify heat input to and output from magma reservoirs. Copyright © 2017, American Association for the Advancement of Science.

  17. Reaction of Rhyolitic Magma to its Interception by the IDDP-1 Well, Krafla, 2009

    Science.gov (United States)

    Saubin, É.; Kennedy, B.; Tuffen, H.; Villeneuve, M.; Watson, T.; Nichols, A. R.; Schipper, I.; Cole, J. W.; Mortensen, A. K.; Zierenberg, R. A.

    2017-12-01

    The unexpected encounter of rhyolitic magma during IDDP-1 geothermal borehole drilling at Krafla, Iceland in 2009, temporarily created the world's hottest geothermal well. This allowed new questions to be addressed. i) How does magma react to drilling? ii) Are the margins of a magma chamber suitable for long-term extraction of supercritical fluids? To investigate these questions, we aim to reconstruct the degassing and deformation behaviour of the enigmatic magma by looking for correlations between textures in rhyolitic material retrieved from the borehole and the recorded drilling data. During drilling, difficulties were encountered in two zones, at 2070 m and below 2093 m depth. Drilling parameters are consistent with the drill bit encountering a high permeability zone and the contact zone of a magma chamber, respectively. Magma was intercepted three times between 2101-2104.4 m depth, which culminated in an increase in standpipe pressure followed by a decrease in weight on bit interpreted as representing the ascent of magma within the borehole. Circulation returned one hour after the last interception, carrying cuttings of glassy particles, felsite with granophyre and contaminant clasts from drilling, which were sampled as a time-series for the following 9 hours. The nature of glassy particles in this time-series varied through time, with a decrease in the proportion of vesicular clasts and a commensurate increase in dense glassy clasts, transitioning from initially colourless to brown glass. Componentry data show a sporadic decrease in felsite (from 34 wt. %), an increase in glassy particles during the first two hours (from 63 wt. % to 94 wt. %) and an increase in contaminant clasts towards the end of the cutting retrieval period. These temporal variations are probably related to the magma body architecture and interactions with the borehole. Transition from vesicular to dense clasts suggests a change in the degassing process that could be related to an early

  18. 238U–230Th–226Ra–210Pb–210Po disequilibria constraints on magma generation, ascent, and degassing during the ongoing eruption of Kīlauea

    Science.gov (United States)

    Girard, Guillaume; Reagan, Mark K.; Sims, Kenneth W. W.; Thornber, Carl; Waters, Christopher L.; Phillips, Erin H.

    2017-01-01

    The timescales of magma genesis, ascent, storage and degassing at Kīlauea volcano, Hawai‘i are addressed by measuring 238U-series radionuclide abundances in lava and tephra erupted between 1982 and 2008. Most analyzed samples represent lavas erupted by steady effusion from Pu‘u ‘Ō‘ō and Kūpahianaha from 1983 to 2008. Also included are samples erupted at the summit in April 1982 and March 2008, along the East Rift Zone at the onset of the ongoing eruption in January 1983, and during vent shifting episodes 54 and 56, at Nāpau crater in January 1997, and Kane Nui O Hamo in June 2007. In general, samples have small (∼4%) excesses of (230Th) over (238U) and ∼3 to ∼17% excesses of (226Ra) over (230Th), consistent with melting of a garnet peridotite source at melting rates between 1 × 10–3 and 5 × 10–3 kg m–3 a–1, and melting region porosity between ∼2 and ∼10%, in agreement with previous studies of the ongoing eruption and historical eruptions. A small subset of samples has near-equilibrium (230Th/238U) values, and thus were generated at higher melting rates. Based on U–Th–Ra disequilibria and Th isotopic data from this and earlier studies, melting processes and sources have been relatively stable over at least the past two centuries or more, including during the ongoing unusually long (>30 years) and voluminous (4 km3) eruption. Lavas recently erupted from the East Rift Zone have average initial (210Pb/226Ra) values of 0·80 ± 0·11 (1σ), which we interpret to be the result of partitioning of 222Rn into a persistently generated CO2-rich gas phase over a minimum of 8 years. This (210Pb) deficit implies an average magma ascent rate of ≤3·7 km a–1 from ∼30 km depth to the surface. Spatter and lava associated with vent-opening episodes erupt with variable (210Pb) deficits ranging from 0·7 to near-equilibrium values in some samples. The samples with near-equilibrium (210Pb/226Ra) are typically more

  19. Efficacy of Residence at Moderate Versus Low Altitude on Reducing Acute Mountain Sickness in Men Following Rapid Ascent to 4300 m

    Science.gov (United States)

    2013-01-01

    reduced AMS after rapid ascent to high altitude. Key Words: acute mountain sickness, hypobaric hypoxia, acclimatization, fluid balance, ventilatory...response to hypoxia Introduction Altitude acclimatization refers to a series of phys-iologic responses to prolonged exposure to hypobaric hypoxia in low...Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts. 2Center for Aerospace and Hyperbaric Medicine

  20. Magnetotelluric Investigations of the Yellowstone Caldera: Understanding the Emplacement of Crustal Magma Bodies

    Science.gov (United States)

    Gurrola, R. M.; Neal, B. A.; Bennington, N. L.; Cronin, R.; Fry, B.; Hart, L.; Imamura, N.; Kelbert, A.; Bowles-martinez, E.; Miller, D. J.; Scholz, K. J.; Schultz, A.

    2017-12-01

    Wideband magnetotellurics (MT) presents an ideal method for imaging conductive shallow magma bodies associated with contemporary Yellowstone-Snake River Plain (YSRP) magmatism. Particularly, how do these magma bodies accumulate in the mid to upper crust underlying the Yellowstone Caldera, and furthermore, what role do hydrothermal fluids play in their ascent? During the summer 2017 field season, two field teams from Oregon State University and the University of Wisconsin-Madison installed forty-four wideband MT stations within and around the caldera, and using data slated for joint 3-D inversion with existing seismic data, two 2-D vertical conductivity sections of the crust and upper mantle were constructed. These models, in turn, provide preliminary insight into the emplacement of crustal magma bodies and hydrothermal processes in the YSRP region.

  1. Temporal constraints on magma generation and differentiation in a continental volcano: Buckland, eastern Australia

    Science.gov (United States)

    Crossingham, Tracey J.; Ubide, Teresa; Vasconcelos, Paulo M.; Knesel, Kurt M.; Mallmann, Guilherme

    2018-03-01

    The eastern margin of the Australian continent hosts a large number of Cenozoic intraplate volcanoes along a 2000 km long track. Here, we study mafic lavas from the Buckland volcano, Queensland, located in the northern (older) segment of this track, to assess magma generation and differentiation through time. The rocks are aphanitic to microporphyritic basalts, trachy-basalts and basanites. Incompatible element geochemistry together with Sr-Nd-Pb isotope ratios indicate that magmas formed from an enriched mantle I (EMI)-like garnet-bearing source with variable degrees of crustal contamination. Whole rock elemental variations suggest fractionation of olivine, plagioclase, clinopyroxene and/or magnetite. There is no petrographic or geochemical evidence of magma mixing in the studied rocks (e.g., lack of recycled minerals), suggesting a relatively quick ascent from the source to the surface without major storage at shallow levels. 40Ar/39Ar geochronology reveals two stages of volcanism: 30.3 ± 0.1 Ma and 27.4 ± 0.2 Ma. The Old Buckland (30.3 ± 0.1 Ma) melts have negative K anomalies, and incompatible element ratios suggest the occurrence of residual hydrous minerals in a metasomatised mantle source. We therefore infer that at the onset of volcanism, deep-mantle-derived magmas interacted with metasomatised sub-continental lithospheric mantle (SCLM). Major and trace element data, clinopyroxene thermobarometry and thermodynamic modelling indicate magma evolution by assimilation and fractional crystallisation (AFC) during ascent through the crust. Following a hiatus in volcanic activity of 2.5 Ma, eruption of Young Buckland (27.4 ± 0.2 Ma) lavas marked a shift towards more alkaline compositions. Trace element compositions indicate lower degrees of partial melting and a lack of interaction with metasomatic components. Young Buckland lavas become progressively more SiO2-saturated up stratigraphy, suggesting an increase in the degree of partial melting with time. Young

  2. Modelling magma-drift interaction at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, USA

    NARCIS (Netherlands)

    Woods, Andrew W.; Sparks, Steve; Bokhove, Onno; Lejeune, Anne-Marie; Connor, Charles B.; Hill, Britain E.

    2002-01-01

    We examine the possible ascent of alkali basalt magma containing 2 wt percent water through a dike and into a horizontal subsurface drift as part of a risk assessment for the proposed high-level radioactive waste repository beneath Yucca Mountain, Nevada, USA. On intersection of the dike with the

  3. The origin of plagioclase phenocrysts in basalts from continental monogenetic volcanoes of the Kaikohe-Bay of Islands field, New Zealand: implications for magmatic assembly and ascent

    Science.gov (United States)

    Coote, Alisha; Shane, Phil; Stirling, Claudine; Reid, Malcolm

    2018-02-01

    Late Quaternary, porphyritic basalts erupted in the Kaikohe-Bay of Islands area, New Zealand, provide an opportunity to explore the crystallization and ascent history of small volume magmas in an intra-continental monogenetic volcano field. The plagioclase phenocrysts represent a diverse crystal cargo. Most of the crystals have a rim growth that is compositionally similar to groundmass plagioclase ( An65) and is in equilibrium with the host basalt rock. The rims surround a resorbed core that is either less calcic ( An20-45) or more calcic (> An70), having crystallized in more differentiated or more primitive melts, respectively. The relic cores, particularly those that are less calcic (The erupted basalts represent mafic recharge of this system, as indicated by the final crystal rim growths around the entrained antecrystic and xenocrystic cargo. The recharge also entrained cognate gabbros that occur as inclusions, and produced mingled groundmasses. Multi-stage magmatic ascent and interaction is indicated, and is consistent with the presence of a partial melt body in the lower crust detected by geophysical methods. This crystallization history contrasts with traditional concepts of low-flux basaltic systems where rapid ascent from the mantle is inferred. From a hazards perspective, the magmatic system inferred here increases the likelihood of detecting eruption precursor phenomena such as seismicity, degassing and surface deformation.

  4. Unscrambling the Omlette: a New Bubble and Crystal Clustering Mechanism in Chaotically Mixed Magma Flows

    Science.gov (United States)

    Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.

    2014-12-01

    The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.

  5. Timescales of magma transport and mixing at Kīlauea Volcano, Hawai’i

    OpenAIRE

    Rae, Auriol SP; Edmonds, Marie; Maclennan, John Campbell; Morgan, Daniel; Houghton, Bruce; Hartley, Margaret E; Sides, Isobel

    2016-01-01

    Modelling of volcanic processes is strongly limited by a poor knowledge of the timescales of storage, mixing and final ascent of magmas into the shallowest portions of volcanic 'plumbing' systems immediately prior to eruption. It is impossible to measure these timescales directly; however, micro-analytical techniques provide indirect estimates based on the extent of diffusion of species through melts and crystals. Here, diffusion in olivine phenocrysts from the 1959 Kīlauea Iki eruption is us...

  6. Magma reservoirs and neutral buoyancy zones on Venus - Implications for the formation and evolution of volcanic landforms

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    1992-01-01

    The production of magma reservoirs and neutral buoyancy zones (NBZs) on Venus and the implications of their development for the formation and evolution of volcanic landforms are examined. The high atmospheric pressure on Venus reduces volatile exsolution and generally serves to inhibit the formation of NBZs and shallow magma reservoirs. For a range of common terrestrial magma-volatile contents, magma ascending and erupting near or below mean planetary radius (MPR) should not stall at shallow magma reservoirs; such eruptions are characterized by relatively high total volumes and effusion rates. For the same range of volatile contents at 2 km above MPR, about half of the cases result in the direct ascent of magma to the surface and half in the production of neutral buoyancy zones. NBZs and shallow magma reservoirs begin to appear as gas content increases and are nominally shallower on Venus than on earth. For a fixed volatile content, NBZs become deeper with increasing elevation: over the range of elevations treated in this study (-1 km to +4.4 km) depths differ by a factor of 2-4. Factors that may account for the low height of volcanoes on Venus are discussed.

  7. Carbon dioxide in magmas and implications for hydrothermal systems

    Science.gov (United States)

    Lowenstern, J. B.

    2001-01-01

    This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-hydrothermal systems, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in hydrothermal systems

  8. Concentration variance decay during magma mixing: a volcanic chronometer.

    Science.gov (United States)

    Perugini, Diego; De Campos, Cristina P; Petrelli, Maurizio; Dingwell, Donald B

    2015-09-21

    The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest.

  9. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes

    Science.gov (United States)

    Wotzlaw, J.F.; Bindeman, I.N.; Watts, Kathryn E.; Schmitt, A.K.; Caricchi, L.; Schaltegger, U.

    2014-01-01

    The geological record contains evidence of volcanic eruptions that were as much as two orders of magnitude larger than the most voluminous eruption experienced by modern civilizations, the A.D. 1815 Tambora (Indonesia) eruption. Perhaps nowhere on Earth are deposits of such supereruptions more prominent than in the Snake River Plain–Yellowstone Plateau (SRP-YP) volcanic province (northwest United States). While magmatic activity at Yellowstone is still ongoing, the Heise volcanic field in eastern Idaho represents the youngest complete caldera cycle in the SRP-YP, and thus is particularly instructive for current and future volcanic activity at Yellowstone. The Heise caldera cycle culminated 4.5 Ma ago in the eruption of the ∼1800 km3 Kilgore Tuff. Accessory zircons in the Kilgore Tuff display significant intercrystalline and intracrystalline oxygen isotopic heterogeneity, and the vast majority are 18O depleted. This suggests that zircons crystallized from isotopically distinct magma batches that were generated by remelting of subcaldera silicic rocks previously altered by low-δ18O meteoric-hydrothermal fluids. Prior to eruption these magma batches were assembled and homogenized into a single voluminous reservoir. U-Pb geochronology of isotopically diverse zircons using chemical abrasion–isotope dilution–thermal ionization mass spectrometry yielded indistinguishable crystallization ages with a weighted mean 206Pb/238U date of 4.4876 ± 0.0023 Ma (MSWD = 1.5; n = 24). These zircon crystallization ages are also indistinguishable from the sanidine 40Ar/39Ar dates, and thus zircons crystallized close to eruption. This requires that shallow crustal melting, assembly of isolated batches into a supervolcanic magma reservoir, homogenization, and eruption occurred extremely rapidly, within the resolution of our geochronology (103–104 yr). The crystal-scale image of the reservoir configuration, with several isolated magma batches, is very similar to the

  10. THE VISCOUS TO BRITTLE TRANSITION IN CRYSTAL- AND BUBBLE-BEARING MAGMAS

    Directory of Open Access Journals (Sweden)

    Mattia ePistone

    2015-11-01

    Full Text Available The transition from viscous to brittle behaviour in magmas plays a decisive role in determining the style of volcanic eruptions. While this transition has been determined for one- or two-phase systems, it remains poorly constrained for natural magmas containing silicic melt, crystals, and gas bubbles. Here we present new experimental results on shear-induced fracturing of three-phase magmas obtained at high-temperature (673-1023 K and high-pressure (200 MPa conditions over a wide range of strain-rates (5·10-6 s-1 to 4·10-3 s-1. During the experiments bubbles are deformed (i.e. capillary number are in excess of 1 enough to coalesce and generate a porous network that potentially leads to outgassing. A physical relationship is proposed that quantifies the critical stress required for magmas to fail as a function of both crystal (0.24 to 0.65 and bubble volume fractions (0.09 to 0.12. The presented results demonstrate efficient outgassing for low crystal fraction ( 0.44 promote gas bubble entrapment and inhibit outgassing. The failure of bubble-free, crystal-bearing systems is enhanced by the presence of bubbles that lower the critical failure stress in a regime of efficient outgassing, while the failure stress is increased if bubbles remain trapped within the crystal framework. These contrasting behaviours have direct impact on the style of volcanic eruptions. During magma ascent, efficient outgassing reduces the potential for an explosive eruption and favours brittle behaviour, contributing to maintain low overpressures in an active volcanic system resulting in effusion or rheological flow blockage of magma at depth. Conversely, magmas with high crystallinity experience limited loss of exsolved gas, permitting the achievement of larger overpressures prior to a potential sudden transition to brittle behaviour, which could result in an explosive volcanic eruption.

  11. The 2006-2009 activity of the Ubinas volcano (Peru): Petrology of the 2006 eruptive products and insights into genesis of andesite magmas, magma recharge and plumbing system

    Science.gov (United States)

    Rivera, Marco; Thouret, Jean-Claude; Samaniego, Pablo; Le Pennec, Jean-Luc

    2014-01-01

    Following a fumarolic episode that started six months earlier, the most recent eruptive activity of the Ubinas volcano (south Peru) began on 27 March 2006, intensified between April and October 2006 and slowly declined until December 2009. The chronology of the explosive episode and the extent and composition of the erupted material are documented with an emphasis on ballistic ejecta. A petrological study of the juvenile products allows us to infer the magmatic processes related to the 2006-2009 eruptions of the andesitic Ubinas volcano. The juvenile magma erupted during the 2006 activity shows a homogeneous bulk-rock andesitic composition (56.7-57.6 wt.% SiO2), which belongs to a medium- to high-K calc-alkaline series. The mineral assemblage of the ballistic blocks and tephra consists of plagioclase > two-pyroxenes > Fe-Ti oxide and rare olivine and amphibole set in a groundmass of the same minerals with a dacitic composition (66-67 wt.% SiO2). Thermo-barometric data, based on two-pyroxene and amphibole stability, records a magma temperature of 998 ± 14 °C and a pressure of 476 ± 36 MPa. Widespread mineralogical and textural features point to a disequilibrium process in the erupted andesite magma. These features include inversely zoned "sieve textures" in plagioclase, inversely zoned clinopyroxene, and olivine crystals with reaction and thin overgrowth rims. They indicate that the pre-eruptive magmatic processes were dominated by recharge of a hotter mafic magma into a shallow reservoir, where magma mingling occurred and triggered the eruption. Prior to 2006, a probable recharge of a mafic magma produced strong convection and partial homogenization in the reservoir, as well as a pressure increase and higher magma ascent rate after four years of fumarolic activity. Mafic magmas do not prevail in the Ubinas pre-historical lavas and tephras. However, mafic andesites have been erupted during historical times (e.g. AD 1667 and 2006-2009 vulcanian eruptions). Hence

  12. Time scales of magma transport and mixing at Kīlauea Volcano, Hawai’i

    OpenAIRE

    Rae, Auriol S.P.; Edmonds, Marie; Maclennan, John; Morgan, Daniel; Houghton, Bruce; Hartley, Margaret E.; Sides, Isobel

    2016-01-01

    Modeling of volcanic processes is limited by a lack of knowledge of the time scales of storage, mixing, and final ascent of magmas into the shallowest portions of volcanic plumbing systems immediately prior to eruption. It is impossible to measure these time scales directly; however, micro-analytical techniques provide indirect estimates based on the extent of diffusion of species through melts and crystals. We use diffusion in olivine phenocrysts from the A.D. 1959 Kīlauea Iki (Hawai‘i, USA)...

  13. Extensive, water-rich magma reservoir beneath southern Montserrat

    Science.gov (United States)

    Edmonds, M.; Kohn, S. C.; Hauri, E. H.; Humphreys, M. C. S.; Cassidy, M.

    2016-05-01

    South Soufrière Hills and Soufrière Hills volcanoes are 2 km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufrière Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water contents of 6-9 wt%. Pyroxene and melt inclusion water concentration pairs from South Soufriere Hills basalts independently constrain pyroxene-melt partitioning of water and produces a comparable range in melt water concentrations. Melt inclusions recorded in plagioclase and in pyroxene contain up to 6.3 wt% H2O. When combined with realistic melt CO2 contents, the depth of magma storage for both volcanoes ranges from 5 to 16 km. The data are consistent with a vertically protracted crystal mush in the upper crust beneath the southern part of Montserrat which contains heterogeneous bodies of eruptible magma. The high water contents of the magmas suggest that they contain a high proportion of exsolved fluids, which has implications for the rheology of the mush and timescales for mush reorganisation prior to eruption. A depletion in water in the outer 50-100 μm of a subset of pyroxenes from pumices from a Vulcanian explosion at Soufrière Hills in 2003 is consistent with diffusive loss of hydrogen during magma ascent over 5-13 h. These timescales are similar to the mean time periods between explosions in 1997 and in 2003, raising the possibility that the driving force for this repetitive explosive behaviour lies not in the shallow system, but in the deeper parts of a vertically

  14. The influence of magma viscosity on convection within a magma chamber

    Science.gov (United States)

    Schubert, M.; Driesner, T.; Ulmer, P.

    2012-12-01

    Magmatic-hydrothermal ore deposits are the most important sources of metals like Cu, Mo, W and Sn and a major resource for Au. It is well accepted that they are formed by the release of magmatic fluids from a batholith-sized magma body. Traditionally, it has been assumed that crystallization-induced volatile saturation (called "second boiling") is the main mechanism for fluid release, typically operating over thousands to tens of thousands of years (Candela, 1991). From an analysis of alteration halo geometries caused by magmatic fluids, Cathles and Shannon (2007) suggested much shorter timescales in the order of hundreds of years. Such rapid release of fluids cannot be explained by second boiling as the rate of solidification scales with the slow conduction of heat away from the system. However, rapid fluid release is possible if convection is assumed within the magma chamber. The magma would degas in the upper part of the magma chamber and volatile poor magma would sink down again. Such, the rates of degassing can be much higher than due to cooling only. We developed a convection model using Navier-Stokes equations provided by the computational fluid dynamics platform OpenFOAM that gives the possibility to use externally derived meshes with complex (natural) geometries. We implemented a temperature, pressure, composition and crystal fraction dependent viscosity (Ardia et al., 2008; Giordano et al., 2008; Moore et al., 1998) and a temperature, pressure, composition dependent density (Lange1994). We found that the new viscosity and density models strongly affect convection within the magma chamber. The dependence of viscosity on crystal fraction has a particularly strong effect as the steep viscosity increase at the critical crystal fraction leads to steep decrease of convection velocity. As the magma chamber is cooling from outside to inside a purely conductive layer is developing along the edges of the magma chamber. Convection continues in the inner part of the

  15. Recycling and recharge processes at the Hasandağ Stratovolcano, Central Anatolia: Insights on magma chamber systematics from plagioclase textures and zoning patterns

    Science.gov (United States)

    Gall, H. D.; Cipar, J. H.; Crispin, K. L.; Kürkçüoğlu, B.; Furman, T.

    2017-12-01

    results in distinct crystal populations, some of which record punctuated ascent and storage, while others are erupted rapidly after the influx of new magma. Aydar, E., & Gourgaud, A. (1998). J. Volcanol. Geotherm. Res., 85(1), 129-152. Ustunisik, G., & Kilinc, A. (2011). Lithos, 125(3), 984-993.

  16. Juvenile magma recognition and eruptive dynamics inferred from the analysis of ash time series: The 2015 reawakening of Cotopaxi volcano

    Science.gov (United States)

    Gaunt, H. Elizabeth; Bernard, Benjamin; Hidalgo, Silvana; Proano, Antonio; Wright, Heather M.; Mothes, Patricia; Criollo, Evelyn; Kueppers, Ulrich

    2016-01-01

    Forecasting future activity and performing hazard assessments during the reactivation of volcanoes remain great challenges for the volcanological community. On August 14, 2015 Cotopaxi volcano erupted for the first time in 73 years after approximately four months of precursory activity, which included an increase in seismicity, gas emissions, and minor ground deformation. Here we discuss the use of near real-time petrological monitoring of ash samples as a complementary aid to geophysical monitoring, in order to infer eruption dynamics and evaluate possible future eruptive activity at Cotopaxi. Twenty ash samples were collected between August 14 and November 23, 2015 from a monitoring site on the west flank of the volcano. These samples contain a range of grain types that we classified as: hydrothermal/altered, lithic, juvenile, and free crystals. The relative proportions of theses grains evolved as the eruption progressed, with increasing amounts of juvenile material and a decrease in hydrothermally altered material. In samples from the initial explosion, juvenile grains are glassy, microlite-poor and contain hydrothermal minerals (opal and alunite). The rising magma came in contact with the hydrothermal system under confinement, causing hydro-magmatic explosions that cleared the upper part of the plumbing system. Subsequently, the magmatic column produced a thermal aureole in the conduit and dried out the hydrothermal system, allowing for dry eruptions. Magma ascent rates were low enough to allow for efficient outgassing and microlite growth. Constant supply of magma from below caused quasi-continuous disruption of the uppermost magma volume through a combination of shear-deformation and gas expansion. The combination of increasing crystallinity of juvenile grains, and high measured SO2 flux indicate decreasing integrated magma ascent rates and clearing of the hydrothermal system along transport pathways in a system open to gas loss. The near real

  17. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano

    Science.gov (United States)

    Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone

    2018-06-01

    Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (volcanoes.

  18. A Computerized Evaluation of Sensory Memory and Short-term Memory Impairment After Rapid Ascent to 4280 m.

    Science.gov (United States)

    Shi, Qing Hai; Ge, Di; Zhao, Wei; Ma, Xue; Hu, Ke Yan; Lu, Yao; Liu, Zheng Xiang; Ran, Ji Hua; Li, Xiao Ling; Zhou, Yu; Fu, Jian Feng

    2016-06-01

    To evaluate the effect of acute high-altitude exposure on sensory and short-term memory using interactive software, we transported 30 volunteers in a sport utility vehicle to a 4280 m plateau within 3 h. We measured their memory performance on the plain (initial arrival) and 3 h after arrival on the plateau using six measures. Memory performance was significantly poorer on the plateau by four of the six measures. Furthermore, memory performance was significantly poorer in the acute mountain sickness (AMS) group than in the non-AMS group by five of the six measures. These findings indicate that rapid ascent to 4280 m and remaining at this altitude for 3 h resulted in decreased sensory and short-term memory, particularly among participants who developed AMS. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  19. Mafic microgranular enclave swarms in the Chenar granitoid stock, NW of Kerman, Iran: evidence for magma mingling

    Science.gov (United States)

    Arvin, M.; Dargahi, S.; Babaei, A. A.

    2004-10-01

    Mafic microgranular enclaves (MME) are common in the Early to Middle Miocene Chenar granitoid stock, northwest of Kerman, which is a part of Central Iranian Eocene volcanic belt. They occur individually and in homogeneous or heterogeneous swarms. The MME form a number of two-dimensional structural arrangements, such as dykes, small rafts, vortices, folded lens-shapes and late swarms. The enclaves are elongated, rounded to non-elongated and subrounded in shape and often show some size-sorting parallel to direction of flow. Variation in the elongation of enclaves could reflect variations in the viscosity of the enclave, the time available for enclave deformation and differential strain during flow of the host granitoid magma. The most effective mechanism in the formation of enclave swarms in the Chenar granitoid stock was velocity gradient-related convection currents in the granitoid magma chamber. Gravitational sorting and the break-up of heterogeneous dykes also form MME swarms. The MME (mainly diorite to diorite gabbro) have igneous mineralogy and texture, and are marked by sharp contacts next to their host granitoid rocks. The contact is often marked by a chilled margin with no sign of solid state deformation. Evidence of disequilibrium is manifested in feldspars by oscillatory zoning, resorbed rims, mantling and punctuated growth, together with overgrowth of clinopyroxene/amphibole on quartz crystals, the acicular habit of apatites and the development of Fe-Ti oxides along clinopyroxene cleavages. These observations suggest that the MMEs are derived from a hybrid-magma formed as a result of the intrusion of a mafic magma into the base of a felsic magma chamber. The density contrast between hybrid-magma and the overlying felsic magma was reduced by the release of dissolved fluids and the ascent of exsolved gas bubbles from the mafic magma into the hybrid zone. Further convection in the magma chamber dispersed the hybridized magma as globules in the upper parts of

  20. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive

  1. Silicic magma generation at Askja volcano, Iceland

    Science.gov (United States)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  2. Age as a risk factor for acute mountain sickness upon rapid ascent to 3,700 m among young adult Chinese men

    Directory of Open Access Journals (Sweden)

    Tang XG

    2014-08-01

    Full Text Available Xu-gang Tang,1 Ji-hang Zhang,1 Jun Qin,1 Xu-bin Gao,1 Qian-ning Li,2 Jie Yu,1 Xiao-han Ding,1 Lan Huang1 1Institute of Cardiovascular Diseases, 2Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, People’s Republic of China Background: The aim of this study was to explore the relationship between age and acute mountain sickness (AMS when subjects are exposed suddenly to high altitude.Methods: A total of 856 young adult men were recruited. Before and after acute altitude exposure, the Athens Insomnia Scale score (AISS was used to evaluate the subjective sleep quality of subjects. AMS was assessed using the Lake Louise scoring system. Heart rate (HR and arterial oxygen saturation (SaO2 were measured.Results: Results showed that, at 500 m, AISS and insomnia prevalence were higher in older individuals. After acute exposure to altitude, the HR, AISS, and insomnia prevalence increased sharply, and the increase in older individuals was more marked. The opposite trend was observed for SaO2. At 3,700 m, the prevalence of AMS increased with age, as did severe AMS, and AMS symptoms (except gastrointestinal symptoms. Multivariate logistic regression analysis showed that age was a risk factor for AMS (adjusted odds ratio [OR] 1.07, 95% confidence interval [CI] 1.01–1.13, P<0.05, as well as AISS (adjusted OR 1.39, 95% CI 1.28–1.51, P<0.001.Conclusion: The present study is the first to demonstrate that older age is an independent risk factor for AMS upon rapid ascent to high altitude among young adult Chinese men, and pre-existing poor subjective sleep quality may be a contributor to increased AMS prevalence in older subjects. Keywords: acute mountain sickness, age, Athens Insomnia Scale, rapid ascent, sleep

  3. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma

    Science.gov (United States)

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.

    2013-01-01

    and relatively low viscosity enabled rapid magma ascent and high effusion rates during the dome-forming phases of the 2008-2009 eruption.

  4. Incremental growth of an upper crustal, A-type pluton, Argentina: Evidence of a re-used magma pathway

    Science.gov (United States)

    Alasino, Pablo H.; Larrovere, Mariano A.; Rocher, Sebastián; Dahlquist, Juan A.; Basei, Miguel A. S.; Memeti, Valbone; Paterson, Scott; Galindo, Carmen; Macchioli Grande, Marcos; da Costa Campos Neto, Mario

    2017-07-01

    Carboniferous igneous activity in the Sierra de Velasco (NW Argentina) led to the emplacement of several magmas bodies at shallow levels (relationships) intrusive units are: (1) the Asha unit (340 ± 7 Ma): a tabular to funnel-shaped intrusion emplaced during a regional strain field dominated by WSW-ENE shortening with contacts discordant to regional host-rock structures; (2) the San Blas unit (344 ± 2 Ma): an approximate cylindrical-shaped intrusion formed by multiple batches of magmas, with a roughly concentric fabric pattern and displacement of the host rock by ductile flow of about 35% of shortening; and (3) the Hualco unit (346 ± 6 Ma): a small body with a possible mushroom geometry and contacts concordant to regional host-rock structures. The magma pulses making up these units define two groups of A-type granitoids. The first group includes the peraluminous granitic rocks of the Asha unit generated mostly by crustal sources (εNdt = - 5.8 and εHft in zircon = - 2.9 to - 4.5). The second group comprises the metaluminous to peraluminous granitic rocks of the youngest units (San Blas and Hualco), which were formed by a heterogeneous mixture between mantle and crustal sources (εNdt = + 0.6 to - 4.8 and εHft in zircon = + 3 to - 6). Our results provide a comprehensive view of the evolution of an intrusive complex formed from multiple non-consanguineous magma intrusions that utilized the same magmatic plumbing system during downward transfer of host materials. As the plutonic system matures, the ascent of magmas is governed by the visco-elastic flow of host rock that for younger batches include older hot magma mush. The latter results in ductile downward flow of older, during rise of younger magma. Such complexes may reflect the plutonic portion of volcanic centers where chemically distinct magmas are erupted.

  5. Discovering Mathematics with Magma Reducing the Abstract to the Concrete

    CERN Document Server

    Bosma, Wieb

    2006-01-01

    With a design based on the ontology and semantics of algebra, Magma enables users to rapidly formulate and perform calculations in the more abstract parts of mathematics. This book introduces the role Magma plays in advanced mathematical research through 14 case studies which, in most cases, describe computations underpinning theoretical results.

  6. Geochemical evidences of magma dynamics at Campi Flegrei (Italy)

    Science.gov (United States)

    Caliro, S.; Chiodini, G.; Paonita, A.

    2014-05-01

    Campi Flegrei caldera, within the Neapolitan area of Italy, is potentially one of the most dangerous volcanoes in the world, and during the last decade it has shown clear signs of reactivation, marked by the onset of uplift and changes in the geochemistry of gas emissions. We describe a 30-year-long data set of the CO2-He-Ar-N2 compositions of fumarolic emissions from La Solfatara crater, which is located in the center of the caldera. The data display continuous decreases in both the N2/He and N2/CO2 ratios since 1985, paralleled by an increase in He/CO2. These variations cannot be explained by either processes of boiling/condensation in the local hydrothermal system or with changes in the mixing proportions between a magmatic vapor and hydrothermal fluids. We applied the magma degassing model of Nuccio and Paonita (2001, Earth Planet. Sci. Lett. 193, 467-481) using the most recent inert-gas solubilities in order to interpret these peculiar features in accordance with petrologic constraints derived from the ranges of the melt compositions and reservoir pressures at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a remarkably good agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-term geochemical changes. Recalling that (i) a sill-like reservoir of gases at a depth of 3-4 km seems to be the main source of ground inflation and (ii) there is petrologic and geophysical evidence for a reservoir of magma at about 8 km below Campi Flegrei, we suggest that the most-intense episodes of inflation occur when the gas supply to the sill-like reservoir comes from the 8 km-deep magma, although fluids exsolved by magma bodies at shallower depths also contribute to the gas budget. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature

  7. Reconciling Gases With Glasses: Magma Degassing, Overturn and Mixing at Kilauea Volcano, Hawai`i

    Science.gov (United States)

    Edmonds, M.; Gerlach, T. M.

    2006-12-01

    Our understanding of the volatile budget at Kilauea Volcano is based on measurements of the abundance of volatile elements in volcanic glasses and gases. Observations of volcanic gases gave rise to a fundamental model describing volatile fractionation between the summit and rift zone during the current eruption [Gerlach and Graeber, 1985]. Other workers' analysis of glasses from the Puna Ridge, Kilauea Iki and Pu`u `O`o indicate that magma degassing, drain-back, mixing and assimilation are important processes at Kilauea Volcano. Volcanic gases have not illustrated these kinds of processes clearly in the past, owing to infrequent and poorly resolved data. New, detailed studies of volcanic gas emissions have refined our understanding of volatile degassing and magma budgets at Kilauea Volcano. Open Path Fourier Transform Infra-Red spectroscopy measurements carried out during 2004-2005 allow retrieval of the relative abundances of the major volatile species H2O, CO2 and SO2, which together make up >99 vol% of the magmatic vapor phase. The proportions of these gases vary over time and space and can be used to infer magma transport, ascent, degassing, overturn and mixing and gas segregation processes within the plumbing system of Kilauea Volcano. Gases from Pu`u `O`o in 2004-2005 display a range in composition. A trend relates molar C/S to the total H2O content of the gases over time and space; total H2O ranges from 60-98 mol %, while molar C/S ranges from 50. The range in volcanic gas composition over time and space is caused by magma degassing, overturn and mixing of partially degassed magma with fresh primary magma beneath Pu`u `O`o. Measurements of the mean rate of magma degassing (from SO2 emissions) and mean lava effusion rate (from geophysical measurements of lava tube flux) suggest that a larger volume (DRE) of magma is degassing than is being erupted, on average. This analysis suggests that magma storage in the Rift Zone might be important during eruptions as

  8. Magmas in motion: Degassing in volcanic conduits and fabrics of pyroclastic density current

    Science.gov (United States)

    Burgisser, Alain

    Volcanoes are caused by the transport of magma batches from the Earth's crust to the surface. These magmas in motion undergo drastic changes of rheologic properties during their journey to the surface and this work explores how these changes affect volcanic eruptions. The first part of this study is devoted to the dynamic aspects of degassing and permeability in magmas with high pressure, high temperature experiments on natural volcanic rocks. Degassing is measured by the influence of decompression rate on the growth of the bubbles present in the magma while permeability is deduced from the temporal evolution of these bubbles. The parameterization of our results in a numerical model of volcanic conduit flow show that previous models based on equilibrium degassing overestimate the acceleration and the decompression rate of the magma. Assessing permeability effects derived form our results show that the transition between explosive and effusive eruptions is a strong function of the magma initial ascent rate. The second part of this work is a unification of two end-members of pyroclastic currents (highly concentrated pyroclastic flows and dilute, turbulent pyroclastic surges) using theoretical scaling arguments based on multiphase physics. Starting from the dynamics of the particle interactions with a fundamental eddy, we consider the full spectrum of eddies generated within a turbulent current. We demonstrate that the presence of particles with various sizes induces a density stratification of the current, leading to its segregation into a basal concentrated part overlain by a dilute cloud. To verify our predictions on the interactions of such a segregated pyroclastic current with its surroundings (hills and sea), we studied the products of the 2050 BP caldera-forming eruption of Okmok Volcano (Alaska). This field study allowed us to reconstruct the eruptive sequence and to validate the main aspects of our theoretical model, such as the superposition of a dense and

  9. Geochemical monitoring of volcano unrest and multi-step magma propagation: the example of the 2007-2011 Piton de la Fournaise activity.

    Science.gov (United States)

    Di Muro, Andrea; Métrich, Nicole; Deloule, Etienne; Civetta, Lucia

    2014-05-01

    The 2007 eruption represents a major event in the recent history of Piton de la Fournaise volcano because it produced: i) the most voluminous lava field (at least 0.21 km3), ii) the most intense lava fountaining activity (>200 m high), iii) the largest SO2 plume (>230 kt), iv) the largest summit collapse (1 km wide x 0.34 km deep) and v) the main flank slip event (up to 1.4 m eastwards) ever documented at PdF. The bulk magma volume extruded during the 2007 eruption is similar to that emitted during the entire 1998-2006 period. As a whole, the volume of lavas emitted during the whole 1998-2007 cycle is remarkably close to that estimated (~0.35 km3) for the shallow plumbing system of Piton de la Fournaise. The 2007 eruptive sequence consisted of three successive phases (February, March and April). The main phase in April ended a 9 years long period (1998-2007) of continuous edifice inflation and frequent eruptive activity (3 eruptions per year on average). On the contrary, the 2008-2011 activity is associated with a trend of continuous deflation and consists of small-volume summit eruptions of moderate/low MgO magmas and frequent shallow magma intrusions. Bulk rocks, minerals, melt inclusions, matrices and very fast cooled ejecta (Pele's hairs and tears) are studied in order to assess the link between volcano unrest processes, structure of the magma plumbing system, ascent dynamics and summit caldera collapse. Melt heterogeneity demonstrate that the shallow part of PdF edifice (upper 3 km) host low-MgO (MgO: 6.2 wt%) melts with variable normative An/Di ratios and olivine content, at variable steps of evolution towards a common ternary eutectic minimum. Repeated summit collapses favor the formation of discontinuities for shallow temporary magma storage. Extrusion of shallow evolved melts is triggered by ascent of small volumes of deeper, hotter magnesian melts (MgO: up to 8.7 wt%), previously stored in the depth range 2-4 km below sea level. Finally, the good match

  10. Timescales of magma ascent and degassing and the role of crustal assimilation at Merapi volcano (2006-2010), Indonesia: Constraints from uranium-series and radiogenic isotopic compositions

    Science.gov (United States)

    Handley, H. K.; Reagan, M.; Gertisser, R.; Preece, K.; Berlo, K.; McGee, L. E.; Barclay, J.; Herd, R.

    2018-02-01

    We present new 238U-230Th-226Ra-210Pb-210Po, 87Sr/86Sr and 143Nd/144Nd isotopic data of whole-rock samples and plagioclase separates from volcanic deposits of the 2006 and 2010 eruptions at Merapi volcano, Java, Indonesia. These data are combined with available eruption monitoring, petrographic, mineralogical and Pb isotopic data to assess current theories on the cause of a recent transition from effusive dome-building (2006) to explosive (2010) activity at the volcano, as well as to further investigate the petrogenetic components involved in magma genesis and evolution. Despite the significant difference in eruption style, the 2006 and 2010 volcanic rocks show no significant difference in (238U/232Th), (230Th/232Th) and (226Ra/230Th) activity ratios, with all samples displaying U and Ra excesses. The 226Ra and 210Pb excesses observed in plagioclase separates from the 2006 and 2010 eruptions indicate that a proportion of the plagioclase grew within the decades preceding eruption. The 2006 and 2010 samples were depleted in 210Po relative to 210Pb ((210Po/210Pb)i monitoring parameters, 210Po ingrowth calculations suggest that initial intrusion into the shallow magma plumbing system occurred several weeks to a few months prior to the initial 2010 eruption. The 2006 and 2010 samples show a wide range in (210Pb/226Ra) activity ratio within a single eruption at Merapi and are largely characterised by 210Pb deficits ((210Pb/226Ra) monitoring data, previous petrological studies (mineral, microlite and melt inclusion work) and maximum calculated timescale estimates using Fe-Mg compositional gradients in clinopyroxene, that also suggest more rapid movement of relatively undegassed magma in 2010 relative to 2006.

  11. A glassy lava flow from Toconce volcano and its relation with the Altiplano-Puna Magma Body in Central Andes

    Science.gov (United States)

    Godoy, B.; Rodriguez, I.; Aguilera, F.

    2012-12-01

    Toconce is a composite stratovolcano located at the San Pedro - Linzor volcanic chain (SPLVC). This volcanic chain distributes within the Altiplano-Puna region (Central Andes) which is characterized by extensive rhyodacitic-to-rhyolitic ignimbritic fields, and voluminous domes of dacitic-to-rhyolitic composition (de Silva, 1989). The felsic melts that gave origin to ignimbrites and domes at this area were generated by mixing of mantle-derived magmas and anatectic melts assimilated during their ascent through the thick crust. Thus, partially molten layers exist in the upper crust below the APVC (de Silva et al., 2006). Evidence of large volumes of such melts has been also proposed by geophysical methods (i.e. the Altiplano-Puna Magma Body; Chmielowsky et al., 1999) In this work, petrography and whole rock, mineralogical and melt inclusions geochemistry of a glassy lava flow of Toconce volcano are presented. Petrographically, this lava flow shows a porphyric texture, with euhdral to subhedral plagioclase, ortho- and clino-pyroxene phenocrysts immersed in a glassy groundmass. Geochemically, the lava flow has 64.7% wt. SiO2. The glassy groundmass (~70% wt. SiO2) is more felsic than all the lavas in the volcanic chain (47-68% wt., Godoy et al., 2011). Analyzed orthopyroxene-hosted melt inclusions show an even higher SiO2 content (72-75% wt.), and a decreasing on Al2O3, Na2O, and CaO content with differentiation. Crystallization pressures of this lava flow, obtained using Putirka's two-pyroxene and clinopyroxene-liquid models (Putirka, 2008), range between 6 and 9 kbar. According to crystallization pressures, and major element composition, a felsic source located at shallow crustal pressures - where plagioclase is a stable mineralogical phase - originated the inclusions. This could be related to the presence of the Altiplano-Puna Magma Body (APMB) located below SPLVC. On the other hand, glassy groundmass, and disequilibrium textures in minerals of this lava flow could

  12. Rocketdyne - Lunar Ascent Engine. Chapter 7, Appendix I

    Science.gov (United States)

    Harmon, Tim

    2009-01-01

    The ascent engine was the last one from the moon, and I want to focus on the idea of redundancy and teams in regard to the engine. By teams, I mean teamwork - not just within Rocketdyne. It was teamwork within Rocketdyne; it was teamwork within Grumman; it was teamwork within NASA. These were all important elements leading to the successful development of the lunar excursion module (LEM) engine. Communication, rapid response, and cooperation were all important. Another aspect that went into the development of the ascent engine was the integration of technology and of lessons learned. We pushed all the above, plus technology and lessons learned, into a program, and that led to a successful result. One of the things that I like to think about - again in retrospect - is how it is very "in" now to have integrated product and process teams. These are buzzwords for teamwork in all program phases. That s where you combine a lot of groups into a single organization to get a job done. The ascent engine program epitomized that kind of integration and focus, and because this was the mid- to late-1960s; this was new ground for Rocketdyne, Grumman, and NASA. Redundancy was really a major hallmark of the Apollo Program. Everything was redundant. Once you got the rocket going, you could even lose one of the big F-1 engines, and it would still make it to orbit. And once the first stage separated from the rest of the vehicle, the second stage could do without an engine and still make a mission. This redundancy was demonstrated when an early Apollo launch shut down a J-2 second-stage engine. Actually, they shut down two J-2 engines on that flight. Even the third stage, with its single J-2 engine, was backed up because the first two stages could toss it into a recoverable orbit. If the third stage didn't work, you were circling the earth, and you had time to recover the command module and crew. Remember how on the Apollo 13 flight, there was sufficient system redundancy even when we

  13. Drilling Magma for Science, Volcano Monitoring, and Energy

    Science.gov (United States)

    Eichelberger, J. C.; Lavallée, Y.; Blankenship, D.

    2017-12-01

    Magma chambers are central to understanding magma evolution, formation of continental crust, volcanism, and renewal of hydrothermal systems. Information from geology, petrology, laboratory experiments, and geophysical imagery has led to little consensus except a trend to see magma systems as being crystal-dominant (mush) rather than melt dominant. At high melt viscosities, crystal-liquid fractionation may be achieved by separation of melt from mush rather than crystals from liquid suspension. That the dominant volume has properties more akin to solid than liquid might explain the difficulty in detecting magma geophysically. Recently, geothermal drilling has intersected silicic magma at the following depths and SiO2 contents are: Puna, Hawaii, 2.5 km, 67 wt%; Menengai, Kenya 2.1 km, 67 wt%; Krafla, Iceland, 2.1 km, 75 wt%. Some similarities are: 1) Drillers encountered a "soft", sticky formation; 2) Cuttings or chips of clear quenched glass were recovered; 3) The source of the glass flowed up the well; 4) Transition from solid rock to recovering crystal-poor glass occurred in tens of meters, apparently without an intervening mush zone. Near-liquidus magma at the roof despite rapid heat loss there presents a paradox that may be explained by very recent intrusion of magma, rise of liquidus magma to the roof replacing partially crystallized magma, or extremely skewed representation of melt over mush in cuttings (Carrigan et al, this session). The latter is known to occur by filter pressing of ooze into lava lake coreholes (Helz, this session), but cannot be verified in actual magma without coring. Coring to reveal gradients in phase composition and proportions is required for testing any magma chamber model. Success in drilling into and controlling magma at all three locations, in coring lava lakes to over 1100 C, and in numerical modeling of coring at Krafla conditions (Su, this session) show this to be feasible. Other unprecedented experiments are using the known

  14. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel; Biggs, Juliet; Wicks, Charles; McNutt, Steve

    2010-01-01

    Starting soon after the 1997 eruption at Okmok volcano and continuing until the start of the 2008 eruption, magma accumulated in a storage zone centered ~3.5 km beneath the caldera floor at a rate that varied with time. A Mogi-type point pressure source or finite sphere with a radius of 1 km provides an adequate fit to the deformation field portrayed in time-sequential interferometric synthetic aperture radar images. From the end of the 1997 eruption through summer 2004, magma storage increased by 3.2–4.5 × 107 m3, which corresponds to 75–85% of the magma volume erupted in 1997. Thereafter, the average magma supply rate decreased such that by 10 July 2008, 2 days before the start of the 2008 eruption, magma storage had increased by 3.7–5.2 × 107 m3 or 85–100% of the 1997 eruption volume. We propose that the supply rate decreased in response to the diminishing pressure gradient between the shallow storage zone and a deeper magma source region. Eventually the effects of continuing magma supply and vesiculation of stored magma caused a critical pressure threshold to be exceeded, triggering the 2008 eruption. A similar pattern of initially rapid inflation followed by oscillatory but generally slowing inflation was observed prior to the 1997 eruption. In both cases, withdrawal of magma during the eruptions depressurized the shallow storage zone, causing significant volcano-wide subsidence and initiating a new intereruption deformation cycle.

  15. The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity

    Science.gov (United States)

    Bergantz, George W.; Cooper, Kari M.; Hildreth, Edward; Ruprecht, Phillipp

    2012-01-01

    Crystal zoning as well as temperature and pressure estimates from phenocryst phase equilibria are used to constrain the architecture of the intermediate-sized magmatic system (some tens of km3) of Volcán Quizapu, Chile, and to document the textural and compositional effects of magma mixing. In contrast to most arc magma systems, where multiple episodes of open-system behavior obscure the evidence of major magma chamber events (e.g. melt extraction, magma mixing), the Quizapu magma system shows limited petrographic complexity in two large historical eruptions (1846–1847 and 1932) that have contrasting eruptive styles. Quizapu magmas and peripheral mafic magmas exhibit a simple binary mixing relationship. At the mafic end, basaltic andesite to andesite recharge magmas complement the record from peripheral cones and show the same limited range of compositions. The silicic end-member composition is almost identical in both eruptions of Quizapu. The effusive 1846–1847 eruption records significant mixing between the mafic and silicic end-members, resulting in hybridized andesites and mingled dacites. These two compositionally simple eruptions at Volcán Quizapu present a rare opportunity to isolate particular aspects of magma evolution—formation of homogeneous dacite magma and late-stage magma mixing—from other magma chamber processes. Crystal zoning, trace element compositions, and crystal-size distributions provide evidence for spatial separation of the mafic and silicic magmas. Dacite-derived plagioclase phenocrysts (i.e. An25–40) show a narrow range in composition and limited zonation, suggesting growth from a compositionally restricted melt. Dacite-derived amphibole phenocrysts show similar restricted compositions and furthermore constrain, together with more mafic amphibole phenocrysts, the architecture of the magmatic system at Volcán Quizapu to be compositionally and thermally zoned, in which an andesitic mush is overlain by a homogeneous dacitic

  16. Regional and temporal variability of melts during a Cordilleran magma pulse: Age and chemical evolution of the jurassic arc, eastern mojave desert, California

    Science.gov (United States)

    Barth, A.P.; Wooden, J.L.; Miller, David; Howard, Keith A.; Fox, Lydia; Schermer, Elizabeth R.; Jacobson, C.E.

    2017-01-01

    Intrusive rock sequences in the central and eastern Mojave Desert segment of the Jurassic Cordilleran arc of the western United States record regional and temporal variations in magmas generated during the second prominent pulse of Mesozoic continental arc magmatism. U/Pb zircon ages provide temporal control for describing variations in rock and zircon geochemistry that reflect differences in magma source components. These source signatures are discernible through mixing and fractionation processes associated with magma ascent and emplacement. The oldest well-dated Jurassic rocks defining initiation of the Jurassic pulse are a 183 Ma monzodiorite and a 181 Ma ignimbrite. Early to Middle Jurassic intrusive rocks comprising the main stage of magmatism include two high-K calc-alkalic groups: to the north, the deformed 183–172 Ma Fort Irwin sequence and contemporaneous rocks in the Granite and Clipper Mountains, and to the south, the 167–164 Ma Bullion sequence. A Late Jurassic suite of shoshonitic, alkali-calcic intrusive rocks, the Bristol Mountains sequence, ranges in age from 164 to 161 Ma and was emplaced as the pulse began to wane. Whole-rock and zircon trace-element geochemistry defines a compositionally coherent Jurassic arc with regional and secular variations in melt compositions. The arc evolved through the magma pulse by progressively greater input of old cratonic crust and lithospheric mantle into the arc magma system, synchronous with progressive regional crustal thickening.

  17. Lithospheric magma dynamics beneath the El Hierro Volcano, Canary Islands: insights from fluid inclusions

    Science.gov (United States)

    Oglialoro, E.; Frezzotti, M. L.; Ferrando, S.; Tiraboschi, C.; Principe, C.; Groppelli, G.; Villa, I. M.

    2017-10-01

    At active volcanoes, petrological studies have been proven to be a reliable approach in defining the depth conditions of magma transport and storage in both the mantle and the crust. Based on fluid inclusion and mineral geothermobarometry in mantle xenoliths, we propose a model for the magma plumbing system of the Island of El Hierro (Canary Islands). The peridotites studied here were entrained in a lava flow exposed in the El Yulan Valley. These lavas are part of the rift volcanism that occurred on El Hierro at approximately 40-30 ka. The peridotites are spinel lherzolites, harzburgites, and dunites which equilibrated in the shallow mantle at pressures between 1.5 and 2 GPa and at temperatures between 800 and 950 °C (low-temperature peridotites; LT), as well as at higher equilibration temperatures of 900 to 1100 °C (high-temperature peridotites; HT). Microthermometry and Raman analyses of fluid inclusions reveal trapping of two distinct fluid phases: early type I metasomatic CO2-N2 fluids ( X N2 = 0.01-0.18; fluid density (d) = 1.19 g/cm3), coexisting with silicate-carbonate melts in LT peridotites, and late type II pure CO2 fluids in both LT (d = 1.11-1.00 and 0.75-0.65 g/cm3) and HT ( d = 1.04-1.11 and 0.75-0.65 g/cm3) peridotites. While type I fluids represent metasomatic phases in the deep oceanic lithosphere (at depths of 60-65 km) before the onset of magmatic activity, type II CO2 fluids testify to two fluid trapping episodes during the ascent of xenoliths in their host mafic magmas. Identification of magma accumulation zones through interpretation of type II CO2 fluid inclusions and mineral geothermobarometry indicate the presence of a vertically stacked system of interconnected small magma reservoirs in the shallow lithospheric mantle between a depth of 22 and 36 km (or 0.67 to 1 GPa). This magma accumulation region fed a short-lived magma storage region located in the lower oceanic crust at a depth of 10-12 km (or 0.26-0.34 GPa). Following our model

  18. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens

    Science.gov (United States)

    Claiborne, L.L.; Miller, C.F.; Flanagan, D.M.; Clynne, M.A.; Wooden, J.L.

    2010-01-01

    Current data and models for Mount St. Helens volcano (Washington, United States) suggest relatively rapid transport from magma genesis to eruption, with no evidence for protracted storage or recycling of magmas. However, we show here that complex zircon age populations extending back hundreds of thousands of years from eruption age indicate that magmas regularly stall in the crust, cool and crystallize beneath the volcano, and are then rejuvenated and incorporated by hotter, young magmas on their way to the surface. Estimated dissolution times suggest that entrained zircon generally resided in rejuvenating magmas for no more than about a century. Zircon elemental compositions reflect the increasing influence of mafic input into the system through time, recording growth from hotter, less evolved magmas tens of thousands of years prior to the appearance of mafic magmas at the surface, or changes in whole-rock geochemistry and petrology, and providing a new, time-correlated record of this evolution independent of the eruption history. Zircon data thus reveal the history of the hidden, long-lived intrusive portion of the Mount St. Helens system, where melt and crystals are stored for as long as hundreds of thousands of years and interact with fresh influxes of magmas that traverse the intrusive reservoir before erupting. ?? 2010 Geological Society of America.

  19. On Small Disturbance Ascent Vent Behavior

    Science.gov (United States)

    Woronowicz, Michael

    2015-01-01

    As a spacecraft undergoes ascent in a launch vehicle, its ambient pressure environment transitions from one atmosphere to high vacuum in a matter of a few minutes. Venting of internal cavities is necessary to prevent the buildup of pressure differentials across cavity walls. These pressure differentials are often restricted to low levels to prevent violation of container integrity. Such vents usually consist of fixed orifices, ducts, or combinations of both. Duct conductance behavior is fundamentally different from that for orifices in pressure driven flows governing the launch vehicle ascent depressurization environment. Duct conductance is governed by the average pressure across its length, while orifice conductance is dictated by a pressure ratio. Hence, one cannot define a valid equivalent orifice for a given duct across a range of pressure levels. This presentation discusses development of expressions for these two types of vent elements in the limit of small pressure differentials, explores conditions for their validity, and compares their features regarding ascent depressurization performance.

  20. Oxidation State of Iron in the Izu-Bonin Arc Initial Magma and Its Influence Factors

    Science.gov (United States)

    Li, H.; Arculus, R. J.; Brandl, P. A.; Hamada, M.; Savov, I. P.; Zhu, S.; Hickey-Vargas, R.; Tepley, F. J., III; Meffre, S.; Yogodzinski, G. M.; McCarthy, A.; Barth, A. P.; Kanayama, K.; Kusano, Y.; Sun, W.

    2014-12-01

    The redox state of mantle-derived magmas is a controversial issue, especially whether island arc basalts are more oxidized than those from mid-ocean ridges. Usually, arc magmas have higher Fe3+/Fe2+ and calculated oxygen fugacity (fO2) than mid-ocean ridge basalts (MORB). It is the high fO2 of arc magma that apparently delays onset of sulfide fractionation and sequestration of precious/base metals thereby facilitating the formation of many giant gold-copper deposits typically associated with subduction zones. But due to a paucity of Fe3+/Fe2+ data for primary mantle-derived arc magmas, the cause for high fO2 of these magma types is still controversial; causes may include inter alia subduction-released oxidized material addition to the mantle wedge source of arc magma, partial melting of subducted slab, and redox changes occurring during ascent of the magma. Fortunately, IODP expedition 351 drilling at IODP Site U1438 in the Amami-Sankaku Basin of the northwestern Philipine Sea, adjacent to the proto-Izu-Bonin Arc at the Kyushu-Palau Ridge (KPR), recovered not only volcaniclastics derived from the inception of Izu-Bonin Mariana (IBM) arc in the Eocene, but also similar materials for the Arc's subsequent evolution through to the Late Oligocene and abandonment of the KPR as a remnant arc. Samples of the pre-Arc oceanic crustal basement were also recovered enabling us to determine the fO2of the mantle preceding arc inception. As the oxidation state of iron in basaltic glass directly relates to the fO2 , the Fe3+/∑Fe ratio [Fe3+/(Fe3++ Fe2+)] of basaltic glass are quantified by synchrotron-facilitated micro X-ray Absorption Near Edge Structure (XANES) spectroscopy to reflect its fO2. Fe K-edge µ-XANES spectra were recorded in fluorescence mode at Beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF). Synthetic silicate glass with known Fe3+/∑Fe ratio was used in data handling. The experimental results as well as preliminary data from IODP Expedition 351

  1. Driving magma to the surface: The 2011-2012 El Hierro Volcanic Eruption

    Science.gov (United States)

    López, Carmen; Benito-Saz, Maria A.; Martí, Joan; del-Fresno, Carmen; García-Cañada, Laura; Albert, Helena; Lamolda, Héctor

    2017-08-01

    We reanalyzed the seismic and deformation data corresponding to the preeruptive unrest on El Hierro (Canary Islands) in 2011. We considered new information about the internal structure of the island. We updated the seismic catalog to estimate the full evolution of the released seismic energy and demonstrate the importance of nonlocated earthquakes. Using seismic data and GPS displacements, we characterized the shear-tensile type of the predominant fracturing and modeled the strain and stress fields for different time periods. This enabled us to identify a prolonged first phase characterized by hydraulic tensile fracturing, which we interpret as being related to the emplacement of new magma below the volcanic edifice on El Hierro. This was followed by postinjection unidirectional migration, probably controlled by the stress field and the distribution of the structural discontinuities. We identified the effects of energetic magmatic pulses occurring a few days before the eruption that induced shear seismicity on preexisting faults within the volcano and raised the Coulomb stress over the whole crust. We suggest that these magmatic pulses reflect the crossing of the Moho discontinuity, as well as changes in the path geometry of the dyke migration toward the surface. The final phase involved magma ascent through a prefractured crust.

  2. Trace element modelling of magma evolution in the Fongen-Hyllingen Intrusion, Trondheim region, Norway

    International Nuclear Information System (INIS)

    Mohamed A Abu El-Rus

    2003-01-01

    The trace element evolution of the Fongen-Hyllingen Intrusion has been studied on the basis of ICPMS analyses of 21 whole rocks and 12 plagioclase separates. Emphasis has been placed on Stage IV of the intrusion that crystallized essentially after magma addition had ceased. Whereas the compositions of minerals and rocks in Stage IV exhibit strong normal fractionation trends, crustal contamination is evident in a wide range of incompatible element ratios that should be relatively constant if simple fractional crystallization prevailed. Crustal contamination in Stage IV is confirmed by isotopic studies. The distribution of incompatible elements in Stage IV can be successfully explained by AFC modelling. Olivine compositions and isotopic ratios in the most primitive cumulates together with the slight LREE-enrichment in their coexisting melts suggest that the FHI parental magma was subjected to at least olivine fractionation during ascent to the magma chamber. This resulted in a decrease in the Mg-number of the melt without changing its isotopic ratio and incompatible trace element ratios. The slight enrichment in LREE and relatively low Zr/Y ratios in the melt coexisting with the most primitive cumulates imply that the FHI primary melt was derived from garnet-free mantle. The relative abundance of incompatible elements in the most primitive calculated melts, geochemically similar to low-Ti continental flood basalts, suggest that a subcontinental mantle source was most probable for the parental melt for FHI. (author)

  3. On the time-scales of magmatism at island-arc volcanoes.

    Science.gov (United States)

    Turner, S P

    2002-12-15

    Precise information on time-scales and rates of change is fundamental to an understanding of natural processes and the development of quantitative physical models in the Earth sciences. U-series isotope studies are revolutionizing this field by providing time information in the range 10(2)-10(4) years, which is similar to that of many modern Earth processes. I review how the application of U-series isotopes has been used to constrain the time-scales of magma formation, ascent and storage beneath island-arc volcanoes. Different elements are distilled-off the subducting plate at different times and in different places. Contributions from subducted sediments to island-arc lava sources appear to occur some 350 kyr to 4 Myr prior to eruption. Fluid release from the subducting oceanic crust into the mantle wedge may be a multi-stage process and occurs over a period ranging from a few hundred kyr to less than one kyr prior to eruption. This implies that dehydration commences prior to the initiation of partial melting within the mantle wedge, which is consistent with recent evidence that the onset of melting is controlled by an isotherm and thus the thermal structure within the wedge. U-Pa disequilibria appear to require a component of decompression melting, possibly due to the development of gravitational instabilities. The preservation of large (226)Ra disequilibria permits only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. The evolution from basalt to basaltic andesite probably occurs rapidly during ascent or in magma reservoirs inferred from some geophysical data to lie within the lithospheric mantle. The flux across the Moho is broadly andesitic, and some magmas subsequently stall in more shallow crustal-level magma chambers, where they evolve to more differentiated compositions on time-scales of a few thousand years or less.

  4. The Relationship Between Carbonatitic, Melilititic and Potassic Trachytic Magma Types at the Saltpeterkop Carbonatite Complex, Sutherland, South Africa

    Science.gov (United States)

    Janney, P. E.; Marageni, M.

    2016-12-01

    The 74 Ma Saltpeterkop Carbonatite Complex near Sutherland, South Africa, is unusual in that it is one of the few southern African carbonatites with preserved volcanic features, including a 1 km-diameter tuff ring composed of silicified volcaniclastic breccia. Around the complex, the regionally flat-lying Karoo strata have been dramatically upwarped, with dips away from the Complex as high as 45°. Further, within about a 10 km radius of the center of the complex are hundreds of dikes, sills and diatremes composed mainly of carbonatite, potassic trachyte and olivine melilitite, with the spatial density of these intrusions decreasing with increasing distance. We have recently completed an in-depth geochemical reconnaissance of the Saltpeterkop complex, involving field sampling and whole-rock major and trace element analysis, with radiogenic and stable isotope measurements in progress. While the association with potassic trachytes is relatively common in southern African carbonatites, the presence of significant amounts of primitive olivine melilitite (30-40 wt.% SiO2, Mg# = 61-74) is unusual. Our preliminary model for the origin of the complex involves (1) ascent and intrusion of a mantle-derived carbonated and potassic magma into the mid-to upper crust, (2a) separation of an alkali carbonatite phase from this magma, resulting in intensive local fenitization and partial melting of mid-crustal rocks (thereby forming potassic trachytes), and possibly triggering the initial eruption, (2b) small amounts of primitive, but now less potassic, mantle-derived magma are emplaced as olivine melilitite dikes and diatremes, and (3) differentiation of the mantle-derived magma to generate significant quantities of mainly calcio- and ferro-carbonatite magmas emplaced as dykes and sills.

  5. Steepest Ascent Tariff Reform

    DEFF Research Database (Denmark)

    Raimondos-Møller, Pascalis; Woodland, Alan

    2014-01-01

    . In undertaking this task, and by focusing on tariff reforms, we introduce the concept of a steepest ascent policy reform, which is a locally optimal reform in the sense that it achieves the highest marginal gain in utility of any feasible local reform. We argue that this reform presents itself as a natural......The policy reform literature is primarily concerned with the construction of reforms that yield welfare gains. By contrast, this paper’s contribution is to develop a theoretical concept for which the focus is upon the sizes of welfare gains accruing from policy reforms rather than upon their signs...... benchmark for the evaluation of the welfare effectiveness of other popular tariff reforms such as the proportional tariff reduction and the concertina rules, since it provides the maximal welfare gain of all possible local reforms. We derive properties of the steepest ascent tariff reform, construct...

  6. Steepest Ascent Tariff Reforms

    DEFF Research Database (Denmark)

    Raimondos-Møller, Pascalis; Woodland, Alan D.

    2006-01-01

    a theoretical concept where the focus is upon the size of welfare gains accruing from tariff reforms rather than simply with the direction of welfare effects that has been the concern of theliterature.JEL code: F15.Keywords: Steepest ascent tariff reforms; piecemeal tariff policy; welfare; market access; small......This paper introduces the concept of a steepest ascent tariff reform for a small open economy. By construction, it is locally optimal in that it yields the highest gain in utility of any feasible tariff reform vector of the same length. Accordingly, it provides a convenient benchmark...... for the evaluation of the welfare effectiveness of other well known tariff reform rules, as e.g. the proportional and the concertina rules. We develop the properties of this tariff reform, characterize the sources of the potential welfare gains from tariff reform, use it to establish conditions under which some...

  7. Low-pressure evolution of arc magmas in thickened crust: The San Pedro-Linzor volcanic chain, Central Andes, Northern Chile

    Science.gov (United States)

    Godoy, Benigno; Wörner, Gerhard; Kojima, Shoji; Aguilera, Felipe; Simon, Klaus; Hartmann, Gerald

    2014-07-01

    Magmatism at Andean Central Volcanic Zone (CVZ), or Central Andes, is strongly influenced by differentiation and assimilation at high pressures that occurred at lower levels of the thick continental crust. This is typically shown by high light to heavy rare earth element ratios (LREE/HREE) of the erupted lavas at this volcanic zone. Increase of these ratios with time is interpreted as a change to magma evolution in the presence of garnet during evolution of Central Andes. Such geochemical signals could be introduced into the magmas be high-pressure fractionation with garnet on the liquidus and/or assimilation from crustal rocks with a garnet-bearing residue. However, lavas erupted at San Pedro-Linzor volcanic chain show no evidence of garnet fractionation in their trace element patterns. This volcanic chain is located in the active volcanic arc, between 22°00‧S and 22°30‧S, over a continental crust ˜70 km thick. Sampled lavas show Sr/Y and Sm/Yb ratios Chile. We relate our geochemical observations to shallow crustal evolution of primitive magmas involving a high degree of assimilation of upper continental crust. We emphasize that low pressure AFC- (Assimilation Fractional Crystallization) type evolution of the San Pedro-Linzor volcanic chain reflects storage, fractionation, and contamination of mantle-derived magmas at the upper felsic crust (<40 km depth). The ascent of mantle-derived magmas to mid-crustal levels is related with the extensional regime that has existed in this zone of arc-front offset since Late-Miocene age, and the relatively thin portion of mafic lower crust observed below the volcanic chain.

  8. Magma Chambers, Thermal Energy, and the Unsuccessful Search for a Magma Chamber Thermostat

    Science.gov (United States)

    Glazner, A. F.

    2015-12-01

    Although the traditional concept that plutons are the frozen corpses of huge, highly liquid magma chambers ("big red blobs") is losing favor, the related notion that magma bodies can spend long periods of time (~106years) in a mushy, highly crystalline state is widely accepted. However, analysis of the thermal balance of magmatic systems indicates that it is difficult to maintain a significant portion in a simmering, mushy state, whether or not the system is eutectic-like. Magma bodies cool primarily by loss of heat to the Earth's surface. The balance between cooling via energy loss to the surface and heating via magma accretion can be denoted as M = ρLa/q, where ρ is magma density, L is latent heat of crystallization, a is the vertical rate of magma accretion, and q is surface heat flux. If M>1, then magma accretion outpaces cooling and a magma chamber forms. For reasonable values of ρ, L, and q, the rate of accretion amust be > ~15 mm/yr to form a persistent volume above the solidus. This rate is extremely high, an order of magnitude faster than estimated pluton-filling rates, and would produce a body 10 km thick in 700 ka, an order of magnitude faster than geochronology indicates. Regardless of the rate of magma supply, the proportion of crystals in the system must vary dramatically with depth at any given time owing to transfer of heat. Mechanical stirring (e.g., by convection) could serve to homogenize crystal content in a magma body, but this is unachievable in crystal-rich, locked-up magma. Without convection the lower part of the magma body becomes much hotter than the top—a process familiar to anyone who has scorched a pot of oatmeal. Thermal models that succeed in producing persistent, large bodies of magma rely on scenarios that are unrealistic (e.g., omitting heat loss to the planet's surface), self-fulfilling prophecies (e.g., setting unnaturally high temperatures as fixed boundary conditions), or physically unreasonable (e.g., magma is intruded

  9. Constraining the timescale of magma stagnation beneath Mauna Kea volcano, Hawaii,using diffusion profiles in olivine phenocrysts

    Science.gov (United States)

    Bloch, E. M.; Ganguly, J.

    2009-12-01

    Fe-Mg diffusion profiles have been measured in olivine xenocrysts within alkalic basalts in order to constrain the timescales of magma stagnation beneath Mauna Kea volcano, Hawaii. It has been suggested that during the main tholeiitic shield-building stage, and postshield eruptive stages of Mauna Kea, magmas were stalled and stagnated near the Moho, at a depth of ~15 km. Evidence in support of this hypothesis comes from cumulates formed by gravity-settling and in situ crystallization within magma chambers (Fodor and Galar, 1997), and from clinopyroxene-wholerock thermobarometry on Hamakua basalts (Putirka, in press). The cumulates represent a ‘fossil’ magma chamber which formed primarily from tholeiitic basalts; during the later capping-lava stage of Mauna Kea, alkalic basalts tore off chunks of these cumulates during ascent to the surface. We have measured several diffusion profiles in olivine xenocrysts from a single basalt sample. Because these xenocrysts have homogenous core compositions identical to a neighboring dunite cumulate, and because they are much larger and texturally distinct from compositionally dissimilar olivine phenocrysts, they are interpreted to be cumulate olivines which were dislodged during magma recharge/mixing in the stagnation zone. Although the orientations of the phenocrysts are not yet known, the diffusion profiles have been fit using diffusion coefficients parallel to the c and a crystallographic axes (i.e. minimum and maximum values). Modeling diffusion profiles yields ∫Ddt ≤4.5 x 10-5 cm2. Assuming that the xenocrysts were broken off from the cumulate immediately when the magma chamber was recharged, it is possible to calculate the maximum stagnation time of the basalts. Thus, the retrieved ∫Ddt value yields a maximum stagnation time of ~0.7 years. References: Fodor RV, Galar, PA (1997). A View into the Subsurface of Mauna Kea Volcano, Hawaii: Crystallization Processes Interpreted through the Petrology and Petrography of

  10. Control and Evaluation of a Powered Transfemoral Prosthesis for Stair Ascent.

    Science.gov (United States)

    Ledoux, Elissa D; Goldfarb, Michael

    2017-07-01

    This paper assesses the metabolic effort exerted by three transfemoral amputees, when using a powered knee and ankle prosthesis for stair ascent, relative to ascending stairs with passive knee and ankle prostheses. The paper describes a controller that provides step-over stair ascent behavior reflective of healthy stair ascent biomechanics, and describes its implementation in a powered prosthesis prototype. Stair ascent experiments were performed with three unilateral transfemoral amputee subjects, comparing the oxygen consumption required to ascend stairs using the powered prosthesis (with a step-over gait), relative to using their daily-use energetically passive prostheses (with a step-to gait). Results indicate on average a 24% reduction in oxygen consumption and a 30% reduction in stair ascent timewhen using the powered prosthesis, relative to when using the passive prostheses. All subjects expressed a strong preference for ascending stairs using the powered prosthesis.

  11. Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.

    Science.gov (United States)

    Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego

    2017-12-04

    We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.

  12. Using fumarolic inert gas composition to investigate magma dynamics at Campi Flegrei (Italy)

    Science.gov (United States)

    Chiodini, G.; Caliro, S.; Paonita, A.; Cardellini, C.

    2013-12-01

    Since 2000 the Campi Flegrei caldera sited in Neapolitan area (Italy), has showed signs of reactivation, marked by ground uplift, seismic activity, compositional variations of fumarolic effluents from La Solfatara, an increase of the fumarolic activity as well as of soil CO2 fluxes. Comparing long time series of geochemical signals with ground deformation and seismicity, we show that these changes are at least partially caused by repeated injections of magmatic fluid into the hydrothermal system. The frequency of these degassing episodes has increased in the last years, causing pulsed uplift episodes and swarms of low magnitude earthquakes. We focus here in the inert gas species (CO2-He-Ar-N2) of Solfatara fumaroles which displayed in the time spectacular and persistent variation trends affecting all the monitored vents. The observed variations, which include a continuous decrease of both N2/He and N2/CO2 ratios since 1985, paralleled by an increase of He/CO2, can not be explained neither with changes in processes of boiling-condensation in the local hydrothermal system nor with changes in the mixing proportions between a magmatic vapour and hydrothermal fluids. Consequently we investigated the possibility that the trends of inert gas species are governed by changes in the conditions controlling magma degassing at depth. We applied a magma degassing model, with the most recent updates for inert gas solubilities, after to have included petrologic constraints from the ranges of melt composition and reservoir pressure at Campi Flegrei. The model simulations for mafic melts (trachybasalt and shoshonite) show a surprising agreement with the measured data. Both decompressive degassing of an ascending magma and mixing between magmatic fluids exsolved at various levels along the ascent path can explain the long-time geochemical changes. Our work highlights that, in caldera systems where the presence of hydrothermal aquifers commonly masks the magmatic signature of reactive

  13. The evolution of magma during continental rifting: New constraints from the isotopic and trace element signatures of silicic magmas from Ethiopian volcanoes

    Science.gov (United States)

    Hutchison, William; Mather, Tamsin A.; Pyle, David M.; Boyce, Adrian J.; Gleeson, Matthew L. M.; Yirgu, Gezahegn; Blundy, Jon D.; Ferguson, David J.; Vye-Brown, Charlotte; Millar, Ian L.; Sims, Kenneth W. W.; Finch, Adrian A.

    2018-05-01

    Magma plays a vital role in the break-up of continental lithosphere. However, significant uncertainty remains about how magma-crust interactions and melt evolution vary during the development of a rift system. Ethiopia captures the transition from continental rifting to incipient sea-floor spreading and has witnessed the eruption of large volumes of silicic volcanic rocks across the region over ∼45 Ma. The petrogenesis of these silicic rocks sheds light on the role of magmatism in rift development, by providing information on crustal interactions, melt fluxes and magmatic differentiation. We report new trace element and Sr-Nd-O isotopic data for volcanic rocks, glasses and minerals along and across active segments of the Main Ethiopian (MER) and Afar Rifts. Most δ18 O data for mineral and glass separates from these active rift zones fall within the bounds of modelled fractional crystallization trajectories from basaltic parent magmas (i.e., 5.5-6.5‰) with scant evidence for assimilation of Pan-African Precambrian crustal material (δ18 O of 7-18‰). Radiogenic isotopes (εNd = 0.92- 6.52; 87Sr/86Sr = 0.7037-0.7072) and incompatible trace element ratios (Rb/Nb productivity or where crustal structure inhibits magma ascent). This has important implications for understanding the geotectonic settings that promote extreme melt evolution and, potentially, genesis of economically-valuable mineral deposits in ancient rift-settings. The limited isotopic evidence for assimilation of Pan-African crustal material in Ethiopia suggests that the pre-rift crust beneath the magmatic segments has been substantially modified by rift-related magmatism over the past ∼45 Ma; consistent with geophysical observations. We argue that considerable volumes of crystal cumulate are stored beneath silicic volcanic systems (>100 km3), and estimate that crystal cumulates fill at least 16-30% of the volume generated by crustal extension under the axial volcanoes of the MER and Manda Hararo

  14. Chapter 9 The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data

    Science.gov (United States)

    Piochi, M.; de Vivo, B.; Ayuso, R.A.

    2006-01-01

    A large database of major, trace and isotope (Sr, Nd, Pb, O) data exists for rocks produced by the volcanic activity of Somma-Vesuvius volcano. Variation diagrams strongly suggest a major role for evolutionary processes such as fractional crystallization, contamination, crystal trapping and magma maxing, occurring after magma genesis in the mantle. Most mafic magmas are enriched in LILE (Light Ion Lithophile Elements; K. Rb, Ba), REE (Ce, Sm) and Y, show small Nb-Ta negative anomalies, and have values of Nb/Zr at about 0.15. Enrichments in LILE, REE, Nb and Ta do not correlate with Sr isotope values or degree of both K enrichment and silica undersaturation. The results indicate mantle source heterogeneity produced by slab-derived components beneath the volcano. However, the Sr isotope values of Somma-Vesuvius increase from 0.7071 up to 0.7081 with transport through the uppermost 11-12 km of the crust. The Sr isotope variation suggests that the crustal component affected the magmas during ascent through the lithosphere to the surface. Our new geochemical assessment based on chemical, isotopic and fluid inclusion data points to the existence of three main levels of magma storage. Two of the levels are deep and may represent long-lived reservoirs; the uppermost crustal level probably coincides with the volcanic conduit. The deeper level of magma storage is deeper than 12 km and fed the 1944 AD eruption. The intermediate level coincides with the seismic discontinuity detected by Zollo et al. (1996) at about 8 km. This intermediate level supplies magmas with 87Sr/86Sr values between 0.7071 and 0.7074, and ??O18system. ?? 2006 Elsevier B.V. All rights reserved.

  15. Design Considerations for a Crewed Mars Ascent Vehicle

    Science.gov (United States)

    Rucker, Michelle A.

    2015-01-01

    Exploration architecture studies identified the Mars Ascent Vehicle (MAV) as one of the largest "gear ratio" items in a crewed Mars mission. Because every kilogram of mass ascended from the Martian surface requires seven kilograms or more of ascent propellant, it is desirable for the MAV to be as small and lightweight as possible. Analysis identified four key factors that drive MAV sizing: 1) Number of crew: more crew members require more equipment-and a larger cabin diameter to hold that equipment-with direct implications to structural, thermal, propulsion, and power subsystem mass. 2) Which suit is worn during ascent: Extravehicular Activity (EVA) type suits are physically larger and heavier than Intravehicular Activity (IVA) type suits and because they are less flexible, EVA suits require more elbow-room to maneuver in and out of. An empty EVA suit takes up about as much cabin volume as a crew member. 3) How much time crew spends in the MAV: less than about 12 hours and the MAV can be considered a "taxi" with few provisions for crew comfort. However, if the crew spends more than 12 consecutive hours in the MAV, it begins to look like a Habitat requiring more crew comfort items. 4) How crew get into/out of the MAV: ingress/egress method drives structural mass (for example, EVA hatch vs. pressurized tunnel vs. suit port) as well as consumables mass for lost cabin atmosphere, and has profound impacts on surface element architecture. To minimize MAV cabin mass, the following is recommended: Limit MAV usage to 24 consecutive hours or less; discard EVA suits on the surface and ascend wearing IVA suits; Limit MAV functionality to ascent only, rather than dual-use ascent/habitat functions; and ingress/egress the MAV via a detachable tunnel to another pressurized surface asset.

  16. Growing magma chambers control the distribution of small-scale flood basalts.

    Science.gov (United States)

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  17. Whole-body angular momentum during stair ascent and descent.

    Science.gov (United States)

    Silverman, Anne K; Neptune, Richard R; Sinitski, Emily H; Wilken, Jason M

    2014-04-01

    The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and descent and compared it to level walking. Three-dimensional body-segment kinematic and ground reaction force (GRF) data were collected from 30 healthy subjects. Angular momentum was calculated using a 13-segment whole-body model. GRFs, external moment arms and net joint moments were used to interpret the angular momentum results. The range of frontal plane angular momentum was greater for stair ascent relative to level walking. In the transverse and sagittal planes, the range of angular momentum was smaller in stair ascent and descent relative to level walking. Significant differences were also found in the ground reaction forces, external moment arms and net joint moments. The sagittal plane angular momentum results suggest that individuals alter angular momentum to effectively counteract potential trips during stair ascent, and reduce the range of angular momentum to avoid falling forward during stair descent. Further, significant differences in joint moments suggest potential neuromuscular mechanisms that account for the differences in angular momentum between walking conditions. These results provide a baseline for comparison to impaired populations that have difficulty maintaining dynamic balance, particularly during stair ascent and descent. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Poland, Michael P.; Jeff, Sutton A.; Gerlach, Terrence M.

    2009-01-01

    During mid-June 2007, the summit of Kīlauea Volcano, Hawai‘i, deflated rapidly as magma drained from the subsurface to feed an east rift zone intrusion and eruption. Coincident with the deflation, summit SO2 emission rates rose by a factor of four before decaying to background levels over several weeks. We propose that SO2 release was triggered by static decompression caused by magma withdrawal from Kīlauea's shallow summit reservoir. Models of the deflation suggest a pressure drop of 0.5–3 MPa, which is sufficient to trigger exsolution of the observed excess SO2 from a relatively small volume of magma at the modeled source depth beneath Kīlauea's summit. Static decompression may also explain other episodes of deflation accompanied by heightened gas emission, including the precursory phases of Kīlauea's 2008 summit eruption. Hazards associated with unexpected volcanic gas emission argue for increased awareness of magma reservoir pressure fluctuations.

  19. The Meaning of "Magma"

    Science.gov (United States)

    Bartley, J. M.; Glazner, A. F.; Coleman, D. S.

    2016-12-01

    Magma is a fundamental constituent of the Earth, and its properties, origin, evolution, and significance bear on issues ranging from volcanic hazards to planetary evolution. Unfortunately, published usages indicate that the term "magma" means distinctly different things to different people and this can lead to miscommunication among Earth scientists and between scientists and the public. Erupting lava clearly is magma; the question is whether partially molten rock imaged at depth and too crystal-rich to flow should also be called magma. At crystal fractions > 50%, flow can only occur via crystal deformation and solution-reprecipitation. As the solid fraction increases to 90% or more, the material becomes a welded crystal framework with melt in dispersed pores and/or along grain boundaries. Seismic images commonly describe such volumes of a few % melt as magma, yet the rheological differences between melt-rich and melt-poor materials make it vital not to confuse a large rock volume that contains a small melt fraction with melt-rich material. To ensure this, we suggest that "magma" be reserved for melt-rich materials that undergo bulk fluid flow on timescales consonant with volcanic eruptions. Other terms should be used for more crystal-rich and largely immobile partially molten rock (e.g., "crystal mush," "rigid sponge"). The distinction is imprecise but useful. For the press, the public, and even earth scientists who do not study magmatic systems, "magma" conjures up flowing lava; reports of a large "magma" body that contains a few percent melt can engender the mistaken perception of a vast amount of eruptible magma. For researchers, physical processes like crystal settling are commonly invoked to account for features in plutonic rocks, but many such processes are only possible in melt-rich materials.

  20. Isotopic disequilibrium among commingled hybrid magmas: Evidence for a two-stage magma mixing-commingling process in the Mt. Perkins Pluton, Arizona

    International Nuclear Information System (INIS)

    Metcalf, R.V.; Smith, E.I.; Reed, R.C.

    1995-01-01

    The syn-extensional Miocene Mt. Perkins pluton, northwestern Arizona, cooled rapidly due to its small size (6 km 2 ) and shallow emplacement (7.5 km) and allows examination of commingled rocks that experienced little isotopic exchange. Within the pluton, quartz dioritic to granodioritic host rocks (58-68 wt% SiO 2 ) enclose dioritic enclaves (50-55 wt% SiO 2 ) and a portion contains enclave-free granodiorite (70-74 wt% SiO 2 ). Fine-grained, crenulate enclave margins and a lack of advanced mixing structures (e.g., schlieren, flow fabrics, etc.) indicate an incipient stage of commingling. Isotopic variation between enclaves and enclosing host rocks is large (6.8 to 10.6 ε Nd units; 0.0036 to 0.0046 87 Sr/ 86 Sr units), suggesting isotopic disequilibrium. Comparison of an enclave core and rim suggests that isotopic exchange with the host magma was limited to the enclave rim. Enclaves and hosts collectively form a calc-alkaline suite exhibiting a large range of ε Nd (+1.2 to -12.5) and initial 87 Sr/ 86 Sr (0.705 to 0.71267) with a correlation among ε Nd , initial 87 Sr/ 86 Sr, and major and trace element compositions. Modeling suggests that the suite formed by magma hybridization involving magma mixing accompanied by fractional crystallization. The magma mixing must have predated commingling at the present exposure level and indicates a larger mixing chamber at depth. Isotopic and trace element data suggests mixing end-members were asthenospheric mantle-derived mafic and crustal-derived felsic magmas. Fractional crystallization facilitated mixing by reducing the rheological contrasts between the mafic and felsic mixing end-members. 58 refs., 11 figs., 3 tabs

  1. Ablative overlays for Space Shuttle leading edge ascent heat protection

    Science.gov (United States)

    Strauss, E. L.

    1975-01-01

    Ablative overlays were evaluated via a plasma-arc simulation of the ascent pulse on the leading edge of the Space Shuttle Orbiter. Overlay concepts included corkboard, polyisocyanurate foam, low-density Teflon, epoxy, and subliming salts. Their densities ranged from 4.9 to 81 lb per cu ft, and the thicknesses varied from 0.107 to 0.330 in. Swept-leading-edge models were fabricated from 30-lb per cu ft silicone-based ablators. The overlays were bonded to maintain the surface temperature of the base ablator below 500 F during ascent. Foams provided minimum-weight overlays, and subliming salts provided minimum-thickness overlays. Teflon left the most uniform surface after ascent heating.

  2. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply.

    Science.gov (United States)

    Olive, J-A; Behn, M D; Ito, G; Buck, W R; Escartín, J; Howell, S

    2015-10-16

    Recent studies have proposed that the bathymetric fabric of the seafloor formed at mid-ocean ridges records rapid (23,000 to 100,000 years) fluctuations in ridge magma supply caused by sealevel changes that modulate melt production in the underlying mantle. Using quantitative models of faulting and magma emplacement, we demonstrate that, in fact, seafloor-shaping processes act as a low-pass filter on variations in magma supply, strongly damping fluctuations shorter than about 100,000 years. We show that the systematic decrease in dominant seafloor wavelengths with increasing spreading rate is best explained by a model of fault growth and abandonment under a steady magma input. This provides a robust framework for deciphering the footprint of mantle melting in the fabric of abyssal hills, the most common topographic feature on Earth. Copyright © 2015, American Association for the Advancement of Science.

  3. Design and Analysis of Optimal Ascent Trajectories for Stratospheric Airships

    Science.gov (United States)

    Mueller, Joseph Bernard

    Stratospheric airships are lighter-than-air vehicles that have the potential to provide a long-duration airborne presence at altitudes of 18-22 km. Designed to operate on solar power in the calm portion of the lower stratosphere and above all regulated air traffic and cloud cover, these vehicles represent an emerging platform that resides between conventional aircraft and satellites. A particular challenge for airship operation is the planning of ascent trajectories, as the slow moving vehicle must traverse the high wind region of the jet stream. Due to large changes in wind speed and direction across altitude and the susceptibility of airship motion to wind, the trajectory must be carefully planned, preferably optimized, in order to ensure that the desired station be reached within acceptable performance bounds of flight time and energy consumption. This thesis develops optimal ascent trajectories for stratospheric airships, examines the structure and sensitivity of these solutions, and presents a strategy for onboard guidance. Optimal ascent trajectories are developed that utilize wind energy to achieve minimum-time and minimum-energy flights. The airship is represented by a three-dimensional point mass model, and the equations of motion include aerodynamic lift and drag, vectored thrust, added mass effects, and accelerations due to mass flow rate, wind rates, and Earth rotation. A representative wind profile is developed based on historical meteorological data and measurements. Trajectory optimization is performed by first defining an optimal control problem with both terminal and path constraints, then using direct transcription to develop an approximate nonlinear parameter optimization problem of finite dimension. Optimal ascent trajectories are determined using SNOPT for a variety of upwind, downwind, and crosswind launch locations. Results of extensive optimization solutions illustrate definitive patterns in the ascent path for minimum time flights across

  4. Numerical modeling of magma-repository interactions

    NARCIS (Netherlands)

    Bokhove, Onno

    2001-01-01

    This report explains the numerical programs behind a comprehensive modeling effort of magma-repository interactions. Magma-repository interactions occur when a magma dike with high-volatile content magma ascends through surrounding rock and encounters a tunnel or drift filled with either a magmatic

  5. Intrusion of basaltic magma into a crystallizing granitic magma chamber: The Cordillera del Paine pluton in southern Chile

    Science.gov (United States)

    Michael, Peter J.

    1991-10-01

    The Cordillera del Paine pluton in the southernmost Andes of Chile represents a deeply dissected magma chamber where mafic magma intruded into crystallizing granitic magma. Throughout much of the 10x15 km pluton, there is a sharp and continuous boundary at a remarkably constant elevation of 1,100 m that separates granitic rocks (Cordillera del Paine or CP granite: 69 77% SiO2) which make up the upper levels of the pluton from mafic and comingled rocks (Paine Mafic Complex or PMC: 45 60% SiO2) which dominate the lower exposures of the pluton. Chilled, crenulate, disrupted contacts of mafic rock against granite demonstrate that partly crystallized granite was intruded by mafic magma which solidified prior to complete crystallization of the granitic magma. The boundary at 1,100 m was a large and stable density contrast between the denser, hotter mafic magma and cooler granitic magma. The granitic magma was more solidified near the margins of the chamber when mafic intrusion occurred, and the PMC is less disrupted by granites there. Near the pluton margins, the PMC grades upward irregularly from cumulate gabbros to monzodiorites. Mafic magma differentiated largely by fractional crystallization as indicated by the presence of cumulate rocks and by the low levels of compatible elements in most PMC rocks. The compositional gap between the PMC and CP granite indicates that mixing (blending) of granitic magma into the mafic magma was less important, although it is apparent from mineral assemblages in mafic rocks. Granitic magma may have incorporated small amounts of mafic liquid that had evolved to >60% SiO2 by crystallization. Mixing was inhibited by the extent of crystallization of the granite, and by the thermal contrast and the stable density contrast between the magmas. PMC gabbros display disequilibrium mineral assemblages including early formed zoned olivine (with orthopyroxene coronas), clinopyroxene, calcic plagioclase and paragasite and later-formed amphibole

  6. Magma-poor vs. magma-rich continental rifting and breakup in the Labrador Sea

    Science.gov (United States)

    Gouiza, M.; Paton, D.

    2017-12-01

    Magma-poor and magma-rich rifted margins show distinct structural and stratigraphic geometries during the rift to breakup period. In magma-poor margins, crustal stretching is accommodated mainly by brittle faulting and the formation of wide rift basins shaped by numerous graben and half-graben structures. Continental breakup and oceanic crust accretion are often preceded by a localised phase of (hyper-) extension where the upper mantle is embrittled, serpentinized, and exhumed to the surface. In magma-rich margins, the rift basin is narrow and extension is accompanied by a large magmatic supply. Continental breakup and oceanic crust accretion is preceded by the emplacement of a thick volcanic crust juxtaposing and underplating a moderately thinned continental crust. Both magma-poor and magma-rich rifting occur in response to lithospheric extension but the driving forces and processes are believed to be different. In the former extension is assumed to be driven by plate boundary forces, while in the latter extension is supposed to be controlled by sublithospheric mantle dynamics. However, this view fails in explaining observations from many Atlantic conjugate margins where magma-poor and magma-rich segments alternate in a relatively abrupt fashion. This is the case of the Labrador margin where the northern segment shows major magmatic supply during most of the syn-rift phase which culminate in the emplacement of a thick volcanic crust in the transitional domain along with high density bodies underplating the thinned continental crust; while the southern segment is characterized mainly by brittle extension, mantle seprentinization and exhumation prior to continental breakup. In this work, we use seismic and potential field data to describe the crustal and structural architectures of the Labrador margin, and investigate the tectonic and mechanical processes of rifting that may have controlled the magmatic supply in the different segments of the margin.

  7. Survey Says...! Women rising above challenges in atmospheric science through ASCENT

    Science.gov (United States)

    Edwards, L. M.; Thiry, H.; Hallar, A. G.; Avallone, L. M.

    2011-12-01

    The Atmospheric Sciences Collaborations and Enriching NeTworks (ASCENT) project is in its third year of connecting early career atmospheric scientists with female senior scientists in related fields. The annual workshops have demonstrated the range of career and personal decisions that current successful senior scientists have made, presented tools and resources, created new networks of collaboration, and provided a forum for informal and formal discussions of issues that face early career female atmospheric scientists. A formal assessment has been ongoing, with participants responding to questions relating to the workshops themselves, in addition to a longitudinal study that asks participants about the impact of ASCENT months or years after their workshop experience. Through this evaluation, the workshop organizers have been able to tailor the workshop schedule, reunion events, and communication, to fit the needs of the participants and manage the project better to achieve their desired outcomes. The results so far have shown that participants felt they enhanced their professional networks, and over 90% had maintained contact with other ASCENT participants six months after the workshop. Participants also reported to have gained knowledge and resources for women scientists and had fewer career obstacles six months after ASCENT. ASCENT organizers will share lessons learned throughout the process and some examples of best practices they have discovered. The assessment design, and most recent results from all three workshop cohorts will also be presented.

  8. High magma storage rates before the 1983 eruption of kilauea, hawaii

    Science.gov (United States)

    Cayol; Dieterich; Okamura; Miklius

    2000-06-30

    After a magnitude 7.2 earthquake in 1975 and before the start of the ongoing eruption in 1983, deformation of Kilauea volcano was the most rapid ever recorded. Three-dimensional numerical modeling shows that this deformation is consistent with the dilation of a dike within Kilauea's rift zones coupled with creep over a narrow area of a low-angle fault beneath the south flank. Magma supply is estimated to be 0.18 cubic kilometers per year, twice that of previous estimates. The 1983 eruption may be a direct consequence of the high rates of magma storage within the rift zone that followed the 1975 earthquake.

  9. Volcanic precursors in light of eruption mechanisms at Vesuvius

    Directory of Open Access Journals (Sweden)

    Roberto Scandone

    2013-11-01

    Full Text Available Vesuvius entered a quiescent stage after the eruption of March-April 1944. The eruption was not much different or larger than other before, like for example the one of 1906, but it occurred at the end of a long period during which it was observed a decreasing trend of explosivity of eruptions [Scandone et al. 2008]. The parallel increase in the frequency of slow effusive eruptions, with respect to violent strombolian eruptions, point out to a process of average slower rate of magma ascent possibly due to a progressive sealing of the ascent path of magma to the surface. The small caldera collapse following the 1944 explosive phase effectively sealed the upper conduit, and since then the volcano entered a quiescence stage that was unusual with respect to the pattern of activity of the previous 300 years when the maximum repose time had been of 7 years (after the eruption of 1906. Most of the uncertainty on the duration of the present stage and character of a future renewal of activity derives by the basic questions regarding the nature of the current repose: due to a diminished supply of magma, related with structural condition or a sealing of the upper ascent path to the surface? Possibly the variation of structural conditions caused average slower ascent rates of magma favoring its cooling in the upper part of the crust, and effectively sealing the ascent path.

  10. Modelling of Magma Density and Viscocity Changes and Their Influences towards the Characteristic of Kelud Volcano Eruption

    Directory of Open Access Journals (Sweden)

    Hanik Humaida

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.129The effusive eruption of Kelud Volcano in 2007 was different from the previous ones, which in general were more explosive. Among others, density and viscosity are factors that determine the type of eruption. Therefore, the study on the difference of the recent eruption style based on the density and viscosity of magma was carried out. The method used in this study was based on geochemical analysis of the rock and then a modeling was established by using the above parameter. The study on the explosive eruption was emphasized on the data of 1990 eruption, whereas the effusive eruption was based on the data of 2007 eruption. The result shows that the magma viscosity of Kelud Volcano depend on the H O concentration as one of the volatile compound in magma, and temperature which gives the exponential equation. The higher the increase of H O content the smaller the value of its viscosity as well as the higher the temperature. The H O content in silica fluid can break the polymer bond of the silica fluid, because a shorter polymer will produce a lower viscosity. The density of the silica content of Kelud Volcano ranges between andesitic and basaltic types, but andesite is more likely. The fluid density of the material of 1990 eruption is different from 2007 eruption. Compared to the 2007, the 1990 eruption material gave a lower density value in its silica fluid than that of the 2007 one. The low density value of the silica fluid of the 1990 eruption material was reflecting a more acid magma. The level of density value of silica fluid depends on its temperature. At the temperature of 1073 K the density of the 1990 Kelud magma is 2810 kg/m3 and the 2007 magma is 2818 kg/m3, whereas at a temperature of 1673 K, the density is 2672 kg/m3 and 2682 kg/m3 of the 1990 and 2007 eruptions respectively. A modeling by using an ideal gas law of Henry’s Law illustrated that the ascent of Kelud’s magma to the surface may cause changes

  11. The role of amphibole in Merapi arc magma petrogenesis: insights from petrology and geochemistry of lava hosted xenoliths and xenocrysts

    Science.gov (United States)

    Chadwick, J. P.; Troll, V. R.; Schulz, B.; Dallai, L.; Freda, C.; Schwarzkopf, L. M.; Annersten, H.; Skogby, H.

    2010-05-01

    deep- to mid-crustal processes given the stability field of amphibole. The individual amphibole xenocrysts are also co-genetic to the Merapi magma system and indicative of high-pressure crystallisation. Hydrogen isotope analyses of these large amphibole megacrysts, record a broad range of dD ratios (permil deviation of D/H isotope ratio from Standard Mean Ocean Water). The dD values of some of these crystals appear to be modified significantly from expected primary compositions, particularly towards the rims of amphiboles showing breakdown textures. The measured dD values possibly result from H-isotope re-equilibration with surrounding volatile vapour during eruption or via dehydration reactions. Mossbauer analysis of a selected pristine amphibole megacryst from this suite records 67 % of iron as Fe3+ in the M-sites. Complementary IR spectroscopy of this amphibole indicates no serious loss of OH groups. High H2O pressures at formation depth for this crystal have stabilized full hydrous compositions at ~ 2% H2O concentration in the amphibole. Such fully hydrated amphiboles could release their H2O on depressurisation on ascent prior to eruption, a process that consistent with the dD data. Analysis of these samples is ongoing, however this initial data indicates that amphibole is a key phase in Merapi magmatic evolution and is a likely source of volatiles through dehydration on ascent. This is of particular significance given the fact that water content of magma has a considerable impact on the explosive potential of subduction zone volcanism. (1) Davidson et al., 2007. Geology, 35: 787-790. (2) Tiepolo et al., 2002 Contrib. Min. Pet., 144:1-15.

  12. From Mush to Eruption in 1000 Years: Rapid Assembly of the Super-Sized Oruanui Magma Body

    Science.gov (United States)

    Allan, A. S.; Morgan, D. J.; Wilson, C. J.; Millet, M.

    2012-12-01

    The mush model is useful in explaining how large volumes of evolved silicic melt can be generated in and extracted from a crystal-rich source to form crystal-poor rhyolite magma bodies at shallow crustal levels. It is unclear, however, how processes of melt extraction and/or formation of the melt-dominant magma body might be reflected in the crystal record, and what physical and temporal constraints can be applied. Textural observations and in situ geochemical fingerprints in crystals from pumices of the ~25.4 ka Oruanui eruption (Taupo, New Zealand), offer new perspectives on the processes, physical conditions and timing of the melt extraction and accumulation. Almost all orthopyroxene (opx) and plagioclase (plag) cores have textures showing a period of disequilibrium (partial dissolution and/or resorption) followed by stable conditions (infilling of raddled cores; euhedral rim overgrowths). Trace element contents in amphibole (amph), which was stable and actively crystallizing in all but the most evolved parcels of Oruanui magma, complement textural evidence showing that Mn and Zn liberated by opx dissolution were preferentially sequestered in amph. Concentrations of these opx-loving elements show a prominent inflection when plotted against indices of melt evolution (e.g. Eu/Eu* in amph) marking a return to opx stability and subsequent crystallization. Plagioclase, the most abundant crystal phase, records a more complex history with significant inheritance, but textural and chemical evidence suggests that at least some of Oruanui plag crystals experienced the same departure from and return to stability as the opx. Amphibole trace element data are linked to in situ estimates of P-T-fO2 and melt H2O determined via the Ridolfi et al. (2010: Contrib Mineral Petrol 160, 45) thermobarometer. Textural and geochemical evidence combined with P-T-H2O model values indicate that three major Oruanui crystal phases (opx, amph, plag) record a significant decompression event

  13. A cascade of magmatic events during the assembly and eruption of a super-sized magma body

    Science.gov (United States)

    Allan, Aidan. S. R.; Barker, Simon J.; Millet, Marc-Alban; Morgan, Daniel J.; Rooyakkers, Shane M.; Schipper, C. Ian; Wilson, Colin J. N.

    2017-07-01

    We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe-Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10-15 kyr before the eruption. The mush top was quartz-bearing and as shallow as 3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of 840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of 790 °C, reflecting rapid cooling from the 840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3-5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic

  14. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano.

    Science.gov (United States)

    Druitt, T H; Costa, F; Deloule, E; Dungan, M; Scaillet, B

    2012-02-01

    Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.

  15. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Directory of Open Access Journals (Sweden)

    Stoppa Francesco

    2017-03-01

    Full Text Available Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  16. Magma evolution inside the 1631 Vesuvius magma chamber and eruption triggering

    Science.gov (United States)

    Stoppa, Francesco; Principe, Claudia; Schiazza, Mariangela; Liu, Yu; Giosa, Paola; Crocetti, Sergio

    2017-03-01

    Vesuvius is a high-risk volcano and the 1631 Plinian eruption is a reference event for the next episode of explosive unrest. A complete stratigraphic and petrographic description of 1631 pyroclastics is given in this study. During the 1631 eruption a phonolite was firstly erupted followed by a tephritic phonolite and finally a phonolitic tephrite, indicating a layered magma chamber. We suggest that phonolitic basanite is a good candidate to be the primitive parental-melt of the 1631 eruption. Composition of apatite from the 1631 pyroclastics is different from those of CO2-rich melts indicating negligible CO2 content during magma evolution. Cross checking calculations, using PETROGRAPH and PELE software, accounts for multistage evolution up to phonolite starting from a phonolitic basanite melt similar to the Vesuvius medieval lavas. The model implies crystal settling of clinopyroxene and olivine at 6 kbar and 1220°C, clinopyroxene plus leucite at a pressure ranging from 2.5 to 0.5 kbar and temperature ranging from 1140 to 940°C. Inside the phonolitic magma chamber K-feldspar and leucite would coexist at a temperature ranging from from 940 to 840°C and at a pressure ranging from 2.5 to0.5 kbar. Thus crystal fractionation is certainly a necessary and probably a sufficient condition to evolve the melt from phono tephritic to phonolitic in the 1631 magma chamber. We speculate that phonolitic tephrite magma refilling from deeper levels destabilised the chamber and triggered the eruption, as testified by the seismic precursor phenomena before 1631 unrest.

  17. Re-appraisal of the Magma-rich versus Magma-poor Paradigm at Rifted Margins: consequences for breakup processes

    Science.gov (United States)

    Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C. J.; Epin, M. E.; Sauter, D.; Autin, J.; Kusznir, N. J.; McDermott, K.

    2017-12-01

    Rifted margins are often classified based on their magmatic budget only. Magma-rich margins are commonly considered to have excess decompression melting at lithospheric breakup compared with steady state seafloor spreading while magma-poor margins have suppressed melting. New observations derived from high quality geophysical data sets and drill-hole data have revealed the diversity of rifted margin architecture and variable distribution of magmatism. Recent studies suggest, however, that rifted margins have more complex and polyphase tectono-magmatic evolutions than previously assumed and cannot be characterized based on the observed volume of magma alone. We compare the magmatic budget related to lithospheric breakup along two high-resolution long-offset deep reflection seismic profiles across the SE-Indian (magma-poor) and Uruguayan (magma-rich) rifted margins. Resolving the volume of magmatic additions is difficult. Interpretations are non-unique and several of them appear plausible for each case involving variable magmatic volumes and mechanisms to achieve lithospheric breakup. A supposedly 'magma-poor' rifted margin (SE-India) may show a 'magma-rich' lithospheric breakup whereas a 'magma-rich' rifted margin (Uruguay) does not necessarily show excess magmatism at lithospheric breakup compared with steady-state seafloor spreading. This questions the paradigm that rifted margins can be subdivided in either magma-poor or magma-rich margins. The Uruguayan and other magma-rich rifted margins appear characterized by an early onset of decompression melting relative to crustal breakup. For the converse, where the onset of decompression melting is late compared with the timing of crustal breakup, mantle exhumation can occur (e.g. SE-India). Our work highlights the difficulty in determining a magmatic budget at rifted margins based on seismic reflection data alone, showing the limitations of margin classification based solely on magmatic volumes. The timing of

  18. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    controller. In the simulations where the online parameter identification algorithm was disabled, the tracking error based neural network weight update law forced the network's output to diverge despite repeated reductions of the adaptive learning rate. As a result, the modeling error based neural network weight update law (which generated bounded signals) is utilized by the hybrid adaptive controller in all subsequent simulations. Comparing the PID and hybrid adaptive flight controllers under nominal flight conditions in rigid body ascent simulations showed that their tracking error magnitudes are similar for a period of time during the middle of the ascent phase. Though the PID controller performs better for a short interval around the 20 second mark, the hybrid adaptive controller performs far better from roughly 70 to 120 seconds. Elevating the aerodynamic loads by increasing the force and moment coefficients produced results very similar to the nominal case. However, applying a 5% or 10% thrust reduction to the first stage rocket motor causes the tracking error magnitude observed by the PID controller to be significantly elevated and diverge rapidly as the simulation concludes. In contrast, the hybrid adaptive controller steadily maintains smaller errors (often less than 50% of the corresponding PID value). Under the same sets of flight conditions with flexibility enabled, the results exhibit similar trends with the hybrid adaptive controller performing even better in each case. Again, the reduction of the first stage rocket motor's thrust clearly illustrated the superior robustness of the hybrid adaptive flight controller.

  19. Why Is There an Abrupt Transition from Solid Rock to Low Crystallinity Magma in Drilled Magma Bodies?

    Science.gov (United States)

    Eichelberger, J. C.; Carrigan, C. R.; Sun, Y.; Lavallée, Y.

    2017-12-01

    We report on a preliminary evaluation, from basic principles of heat and mass transfer, on the unexpectedly abrupt transition from cuttings of solid rock to fragments of crystal poor glass during drilling into magma bodies. Our analysis is based on conditions determined and inferred for the 2009 IDDP-1 well in Krafla Caldera, which entered apparently liquidus rhyolite magma at about 900oC at a depth of 2104 m. Simple conduction would predict some 30 m of crystallization and partial crystallization since the latest time the magma could have been intruded, approximately 30 years prior to discovery by drilling. Option 1: The expected crystallization of magma has occurred but interstitial melt remains. The pressure difference between lithostatic load of about 50 MPa on the mush and 20 MPa hydrostatic pressure in the well causes pore melt to flow from the permeable mush into the borehole, where it becomes the source of the quenched melt chips. To be viable, this mechanism must work over the time frame of a day. Option 2: The expected crystallization is occurring, but high Rayleigh number thermal convection in the magma chamber continuously displaces crystallizing roof magma by liquidus magma from the interior of the body. To be viable, this mechanism must result in overturning magma in the chamber on a time scale that is much shorter than that of crystallization. Option 3: Flow-induced crystal migration away from zones of high shear created during drilling into magma may preferentially produce low-crystal-content melt at the boundary of the borehole, which is then sampled.

  20. Magma flow through elastic-walled dikes

    NARCIS (Netherlands)

    Bokhove, Onno; Woods, A.W.; de Boer, A

    2005-01-01

    A convection–diffusion model for the averaged flow of a viscous, incompressible magma through an elastic medium is considered. The magma flows through a dike from a magma reservoir to the Earth’s surface; only changes in dike width and velocity over large vertical length scales relative to the

  1. Weather Balloon Ascent Rate

    Science.gov (United States)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  2. Pre-eruptive conditions of the Hideaway Park topaz rhyolite: Insights into metal source and evolution of magma parental to the Henderson porphyry molybdenum deposit, Colorado

    Science.gov (United States)

    Mercer, Celestine N.; Hofstra, Albert H.; Todorov, Todor I.; Roberge, Julie; Burgisser, Alain; Adams, David T.; Cosca, Michael A.

    2015-01-01

    The Hideaway Park tuff is the only preserved extrusive volcanic unit related to the Red Mountain intrusive complex, which produced the world-class Henderson porphyry Mo deposit. Located within the Colorado Mineral Belt, USA, Henderson is the second largest Climax-type Mo deposit in the world, and is therefore an excellent location to investigate magmatic processes leading to Climax-type Mo mineralization. We combine an extensive dataset of major element, volatile, and trace element abundances in quartz-hosted melt inclusions and pumice matrix glass with major element geochemistry from phenocrysts to reconstruct the pre-eruptive conditions and the source and evolution of metals within the magma. Melt inclusions are slightly peraluminous topaz rhyolitic in composition and are volatile-charged (≤6 wt % H2O, ≤600 ppm CO2, ∼0·3–1·0 wt % F, ∼2300–3500 ppm Cl) and metal-rich (∼7–24 ppm Mo, ∼4–14 ppm W, ∼21–52 ppm Pb, ∼28–2700 ppm Zn, shallow ascent and eruption. Filter pressing, crystal settling, magma recharge and mixing of less evolved rhyolite melt, and volatile exsolution were important processes during magma evolution; the low estimated viscosities (∼105–1010 Pa s) of these H2O- and F-rich melts probably enhanced these processes. A noteworthy discrepancy between the metal contents in the pumice matrix glass and in the melt inclusions suggests that after quartz crystallization ceased upon shallow magma ascent and eruption, the Hideaway Park magma exsolved an aqueous fluid into which Mo, Bi, Ag, Zn, Mn, Cs, and Y strongly partitioned. Given that the Henderson deposit contains anomalous abundances of not only Mo, but also W, Pb, Zn, Cu, Bi, Ag, and Mn, we suggest that these metals were sourced from similar fluids exsolved from unerupted portions of the same magmatic system. Trace element ratios imply that Mo was sourced deep, from either the lower crust or metasomatized mantle. The origin of sulfur remains unresolved

  3. Caldera resurgence driven by magma viscosity contrasts.

    Science.gov (United States)

    Galetto, Federico; Acocella, Valerio; Caricchi, Luca

    2017-11-24

    Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.

  4. Photon storage in ¿-type optically dense atomic media. IV. Optimal control using gradient ascent

    DEFF Research Database (Denmark)

    Gorshkov, Alexey V.; Calarco, Tomasso; Lukin, Mikhail D.

    2008-01-01

    We use the numerical gradient ascent method from optimal control theory to extend efficient photon storage in -type media to previouslyinaccessible regimes and to provide simple intuitive explanations for our optimization techniques. In particular, by using gradient ascent to shape classical....... We also demonstrate that the often discussed connection between time reversal andoptimality in photon storage follows naturally from gradient ascent. Finally, we discuss the optimization of controlled reversible inhomogeneous broadening....

  5. Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc)

    Science.gov (United States)

    Degruyter, W.; Bachmann, O.; Burgisser, A.

    2010-01-01

    X-ray computed microtomography (µCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for µCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93-98 μm) and mean throat size (~23-29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits.

  6. Enabling Parametric Optimal Ascent Trajectory Modeling During Early Phases of Design

    Science.gov (United States)

    Holt, James B.; Dees, Patrick D.; Diaz, Manuel J.

    2015-01-01

    During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult -- in both cost and schedule -- to enact. Indeed, the current capability-based paradigm that has emerged because of the constrained economic environment calls for the infusion of knowledge acquired during later design phases into earlier design phases, i.e. bring knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture as the need for more economically viable access to space solutions are needed in today's constrained economic environment. The problem of ascent trajectory optimization is not a new one. There are several programs that are widely used in industry that allows trajectory analysts to, based on detailed vehicle and insertion orbit parameters, determine the optimal ascent trajectory. Yet, little information is known about the launch vehicle early in the design phase - information that is required of many different disciplines in order to successfully optimize the ascent trajectory. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi

  7. Ascent, descent, nullity, defect, and related notions for linear relations in linear spaces

    NARCIS (Netherlands)

    Sandovici, Adrian; de Snoo, Henk; Winkler, Henrik

    2007-01-01

    For a linear relation in a linear space the concepts of ascent, descent, nullity, and defect are introduced and studied. It is shown that the results of A.E. Taylor and M.A. Kaashoek concerning the relationship between ascent, descent, nullity, and defect for the case of linear operators remain

  8. Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand

    Science.gov (United States)

    Zorn, Edgar U.; Rowe, Michael C.; Cronin, Shane J.; Ryan, Amy G.; Kennedy, Lori A.; Russell, James K.

    2018-04-01

    Lava domes pose a significant hazard to infrastructure, human lives and the environment when they collapse. Their stability is partly dictated by internal mechanical properties. Here, we present a detailed investigation into the lithology and composition of a Rocks with variable porosity and groundmass crystallinity were compared using measured compressive and tensile strength, derived from deformation experiments performed at room temperature and low (3 MPa) confining pressures. Based on data obtained, porosity exerts the main control on rock strength and mode of failure. High porosity (> 23%) rocks show low rock strength (rocks (5-23%) exhibit higher measured rock strengths (up to 278 MPa) and brittle failure. Groundmass crystallinity, porosity and rock strength are intercorrelated. High groundmass crystal content is inversely related to low porosity, implying crystallisation and degassing of a slowly undercooled magma that experienced rheological stiffening under high pressures deeper within the conduit. This is linked to a slow magma ascent rate and results in a lava dome with higher rock strength. Samples with low groundmass crystallinity are associated with higher porosity and lower rock strength, and represent magma that ascended more rapidly, with faster undercooling, and solidification in the upper conduit at low pressures. Our experimental results show that the inherent strength of rocks within a growing dome may vary considerably depending on ascent/emplacement rates, thus significantly affecting dome stability and collapse hazards.

  9. Artificial magma and applications of the blasting technique

    Energy Technology Data Exchange (ETDEWEB)

    Ichioka, K [Chugoku Kaki KK, Japan

    1974-01-01

    Artifical magma is discussed. Solid magma is a high temperature source and fluid magma is also a heat carrier. Iron ores are examples of solid magma, silica-borate is an example of a hydrophobic heat carrier magma assuming a liquid phase at 600/sup 0/C, and S, Ag, Pb, etc. are also examples of heat carrier magma. In addition to these examples, basic salts such as NaNO/sub 3/, KNO/sub 3/, NaCl, CaCl, KCl, BaCl, and Na/sub 4/B/sub 4/O/sub 7/ can be used as artifical magma. These are artifical magmas or heat mediums capable of capturing geothermal heat when circulated inside volcanoes. The blasting technique's applications in geothermal wells are also discussed. The technique can be used to expand a well's diameter, repair the well bottom, regenerate old wells, clean wells, or cut steel pipe. Two figures and one table are provided.

  10. Analysis of foot clearance in firefighters during ascent and descent of stairs.

    Science.gov (United States)

    Kesler, Richard M; Horn, Gavin P; Rosengren, Karl S; Hsiao-Wecksler, Elizabeth T

    2016-01-01

    Slips, trips, and falls are a leading cause of injury to firefighters with many injuries occurring while traversing stairs, possibly exaggerated by acute fatigue from firefighting activities and/or asymmetric load carriage. This study examined the effects that fatigue, induced by simulated firefighting activities, and hose load carriage have on foot clearance while traversing stairs. Landing and passing foot clearances for each stair during ascent and descent of a short staircase were investigated. Clearances decreased significantly (p < 0.05) post-exercise for nine of 12 ascent parameters and increased for two of eight descent parameters. Load carriage resulted in significantly decreased (p < 0.05) clearance over three ascent parameters, and one increase during descent. Decreased clearances during ascent caused by fatigue or load carriage may result in an increased trip risk. Increased clearances during descent may suggest use of a compensation strategy to ensure stair clearance or an increased risk of over-stepping during descent. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  12. Evidence for seismogenic fracture of silicic magma.

    Science.gov (United States)

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting.

  13. Modeling Magma Mixing: Evidence from U-series age dating and Numerical Simulations

    Science.gov (United States)

    Philipp, R.; Cooper, K. M.; Bergantz, G. W.

    2007-12-01

    Magma mixing and recharge is an ubiquitous process in the shallow crust, which can trigger eruption and cause magma hybridization. Phenocrysts in mixed magmas are recorders for magma mixing and can be studied by in- situ techniques and analyses of bulk mineral separates. To better understand if micro-textural and compositional information reflects local or reservoir-scale events, a physical model for gathering and dispersal of crystals is necessary. We present the results of a combined geochemical and fluid dynamical study of magma mixing processes at Volcan Quizapu, Chile; two large (1846/47 AD and 1932 AD) dacitic eruptions from the same vent area were triggered by andesitic recharge magma and show various degrees of magma mixing. Employing a multiphase numerical fluid dynamic model, we simulated a simple mixing process of vesiculated mafic magma intruded into a crystal-bearing silicic reservoir. This unstable condition leads to overturn and mixing. In a second step we use the velocity field obtained to calculate the flow path of 5000 crystals randomly distributed over the entire system. Those particles mimic the phenocryst response to the convective motion. There is little local relative motion between silicate liquid and crystals due to the high viscosity of the melts and the rapid overturn rate of the system. Of special interest is the crystal dispersal and gathering, which is quantified by comparing the distance at the beginning and end of the simulation for all particle pairs that are initially closer than a length scale chosen between 1 and 10 m. At the start of the simulation, both the resident and new intruding (mafic) magmas have a unique particle population. Depending on the Reynolds number (Re) and the chosen characteristic length scale of different phenocryst-pairs, we statistically describe the heterogeneity of crystal populations on the thin section scale. For large Re (approx. 25) and a short characteristic length scale of particle

  14. Evolution of silicic magmas in the Kos-Nisyros volcanic center: cycles associated with caldera collapse

    Science.gov (United States)

    Ruprecht, J. S.; Bachmann, O.; Deering, C. D.; Huber, C.; Skopelitis, A.; Schnyder, C.

    2010-12-01

    Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~ 3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). Over the course of this period, magmas have changed from hornblende-biotite rich units with low eruption temperatures (≤750-800 °C; Kefalos and Kos units) to hotter (>800-850 °C), pyroxene-bearing units (Nisyros units) and are transitioning back to colder magmas (Yali units). Using bulk-rock compositions, mineral chemistry, and zircon Hf isotopes, we show that the two different types of silicic magmas followed the same differentiation trend; they all evolved by crystal fractionation (and minor assimilation) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ky Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew most of the eruptible magma out and partly froze the silicic magma source zone in the upper crust due to rapid unloading, decompression and resulting crystallization. Therefore, the system had to reinstate a shallow silicic production zone from more mafic parents, recharged at temperatures typically around 850-900 °C from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were thus slightly hotter and less evolved than the Kefalos-Kos package. However, with time, the upper crustal intermediate mush grew and cooled, leading to interstitial melt compositions reaching again the highly-evolved, cold state that prevailed prior to the Kefalos-Kos. The recent (albeit not precisely dated) eruption of the high-SiO2 rhyolite of Yali suggests that another large, potentially explosive magma chamber is presently building

  15. Tiny timekeepers witnessing high-rate exhumation processes.

    Science.gov (United States)

    Zhong, Xin; Moulas, Evangelos; Tajčmanová, Lucie

    2018-02-02

    Tectonic forces and surface erosion lead to the exhumation of rocks from the Earth's interior. Those rocks can be characterized by many variables including peak pressure and temperature, composition and exhumation duration. Among them, the duration of exhumation in different geological settings can vary by more than ten orders of magnitude (from hours to billion years). Constraining the duration is critical and often challenging in geological studies particularly for rapid magma ascent. Here, we show that the time information can be reconstructed using a simple combination of laser Raman spectroscopic data from mineral inclusions with mechanical solutions for viscous relaxation of the host. The application of our model to several representative geological settings yields best results for short events such as kimberlite magma ascent (less than ~4,500 hours) and a decompression lasting up to ~17 million years for high-pressure metamorphic rocks. This is the first precise time information obtained from direct microstructural observations applying a purely mechanical perspective. We show an unprecedented geological value of tiny mineral inclusions as timekeepers that contributes to a better understanding on the large-scale tectonic history and thus has significant implications for a new generation of geodynamic models.

  16. Rapid laccolith intrusion driven by explosive volcanic eruption.

    Science.gov (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves

    2016-11-23

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  17. Multicriteria steepest ascent in a design space consisting of both mixture and process variables

    NARCIS (Netherlands)

    Duineveld, CAA; Coenegracht, PMJ

    1995-01-01

    Steepest ascent is shown to be a feasible method for problems where two or more responses are to be optimized. With the aid of Pareto optimality the (one response) standard method is adapted for the use of more responses. A special kind of steepest ascent problem involves the presence of both

  18. Seismic Tremors and Three-Dimensional Magma Wagging

    Science.gov (United States)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3

  19. Long-period seismicity reveals magma pathways above a laterally propagating dyke during the 2014-15 Bárðarbunga rifting event, Iceland

    Science.gov (United States)

    Woods, Jennifer; Donaldson, Clare; White, Robert S.; Caudron, Corentin; Brandsdóttir, Bryndís; Hudson, Thomas S.; Ágústsdóttir, Thorbjörg

    2018-05-01

    The 2014-15 Bárðarbunga-Holuhraun rifting event comprised the best-monitored dyke intrusion to date and the largest eruption in Iceland in 230 years. A huge variety of seismicity was produced, including over 30,000 volcano-tectonic earthquakes (VTs) associated with the dyke propagation at ∼6 km depth below sea level, and large-magnitude earthquakes accompanying the collapse of Bárðarbunga caldera. We here study the long-period seismicity associated with the rifting event. We systematically detect and locate both long-period events (LPs) and tremor during the dyke propagation phase and the first week of the eruption. We identify clusters of highly similar, repetitive LPs, which have a peak frequency of ∼1 Hz and clear P and S phases followed by a long-duration coda. The source mechanisms are remarkably consistent between clusters and also fundamentally different to those of the VTs. We accurately locate LP clusters near each of three ice cauldrons (depressions formed by basal melting) that were observed on the surface of Dyngjujökull glacier above the path of the dyke. Most events are in the vicinity of the northernmost cauldron, at shallower depth than the VTs associated with lateral dyke propagation. At the two northerly cauldrons, periods of shallow seismic tremor following the clusters of LPs are also observed. Given that the LPs occur at ∼4 km depth and in swarms during times of dyke-stalling, we infer that they result from excitation of magmatic fluid-filled cavities and indicate magma ascent. We suggest that the tremor is the climax of the vertical melt movement, arising from either rapid, repeated excitation of the same LP cavities, or sub-glacial eruption processes. This long-period seismicity therefore represents magma pathways between the depth of the dyke-VT earthquakes and the surface. Notably, we do not detect tremor associated with each cauldron, despite melt reaching the base of the overlying ice cap, a concern for hazard monitoring.

  20. The Magma Chamber Simulator: Modeling the Impact of Wall Rock Composition on Mafic Magmas during Assimilation-Fractional Crystallization

    Science.gov (United States)

    Creamer, J. B.; Spera, F. J.; Bohrson, W. A.; Ghiorso, M. S.

    2012-12-01

    Although stoichiometric titration is often used to model the process of concurrent Assimilation and Fractional Crystallization (AFC) within a compositionally evolving magma body, a more complete treatment of the problem involves simultaneous and self-consistent determination of stable phase relationships and separately evolving temperatures of both Magma (M) and Wall Rock (WR) that interact as a composite M-WR system. Here we present results of M-WR systems undergoing AFC forward modeled with the Magma Chamber Simulator (MCS), which uses the phase modeling capabilities of MELTS (Ghiorso & Sack 1995) as the thermodynamic basis. Simulations begin with one of a variety of mafic magmas (e.g. HAB, MORB, AOB) intruding a set mass of Wall Rock (e.g. lherzolite, gabbro, diorite, granite, metapelite), and heat is exchanged as the M-WR system proceeds towards thermal equilibrium. Depending on initial conditions, the early part of the evolution can involve closed system FC while the WR heats up. The WR behaves as a closed system until it is heated beyond the solidus to critical limit for melt fraction extraction (fc), ranging between 0.08 and 0.12 depending on WR characteristics including composition and, rheology and stress field. Once fc is exceeded, a portion of the anatectic liquid is assimilated into the Magma. The MCS simultaneously calculates mass and composition of the mineral assemblage (Magma cumulates and WR residue) and melt (anatectic and Magma) at each T along the equilibration trajectory. Sensible and latent heat lost or gained plus mass gained by the Magma are accounted for by the MCS via governing Energy Constrained- Recharge Assimilation Fractional Crystallization (EC-RAFC) equations. In a comparison of two representative MCS results, consider a granitic WR intruded by HAB melt (51 wt. % SiO2) at liquidus T in shallow crust (0.1 GPa) with a WR/M ratio of 1.25, fc of 0.1 and a QFM oxygen buffer. In the first example, the WR begins at a temperature of 100o

  1. Numerical modeling of bubble dynamics in magmas

    Science.gov (United States)

    Huber, Christian; Su, Yanqing; Parmigiani, Andrea

    2014-05-01

    Understanding the complex non-linear physics that governs volcanic eruptions is contingent on our ability to characterize the dynamics of bubbles and its effect on the ascending magma. The exsolution and migration of bubbles has also a great impact on the heat and mass transport in and out of magma bodies stored at shallow depths in the crust. Multiphase systems like magmas are by definition heterogeneous at small scales. Although mixture theory or homogenization methods are convenient to represent multiphase systems as a homogeneous equivalent media, these approaches do not inform us on possible feedbacks at the pore-scale and can be significantly misleading. In this presentation, we discuss the development and application of bubble-scale multiphase flow modeling to address the following questions : How do bubbles impact heat and mass transport in magma chambers ? How efficient are chemical exchanges between the melt and bubbles during magma decompression? What is the role of hydrodynamic interactions on the deformation of bubbles while the magma is sheared? Addressing these questions requires powerful numerical methods that accurately model the balance between viscous, capillary and pressure stresses. We discuss how these bubble-scale models can provide important constraints on the dynamics of magmas stored at shallow depth or ascending to the surface during an eruption.

  2. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    Science.gov (United States)

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-03-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600-800 MPa and possibly 800-1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200-350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions.

  3. Comparative Magma Oceanography

    Science.gov (United States)

    Jones, J. H.

    1999-01-01

    The question of whether the Earth ever passed through a magma ocean stage is of considerable interest. Geochemical evidence strongly suggests that the Moon had a magma ocean and the evidence is mounting that the same was true for Mars. Analyses of martian (SNC) meteorites have yielded insights into the differentiation history of Mars, and consequently, it is interesting to compare that planet to the Earth. Three primary features of Mars contrast strongly to those of the Earth: (i) the extremely ancient ages of the martian core, mantle, and crust (about 4.55 b.y.); (ii) the highly depleted nature of the martian mantle; and (iii) the extreme ranges of Nd isotopic compositions that arise within the crust and depleted mantle. The easiest way to explain the ages and diverse isotopic compositions of martian basalts is to postulate that Mars had an early magma ocean. Cumulates of this magma ocean were later remelted to form the SNC meteorite suite and some of these melts assimilated crustal materials enriched in incompatible elements. The REE pattern of the crust assimilated by these SNC magmas was LREE enriched. If this pattern is typical of the crust as a whole, the martian crust is probably similar in composition to melts generated by small degrees of partial melting (about 5%) of a primitive source. Higher degrees of partial melting would cause the crustal LREE pattern to be essentially flat. In the context of a magma ocean model, where large degrees of partial melting presumably prevailed, the crust would have to be dominated by late-stage, LREE-enriched residual liquids. Regardless of the exact physical setting, Nd and W isotopic evidence indicates that martian geochemical reservoirs must have formed early and that they have not been efficiently remixed since. The important point is that in both the Moon and Mars we see evidence of a magma ocean phase and that we recognize it as such. Several lines of theoretical inference point to an early Earth that was also hot

  4. Hot Gas TVC For Planetary Ascent Vehicle, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A Mars ascent vehicle (MAV) uses solid rocket motors to propel soil samples into orbit, but the motors cannot provide steering. Flexseal TVC control is planned for...

  5. Hot Gas TVC For Planetary Ascent Vehicle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A Mars ascent vehicle (MAV) uses solid rocket motors to propel soil samples into orbit, but the motors cannot provide steering. Cold gas thrusters are used for...

  6. Magmatism on the Moon

    Science.gov (United States)

    Michaut, Chloé; Thorey, Clément; Pinel, Virginie

    2016-04-01

    Volcanism on the Moon is dominated by large fissure eruptions of mare basalt and seems to lack large, central vent, shield volcanoes as observed on all the other terrestrial planets. Large shield volcanoes are constructed over millions to several hundreds of millions of years. On the Moon, magmas might not have been buoyant enough to allow for a prolonged activity at the same place over such lengths of time. The lunar crust was indeed formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a particularly light and relatively thick crust. This low-density crust acted as a barrier for the denser primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins where at least part of the crust was removed by the impact process. Thus, the ascent of lunar magmas might have been limited by their reduced buoyancy, leading to storage zone formation deep in the lunar crust. Further magma ascent to shallower depths might have required local or regional tensional stresses. Here, we first review evidences of shallow magmatic intrusions within the lunar crust of the Moon that consist in surface deformations presenting morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. We then study the preferential zones of magma storage in the lunar crust as a function of the local and regional state of stress. Evidences of shallow intrusions are often contained within complex impact craters suggesting that the local depression caused by the impact exerted a strong control on magma ascent. The depression is felt over a depth equivalent to the crater radius. Because many of these craters have a radius less than 30km, the minimum crust thickness, this suggests that the magma was already stored in deeper intrusions before ascending at shallower depth. All the evidences for intrusions are also preferentially located in the internal

  7. Grain to outcrop-scale frozen moments of dynamic magma mixing in the syenite magma chamber, Yelagiri Alkaline Complex, South India

    Directory of Open Access Journals (Sweden)

    M.L. Renjith

    2014-11-01

    Full Text Available Magma mixing process is unusual in the petrogenesis of felsic rocks associated with alkaline complex worldwide. Here we present a rare example of magma mixing in syenite from the Yelagiri Alkaline Complex, South India. Yelagiri syenite is a reversely zoned massif with shoshonitic (Na2O + K2O=5–10 wt.%, Na2O/K2O = 0.5–2, TiO2 <0.7 wt.% and metaluminous character. Systematic modal variation of plagioclase (An11–16 Ab82–88, K-feldspar (Or27–95 Ab5–61, diopside (En34–40Fs11–18Wo46–49, biotite, and Ca-amphibole (edenite build up three syenite facies within it and imply the role of in-situ fractional crystallization (FC. Evidences such as (1 disequilibrium micro-textures in feldspars, (2 microgranular mafic enclaves (MME and (3 synplutonic dykes signify mixing of shoshonitic mafic magma (MgO = 4–5 wt.%, SiO2 = 54–59 wt.%, K2O/Na2O = 0.4–0.9 with syenite. Molecular-scale mixing of mafic magma resulted disequilibrium growth of feldspars in syenite. Physical entity of mafic magma preserved as MME due to high thermal-rheological contrast with syenite magma show various hybridization through chemical exchange, mechanical dilution enhanced by chaotic advection and phenocryst migration. In synplutonic dykes, disaggregation and mixing of mafic magma was confined within the conduit of injection. Major-oxides mass balance test quantified that approximately 0.6 portions of mafic magma had interacted with most evolved syenite magma and generated most hybridized MME and dyke samples. It is unique that all the rock types (syenite, MME and synplutonic dykes share similar shoshonitic and metaluminous character; mineral chemistry, REE content, coherent geochemical variation in Harker diagram suggest that mixing of magma between similar composition. Outcrop-scale features of crystal accumulation and flow fabrics also significant along with MME and synplutonic dykes in syenite suggesting that Yelagiri syenite magma chamber had evolved

  8. U-Series disequilibria, magma petrogenesis and flux rates along the depleted Tonga-Kermadec Island Arc

    International Nuclear Information System (INIS)

    Turner, S.; Hawkesworth, C.; Rogers, N.; Bartlett, J.; Smith, I.; Worthington, T.; Smith, I.; Worthington, T.

    1997-01-01

    The fluid contribution to the lava source has been calculated as -1 ppm Rb, 10 ppm Ba, 0.02 ppm U, 600 ppm K 0.2 ppm Pb and 30 ppm Sr. It has 87 Sr/ 86 Sr = 0.7035 and 206 Pb/ 204 Pb = 18.5 and thus is inferred to be derived from dehydration of the subducting altered oceanic crust. U-Th isotope disequilibria reflect the time since fluid release from the subducting slab and a pseudo-isochron through the lowest ( 230 Th/ 232 Th) lavas constrains this to be ∼ 50 000 yr. Significantly, U-Th isotope data record similar timescales in the Lesser Antilles (∼40 000 yr, Turner et al., 1996) and in the Marianas (30 000 yr, Elliott et al., 1996) which provides encouragement that these data reflect some general aspect of the flux rates beneath island arcs. Large 226 Ra excesses have also been reported from Tonga-Kermadec (( 226 Ra/ 230 Th) = 1.5-3.0, Gill and Williams, 1990). Since 226 Ra will return to secular equilibrium with 230 Th (( 226 Ra/ 230 Th) = 1) within 7500 yr of Ra/Th fractionation the 238 U/ 230 Th and 226 Ra/ 230 Th disequilibria are clearly decoupled (see also Turner et al., 1996). This is an unexpected result and clearly the 226 Ra/ 230 Th disequilibria must have developed after the process responsible for the major U/Th fractionation. It is suggested that Th-Ra isotope disequilibria record the time since partial melting and thus indicate rapid channelled magma ascent. Olivine gabbro xenoliths from Raoul are interpreted as cumulates to their host lavas with which they form zero age U-Th isochrons indicating that minimal time was spent in magma chambers. The subduction signature is not observed in lavas from the back arc island of Niuafo'ou and thus does not penetrate as far 200 km beyond the arc front volcanoes. These were derived from partial melting of fertile peridotite at 130-160 km depth with melt rates around 2 x 10 -4 kg m -3 yr -1 , possibly due to volatiles released from the breakdown of phengite and lawsonite in the underlying slab at 200 km

  9. Volcanic emission of radionuclides and magma dynamics

    International Nuclear Information System (INIS)

    Lambert, G.; Le Cloarec, M.F.; Ardouin, B.; Le Roulley, J.C.

    1985-01-01

    210 Pb, 210 Bi and 210 Po, the last decay products of the 238 U series, are highly enriched in volcanic plumes, relative to the magma composition. Moreover this enrichment varies over time and from volcano to volcano. A model is proposed to describe 8 years of measurements of Mt. Etna gaseous emissions. The lead and bismuth coefficients of partition between gaseous and condensated phases in the magma are determined by comparing their concentrations in lava flows and condensated volatiles. In the case of volatile radionuclides, an escaping time is calculated which appears to be related to the volcanic activity. Finally, it is shown that that magma which is degassing can already be partly degassed; it should be considered as a mixture of a few to 50% of deep non-degassed magma with a well degassed superficial magma cell. (orig.)

  10. Interaction of coeval felsic and mafic magmas from the Kanker ...

    Indian Academy of Sciences (India)

    66

    20 crystallization of the latter, results in hybrid magmas under the influence of thermal and. 21 chemical exchange. The mechanical exchange occurs between the coexisting magmas due to. 22 viscosity contrast, if the mafic magma enters slightly later into the magma chamber, when the. 23 felsic magma started to crystallize.

  11. Frontal joint dynamics when initiating stair ascent from a walk versus a stand.

    Science.gov (United States)

    Vallabhajosula, Srikant; Yentes, Jennifer M; Stergiou, Nicholas

    2012-02-02

    Ascending stairs is a challenging activity of daily living for many populations. Frontal plane joint dynamics are critical to understand the mechanisms involved in stair ascension as they contribute to both propulsion and medio-lateral stability. However, previous research is limited to understanding these dynamics while initiating stair ascent from a stand. We investigated if initiating stair ascent from a walk with a comfortable self-selected speed could affect the frontal plane lower-extremity joint moments and powers as compared to initiating stair ascent from a stand and if this difference would exist at consecutive ipsilateral steps on the stairs. Kinematics data using a 3-D motion capture system and kinetics data using two force platforms on the first and third stair treads were recorded simultaneously as ten healthy young adults ascended a custom-built staircase. Data were collected from two starting conditions of stair ascent, from a walk (speed: 1.42 ± 0.21 m/s) and from a stand. Results showed that subjects generated greater peak knee abductor moment and greater peak hip abductor moment when initiating stair ascent from a walk. Greater peak joint moments and powers at all joints were also seen while ascending the second ipsilateral step. Particularly, greater peak hip abductor moment was needed to avoid contact of the contralateral limb with the intermediate step by counteracting the pelvic drop on the contralateral side. This could be important for therapists using stair climbing as a testing/training tool to evaluate hip strength in individuals with documented frontal plane abnormalities (i.e. knee and hip osteoarthritis, ACL injury). Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Depth of origin of magma in eruptions.

    Science.gov (United States)

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  13. Zircons reveal magma fluxes in the Earth's crust.

    Science.gov (United States)

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs

    2014-07-24

    Magma fluxes regulate the planetary thermal budget, the growth of continents and the frequency and magnitude of volcanic eruptions, and play a part in the genesis and size of magmatic ore deposits. However, because a large fraction of the magma produced on the Earth does not erupt at the surface, determinations of magma fluxes are rare and this compromises our ability to establish a link between global heat transfer and large-scale geological processes. Here we show that age distributions of zircons, a mineral often present in crustal magmatic rocks, in combination with thermal modelling, provide an accurate means of retrieving magma fluxes. The characteristics of zircon age populations vary significantly and systematically as a function of the flux and total volume of magma accumulated in the Earth's crust. Our approach produces results that are consistent with independent determinations of magma fluxes and volumes of magmatic systems. Analysis of existing age population data sets using our method suggests that porphyry-type deposits, plutons and large eruptions each require magma input over different timescales at different characteristic average fluxes. We anticipate that more extensive and complete magma flux data sets will serve to clarify the control that the global heat flux exerts on the frequency of geological events such as volcanic eruptions, and to determine the main factors controlling the distribution of resources on our planet.

  14. Variations in magma supply rate at Kilauea Volcano, Hawaii

    Science.gov (United States)

    Dvorak, John J.; Dzurisin, Daniel

    1993-01-01

    When an eruption of Kilauea lasts more than 4 months, so that a well-defined conduit has time to develop, magma moves freely through the volcano from a deep source to the eruptive site at a constant rate of 0.09 km3/yr. At other times, the magma supply rate to Kilauea, estimated from geodetic measurements of surface displacements, may be different. For example, after a large withdrawal of magma from the summit reservoir, such as during a rift zone eruption, the magma supply rate is high initially but then lessens and exponentially decays as the reservoir refills. Different episodes of refilling may have different average rates of magma supply. During four year-long episodes in the 1960s, the annual rate of refilling varied from 0.02 to 0.18 km3/yr, bracketing the sustained eruptive rate of 0.09 km3/yr. For decade-long or longer periods, our estimate of magma supply rate is based on long-term changes in eruptive rate. We use eruptive rate because after a few dozen eruptions the volume of magma that passes through the summit reservoir is much larger than the net change of volume of magma stored within Kilauea. The low eruptive rate of 0.009 km3/yr between 1840 and 1950, compared to an average eruptive rate of 0.05 km3/yr since 1950, suggests that the magma supply rate was lower between 1840 and 1950 than it has been since 1950. An obvious difference in activity before and since 1950 was the frequency of rift zone eruptions: eight rift zone eruptions occurred between 1840 and 1950, but more than 20 rift zone eruptions have occurred since 1950. The frequency of rift zone eruptions influences magma supply rate by suddenly lowering pressure of the summit magma reservoir, which feeds magma to rift zone eruptions. A temporary drop of reservoir pressure means a larger-than-normal pressure difference between the reservoir and a deeper source, so magma is forced to move upward into Kilauea at a faster rate.

  15. Mantle ingredients for making the fingerprint of Etna alkaline magmas: implications for shallow partial melting within the complex geodynamic framework of Eastern Sicily

    Science.gov (United States)

    Viccaro, Marco; Zuccarello, Francesco

    2017-09-01

    able to produce magmas with variable compositions and volatile contents, which can then undergo distinct histories of ascent and evolution, leading to the wide range of eruptive styles observed at Mt. Etna volcano. Being partial melting confined in the spinel facies of the mantle, our model implies that the source of Mt. Etna magmas might be rather shallow (<2 GPa; i.e., lesser than ca. 60 km), excluding the presence of deep, plume-like mantle structures responsible for magma generation. Partial melting should occur consequently as a response of mantle decompression within the framework of regional tectonics affecting the Eastern Sicily, which could be triggered by extensional tectonics and/or subduction-induced mantle upwelling.

  16. Toward an integrative spatiotemporal architecture of the magma plumbing system leading to systematic Plinian eruption at Montagne Pelée Martinique (Lesser Antilles)

    Science.gov (United States)

    Boudon, G.; Balcone-Boissard, H.; Lyonnet, E.; Morgan, D. J.

    2017-12-01

    The dynamic of crustal magma reservoir may be at the origin of pressure/temperature variations that may trigger magma ascent and eruption. These changes can be registered during crystal growth and can probably produce at the surface geophysical or/and geochemical signals that could be registered by monitoring network, constituting precursory signals. For volcanoes where the plumbing system is well established in terms of volume and depth for a given cycle, repetitive eruptions of the same order of magnitude and involving similar magma composition may occur. It was the case for Montagne Pelée (Martinique, Lesser Antilles), sadly known for the 1902 lava dome-forming eruption that killed 30 000 inhabitants, and that produce repetitive Plinian eruptions in the last 15 ky. Are the perturbations in the dynamic of the magma storage identical for all these eruptions and is the timescale between these perturbations and the eruptions in the same order of magnitude? In the last decade, intracristalline diffusion modelling has been increasingly used to constrain timescale of magmatic processes. Recently this kind of investigations has been coupled to a petrological model of the magma storage region to better wholly describe its behaviour through a Crystal System Analysis (CSA) approach. Here we aim at constraining the pre-eruptive dynamic of the reservoir giving birth to the Plinian eruptions at Montagne Pelée. Precisely we attempt to identify the processes at the origin of the eruptions and the timescale between this process and the eruption. By studying the last five Plinian eruptions of this volcano the question of the systematic occurrence of one process at the same time prior eruption will be discussed. To achieve this goal we performed a detailed petrological description of the eruptive products of the first Plinian phase of these eruptions to build a CSA tree through EPMA and SEM analyses, coupled to Fe-Mg diffusion modelling in orthopyroxenes to retrieve timescale

  17. Rapid Transient Deformation From a Shallow Magmatic Source at the Socorro Magma Body, NM, USA?

    Science.gov (United States)

    Newman, A. V.; Chamberlin, R. M.; Love, D. W.; Dixon, T. H.; La Femina, P.

    2004-12-01

    The Socorro Magma Body (SMB) lies within the central Rio Grande Rift (RGR) Valley and is one of the largest known magma bodies in the Earth's continental crust. Studies of local microseismicity and deep seismic soundings revealed an unusually strong reflector approximately 70 km wide at 19 km depth and identified it as a large active sill-like crustal magma intrusion. Using precision leveling (1912-80) and InSAR (1992-99), previous studies have found ˜2-4 mm/yr of averaged uplift centered near San Acacia, over the center of the reflector, and corresponding to about 107 m3 of annual growth from an inflating sill at 19 km depth. We performed two GPS campaigns over the SMB on nine bedrock sites in 2002 and 2003. Vertical GPS velocities from six sites forming a transect over the central SMB are between ˜10 and 20 mm (1σ ˜10 mm) with the maximum measured surface uplift at two central stations near San Acacia. However, three sites forming a partial transect ˜12 km north show no uplift for this period. Additionally, continuous GPS 18 km south of the central transect shows 4-5 mm/yr uplift between 2001 and 2004. Collectively, these data suggest a significant and smaller body inflating between 5-10 km depth and corresponding to 0.5-5× 106 m3 between 2002 and 2003. Though horizontal velocities are all less than their individual errors ( ˜5 mm) they generally radiate outward from the center of the SMB. These results indicate that the SMB may have considerable variation in the spatio-temporal pattern of deformation. This suggests that, though over several years to decades the SMB inflates at an average of 2-4 mm/yr, more frequent and widespread geodetic measurements are necessary to fully assess its complex sources. Additionally, because the southern portion of the SMB extends into the trilateration network of Savage et al. [1988], which found slow-to-no extension (<3 mm/yr) across the RGR, it may be that those results were contaminated by previously unknown transient

  18. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    Science.gov (United States)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is

  19. Resonance oscillations of the Soufrière Hills Volcano (Montserrat, W.I.) magmatic system induced by forced magma flow from the reservoir into the upper plumbing dike

    Science.gov (United States)

    Chen, Chin-Wu; Huang, Hsin-Fu; Hautmann, Stefanie; Sacks, I. Selwyn; Linde, Alan T.; Taira, Taka'aki

    2018-01-01

    Short-period deformation cycles are a common phenomenon at active volcanoes and are often attributed to the instability of magma flow in the upper plumbing system caused by fluctuations in magma viscosity related to cooling, degassing, and crystallization. Here we present 20-min periodic oscillations in ground deformation based on high-precision continuous borehole strain data that were associated with the 2003 massive dome-collapse at the Soufrière Hills Volcano, Montserrat (West Indies). These high-frequency oscillations lasted 80 min and were preceded by a 4-hour episode of rapid expansion of the shallow magma reservoir. Strain amplitude ratios indicate that the deformational changes were generated by pressure variations in the shallow magma reservoir and - with reversed polarity - the adjacent plumbing dike. The unusually short period of the oscillations cannot be explained with thermally induced variations in magma properties. We investigate the underlying mechanism of the oscillations via a numerical model of forced magma flow through a reservoir-dike system accounting for time-dependent dilation/contraction of the dike due to a viscous response in the surrounding host rock. Our results suggest that the cyclic pressure variations are modulated by the dynamical interplay between rapid expansion of the magma chamber and the incapacity of the narrow dike to take up fast enough the magma volumes supplied by the reservoir. Our results allow us to place first order constraints on the viscosity of crustal host rocks and consequently its fractional melt content. Hence, we present for the first time crustal-scale in situ measurements of rheological properties of mush zones surrounding magmatic systems.

  20. MAGMA: analysis of two-channel microarrays made easy.

    Science.gov (United States)

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  1. Forecasting magma-chamber rupture at Santorini volcano, Greece.

    Science.gov (United States)

    Browning, John; Drymoni, Kyriaki; Gudmundsson, Agust

    2015-10-28

    How much magma needs to be added to a shallow magma chamber to cause rupture, dyke injection, and a potential eruption? Models that yield reliable answers to this question are needed in order to facilitate eruption forecasting. Development of a long-lived shallow magma chamber requires periodic influx of magmas from a parental body at depth. This redistribution process does not necessarily cause an eruption but produces a net volume change that can be measured geodetically by inversion techniques. Using continuum-mechanics and fracture-mechanics principles, we calculate the amount of magma contained at shallow depth beneath Santorini volcano, Greece. We demonstrate through structural analysis of dykes exposed within the Santorini caldera, previously published data on the volume of recent eruptions, and geodetic measurements of the 2011-2012 unrest period, that the measured 0.02% increase in volume of Santorini's shallow magma chamber was associated with magmatic excess pressure increase of around 1.1 MPa. This excess pressure was high enough to bring the chamber roof close to rupture and dyke injection. For volcanoes with known typical extrusion and intrusion (dyke) volumes, the new methodology presented here makes it possible to forecast the conditions for magma-chamber failure and dyke injection at any geodetically well-monitored volcano.

  2. Magma heating by decompression-driven crystallization beneath andesite volcanoes.

    Science.gov (United States)

    Blundy, Jon; Cashman, Kathy; Humphreys, Madeleine

    2006-09-07

    Explosive volcanic eruptions are driven by exsolution of H2O-rich vapour from silicic magma. Eruption dynamics involve a complex interplay between nucleation and growth of vapour bubbles and crystallization, generating highly nonlinear variation in the physical properties of magma as it ascends beneath a volcano. This makes explosive volcanism difficult to model and, ultimately, to predict. A key unknown is the temperature variation in magma rising through the sub-volcanic system, as it loses gas and crystallizes en route. Thermodynamic modelling of magma that degasses, but does not crystallize, indicates that both cooling and heating are possible. Hitherto it has not been possible to evaluate such alternatives because of the difficulty of tracking temperature variations in moving magma several kilometres below the surface. Here we extend recent work on glassy melt inclusions trapped in plagioclase crystals to develop a method for tracking pressure-temperature-crystallinity paths in magma beneath two active andesite volcanoes. We use dissolved H2O in melt inclusions to constrain the pressure of H2O at the time an inclusion became sealed, incompatible trace element concentrations to calculate the corresponding magma crystallinity and plagioclase-melt geothermometry to determine the temperature. These data are allied to ilmenite-magnetite geothermometry to show that the temperature of ascending magma increases by up to 100 degrees C, owing to the release of latent heat of crystallization. This heating can account for several common textural features of andesitic magmas, which might otherwise be erroneously attributed to pre-eruptive magma mixing.

  3. Mush Column Magma Chambers

    Science.gov (United States)

    Marsh, B. D.

    2002-12-01

    Magma chambers are a necessary concept in understanding the chemical and physical evolution of magma. The concept may well be similar to a transfer function in circuit or time series analysis. It does what needs to be done to transform source magma into eruptible magma. In gravity and geodetic interpretations the causative body is (usually of necessity) geometrically simple and of limited vertical extent; it is clearly difficult to `see' through the uppermost manifestation of the concentrated magma. The presence of plutons in the upper crust has reinforced the view that magma chambers are large pots of magma, but as in the physical representation of a transfer function, actual magma chambers are clearly distinct from virtual magma chambers. Two key features to understanding magmatic systems are that they are vertically integrated over large distances (e.g., 30-100 km), and that all local magmatic processes are controlled by solidification fronts. Heat transfer considerations show that any viable volcanic system must be supported by a vertically extensive plumbing system. Field and geophysical studies point to a common theme of an interconnected stack of sill-like structures extending to great depth. This is a magmatic Mush Column. The large-scale (10s of km) structure resembles the vertical structure inferred at large volcanic centers like Hawaii (e.g., Ryan et al.), and the fine scale (10s to 100s of m) structure is exemplified by ophiolites and deeply eroded sill complexes like the Ferrar dolerites of the McMurdo Dry Valleys, Antarctica. The local length scales of the sill reservoirs and interconnecting conduits produce a rich spectrum of crystallization environments with distinct solidification time scales. Extensive horizontal and vertical mushy walls provide conditions conducive to specific processes of differentiation from solidification front instability to sidewall porous flow and wall rock slumping. The size, strength, and time series of eruptive behavior

  4. Six Degrees-of-Freedom Ascent Control for Small-Body Touch and Go

    Science.gov (United States)

    Blackmore, Lars James C.

    2011-01-01

    A document discusses a method of controlling touch and go (TAG) of a spacecraft to correct attitude, while ensuring a safe ascent. TAG is a concept whereby a spacecraft is in contact with the surface of a small body, such as a comet or asteroid, for a few seconds or less before ascending to a safe location away from the small body. The report describes a controller that corrects attitude and ensures that the spacecraft ascends to a safe state as quickly as possible. The approach allocates a certain amount of control authority to attitude control, and uses the rest to accelerate the spacecraft as quickly as possible in the ascent direction. The relative allocation to attitude and position is a parameter whose optimal value is determined using a ground software tool. This new approach makes use of the full control authority of the spacecraft to correct the errors imparted by the contact, and ascend as quickly as possible. This is in contrast to prior approaches, which do not optimize the ascent acceleration.

  5. Effects of ascent to high altitude on human antimycobacterial immunity.

    Directory of Open Access Journals (Sweden)

    Sarah Eisen

    Full Text Available Tuberculosis infection, disease and mortality are all less common at high than low altitude and ascent to high altitude was historically recommended for treatment. The immunological and mycobacterial mechanisms underlying the association between altitude and tuberculosis are unclear. We studied the effects of altitude on mycobacteria and antimycobacterial immunity.Antimycobacterial immunity was assayed in 15 healthy adults residing at low altitude before and after they ascended to 3400 meters; and in 47 long-term high-altitude residents. Antimycobacterial immunity was assessed as the extent to which participants' whole blood supported or restricted growth of genetically modified luminescent Bacille Calmette-Guérin (BCG mycobacteria during 96 hours incubation. We developed a simplified whole blood assay that could be used by a technician in a low-technology setting. We used this to compare mycobacterial growth in participants' whole blood versus positive-control culture broth and versus negative-control plasma.Measurements of mycobacterial luminescence predicted the number of mycobacterial colonies cultured six weeks later. At low altitude, mycobacteria grew in blood at similar rates to positive-control culture broth whereas ascent to high altitude was associated with restriction (p ≤ 0.002 of mycobacterial growth to be 4-times less than in culture broth. At low altitude, mycobacteria grew in blood 25-times more than negative-control plasma whereas ascent to high altitude was associated with restriction (p ≤ 0.01 of mycobacterial growth to be only 6-times more than in plasma. There was no evidence of differences in antimycobacterial immunity at high altitude between people who had recently ascended to high altitude versus long-term high-altitude residents.An assay of luminescent mycobacterial growth in whole blood was adapted and found to be feasible in low-resource settings. This demonstrated that ascent to or residence at high altitude was

  6. Numerical modeling perspectives on zircon crystallization and magma reservoir growth at the Laguna del Maule volcanic field, central Chile

    Science.gov (United States)

    Andersen, N. L.; Dufek, J.; Singer, B. S.

    2017-12-01

    Magma reservoirs in the middle to upper crust are though to accumulate incrementally over 104 -105 years. Coupled crystallization ages and compositions of zircon are a potentially powerful tracer of reservoir growth and magma evolution. However, complex age distributions and disequilibrium trace element partitioning complicate the interpretation of the zircon record in terms of magmatic processes. In order to make quantitative predictions of the effects of magmatic processes that contribute reservoir growth and evolution—such as cooling and crystallization, magma recharge and mixing, and rejuvenation and remelting of cumulate-rich reservoir margins—we develop a model of zircon saturation and growth within a numerical framework of coupled thermal transfer, phase equilibrium, and magma dynamics. We apply this model to the Laguna del Maule volcanic field (LdM), located in central Chile. LdM has erupted at least 40 km3 of rhyolite from 36 vents distributed within a 250 km2 lake basin. Ongoing unrest demonstrates the large, silicic magma system beneath LdM remains active to this day. Zircon from rhyolite erupted between c. 23 and 1.8 ka produce a continuous distribution of 230Th-238U ages ranging from eruption to 40 ka, as well as less common crystal domains up to 165 ka and rare xenocrysts. Zircon trace element compositions fingerprint compositionally distinct reservoirs that grew within the larger magma system. Despite the dominantly continuous distributions of ages, many crystals are characterized by volumetrically substantial, trace element enriched domains consistent with rapid crystal growth. We utilize numerical simulations to assess the magmatic conditions required to catalyze these "blooms" of crystallization and the magma dynamics that contributed to the assembly of the LdM magma system.

  7. A Simple Analytic Model for Estimating Mars Ascent Vehicle Mass and Performance

    Science.gov (United States)

    Woolley, Ryan C.

    2014-01-01

    The Mars Ascent Vehicle (MAV) is a crucial component in any sample return campaign. In this paper we present a universal model for a two-stage MAV along with the analytic equations and simple parametric relationships necessary to quickly estimate MAV mass and performance. Ascent trajectories can be modeled as two-burn transfers from the surface with appropriate loss estimations for finite burns, steering, and drag. Minimizing lift-off mass is achieved by balancing optimized staging and an optimized path-to-orbit. This model allows designers to quickly find optimized solutions and to see the effects of design choices.

  8. El Hierro's floating stones as messengers of crust-magma interaction at depth

    Science.gov (United States)

    Burchardt, S.; Troll, V. R.; Schmeling, H.; Koyi, H.; Blythe, L. S.; Longpré, M. A.; Deegan, F. M.

    2012-04-01

    During the early stages of the submarine eruption that started on October 10 2011 south of El Hierro, Canary Islands, Spain, peculiar eruption products were found floating on the sea surface. These centimetre- to decimetre-sized "bombs" have been termed "restingolites" after the nearby village La Restinga and consist of a basaltic rind and a white to light grey core that resembles pumice in texture. According to Troll et al. (2011; see also Troll et al. EGU 2012 Abstracts), this material consists of a glassy matrix hosting extensive vesicle networks, which results in extremely low densities allowing these rocks to float on sea water. Mineralogical and geochemical analyses reveal that the "restingolites" originate from the sedimentary rocks (sand-, silt-, and mudstones) that form layer 1 of the oceanic crust beneath El Hierro. During the onset and early stages of the eruption, magma ponded at the base of this sedimentary sequence, breaking its way through the sedimentary rocks to the ocean floor. The textures of the "restingolites" reveal that crust-magma interaction during fragmentation and transport of the xenoliths involved rapid partial melting and volatile exsolution. Xenoliths strikingly similar to those from El Hierro are known from eruptions on other Canary Islands (e.g. La Palma, Gran Canaria, and Lanzarote). In fact, they resemble in texture xenoliths of various protoliths from volcanic areas worldwide (e.g. Krakatao, Indonesia, Cerro Quemado, Guatemala, Laacher See, Germany). This indicates that the process of partial melting and volatile exsolution, which the "restingolites" bear witness of, is probably occurring frequently during shallow crustal magma emplacement. Thermomechanical numerical models of the effect of the density decrease associated with the formation of vesicle networks in partially molten xenoliths show that xenoliths of crustal rocks initially sink in a magma chamber, but may start to float to the chamber roof once they start to heat up

  9. Short-circuiting magma differentiation from basalt straight to rhyolite?

    Science.gov (United States)

    Ruprecht, P.; Winslow, H.

    2017-12-01

    Silicic magmas are the product of varying degrees of crystal fractionation and crustal assimilation/melting. Both processes lead to differentiation that is step-wise rather than continuous for example during melt separation from a crystal mush (Dufek and Bachmann, 2010). However, differentiation is rarely efficient enough to evolve directly from a basaltic to a rhyolitic magma. At Volcán Puyehue-Cordón Caulle, Chile, the magma series is dominated by crystal fractionation where mixing trends between primitive and felsic end members in the bulk rock compositions are almost absent (e.g. P, FeO, TiO2 vs. SiO2). How effective fraction is in this magmatic system is not well-known. The 2011-12 eruption at Cordón Caulle provides new constraints that rhyolitic melts may be derived directly from a basaltic mush. Minor, but ubiquitous mafic, crystal-rich enclaves co-erupted with the predominantly rhyolitic near-aphyric magma. These enclaves are among the most primitive compositions erupted at Puyehue-Cordón Caulle and geochemically resemble closely basaltic magmas that are >10 ka old (Singer et al. 2008) and that have been identified as a parental tholeiitic mantle-derived magma (Schmidt and Jagoutz, 2017) for the Southern Andean Volcanic Zone. The vesiculated nature, the presence of a microlite-rich groundmass, and a lack of a Eu anomaly in these encalves suggest that they represent recharge magma/mush rather than sub-solidus cumulates and therefore have potentially a direct petrogenetic link to the erupted rhyolites. Our results indicate that under some conditions crystal fractionation can be very effective and the presence of rhyolitic magmas does not require an extensive polybaric plumbing system. Instead, primitive mantle-derived magmas source directly evolved magmas. In the case, of the magma system beneath Puyehue-Cordón Caulle, which had three historic rhyolitic eruptions (1921-22, 1960, 2011-12) these results raise the question whether rhyolite magma extraction

  10. Response Surface Methodology's Steepest Ascent and Step Size Revisited

    NARCIS (Netherlands)

    Kleijnen, J.P.C.; den Hertog, D.; Angun, M.E.

    2002-01-01

    Response Surface Methodology (RSM) searches for the input combination maximizing the output of a real system or its simulation.RSM is a heuristic that locally fits first-order polynomials, and estimates the corresponding steepest ascent (SA) paths.However, SA is scale-dependent; and its step size is

  11. Unravelling the magmatic system beneath a monogenetic volcanic complex (Jagged Rocks Complex, Hopi Buttes, AZ, USA)

    Science.gov (United States)

    Re, G.; Palin, J. M.; White, J. D. L.; Parolari, M.

    2017-12-01

    The Jagged Rocks complex is the eroded remnant of the plumbing systems of closely spaced monogenetic alkaline volcanic centres in the southern Hopi Buttes Volcanic Field (AZ, USA). It contains different clinopyroxene populations with distinctive textures and geochemical patterns. In the Northwestern part of the complex, which exposes the best developed system of conduits, most of the clinopyroxenes consist of large- to medium-sized resorbed cores overgrown by euhedral rims (type 1), small moderately resorbed greenish cores with the same overgrown rims (type 2), and phlogopite as an accessory phase. By contrast, in the Southern part of the complex the majority of clinopyroxenes are euhedral with oscillatory zonation (type 3) and are accompanied by minor euhedral olivine. The differences between these mineral assemblages indicate a composite history of crystallization and magmatic evolution for the two parts of the complex, governed by different mechanisms and ascent patterns from a single source at 50 km depth (16 kbar). The Northwest system preserves a high-pressure assemblage that cooled rapidly from near-liquidus conditions, suggesting direct ascent from the source to the surface at high-to-moderate transport rates (average 1.25 m/s). By contrast, the Southern system represents magma that advanced upward at much lower overall ascent rates, stalling at times to form small-volume mid-crustal storage zones (e.g., sills or a network of sheeted intrusions); this allowed the re-equilibration of the magma at lower pressure ( 30 km; 8 kbar), and led to nucleation and growth of euhedral clinopyroxene and olivine phenocrysts.

  12. The timing of compositionally-zoned magma reservoirs and mafic 'priming' weeks before the 1912 Novarupta-Katmai rhyolite eruption

    Science.gov (United States)

    Singer, Brad S.; Costa, Fidel; Herrin, Jason S.; Hildreth, Wes; Fierstein, Judith

    2016-01-01

    The June 6, 1912 eruption of more than 13 km3 of dense rock equivalent (DRE) magma at Novarupta vent, Alaska was the largest of the 20th century. It ejected >7 km3 of rhyolite, ~1.3 km3 of andesite and ~4.6 km3 of dacite. Early ideas about the origin of pyroclastic flows and magmatic differentiation (e.g., compositional zonation of reservoirs) were shaped by this eruption. Despite being well studied, the timing of events that led to the chemically and mineralogically zoned magma reservoir remain poorly known. Here we provide new insights using the textures and chemical compositions of plagioclase and orthopyroxene crystals and by reevaluating previous U-Th isotope data. Compositional zoning of the magma reservoir likely developed a few thousand years before the eruption by several additions of mafic magma below an extant silicic reservoir. Melt compositions calculated from Sr contents in plagioclase fill the compositional gap between 68 and 76% SiO2 in whole pumice clasts, consistent with uninterrupted crystal growth from a continuum of liquids. Thus, our findings support a general model in which large volumes of crystal-poor rhyolite are related to intermediate magmas through gradual separation of melt from crystal-rich mush. The rhyolite is incubated by, but not mixed with, episodic recharge pulses of mafic magma that interact thermochemically with the mush and intermediate magmas. Hot, Mg-, Ca-, and Al-rich mafic magma intruded into, and mixed with, deeper parts of the reservoir (andesite and dacite) multiple times. Modeling the relaxation of the Fe-Mg concentrations in orthopyroxene and Mg in plagioclase rims indicates that the final recharge event occurred just weeks prior to the eruption. Rapid addition of mass, volatiles, and heat from the recharge magma, perhaps aided by partial melting of cumulate mush below the andesite and dacite, pressurized the reservoir and likely propelled a ~10 km lateral dike that allowed the overlying rhyolite to reach the surface.

  13. Loki Patera: A Magma Sea Story

    Science.gov (United States)

    Veeder, G. J.; Matson, D. L.; Rathbun, A. G.

    2005-01-01

    We consider Loki Patera on Io as the surface expression of a large uniform body of magma. Our model of the Loki magma sea is some 200 km across; larger than a lake but smaller than an ocean. The depth of the magma sea is unknown, but assumed to be deep enough that bottom effects can be ignored. Edge effects at the shore line can be ignored to first order for most of the interior area. In particular, we take the dark material within Loki Patera as a thin solidified lava crust whose hydrostatic shape follows Io's isostatic surface (approx. 1815 km radius of curvature). The dark surface of Loki appears to be very smooth on both regional and local (subresolution) scales. The thermal contrast between the low and high albedo areas within Loki is consistent with the observed global correlation. The composition of the model magma sea is basaltic and saturated with dissolved SO2 at depth. Its average, almost isothermal, temperature is at the liquidus for basalt. Additional information is included in the original extended abstract.

  14. Disclosing Multiple Magma Degassing Sources Offers Unique Insights of What's Behind the Campi Flegrei Caldera Unrest

    Science.gov (United States)

    Moretti, R.; Civetta, L.; Orsi, G.; Arienzo, I.; D'Antonio, M.; Di Renzo, V.

    2013-12-01

    The definition of the structure and evolution of the magmatic system of Campi Flegrei caldera (CFc), Southern Italy, has been a fundamental tool for the assessment of the short-term volcanic hazard. The ensemble of geophysical and petrologic data show that the CFc magmatic system has been -and still is- characterized by two major reservoirs at different depths. From the deep one (around 8 km), less evolved magmas crystallize and degas, supplying fluids and magmas to the shallow (3-4 km) reservoirs. A thorough reconstruction of processes occurring in magma chamber/s prior and/or during the CFc eruptions has shown that magmas entering shallow reservoirs mixed with resident and crystallized batches. Also the 1982-85 unrest episode has been related to a magma intrusion of 2.1 x 10^7 m^3 at 3-4 km depth, on the basis of geophysical data (ground deformation, gravimetry, seismic imaging) and their interpretation. Thermodynamic evaluation of magma properties, at the time of emplacement, suggests for such an intrusion a bulk density of 2.000 kg/m^3 . Such a value testifies the high amount of exsolved volatiles within the system. The available record of geochemical and isotopic data on surface fumaroles, coupled with melt inclusion data, has already shown that dual (deep and shallow) magma degassing from such two reservoirs, as well as their interaction with the hydrothermal system, allows explaining the relevant fluctuations observed at crater fumaroles after the 1982-85 magma intrusion. An important role was played by the rapid crystallization (around 30 years) of the shallow magma, such that in the recent years gas discharges should be fuelled mostly by the deep magma. Such a process is well recorded in the fumarolic gas composition of the last ~10 years, but has to be reconciled with the unrest dynamics which took place after year 2000, characterized by a slow but continuous ground uplift. All geochemical indicators (major species and noble gases) point to three possible

  15. Swimming behaviour and ascent paths of brook trout in a corrugated culvert

    Science.gov (United States)

    Goerig, Elsa; Bergeron, Normand E.; Castro-Santos, Theodore R.

    2017-01-01

    Culverts may restrict fish movements under some hydraulic conditions such as shallow flow depths or high velocities. Although swimming capacity imposes limits to passage performance, behaviour also plays an important role in the ability of fish to overcome velocity barriers. Corrugated metal culverts are characterized by unsteady flow and existence of low‐velocity zones, which can improve passage success. Here, we describe swimming behaviour and ascent paths of 148 wild brook trout in a 1.5‐m section of a corrugated metal culvert located in Raquette Stream, Québec, Canada. Five passage trials were conducted in mid‐August, corresponding to specific mean cross‐sectional flow velocities ranging from 0.30 to 0.63 m/s. Fish were individually introduced to the culvert and their movements recorded with a camera located above the water. Lateral and longitudinal positions were recorded at a rate of 3 Hz in order to identify ascent paths. These positions were related to the distribution of flow depths and velocities in the culvert. Brook trout selected flow velocities from 0.2 to 0.5 m/s during their ascents, which corresponded to the available flow velocities in the culvert at the low‐flow conditions. This however resulted in the use of low‐velocity zones at higher flows, mainly located along the walls of the culvert. Some fish also used the corrugations for sheltering, although the behaviour was marginal and did not occur at the highest flow condition. This study improves knowledge on fish behaviour during culvert ascents, which is an important aspect for developing reliable and accurate estimates of fish passage ability.

  16. Magma chamber interaction giving rise to asymmetric oscillations

    Science.gov (United States)

    Walwer, D.; Ghil, M.; Calais, E.

    2017-12-01

    Geodetic time series at four volcanoes (Okmok, Akutan, Shishaldin, and Réunion) are processed using Multi-channel Singular Spectrum Analysis (M-SSA) and reveal sawtooth-shaped oscillations ; the latter are characterized by short intervals of fast inflations followed by longer intervals of slower deflations. At Okmok and Akutan, the oscillations are first damped and then accentuated. At Okmok, the increase in amplitude of the oscillations is followed by an eruption. We first show that the dynamics of these four volcanoes bears similarities with that of a simple nonlinear, dissipative oscillator, indicating that the inflation-deflation episodes are relaxation oscillations. These observations imply that ab initio dynamical models of magma chambers should possess an asymmetric oscillatory regime. Next, based on the work of Whitehead and Helfrich [1991], we show that a model of two magma chambers — connected by a cylindrical conduit in which the magma viscosity depends on temperature — gives rise to asymmetric overpressure oscillations in the magma reservoirs. These oscillations lead to surface deformations that are consistent with those observed at the four volcanoes in this study. This relaxation oscillation regime occurs only when the vertical temperature gradient in the host rock between the two magma chambers is large enough and when the magma flux entering the volcanic system is sufficiently high. The magma being supplied by a deeper source region, the input flux depends on the pressure difference between the source and the deepest reservoir. When this difference is not sufficiently high, the magma flux exponentially decreases, leading to damped oscillations as observed at Akutan and Okmok. The combination of observational and modeling results clearly supports the role of relaxation oscillations in the dynamics of volcanic systems.

  17. Controlled Ascent From the Surface of an Asteroid

    Science.gov (United States)

    Shen, Haijun; Roithmayr, Carlos M.; Cornelius, David M.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is currently investigating a conceptual robotic mission to collect a small boulder up to 4 m in diameter resting on the surface of a large Near Earth Asteroid (NEA). Because most NEAs are not well characterized, a great range of uncertainties in boulder mass properties and NEA surface characteristics must be considered in the design of this mission. These uncertainties are especially significant when the spacecraft ascends with the boulder in tow. The most important requirement during ascent is to keep the spacecraft in an upright posture to maintain healthy ground clearances for the two large solar arrays. This paper focuses on the initial stage (the first 50 m) of ascent from the surface. Specifically, it presents a sensitivity study of the solar array ground clearance, control authority, and accelerations at the array tips in the presence of a variety of uncertainties including various boulder sizes, densities, shapes and orientations, locations of the true center of mass, and push-off force distributions. Results are presented, and appropriate operations are recommended in the event some of the off-nominal cases occur.

  18. Ultralightweight Refractory-Lined C/C Ascent Engine Combustion Chambers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Mars sample return ascent vehicles require a velocity change exceeding 4 km/s within minutes of launch and higher propellant mass fractions than are offered by...

  19. Seismogenic frictional melting in the magmatic column as the driving force of stick-slip motion

    Science.gov (United States)

    Kendrick, J. E.; Lavallee, Y.; Hirose, T.; Di Toro, G.; Hornby, A.; De Angelis, S.; Henton De Angelis, S.; Ferk, A.; Hess, K.; Leonhardt, R.; Dingwell, D. B.

    2013-12-01

    Lava dome eruptions subjected to high extrusion rates commonly evolve from endogenous to exogenous growth and limits to their structural stability hold catastrophic potential as explosive eruption triggers. In the conduit strain localisation in magma, accompanied by seismogenic failure, marks the onset of brittle magma ascent dynamics. The rock record of exogenous dome structures preserves vestiges of cataclastic processes and of thermal anomalies, key to unravelling subsurface processes. A combined structural, thermal and magnetic investigation of shear bands from Mount St. Helens (MSH) and Soufrière Hills volcano (SHV) reveal evidence of faulting and frictional melting within the magmatic column. High velocity rotary shear (HVR) experiments demonstrate the propensity for melting of andesitic and dacitic material (from SHV and MSH respectively) at upper conduit stress conditions. Such melting events may be linked to the step-wise extrusion of magma accompanied by repetitive long-period (LP) seismicity. Using a source duration calculated from the waveforms at seismic stations around SHV, and slip distance per drumbeat calculated from extrusion rate, frictional melting of SHV andesite in a high velocity rotary shear apparatus can be achieved at small slip distances (HVR experiments which mimic rapid velocity fluctuations in stick-slip behavior demonstrate velocity-weakening behavior of melt, with a tendency for unstable slip. We postulate that pseudotachylyte generation could be the underlying cause of stick-slip motion and associated seismic 'drumbeats', which are so commonly observed at dome-building volcanoes, allowing for a fixed spatial locus and the occurrence of 'families' of similar seismic events. We conclude that, given the ease with which melting is achieved in volcanic rocks, and considering the high ambient temperatures in volcanic conduits, frictional melting is a highly probable consequence of viscous magma ascent.

  20. Granite ascent and emplacement during contractional deformation in convergent orogens

    Science.gov (United States)

    Brown, Michael; Solar, Gary S.

    1998-09-01

    Based on a case study in the Central Maine Belt of west-central Maine, U.S.A., it is proposed that crustal-scale shear zone systems provide an effective focussing mechanism for transfer of granite melt through the crust in convergent orogens. During contractional deformation, flow of melt in crustal materials at depths below the brittle-plastic transition is coupled with plastic deformation of these materials. The flow is driven by pressure gradients generated by buoyancy forces and tectonic stresses. Within the oblique-reverse Central Maine Belt shear zone system, stromatic migmatite and concordant to weakly discordant irregular granite sheets occur in zones of higher strain, which suggests percolative flow of melt to form the migmatite leucosomes and viscous flow of melt channelized in sheet-like bodies, possibly along fractures. Cyclic fluctuations of melt pressure may cause instantaneous changes in the effective permeability of the flow network if self-propagating melt-filled tensile and/or dilatant shear fractures are produced due to melt-enhanced embrittlement. Inhomogeneous migmatite and schlieric granite occur in zones of lower strain, which suggests migration of partially-molten material through these zones en masse by granular flow, and channelized flow of melt carrying entrained residue. Founded on the Central Maine Belt case study, we develop a model of melt extraction and ascent using the driving forces, stress conditions and crustal rheologies in convergent, especially transpressive orogens. Ascent of melt becomes inhibited with decreasing depth as the solidus is approached. For intermediate a(H 2O) muscovite-dehydration melting, the water-saturated solidus occurs between 400 and 200 MPa, near the brittle-plastic transition during high- T-low- P metamorphism, where the balance of forces favors (sub-) horizontal fracture propagation. Emplacement of melt may be accommodated by ductile flow and/or stoping of wall rock, and inflation may be accommodated

  1. Iron Redox Systematics of Martian Magmas

    Science.gov (United States)

    Righter, K.; Danielson, L.; Martin, A.; Pando, K.; Sutton, S.; Newville, M.

    2011-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite [1]. Morris et al. [1] propose that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks [2,3]. Magnetite stability in terrestrial magmas is well understood, as are the stability of FeO and Fe2O3 in terrestrial magmas [4,5]. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas we have undertaken an experimental study with two emphases. First we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition. Second, we determine the FeO and Fe2O3 contents of the same shergottite bulk composition at 1 bar and variable fO2 at 1250 C, and at variable pressure. These two goals will help define not only magnetite stability, but pyroxene-melt equilibria that are also dependent upon fO2.

  2. Penyelesaian Masalah 8-Puzzle dengan Algoritma Steepest-Ascent Hill Climbing

    Directory of Open Access Journals (Sweden)

    David Abraham

    2016-03-01

    Full Text Available 8 puzzle merupakan salah satu implementasi dari Artificial Intelegence. Dalam proses penyelesaiannya banyak terdapat algoritma-algoritma pencarian yang dapat diterapkan. Solusi 8 puzzle akan lebih cepat diperoleh jika digunakan prinsip array dengan variasi algoritma Steepest-Ascent Hill Climbing (Hill Climbing dengan memilih kemiringan yang paling tajam / curam dengan parameter heuristik posisi yang benar dan heuristik jarak serta dikombinasikan dengan LogList sebagai penyimpanan state state yang pernah dilalui untuk menanggulangi permasalah pada algoritma hill climbing itu sendiri dan terhindar dari looping state yang pernah dilalui. Metode-metode yang termasuk ke dalam teknik pencarian yang berdasarkan pada fungsi heuristik salah satu diantaranya adalah Hill Climbing, Best First Search, A* (A Bintang. Loglist merupakan tempat penyimpanan setiap kunjungan dari state-state puzzle yang telah dilakukan untuk menghindari looping atau pengulangan terhadap state yang pernah dilalui. Untuk menanggulangi permasalahan pada SteepestAscent Hill Climbing.

  3. Short lived radionuclides in gases and magmas: contribution to the study of degassing and of the dynamics of magmatic reservoirs

    International Nuclear Information System (INIS)

    Gauthier, P.J.

    1998-01-01

    Crystallization and magma degassing at Stromboli (Italy) and Merapi (Indonesia) volcanoes are studied through 230 Th- 226 Ra- 210 Pb and 210 Pb- 210 Bi- 210 Po disequilibria in lavas and gases. An attempt to date crystallization by internal isochrones in ( 226 Ra)/Ba - ( 230 Th)/Ba and ( 210 Pb)/Pb - ( 226 Ra)/Pb diagrams reveals the complex evolution of these arc magmas. Several models (instantaneous but non simultaneous crystallization of the different mineral phases; continuous crystallization) are proposed to explain the lack of simple isochrones. The influence of other magmatic processes (assimilation, magma reinjection, degassing...) is discussed. The role played by radon loss from magmas (controlled by the ex solution of major gas species) on 210 Pb- 226 Ra disequilibria in lavas is examined through a model of dynamic degassing. At Stromboli, the magma reservoir has reached a steady-state and is rapidly renewed, thus explaining (Pb/Ra) ratios close to 1. At Merapi, the evolution of the reservoir is controlled by a succession of low dynamics degassing periods ( 2 analyses in the volcanic plume. The contribution of Etna as a source of atmospheric pollution is estimated during periods of contrasted volcanic activity and is compared to the volcanic emissions worldwide. (author)

  4. Advancing dynamic and thermodynamic modelling of magma oceans

    Science.gov (United States)

    Bower, Dan; Wolf, Aaron; Sanan, Patrick; Tackley, Paul

    2017-04-01

    system whilst retaining the largest number of familiar EOS parameters. We demonstrate the power of our integrated dynamic and EOS model by exploring two crystallisation scenarios for Earth that are dictated by the coincidence of the liquid adiabat and melting curve. Experiments on melting of primitive chondrite composition predict that crystallisation occurs from the "bottom-up", whereas molecular dynamics simulations of MgSiO3 perovskite suggest crystallisation occurs from the "middle-out". In each case, we evaluate the lifetime of the magma ocean using our model and find that in both scenarios, initial cooling is rapid and the rheological transition (boundary between melt- and solid-like behaviour) is reached within a few kyrs. During this stage efficient mixing prevents the establishment of thermal and chemical heterogeneity, so it may be challenging to locate a signature of the earliest phase of magma ocean evolution. At the rheological transition, cooling is governed by gravitational separation and viscous creep, and even in the absence of iron partitioning our models predict long-lasting (> 500 Myr) melt at the base of the mantle.

  5. Cost-benefit analyses for the development of magma power

    International Nuclear Information System (INIS)

    Haraden, John

    1992-01-01

    Magma power is the potential generation of electricity from shallow magma bodies in the crust of the Earth. Considerable uncertainty still surrounds the development of magma power, but most of that uncertainty may be eliminated by drilling the first deep magma well. The uncertainty presents no serious impediments to the private drilling of the well. For reasons unrelated to the uncertainty, there may be no private drilling and there may be justification for public drilling. In this paper, we present cost-benefit analyses for private and public drilling of the well. Both analyses indicate there is incentive for drilling. (Author)

  6. Paraspinal arteriovenous malformation Onyx embolization via an Ascent balloon.

    Science.gov (United States)

    Martínez-Galdámez, Mario; Rodriguez-Arias, Carlos A; Utiel, Elena; Arreba, Emilio; Gonzalo, Miguel; Arenillas, Juan F

    2014-04-01

    Purely extradural lumbar spinal arteriovenous malformations (AVMs) are rare lesions that have diverse presentations and imaging features. The treatment of a symptomatic high flow paraspinal AVM with multiple feeders remains a challenge. We report the first use of an Ascent balloon (dual lumen balloon catheter) to deliver Onyx with excellent penetration to a paraspinal AVM.

  7. Autonomous Mars ascent and orbit rendezvous for earth return missions

    Science.gov (United States)

    Edwards, H. C.; Balmanno, W. F.; Cruz, Manuel I.; Ilgen, Marc R.

    1991-01-01

    The details of tha assessment of autonomous Mars ascent and orbit rendezvous for earth return missions are presented. Analyses addressing navigation system assessments, trajectory planning, targeting approaches, flight control guidance strategies, and performance sensitivities are included. Tradeoffs in the analysis and design process are discussed.

  8. Magma wagging and whirling in volcanic conduits

    Science.gov (United States)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  9. Magma paths at Piton de la Fournaise Volcano

    OpenAIRE

    Michon , Laurent; Ferrazzini , Valérie; Di Muro , Andrea

    2016-01-01

    International audience; Several patterns of magma paths have been proposed since the 1980s for Piton de la Fournaise volcano. Given the significant differences, which are presented here, we propose a reappraisal of the magma intrusion paths using a 17-years-long database of volcano-tectonic seismic events and a detailed mapping of the scoria cones. At the edifice scale, the magma propagates along two N120 trending rift zones. They are wide, linear, spotted by small to large scoria cones and r...

  10. Orientation of the eruption fissures controlled by a shallow magma chamber in Miyakejima

    Directory of Open Access Journals (Sweden)

    Nobuo Geshi

    2016-11-01

    Full Text Available Orientation of the eruption fissures and composition of the lavas of the Miyakejima volcano indicate tectonic influence of a shallow magma chamber on the distribution of eruption fissures. We examined the distributions and magmatic compositions of 23 fissures that formed within the last 2800 years, based on a field survey and a new dataset of 14C ages. The dominant orientation of the eruption fissures in the central portion of the volcano was found to be NE-SW, which is perpendicular to the direction of regional maximum horizontal compressive stress (σHmax. Magmas that show evidences of magma mixing between basaltic and andesitic magmas erupted mainly from the eruption fissures with a higher offset angle from the regional σHmax direction. The presence of a shallow dike-shaped magma chamber controls the distribution of the eruption fissures. The injection of basaltic magma into the shallow andesitic magma chamber caused the temporal rise of internal magmatic pressure in the shallow magma chamber. Dikes extending from the andesitic magma chamber intrude along the local compressive stress field which is generated by the internal excess pressure of the andesitic magma chamber. As the result, the eruption fissures trend parallel to the elongation direction of the shallow magma chamber. Injection of basaltic magma into the shallow andesitic magma chamber caused the magma mixing. Some basaltic dikes from the deep-seated magma chamber reach the ground surface without intersection with the andesitic magma chamber. The patterns of the eruption fissures can be modified in the future as was observed in the case of the destruction of the shallow magma chamber during the 2000 AD eruption.

  11. Change rules of a stratospheric airship’s envelope shape during ascent process

    Directory of Open Access Journals (Sweden)

    Shuai Zhao

    2017-04-01

    Full Text Available Stratospheric airship is a special near-space air vehicle, and has more advantages than other air vehicles, such as long endurance, strong survival ability, excellent resolution, low cost, and so on, which make it an ideal stratospheric platform. It is of great significance to choose a reasonable and effective way to launch a stratospheric airship to the space for both academic research and engineering applications. In this paper, the non-forming launch way is studied and the method of differential pressure gradient is used to study the change rules of the airship’s envelope shape during the ascent process. Numerical simulation results show that the head of the envelope will maintain the inflatable shape and the envelope under the zero-pressure level will be compressed into a wide range of wrinkles during the ascent process. The airship’s envelope will expand with the ascent of the airship and the position of the zero-pressure level will move downward constantly. At the same time, the envelope will gradually form a certain degree of stiffness under the action of the inner and external differential pressure. The experimental results agree well with the analytical results, which shows that the non-forming launch way is effective and reliable, and the analytical method has exactness and feasibility.

  12. The Surtsey Magma Series.

    Science.gov (United States)

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-06-26

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  13. The Ascent of Science

    Science.gov (United States)

    Silver, Brian L.

    2000-04-01

    From the revolutionary discoveries of Galileo and Newton to the mind-bending theories of Einstein and Heisenberg, from plate tectonics to particle physics, from the origin of life to universal entropy, and from biology to cosmology, here is a sweeping, readable, and dynamic account of the whole of Western science.In the approachable manner and method of Stephen Jay Gould and Carl Sagan, the late Brian L. Silver translates our most important, and often most obscure, scientific developments into a vernacular that is not only accessible and illuminating but also enjoyable. Silver makes his comprehensive case with much clarity and insight; his book aptly locates science as the apex of human reason, and reason as our best path to the truth. For all readers curious about--or else perhaps intimidated by--what Silver calls "the scientific campaign up to now", The Ascent of Science will be fresh, vivid, and fascinating reading.

  14. Ascent of arches of a monochromatic corona during the eclipse on July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Delone, A B; Makarova, E A; Sikora, Yu [Moskovskij Gosudarstvennyj Univ. (USSR). Gosudarstvennyj Astronomicheskij Inst. ' ' GAISh' ' ; Slovenska Akademia Vied, Bratislava [Czechoslovakia

    1984-04-01

    Velocities of some details of monochromatic corona on July 31, 1981, were measured in the sky plane at the west limb. The ascent of arches and plasmoids clots in the condensations with velocities of about 10 km/s were observed in the green line Fe 14lambda5303. In the red line Fe10lambda6374 the velocities of ascent of two arches were about 11-25 km/s. Each of the investigated details is seen only in one emission line and is absent bout 11-25 km/s.

  15. Chemical consequences of compaction within the freezing front of a crystallizing magma ocean

    Science.gov (United States)

    Hier-Majumder, S.; Hirschmann, M. M.

    2013-12-01

    The thermal and compositional evolution of planetary magma oceans have profound influences on the early development and differentiation of terrestrial planets. During crystallization, rejection of elements incompatible in precipitating solids leads to petrologic and geochemical planetary differentiation, including potentially development of a compositionally stratified early mantle and evolution of thick overlying atmospheres. In cases of extremely efficient segregation of melt and crystals, solidified early mantles can be nearly devoid of key incompatible species including heat-producing (U, Th, K) and volatile (H,C,N,& noble gas) elements. A key structural component of a crystallizing magma ocean is the partially molten freezing front. The dynamics of this region influences the distribution of incompatible elements between the earliest mantle and the initial surficial reservoirs. It also can be the locus of heating owing to the dissipation of large amounts of tidal energy potentially available from the early Moon. The dynamics are influenced by the solidification rate, which is coupled to the liberation of volatiles owing to the modulating greenhouse effects in the overlying thick atmosphere. Compaction and melt retention in the freezing front of a magma ocean has received little previous attention. While the front advances during the course of crystallization, coupled conservation of mass, momentum, and energy within the front controls distribution and retention of melt within this layer. Due to compaction within this layer, melt distribution is far from uniform, and the fraction of melt trapped within this front depends on the rate of freezing of the magma ocean. During phases of rapid freezing, high amount of trapped melt within the freezing front retains a larger quantity of dissolved volatiles and the reverse is true during slow periods of crystallization. Similar effects are known from inferred trapped liquid fractions in layered mafic intrusions. Here we

  16. Deep magma transport at Kilauea volcano, Hawaii

    Science.gov (United States)

    Wright, T.L.; Klein, F.W.

    2006-01-01

    The shallow part of Kilauea's magma system is conceptually well-understood. Long-period and short-period (brittle-failure) earthquake swarms outline a near-vertical magma transport path beneath Kilauea's summit to 20 km depth. A gravity high centered above the magma transport path demonstrates that Kilauea's shallow magma system, established early in the volcano's history, has remained fixed in place. Low seismicity at 4-7 km outlines a storage region from which magma is supplied for eruptions and intrusions. Brittle-failure earthquake swarms shallower than 5 km beneath the rift zones accompany dike emplacement. Sparse earthquakes extend to a decollement at 10-12 km along which the south flank of Kilauea is sliding seaward. This zone below 5 km can sustain aseismic magma transport, consistent with recent tomographic studies. Long-period earthquake clusters deeper than 40 km occur parallel to and offshore of Kilauea's south coast, defining the deepest seismic response to magma transport from the Hawaiian hot spot. A path connecting the shallow and deep long-period earthquakes is defined by mainshock-aftershock locations of brittle-failure earthquakes unique to Kilauea whose hypocenters are deeper than 25 km with magnitudes from 4.4 to 5.2. Separation of deep and shallow long-period clusters occurs as the shallow plumbing moves with the volcanic edifice, while the deep plumbing is centered over the hotspot. Recent GPS data agrees with the volcano-propagation vector from Kauai to Maui, suggesting that Pacific plate motion, azimuth 293.5?? and rate of 7.4 cm/yr, has been constant over Kilauea's lifetime. However, volcano propagation on the island of Hawaii, azimuth 325??, rate 13 cm/yr, requires southwesterly migration of the locus of melting within the broad hotspot. Deep, long-period earthquakes lie west of the extrapolated position of Kilauea backward in time along a plate-motion vector, requiring southwesterly migration of Kilauea's magma source. Assumed ages of 0

  17. The Ascent Study - Understanding the Market Environment for the Follow-on to the Space Shuttle

    Science.gov (United States)

    Webber, Derek

    2002-01-01

    The ASCENT Study - Understanding the Market Environment for the Follow-on to NASA's Marshall Space Flight Center in Huntsville, Alabama, awarded a contract (base plus option amounting to twenty months of analysis) to Futron Corporation in June 2001 to investigate the market environment, and explore the price elasticity attributes, relevant for the introduction of the Second Generation Reusable Launch Vehicle (the follow-on to the Space Shuttle) in the second decade of this century. This work is known as the ASCENT Study (Analysis of Space Concepts Enabled by New Transportation) and data collection covering a total of 42 different sectors took place during 2001. Modeling and forecasting activities for 26 of these markets (all of them international in nature) have been taking place throughout 2002, and the final results of the ASCENT Study, which include 20 year forecasts, are due by the end of January, 2003. This paper describes the markets being analyzed for the ASCENT Study, and includes some preliminary findings in terms of launch vehicle demand during the next 20 years, broken down by mass class and mission type. Amongst these markets are the potential public space travel opportunities. When completed, the final report of the ASCENT Study is expected to represent a significant reference document for all business development, financing and planning activities in the space industry for some time to come. One immediate use will be as a key factor in determining the cargo capability and launch rates to be used for designing the follow-on to the Space Shuttle. The Study will also provide NASA with a quantified indication of the extent to which the lower cost to orbit, made possible by a new class of launch vehicle, will bring into being new markets.

  18. Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island)

    Science.gov (United States)

    Coppola, D.; Di Muro, A.; Peltier, A.; Villeneuve, N.; Ferrazzini, V.; Favalli, M.; Bachèlery, P.; Gurioli, L.; Harris, A. J. L.; Moune, S.; Vlastélic, I.; Galle, B.; Arellano, S.; Aiuppa, A.

    2017-04-01

    Basaltic magma chambers are often characterized by emptying and refilling cycles that influence their evolution in space and time, and the associated eruptive activity. During April 2007, the largest historical eruption of Piton de la Fournaise (Île de La Réunion, France) drained the shallow plumbing system (> 240 ×106 m3) and resulted in collapse of the 1-km-wide summit crater. Following these major events, Piton de la Fournaise entered a seven-year long period of near-continuous deflation interrupted, in June 2014, by a new phase of significant inflation. By integrating multiple datasets (lava discharge rates, deformation, seismicity, gas flux, gas composition, and lava chemistry), we here show that the progressive migration of magma from a deeper (below sea level) storage zone gradually rejuvenated and pressurized the above-sea-level portion of the magmatic system consisting of a vertically-zoned network of relatively small-volume magma pockets. Continuous inflation provoked four small (CO2 enrichment of summit fumaroles, and involving emission of less differentiated lavas, to end with, (iii) three short-lived (∼2 day-long) pulses in lava and gas flux, coupled with arrival of cumulative olivine at the surface and deflation. The activity observed at Piton de la Fournaise in 2014 and 2015 points to a new model of shallow system rejuvenation and discharge, whereby continuous magma supply causes eruptions from increasingly deeper and larger magma storage zones. Downward depressurization continues until unloading of the deepest, least differentiated magma triggers pulses in lava and gas flux, accompanied by rapid contraction of the volcano edifice, that empties the main shallow reservoir and terminates the cycle. Such an unloading process may characterize the evolution of shallow magmatic systems at other persistently active effusive centers.

  19. Incremental assembly and prolonged consolidation of Cordilleran magma chambers--Evidence from the Southern Rocky Mountain volcanic field

    Science.gov (United States)

    Lipman, Peter W.

    2007-01-01

    Recent inference that Mesozoic Cordilleran plutons grew incrementally during >106 yr intervals, without the presence of voluminous eruptible magma at any stage, minimizes close associations with large ignimbrite calderas. Alternatively, Tertiary ignimbrites in the Rocky Mountains and elsewhere, with volumes of 1–5 × 103 km3, record multistage histories of magma accumulation, fractionation, and solidification in upper parts of large subvolcanic plutons that were sufficiently liquid to erupt. Individual calderas, up to 75 km across with 2–5 km subsidence, are direct evidence for shallow magma bodies comparable to the largest granitic plutons. As exemplified by the composite Southern Rocky Mountain volcanic field (here summarized comprehensively for the first time), which is comparable in areal extent, magma composition, eruptive volume, and duration to continental-margin volcanism of the central Andes, nested calderas that erupted compositionally diverse tuffs document deep composite subsidence and rapid evolution in subvolcanic magma bodies. Spacing of Tertiary calderas at distances of tens to hundreds of kilometers is comparable to Mesozoic Cordilleran pluton spacing. Downwind ash in eastern Cordilleran sediments records large-scale explosive volcanism concurrent with Mesozoic batholith growth. Mineral fabrics and gradients indicate unified flow-age of many pluton interiors before complete solidification, and some plutons contain ring dikes or other textural evidence for roof subsidence. Geophysical data show that low-density upper-crustal rocks, inferred to be plutons, are 10 km or more thick beneath many calderas. Most ignimbrites are more evolved than associated plutons; evidence that the subcaldera chambers retained voluminous residua from fractionation. Initial incremental pluton growth in the upper crust was likely recorded by modest eruptions from central volcanoes; preparation for caldera-scale ignimbrite eruption involved recurrent magma input and

  20. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.

    1983-01-01

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  1. Thermally-assisted Magma Emplacement Explains Restless Calderas.

    Science.gov (United States)

    Amoruso, Antonella; Crescentini, Luca; D'Antonio, Massimo; Acocella, Valerio

    2017-08-11

    Many calderas show repeated unrest over centuries. Though probably induced by magma, this unique behaviour is not understood and its dynamics remains elusive. To better understand these restless calderas, we interpret deformation data and build thermal models of Campi Flegrei caldera, Italy. Campi Flegrei experienced at least 4 major unrest episodes in the last decades. Our results indicate that the inflation and deflation of magmatic sources at the same location explain most deformation, at least since the build-up of the last 1538 AD eruption. However, such a repeated magma emplacement requires a persistently hot crust. Our thermal models show that this repeated emplacement was assisted by the thermal anomaly created by magma that was intruded at shallow depth ~3 ka before the last eruption. This may explain the persistence of the magmatic sources promoting the restless behaviour of the Campi Flegrei caldera; moreover, it explains the crystallization, re-melting and mixing among compositionally distinct magmas recorded in young volcanic rocks. Our model of thermally-assisted unrest may have a wider applicability, possibly explaining also the dynamics of other restless calderas.

  2. Unusual Iron Redox Systematics of Martian Magmas

    Science.gov (United States)

    Danielson, L.; Righter, K.; Pando, K.; Morris, R. V.; Graff, T.; Agresti, D.; Martin, A.; Sutton, S.; Newville, M.; Lanzirotti, A.

    2012-01-01

    Martian magmas are known to be FeO-rich and the dominant FeO-bearing mineral at many sites visited by the Mars Exploration rovers (MER) is magnetite. Morris et al. proposed that the magnetite appears to be igneous in origin, rather than of secondary origin. However, magnetite is not typically found in experimental studies of martian magmatic rocks. Magnetite stability in terrestrial magmas is well understood, as are the stabilities of FeO and Fe2O3 in terrestrial magmas. In order to better understand the variation of FeO and Fe2O3, and the stability of magnetite (and other FeO-bearing phases) in martian magmas, we have undertaken an experimental study with two emphases. First, we determine the FeO and Fe2O3 contents of super- and sub-liquidus glasses from a shergottite bulk composition at 1 bar to 4 GPa, and variable fO2. Second, we document the stability of magnetite with temperature and fO2 in a shergottite bulk composition.

  3. «Magma»: as origens de Guimarães Rosa

    Directory of Open Access Journals (Sweden)

    Luiz Cláudio Vieira de Oliveira

    2011-10-01

    Full Text Available Resumo: Leitura de Magma, de Guimarães Rosa, com o objetivo de indicar a presença de temas, fragmentos, personagens, expressões e recursos estilísticos ali existentes, em outros textos do autor, cronologicamente posteriores.Palavras-chave: Literatura brasileira; Guimarães Rosa; Magma.Résumé: Lecture de Magma, de Guimarães Rosa, ayant l’objectif de montrer la présence de quelques sujets, fragments, personnages, expressions et traits stylistiques, que y sont présents, et aussi dans autres textes du même auteur, chronologiquement postérieurs.Mots-clés: Littérature brésilienne; Guimarães Rosa; Magma.Keywords: Brazilian literature; Guimarães Rosa; Magma.

  4. Crystalline heterogeneities and instabilities in thermally convecting magma chamber

    Science.gov (United States)

    Culha, C.; Suckale, J.; Qin, Z.

    2016-12-01

    A volcanic vent can supply different densities of crystals over an eruption time period. This has been seen in Hawai'i's Kilauea Iki 1959 eruption; however it is not common for all Kilauea or basaltic eruptions. We ask the question: Under what conditions can homogenous magma chamber cultivate crystalline heterogeneities? In some laboratory experiments and numerical simulations, a horizontal variation is observed. The region where crystals reside is identified as a retention zone: convection velocity balances settling velocity. Simulations and experiments that observe retention zones assume crystals do not alter the convection in the fluid. However, a comparison of experiments and simulations of convecting magma with crystals suggest that large crystal volume densities and crystal sizes alter fluid flow considerably. We introduce a computational method that fully resolves the crystalline phase. To simulate basaltic magma chambers in thermal convection, we built a numerical solver of the Navier-Stoke's equation, continuity equation, and energy equation. The modeled magma is assumed to be a viscous, incompressible fluid with a liquid and solid phase. Crystals are spherical, rigid bodies. We create Rayleigh-Taylor instability through a cool top layer and hot bottom layer and update magma density while keeping crystal temperature and size constant. Our method provides a detailed picture of magma chambers, which we compare to other models and experiments to identify when and how crystals alter magma chamber convection. Alterations include stratification, differential settling and instabilities. These characteristics are dependent on viscosity, convection vigor, crystal volume density and crystal characteristics. We reveal that a volumetric crystal density variation may occur over an eruption time period, if right conditions are met to form stratifications and instabilities in magma chambers. These conditions are realistic for Kilauea Iki's 1959 eruption.

  5. Complexities in Shallow Magma Transport at Kilauea (Invited)

    Science.gov (United States)

    Swanson, D. A.

    2013-12-01

    The standard model of Kilauea's shallow plumbing system includes magma storage under the caldera and conduits in the southwest rift zone (SWRZ) and the east rift zone (ERZ). As a field geologist, I find that seemingly aberrant locations and trends of some eruptive vents indicate complexities in shallow magma transport not addressed by the standard model. This model is not wrong but instead incomplete, because it does not account for the development of offshoots from the main plumbing. These offshoots supply magma to the surface at places that tell us much about the complicated stress system within the volcano. Perhaps most readily grasped are fissures peripheral to the north and south sides of the caldera. Somehow magma can apparently be injected into caldera-bounding faults from the summit reservoir complex, but the process and pathways are unclear. Of more importance is the presence of fissures with ENE trends on the east side of the caldera, including Kilauea Iki. Is this a rift zone that forms an acute angle with the ERZ? I think there is another explanation: the main part of the ERZ has migrated ~5 km SSE during the past few tens of thousands of years owing to seaward movement of the south flank, but older parts of the rift zone can be reactivated. The fissures east of the caldera have the ERZ trend and may record such reactivation; this interpretation includes the location of the largest eruption (15th century) known from Kilauea. Whether or not this interpretation has validity, the question remains: what changes in the plumbing system allow magma to erupt east of the caldera? The SWRZ can be divided into two sections, the SWRZ proper and the seismically active part (SASWRZ) southeast of the SWRZ. The total width of both sections is ~4 km. The SWRZ might be migrating SSE, as is the ERZ. Fissures in the SWRZ proper trend SW. Fissures in the SASWRZ, however, have ENE trends like that of the ERZ, although, because of en echelon offsets, the fissure zone itself

  6. Additive preservers of the ascent, descent and related subsets

    Czech Academy of Sciences Publication Activity Database

    Mbekhta, M.; Müller, Vladimír; Oudghiri, M.

    2014-01-01

    Roč. 71, č. 1 (2014), s. 63-83 ISSN 0379-4024 R&D Projects: GA ČR GA201/09/0473; GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : additive preservers * ascent * descent Subject RIV: BA - General Mathematics Impact factor: 0.550, year: 2014 http://www.mathjournals.org/jot/2014-071-001/2014-071-001-004.html

  7. Hydrogen isotopic fractionation during crystallization of the terrestrial magma ocean

    Science.gov (United States)

    Pahlevan, K.; Karato, S. I.

    2016-12-01

    Models of the Moon-forming giant impact extensively melt and partially vaporize the silicate Earth and deliver a substantial mass of metal to the Earth's core. The subsequent evolution of the terrestrial magma ocean and overlying vapor atmosphere over the ensuing 105-6 years has been largely constrained by theoretical models with remnant signatures from this epoch proving somewhat elusive. We have calculated equilibrium hydrogen isotopic fractionation between the magma ocean and overlying steam atmosphere to determine the extent to which H isotopes trace the evolution during this epoch. By analogy with the modern silicate Earth, the magma ocean-steam atmosphere system is often assumed to be chemically oxidized (log fO2 QFM) with the dominant atmospheric vapor species taken to be water vapor. However, the terrestrial magma ocean - having held metallic droplets in suspension - may also exhibit a much more reducing character (log fO2 IW) such that equilibration with the overlying atmosphere renders molecular hydrogen the dominant H-bearing vapor species. This variable - the redox state of the magma ocean - has not been explicitly included in prior models of the coupled evolution of the magma ocean-steam atmosphere system. We find that the redox state of the magma ocean influences not only the vapor speciation and liquid-vapor partitioning of hydrogen but also the equilibrium isotopic fractionation during the crystallization epoch. The liquid-vapor isotopic fractionation of H is substantial under reducing conditions and can generate measurable D/H signatures in the crystallization products but is largely muted in an oxidizing magma ocean and steam atmosphere. We couple equilibrium isotopic fractionation with magma ocean crystallization calculations to forward model the behavior of hydrogen isotopes during this epoch and find that the distribution of H isotopes in the silicate Earth immediately following crystallization represents an oxybarometer for the terrestrial

  8. Diffusive exchange of trace elements between basaltic-andesite and dacitic melt: Insights into potential metal fractionation during magma mixing

    Science.gov (United States)

    Fiege, A.; Ruprecht, P.; Simon, A. C.; Holtz, F.

    2017-12-01

    Mafic magma recharge is a common process that triggers physical and chemical mixing in magmatic systems and drives their evolution, resulting in, e.g., hybridization and volcanic eruptions. Once magma-magma contact is initiated, rapid heat-flux commonly leads to the formation of a cooling-induced crystal mush on the mafic side of the interface. Here, on a local scale (µm to cm), at the magma-magma interface, melt-melt diffusive exchange is required to approach equilibrium. Significant chemical potential gradients drive a complex, multi-element mass flux between the two systems (Liang, 2010). This diffusive-equilibration often controls crystal dissolution rates within the boundary layers and, thus, the formation of interconnected melt or fluid networks. Such networks provide important pathways for the transport of volatiles and trace metals from the mafic recharge magma to the felsic host magma, where the latter may feed volcanic activities and ore deposits. While major element diffusion in silicate melts is mostly well understood, even in complex systems, the available data for many trace element metals are limited (Liang, 2010; Zhang et al., 2010). Differences in diffusivity in a dynamic, mixing environment can cause trace element fractionation, in particular during crystallization and volatile exsolution and separation. This may affect trace element signatures in phenocrysts and magmatic volatile phases that can form near a magma-magma boundary. As a result, the chemistry of volcanic gases and magmatic-hydrothermal ore deposits may be partially controlled by such mixing phenomena. We performed melt-melt diffusion-couple experiments at 150 MPa, 1100°C, FMQ, FMQ+1 and FMQ+3 (FMQ: fayalite-magnetite-quartz oxygen fugacity buffer). Hydrated, sulfur-bearing cylinders of dacite and basaltic andesite were equilibrated for up to 20 h. Major and trace element gradients were measured by using laser-ablation ICP-MS and electron microprobe analyses. The results we will

  9. Petrology of the 1995/2000 Magma of Copahue, Argentina

    Science.gov (United States)

    Goss, A.; Varekamp, J. C.

    2001-05-01

    Phreatomagmatic eruptions of Copahue in July/August,1995 and July/August 2000 produced mixed juvenile clasts, silica-rich debris from the hydrothermal system, and magmatic scoria with 88 percent SiO2. These high-SiO2 clasts carry an as yet unidentified (crystobalite?), euhedral silica phase in great abundance, which is riddled with tan, primary melt inclusions. The mixed clasts have bands of mafic material with small euhedral olivine, clinopyroxene, and plagioclase that are mixed with an intermediate magma with coarser, resorbed phenocrysts of olivine, plagioclase, clino- and ortho- pyroxene, and rare occurrences of the silica phase. These ejecta are intimate mixtures of a relatively felsic magma similar to Pleistocene Copahue lavas and a mafic basaltic andesite, with minor contributions of a magma contaminated with silica-rich hydrothermal wallrock material. Two-pyroxene geothermometry indicates crystallization temperatures of 1020 deg - 1045 deg C. Glass inclusions (59-63 percent SiO2) in plagioclase and olivine crystals yield very low volatile contents in the melt (0.4-1.5 percent H2O). The 1995/2000 magmas resided at shallow level and degassed into the active volcano-hydrothermal system which discharges acid fluids into the Copahue crater lake and hot springs. More mafic magma intruded this shallow batch and the mixture rose into the hydrothermal system and assimilated siliceous wall rock. A Ti-diffusion profile in a magnetite crystal suggests that the period between magma mixing and eruption was on the order of 4-10 weeks, and the temperature difference between resident and intruding magma was about 50-60 oC.

  10. Evolution of the volcanic plumbing systemof Alicudi (Aeolian Islands - Italy: evidence from fluid and melt inclusionsin quartz xenoliths

    Directory of Open Access Journals (Sweden)

    A. Peccerillo

    2004-06-01

    Full Text Available Quartz-rich xenoliths in lavas (basalts to andesites; 90-30 ka from Alicudi contain abundant melt and fluid inclusions. Two generations of CO2-rich fluid inclusions are present in quartz-rich xenolith grains: early (Type I inclusions related to partial melting of the host xenoliths, and late Type II inclusions related to the fluid trapping during xenolith ascent. Homogenisation temperatures of fluid inclusions correspond to two density intervals: 0.93-0.68 g/cm3 (Type I and 0.47-0.26 g/cm3 (Type II. Early Type I fluid inclusions indicate trapping pressures around 6 kbar, which are representative for the levels of partial melting of crustal rocks and xenolith formation. Late Type II fluid inclusions show lower trapping pressures, between 1.7 kbar and 0.2 kbar, indicative for shallow magma rest and accumulation during ascent to the surface. Data suggest the presence of two magma reservoirs: the first is located at lower crustal depths (about 24 km, site of fractional crystallization, mixing with source derived magma, and various degrees of crustal assimilation. The second magma reservoir is located at shallow crustal depths (about 6 km, the site where magma rested for a short time before erupting.

  11. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-10-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  12. Tube pumices as strain markers of the ductile-brittle transition during magma fragmentation

    Science.gov (United States)

    Martí, J.; Soriano, C.; Dingwell, D. B.

    1999-12-01

    Magma fragmentation-the process by which relatively slow-moving magma transforms into a violent gas flow carrying fragments of magma-is the defining feature of explosive volcanism. Yet of all the processes involved in explosively erupting systems, fragmentation is possibly the least understood. Several theoretical and laboratory studies on magma degassing and fragmentation have produced a general picture of the sequence of events leading to the fragmentation of silicic magma. But there remains a debate over whether magma fragmentation is a consequence of the textural evolution of magma to a foamed state where disintegration of walls separating bubbles becomes inevitable due to a foam-collapse criterion, or whether magma is fragmented purely by stresses that exceed its tensile strength. Here we show that tube pumice-where extreme bubble elongation is observed-is a well-preserved magmatic `strain marker' of the stress state immediately before and during fragmentation. Structural elements in the pumice record the evolution of the magma's mechanical response from viscous behaviour (foaming and foam elongation) through the plastic or viscoelastic stage, and finally to brittle behaviour. These observations directly support the hypothesis that fragmentation occurs when magma undergoes a ductile-brittle transition and stresses exceed the magma's tensile strength.

  13. Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse

    Science.gov (United States)

    Bachmann, Olivier; Deering, Chad D.; Ruprecht, Janina S.; Huber, Christian; Skopelitis, Alexandra; Schnyder, Cedric

    2012-01-01

    Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750-800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800-850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos

  14. Wallops' Low Elevation Link Analysis for the Constellation Launch/Ascent Links

    Science.gov (United States)

    Cheung, Kar-Ming; Ho, Christian; Kantak, Anil; Lee, Charles; Tye, Robert; Richards, Edger; Sham, Catherine; Schlesinger, Adam; Barritt, Brian

    2011-01-01

    Prior to the redirection of the Constellation Program, the Wallops 11.3-meter ground station was tasked to support the Orion's Dissimilar Voice (DV) link and the Ares's Development Flight Instrument (DFI) link. Detailed analysis of the launch trajectories indicates that during the launch and ascent operation, the critical events of Orion-Ares main engine cut off (MECO) and Separation occur at low elevation angle. We worked with engineers from both Wallops Flight Facility (WFF) and Johnson Space Center (JSC) to perform an intensive measurement and link analysis campaign on the DV and DFI links. The main results were as follows: (1) The DV links have more than 3 dB margin at MECO and Separation. (2) The DFI links have 0 dB margin at Separation during certain weather condition in summer season. (3) Tropospheric scintillation loss is the major impairment at low elevation angle. (4) The current scintillation models in the Recommendation ITU-R P.618 (Propagation data and prediction methods required for the design of Earth-space telecommunication systems), which are based on limited experimental and theoretical work, exhibit idiosyncratic behaviors. We developed an improved model based on the measurements of recent Shuttle mission launch and ascent links and the ITU propagation data. (5) Due to the attitude uncertainty of the Orion-Ares stack, the high dynamics of the launch and ascent trajectory, and the irregularity of the Orion and Ares antenna patterns, we employed new link analysis approach to model the spacecraft antenna gain. In this paper we discuss the details of the aforementioned results.

  15. Io: Loki Patera as a Magma Sea

    Science.gov (United States)

    Matson, Dennis L.; Davies, Ashley Gerard; Veeder, Glenn J.; Rathbun, Julie A.; Johnson, Torrence V.; Castillo, Julie C.

    2006-01-01

    We develop a physical model for Loki Patera as a magma sea. We calculate the total volume of magma moving through the Loki Patera volcanic system every resurfacing cycle (approx.540 days) and the resulting variation in thermal emission. The rate of magma solidification at times reaches 3 x 10(exp 6) kg per second, with a total solidified volume averaging 100 cu km per year. A simulation of gas physical chemistry evolution yields the crust porosity profile and the timescale when it will become dense enough to founder in a manner consistent with observations. The Loki Patera surface temperature distribution shows that different areas are at different life cycle stages. On a regional scale, however, there can be coordinated activity, indicated by the wave of thermal change which progresses from Loki Patera's SW quadrant toward the NE at a rate of approx.1 km per day. Using the observed surface temperature distribution, we test several mechanisms for resurfacing Loki Patera, finding that resurfacing with lava flows is not realistic. Only the crustal foundering process is consistent with observations. These tests also discovered that sinking crust has a 'heat deficit' which promotes the solidification of additional magma onto the sinking plate ("bulking up"). In the limiting case, the mass of sinking material can increase to a mass of approx.3 times that of the foundering plate. With all this solid matter sinking, there is a compensating upward motion in the liquid magma. This can be in excess of 2 m per year. In this manner, solid-liquid convection is occurring in the sea.

  16. Real-time electrocardiogram transmission from Mount Everest during continued ascent.

    Science.gov (United States)

    Kao, Wei-Fong; Huang, Jyh-How; Kuo, Terry B J; Chang, Po-Lun; Chang, Wen-Chen; Chan, Kuo-Hung; Liu, Wen-Hsiung; Wang, Shih-Hao; Su, Tzu-Yao; Chiang, Hsiu-chen; Chen, Jin-Jong

    2013-01-01

    The feasibility of a real-time electrocardiogram (ECG) transmission via satellite phone from Mount Everest to determine a climber's suitability for continued ascent was examined. Four Taiwanese climbers were enrolled in the 2009 Mount Everest summit program. Physiological measurements were taken at base camp (5300 m), camp 2 (6400 m), camp 3 (7100 m), and camp 4 (7950 m) 1 hour after arrival and following a 10 minute rest period. A total of 3 out of 4 climbers were able to summit Mount Everest successfully. Overall, ECG and global positioning system (GPS) coordinates of climbers were transmitted in real-time via satellite phone successfully from base camp, camp 2, camp 3, and camp 4. At each camp, Resting Heart Rate (RHR) was transmitted and recorded: base camp (54-113 bpm), camp 2 (94-130 bpm), camp 3 (98-115 bpm), and camp 4 (93-111 bpm). Real-time ECG and GPS coordinate transmission via satellite phone is feasible for climbers on Mount Everest. Real-time RHR data can be used to evaluate a climber's physiological capacity to continue an ascent and to summit.

  17. Rapid magma evolution constrained by zircon petrochronology and 40Ar/39Ar sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA

    DEFF Research Database (Denmark)

    Rivera, Tiffany; Storey, Michael; Schmitz, Mark

    2014-01-01

    volcanic activity, zircon morphological zoning patterns coupled to strongly correlated changes in Ti-in-zircon thermometry and trace element indicators of progressive differentiation provide a proxy record for the evolution of the HRT member B magma body. Tandem in situ and isotope dilution U-Pb dating......Understanding the time scales of magmatic differentiation, storage, and eruption of large volume silicic magmas is a primary goal of igneous petrology. Within the Huckleberry Ridge Tuff (HRT; Idaho, USA), representing the earliest and largest caldera-forming eruption associated with Yellowstone...... differentiated over ~10 k.y. prior to eruption at 2.0794 ± 0.0046 Ma as defined by new astronomically calibrated, single-crystal total fusion 40Ar/39Ar sanidine analyses. This refined eruption age demonstrates that the transitional polarity preserved by HRT member B does not record the Reunion subchron...

  18. The expected greenhouse benefits from developing magma power at Long Valley, California

    International Nuclear Information System (INIS)

    Haraden, John.

    1995-01-01

    Magma power is the production of electricity from shallow magma bodies. Before magma becomes a practical source of power, many engineering problems must still be solved. When they are solved, the most likely site for the first magma power plant is Long Valley, California, USA. In this paper, we examine the greenhouse benefits from developing Long Valley. By generating magma power and by curtailing an equal amount of fossil power, we estimate the expected mass and the expected discounted value of reduced CO 2 emissions. For both measures, the expected benefits seem to be substantial. (author)

  19. Magma chamber processes in central volcanic systems of Iceland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Tegner, Christian

    2009-01-01

    are composed of 2-10 m thick melanocratic layers rich in clinopyroxene and sometimes olivine, relative to the thicker overlying leucocratic oxide gabbros. While the overall compositional variation is limited (Mg# clinopyroxene 72-84; An% plagioclase 56-85), the melanocratic bases display spikes in Mg# and Cr2O......3 of clinopyroxene and magnetite indicative of magma replenishment. Some macrorhythmic units show mineral trends indicative of up-section fractional crystallisation over up to 100 m, whereas others show little variation. Two populations of plagioclase crystals (large, An-rich and small, less An......-rich) indicate that the recharge magma carried plagioclase xenocrysts (high An-type). The lack of evolved gabbros suggests formation in a dynamic magma chamber with frequent recharge, tapping and fractionation. Modelling of these compositional trends shows that the parent magma was similar to known transitional...

  20. The mechanics of shallow magma reservoir outgassing

    Science.gov (United States)

    Parmigiani, A.; Degruyter, W.; Leclaire, S.; Huber, C.; Bachmann, O.

    2017-08-01

    Magma degassing fundamentally controls the Earth's volatile cycles. The large amount of gas expelled into the atmosphere during volcanic eruptions (i.e., volcanic outgassing) is the most obvious display of magmatic volatile release. However, owing to the large intrusive:extrusive ratio, and considering the paucity of volatiles left in intrusive rocks after final solidification, volcanic outgassing likely constitutes only a small fraction of the overall mass of magmatic volatiles released to the Earth's surface. Therefore, as most magmas stall on their way to the surface, outgassing of uneruptible, crystal-rich magma storage regions will play a dominant role in closing the balance of volatile element cycling between the mantle and the surface. We use a numerical approach to study the migration of a magmatic volatile phase (MVP) in crystal-rich magma bodies ("mush zones") at the pore scale. Our results suggest that buoyancy-driven outgassing is efficient over crystal volume fractions between 0.4 and 0.7 (for mm-sized crystals). We parameterize our pore-scale results for MVP migration in a thermomechanical magma reservoir model to study outgassing under dynamical conditions where cooling controls the evolution of the proportion of crystal, gas, and melt phases and to investigate the role of the reservoir size and the temperature-dependent viscoelastic response of the crust on outgassing efficiency. We find that buoyancy-driven outgassing allows for a maximum of 40-50% volatiles to leave the reservoir over the 0.4-0.7 crystal volume fractions, implying that a significant amount of outgassing must occur at high crystal content (>0.7) through veining and/or capillary fracturing.

  1. Habitable Mars Ascent Vehicle (MAV) Concept. [Mars Ascent Vehicle (MAV) Layout and Configuration: 6-Crew, Habitable, Nested Tank Concept

    Science.gov (United States)

    Dang, Victor; Rucker, Michelle

    2013-01-01

    NASA's ultimate goal is the human exploration of Mars. Among the many difficult aspects of a trip to Mars is the return mission that would transport the astronauts from the Martian surface back into Mars orbit. One possible conceptual design to accomplish this task is a two-stage Mars Ascent Vehicle (MAV). In order to assess this design, a general layout and configuration for the spacecraft must be developed. The objective of my internship was to model a conceptual MAV design to support NASA's latest human Mars mission architecture trade studies, technology prioritization decisions, and mass, cost, and schedule estimates.

  2. Performance of a Predictive Model for Calculating Ascent Time to a Target Temperature

    Directory of Open Access Journals (Sweden)

    Jin Woo Moon

    2016-12-01

    Full Text Available The aim of this study was to develop an artificial neural network (ANN prediction model for controlling building heating systems. This model was used to calculate the ascent time of indoor temperature from the setback period (when a building was not occupied to a target setpoint temperature (when a building was occupied. The calculated ascent time was applied to determine the proper moment to start increasing the temperature from the setback temperature to reach the target temperature at an appropriate time. Three major steps were conducted: (1 model development; (2 model optimization; and (3 performance evaluation. Two software programs—Matrix Laboratory (MATLAB and Transient Systems Simulation (TRNSYS—were used for model development, performance tests, and numerical simulation methods. Correlation analysis between input variables and the output variable of the ANN model revealed that two input variables (current indoor air temperature and temperature difference from the target setpoint temperature, presented relatively strong relationships with the ascent time to the target setpoint temperature. These two variables were used as input neurons. Analyzing the difference between the simulated and predicted values from the ANN model provided the optimal number of hidden neurons (9, hidden layers (3, moment (0.9, and learning rate (0.9. At the study’s conclusion, the optimized model proved its prediction accuracy with acceptable errors.

  3. Magma mixing in granitic rocks of the central Sierra Nevada, California

    Science.gov (United States)

    Reid, John B.; Evans, Owen C.; Fates, Dailey G.

    1983-12-01

    The El Capitan alaskite exposed in the North American Wall, Yosemite National Park, was intruded by two sets of mafic dikes that interacted thermally and chemically with the host alaskite. Comparisons of petrographic and compositional data for these dikes and alaskite with published data for Sierra Nevada plutons lead us to suggest that mafic magmas were important in the generation of the Sierra Nevada batholith. Specifically, we conclude that: (1) intrusion of mafic magmas in the lower crust caused partial melting and generation of alaskite (rhyolitic) magmas; (2) interaction between the mafic and felsic magmas lead to the observed linear variation diagrams for major elements; (3) most mafic inclusions in Sierra Nevada plutons represent chilled pillows of mafic magmas, related by fractional crystallization and granitoid assimilation, that dissolve into their felsic host and contaminate it to intermediate (granodioritic) compositions; (4) vesiculation of hydrous mafic magma upon chilling may allow buoyant mafic inclusions and their disaggregation products to collect beneath a pluton's domed ceiling causing the zoning (mafic margins-to-felsic core) that these plutons exhibit.

  4. Anticipatory kinematics and muscle activity preceding transitions from level-ground walking to stair ascent and descent.

    Science.gov (United States)

    Peng, Joshua; Fey, Nicholas P; Kuiken, Todd A; Hargrove, Levi J

    2016-02-29

    The majority of fall-related accidents are during stair ambulation-occurring commonly at the top and bottom stairs of each flight, locations in which individuals are transitioning to stairs. Little is known about how individuals adjust their biomechanics in anticipation of walking-stair transitions. We identified the anticipatory stride mechanics of nine able-bodied individuals as they approached transitions from level ground walking to stair ascent and descent. Unlike prior investigations of stair ambulation, we analyzed two consecutive "anticipation" strides preceding the transitions strides to stairs, and tested a comprehensive set of kinematic and electromyographic (EMG) data from both the leading and trailing legs. Subjects completed ten trials of baseline overground walking and ten trials of walking to stair ascent and descent. Deviations relative to baseline were assessed. Significant changes in mechanics and EMG occurred in the earliest anticipation strides analyzed for both ascent and descent transitions. For stair descent, these changes were consistent with observed reductions in walking speed, which occurred in all anticipation strides tested. For stair ascent, subjects maintained their speed until the swing phase of the latest anticipation stride, and changes were found that would normally be observed for decreasing speed. Given the timing and nature of the observed changes, this study has implications for enhancing intent recognition systems and evaluating fall-prone or disabled individuals, by testing their abilities to sense upcoming transitions and decelerate during locomotion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Molybdenite saturation in silicic magmas: Occurrence and petrological implications

    Science.gov (United States)

    Audetat, A.; Dolejs, D.; Lowenstern, J. B.

    2011-01-01

    We identified molybdenite (MoS2) as an accessory magmatic phase in 13 out of 27 felsic magma systems examined worldwide. The molybdenite occurs as small (molybdenite-saturated samples reveal 1-13 ppm Mo in the melt and geochemical signatures that imply a strong link to continental rift basalt-rhyolite associations. In contrast, arc-associated rhyolites are rarely molybdenite-saturated, despite similar Mo concentrations. This systematic dependence on tectonic setting seems to reflect the higher oxidation state of arc magmas compared with within-plate magmas. A thermodynamic model devised to investigate the effects of T, f O2 and f S2 on molybdenite solubility reliably predicts measured Mo concentrations in molybdenite-saturated samples if the magmas are assumed to have been saturated also in pyrrhotite. Whereas pyrrhotite microphenocrysts have been observed in some of these samples, they have not been observed from other molybdenite-bearing magmas. Based on the strong influence of f S2 on molybdenite solubility we calculate that also these latter magmas must have been at (or very close to) pyrrhotite saturation. In this case the Mo concentration of molybdenite-saturated melts can be used to constrain both magmatic f O2 and f S2 if temperature is known independently (e.g. by zircon saturation thermometry). Our model thus permits evaluation of magmatic f S2, which is an important variable but is difficult to estimate otherwise, particularly in slowly cooled rocks. ?? The Author 2011. Published by Oxford University Press. All rights reserved.

  6. Thermal evolution of magma reservoirs in the shallow crust and incidence on magma differentiation: the St-Jean-du-Doigt layered intrusion (Brittany, France)

    Science.gov (United States)

    Barboni, M.; Bussy, F.; Ovtcharova, M.; Schoene, B.

    2009-12-01

    Understanding the emplacement and growth of intrusive bodies in terms of mechanism, duration, thermal evolution and rates are fundamental aspects of crustal evolution. Recent studies show that many plutons grow in several Ma by in situ accretion of discrete magma pulses, which constitute small-scale magmatic reservoirs. The residence time of magmas, and hence their capacities to interact and differentiate, are controlled by the local thermal environment. The latter is highly dependant on 1) the emplacement depth, 2) the magmas and country rock composition, 3) the country rock thermal conductivity, 4) the rate of magma injection and 5) the geometry of the intrusion. In shallow level plutons, where magmas solidify quickly, evidence for magma mixing and/or differentiation processes is considered by many authors to be inherited from deeper levels. We show however that in-situ differentiation and magma interactions occurred within basaltic and felsic sills at shallow depth (0.3 GPa) in the St-Jean-du-Doigt bimodal intrusion, France. Field evidence coupled to high precision zircon U-Pb dating document progressive thermal maturation within the incrementally built laccolith. Early m-thick mafic sills are homogeneous and fine-grained with planar contacts with neighbouring felsic sills; within a minimal 0.5 Ma time span, the system gets warmer, adjacent sills interact and mingle, and mafic sills are differentiating in the top 40 cm of the layer. Rheological and thermal modelling show that observed in-situ differentiation-accumulation processes may be achieved in less than 10 years at shallow depth, provided that (1) the differentiating sills are injected beneath consolidated, yet still warm basalt sills, which act as low conductive insulating screens, (2) the early mafic sills accreted under the roof of the laccolith as a 100m thick top layer within 0.5 My, and (3) subsequent and sustained magmatic activity occurred on a short time scale (years) at an injection rate of ca. 0

  7. Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies

    Science.gov (United States)

    Bindeman, Ilya; Valley, John

    2002-07-01

    Products of voluminous pyroclastic eruptions with eruptive draw-down of several kilometers provide a snap-shot view of batholith-scale magma chambers, and quench pre-eruptive isotopic fractionations (i.e., temperatures) between minerals. We report analyses of oxygen isotope ratio in individual quartz phenocrysts and concentrates of magnetite, pyroxene, and zircon from individual pumice clasts of ignimbrite and fall units of caldera-forming 0.76 Ma Bishop Tuff (BT), pre-caldera Glass Mountain (2.1-0.78 Ma), and post-caldera rhyolites (0.65-0.04 Ma) to characterize the long-lived, batholith-scale magma chamber beneath Long Valley Caldera in California. Values of δ18O show a subtle 1‰ decrease from the oldest Glass Mountain lavas to the youngest post-caldera rhyolites. Older Glass Mountain lavas exhibit larger ( 1‰) variability of δ18O(quartz). The youngest domes of Glass Mountain are similar to BT in δ18O(quartz) values and reflect convective homogenization during formation of BT magma chamber surrounded by extremely heterogeneous country rocks (ranging from 2 to +29‰). Oxygen isotope thermometry of BT confirms a temperature gradient between "Late" (815 °C) and "Early" (715 °C) BT. The δ18O(quartz) values of "Early" and "Late" BT are +8.33 and 8.21‰, consistent with a constant δ18O(melt)=7.8+/-0.1‰ and 100 °C temperature difference. Zircon-melt saturation equilibria gives a similar temperature range. Values of δ18O(quartz) for different stratigraphic units of BT, and in pumice clasts ranging in pre-eruptive depths from 6 to 11 km (based on melt inclusions), and document vertical and lateral homogeneity of δ18O(melt). Worldwide, five other large-volume rhyolites, Lava Creek, Lower Bandelier, Fish Canyon, Cerro Galan, and Toba, exhibit equal δ18O(melt) values of earlier and later erupted portions in each of the these climactic caldera-forming eruptions. We interpret the large-scale δ18O homogeneity of BT and other large magma chambers as evidence

  8. Efficacy of pre-ascent climbing route visual inspection in indoor sport climbing

    NARCIS (Netherlands)

    Sanchez, X.; Lambert, Ph; Jones, G.; Llewellyn, D. J.

    Pre-ascent climbing route visual inspection (route preview) has been suggested as a key climbing performance parameter although its role has never been verified experimentally. We examined the efficacy of this perceptual-cognitive skill on indoor sport climbing performance. Twenty-nine male

  9. Genesis of felsic plutonic magmas and their igneous enclaves

    DEFF Research Database (Denmark)

    Clemens, John D.; Maas, Roland; Waight, Tod Earle

    2016-01-01

    -type Pyalong pluton was emplaced, apparently along an east-west-orientated fracture zone. Around 367 Ma, the main I-type Baynton pluton intruded as numerous shallow-dipping sheets. The last plutonic event was the intrusion of the broad, thin, flat-lying, and crosscutting sheet of the I-type Beauvallet pluton...... the relatively high abundance of igneous-textured microgranular enclaves (MEs). The MEs show neither chemical nor isotope mixing trends with each other or with the host magmas. Variations in the Baynton magmas were derived from the heterogeneity of the source terrane, with individual magma batches formed from...

  10. Magma Transport from Deep to Shallow Crust and Eruption

    Science.gov (United States)

    White, R. S.; Greenfield, T. S.; Green, R. G.; Brandsdottir, B.; Hudson, T.; Woods, J.; Donaldson, C.; Ágústsdóttir, T.

    2016-12-01

    We have mapped magma transport paths from the deep (20 km) to the shallow (6 km) crust and in two cases to eventual surface eruption under several Icelandic volcanoes (Askja, Bardarbunga, Eyjafjallajokull, Upptyppingar). We use microearthquakes caused by brittle fracture to map magma on the move and tomographic seismic studies of velocity perturbations beneath volcanoes to map the magma storage regions. High-frequency brittle failure earthquakes with magnitudes of typically 0-2 occur where melt is forcing its way through the country rock, or where previously frozen melt is repeatedly re-broken in conduits and dykes. The Icelandic crust on the rift zones where these earthquakes occur is ductile at depths greater than 7 km beneath the surface, so the occurrence of brittle failure seismicity at depths as great as 20 km is indicative of high strain rates, for which magma movement is the most likely explanation. We suggest that high volatile pressures caused by the exsolution of carbon dioxide in the deep crust is driving the magma movement and seismicity at depths of 15-20 km. Eruptions from shallow crustal storage areas are likewise driven by volatile exsolution, though additional volatiles, and in particular water are also involved in the shallow crust.

  11. Real-time electrocardiogram transmission from Mount Everest during continued ascent.

    Directory of Open Access Journals (Sweden)

    Wei-Fong Kao

    Full Text Available The feasibility of a real-time electrocardiogram (ECG transmission via satellite phone from Mount Everest to determine a climber's suitability for continued ascent was examined. Four Taiwanese climbers were enrolled in the 2009 Mount Everest summit program. Physiological measurements were taken at base camp (5300 m, camp 2 (6400 m, camp 3 (7100 m, and camp 4 (7950 m 1 hour after arrival and following a 10 minute rest period. A total of 3 out of 4 climbers were able to summit Mount Everest successfully. Overall, ECG and global positioning system (GPS coordinates of climbers were transmitted in real-time via satellite phone successfully from base camp, camp 2, camp 3, and camp 4. At each camp, Resting Heart Rate (RHR was transmitted and recorded: base camp (54-113 bpm, camp 2 (94-130 bpm, camp 3 (98-115 bpm, and camp 4 (93-111 bpm. Real-time ECG and GPS coordinate transmission via satellite phone is feasible for climbers on Mount Everest. Real-time RHR data can be used to evaluate a climber's physiological capacity to continue an ascent and to summit.

  12. Magma viscosity estimation based on analysis of erupted products. Potential assessment for large-scale pyroclastic eruptions

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2010-01-01

    After the formulation of guidelines for volcanic hazards in site evaluation for nuclear installations (e.g. JEAG4625-2009), it is required to establish appropriate methods to assess potential of large-scale pyroclastic eruptions at long-dormant volcanoes, which is one of the most hazardous volcanic phenomena on the safety of the installations. In considering the volcanic dormancy, magma eruptability is an important concept. The magma eruptability is dominantly controlled by magma viscosity, which can be estimated from petrological analysis of erupted materials. Therefore, viscosity estimation of magmas erupted in past eruptions should provide important information to assess future activities at hazardous volcanoes. In order to show the importance of magma viscosity in the concept of magma eruptability, this report overviews dike propagation processes from a magma chamber and nature of magma viscosity. Magma viscosity at pre-eruptive conditions of magma chambers were compiled based on previous petrological studies on past eruptions in Japan. There are only 16 examples of eruptions at 9 volcanoes satisfying data requirement for magma viscosity estimation. Estimated magma viscosities range from 10 2 to 10 7 Pa·s for basaltic to rhyolitic magmas. Most of examples fall below dike propagation limit of magma viscosity (ca. 10 6 Pa·s) estimated based on a dike propagation model. Highly viscous magmas (ca. 10 7 Pa·s) than the dike propagation limit are considered to lose eruptability which is the ability to form dikes and initiate eruptions. However, in some cases, small precursory eruptions of less viscous magmas commonly occurred just before climactic eruptions of the highly viscous magmas, suggesting that the precursory dike propagation by the less viscous magmas induced the following eruptions of highly viscous magmas (ca. 10 7 Pa·s). (author)

  13. The ascent of magma as determined by seismic tomography. The visualization of velocity structure and magma distribution from upper mantle to upper crust in Hakone volcano, northern Izu peninsula

    International Nuclear Information System (INIS)

    Abe, Shintaro; Aoyagi, Yasuhira; Toshida, Kiyoshi; Oda, Yoshiya

    2003-01-01

    Three-dimensional seismic reflection and refraction survey was carried out in Hakone volcanic area, northern part of Izu peninsula. The region is one of the most famous hot spring areas in Japan. Hakone volcano morphologically resembles one big caldera. However, the depression of the volcano consists of several small calderas which has been formed by multiple eruptions. Although sprouts of fumarolic gas and steam are identified in a few areas of the volcano, there is no historical record of volcanic eruption. Main purpose of our study is to determine the 3-dimensional deep velocity structure around the volcano using the seismic tomography processing. We deployed 44 sets of temporal offline seismic stations and a line of multi-channels seismic reflection survey cable. The seismic waves generated by some natural earthquakes and 14 dynamite explosions were observed, and their data were processed for tomography. The observation coverage was 20 km in diameter. Our result demonstrates the usefulness of high dense seismic observation in identifying and locating low velocity zones beneath the particular area. According to our tomography, low velocity zone was identified only in surface layer of the old caldera part of the volcano. We could not identify any remarkable reflector in deeper crust, as the result of wide-angle reflection survey using explosive shots. Moreover, we could not identify any other low velocity zone as far as 32 km depth by incorporating the results of other study. In other words, we think that magma is no longer supplied to Hakone volcanic area. (author)

  14. Understanding the rheology of two and three-phase magmas

    Science.gov (United States)

    Coats, R.; Cai, B.; Kendrick, J. E.; Wallace, P. A.; Hornby, A. J.; Miwa, T.; von Aulock, F. W.; Ashworth, J. D.; Godinho, J.; Atwood, R. C.; Lee, P. D.; Lavallée, Y.

    2017-12-01

    The rheology of magma plays a fundamental role in determining the style of a volcanic eruption, be it explosive or effusive. Understanding how magmas respond to changes in stress/ strain conditions may help to enhance eruption forecast models. The presence of crystals and bubbles in magmas alter the viscosity of suspensions and favor a non-Newtonian response. Thus, with the aim of grasping the rheological behavior of volcanic materials, uniaxial compressive tests were performed on natural and synthetic samples. A suite of variably porous (10-32 vol.%), highly crystalline ( 50 vol.%) dacite from the 1991-95 eruption of Mt Unzen, Japan, was selected as the natural material, while synthetic samples were sintered with desired porosities (Diamond Light Source. Unexpectedly, these observations suggest that fractures nucleate in crystals due to crystal interactions, before propagating through the interstitial melt. This ongoing study promises to uncover the way crystal-bearing magmas flow or fail, necessary to constrain magmatic processes and volcanic hazards.

  15. Locating the depth of magma supply for volcanic eruptions, insights from Mt. Cameroon.

    Science.gov (United States)

    Geiger, Harri; Barker, Abigail K; Troll, Valentin R

    2016-10-07

    Mt. Cameroon is one of the most active volcanoes in Africa and poses a possible threat to about half a million people in the area, yet knowledge of the volcano's underlying magma supply system is sparse. To characterize Mt. Cameroon's magma plumbing system, we employed mineral-melt equilibrium thermobarometry on the products of the volcano's two most recent eruptions of 1999 and 2000. Our results suggest pre-eruptive magma storage between 20 and 39 km beneath Mt. Cameroon, which corresponds to the Moho level and below. Additionally, the 1999 eruption products reveal several shallow magma pockets between 3 and 12 km depth, which are not detected in the 2000 lavas. This implies that small-volume magma batches actively migrate through the plumbing system during repose intervals. Evolving and migrating magma parcels potentially cause temporary unrest and short-lived explosive outbursts, and may be remobilized during major eruptions that are fed from sub-Moho magma reservoirs.

  16. Precursory deformation and depths of magma storage revealed by regional InSAR time series surveys: example of the Indonesian and Mexican volcanic arcs

    Science.gov (United States)

    Chaussard, E.; Amelung, F.; Aoki, Y.

    2012-12-01

    Despite the threat posed to millions of people living in the vicinity of volcanoes, only a fraction of the worldwide ~800 potentially active arc volcanoes have geodetic monitoring. Indonesian and Mexican volcanoes are sparsely monitored with ground-based methods but especially dangerous, emphasizing the need for remote sensing monitoring. In this study we take advantage of over 1200 ALOS InSAR images to survey the entire west Sunda and Mexican volcanic arcs, covering a total of 500 000 km2. We use 2 years of data to monitor the background activity of the Indonesian arc, and 4 years of data at four volcanic edifices (Sinabung, Kerinci, Merapi, and Agung), as well as 4 years of data to survey the Mexican arc. We derive time-dependent ground deformation data using the Small Baseline technique with DEM error correction. We detect seven volcanoes with significant deformation in the west-Sunda arc: six inflating volcanoes (Sinabung, Kerinci, Slamet, Lawu, Lamongan, and Agung) and one deflating volcano (Anak Krakatau). Three of the six inflating centers erupted during or after the observation period. We detect inflation prior to Sinabung's first Holocene eruption in September 2010, followed by a small deflation of the summit area. A similar signal is observed at Kerinci before and after its April 2009 eruption. We also detect uplift prior to Slamet's eruption in April 2009. Agung, in Bali, whose last eruption was in 1964, has been inflating steadily between mid 2007 and early 2009, followed by a period with little deformation until mid-2011. Inflation not followed by eruption is also observed at Lamongan and Lawu, both historically active centers. The close relation between periods of activity and observed deformation suggests that edifice inflation is of magmatic origin and represents the pressurization of reservoirs caused by ascent of new magma. We model the observed deformation and show that the seven deforming Indonesian volcanoes have shallow magma reservoirs at ~1

  17. Making mushy magma chambers in the lower continental crust: Cold storage and compositional bimodality

    Science.gov (United States)

    Jackson, Matthew; Blundy, Jon; Sparks, Steve

    2017-04-01

    Increasing geological and geophysical evidence suggests that crustal magma reservoirs are normally low melt fraction 'mushes' rather than high melt fraction 'magma chambers'. Yet high melt fractions must form within these mush reservoirs to explain the observed flow and eruption of low crystallinity magmas. In many models, crystallinity is linked directly to temperature, with higher temperature corresponding to lower crystallinity (higher melt fraction). However, increasing temperature yields less evolved (silicic) melt composition for a given starting material. If mobile, low crystallinity magmas require high temperature, it is difficult to explain how they can have evolved composition. Here we use numerical modelling to show that reactive melt flow in a porous and permeable mush reservoir formed by the intrusion of numerous basaltic sills into the lower continental crust produces magma in high melt fraction (> 0.5) layers akin to conventional magma chambers. These magma-chamber-like layers contain evolved (silicic) melt compositions and form at low (close to solidus) temperatures near the top of the mush reservoir. Evolved magma is therefore kept in 'cold storage' at low temperature, but also at low crystallinity so the magma is mobile and can leave the mush reservoir. Buoyancy-driven reactive flow and accumulation of melt in the mush reservoir controls the temperature and composition of magma that can leave the reservoir. The modelling also shows that processes in lower crustal mush reservoirs produce mobile magmas that contain melt of either silicic or mafic composition. Intermediate melt compositions are present but are not within mobile magmas. Silicic melt compositions are found at high melt fraction within the magma-chamber like layers near the top of the mush reservoir. Mafic melt compositions are found at high melt fraction within the cooling sills. Melt elsewhere in the reservoir has intermediate composition, but remains trapped in the reservoir because

  18. Seismic tremors and magma wagging during explosive volcanism.

    Science.gov (United States)

    Jellinek, A Mark; Bercovici, David

    2011-02-24

    Volcanic tremor is a ubiquitous feature of explosive eruptions. This oscillation persists for minutes to weeks and is characterized by a remarkably narrow band of frequencies from about 0.5 Hz to 7 Hz (refs 1-4). Before major eruptions, tremor can occur in concert with increased gas flux and related ground deformation. Volcanic tremor is thus of particular value for eruption forecasting. Most models for volcanic tremor rely on specific properties of the geometry, structure and constitution of volcanic conduits as well as the gas content of the erupting magma. Because neither the initial structure nor the evolution of the magma-conduit system will be the same from one volcano to the next, it is surprising that tremor characteristics are so consistent among different volcanoes. Indeed, this universality of tremor properties remains a major enigma. Here we employ the contemporary view that silicic magma rises in the conduit as a columnar plug surrounded by a highly vesicular annulus of sheared bubbles. We demonstrate that, for most geologically relevant conditions, the magma column will oscillate or 'wag' against the restoring 'gas-spring' force of the annulus at observed tremor frequencies. In contrast to previous models, the magma-wagging oscillation is relatively insensitive to the conduit structure and geometry, which explains the narrow band of tremor frequencies observed around the world. Moreover, the model predicts that as an eruption proceeds there will be an upward drift in both the maximum frequency and the total signal frequency bandwidth, the nature of which depends on the explosivity of the eruption, as is often observed.

  19. Parameterization of strombolian explosions: constraint from simultaneous physical and geophysical measurements (Invited)

    Science.gov (United States)

    gurioli, L.; Harris, A. J.

    2013-12-01

    Strombolian activity is the most common type of explosive eruption (by frequency) experienced by Earth's volcanoes. It is commonly viewed as consisting of a succession of short discrete explosions where fragments of incandescent magma are ejected a few tens to hundreds meters into the air. This kind of activity is generally restricted to basaltic or basaltic-andesitic magmas because these systems have the sufficiently low viscosities so as to allow gas coalescence and decoupled slug ascent. Mercalli (1907) proposed one of the first formal classifications of explosive activity based on the character of the erupted products and descriptions of case-type eruptions. Later, Walker (1973) devised a classification based on grain size and dispersion, within which strombolian explosions formed the low-to-middle end of the classification. Other classifications have categorized strombolian activity on the basis of erupted magnitude and/or intensity, such as Newhall and Self's (1982) Volcanic Explosivity Index (VEI). Classification can also be made on the basis of explosion mechanism, where strombolian eruptions have become associated with bursting of large gas bubbles, as opposed to release of locked in bubble populations in rapidly ascending magma that feed sustained fountains. Finally, strombolian eruptions can be defined on the basis of geophysical metrics for the explosion source and plume ascent dynamics. Recently, the volcanology community has begun to discuss the difficulty of actually placing strombolian explosions within the compartments defined by each scheme. New sampling strategies in active strombolian volcanic fields have allowed us to parameterize these mildly explosive events both physically and geophysically. Our data show that individual 'normal' and "major" explosions at Stromboli are extremely small, meaning that the classical deposit-based classification thresholds need to be reduced, or a new category defined, if the 'strombolian' eruption style at

  20. Geochemistry, mineralogy, and zircon U-Pb-Hf isotopes in peraluminous A-type granite xenoliths in Pliocene-Pleistocene basalts of northern Pannonian Basin (Slovakia)

    Science.gov (United States)

    Huraiová, Monika; Paquette, Jean-Louis; Konečný, Patrik; Gannoun, Abdel-Mouhcine; Hurai, Vratislav

    2017-08-01

    Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene-Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite-ulvöspinel. Zircon and Nb-U-REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U-Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive ɛHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A1-type, OIB-like source magmas. Increased accumulations of Nb-U-REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth

  1. Magma storage in a strike-slip caldera.

    Science.gov (United States)

    Saxby, J; Gottsmann, J; Cashman, K; Gutiérrez, E

    2016-07-22

    Silicic calderas form during explosive volcanic eruptions when magma withdrawal triggers collapse along bounding faults. The nature of specific interactions between magmatism and tectonism in caldera-forming systems is, however, unclear. Regional stress patterns may control the location and geometry of magma reservoirs, which in turn may control the spatial and temporal development of faults. Here we provide new insight into strike-slip volcano-tectonic relations by analysing Bouguer gravity data from Ilopango caldera, El Salvador, which has a long history of catastrophic explosive eruptions. The observed low gravity beneath the caldera is aligned along the principal horizontal stress orientations of the El Salvador Fault Zone. Data inversion shows that the causative low-density structure extends to ca. 6 km depth, which we interpret as a shallow plumbing system comprising a fractured hydrothermal reservoir overlying a magmatic reservoir with vol% exsolved vapour. Fault-controlled localization of magma constrains potential vent locations for future eruptions.

  2. Iron Redox Systematics of Shergottites and Martian Magmas

    Science.gov (United States)

    Righter, Kevin; Danielson, L. R.; Martin, A. M.; Newville, M.; Choi, Y.

    2010-01-01

    Martian meteorites record a range of oxygen fugacities from near the IW buffer to above FMQ buffer [1]. In terrestrial magmas, Fe(3+)/ SigmaFe for this fO2 range are between 0 and 0.25 [2]. Such variation will affect the stability of oxides, pyroxenes, and how the melt equilibrates with volatile species. An understanding of the variation of Fe(3+)/SigmaFe for martian magmas is lacking, and previous work has been on FeO-poor and Al2O3-rich terrestrial basalts. We have initiated a study of the iron redox systematics of martian magmas to better understand FeO and Fe2O3 stability, the stability of magnetite, and the low Ca/high Ca pyroxene [3] ratios observed at the surface.

  3. Adakitic magmas: modern analogues of Archaean granitoids

    Science.gov (United States)

    Martin, Hervé

    1999-03-01

    Both geochemical and experimental petrological research indicate that Archaean continental crust was generated by partial melting of an Archaean tholeiite transformed into a garnet-bearing amphibolite or eclogite. The geodynamic context of tholeiite melting is the subject of controversy. It is assumed to be either (1) subduction (melting of a hot subducting slab), or (2) hot spot (melting of underplated basalts). These hypotheses are considered in the light of modern adakite genesis. Adakites are intermediate to felsic volcanic rocks, andesitic to rhyolitic in composition (basaltic members are lacking). They have trondhjemitic affinities (high-Na 2O contents and K 2O/Na 2O˜0.5) and their Mg no. (0.5), Ni (20-40 ppm) and Cr (30-50 ppm) contents are higher than in typical calc-alkaline magmas. Sr contents are high (>300 ppm, until 2000 ppm) and REE show strongly fractionated patterns with very low heavy REE (HREE) contents (Yb≤1.8 ppm, Y≤18 ppm). Consequently, high Sr/Y and La/Yb ratios are typical and discriminating features of adakitic magmas, indicative of melting of a mafic source where garnet and/or hornblende are residual phases. Adakitic magmas are only found in subduction zone environments, exclusively where the subduction and/or the subducted slab are young (subducted and where the adakitic character of the lavas correlates well with the young age of the subducting oceanic lithosphere. In typical subduction zones, the subducted lithosphere is older than 20 Ma, it is cool and the geothermal gradient along the Benioff plane is low such that the oceanic crust dehydrates before it reaches the solidus temperature of hydrated tholeiite. Consequently, the basaltic slab cannot melt. The released large ion lithophile element (LILE)-rich fluids rise up into the mantle wedge, inducing both its metasomatism and partial melting. Afterwards, the residue is made up of olivine+clinopyroxene+orthopyroxene, such that the partial melts are HREE-rich (low La/Yb and Sr

  4. Aleutian tholeiitic and calc-alkaline magma series I: The mafic phenocrysts

    Science.gov (United States)

    Kay, S. Mahlburg; Kay, Robert W.

    1985-07-01

    Diagnostic mafic silicate assemblages in a continuous spectrum of Aleutian volcanic rocks provide evidence for contrasts in magmatic processes in the Aleutian arc crust. Tectonic segmentation of the arc exerts a primary control on the variable mixing, fractional crystallization and possible assimilation undergone by the magmas. End members of the continuum are termed calc-alkaline (CA) and tholeiitic (TH). CA volcanic rocks (e.g., Buldir and Moffett volcanoes) have low FeO/MgO ratios and contain compositionally diverse phenocryst populations, indicating magma mixing. Their Ni and Cr-rich magnesian olivine and clinopyroxene come from mantle-derived mafic olivine basalts that have mixed with more fractionated magmas at mid-to lower-crustal levels immediately preceding eruption. High-Al amphibole is associated with the mafic end member. In contrast, TH lavas (e.g., Okmok and Westdahl volcanoes) have high FeO/MgO ratios and contain little evidence for mixing. Evolved lavas represent advanced stages of low pressure crystallization from a basaltic magma. These lavas contain groundmass olivine (FO 40 50) and lack Ca-poor pyroxene. Aleutian volcanic rocks with intermediate FeO/MgO ratios are termed transitional tholeiitic (TTH) and calc-alkaline (TCA). TCA magmas are common (e.g., Moffett, Adagdak, Great Sitkin, and Kasatochi volcanoes) and have resulted from mixing of high-Al basalt with more evolved magmas. They contain amphibole (high and low-Al) or orthopyroxene or both and are similar to the Japanese hypersthene-series. TTH magmas (e.g., Okmok and Westdahl) contain orthopyroxene or pigeonite or both, and show some indication of upper crustal mixing. They are mineralogically similar to the Japanese pigeonite-series. High-Al basalt lacks Mg-rich mafic phases and is a derivative magma produced by high pressure fractionation of an olivine tholeiite. The low pressure mineral assemblage of high-Al basalt results from crystallization at higher crustal levels.

  5. A Storable, Hybrid Mars Ascent Vehicle Technology Demonstrator for the 2020 Launch Opportunity

    Science.gov (United States)

    Chandler, A. A.; Karabeyoglu, M. A.; Cantwell, B. J.; Reeve, R.; Goldstein, B. G.; Hubbard, G. S.

    2012-06-01

    A Phoenix sized mission including a reduced payload, two-stage, hybrid Mars Ascent Vehicle technology demonstrator is proposed for the 2020 opportunity. The hybrid MAV is storable on Mars and would retire risk for a Mars Sample Return campaign.

  6. Mars Ascent Vehicle Needs Technology Development with a Focus on High Propellant Fractions

    Science.gov (United States)

    Whitehead, J. C.

    2018-04-01

    Launching from Mars to orbit requires a miniature launch vehicle, beyond any known spacecraft propulsion. The Mars Ascent Vehicle (MAV) needs an unusually high propellant mass fraction. MAV mass has high leverage for the cost of Mars Sample Return.

  7. Inferring the effects of compositional boundary layers on crystal nucleation, growth textures, and mineral chemistry in natural volcanic tephras through submicron-resolution imaging

    Directory of Open Access Journals (Sweden)

    Georg F. Zellmer

    2016-09-01

    Full Text Available Crystal nucleation and growth are first order processes captured in volcanic rocks and record important information about the rates of magmatic processes and chemical evolution of magmas during their ascent and eruption. We have studied glass-rich andesitic tephras from the Central Plateau of the Southern Taupo Volcanic Zone by electron- and ion-microbeam imaging techniques to investigate down to sub-micrometre scale the potential effects of compositional boundary layers (CBLs of melt around crystals on the nucleation and growth of mineral phases and the chemistry of crystal growth zones. We find that CBLs may influence the types of mineral phases nucleating and growing, and growth textures such as the development of swallowtails. The chemistry of the CBLs also has the capacity to trigger intermittent overgrowths of nanometre-scale bands of different phases in rapidly growing crystals, resulting in what we refer to as cryptic phase zoning. The existence of cryptic phase zoning has implications for the interpretation of microprobe compositional data, and the resulting inferences made on the conditions of magmatic evolution. Identification of cryptic phase zoning may in future lead to more accurate thermobarometric estimates and thus geospeedometric constraints. In future, a more quantitative characterization of CBL formation and its effects on crystal nucleation and growth may contribute to a better understanding of melt rheology and magma ascent processes at the onset of explosive volcanic eruptions, and will likely be of benefit to hazard mitigation efforts.

  8. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  9. Mezcla de magmas en Vulcanello (Isla Vulcano, Italia

    Directory of Open Access Journals (Sweden)

    Aparicio, A.

    2008-06-01

    Full Text Available Volcanic activity in Vulcano starts about 350 ka ago and continues up to present day with the development of thre main episodes corresponding to the calderas of Piano and La Fossa, and Vulcanello. These cover a compositional range from rhyolitic to trachybasaltic rocks. This lithological diversity is produced by different petrogenetic processes such as fractional crystallization, assimilation coupled to fractional crystallization (AFC, mixing, etc.The eruption of Vulcanello area emitted trachyandesitic materials, including shoshonites and latites. A magma-mixing process is established between trachytes and shoshonites to origine latites. Trachytes and rhyolites are produced by fractional crystallization and by ACF processes (assimilation of sedimentary rocks from trachyandesitic magmas.La actividad volcánica de Isla Vulcano comienzó aproximadamente hace 350.000 años y continúa hasta la actualidad con el desarrollo de tres grandes episodios correspondientes a las caldera de Piano, caldera de Fossa y a Vulcanello, que han emitido piroclastos y coladas de composiciones muy variadas, desde riolitas a traquibasaltos. Esta variedad litológica ha sido relacionada con procesos petrogenéticos tan diversos como cristalización fraccionada, asimilación simultánea con cristalización (ACF, mezcla de magmas, etc.El episodio de Vulcanello emite rocas traquiandesíticas, con composiciones shoshoníticas y latíticas. Un proceso de mezcla de magmas es reconocido entre traquitas y shoshonitas para generar latitas. Traquitas y riolitas son producidas por procesos de cristalización fraccionada simple y por ACF con asimilación de rocas sedimentarias a partir de magmas traquiandesíticos.

  10. What factors control the superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Thus the probability of a superficial lava dome explosion inversely depends on its size; explosive activity more likely occurs at the onset of the lava dome extrusion in agreement with observations. We evidence a two-step process in magma ascent with edification of the lava dome that may be accompanied by a rapid ascent of an undegassed batch of magma some days prior the explosive activity. This new result is of interest for the whole volcanological community and for risk management.

  11. Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry

    Science.gov (United States)

    Stelten, Mark; Cooper, Kari M.; Vazquez, Jorge A.; Calvert, Andrew T.; Glessner, Justin G

    2015-01-01

    antecrystic zircons require a model where eruptible rhyolites are generated by extracting melt and zircons from a long-lived mush of immobile crystal-rich magma. In this process the larger sanidine crystals remain trapped in the locked crystal network. The extracted melts (plus antecrystic zircon) amalgamate into a liquid dominated (i.e., eruptible) magma body that is maintained as a physically distinct entity relative to the bulk of the long-lived crystal mush. Zircon surfaces and sanidines in each rhyolite crystallize after melt extraction/amalgamation and their ages constrain the residence time of eruptible magmas at Yellowstone. Residence times of the large volume rhyolites (~40 – 70 km3) are ≤ 1 kyr (conservatively < 6 kyr), which suggests that large volumes of rhyolite can be generated rapidly by extracting melt from a crystal mush. Because the lifespan of the crystal mush that sourced the Central Plateau Member rhyolites is two orders of magnitude longer than the residence time of eruptible magma bodies within the reservoir, it is apparent that the Yellowstone magma reservoir spends most of its time in a largely-crystalline (i.e., uneruptible) state, similar to the present-day magma reservoir, and that eruptible magma bodies are ephemeral features.

  12. Response to Comment on "Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals".

    Science.gov (United States)

    Cooper, Kari M; Till, Christy B; Kent, Adam J R; Costa, Fidel; Rubin, Allison E; Gravley, Darren; Deering, Chad; Cole, Jim; Bose, Maitrayee

    2017-12-22

    In a recent paper, we used Li concentration profiles and U-Th ages to constrain the thermal conditions of magma storage. Wilson and co-authors argue that the data instead reflect control of Li behavior by charge balance during partitioning and not by experimentally determined diffusion rates. Their arguments are based on (i) a coupled diffusion mechanism for Li, which has been postulated but has not been documented to occur, and (ii) poorly constrained zircon growth rates combined with the assumption of continuous zircon crystallization. Copyright © 2017, American Association for the Advancement of Science.

  13. Experimental Fractional Crystallization of the Lunar Magma Ocean

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2012-01-01

    The current paradigm for lunar evolution is of crystallization of a global scale magma ocean, giving rise to the anorthositic crust and mafic cumulate interior. It is thought that all other lunar rocks have arisen from this differentiated interior. However, until recently this paradigm has remained untested experimentally. Presented here are the first experimental results of fractional crystallization of a Lunar Magma Ocean (LMO) using the Taylor Whole Moon (TWM) bulk lunar composition [1].

  14. Implications of magma transfer between multiple reservoirs on eruption cycling.

    Science.gov (United States)

    Elsworth, Derek; Mattioli, Glen; Taron, Joshua; Voight, Barry; Herd, Richard

    2008-10-10

    Volcanic eruptions are episodic despite being supplied by melt at a nearly constant rate. We used histories of magma efflux and surface deformation to geodetically image magma transfer within the deep crustal plumbing of the Soufrière Hills volcano on Montserrat, West Indies. For three cycles of effusion followed by discrete pauses, supply of the system from the deep crust and mantle was continuous. During periods of reinitiated high surface efflux, magma rose quickly and synchronously from a deflating mid-crustal reservoir (at about 12 kilometers) augmented from depth. During repose, the lower reservoir refilled from the deep supply, with only minor discharge transiting the upper chamber to surface. These observations are consistent with a model involving the continuous supply of magma from the deep crust and mantle into a voluminous and compliant mid-crustal reservoir, episodically valved below a shallow reservoir (at about 6 kilometers).

  15. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption.

    Science.gov (United States)

    Di Vito, Mauro A; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni P; Ricco, Ciro; Scandone, Roberto; Terrasi, Filippo

    2016-08-25

    Calderas are collapse structures related to the emptying of magmatic reservoirs, often associated with large eruptions from long-lived magmatic systems. Understanding how magma is transferred from a magma reservoir to the surface before eruptions is a major challenge. Here we exploit the historical, archaeological and geological record of Campi Flegrei caldera to estimate the surface deformation preceding the Monte Nuovo eruption and investigate the shallow magma transfer. Our data suggest a progressive magma accumulation from ~1251 to 1536 in a 4.6 ± 0.9 km deep source below the caldera centre, and its transfer, between 1536 and 1538, to a 3.8 ± 0.6 km deep magmatic source ~4 km NW of the caldera centre, below Monte Nuovo; this peripheral source fed the eruption through a shallower source, 0.4 ± 0.3 km deep. This is the first reconstruction of pre-eruptive magma transfer at Campi Flegrei and corroborates the existence of a stationary oblate source, below the caldera centre, that has been feeding lateral eruptions for the last ~5 ka. Our results suggest: 1) repeated emplacement of magma through intrusions below the caldera centre; 2) occasional lateral transfer of magma feeding non-central eruptions within the caldera. Comparison with historical unrest at calderas worldwide suggests that this behavior is common.

  16. Timescales of quartz crystallization and the longevity of the Bishop giant magma body.

    Science.gov (United States)

    Gualda, Guilherme A R; Pamukcu, Ayla S; Ghiorso, Mark S; Anderson, Alfred T; Sutton, Stephen R; Rivers, Mark L

    2012-01-01

    Supereruptions violently transfer huge amounts (100 s-1000 s km(3)) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ~760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  17. Pressure effect on Fe3+/FeT in silicate melts and applications to magma redox, particularly in magma oceans

    Science.gov (United States)

    Zhang, H.; Hirschmann, M. M.

    2014-12-01

    The proportions of Fe3+ and Fe2+ in magmas reflect the redox conditions of their origin and influence the chemical and physical properties of natural silicate liquids, but the relationship between Fe3+/FeT and oxygen fugacity depends on pressure owing to different molar volumes and compressibilities of Fe3+ and Fe2+ in silicates. An important case where the effect of pressure effect may be important is in magma oceans, where well mixed (and therefore potentially uniform Fe3+/FeT) experiencses a wide range of pressures, and therefore can impart different ƒO2 at different depths, influencing magma ocean degassing and early atmospheres, as well as chemical gradients within magma oceans. To investigate the effect of pressure on magmatic Fe3+/FeT we conducted high pressure expeirments on ƒO2-buffered andestic liquids. Quenched glasses were analyzed by Mössbauer spectroscopy. To verify the accuracy of Mössbauer determinations of Fe3+/FeT in glasses, we also conducted low temperature Mössbauer studies to determine differences in the recoilless fraction (ƒ) of Fe2+ and Fe3. These indicate that room temperature Mössbauer determinations of on Fe3+/FeT glasses are systematically high by 4% compared to recoilless-fraction corrected ratios. Up to 7 GPa, pressure decreases Fe3+/FeT, at fixed ƒO2 relative to metal-oxide buffers, meaning that an isochemical magma will become more reduced with decreasing pressure. Consequently, for small planetary bodies such as the Moon or Mercury, atmospheres overlying their MO will be highly reducing, consisting chiefly of H2 and CO. The same may also be true for Mars. The trend may reverse at higher pressure, as is the case for solid peridotite, and so for Earth, Venus, and possibly Mars, more oxidized atmospheres above MO are possible. Diamond anvil experiments are underway to examine this hypothesis.

  18. Depths of Magma Chambers in the Icelandic Crust

    Science.gov (United States)

    Kelley, D. F.; Kapostasy, D. D.; Barton, M.

    2004-05-01

    There is considerable interest in the structure and thermal state of the crust in Iceland, which lies across the Mid Atlantic Ridge. However, interpretations of seismic and gravity data yield conflicting views of the nature of the lower crust. Some interpretations prefer a model in which the lower crust (15-25 km) is relatively cool and solid, whereas other interpretations, based largely on gravity data, prefer a model in which the lower crust is relatively warm and possibly partially molten. Knowledge of the depth of magma chambers is critical to constrain the geothermal gradient in Icelandic crust and to resolve discrepancies in interpretation of geophysical data. Analyses of aphyric lavas and of glasses in Icelandic lavas erupted from 11 volcanic centers have been compiled. The compositions are picritic and basaltic with SiO2 - 47 to 50 wt%, MgO - 6 to 15wt%, FeO - 8 to 14wt%, to, Na2O - 1.3 to 3.3 wt%, and K2O - 0.03-46 wt%. The pressures of equilibration of these liquids with ol, high-Ca pyx and plag were estimated qualitatively from projections into the pseudoternary system Ol-Di-Silica using methods described by Walker and coworkers and Grove and coworkers. The results (ca. 0.5 GPa) indicate crystallization in magma chambers located at about 16 km depth. Equilibration pressures were also calculated using the method described by Yang and coworkers and by a modified version of this method. Calculated pressures (0.45±0.15 GPa) indicate magma chambers located at 15±4 km depth. Equilibration pressures for Rekjanes Ridge glasses determined using the same techniques are 0.2±0.1 GPa, corresponding to depths of 7.6±3 km. The results indicate the presence of magma chambers in the deep Icelandic crust and that the latter is relatively warm. Shallower chambers (3-7 km) have been identified from seismic studies suggesting a complex magma plumbing system. The results also confirm that magma chambers beneath Iceland are located at greater depths than those beneath the

  19. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-01-01

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide. PMID:27619897

  20. Thermomechanical controls on magma supply and volcanic deformation: application to Aira caldera, Japan.

    Science.gov (United States)

    Hickey, James; Gottsmann, Joachim; Nakamichi, Haruhisa; Iguchi, Masato

    2016-09-13

    Ground deformation often precedes volcanic eruptions, and results from complex interactions between source processes and the thermomechanical behaviour of surrounding rocks. Previous models aiming to constrain source processes were unable to include realistic mechanical and thermal rock properties, and the role of thermomechanical heterogeneity in magma accumulation was unclear. Here we show how spatio-temporal deformation and magma reservoir evolution are fundamentally controlled by three-dimensional thermomechanical heterogeneity. Using the example of continued inflation at Aira caldera, Japan, we demonstrate that magma is accumulating faster than it can be erupted, and the current uplift is approaching the level inferred prior to the violent 1914 Plinian eruption. Magma storage conditions coincide with estimates for the caldera-forming reservoir ~29,000 years ago, and the inferred magma supply rate indicates a ~130-year timeframe to amass enough magma to feed a future 1914-sized eruption. These new inferences are important for eruption forecasting and risk mitigation, and have significant implications for the interpretations of volcanic deformation worldwide.

  1. Phenomena associated with magma expansion into a drift

    International Nuclear Information System (INIS)

    Gaffney, E.S.

    2002-01-01

    One of the significant threats to the proposed Yucca Mountain nuclear waste repository has been identified as the possibility of intersection of the underground structure by a basaltic intrusion. Based on the geology of the region, it is assumed that such an intrusion would consist of an alkali basalt similar to the nearby Lathrop Wells cone, which has been dated at about 78 ka. The threat of radioactive release may be either from eruption through the surface above the repository of basalt that had been contaminated or from migration through ground water of radionucleides released as a result of damage to waste packages that interact with the magma. As part of our study of these threats, we are analyzing the phenomena associated with magma expansion into drifts in tuff. The early phenomena of the encounter of volatile-rich basaltic magma with a drift are discussed here.

  2. Effects of Rotation on the Differentiation of a terrestrial Magma Ocean

    Science.gov (United States)

    Maas, C.; Hansen, U.

    2014-12-01

    It is widely accepted that the Earth experienced several large impacts during its early evolution which led to the formation of one or more magma oceans. Differentiation processes in such a magma ocean are of great importance for the initial conditions of mantle convection and for the subsequent mantle structure. Convection in a magma ocean is most likely very vigorous. Further, rotation of the early Earth is supposed to be very fast. Therefore, and due to the small viscosity, it can be assumed that differentiation is strongly affected by rotation.To study the influence of rotation on the crystallization of a magma ocean, we employed a 3D Cartesian numerical model with low Prandtl number and used a discrete element method to describe silicate crystals.Our results show a crucial dependence on crystal density, rotation rate and latitude. Low rotation at the pole leads to a large fraction of suspended particles. With increasing rotation the particles settle at the bottom and form a stable stratified layer. In contrast to that at the equator at low rotation all particles settle at the bottom, at higher rotation they form a layer of significant thickness and at the highest rotation rate the particles accumulate in the middle of the magma ocean. In addition to that, we observe that due to the Coriolis force silicate crystals with different densities separate from each other. While lighter particles are at the bottom, denser particles accumulate at mid-depth at the same rotation rate. This could result in an unstable stratified mantle in the equatorial region after magma ocean solidification.All in all, rotation could lead to an asymmetrical crystallization of the magma ocean, with a contrary layering at the pole and the equator. This affects the composition of the early mantle and could explain the development of a localized magma ocean at the core-mantle boundary and the development of phase transitions observed in seismology, like the mantle transition zone.

  3. Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans

    Science.gov (United States)

    Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.

    2018-06-01

    The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.

  4. A dynamic balance between magma supply and eruption rate at Kilauea volcano, Hawaii

    Science.gov (United States)

    Denlinger, R.P.

    1997-01-01

    The dynamic balance between magma supply and vent output at Kilauea volcano is used to estimate both the volume of magma stored within Kilauea volcano and its magma supply rate. Throughout most of 1991 a linear decline in volume flux from the Kupaianaha vent on Kilauea's east rift zone was associated with a parabolic variation in the elevation of Kilauea's summit as vent output initially exceeded then lagged behind the magma supply to the volcano. The correspondence between summit elevation and tilt established with over 30 years of data provided daily estimates of summit elevation in terms of summit tilt. The minimum in the parabolic variation in summit tilt and elevation (or zero elevation change) occurs when the magma supply to the reservoir from below the volcano equals the magma output from the reservoir to the surface, so that the magma supply rate is given by vent flux on that day. The measurements of vent flux and tilt establish that the magma supply rate to Kilauea volcano on June 19, 1991, was 217,000 ?? 10,000 m3/d (or 0.079 ?? 0.004 km3/yr). This is close to the average eruptive rate of 0.08 km3/yr between 1958 and 1984. In addition, the predictable response of summit elevation and tilt to each east rift zone eruption near Puu Oo since 1983 shows that summit deformation is also a measure of magma reservoir pressure. Given this, the correlation between the elevation of the Puu Oo lava lake (4 km uprift of Kupaianaha and 18 km from the summit) and summit tilt provides an estimate for magma pressure changes corresponding to summit tilt changes. The ratio of the change in volume to the change in reservoir pressure (dV/dP) during vent activity may be determined by dividing the ratio of volume erupted to change in summit tilt (dV/dtilt) by the ratio of pressure change to change in summit tilt (dP/dtilt). This measure of dV/dP, when combined with laboratory measurements of the bulk modulus of tholeitic melt, provides an estimate of 240 ?? 50 km3 for the volume

  5. Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    Energy Technology Data Exchange (ETDEWEB)

    Gualda, Guilherme A.R.; Pamukcu, Ayla S.; Ghiorso, Mark S.; Anderson, Jr. , Alfred T.; Sutton, Stephen R.; Rivers, Mark L. (OFM Res.); (Vanderbilt); (UC)

    2013-04-08

    Supereruptions violently transfer huge amounts (100 s-1000 s km{sup 3}) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted {approx}760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500-3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies.

  6. Frictional melting and stick-slip behavior in volcanic conduits

    Science.gov (United States)

    Kendrick, Jackie Evan; Lavallee, Yan; Hirose, Takehiro; di Toro, Giulio; Hornby, Adrian Jakob; Hess, Kai-Uwe; Dingwell, Donald Bruce

    2013-04-01

    Dome-building eruptions have catastrophic potential, with dome collapse leading to devastating pyroclastic flows with almost no precursory warning. During dome growth, the driving forces of the buoyant magma may be superseded by controls along conduit margins; where brittle fracture and sliding can lead to formation of lubricating cataclasite and gouge. Under extreme friction, pseudotachylyte may form at the conduit margin. Understanding the conduit margin processes is vital to understanding the continuation of an eruption and we postulate that pseudotachylyte generation could be the underlying cause of stick-slip motion and associated seismic "drumbeats", which are so commonly observed at dome-building volcanoes. This view is supported by field evidence in the form of pseudotachylytes identified in lava dome products at Soufrière Hills (Montserrat) and Mount St. Helens (USA). Both eruptions were characterised by repetitive, periodic seismicity and lava spine extrusion of highly viscous magma. High velocity rotary shear (HVR) experiments demonstrate the propensity for melting of the andesitic and dacitic material (from Soufrière Hills and Mount St. Helens respectively) at upper conduit stress conditions (HVR experiments which mimic rapid velocity fluctuations in stick-slip behavior demonstrate velocity-weakening behavior of melt, with a tendency for unstable slip. During ascent, magma may slip and undergo melting along the conduit margin. In the process the shear resistance of the slip zone is increased, acting as a viscous brake halting slip (the "stick" of stick-slip motion). Sufficient buoyancy-driven pressures from ascending magma below eventually overcome resistance to produce a rapid slip event (the "slip") along the melt-bearing slip zone, which is temporarily lubricated due to velocity-weakening. New magma below experiences the same slip event more slowly (as the magma decompresses) to produce a viscous brake and the process is repeated. This allows a

  7. Crew Exploration Vehicle Service Module Ascent Abort Coverage

    Science.gov (United States)

    Tedesco, Mark B.; Evans, Bryan M.; Merritt, Deborah S.; Falck, Robert D.

    2007-01-01

    The Crew Exploration Vehicle (CEV) is required to maintain continuous abort capability from lift off through destination arrival. This requirement is driven by the desire to provide the capability to safely return the crew to Earth after failure scenarios during the various phases of the mission. This paper addresses abort trajectory design considerations, concept of operations and guidance algorithm prototypes for the portion of the ascent trajectory following nominal jettison of the Launch Abort System (LAS) until safe orbit insertion. Factors such as abort system performance, crew load limits, natural environments, crew recovery, and vehicle element disposal were investigated to determine how to achieve continuous vehicle abort capability.

  8. What can Fe stable isotopes tell us about magmas?

    DEFF Research Database (Denmark)

    Stausberg, Niklas

    the differentiation of magmas from the perspective of Fe stable isotopes, integrated with petrology, by studying igneous rocks and their constituent phases (minerals and glasses) from the Bushveld Complex, South Africa, Thingmuli, Iceland, Pantelleria, Italy, and the Bishop Tuff, USA. The findings are interpreted......The majority of the Earth’s crust is formed by magmas, and understanding their production and differentiation is important to interpret the geologic rock record. A powerful tool to investigate magmatic processes is the distribution of the stable isotopes of the major redox-sensitive element...... in magmas, Fe. Fe isotope compositions of magmatic rocks exhibit systematic differences, where the heaviest compositions are found in rhyolites and granites. Understanding of these systematics is complicated by a lack of constraints on Fe isotope fractionation among minerals and liquids under magmatic...

  9. Implementing quantum logic gates with gradient ascent pulse engineering: principles and practicalities.

    Science.gov (United States)

    Rowland, Benjamin; Jones, Jonathan A

    2012-10-13

    We briefly describe the use of gradient ascent pulse engineering (GRAPE) pulses to implement quantum logic gates in nuclear magnetic resonance quantum computers, and discuss a range of simple extensions to the core technique. We then consider a range of difficulties that can arise in practical implementations of GRAPE sequences, reflecting non-idealities in the experimental systems used.

  10. Geophysical Evidence for the Locations, Shapes and Sizes, and Internal Structures of Magma Chambers beneath Regions of Quaternary Volcanism

    Science.gov (United States)

    Iyer, H. M.

    1984-04-01

    at the onset of melting of rocks and to delineate in three dimensions the shape of the partly melted zone. Similarly, decreases in density and electrical resistivity in rocks during melting, can be detected. Seismic refraction and reflection are not yet used extensively in magma chamber studies. In a study, in the Yellowstone region, seismic delays occurring in a fan-shooting configuration and time-term modelling show the presence of an intense molten zone in the upper crust. Deep seismic sounding (a combination of seismic refraction and reflection) and modelling amplitude and velocity changes of diffracted seismic waves from explosions and earthquakes, have enabled mapping of small and large magma chambers beneath many volcanoes in Kamchatka, U.S.S.R. Teleseismic P-wave residuals have been used to model low-velocity bodies, interpreted as magma chambers, in several Quaternary volcanic centres in the U.S.A. The results show that magma chambers with volumes of a few hundred to a few thousand cubic kilometres volume seem to be confined to regions of silicic volcanism. Many of the magma bodies seem to have upper-mantle roots implying that they are not isolated pockets of partial melt, but may be deriving their magma supplies from deeper parental sources. Medium or large crustal magma chambers are absent in the andesitic volcanoes of western United States and the basaltic Kilauea volcano, Hawaii. However, regional velocity models of the Oregon Cascades and Hawaii show evidence for the presence of magma reservoirs in the upper mantle. The transport of magma to the upper crust in these regions probably occurs rapidly through narrow conduits, with transient storage occurring in small chambers of a few cubic kilometres volume. Very little use has been made of the gravity and magnetic maps to model magma chambers. The number of available case histories, though few, indicate that these data can be very useful to give constraints on the density and temperature in magma chambers

  11. Reconstructing modalities of magma storage in the crust by thermo-rheological modelling

    Science.gov (United States)

    Caricchi, L.; Annen, C.; Rust, A.; Blundy, J.

    2012-04-01

    During my PhD I worked under the supervision of Luigi Burlini studying the rheological behaviour of magma. Luigi was not only a great teacher and friend but he was also able to project the science he was performing beyond the obvious applications. This aspect of Luigi's approach shaped my approach to research and brought me to think to ways of applying the studies we performed together to unravel the complexity of nature that impassioned and inspired him. This contribution comes from the motivation and interest that Luigi created in me during the short, but truly memorable journey we shared together. This study combines petrology, thermal modelling and magma rheology to characterise timescales and modalities of magma emplacement in the Earth's crust. Thermal modelling was performed to determine the influence of magma injection rates in the crust on the temperature evolution of a magmatic body. The injected tonalitic magma was considered to contain dioritic enclaves, common in plutons. The contrast in chemical composition between host and enclaves leads to different crystallinities of these magmas during cooling and produce a rheological contrast that permits reciprocal deformation only in restricted temperature ranges. Characterising the thermal and rheological evolution of host magma and enclaves, we traced the evolution of strain recorded by these inclusions during the construction of an intrusion, showing that the strain recorded by enclaves distributed in different portions of a pluton can be used to constrain thermal evolution in time, magmatic fluxes and timescale of assemblage of magmatic bodies in the crust.

  12. 75 FR 28778 - Magma Flood Retarding Structure (FRS) Supplemental Watershed Plan, Pinal County, AZ

    Science.gov (United States)

    2010-05-24

    ... DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Magma Flood Retarding Structure... statement is not being prepared for the Magma Flood Retarding Structure (FRS) Supplemental Watershed Plan... rehabilitate the Magma FRS to provide for continued flood protection for a portion of the Town of Florence and...

  13. Deformation patterns, magma supply, and magma storage at Karymsky Volcanic Center, Kamchatka, Russia, 2000-2010, revealed by InSAR

    Science.gov (United States)

    Ji, Lingyun; Izbekov, Pavel; Senyukov, Sergey; Lu, Zhong

    2018-02-01

    Under a complex geological region influenced by the subduction of the Pacific plate, Kamchatka Peninsula is one of the most active volcanic arcs in the Pacific Rim. Due to logistical difficulty in instrumentation, shallow magma plumbing systems beneath some of the Kamchatkan volcanoes are poorly understood. InSAR offers a safe and quick method for monitoring volcanic deformation with a high spatial resolution. In this study, a group of satellite radar interferograms that span the time interval from 2000 to 2010 shows eruptive and non-eruptive deformation at Karymsky Volcanic Center (KVC), Kamchatka, Russia. All the interferograms provide details of the activity around the KVC during 2000-2010, as follows: (1) from 2000 to 2004, the Karymsky-AN (Akademia Nauk) area deflated and the MS (Maly Semyachik) area inflated, (2) from 2004 to 2006, the Karymsky-AN area deflated with ongoing eruption, while the MS area subsided without eruption, (3) from 2006 to 2008, as with 2000-2004, the Karymsky-AN area deflated and the MS area inflated, (4) from 2008 to 2010, the Karymsky-AN area inflated up to 3 cm, and the MS area subsided. Point source models suggest that two magma reservoirs provide a good fit to the observed deformation. One source is located beneath the area between Karymsky and AN at a depth of approximately 7.0 km, and the other one is situated beneath MS at a depth of around 5.8 km. Synchronous deformation patterns suggest that two magma systems are fed from the same deep magma source and connected by a fracture zone. The InSAR results are consistent with GPS ground deformation measurements, seismic data, and petrological constraints.

  14. Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango Volcanic Field, Mexico

    Science.gov (United States)

    Martínez-Serrano, Raymundo G.; Schaaf, Peter; Solís-Pichardo, Gabriela; Hernández-Bernal, Ma. del Sol; Hernández-Treviño, Teodoro; Julio Morales-Contreras, Juan; Macías, José Luis

    2004-11-01

    Volcanic activity at Nevado de Toluca (NT) volcano began 2.6 Ma ago with the emission of andesitic lavas, but over the past 40 ka, eruptions have produced mainly lava flows and pyroclastic deposits of predominantly orthopyroxene-hornblende dacitic composition. In the nearby Tenango Volcanic Field (TVF) pyroclastic products and lava flows ranging in composition from basaltic andesite to andesite were erupted at most of 40 monogenetic volcanic centers and were coeval with the last stages of NT. All volcanic rocks in the study area are characterized by a calc-alkaline affinity that is consistent with a subduction setting. Relatively high concentrations of Sr (>460 ppm) coupled with low Y (45 km) that underlies the volcanoes of the study area, the geochemical and isotopic patterns of these rocks indicate low interaction with this crust. NT volcano was constructed at the intersection of three fault systems, and it seems that the Plio-Quaternary E-W system played an important role in the ascent and storage of magmas during the recent volcanic activity in the two regions. Chemical and textural features of orthopyroxene, amphibole and Fe-Ti oxides from NT suggest that crystallization of magmas occurred at polybaric conditions, confirming the rapid upwelling of magmas.

  15. The Krafla International Testbed (KMT): Ground Truth for the New Magma Geophysics

    Science.gov (United States)

    Brown, L. D.; Kim, D.; Malin, P. E.; Eichelberger, J. C.

    2017-12-01

    Recent developments in geophysics such as large N seismic arrays , 4D (time lapse) subsurface imaging and joint inversion algorithms represent fresh approaches to delineating and monitoring magma in the subsurface. Drilling at Krafla, both past and proposed, are unique opportunities to quantitatively corroborate and calibrate these new technologies. For example, dense seismic arrays are capable of passive imaging of magma systems with resolutions comparable to that achieved by more expensive (and often logistically impractical) controlled source surveys such as those used in oil exploration. Fine details of the geometry of magma lenses, feeders and associated fluid bearing fracture systems on the scale of meters to tens of meters are now realistic targets for surface seismic surveys using ambient energy sources, as are detection of their temporal variations. Joint inversions, for example of seismic and MT measurements, offer the promise of tighter quantitative constraints on the physical properties of the various components of magma and related geothermal systems imaged by geophysics. However, the accuracy of such techniques will remain captive to academic debate without testing against real world targets that have been directly sampled. Thus application of these new techniques to both guide future drilling at Krafla and to be calibrated against the resulting borehole observations of magma are an important step forward in validating geophysics for magma studies in general.

  16. Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii

    Science.gov (United States)

    Mastin, L.G.

    1997-01-01

    In 1790 a major hydromagmatic eruption at the summit of Kilauea volcano, Hawaii, deposited up to 10 m of pyroclastic fall and surge deposits and killed several dozen Hawaiian natives who were crossing the island. Previous studies have hypothesized that the explosivity of this eruption was due to the influx of groundwater into the conduit and mixing of the groundwater with ascending magma. This study proposes that surface water, not groundwater, was the agent responsible for the explosiveness of the eruption. That is, a lake or pond may have existed in the caldera in 1790 and explosions may have taken place when magma ascended into the lake from below. That assertion is based on two lines of evidence: (1) high vesicularity (averaging 73% of more than 3000 lapilli) and high vesicle number density (105-107 cm-3 melt) of pumice clasts suggest that some phases of the eruption involved vigorous, sustained magma ascent; and (2) numerical calculations suggest that under most circumstances, hydrostatic pressure would not be sufficient to drive water into the eruptive conduit during vigorous magma ascent unless the water table were above the ground surface. These results are supported by historical data on the rate of infilling of the caldera floor during the early 1800s. When extrapolated back to 1790, they suggest that the caldera floor was below the water table.

  17. Practical pulse engineering: Gradient ascent without matrix exponentiation

    Science.gov (United States)

    Bhole, Gaurav; Jones, Jonathan A.

    2018-06-01

    Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, which build on the original gradient ascent pulse engineering algorithm, remain computationally intensive because of the need to calculate matrix exponentials for each time step in the control pulse. In this study, we discuss how the propagators for each time step can be approximated using the Trotter-Suzuki formula, and a further speedup achieved by avoiding unnecessary operations. The resulting procedure can provide substantial speed gain with negligible costs in the propagator error, providing a more practical approach to pulse engineering.

  18. Pressure waves in a supersaturated bubbly magma

    Science.gov (United States)

    Kurzon, I.; Lyakhovsky, V.; Navon, O.; Chouet, B.

    2011-01-01

    We study the interaction of acoustic pressure waves with an expanding bubbly magma. The expansion of magma is the result of bubble growth during or following magma decompression and leads to two competing processes that affect pressure waves. On the one hand, growth in vesicularity leads to increased damping and decreased wave amplitudes, and on the other hand, a decrease in the effective bulk modulus of the bubbly mixture reduces wave velocity, which in turn, reduces damping and may lead to wave amplification. The additional acoustic energy originates from the chemical energy released during bubble growth. We examine this phenomenon analytically to identify conditions under which amplification of pressure waves is possible. These conditions are further examined numerically to shed light on the frequency and phase dependencies in relation to the interaction of waves and growing bubbles. Amplification is possible at low frequencies and when the growth rate of bubbles reaches an optimum value for which the wave velocity decreases sufficiently to overcome the increased damping of the vesicular material. We examine two amplification phase-dependent effects: (1) a tensile-phase effect in which the inserted wave adds to the process of bubble growth, utilizing the energy associated with the gas overpressure in the bubble and therefore converting a large proportion of this energy into additional acoustic energy, and (2) a compressive-phase effect in which the pressure wave works against the growing bubbles and a large amount of its acoustic energy is dissipated during the first cycle, but later enough energy is gained to amplify the second cycle. These two effects provide additional new possible mechanisms for the amplification phase seen in Long-Period (LP) and Very-Long-Period (VLP) seismic signals originating in magma-filled cracks.

  19. Drilling into Rhyolitic Magma at Shallow depth at Krafla Volcanic Complex, NE-Iceland

    Science.gov (United States)

    Mortensen, A. K.; Markússon, S. H.; Gudmundsson, Á.; Pálsson, B.

    2017-12-01

    Krafla volcanic complex in NE-Iceland is an active volcano but the latest eruption was the Krafla Fires in 1975-1984. Though recent volcanic activity has consisted of basaltic fissure eruptions, then it is rhyolitic magma that has been intercepted on at least two occasions while drilling geothermal production wells in the geothermal field suggesting a layered magma plumbing system beneath the Krafla volcanic complex. In 2008 quenched rhyolitic glass was retrieved from the bottom of well KJ-39, which is 2865 m deep ( 2571 m true vertical depth). In 2009 magma was again encountered at an even shallower depth and in more than 2,5 km distance from the bottom of well KJ-39, but in 2009 well IDDP-1 was drilled into magma three times just below 2100 m depth. Only on the last occasion was quenched glass retrieved to confirm that magma had been encountered. In well KJ-39 the quenched glass was rhyolitic in composition. The glass contained resorbed minerals of plagioclase, clinopyroxene and titanomagnetite, but the composition of the glass resembles magma that has formed by partial melting of hydrated basalt. The melt was encountered among cuttings from impermeable, coarse basaltic intrusives at a depth, where the well was anticipated to penetrate the Hólseldar volcanic fissure. In IDDP-1 the quenched glass was also rhyolitic in composition. The glass contained less than 5% of phenocrysts, but the phenocryst assemblage included andesine plagioclase, augite, pigeonite, and titanomagnetite. At IDDP-1 the melt was encountered below a permeable zone composed of fine to coarse grained felsite and granophyre. The disclosure of magma in two wells at Krafla volcanic complex verify that rhyolitic magma can be encountered at shallow depth across a larger area within the caldera. The encounter of magma at shallow depth conforms with that superheated conditions have been found at >2000 m depth in large parts of Krafla geothermal field.

  20. The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma

    Science.gov (United States)

    Huppert, Herbert E.; Sparks, R. Stephen J.

    1981-09-01

    This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate

  1. Terrestrial magma ocean and core segregation in the earth

    Science.gov (United States)

    Ohtani, Eiji; Yurimoto, Naoyoshi

    1992-01-01

    According to the recent theories of formation of the earth, the outer layer of the proto-earth was molten and the terrestrial magma ocean was formed when its radius exceeded 3000 km. Core formation should have started in this magma ocean stage, since segregation of metallic iron occurs effectively by melting of the proto-earth. Therefore, interactions between magma, mantle minerals, and metallic iron in the magma ocean stage controlled the geochemistry of the mantle and core. We have studied the partitioning behaviors of elements into the silicate melt, high pressure minerals, and metallic iron under the deep upper mantle and lower mantle conditions. We employed the multi-anvil apparatus for preparing the equilibrating samples in the ranges from 16 to 27 GPa and 1700-2400 C. Both the electron probe microanalyzer (EPMA) and the Secondary Ion Mass spectrometer (SIMS) were used for analyzing the run products. We obtained the partition coefficients of various trace elements between majorite, Mg-perovskite, and liquid, and magnesiowustite, Mg-perovskite, and metallic iron. The examples of the partition coefficients of some key elements are summarized in figures, together with the previous data. We may be able to assess the origin of the mantle abundances of the elements such as transition metals by using the partitioning data obtained above. The mantle abundances of some transition metals expected by the core-mantle equilibrium under the lower mantle conditions cannot explain the observed abundance of some elements such as Mn and Ge in the mantle. Estimations of the densities of the ultrabasic magma Mg-perovskite at high pressure suggest existence of a density crossover in the deep lower mantle; flotation of Mg-perovskite occurs in the deep magma ocean under the lower mantle conditions. The observed depletion of some transition metals such as V, Cr, Mn, Fe, Co, and Ni in the mantle may be explained by the two stage process, the core-mantle equilibrium under the lower

  2. Illuminating magma shearing processes via synchrotron imaging

    Science.gov (United States)

    Lavallée, Yan; Cai, Biao; Coats, Rebecca; Kendrick, Jackie E.; von Aulock, Felix W.; Wallace, Paul A.; Le Gall, Nolwenn; Godinho, Jose; Dobson, Katherine; Atwood, Robert; Holness, Marian; Lee, Peter D.

    2017-04-01

    Our understanding of geomaterial behaviour and processes has long fallen short due to inaccessibility into material as "something" happens. In volcanology, research strategies have increasingly sought to illuminate the subsurface of materials at all scales, from the use of muon tomography to image the inside of volcanoes to the use of seismic tomography to image magmatic bodies in the crust, and most recently, we have added synchrotron-based x-ray tomography to image the inside of material as we test it under controlled conditions. Here, we will explore some of the novel findings made on the evolution of magma during shearing. These will include observations and discussions of magma flow and failure as well as petrological reaction kinetics.

  3. Formation of heterogeneous magmatic series beneath North Santorini, South Aegean island arc

    DEFF Research Database (Denmark)

    Bailey, John C; Jensen, E.S.; Hansen, A.

    2008-01-01

    magma formation beneath North Santorini throughout its 500 ka history is attributed to variable transfer of sedimentary components - either terrigenous or pelagic, as bulk sediments or high-temperature partial melts rather than fluids or low-temperature partial melts - from a rupture zone...... in the subducted slab to the overlying mantle. The three main magmatic series followed independent paths of assimilation of upper crustal materials during fractional crystallization. Assimilation was more pronounced at the basaltic stage. The long-lived histories of the three main magmatic series imply repetitive...... melting of isolated mantle regions, ascent of magmas through independent feeder systems, and their residence in separate crustal magma chambers....

  4. Evolution of the sources of Moroccan volcanism during the Neogene

    International Nuclear Information System (INIS)

    El Azzouzi, M.; Griffiths, J.B.; Fourcade, S.; Hernandez, J.

    1999-01-01

    New major and trace element analyses, Sr-Nd isotopic data and 40 K- 40 Ar ages on Neogene and Quaternary lavas from Morocco lead to the conclusion that the observed temporal changes from calc-alkaline to transitional and finally magmatic activity reflect the contributions of distinct sources. According to our model, magmas originally derived from the melting of an European/Western Mediterranean-type asthenospheric mantle source interact during their ascent with either a sub-continental Roda - Beni Bousera -/type lithospheric mantle (alkaline magmas) or a lithospheric mantle containing a crystal component, and the overlying continental crust (calc-alkaline and, to a lesser extent, transitional magmas). (authors)

  5. Diapir versus along-channel ascent of crustal material during plate convergence: constrained by the thermal structure of subduction zones

    Science.gov (United States)

    Liu, M. Q.; Li, Z. H.

    2017-12-01

    Crustal rocks can be subducted to mantle depths, interact with the mantle wedge, and then exhume to the crustal depth again, which is generally considered as the mechanism for the formation of ultrahigh-pressure metamorphic rocks in nature. The crustal rocks undergo dehydration and melting at subarc depths, giving rise to fluids that metasomatize and weaken the overlying mantle wedge. There are generally two ways for the material ascent from subarc depths: one is along subduction channel; the other is through the mantle wedge by diapir. In order to study the conditions and dynamics of these contrasting material ascent modes, systematic petrological-thermo-mechanical numerical models are constructed with variable thicknesses of the overriding and subducting continental plates, ages of the subducting oceanic plate, as well as the plate convergence rates. The model results suggest that the thermal structures of subduction zones control the thermal condition and fluid/melt activity at the slab-mantle interface in subcontinental subduction channels, which further strongly affect the material transportation and ascent mode. Thick overriding continental plate and low-angle subduction style induced by young subducting oceanic plate both contribute to the formation of relatively cold subduction channels with strong overriding mantle wedge, where the along-channel exhumation occurs exclusively to result in the exhumation of HP-UHP metamorphic rocks. In contrast, thin overriding lithosphere and steep subduction style induced by old subducting oceanic plate are the favorable conditions for hot subduction channels, which lead to significant hydration and metasomatism, melting and weakening of the overriding mantle wedge and thus cause the ascent of mantle wedge-derived melts by diapir through the mantle wedge. This may corresponds to the origination of continental arc volcanism from mafic to ultramafic metasomatites in the bottom of the mantle wedge. In addition, the plate

  6. Influence of working memory and executive function on stair ascent and descent in young and older adults.

    Science.gov (United States)

    Gaillardin, Florence; Baudry, Stéphane

    2018-06-01

    This study assessed the influence of attention division, working memory and executive function on stair ascent and descent in young and older adults. Twenty young (25.5 ± 2.1 yrs) and 20 older adults (68.4 ± 5.4 yrs) ascended and descended a 3-step staircase with no simultaneous cognitive task (single-motor task) or while performing a cognitive task (dual-task condition). The cognitive task involved either 1) recalling a word list of the subject's word-span minus 2 words (SPAN-2) to assess the attention division effect, 2) a word list of subject's word-span (SPAN-O) to assess the working memory effect, or 3) recalling in alphabetical order, a word list of the subject's word-span (SPAN-A) to assess the executive function effect. Word-span corresponds to the longest string of words that can be recalled correctly. The duration of ascent and descent of stairs was used to assess the cognitive-motor interaction. Stair ascent and descent duration did not differ between age groups for the single-motor task, and was similar between single-motor task and SPAN-2 in both groups (p > 0.05). In contrast, stair ascent and descent duration increased with SPAN-O compared with SPAN-2 for both groups (p SPAN-A than SPAN-O only in older adults. Healthy aging was not associated with a decrease in the capacity to perform motor-cognitive dual tasks that involved ascending and descending of stairs when the cognitive task only required working memory. However, the decrease in dual-task performance involving executive functioning may reflect a subclinical cognitive decline in healthy older adults. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. MAGMA: generalized gene-set analysis of GWAS data.

    Science.gov (United States)

    de Leeuw, Christiaan A; Mooij, Joris M; Heskes, Tom; Posthuma, Danielle

    2015-04-01

    By aggregating data for complex traits in a biologically meaningful way, gene and gene-set analysis constitute a valuable addition to single-marker analysis. However, although various methods for gene and gene-set analysis currently exist, they generally suffer from a number of issues. Statistical power for most methods is strongly affected by linkage disequilibrium between markers, multi-marker associations are often hard to detect, and the reliance on permutation to compute p-values tends to make the analysis computationally very expensive. To address these issues we have developed MAGMA, a novel tool for gene and gene-set analysis. The gene analysis is based on a multiple regression model, to provide better statistical performance. The gene-set analysis is built as a separate layer around the gene analysis for additional flexibility. This gene-set analysis also uses a regression structure to allow generalization to analysis of continuous properties of genes and simultaneous analysis of multiple gene sets and other gene properties. Simulations and an analysis of Crohn's Disease data are used to evaluate the performance of MAGMA and to compare it to a number of other gene and gene-set analysis tools. The results show that MAGMA has significantly more power than other tools for both the gene and the gene-set analysis, identifying more genes and gene sets associated with Crohn's Disease while maintaining a correct type 1 error rate. Moreover, the MAGMA analysis of the Crohn's Disease data was found to be considerably faster as well.

  8. Geochronological and mineralogical constraints on depth of emplacement and ascencion rates of epidote-bearing magmas from northeastern Brazil

    Science.gov (United States)

    Sial, Alcides N.; Vasconcelos, Paulo M.; Ferreira, Valderez P.; Pessoa, Ricardo R.; Brasilino, Roberta G.; Morais Neto, João M.

    2008-10-01

    Calc-alkalic to high-K calc-alkalic granitoid plutons in the Borborema province, northeastern Brazil, have been studied to constrain depth of emplacement by mineralogical and geological methods and to estimate upward magma transport rate based on partial dissolution of magmatic epidote. Laser-probe incremental heating 40Ar/ 39Ar dating of biotite and hornblende single crystals from the Neoproterozoic Tavares and Brejinho high-K calc-alkalic magmatic epidote (mEp)-bearing plutons reveals age differences of around 60 M.y. between these two minerals in each of these two intrusions. These data suggest solidification at relatively great depth followed by prolonged cooling interval between the closure temperatures of biotite and hornblende. Al-in-hornblende barometry indicates that hornblende in several mEp-bearing plutons in the Transversal Domain of the Borborema province solidified at 5 to 7 kbar, whereas in the Seridó and Macururé terranes, solidification pressures range from 3 to 4 kbar. Partial dissolution of epidote indicates very rapid upward transport. Partial corrosion occurred during 15-35 years (Cachoerinha-Salgueiro terrane), 10-30 years (Alto Pajeú), 15 years (Seridó), and 10 years (Macururé) corresponding to upward transport rates of 450-1300, 650-1050, 1200, and 1800 m/year respectively in these four terranes. Rapid upward magma migration in most cases was probably facilitated by diking simultaneous with regional shearing.

  9. Shallow-level magma-sediment interaction and explosive behaviour at Anak Krakatau (Invited)

    Science.gov (United States)

    Troll, V. R.; Jolis, E. M.; Dahren, B.; Deegan, F. M.; Blythe, L. S.; Harris, C.; Berg, S. E.; Hilton, D. R.; Freda, C.

    2013-12-01

    Crustal contamination of ascending arc magmas is generally thought to be a significant process which occurs at lower- to mid-crustal magma storage levels where magmas inherit their chemical and isotopic character by blending, assimilation and differentiation [1]. Anak Krakatau, like many other volcanoes, erupts shallow-level crustal xenoliths [2], indicating a potential role for upper crustal modification and hence late-stage changes to magma rheology and thus potential eruptive behaviour. Distinguishing deep vs. shallow crustal contamination processes at Krakatau, and elsewhere, is therefore crucial to understand and assess pre-eruptive magmatic conditions and their associated hazard potential. Here we report on a multi-disciplinary approach to unravel the crustal plumbing system of the persistently-active and dominantly explosive Anak Krakatau volcano [2, 3], employing rock-, mineral- and gas-isotope geochemistry and link these results with seismic tomography [4]. We show that pyroxene crystals formed at mid- and lower-crustal levels (9-11 km) and carry almost mantle-like isotope signatures (O, Sr, Nd, He), while feldspar crystals formed dominantly at shallow levels (< 5km) and display unequivocal isotopic evidence for late stage contamination (O, Sr, Nd). This obeservation places a significant element of magma-crust interaction into the uppermost, sediment-rich crust beneath the volcano. Magma storage in the uppermost crust can thus offer a possible explanation for the compositional modifications of primitive Krakatau magmas, and likely provides extra impetus to increased explosivity at Anak Krakatau. [1] Annen, et al., 2006. J. Petrol. 47, 505-539. [2] Gardner, et al., 2013. J. Petrol. 54, 149-182. [3] Dahren, et al., 2012. Contrib. Mineral. Petrol. 163, 631-651. [4] Jaxybulatov, et al., 2011. J. Volcanol. Geoth. Res. 206, 96-105.

  10. Aerodynamic Analyses and Database Development for Lift-Off/Transition and First Stage Ascent of the Ares I A106 Vehicle

    Science.gov (United States)

    Pamadi, Bandu N.; Pei, Jing; Covell, Peter F.; Favaregh, Noah M.; Gumbert, Clyde R.; Hanke, Jeremy L.

    2011-01-01

    NASA Langley Research Center, in partnership with NASA Marshall Space Flight Center and NASA Ames Research Center, was involved in the aerodynamic analyses, testing, and database development for the Ares I A106 crew launch vehicle in support of the Ares Design and Analysis Cycle. This paper discusses the development of lift-off/transition and ascent databases. The lift-off/transition database was developed using data from tests on a 1.75% scale model of the A106 configuration in the NASA Langley 14x22 Subsonic Wind Tunnel. The power-off ascent database was developed using test data on a 1% A106 scale model from two different facilities, the Boeing Polysonic Wind Tunnel and the NASA Langley Unitary Plan Wind Tunnel. The ascent database was adjusted for differences in wind tunnel and flight Reynolds numbers using USM3D CFD code. The aerodynamic jet interaction effects due to first stage roll control system were modeled using USM3D and OVERFLOW CFD codes.

  11. Trace element and isotopic effects arising from magma migration beneath mid-ocean ridges

    International Nuclear Information System (INIS)

    Kenyon, P.M.

    1990-01-01

    The trace element concentrations and isotopic ratios in the magma erupted on mid-ocean ridges may differ from those in the source material due to physical effects such as porous flow dispersion, exchange of trace elements between the fluid and solid phases during magma migration, and convective mixing in magma chambers. These differences are in addition to those produced by better known processes such as fractional crystallization and partial melting. The effects of the three former processes are described. It is predicted that magma typically reaches the sub-ridge magma chambers with a spatial heterogeneity only slightly reduced from that of the source material, but with a subdued variation in time. Convective mixing then further reduces the spatial heterogeneity. Application of the results for convective mixing to a recent Fourier analysis of 87 Sr/ 86 Sr variations along the Mid-Atlantic Ridge suggests that the falloff in amplitude of variation observed with decreasing wavelength in the Mid-Atlantic Ridge data cannot be explained by convective mixing in magma chambers. Instead, it is postulated that this falloff is due to the mechanics of the production and/or the solid-state convective mixing of chemical and isotopic heterogeneities in the solid mantle. (orig.)

  12. Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse

    Science.gov (United States)

    Kabele, Petr; Žák, Jiří; Somr, Michael

    2017-06-01

    Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.

  13. Evidence for crustal recycling during the Archean: the parental magmas of the stillwater complex

    International Nuclear Information System (INIS)

    McCallum, I.S.

    1988-01-01

    The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana, is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area

  14. The magma plumbing system in the Mariana Trough back-arc basin at 18° N

    Science.gov (United States)

    Lai, Zhiqing; Zhao, Guangtao; Han, Zongzhu; Huang, Bo; Li, Min; Tian, Liyan; Liu, Bo; Bu, Xuejiao

    2018-04-01

    Mafic magmas are common in back-arc basin, once stalled in the crust, these magmas may undergo different evolution. In this paper, compositional and textural variations of plagioclase as well as mineral-melt geothermobarometry are presented for basalts erupted from the central Mariana Trough (CMT). These data reveal crystallization conditions and we attempt a reconstruction of the magma plumbing system of the CMT. Plagioclase megacrysts, phenocrysts, microphenocrysts, microlites, olivine, spinel, and clinopyroxene have been recognized in basalt samples, using BSE images and compositional features. The last three minerals are homogeneous as microphenocrysts. Mineral-melt barometry indicates that plagioclase crystals crystallized and eventually grew into phenocrysts and megacrysts in mush zone with depth of 5-9 km, in which the normal zoning plagioclases crystallized in the interval of various batches of basic magma recharging. Plagioclase megacrysts and phenocrysts were dissolved and/or resorbed, when new basic magmas injected into the mush zone near Moho depth. It is inferred that magma extracted from the mush zone, and adiabatically ascended via different pathways. Some basaltic magmas underwent plagioclase and clinopyroxene microphenocrysts crystallization in low-pressure before eruption. Plagioclase microlites and outermost rims probably crystallized after eruption.

  15. Volcanic systems of Iceland and their magma source

    Science.gov (United States)

    Sigmarsson, Olgeir

    2017-04-01

    Several active hot-spot volcanoes produce magma from mantle sources which composition varies on decadal time scale. This is probably best demonstrated by the recent work of Pietruszka and collaborators on Kilauea, Hawaii. In marked contrast, basalt lavas from volcanic system in Iceland located above the presumed centre of the Iceland mantle plume have uniform isotope composition over the last 10 thousand years. Volcanic systems are composed of a central volcano and a fissure swarm, or a combination of both and they represent a fundamental component of the neovolcanic zones in Iceland. Four such systems, those of Askja, Bárðarbunga, Kverkfjöll and Grímsvötn in central Iceland were chosen for investigation. The last three have central volcanoes covered by the Vatnajökull ice-sheet whereas part of their fissure swarms is ice-free. Tephra produced during subglacial eruptions together with lavas from the fissure swarms of Holocene age have been collected and analysed for Sr, Nd and Th isotope ratios. Those volcanic formations that can be univocally correlated to a given volcanic system display uniform isotope ratio but different from one volcanic system to another. An exception to this regularity is that Askja products have isotope ratios indistinguishable from those of Gímsvötn, but since these volcanic systems lies far apart their lava fields do not overlap. A practical aspect of these findings was demonstrated during the rifting event of Bárðarbunga and fissure eruption forming the Holuhraun lava field. Relatively low, O isotope ratios in these basalts and heterogeneous macrocrystal composition have been ascribed to important metabasaltic crustal contamination with or without crystal mush recycling. In that case a surprisingly efficient magma mixing and melt homogenization must have occurred in the past beneath the volcanic systems. One possibility is that during the rapid deglaciation much mantle melting occurred and melts accumulated at the mantle

  16. Evolution of the magma feeding system during a Plinian eruption: The case of Pomici di Avellino eruption of Somma-Vesuvius, Italy

    Science.gov (United States)

    Massaro, S.; Costa, A.; Sulpizio, R.

    2018-01-01

    The current paradigm for volcanic eruptions is that magma erupts from a deep magma reservoir through a volcanic conduit, typically modelled with fixed rigid geometries such as cylinders. This simplistic view of a volcanic eruption does not account for the complex dynamics that usually characterise a large explosive event. Numerical simulations of magma flow in a conduit combined with volcanological and geological data, allow for the first description of a physics-based model of the feeding system evolution during a sustained phase of an explosive eruption. The method was applied to the Plinian phase of the Pomici di Avellino eruption (PdA, 3945 ±10 cal yr BP) from Somma-Vesuvius (Italy). Information available from volcanology, petrology, and lithology studies was used as input data and as constraints for the model. In particular, Mass Discharge Rates (MDRs) assessed from volcanological methods were used as target values for numerical simulations. The model solutions, which are non-unique, were constrained using geological and volcanological data, such as volume estimates and types of lithic components in the fall deposits. Three stable geometric configurations of the feeding system (described assuming elliptical cross-section of variable dimensions) were assessed for the Eruptive Units 2 and 3 (EU2, EU3), which form the magmatic Plinian phase of PdA eruption. They describe the conduit system geometry at time of deposition of EU2 base, EU2 top, and EU3. A 7-km deep dyke (length 2 a = 200-4 00 m, width 2 b = 10- 12 m), connecting the magma chamber to the surface, characterised the feeding system at the onset of the Plinian phase (EU2 base). The feeding system rapidly evolved into hybrid geometric configuration, with a deeper dyke (length 2 a = 600- 800 m, width 2 b = 50 m) and a shallower cylindrical conduit (diameter D = 50 m, dyke-to-cylinder transition depth ∼2100 m), during the eruption of the EU2 top. The deeper dyke reached the dimensions of 2 a = 2000 m and

  17. Parental magmas of Mare Fecunditatis - Evidence from pristine glasses

    International Nuclear Information System (INIS)

    Jin, Y.; Taylor, L.A.

    1990-01-01

    Results are presented on the petrography and electron microprobe analyses of 14 discrete glass beads from the Luna 16 core sample (21036,15) from Mare Fecunditatis regolith, that were previously characterized as representing pristine glasses. Compared to Apollo pristine glasses analyzed by Delano (1986), the Luna 16 pristine glasses have higher CaO and Al2O3 contents but lower MgO and Ni. On the basis of their contents of MgO, FeO, Al2O3, and CaO, these pristine glasses could be divided into two groups, A and B. It is suggested that at least two parental magmas are needed to explain the chemical variations among these glasses. The Group B glasses appear to represent primitive parental magma that evolved by olivine fractionation to the compositions of the Luna 16 aluminous mare basalts, whereas the Group A volcanic glasses may represent an unusual new basalt magma type that contains a high plagioclase component. 14 refs

  18. Shallow Chamber & Conduit Behavior of Silicic Magma: A Thermo- and Fluid- Dynamic Parameterization Model of Physical Deformation as Constrained by Geodetic Observations: Case Study; Soufriere Hills Volcano, Montserrat

    Science.gov (United States)

    Gunn de Rosas, C. L.

    2013-12-01

    The Soufrière Hills Volcano, Montserrat (SHV) is an active, mainly andesitic and well-studied stratovolcano situated at the northern end of the Lesser Antilles Arc subduction zone in the Caribbean Sea. The goal of our research is to create a high resolution 3D subsurface model of the shallow and deeper aspects of the magma storage and plumbing system at SHV. Our model will integrate inversions using continuous and campaign geodetic observations at SHV from 1995 to the present as well as local seismic records taken at various unrest intervals to construct a best-fit geometry, pressure point source and inflation rate and magnitude. We will also incorporate a heterogeneous media in the crust and use the most contemporary understanding of deep crustal- or even mantle-depth 'hot-zone' genesis and chemical evolution of silicic and intermediate magmas to inform the character of the deep edifice influx. Our heat transfer model will be constructed with a modified 'thin shell' enveloping the magma chamber to simulate the insulating or conducting influence of heat-altered chamber boundary conditions. The final forward model should elucidate observational data preceding and proceeding unrest events, the behavioral suite of magma transport in the subsurface environment and the feedback mechanisms that may contribute to eruption triggering. Preliminary hypotheses suggest wet, low-viscosity residual melts derived from 'hot zones' will ascend rapidly to shallower stall-points and that their products (eventually erupted lavas as well as stalled plutonic masses) will experience and display two discrete periods of shallow evolution; a rapid depressurization crystallization event followed by a slower conduction-controlled heat transfer and cooling crystallization. These events have particular implications for shallow magma behaviors, notably inflation, compressibility and pressure values. Visualization of the model with its inversion constraints will be affected with Com

  19. Water-magma interaction and plume processes in the 2008 Okmok eruption, Alaska

    Science.gov (United States)

    Unema, Joel; Ort, Michael H.; Larsen, Jessica D; Neal, Christina; Schaefer, Janet R.

    2016-01-01

    Eruptions of similar explosivity can have divergent effects on the surroundings due to differences in the behavior of the tephra in the eruption column and atmosphere. Okmok volcano, located on Umnak Island in the eastern Aleutian Islands, erupted explosively between 12 July and 19 August 2008. The basaltic andesitic eruption ejected ∼0.24 km3dense rock equivalent (DRE) of tephra, primarily directed to the northeast of the vent area. The first 4 h of the eruption produced dominantly coarse-grained tephra, but the following 5 wk of the eruption deposited almost exclusively ash, much of it very fine and deposited as ash pellets and ashy rain and mist. Meteorological storms combined with abundant plume water to efficiently scrub ash from the eruption column, with a rapid decrease in deposit thickness with distance from the vent. Grain-size analysis shows that the modes (although not their relative proportions) are very constant throughout the deposit, implying that the fragmentation mechanisms did not vary much. Grain-shape features consistent with molten fuel-coolant interaction are common. Surface and groundwater drainage into the vents provided the water for phreatomagmatic fragmentation. The available water (water that could reach the vent area during the eruption) was ∼2.8 × 1010 kg, and the erupted magma totaled ∼7 × 1011 kg, which yield an overall water:magma mass ratio of ∼0.04, but much of the water was not interactive. Although magma flux dropped from 1 × 107 kg/s during the initial 4 h to 1.8 × 105 kg/s for the remainder of the eruption, most of the erupted material was ejected during the lower-mass-flux period due to its much greater length, and this tephra was dominantly deposited within 10 km downwind of the vent. This highlights the importance of ash scrubbing in the evaluation of hazards from explosive eruptions.

  20. Magma Mixing: Why Picrites are Not So Hot

    Science.gov (United States)

    Natland, J. H.

    2010-12-01

    Oxide gabbros or ferrogabbros are the late, low-temperature differentiates of tholeiitic magma and usually form as cumulates that can have 2-30% of the magmatic oxides, ilmenite and magnetite. They are common in the ocean crust and are likely ubiquitous wherever extensive tholeiitic magmatism has occurred, especially beneath thick lava piles such as at Hawaii, Iceland, oceanic plateaus, island arcs and ancient continental crust. When intruded by hot primitive magma including picrite, the oxide-bearing portions of these rocks are readily partially melted or assimilated into the magma and contribute to it a degree of iron and titanium enrichment that is not reflective of the mantle source of the primitive magma. The most extreme examples of such mixing are meimechites and ferropicrites, but this type of end-member mixing is even common in MORB. To the extent this process occurs, the eruptive picrite cannot be used to estimate compositions of partial melts of mantle rocks, nor their eruptive or potential temperatures, using olivine-liquid FeO-MgO backtrack procedures. Most picrites have glasses with compositions approximating those expected from low-pressure multiphase cotectic crystallization, and olivine that on average crystallized from liquids of nearly those compositions. The hallmark of such rocks is the presence of minerals other than olivine among phenocrysts (plagioclase at Iceland, clinopyroxene at many oceanic islands), Fe- and Ti-rich chromian spinel (ankaramites, ferropicrites and meimichites), and in some cases the presence of iron-rich olivine (hortonolite ~Fo65 in ferropicrites), Ti-rich kaersutitic amphibole and even apatite (meimechites); the latter two derive from late-stage, hydrous and geochemically enriched metamorphic or alkalic assimilants. This type of mixing, however, does not necessarily involve depleted and enriched mixing components. To avoid such mixing, primitive melts have to rise primarily through upper mantle rocks of near-zero melt

  1. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    Directory of Open Access Journals (Sweden)

    Christopher A Rábago

    Full Text Available Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR. We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs to matched abled-bodied (AB individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  2. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    Science.gov (United States)

    Rábago, Christopher A; Aldridge Whitehead, Jennifer; Wilken, Jason M

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  3. Magnetic resonance imaging of water ascent in embolized xylem vessels of grapevine stem segments

    Science.gov (United States)

    Mingtao Wang; Melvin T. Tyree; Roderick E. Wasylishen

    2013-01-01

    Temporal and spatial information about water refilling of embolized xylem vessels and the rate of water ascent in these vessels is critical for understanding embolism repair in intact living vascular plants. High-resolution 1H magnetic resonance imaging (MRI) experiments have been performed on embolized grapevine stem segments while they were...

  4. Upward migration of Vesuvius magma chamber over the past 20,000 years.

    Science.gov (United States)

    Scaillet, B; Pichavant, M; Cioni, R

    2008-09-11

    Forecasting future eruptions of Vesuvius is an important challenge for volcanologists, as its reawakening could threaten the lives of 700,000 people living near the volcano. Critical to the evaluation of hazards associated with the next eruption is the estimation of the depth of the magma reservoir, one of the main parameters controlling magma properties and eruptive style. Petrological studies have indicated that during past activity, magma chambers were at depths between 3 and 16 km (refs 3-7). Geophysical surveys have imaged some levels of seismic attenuation, the shallowest of which lies at 8-9 km depth, and these have been tentatively interpreted as levels of preferential magma accumulation. By using experimental phase equilibria, carried out on material from four main explosive events at Vesuvius, we show here that the reservoirs that fed the eruptive activity migrated from 7-8 km to 3-4 km depth between the ad 79 (Pompeii) and ad 472 (Pollena) events. If data from the Pomici di Base event 18.5 kyr ago and the 1944 Vesuvius eruption are included, the total upward migration of the reservoir amounts to 9-11 km. The change of preferential magma ponding levels in the upper crust can be attributed to differences in the volatile content and buoyancy of ascending magmas, as well as to changes in local stress field following either caldera formation or volcano spreading. Reservoir migration, and the possible influence on feeding rates, should be integrated into the parameters used for defining expected eruptive scenarios at Vesuvius.

  5. INTERACTIONS BETWEEN GABBROID AND GRANITOID MAGMAS DURING FORMATION OF THE PREOBRAZHENSKY INTRUSION, EAST KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    S. V. Khromykh

    2017-01-01

    Full Text Available The paper reports on studies of the Preobrazhensky gabbro‐granitoid intrusion, East Kazakhstan, com‐ posed of the rocks that belong to four phases of intrusion, from quartz monzonites and gabbroids to granite‐ leucogranites. Specific relationships between basite and granitoid rocks are usually classified as the result of interac‐ tions and mixing of liquid magmas, i.e. magma mingling and mixing. Basite rocks are represented by a series from biotite gabbros to monzodiorites. Granitoids rocks are biotite‐amphibole granites. Porphyric granosyenites, com‐ bining the features of both granites and monzodiorites, are also involved in mingling. It is established that the primary granitoid magmas contained granosyenite/quartz‐monzonite and occurred in the lower‐medium‐crust conditions in equilibrium with the garnet‐rich restite enriched with plagioclase. Monzodiorites formed during fractionation of the parent gabbroid magma that originated from the enriched mantle source. We propose a magma interaction model describing penetration of the basite magma into the lower horizons of the granitoid source, which ceased below the viscoplastic horizon of granitoids. The initial interaction assumes the thermal effect of basites on the almost crystal‐ lized granitic magma and saturation of the boundary horizons of the basite magma with volatile elements, which can change the composition of the crystallizing melt from gabbroid to monzodiorite. A ‘boundary’ layer of monzodiorite melt is formed at the boundary of the gabbroid and granitoid magmas, and interacts with granitoids. Due to chemical interactions, hybrid rocks – porphyric granosyenites – are formed. The heterogeneous mixture of monzodiorites and granosyenites is more mobile in comparison with the overlying almost crystallized granites. Due to contraction frac‐ turing in the crystallized granites, the heterogeneous mixture of monzodiorites and granosyenites penetrate into the

  6. When Magma Meets Carbonate: Explosive Criminals of Climate Change?

    Science.gov (United States)

    Carter, L. B.

    2017-12-01

    The natural carbon cycle is a key component of global climate change. Identifying and quantifying all processes in the cycle is essential to determine the effects of human greenhouse gas contributions and make future predictions. Volcanoes are the main natural source of carbon dioxide to the atmosphere [1]. In settings where carbonate rocks underlie the edifice, they can be consumed by magma passing through, which can release extra CO2, potentially explaining the extremely high emissions at Mount Etna in Italy [2-4]. We conduct laboratory experiments, mimicking conditions in the crust, to study how different carbonate rocks interact with hot magmas at pressure, and determine the amount of CO2 generated. We find that some types of magma can raise volcanic gas output and cause more explosive and dangerous eruptions [5-6]. Others are more likely to release hot fluids to the surrounding rocks, releasing CO2 by skarnification, which leaves economically important ores like in the western US [3,7] but can weaken the subsurface, potentially leading to landslides. Gas can also be released on the flanks of a volcano or in regions lacking an active volcano, due to the breakdown of certain carbonate rocks by heat [7], seen as bubbling springs in Yellowstone [8]. Our experiments indicate that if dolostone, not limestone, surrounds a magma chamber, over half the CO2 that was locked in the crust can escape even at lower temperatures a distance away. These processes are perhaps pertinent to why the Earth's climate was warm >50 million years ago, when more magma-carbonate interaction likely occurred than today [3] and thus contributed several times the current volcanic output [4] to the atmosphere. As significant parts of the long-term carbon cycle, it is necessary to include magma-carbonate reactions when considering climate changes before taking into account human input. [1] Aiuppa et al 2017 ESciRev (168) 24-47; [2] Ganino and Arndt 2009 Geol (37) 323-326; [3] Lee et al. 2013

  7. Onset of solid state mantle convection and mixing during magma ocean solidification

    Science.gov (United States)

    Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris

    2017-04-01

    The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.

  8. Radioactive equilibria and disequilibria of U-series nuclides in erupting magmas from Izu arc volcanoes

    International Nuclear Information System (INIS)

    Sato, Jun; Kurihara, Yuichi; Takahashi, Masaomi

    2009-01-01

    Radioactive disequilibria among U-series nuclides are observed in the magmas from volcanoes in the world. Basaltic products from Izu arc volcanoes, including Izu-Oshima and Fuji volcanoes, show 230 Th 238 U and 226 Ra> 230 Th disequilibria, indicating that the addition of U-and Ra-rich fluid from the subducting slab to the mantle wedge at the magma genesis. The disequilibria of 226 Ra> 230 Th in the erupting magmas suggest that the timescale from magma genesis to the eruption may be less than 8000 years. (author)

  9. Thermally-assisted Magma Emplacement Explains Restless Calderas

    Science.gov (United States)

    Amoruso, A.; Crescentini, L.; D'Antonio, M.; Acocella, V.

    2017-12-01

    Many calderas show repeated unrest over centuries. Though probably induced by magma, this unique behaviour is not understood and its dynamics remains elusive. To better understand these restless calderas, we interpret deformation data and build thermal models of Campi Flegrei, Italy, which is the best-known, yet most dangerous calderas, lying to the west of Naples and restless since the 1950s at least.Our elaboration of the geodetic data indicates that the inflation and deflation of magmatic sources at the same location explain most deformation, at least since the build-up of the last 1538 AD eruption. However, such a repeated magma emplacement requires a persistently hot crust.Our thermal models show that the repeated emplacement was assisted by the thermal anomaly created by magma that was intruded at shallow depth 3 ka before the last eruption and, in turn, contributed to maintain the thermal anomaly itself. This may explain the persistence of the magmatic sources promoting the restless behaviour of the Campi Flegrei caldera; moreover, it explains the crystallization, re-melting and mixing among compositionally distinct magmas recorded in young volcanic rocks.Available information at other calderas highlights similarities to Campi Flegrei, in the pattern and cause of unrest. All monitored restless calderas have either geodetically (Yellowstone, Aira Iwo-Jima, Askja, Fernandina and, partly, Long Valley) or geophysically (Rabaul, Okmok) detected sill-like intrusions inducing repeated unrest. Some calderas (Yellowstone, Long Valley) also show stable deformation pattern, where inflation insists on and mimics the resurgence uplift. The common existence of sill-like sources, also responsible for stable deformation patterns, in restless calderas suggests close similarities to Campi Flegrei. This suggests a wider applicability of our model of thermally-assisted sill emplacement, to be tested by future studies to better understand not only the dynamics of restless

  10. Isotopic evidence for multiple contributions to felsic magma chambers

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Wiebe, R.A.; Krogstad, E.J.

    2007-01-01

    The Gouldsboro Granite forms part of the Coastal Maine Magmatic Province, a region characterized by granitic plutons that are intimately linked temporally and petrogenetically with abundant co-existing mafic magmas. The pluton is complex and preserves a felsic magma chamber underlain...... with identical isotopic compositions to more mafic dikes suggest that closed system fractionation may be occurring in deeper level chambers prior to injection to shallower levels. The granitic portion of the pluton has the highest Nd isotopic composition (eNd=+3.0) of plutons in the region whereas the mafic...

  11. Weak solutions of magma equations

    International Nuclear Information System (INIS)

    Krishnan, E.V.

    1999-01-01

    Periodic solutions in terms of Jacobian cosine elliptic functions have been obtained for a set of values of two physical parameters for the magma equation which do not reduce to solitary-wave solutions. It was also obtained solitary-wave solutions for another set of these parameters as an infinite period limit of periodic solutions in terms of Weierstrass and Jacobian elliptic functions

  12. Comments on 'Generation of Deccan Trap magmas'

    Indian Academy of Sciences (India)

    R.Narasimhan(krishtel emaging)1461 1996 Oct 15 13:05:22

    Comments on 'Generation of Deccan Trap magmas' by Gautam Sen ... Department of Geology & Geophysics, School of Ocean & Earth Science & Technology (SOEST), University of .... Mahoney J J, Sheth H C, Chandrasekharan D and Peng Z.

  13. A basal magma ocean dynamo to explain the early lunar magnetic field

    Science.gov (United States)

    Scheinberg, Aaron L.; Soderlund, Krista M.; Elkins-Tanton, Linda T.

    2018-06-01

    The source of the ancient lunar magnetic field is an unsolved problem in the Moon's evolution. Theoretical work invoking a core dynamo has been unable to explain the magnitude of the observed field, falling instead one to two orders of magnitude below it. Since surface magnetic field strength is highly sensitive to the depth and size of the dynamo region, we instead hypothesize that the early lunar dynamo was driven by convection in a basal magma ocean formed from the final stages of an early lunar magma ocean; this material is expected to be dense, radioactive, and metalliferous. Here we use numerical convection models to predict the longevity and heat flow of such a basal magma ocean and use scaling laws to estimate the resulting magnetic field strength. We show that, if sufficiently electrically conducting, a magma ocean could have produced an early dynamo with surface fields consistent with the paleomagnetic observations.

  14. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation

    Science.gov (United States)

    Mills, Ryan D.

    2013-01-01

    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  15. Aspects of potential magmatic disruption of a high-level radioactive waste repository in southern Nevada

    International Nuclear Information System (INIS)

    Crowe, B.; Self, S.; Vaniman, D.; Amos, R.; Perry, F.

    1983-01-01

    Volcanic hazard studies, combining standard techniques of hazard appraisal and risk assessment are being undertaken with respect to storage of high-level, radioactive waste in southern Nevada. Consequence studies, the emphasis of this work, are evaluated by tracing the steps of ascent of basaltic magma including intersection and disruption of a repository followed by surface eruption. Theoretical considerations suggest basalt magma ascends rapidly from mantle depth (10's of cm/sec in the bubble-free regime) but may be trapped temporarily and fractionate at the mantle/crust interface. Basalt centers are fed from narrow linear dikes. Local sheet-like intrusions formed at depths of 200 to 300 m probably due to a combination of extensional faulting during emplacement and trapping within low-density tuff country rock, aided in part by a low magma-volatile content. Incorporation of radioactive waste in basalt magma is controlled by the dimensions of basalt dikes at repository depths and the depth of magma fragmentation. Dispersal pathways of waste should follow the pyroclastic component of a Strombolian eruption. The maximum volume of waste deposited with basaltic tephra can be traced approximately by assuming waste material is dispersed in the same patterns as country rock lithic fragments. Based on a basalt magma cycle that is similar to typical Strombolian centers, 180 m 3 of a repository inventory will be deposited in a scoria cone (of which approx. 1 m 3 will be exposed to the surface in a 10,000-year period), 320 to 900 m 3 will be deposited in a scoria-fall sheet (up to 12-km dispersal), and 21 m 3 will be dispersed regionally with a fine-grained particle component. 62 references, 8 figures, 2 tables

  16. Influence of step-height and body mass on gastrocnemius muscle fascicle behavior during stair ascent.

    NARCIS (Netherlands)

    Spanjaard, M.; Reeves, N.D.; van Dieen, J.H.; Baltzopoulos, V.; Maganaris, C.N.

    2008-01-01

    To better understand the role of the ankle plantar flexor muscles in stair negotiation, we examined the effects of manipulation of kinematic and kinetic constraints on the behavior of the gastrocnemius medialis (GM) muscle during stair ascent. Ten subjects ascended a four-step staircase at four

  17. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. L.; Hirschmann, M. M.; Cottrell, E.; Withers, A. C.

    2017-05-01

    Experiments establishing the effect of pressure on the Fe3+/ΣFe ratio of andesitic silicate melts buffered by coexisting Ru and RuO2 were performed from 100 kPa to 7 GPa and 1400–1750 °C. Fe3+/ΣFe ratios were determined by room temperature Mössbauer spectroscopy, but corrected for the effects of recoilless fraction. Fe3+/ΣFe ratios in quenched glasses decrease with increasing pressure consistent with previous results between 100 kPa and 3 GPa (O’Neill et al., 2006), but show only small pressure effects above 5 GPa. Ratios also decrease with increasing temperature. Mössbauer hyperfine parameters indicate mean coordination of Fe3+ ions of ~5 in glasses, with no dependence on the pressure from which the glasses were quenched, but show an increase with pressure in mean coordination of Fe2+ ions, from ~5 to ~6. XANES spectra on these glasses show variations in pre-edge intensities and centroid positions that are systematic with Fe3+/ΣFe, but are displaced from those established from otherwise identical andesitic glasses quenched at 100 kPa (Zhang et al., 2016). These systematics permit construction of a new XANES calibration curve relating pre-edge sub-peak intensities to Fe3+/ΣFe applicable to high pressure glasses. Consistent with interpretations of the Mössbauer hyperfine parameters, XANES pre-edge peak features in high pressure glasses are owing chiefly to the effects of pressure on the coordination of Fe2+ ions from ~5.5 to ~6, with negligible effects evident for Fe3+ ions. We use the new data to construct a thermodynamic model relating the effects of oxygen fugacity and pressure on Fe3+/ΣFe. We apply this model to calculate variations in oxygen fugacity in isochemical (constant Fe3+/ΣFe) columns of magma representative of magma oceans, in which fO2 is fixed at the base by equilibration with molten Fe. These calculations

  18. The magma ocean as an impediment to lunar plate tectonics

    Science.gov (United States)

    Warren, Paul H.

    1993-01-01

    The primary impediment to plate tectonics on the moon was probably the great thickness of its crust and particularly its high crust/lithosphere thickness ratio. This in turn can be attributed to the preponderance of low-density feldspar over all other Al-compatible phases in the lunar interior. During the magma ocean epoch, the moon's crust/lithosphere thickness ratio was at the maximum theoretical value, approximately 1, and it remained high for a long time afterwards. A few large regions of thin crust were produced by basin-scale cratering approximately contemporaneous with the demise of the magma ocean. However, these regions probably also tend to have uncommonly thin lithosphere, since they were directly heated and indirectly enriched in K, Th, and U by the same cratering process. Thus, plate tectonics on the moon in the form of systematic lithosphere subduction was impeded by the magma ocean.

  19. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    Science.gov (United States)

    Ridder, Lars; van der Hooft, Justin J J; Verhoeven, Stefan

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS peaks of each challenge were matched with in silico generated substructures of candidate molecules from PubChem, resulting in penalty scores that were used for candidate ranking. In 6 of the 12 submitted solutions in category 2, the correct chemical structure obtained the best score, whereas 3 molecules were ranked outside the top 5. All top ranked molecular formulas submitted in category 1 were correct. In addition, we present MAGMa results generated retrospectively for the remaining challenges. Successful application of the MAGMa algorithm required inclusion of the relevant candidate molecules, application of the appropriate mass tolerance and a sufficient degree of in silico fragmentation of the candidate molecules. Furthermore, the effect of the exhaustiveness of the candidate lists and limitations of substructure based scoring are discussed.

  20. Temperatures and isotopic evolution of silicic magmas, Taupo Volcanic Zone and Coromandel, New Zealand

    International Nuclear Information System (INIS)

    Blattner, P.; Rui-Zhong, Hu; Graham, I.J.; Houston-Eleftheriadis, C.

    1996-01-01

    A new set of oxygen and strontium isotope data on rhyolitic lavas and ignimbrites of the Taupo Volcanic Zone (TVZ) and the Coromandel Peninsula provides new limits for petrogenetic models. For oxygen isotopes, the rock matrix is frequently altered, so that values for magma need to be phenocryst based. Within TVZ a trend towards more negative delta 1 8 O values for more recent magmas appears likely (average before about 1 Ma and for Coromandel near 8.0 per thousand; after 1 Ma near 7.5 per thousand). This could indicate the gradual removal of supracrustal contaminants from the zones of magma accumulation and extrusion. Similar trends within Coromandel cannot yet be resolved. A generally positive correlation is found for oxygen and strontium isotopes of magmas. Most magmas have a limited range of isotopic values, which then becomes a useful fingerprint (e.g., the Mamaku, Matahina, and Waiotapu Ignimbrites). A narrow range of eruption temperatures of 880 plus or minus 60degC is derived from quartz-plagioclase fractionations of 0.98 plus or minus 0.25 per thousand delta 1 8 O for 15 magmas. Some delta 1 8 O values of quartz and feldspar phenocrysts are sufficiently low to suggest interaction between surface water and magma. However, large negative oxygen isotope anomalies (such as known from Yellowstone), could be no more than partially concealed by the isotopically less depleted meteoric water of New Zealand, and have not yet been found in New Zealand. (author). 45 refs., 3 tabs., 6 figs

  1. Sr and Nd isotope geochemistry of coexisting alkaline magma series, Cantal, Massif Central, France

    International Nuclear Information System (INIS)

    Downes, H.

    1984-01-01

    Sr and Nd isotope analyses are presented for Tertiary continental alkaline volcanics from Cantal, Massif Central, France. The volcanics belong to two main magma series, silica-saturated and silica-undersaturated (with rare nephelinites). Trace element and isotopic data indicate a common source for the basic parental magmas of both major series; the nephelinites in contrast must have been derived from a mantle source which is isotopically and chemically distinct from that which gave rise to the basalts and basanites. 87 Sr/ 86 Sr initial ratios range from 0.7034 to 0.7056 in the main magma series (excluding rhyolites) and 143 Nd/ 144 Nd ratios vary between 0.512927 and 0.512669; both are correlated with increasing SiO 2 in the lavas. The data can be explained by a model of crustal contamination linked with fractional crystallisation. This indicates that crustal magma chambers are the sites of differentiation since only rarely do evolved magmas not show a crustal isotopic signature and conversely basic magmas have primitive isotopic ratios unless they contain obviuos crustal-derived xenocrysts. Potential contaminants include lower crustal granulites or partial melts of upper crustal units. Equal amounts of contamination are required for both magma series, refuting hypotheses of selective contamination of the silica-saturated series. The isotopic characteristics of the apparently primary nephelinite lavas demonstrates widespread heterogeneity in the mantle beneath Cantal. Some rhyolites, previously thought to be extremely contaminated or to be crustally derived, are shown to have undergone post-emplacement hydrothermal alteration. (orig.)

  2. Image-based modelling of lateral magma flow: the Basement Sill, Antarctica.

    Science.gov (United States)

    Petford, Nick; Mirhadizadeh, Seyed

    2017-05-01

    The McMurdo Dry Valleys magmatic system, Antarctica, provides a world-class example of pervasive lateral magma flow on a continental scale. The lowermost intrusion (Basement Sill) offers detailed sections through the now frozen particle microstructure of a congested magma slurry. We simulated the flow regime in two and three dimensions using numerical models built on a finite-element mesh derived from field data. The model captures the flow behaviour of the Basement Sill magma over a viscosity range of 1-10 4  Pa s where the higher end (greater than or equal to 10 2  Pa s) corresponds to a magmatic slurry with crystal fractions varying between 30 and 70%. A novel feature of the model is the discovery of transient, low viscosity (less than or equal to 50 Pa s) high Reynolds number eddies formed along undulating contacts at the floor and roof of the intrusion. Numerical tracing of particle orbits implies crystals trapped in eddies segregate according to their mass density. Recovered shear strain rates (10 -3 -10 -5  s -1 ) at viscosities equating to high particle concentrations (around more than 40%) in the Sill interior point to shear-thinning as an explanation for some types of magmatic layering there. Model transport rates for the Sill magmas imply a maximum emplacement time of ca 10 5 years, consistent with geochemical evidence for long-range lateral flow. It is a theoretically possibility that fast-flowing magma on a continental scale will be susceptible to planetary-scale rotational forces.

  3. Crossover study of amputee stair ascent and descent biomechanics using Genium and C-Leg prostheses with comparison to non-amputee control.

    Science.gov (United States)

    Lura, Derek J; Wernke, Matthew W; Carey, Stephanie L; Kahle, Jason T; Miro, Rebecca M; Highsmith, M Jason

    2017-10-01

    This study was a randomized crossover of stair ambulation of Transfemoral Amputees (TFAs) using the Genium and C-Leg prosthetic knees. TFAs typically have difficulty ascending and descending stairs, limiting community mobility. The objective of this study was to determine the relative efficacy of the Genium and C-Leg prostheses for stair ascent and descent, and their absolute efficacy relative to non-amputees. Twenty TFAs, and five non-amputees participated in the study. TFAs were randomized to begin the study with the Genium or C-Leg prosthesis. Informed consent was obtained from all participants prior to data collection and the study was listed on clinicaltrials.gov (#NCT01473662). After fitting, accommodation, and training, participants were asked to demonstrate their preferred gait pattern for stair ascent and descent and a step-over-step pattern if able. TFAs then switched prosthetic legs and repeated fitting, accommodation, training, and testing. An eight camera Vicon optical motion analysis system, and two AMTI force plates were used to track and analyze the participants' gait patterns, knee flexion angles, knee moment normalized by body weight, and swing time. For stair descent, no significant differences were found between prostheses. For stair ascent, Genium use resulted in: increased ability to use a step-over-step gait pattern (p=0.03), increased prosthetic side peak knee flexion (pstair ascent relative to the C-Leg, by enabling gait patterns that more closely resembled non-amputees. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Petrogenesis of an Early Cretaceous lamprophyre dike from Kyoto Prefecture, Japan: Implications for the generation of high-Nb basalt magmas in subduction zones

    Science.gov (United States)

    Imaoka, Teruyoshi; Kawabata, Hiroshi; Nagashima, Mariko; Nakashima, Kazuo; Kamei, Atsushi; Yagi, Koshi; Itaya, Tetsumaru; Kiji, Michio

    2017-10-01

    We studied a 107 Ma vogesite (a kind of lamprophyre with alkali-feldspar > plagioclase, and hornblende ± clinopyroxene ± biotite) dike in the Kinki district of the Tamba Belt, Kyoto Prefecture, SW Japan, using petrography, mineralogy, K-Ar ages, and geochemistry to evaluate its petrogenesis and tectonic implications. The dike has the very specific geochemical characteristics of a primitive high-Mg basalt, with 48-50 wt.% SiO2 (anhydrous basis), high values of Mg# (67.3-72.4), and high Cr ( 431 ppm), Ni ( 371 ppm), and Co ( 52 ppm) contents. The vogesite is alkaline and ne-normative with high concentrations of large ion lithophile elements (LILEs: Sr = 1270-2200 ppm, Ba = 3910-26,900 ppm), light rare earth elements (LREEs) [(La/Yb)n = 58-62), and high field strength elements (HFSEs: TiO2 = 1.5-1.8 wt.%, Nb = 24-33 ppm, Zr = 171-251 ppm), and the vogesite can be classified as a high-Nb basalt (HNB). The vogesite was formed by the lowest degree of melting of metasomatized mantle in the garnet stability field, and it may also have been formed at higher melting pressures than other Kyoto lamprophyres. The low degree of melting is the primary reason for the high-Nb content of the vogesite, not mantle metasomatism, and a higher degree of melting would have changed the primary magma composition from a HNB to a Nb-enriched basalt (NEB). The vogesite magma was contaminated at an early stage of its development by melts derived from sediments drawn down a subduction zone, as indicated by some geochemical indices and the initial Nd isotope ratios. The vogesite exhibits positive correlations between εSr(107 Ma) values (5.4-50.9) and its high Ba and Sr concentrations, and it has a limited range of εNd(107 Ma) values (+ 0.97 to + 2.4). The fact that the vogesite contains centimeter-sized xenoliths of chert, which are composed of polycrystalline quartz, calcite, barite, pyrite, and magnetite, indicates that the barium contamination took place during the ascent of the

  5. Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust.

    Science.gov (United States)

    Parmigiani, A; Faroughi, S; Huber, C; Bachmann, O; Su, Y

    2016-04-28

    Volcanic eruptions transfer huge amounts of gas to the atmosphere. In particular, the sulfur released during large silicic explosive eruptions can induce global cooling. A fundamental goal in volcanology, therefore, is to assess the potential for eruption of the large volumes of crystal-poor, silicic magma that are stored at shallow depths in the crust, and to obtain theoretical bounds for the amount of volatiles that can be released during these eruptions. It is puzzling that highly evolved, crystal-poor silicic magmas are more likely to generate volcanic rocks than plutonic rocks. This observation suggests that such magmas are more prone to erupting than are their crystal-rich counterparts. Moreover, well studied examples of largely crystal-poor eruptions (for example, Katmai, Taupo and Minoan) often exhibit a release of sulfur that is 10 to 20 times higher than the amount of sulfur estimated to be stored in the melt. Here we argue that these two observations rest on how the magmatic volatile phase (MVP) behaves as it rises buoyantly in zoned magma reservoirs. By investigating the fluid dynamics that controls the transport of the MVP in crystal-rich and crystal-poor magmas, we show how the interplay between capillary stresses and the viscosity contrast between the MVP and the host melt results in a counterintuitive dynamics, whereby the MVP tends to migrate efficiently in crystal-rich parts of a magma reservoir and accumulate in crystal-poor regions. The accumulation of low-density bubbles of MVP in crystal-poor magmas has implications for the eruptive potential of such magmas, and is the likely source of the excess sulfur released during explosive eruptions.

  6. Trunk, pelvis and hip biomechanics in individuals with femoroacetabular impingement syndrome: Strategies for step ascent.

    Science.gov (United States)

    Diamond, Laura E; Bennell, Kim L; Wrigley, Tim V; Hinman, Rana S; Hall, Michelle; O'Donnell, John; Hodges, Paul W

    2018-03-01

    Femoroacetabular impingment (FAI) syndrome is common among young active adults and a proposed risk factor for the future development of hip osteoarthritis. Pain is dominant and drives clinical decision-making. Evidence for altered hip joint function in this patient population is inconsistent, making the identification of treatment targets challenging. A broader assessment, considering adjacent body segments (i.e. pelvis, trunk) and individual movement strategies, may better inform treatment programs. This exploratory study aimed to compare trunk, pelvis, and hip biomechanics during step ascent between individuals with and without FAI syndrome. Fifteen participants diagnosed with symptomatic cam-type or combined (cam plus pincer) FAI who were scheduled for arthroscopic surgery, and 11 age-, and sex-comparable pain- and disease-free individuals, underwent three-dimensional motion analysis during a step ascent task. Trunk, pelvis and hip biomechanics were compared between groups. Participants with FAI syndrome exhibited altered ipsilateral trunk lean and pelvic rise towards the symptomatic side during single-leg support compared to controls. Alterations were not uniformly adopted across all individuals with FAI syndrome; those who exhibited more pronounced alterations to frontal plane pelvis control tended to report pain during the task. There were minimal between-group differences for hip biomechanics. Exploratory data suggest biomechanics at the trunk and pelvis during step ascent differ between individuals with and without FAI syndrome. Those with FAI syndrome implement a range of proximal strategies for task completion, some of which may have relevance for rehabilitation. Longitudinal investigations of larger cohorts are required to evaluate hypothesized clinical and structural consequences. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Magma Mixing: Magmatic Enclaves in Morne Micotrin, Dominica

    Science.gov (United States)

    Hickernell, S.; Frey, H. M.; Manon, M. R. F.; Waters, L. E.

    2017-12-01

    Magmatic enclaves in volcanic rocks provide direct evidence of magma mingling/mixing within a magma reservoir and may reinvigorate the system and trigger eruption, as documented at the Soufriere Hills in Montserrat. Lava domes on the neighboring island of Dominica also contain multiple enclave populations and may be evidence for similar magma chamber processes. The central dome of Micotrin is at the head of the Roseau Valley, which was filled with 3 km3 of pyroclastic deposits from eruptions spanning 65 - 25 ka. There appear to be two distinct types of enclaves in the crystal-rich Micotrin andesites (60 wt% SiO2), fine-grained and coarse-grained. Fine-grained mafic enclaves (52 wt% SiO2) vary in size from 1 to 15 cm in diameter, whereas the coarse-grained enclaves are generally larger and range from 3-20 cm. Fine-grained enclaves are saturated in plag (35%) + opx (35%) + cpx (20%) + oxides (10%). Average pyroxenes are 0.01 to 0.02 cm in size, whereas plagioclase averages 0.05 cm and up to 0.1 cm. The texture of the fine-grained enclaves is cumulate-like, devoid of microlites and matrix glass. Coarse-grained enclaves lack cpx and have different modal abundances and textures: plag (75%) + opx (10%) + oxides (5%) + plag microlites (10%). Plagioclase are 0.1 cm in size and orthopyroxenes average 0.05 cm. The coarse-grained enclaves are highly vesicular, a notable difference from the host as well as the fine-grained enclaves. The boundaries of both the fine- and coarse-grained enclaves are quite sharp and distinct and there do not appear to be enclave minerals disaggregated in the host rock. Temperatures were determined by two oxides. The fine-grained enclaves had two populations of magnetite, yielding 847 + 21° and 920 + 17°C. The coarse-grained enclave was 890 + 42 °C, but the oxides were extensively exsolved. Plagioclase composition in both coarse and fine-grained samples was comparable, ranging from An50 to An80. Despite compositional similarity the textures of

  8. Long term storage of explosively erupted magma at Nevado de Toluca volcano, Mexico

    Science.gov (United States)

    Arce, J. L.; Gardner, J.; Macias, J. L.

    2007-12-01

    Dacitic magmas production is common in subduction-related volcanoes, occurring in those with a long period of activity as a result of the magmatic evolution. However, in this evolution many factors (i.e. crystal fractionation, assimilation, magma mixing) can interact to produce dacites. Nevado de Toluca volcano (4,680 masl; 19°09'N; 99°45'W) Central Mexico has recorded a long period of time producing dacites explosively, at least during 42 ka of activity, involving several km3 of magma, with two important Plinian-type eruptions occurred at ~21.7 ka (Lower Toluca Pumice) and ~10.5 ka (Upper Toluca Pumice). Questions like, what was the mechanism responsible to produce voluminous dacitic magma and how the volatiles and pressure changed in the Nevado de Toluca system, remain without answers. Dacites from the Lower Toluca Pumice (LTP) contain plagioclase, amphibole, iron-titanium oxides, and minor resorbed biotite, set in a glassy-vesicular matrix and the Upper Toluca Pumice (UTP) dacites contain the same mineral phases plus orthopyroxene. Ilmenite- ulvospinel geothermometry yielded a temperature of ~860°C for the LTP dacite, a little hotter than the UTP (~ 840°C). Based on hydrothermal experiments data, amphibole is stable above 100 MPa under 900°C, while plagioclase crystallizes up to 250-100 MPa at temperatures of 850-900°C. Pyroxene occurs only at pressures of 200-100 MPa with its respective temperatures of 825-900°C. Water contents in the LTP magma (2-3.5 wt %) are similar to that calculated for the UTP magma (1.3-3.6 wt %). So, there are only small changes in temperature and pressure from ~21.7 ka to 10.5 ka. It is noteworthy that orthopyroxene is absent in the LTP, however reaction-rimmed biotite (probably xenocrystic) is commonly observed in all dacites. Hence, almost all dacitic magmas seem to be stored at relatively similar pressures, water contents, and temperatures. All of these data could suggest repetitive basic magma injections producing the

  9. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  10. Magma Odalı Yavaş Yayılan Okyanus Ortası Sırtlarda Isı Modellemesi

    OpenAIRE

    DÜŞÜNÜR-DOĞAN, Doğa; ESCARTIN, Javier

    2012-01-01

    Orta Atlantik sırtının yavaş yayılan Lucky Strike segmentinde keşfedilen magma odası, yavaş yayılan okyanus ortası sırtlarında duraylı olabilecek magma odalarınıın varlığını denetleyen parametrelerin araştırılabilmesi için bir motivasyon olmuştur. Bu çalışma kapsamında, segmentteki magma odasından kaynaklanan sıcaklığı 3-boyutlu modelleyebilmek için sonlu farklar yöntemini kullandık. Okyanus ortası sırtlarının sıcaklık yapısını denetleyen ana etmenlerden, toplam magma girdisi, magma giriş geo...

  11. Timing of Crystallisation of the Lunar Magma Ocean Constrained by the Oldest Zircon

    Science.gov (United States)

    Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C.

    2009-01-01

    The presently favoured concept for the early evolution of the Moon involves consolidation of debris from a giant impact of a Mars sized body with Earth forming a primitive Moon with a thick global layer of melt referred to as the Lunar Magma Ocean1 . It is widely accepted that many significant features observed on the Moon today are the result of crystallisation of this magma ocean. However, controversy exists over the precise timing and duration of the crystallisation process. Resolution of this problem depends on the establishment of precise and robust key crystallisation time points. We report a 4417 6 Myr old zircon in lunar breccia sample 72215,195, which provides a precisely determined younger limit for the solidification of the Lunar Magma Ocean. A model based on these data, together with the age of the Moon forming giant impact, defines an exponential time frame for crystallisation and suggests formation of anorthositic crust after about 80-85% of the magma ocean was solidified. In combination with other zircon ages the 4417 +/- 6 Myr age also suggests that the very small (less than a few per cent) residual portion of the magma ocean continued to solidify during the following 300-500 m.y.

  12. Thermobarometry of Whangarei volcanic field lavas, New Zealand: Constraints on plumbing systems of small monogenetic basalt volcanoes

    Science.gov (United States)

    Shane, Phil; Coote, Alisha

    2018-04-01

    The intra-plate, basaltic Whangarei volcanic field (WVF) is a little-studied cluster of Quaternary monogenetic volcanoes in northern New Zealand. Clinopyroxene-melt equilibria provides an insight to the ascent and storage of the magmas that is not evident from whole-rock-scale geochemistry. Basalts from two of the younger volcanoes contain a population of equilibrium and disequilibrium clinopyroxene phenocrysts. Many of the crystals are resorbed, and are characterised by diffuse, patchy zoning, and low MgO (Mg#70-80) and Cr2O3 contents. Such crystals also occur as relic cores in other phenocrysts. These grew in a magma that was more evolved than that of the host rock composition. Equilibrium clinopyroxenes are enriched in MgO (Mg#83-88) and Cr2O3 ( 0.4-0.9 wt%), and occur as reverse-zoned crystals, and rim/mantle overgrowths on relic cores of other crystals. These crystals and rim/mantles zones nucleated in magma with a composition similar to that of the host rock. The textural relationships demonstrate that a mafic magma intruded a more silicic resident magma, resulting in crystal-exchange and entrainment of antecrysts. Clinopyroxene-melt equilibria indicate that the crystallisation occurred at temperatures in the range 1135-1195 °C, and pressures in the range 290-680 MPa. The dominant pressure mode (400-550 MPa) equates to depths of about 15-19 km which coincides with a present-day body of partial melt in the crust. Higher pressures indicated by subordinate crystal populations indicate staged ascent and crystallisation above the Moho ( 26 km depth). Thus, the magmatic system is envisaged as a crystal mush column through the lower and mid crust. Such crystallisation histories are perhaps not expected in low flux, monogenetic magma systems, and reflect the importance of the crustal density structure beneath the volcanoes. Future activity could be preceded by seismic events in the lower crust as the magmas intrude localised crystal mush bodies.

  13. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma

    Science.gov (United States)

    Wiebe, R. A.; Collins, W. J.

    1998-09-01

    Many granitic plutons contain sheet-like masses of dioritic to gabbroic rocks or swarms of mafic to intermediate enclaves which represent the input of higher temperature, more mafic magma during crystallization of the granitic plutons. Small-scale structures associated with these bodies (e.g. load-cast and compaction features, silicic pipes extending from granitic layers into adjacent gabbroic sheets) indicate that the sheets and enclave swarms were deposited on a floor of the magma chamber (on granitic crystal mush and beneath crystal-poor magma) while the mafic magma was incompletely crystallized. These structures indicate 'way up', typically toward the interior of the intrusions, and appear to indicate that packages of mafic sheets and enclave concentrations in these plutons are a record of sequential deposition. Hence, these plutons preserve a stratigraphic history of events involved in the construction (filling, replenishment) and crystallization of the magma chamber. The distinctive features of these depositional portions of plutons allow them to be distinguished from sheeted intrusions, which usually preserve mutual intrusive contacts and 'dike-sill' relations of different magma types. The considerable thickness of material that can be interpreted as depositional, and the evidence for replenishment, suggest that magma chamber volumes at any one time were probably much less than the final size of the pluton. Thus, magma chambers may be constructed much more slowly than presently envisaged. The present steep attitudes of these structures in many plutons may have developed gradually as the floor of the chamber (along with the underlying solidified granite and country rock) sank during continuing episodes of magma chamber replenishment. These internal magmatic structures support recent suggestions that the room problem for granites could be largely accommodated by downward movement of country rock beneath the magma chamber.

  14. On the conditions of magma mixing and its bearing on andesite production in the crust.

    Science.gov (United States)

    Laumonier, Mickael; Scaillet, Bruno; Pichavant, Michel; Champallier, Rémi; Andujar, Joan; Arbaret, Laurent

    2014-12-15

    Mixing between magmas is thought to affect a variety of processes, from the growth of continental crust to the triggering of volcanic eruptions, but its thermophysical viability remains unclear. Here, by using high-pressure mixing experiments and thermal calculations, we show that hybridization during single-intrusive events requires injection of high proportions of the replenishing magma during short periods, producing magmas with 55-58 wt% SiO2 when the mafic end-member is basaltic. High strain rates and gas-rich conditions may produce more felsic hybrids. The incremental growth of crustal reservoirs limits the production of hybrids to the waning stage of pluton assembly and to small portions of it. Large-scale mixing appears to be more efficient at lower crustal conditions, but requires higher proportions of mafic melt, producing more mafic hybrids than in shallow reservoirs. Altogether, our results show that hybrid arc magmas correspond to periods of enhanced magma production at depth.

  15. Computer Simulation To Assess The Feasibility Of Coring Magma

    Science.gov (United States)

    Su, J.; Eichelberger, J. C.

    2017-12-01

    Lava lakes on Kilauea Volcano, Hawaii have been successfully cored many times, often with nearly complete recovery and at temperatures exceeding 1100oC. Water exiting nozzles on the diamond core bit face quenches melt to glass just ahead of the advancing bit. The bit readily cuts a clean annulus and the core, fully quenched lava, passes smoothly into the core barrel. The core remains intact after recovery, even when there are comparable amounts of glass and crystals with different coefficients of thermal expansion. The unique resulting data reveal the rate and sequence of crystal growth in cooling basaltic lava and the continuous liquid line of descent as a function of temperature from basalt to rhyolite. Now that magma bodies, rather than lava pooled at the surface, have been penetrated by geothermal drilling, the question arises as to whether similar coring could be conducted at depth, providing fundamentally new insights into behavior of magma. This situation is considerably more complex because the coring would be conducted at depths exceeding 2 km and drilling fluid pressures of 20 MPa or more. Criteria that must be satisfied include: 1) melt is quenched ahead of the bit and the core itself must be quenched before it enters the barrel; 2) circulating drilling fluid must keep the temperature of the coring assembling cooled to within operational limits; 3) the drilling fluid column must nowhere exceed the local boiling point. A fluid flow simulation was conducted to estimate the process parameters necessary to maintain workable temperatures during the coring operation. SolidWorks Flow Simulation was used to estimate the effect of process parameters on the temperature distribution of the magma immediately surrounding the borehole and of drilling fluid within the bottom-hole assembly (BHA). A solid model of the BHA was created in SolidWorks to capture the flow behavior around the BHA components. Process parameters used in the model include the fluid properties and

  16. Contraction or expansion of the Moon's crust during magma ocean freezing?

    Science.gov (United States)

    Elkins-Tanton, Linda T; Bercovici, David

    2014-09-13

    The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. [The spectrum studies of structure characteristics in magma contact metamorphic coal].

    Science.gov (United States)

    Wu, Dun; Sun, Ruo-Yu; Liu, Gui-Jian; Yuan, Zi-Jiao

    2013-10-01

    The structural parameters evolution of coal due to the influence of intrusions of hot magma was investigated and analyzed. X-ray diffraction and laser confocal microscope Raman spectroscopy were used to test and analyze 4 coal samples undergoing varying contact-metamorphism by igneous magmas in borehole No. 13-4 of Zhuji coal mine, Huainan coalfield. The result showed that coal XRD spectrum showed higher background intensity, with the 26 degrees and 42 degrees nearby apparent graphite diffraction peak. Two significant vibration peaks of coal Raman spectra were observed in the 1 000-2 000 cm(-1) frequency range: broad "D" peak at 1 328-1 369 cm(-1) and sharp "G" peak at 1 564-1 599 cm(-1). With the influence of magma intrusion, the relationship between coal structural parameters and coal ranks was excellent.

  18. The chlorine isotope fingerprint of the lunar magma ocean.

    Science.gov (United States)

    Boyce, Jeremy W; Treiman, Allan H; Guan, Yunbin; Ma, Chi; Eiler, John M; Gross, Juliane; Greenwood, James P; Stolper, Edward M

    2015-09-01

    The Moon contains chlorine that is isotopically unlike that of any other body yet studied in the Solar System, an observation that has been interpreted to support traditional models of the formation of a nominally hydrogen-free ("dry") Moon. We have analyzed abundances and isotopic compositions of Cl and H in lunar mare basalts, and find little evidence that anhydrous lava outgassing was important in generating chlorine isotope anomalies, because (37)Cl/(35)Cl ratios are not related to Cl abundance, H abundance, or D/H ratios in a manner consistent with the lava-outgassing hypothesis. Instead, (37)Cl/(35)Cl correlates positively with Cl abundance in apatite, as well as with whole-rock Th abundances and La/Lu ratios, suggesting that the high (37)Cl/(35)Cl in lunar basalts is inherited from urKREEP, the last dregs of the lunar magma ocean. These new data suggest that the high chlorine isotope ratios of lunar basalts result not from the degassing of their lavas but from degassing of the lunar magma ocean early in the Moon's history. Chlorine isotope variability is therefore an indicator of planetary magma ocean degassing, an important stage in the formation of terrestrial planets.

  19. Magma ocean formation due to giant impacts

    Science.gov (United States)

    Tonks, W. B.; Melosh, H. J.

    1993-01-01

    The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.

  20. Metabolics of stair ascent with a powered transfemoral prosthesis.

    Science.gov (United States)

    Ledoux, E D; Lawson, B E; Shultz, A H; Bartlett, H L; Goldfarb, M

    2015-01-01

    This paper evaluates the effectiveness of a powered knee and ankle prosthesis for stair ascent through a metabolic assessment comparing energy expenditure of a single transfemoral amputee subject while ascending stairs with the powered prosthesis relative to his passive daily use device, as well as comparing the kinematics and kinetics obtained with the passive prosthesis to healthy biomechanics. The subject wore a portable system that measured pulmonary gaseous exchange rates of oxygen and carbon dioxide while he ascended stairs with each of the prostheses in alternating tests. The results indicated that the amputee's energy expenditure decreased by 32 percent while climbing with the powered prosthesis as compared to his passive one, and the kinematics and kinetics achieved were representative of healthy biomechanics.

  1. Using Cross-Correlation Methods to Characterize Earthquakes Associated with the Socorro Magma Body

    Science.gov (United States)

    Vieceli, R.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.; Dodge, D. A.; Pyle, M. L.; Walter, W. R.

    2017-12-01

    The Socorro Magma Body (SMB), a thin, sill-like body with a top surface-depth of 19 km situated within the Rio Grande Rift in central New Mexico, is one of the largest recognized continental mid-crustal magma bodies in the world by area. SMB-associated inflation leads to slow regional uplift of a few mm/yr and has been linked to longstanding concentrated shallow seismicity (history. In February 2015 seismic data were collected above the northern and most rapidly uplifting region of the SMB with a densely spaced temporary array, consisting of seven broadband and 804 short period Fairfield nodal vertical component seismographs. The total array area was 50 x 25 km with typical node spacing of 300 m along a road network. In this study, we exploit all available seismic network data in a cross-correlation framework developed at Lawrence Livermore National Laboratory to detect events and characterize earthquake swarms, clusters, and patterns occurring over the last 15 years. We use a power detector to build an initial catalog of small magnitude earthquakes, including 33 events (M <= 2.5) recorded during the February 2015 deployment, as templates to detect additional events. We also develop an updated shallow velocity model for the region and refine event hypocenters using Bayesloc, a bayesian, multiple-event location algorithm. This enhanced seismicity catalog will be utilized in interpreting the recent seismicity of the SMB. LLNL-ABS-735529

  2. Temperatures and isotopic evolution of silicic magmas, Taupo Volcanic Zone and Coromandel, New Zealand

    International Nuclear Information System (INIS)

    Blattner, P.; Rui-Zhong H.; Graham, I.J.; Houston-Eleftheriadis, C.

    1996-01-01

    A new set of oxygen and strontium isotope data on rhyolitic lavas and ignimbrites of the Taupo Volcanic Zone (TVZ) and the Coromandel Peninsula provides new limits for petrogenic models. For oxygen isotopes, the rock matrix is frequently altered, so that values for magma need to be phenocryst based. Within TVZ a trend towards more negative δ 1 8O values for more recent magmas appears likely (average before about 1 Ma and for Coromandel near 8.0 per mille; after 1 Ma near 7.5 per mille). This could indicate the gradual removal of supracrustal contaminants from the zones of magma accumulation and extrusion. Similar trends within Coromandel cannot yet be resolved. A generally positive correlation is found for oxygen and strontium isotopes of magmas. Most magmas have a limited range of isotopic values, which then becomes a fingerprint (e.g., the Mamaku, Matahina, and Waiotapu Ignimbrites). A narrow range of eruption temperatures of 880 ± 60 o C is derived from quartz-plagioclase fractionations of 0.98 ± 0.25 per mille δ 1 8O values of quartz and feldspar phenocrysts are sufficiently low to suggest interaction between surface water and magma. However, large negative oxygen isotope anomalies (such as known from Yellowstone), could be no more than partially concealed by the isotopically less depleted meteoric water of New Zealand, and have not yet been found in New Zealand. (authors). 45 refs., 6 figs., 3 tabs

  3. Crystallization of a compositionally stratified basal magma ocean

    Science.gov (United States)

    Laneuville, Matthieu; Hernlund, John; Labrosse, Stéphane; Guttenberg, Nicholas

    2018-03-01

    Earth's ∼3.45 billion year old magnetic field is regenerated by dynamo action in its convecting liquid metal outer core. However, convection induces an isentropic thermal gradient which, coupled with a high core thermal conductivity, results in rapid conducted heat loss. In the absence of implausibly high radioactivity or alternate sources of motion to drive the geodynamo, the Earth's early core had to be significantly hotter than the melting point of the lower mantle. While the existence of a dense convecting basal magma ocean (BMO) has been proposed to account for high early core temperatures, the requisite physical and chemical properties for a BMO remain controversial. Here we relax the assumption of a well-mixed convecting BMO and instead consider a BMO that is initially gravitationally stratified owing to processes such as mixing between metals and silicates at high temperatures in the core-mantle boundary region during Earth's accretion. Using coupled models of crystallization and heat transfer through a stratified BMO, we show that very high temperatures could have been trapped inside the early core, sequestering enough heat energy to run an ancient geodynamo on cooling power alone.

  4. The chemical and isotopic differentiation of an epizonal magma body: Organ Needle pluton, New Mexico

    Science.gov (United States)

    Verplanck, P.L.; Farmer, G.L.; McCurry, M.; Mertzman, S.A.

    1999-01-01

    Major and trace element, and Nd and Sr isotopic compositions of whole rocks and mineral separates from the Oligocene, alkaline Organ Needle pluton (ONP), southern New Mexico, constrain models for the differentiation of the magma body parental to this compositionally zoned and layered epizonal intrusive body. The data reveal that the pluton is rimmed by lower ??(Nd) (~-5) and higher 87Sr/86Sr (~0.7085) syenitic rocks than those in its interior (??(Nd) ~ 2, 87Sr/86Sr ~0.7060) and that the bulk compositions of the marginal rocks become more felsic with decreasing structural depth. At the deepest exposed levels of the pluton, the ??(Nd)~-5 lithology is a compositionally heterogeneous inequigranular syenite. Modal, compositional and isotopic data from separates of rare earth element (REE)-bearing major and accesory mineral phases (hornblende, titanite, apatite, zircon) demonstrate that this decoupling of trace and major elements in the inequigranular syenite results from accumulation of light REE (LREE)-bearing minerals that were evidently separated from silicic magmas as the latter rose along the sides of the magma chamber. Chemical and isotopic data for microgranular mafic enclaves, as well as for restite xenoliths of Precambrian granite wall rock, indicate that the isotopic distinction between the marginal and interior facies of the ONP probably reflects assimilation of the wall rock by ??(Nd) ~-2 mafic magmas near the base of the magma system. Fractional crystallization and crystal liquid separation of the crystally contaminated magma at the base and along the margins of the chamber generated the highly silicic magmas that ultimately pooled at the chamber top.

  5. Magma Reservoirs Feeding Giant Radiating Dike Swarms: Insights from Venus

    Science.gov (United States)

    Grosfils, E. B.; Ernst, R. E.

    2003-01-01

    Evidence of lateral dike propagation from shallow magma reservoirs is quite common on the terrestrial planets, and examination of the giant radiating dike swarm population on Venus continues to provide new insight into the way these complex magmatic systems form and evolve. For example, it is becoming clear that many swarms are an amalgamation of multiple discrete phases of dike intrusion. This is not surprising in and of itself, as on Earth there is clear evidence that formation of both magma reservoirs and individual giant radiating dikes often involves periodic magma injection. Similarly, giant radiating swarms on Earth can contain temporally discrete subswarms defined on the basis of geometry, crosscutting relationships, and geochemical or paleomagnetic signatures. The Venus data are important, however, because erosion, sedimentation, plate tectonic disruption, etc. on Earth have destroyed most giant radiating dike swarm's source regions, and thus we remain uncertain about the geometry and temporal evolution of the magma sources from which the dikes are fed. Are the reservoirs which feed the dikes large or small, and what are the implications for how the dikes themselves form? Does each subswarm originate from a single, periodically reactivated reservoir, or do subswarms emerge from multiple discrete geographic foci? If the latter, are these discrete foci located at the margins of a single large magma body, or do multiple smaller reservoirs define the character of the magmatic center as a whole? Similarly, does the locus of magmatic activity change with time, or are all the foci active simultaneously? Careful study of giant radiating dike swarms on Venus is yielding the data necessary to address these questions and constrain future modeling efforts. Here, using giant radiating dike swarms from the Nemesis Tessera (V14) and Carson (V43) quadrangles as examples, we illustrate some of the dike swarm focal region diversity observed on Venus and briefly explore some

  6. Dynamics of differentiation in magma reservoirs

    Science.gov (United States)

    Jaupart, Claude; Tait, Stephen

    1995-09-01

    In large magma chambers, gradients of temperature and composition develop due to cooling and to fractional crystallization. Unstable density differences lead to differential motions between melt and crystals, and a major goal is to explain how this might result in chemical differentiation of magma. Arriving at a full description of the physics of crystallizing magma chambers is a challenge because of the large number of processes potentially involved, the many coupled variables, and the different geometrical shapes. Furthermore, perturbations are caused by the reinjection of melt from a deep source, eruption to the Earth's surface, and the assimilation of country rock. Physical models of increasing complexity have been developed with emphasis on three fundamental approaches. One is, given that large gradients in temperature and composition may occur, to specify how to apply thermodynamic constraints so that coexisting liquid and solid compositions may be calculated. The second is to leave the differentiation trend as the solution to be found, i.e., to specify how cooling occurs and to predict the evolution of the composition of the residual liquid and of the solid forming. The third is to simplify the physics so that the effects of coupled heat and mass transfer may be studied with a reduced set of variables. The complex shapes of magma chambers imply that boundary layers develop with density gradients at various angles to gravity, leading to various convective flows and profiles qf liquid stratification. Early studies were mainly concerned with describing fluid flow in the liquid interior of large reservoirs, due to gradients developed at the margins. More recent work has focused on the internal structure and flow field of boundary layers and in particular on the gradients of solid fraction and interstitial melt composition which develop within them. Crystal settling may occur in a surprisingly diverse range of regimes and may lead to intermittent deposition

  7. Temporal variations in volumetric magma eruption rates of Quaternary volcanoes in Japan

    Science.gov (United States)

    Yamamoto, Takahiro; Kudo, Takashi; Isizuka, Osamu

    2018-04-01

    Long-term evaluations of hazard and risk related to volcanoes rely on extrapolations from volcano histories, including the uniformity of their eruption rates. We calculated volumetric magma eruption rates, compiled from quantitative eruption histories of 29 Japanese Quaternary volcanoes, and analyzed them with respect to durations spanning 101-105 years. Calculated eruption rates vary greatly (101-10-4 km3 dense-rock equivalent/1000 years) between individual volcanoes. Although large basaltic stratovolcanoes tend to have high eruption rates and relatively constant repose intervals, these cases are not representative of the various types of volcanoes in Japan. At many Japanese volcanoes, eruption rates are not constant through time, but increase, decrease, or fluctuate. Therefore, it is important to predict whether eruption rates will increase or decrease for long-term risk assessment. Several temporal co-variations of eruption rate and magmatic evolution suggest that there are connections between them. In some cases, magma supply rates increased in response to changing magma-generation processes. On the other hand, stable plumbing systems without marked changes in magma composition show decreasing eruption rates through time.[Figure not available: see fulltext.

  8. The parent magma of xenoliths in shergottite EETA79001: Bulk and trace element composition inferred from magmatic inclusions

    Science.gov (United States)

    Treiman, Allan H.; Lindstrom, David J.; Martinez, Rene R.

    1994-01-01

    The SNC meteorites are samples of the Martian crust, so inferences about their origins and parent magmas are of wide planetologic significance. The EETA79001 shergottite, a basalt, contains xenoliths of pyroxene-olivine cumulate rocks which are possibly related to the ALHA77005 and LEW88516 SNC lherzolites. Olivines in the xenoliths contain magmatic inclusions, relics of magma trapped within the growing crystals. The magmatic inclusions allow a parent magma composition to be retrieved; it is similar to the composition reconstructed from xenolith pyroxenes by element distribution coefficients. The xenolith parent magma is similar but not identical to parent magmas for the shergottite lherzolites.

  9. The parent magma of the Nakhla (SNC) meteorite: Reconciliation of composition estimates from magmatic inclusions and element partitioning

    Science.gov (United States)

    Treiman, A. H.

    1993-01-01

    The composition of the parent magma of the Nakhla meteorite was difficult to determine, because it is accumulate rock, enriched in olivine and augite relative to a basalt magma. A parent magma composition is estimated from electron microprobe area analyses of magmatic inclusions in olivine. This composition is consistent with an independent estimate based on the same inclusions, and with chemical equilibria with the cores of Nakhla's augites. This composition reconciles most of the previous estimates of Nakhla's magma composition, and obviates the need for complex magmatic processes. Inconsistency between this composition and those calculated previously suggests that magma flowed through and crystallized into Nakhla as it cooled.

  10. Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

    Science.gov (United States)

    Herron, Andrew J.; Crosby, William A.; Reed, Darren K.

    2016-01-01

    Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.

  11. The parent magma of the nakhlite meteorites - Clues from melt inclusions

    Science.gov (United States)

    Harvey, Ralph P.; Mcsween, Harry Y., Jr.

    1992-01-01

    Several forms of trapped liquid found within nakhlite meteorites have been examined, including interstitial melt and magmatic inclusions within the cores of large olivine grains. Differences in the mineralogy and texture between two types of trapped melt inclusions, and between these inclusions and the mesostasis, indicate that vitrophyric inclusions are most appropriate for estimating the composition of a nakhlite parental magma in equilibrium with early-forming olivine and augite. Parent liquids were calculated from the mineralogy of large inclusions in Nakhla and Governador Valadares, using a system of mass-balance equations solved by linear regression methods. The chosen parental liquids were cosaturated in olivine and augite and had Mg/Fe values consistent with measured augite/liquid Kds. These parental magma compositions are similar to other published compositions for Nakhla, Chassigny, and Shergotty parental melts, and may correspond to a significant magma type on Mars.

  12. Chaotic behavior of earthquakes induced by a nonlinear magma up flow

    International Nuclear Information System (INIS)

    Pelap, F.B.; Kagho, L.Y.; Fogang, C.F.

    2016-01-01

    This paper considers the dynamics of a modified 1D nonlinear spring-block model for earthquake subjected to the strengths induced by the motion of the tectonic plates and the up flow of magma during volcanism. Based on the multiple time scales method, we establish that after the slip, the fault remains active and the frictions increase with the power of the earthquake. We also obtain in the non-resonance case that the appearing probability of an event decreases with these frictions. In the resonance case, the dynamics of harmonic oscillations show that the rocks constituting the block will fracture or resist to the effects induced by the magma motion. Our analytical investigations are complemented by numerical simulations from which it appears that, for given values of the magma thrust strength magnitude, the friction coefficient, the quadratic and cubic nonlinear parameters, the system exhibits chaotic behavior.

  13. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    Science.gov (United States)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  14. Strontium isotopic and trace element geochemistry of the saddle mountains and Grande Ronde Basalts of the Columbia River Basalt Group

    International Nuclear Information System (INIS)

    Nelson, D.O.

    1980-01-01

    The Columbia River Basalt (CRB) group displays significant variations in major and trace element and Sr isotopic compositions. These compositions reflect complex and variable origins for the CRB magmas. Among the most varied is the Saddle Mountains Basalt (SMB) in which Sr ratios vary from 0.7078 to 0.7147 +- 0.002. The higher ratios reflect contamination through consistent correlations with major element compositions. Modeling suggests contamination by assimilation of 4.4 to 9.4 wt % of radiogenic crustal rocks. High delta 18 O values (up to +7.68 per mil) support the model. Age and field relations suggest that the contamination flowrocks are not the result of progressive contamination of a single magma, but rather reflect the contamination of independent magmas during this ascent

  15. The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility

    Science.gov (United States)

    Ariskin, Alexey; Danyushevsky, Leonid; Nikolaev, Georgy; Kislov, Evgeny; Fiorentini, Marco; McNeill, Andrew; Kostitsyn, Yuri; Goemann, Karsten; Feig, Sandrin T.; Malyshev, Alexey

    2018-03-01

    The Dovyren Intrusive Complex (DIC, Northern Baikal region, 728 Ma) includes the layered dunite-troctolite-gabbronorite Yoko-Dovyren massif (YDM), associated mafic-ultramafic sills, and dykes of olivine-rich to olivine-free gabbronorite. Major rock types of the DIC are presented, including a diversity of olivine orthocumulates to olivine-plagioclase and gabbroic adcumulates, carbonate-contaminated ultramafics and Cu-Ni-PGE mineralisation. Detailed comparisons of complete cross-sections of the YDM in its centre and at the NE and SW margins demonstrate differences in the cumulate succession, mineral chemistry, and geochemical structure that likely reflect variations in parental magma compositions. Combining petrochemical reconstructions for most primitive rocks and calculations using the COMAGMAT-5 model, it is shown that the central and peripheral parts of the intrusion formed by olivine-laden parental magmas ranged in their temperatures by 100 °C, approximately from 1290 °C ( 11 wt% MgO, olivine Fo88) to 1190 °C ( 8 wt% MgO, olivine Fo86). Thermodynamic modelling suggests that the most primitive high-Mg magma was S-undersaturated, whereas its derivatives became S-saturated at T piles to generate poorly-mineralised plagiodunite. In the troctolite and gabbroic parts of the Dovyren chamber, sulphide immiscibility likely occurred at lower temperatures, producing Cu-rich sulphide precursors, which gave rise to the 'platinum group mineral' (PGM-containing) troctolite and low-mineralised PGE-rich anorthosite in the Main Reef. The geochemical structure of the YDM demonstrates C-shaped distributions of TiO2, K2O, P2O5, and incompatible trace elements, which are 3-5 fold depleted in the cumulate rocks from the inner horizons of the intrusion with respect to the relatively thin lower and upper contact zones. In addition, a marked misbalance between estimates of the average composition of the YDM and that of the proposed olivine-laden parental magmas is established. This

  16. Heterogeneity in lunar anorthosite meteorites: implications for the lunar magma ocean model.

    Science.gov (United States)

    Russell, Sara S; Joy, Katherine H; Jeffries, Teresa E; Consolmagno, Guy J; Kearsley, Anton

    2014-09-13

    The lunar magma ocean model is a well-established theory of the early evolution of the Moon. By this model, the Moon was initially largely molten and the anorthositic crust that now covers much of the lunar surface directly crystallized from this enormous magma source. We are undertaking a study of the geochemical characteristics of anorthosites from lunar meteorites to test this model. Rare earth and other element abundances have been measured in situ in relict anorthosite clasts from two feldspathic lunar meteorites: Dhofar 908 and Dhofar 081. The rare earth elements were present in abundances of approximately 0.1 to approximately 10× chondritic (CI) abundance. Every plagioclase exhibited a positive Eu-anomaly, with Eu abundances of up to approximately 20×CI. Calculations of the melt in equilibrium with anorthite show that it apparently crystallized from a magma that was unfractionated with respect to rare earth elements and ranged in abundance from 8 to 80×CI. Comparisons of our data with other lunar meteorites and Apollo samples suggest that there is notable heterogeneity in the trace element abundances of lunar anorthosites, suggesting these samples did not all crystallize from a common magma source. Compositional and isotopic data from other authors also suggest that lunar anorthosites are chemically heterogeneous and have a wide range of ages. These observations may support other models of crust formation on the Moon or suggest that there are complexities in the lunar magma ocean scenario to allow for multiple generations of anorthosite formation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Numerical modeling of magma-tectonic interactions at Pacaya Volcano, Guatemala

    Science.gov (United States)

    Wauthier, C.

    2017-12-01

    Pacaya Volcano is composed of several volcanic cones located along the southern rim of the Amatitlan caldera, approximately 25 km south of Guatemala City. It is a basaltic volcano located in the Central American Volcanic Arc. The shallow magma plumbing system at Pacaya likely includes at least three magma reservoirs: a very shallow ( 0.2-0.4 km depth) reservoir located below and possibly within the MacKenney cone, a 4 km deep reservoir located northwest of the summit, and a shallow dike-like conduit below the summit which fed the recent flank eruptions. Pacaya's western flank is slipping in a stick-slip fashion, and the instability seems associated with larger volume eruptions. Flank instability phases indeed occurred in 2010 and 2014 in coincidence with major intrusive and eruptive phases, suggesting a positive feedback between the flank motion and major intrusions. Simple analytical models are insufficient to fit the geodetic observations and model the flank processes and their mechanical interactions with the magmatic system. Here, numerical modeling approaches are used to characterize the 2014 flank deformation episode and magma-tectonic interactions.

  18. Temporal Evolution of Surface Deformation and Magma Sources at Pacaya Volcano, Guatemala Revealed by InSAR

    Science.gov (United States)

    Wnuk, K.; Wauthier, C.

    2016-12-01

    Pacaya Volcano, Guatemala is a persistently active volcano whose western flank is unstable. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, shows magmatic deformation before and during major eruptions in January and March 2014. Inverse modeling of InSAR surface displacements suggest that three magma bodies are responsible for observed deformation: (1) a 3.7 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit that provides the primary transport pathway for erupted materials. Periods of heightened activity are brought on by magma pulses at depth, which result in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss, and do not always result in an eruption. Periods of increased activity culminate with larger dike fed eruptions. Large eruptions are followed by inter eruptive periods marked by a decrease in crater explosions and a lack of deformation. A full understanding of magmatic processes at Pacaya is required to assess potential impacts on other aspects of the volcano such as the unstable western flank. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induces flank motion

  19. Probing magma reservoirs to improve volcano forecasts

    Science.gov (United States)

    Lowenstern, Jacob B.; Sisson, Thomas W.; Hurwitz, Shaul

    2017-01-01

    When it comes to forecasting eruptions, volcano observatories rely mostly on real-time signals from earthquakes, ground deformation, and gas discharge, combined with probabilistic assessments based on past behavior [Sparks and Cashman, 2017]. There is comparatively less reliance on geophysical and petrological understanding of subsurface magma reservoirs.

  20. Two magma bodies beneath the summit of Kilauea Volcano unveiled by isotopically distinct melt deliveries from the mantle

    Science.gov (United States)

    Pietruszka, Aaron J.; Heaton, Daniel E.; Marske, Jared P.; Garcia, Michael O.

    2015-01-01

    The summit magma storage reservoir of Kīlauea Volcano is one of the most important components of the magmatic plumbing system of this frequently active basaltic shield-building volcano. Here we use new high-precision Pb isotopic analyses of Kīlauea summit lavas—from 1959 to the active Halema‘uma‘u lava lake—to infer the number, size, and interconnectedness of magma bodies within the volcano's summit reservoir. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate magma mixing trends that correlate with differences in vent location and/or pre-eruptive magma temperature. These relationships, which contrast with a single magma mixing trend for lavas from 1959 to 1968, indicate that Kīlauea summit eruptions since at least 1971 were supplied from two distinct magma bodies. The locations of these magma bodies are inferred to coincide with two major deformation centers identified by geodetic monitoring of the volcano's summit region: (1) the main locus of the summit reservoir ∼2–4 km below the southern rim of Kīlauea Caldera and (2) a shallower magma body 4 km3 of lava erupted), must therefore be sustained by a nearly continuous supply of new melt from the mantle. The model results show that a minimum of four compositionally distinct, mantle-derived magma batches were delivered to the volcano (at least three directly to the summit reservoir) since 1959. These melt inputs correlate with the initiation of energetic (1959 Kīlauea Iki) and/or sustained (1969–1974 Mauna Ulu, 1983-present Pu‘u ‘Ō‘ō and 2008-present Halema‘uma‘u) eruptions. Thus, Kīlauea's eruptive behavior is partly tied to the delivery of new magma batches from the volcano's source region within the Hawaiian mantle plume.

  1. Evidence of a global magma ocean in Io's interior.

    Science.gov (United States)

    Khurana, Krishan K; Jia, Xianzhe; Kivelson, Margaret G; Nimmo, Francis; Schubert, Gerald; Russell, Christopher T

    2011-06-03

    Extensive volcanism and high-temperature lavas hint at a global magma reservoir in Io, but no direct evidence has been available. We exploited Jupiter's rotating magnetic field as a sounding signal and show that the magnetometer data collected by the Galileo spacecraft near Io provide evidence of electromagnetic induction from a global conducting layer. We demonstrate that a completely solid mantle provides insufficient response to explain the magnetometer observations, but a global subsurface magma layer with a thickness of over 50 kilometers and a rock melt fraction of 20% or more is fully consistent with the observations. We also place a stronger upper limit of about 110 nanoteslas (surface equatorial field) on the dynamo dipolar field generated inside Io.

  2. The Earth’s mantle before convection: Effects of magma oceans and the Moon (Invited)

    Science.gov (United States)

    Elkins-Tanton, L. T.; Smrekar, S. E.; Tobie, G.

    2009-12-01

    thick solid lid and diminished the likelihood of mantle remixing. Second, on an Earth-sized planet a magma ocean would solidify to produce very dense near-surface solids that also contain the bulk of the water held in the solid state, and the bulk of the incompatible elements. During gravitationally-driven overturn shallow, dense, damp solids carry their water as they sink into the perovskite stability zone and transform the bulk of their mineralogy into perovskite. The last solids that form near the surface exceed the likely water saturation levels of perovskite and will be forced to dewater as they cross the boundary into the lower mantle, leaving water behind in a rapid flux as the dense material sinks. This event will form a kind of “water catastrophe,” and would have the potential to partially melt the upper mantle, to produce a damp asthensosphere, and indeed to encourage convection. These results imply that planets in which perovskite is stable, that is, planets that are larger than Mars, are perhaps more likely to have an early initiation of plate tectonics, and that larger planets may have more violent and near-surface mantle volatile releases during any overturn event.

  3. Isotopic abundances relevant to the identification of magma sources

    International Nuclear Information System (INIS)

    O'Nions, R.K.

    1984-01-01

    The behaviour of natural radiogenic isotope tracers in the Earth that have lithophile and atmophile geochemical affinity is reviewed. The isotope tracer signature of oceanic and continental crust may in favourable circumstances by sufficiently distinct from that of the mantle to render a contribution from these sources resolvable within the isotopic composition of the magma. Components derived from the sedimentary and altered basaltic portion of oceanic crust are recognized in some island arc magmas from their Sr, Nd and Pb isotopic signatures. The rare-gas isotope tracers (He, Ar, Xe in particular) are not readily recycled into the mantle and thus provide the basis of an approach that is complementary to that based on the lithophile tracers. In particular, a small mantle-derived helium component may be readily recognized in the presence of a predominant radiogenic component generated in the continents. The importance of assessing the mass balance of these interactions rather than merely a qualitative recognition is emphasized. The question of the relative, contribution of continental-oceanic crust and mantle to magma sources is an essential part of the problem of generation and evolution of continental crust. An approach to this problem through consideration of the isotopic composition of sediments is briefly discussed. (author)

  4. Experimental Study of Lunar and SNC Magmas

    Science.gov (United States)

    Rutherford, Malcolm J.

    1998-01-01

    The research described in this progress report involved the study of petrological, geochemical and volcanic processes that occur on the Moon and the SNC parent body, generally accepted to be Mars. The link between these studies is that they focus on two terrestrial-type parent bodies somewhat smaller than earth, and the fact that they focus on the role of volatiles in magmatic processes and on processes of magma evolution on these planets. The work on the lunar volcanic glasses has resulted in some exciting new discoveries over the years of this grant. We discovered small metal blebs initially in the Al5 green glass, and determined the significant importance of this metal in fixing the oxidation state of the parent magma (Fogel and Rutherford, 1995). More recently, we discovered a variety of metal blebs in the Al7 orange glass. Some of these Fe-Ni metal blebs were in the glass; others were in olivine phenocrysts. The importance of these metal spheres is that they fix the oxidation state of the parent magma during the eruption, and also indicate changes during the eruption (Weitz et al., 1997) They also yield important information about the composition of the gas phase present, the gas which drove the lunar fire-fountaining. One of the more exciting and controversial findings in our research over the past year has been the possible fractionation of H from D during shock (experimental) of hornblende bearing samples (Minitti et al., 1997). This research is directed at explaining some of the low H2O and high D/H observed in hydrous phases in the SNC meteorites.

  5. Direct evidence for the origin of low-18O silicic magmas: Quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon

    International Nuclear Information System (INIS)

    Bacon, C.R.; Adami, L.H.; Lanphere, M.A.

    1989-01-01

    Partially fused granitoid blocks were ejected in the climactic eruption of Mount Mazama, which was accompanied by collapse of Crater Lake caldera. Quartz, plagioclase, and glass in the granitoids have much lower δ 18 O values (-3.4 to +4.9per mille) than any fresh lavas of Mount Mazama and the surrounding region (+5.8 to +7.0per mille). Oxygen isotope fractionation between phases in granitoids is consistent with equilibrium at T≥900deg C following subsolidus exchange with hydrothermal fluids of meteoric origin. Assimilation of ≅ 10-20% of material similar to these granitoids can account for the O and Sr isotopic compositions of lavas and juvenile pyroclasts derived from the climactic magma chamber, many of which have δ 18 O values ≅ 0.5per mille or more lower than comparable lavas of Mount Mazama. The O isotope data provide the only clear evidence for such assimilation because the mineralogy and chemical and radiogenic isotopic compositions of the granitoids (dominantly granodiorite) are similar to those of erupted juvenile magmas. The granitoid blocks from Crater Lake serve as direct evidence for the origin of 18 O depletion in large, shallow silicic magma bodies. (orig.)

  6. Petrologic testament to changes in shallow magma storage and transport during 30+ years of recharge and eruption at Kīlauea Volcano, Hawai‘i: Chapter 8

    Science.gov (United States)

    Thornber, Carl R.; Orr, Tim R.; Heliker, Christina; Hoblitt, Richard P.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    provide an unequivocal glimpse of rapid crystal growth amid sulfur degassing at eruption. Lava with identical trace-element signatures erupted simultaneously at the summit and at Pu‘u ‘Ō‘ō from 2008 to 2013 confirms magmatic continuity between the vents. Complementary changes in compositions of matrix glasses, phenocrysts, and melt inclusions of summit tephra are mirrored by similar changes in contemporaneous rift lava at eruption temperatures 20–35°C lower than those at the summit. Petrologic parameters measured at opposite ends of the shallow magmatic plumbing system are both correlated with summit deformation, demonstrating that effects of summit magma chamber pressurization are translated throughout interconnected magma pathways in the shallow edifice.

  7. Buffered and unbuffered dike emplacement on Earth and Venus - Implications for magma reservoir size, depth, and rate of magma replenishment

    Science.gov (United States)

    Parfitt, E. A.; Head, J. W., III

    1993-01-01

    Models of the emplacement of lateral dikes from magma chambers under constant (buffered) driving pressure conditions and declining (unbuffered) driving pressure conditions indicate that the two pressure scenarios lead to distinctly different styles of dike emplacement. In the unbuffered case, the lengths and widths of laterally emplaced dikes will be severely limited and the dike lengths will be highly dependent on chamber size; this dependence suggests that average dike length can be used to infer the dimensions of the source magma reservoir. On Earth, the characteristics of many mafic-dike swarms suggest that they were emplaced in buffered conditions (e.g., the Mackenzie dike swarm in Canada and some dikes within the Scottish Tertiary). On Venus, the distinctive radial fractures and graben surrounding circular to oval features and edifices on many size scales and extending for hundreds to over a thousand km are candidates for dike emplacement in buffered conditions.

  8. The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia.

    Directory of Open Access Journals (Sweden)

    Cybel Mehawej

    2014-05-01

    Full Text Available Impairment of the tightly regulated ossification process leads to a wide range of skeletal dysplasias and deciphering their molecular bases has contributed to the understanding of this complex process. Here, we report a homozygous mutation in the mitochondria-associated granulocyte macrophage colony stimulating factor-signaling gene (MAGMAS in a novel and severe spondylodysplastic dysplasia. MAGMAS, also referred to as PAM16 (presequence translocase-associated motor 16, is a mitochondria-associated protein involved in preprotein translocation into the matrix. We show that MAGMAS is specifically expressed in trabecular bone and cartilage at early developmental stages and that the mutation leads to an instability of the protein. We further demonstrate that the mutation described here confers to yeast strains a temperature-sensitive phenotype, impairs the import of mitochondrial matrix pre-proteins and induces cell death. The finding of deleterious MAGMAS mutations in an early lethal skeletal dysplasia supports a key role for this mitochondrial protein in the ossification process.

  9. An attempt to model the timing of magma formation by means of radioactive disequilibria

    International Nuclear Information System (INIS)

    Cortini, M.

    1985-01-01

    In order to quantitatively determine the timing of magma formation, the Th series radioactive disequilibria for the Etna and Stromboli volcanoes have been re-examined in the light of new isotopic evidence that shows that magma formation is a chemically open-system process. This aim was but partially reached. It is shown that single-stage models of magma formation are not consistent with the experimental data. Short-life disequilibria require that magma formation undergoes: (1) a Th and Ra enrichment stage (a few years long); (2) a closed-system stage (a few tens to some hundreds years long); (3) a second Th and Ra enrichment stage (a few years long), different from the former in terms of Ra/Th ratio. The whole process can be described by a group of equations, derived from open-system non-equilibrium thermodynamics, which were integrated with numerical methods. However, too many unknowns are involved to allow a one-to-one solution based on the available data. (orig.)

  10. The change of magma chamber depth in and around the Baekdu Volcanic area from late Cenozoic

    Science.gov (United States)

    Lee, S. H.; Oh, C. W.; Lee, Y. S.; Lee, S. G.; Liu, J.

    2016-12-01

    The Baekdu Volcano is a 2750m high stratovolcanic cone resting on a basaltic shield and plateau and locates on the North Korea-China border. Its volcanic history can be divided into four stages (from the oldest to the youngest): (i) preshield plateau-forming eruptions, (ii) basalt shield formation, (iii) construction of a trachytic composite cone, and (iv) explosive ignimbrite forming eruptions. In the First stage, a fissure eruption produced basalts from the Oligocene to the Miocene (28-13 Ma) forming preshield plateau. Fissure and central eruptions occurred together during the shield-forming eruptions (4.21-1.70 Ma). In the third stage, the trachytic composite volcano formed during the Pleistocene (0.61-0.09 Ma). In this stage, magma changed to an acidic melt. The latest stage has been characterized by explosive ignimbrite-forming eruptions during the Holocene. The composite volcanic part consists of the Xiaobaishan, Lower, Middle and Upper Trachytes with rhyolites. The whole rock and clinopyroxene in basalts, trachytic and rhyolite, are analyzed to study the depth of magma chambers under the Baekdu Volcano. From the rhyolite, 9.8-12.7kbar is obtained for the depth of magma chamber. 3.7-4.1, 8.9-10.5 and 8.7 kbar are obtained from the middle, lower and Xiaobaishan trachytes. From the first and second stage basalts, 16.9-17.0 kbar and 14-14.4kbar are obtained respectively. The first stage basalt give extrusive age of 11.98 Ma whereas 1.12 and 1.09 Ma are obtained from the feldspar and groundmass in the second stage basalt. The Xiaobaishan trachyte and rhyolite give 0.25 and 0.21 Ma whereas the Middle trachyte gives 0.07-0.06 Ma. These data indicate that the magma chambers of the first and second stage basalts were located in the mantle and the magma chamber for the second stage basalt may have been underplated below continental crust. The Xiaobisan trachyte and rhyolite originated from the magma chamber in the depth of ca. 30-40 km and the Middle trachyte

  11. Can Fractional Crystallization of a Lunar Magma Ocean Produce the Lunar Crust?

    Science.gov (United States)

    Rapp, Jennifer F.; Draper, David S.

    2013-01-01

    New techniques enable the study of Apollo samples and lunar meteorites in unprecedented detail, and recent orbital spectral data reveal more about the lunar farside than ever before, raising new questions about the supposed simplicity of lunar geology. Nevertheless, crystallization of a global-scale magma ocean remains the best model to account for known lunar lithologies. Crystallization of a lunar magma ocean (LMO) is modeled to proceed by two end-member processes - fractional crystallization from (mostly) the bottom up, or initial equilibrium crystallization as the magma is vigorously convecting and crystals remain entrained, followed by crystal settling and a final period of fractional crystallization [1]. Physical models of magma viscosity and convection at this scale suggest that both processes are possible. We have been carrying out high-fidelity experimental simulations of LMO crystallization using two bulk compositions that can be regarded as end-members in the likely relevant range: Taylor Whole Moon (TWM) [2] and Lunar Primitive Upper Mantle (LPUM) [3]. TWM is enriched in refractory elements by 1.5 times relative to Earth, whereas LPUM is similar to the terrestrial primitive upper mantle, with adjustments made for the depletion of volatile alkalis observed on the Moon. Here we extend our earlier equilibrium-crystallization experiments [4] with runs simulating full fractional crystallization

  12. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    Science.gov (United States)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the

  13. Friction in volcanic environments

    Science.gov (United States)

    Kendrick, Jackie E.; Lavallée, Yan

    2016-04-01

    Volcanic landscapes are amongst the most dynamic on Earth and, as such, are particularly susceptible to failure and frictional processes. In rocks, damage accumulation is frequently accompanied by the release of seismic energy, which has been shown to accelerate in the approach to failure on both a field and laboratory scale. The point at which failure occurs is highly dependent upon strain-rate, which also dictates the slip-zone properties that pertain beyond failure, in scenarios such as sector collapse and pyroclastic flows as well as the ascent of viscous magma. High-velocity rotary shear (HVR) experiments have provided new opportunities to overcome the grand challenge of understanding faulting processes during volcanic phenomena. Work on granular ash material demonstrates that at ambient temperatures, ash gouge behaves according to Byerlee's rule at low slip velocities, but is slip-weakening, becoming increasingly lubricating as slip ensues. In absence of ash along a slip plane, rock-rock friction induces cataclasis and heating which, if sufficient, may induce melting (producing pseudotachylyte) and importantly, vesiculation. The viscosity of the melt, so generated, controls the subsequent lubrication or resistance to slip along the fault plane thanks to non-Newtonian suspension rheology. The shear-thinning behaviour and viscoelasticity of frictional melts yield a tendency for extremely unstable slip, and occurrence of frictional melt fragmentation. This velocity-dependence acts as an important feedback mechanism on the slip plane, in addition to the bulk composition, mineralogy and glass content of the magma, that all influence frictional behaviour. During sector collapse events and in pyroclastic density currents it is the frictional properties of the rocks and ash that, in-part, control the run-out distance and associated risk. In addition, friction plays an important role in the eruption of viscous magmas: In the conduit, the rheology of magma is integral

  14. Origin of silicic magmas along the Central American volcanic front: Genetic relationship to mafic melts

    Science.gov (United States)

    Vogel, Thomas A.; Patino, Lina C.; Eaton, Jonathon K.; Valley, John W.; Rose, William I.; Alvarado, Guillermo E.; Viray, Ela L.

    2006-09-01

    Silicic pyroclastic flows and related deposits are abundant along the Central American volcanic front. These silicic magmas erupted through both the non-continental Chorotega block to the southeast and the Paleozoic continental Chortis block to the northwest. The along-arc variations of the silicic deposits with respect to diagnostic trace element ratios (Ba/La, U/Th, Ce/Pb), oxygen isotopes, Nd and Sr isotope ratios mimic the along-arc variation in the basaltic and andesitic lavas. This variation in the lavas has been interpreted to indicate relative contributions from the slab and asthenosphere to the basaltic magmas [Carr, M.J., Feigenson, M.D., Bennett, E.A., 1990. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contributions to Mineralogy and Petrology, 105, 369-380.; Patino, L.C., Carr, M.J. and Feigenson, M.D., 2000. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contributions to Mineralogy and Petrology, 138 (3), 265-283.]. With respect to along-arc trends in basaltic lavas the largest contribution of slab fluids is in Nicaragua and the smallest input from the slab is in central Costa Rica — similar trends are observed in the silicic pyroclastic deposits. Data from melting experiments of primitive basalts and basaltic andesites demonstrate that it is difficult to produce high K 2O/Na 2O silicic magmas by fractional crystallization or partial melting of low-K 2O/Na 2O sources. However fractional crystallization or partial melting of medium- to high-K basalts can produce these silicic magmas. We interpret that the high-silica magmas associated Central America volcanic front are partial melts of penecontemporaneous, mantle-derived, evolved magmas that have ponded and crystallized in the mid-crust — or are melts extracted from these nearly completely crystallized magmas.

  15. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  16. U-series isotopes in arc magma

    Energy Technology Data Exchange (ETDEWEB)

    Hawkesworth, C.; Turner, S.; McDermott, F.; Peate, D.; Van Calsteren, P.

    1997-12-31

    Thorium is not readily mobilized in the fluid component along destructive plate margins. Uranium is mobilized, and the resultant fractionation in U/Th can be used to estimate the rates of transfer slab derived components through the mantle wedge. The variations in Th/Yb, and by implication in the fractionation-corrected Th abundances of arc magmas largely depend on the contributions from subducted sediments. It is inferred that the distinctive high Th/Ta ratios of subduction related magmas primarily reflect the Th/Ta ratios of the subducted sediments, and that such high Th/Ta ratios are generated by processes other than those associated with recent subduction-related magmatism. Uranium and thorium isotopes have also been used to evaluate magma residence times within the crust. Thus, separated minerals and groundmass from six rocks erupted in the last 4,000 years from Soufriere on St. Vincent in the Lesser Antilles, scatter about a 50,000 year errorchron on the U-Th equiline diagram (Heath et al., 1977). Models are currently being developed to investigate how such apparent ages may relate to calculated replenishment times in steady state systems. Bulk continental crust has a lower U/Th ratio (0.25) than at least some estimates for the bulk Earth (0.26) and the depleted upper mantle (0.39). However, the island arc rocks with low U/Th ratios appear to have inherited those from subducted sediments, and arc rocks with a low sediment contribution have significantly higher U/Th. Consequently, the U/Th ratios of new crustal material generated along destructive plate margins are significantly higher than those of bulk continental crust. The low average U/Th of bulk crust may be primarily due to different crust generation processes in the Archaean, when U would be less mobile because conditions were less oxidising, and when residual garnet may have had more of a role in crust generation processes. Extended abstract. 4 figs., 23 refs.

  17. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    Lava domes are structures that grow by the extrusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Repeated cycles of growth are punctuated by collapse, as the structure becomes oversized for the strength of the composite magma that rheologically stiffens and strengthens at its surface. Here we explore lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Results show that the shape and extent of the ductile core and the overall structure of the lava dome are strongly controlled by the infusion rate. The effects of extrusion rate on magma rheology are sensitive to material stiffness, which in turn is a function of volatile content and crystallinity. Material stiffness and material strength are key model parameters which govern magma rheology and subsequently the morphological character of the lava dome and in turn stability. Degassing induced crystallization causes material stiffening and enhances material strength reflected in non-Newtonian magma behavior. The increase in stiffness and strength of the injected magma causes a transition in the style of dome growth, from endogenous expansion of a ductile core, to stiffer and stronger intruding material capable of punching through the overlying material and resulting in the development of a spine or

  18. Modeling the Daly Gap: The Influence of Latent Heat Production in Controlling Magma Extraction and Eruption

    Science.gov (United States)

    Nelson, B. K.; Ghiorso, M. S.; Bachmann, O.; Dufek, J.

    2011-12-01

    A century-old issue in volcanology is the origin of the gap in chemical compositions observed in magmatic series on ocean islands and arcs - the "Daly Gap". If the gap forms during differentiation from a mafic parent, models that predict the dynamics of magma extraction as a function of chemical composition must simulate a process that results in volumetrically biased, bimodal compositions of erupted magmas. The probability of magma extraction is controlled by magma dynamical processes, which have a complex response to magmatic heat evolution. Heat loss from the magmatic system is far from a simple, monotonic function of time. It is modified by the crystallization sequence, chamber margin heat flux, and is buffered by latent heat production. We use chemical and thermal calculations of MELTS (Ghiorso & Sack, 1995) as input to the physical model of QUANTUM (Dufek & Bachmann, 2010) to predict crystallinity windows of most probable magma extraction. We modeled two case studies: volcanism on Tenerife, Canary Islands, and the Campanian Ignimbrite (CI) of Campi Flegrei, Italy. Both preserve a basanitic to phonolitic lineage and have comparable total alkali concentrations; however, CI has high and Tenerife has low K2O/Na2O. Modeled thermal histories of differentiation for the two sequences contrast strongly. In Tenerife, the rate of latent heat production is almost always greater than sensible heat production, with spikes in the ratio of latent to sensible heats of up to 40 associated with the appearance of Fe-Ti oxides at near 50% crystallization. This punctuated heat production must cause magma temperature change to stall or slow in time. The extended time spent at ≈50% crystallinity, associated with dynamical processes that enhance melt extraction near 50% crystallinity, suggests the magma composition at this interval should be common. In Tenerife, the modeled composition coincides with that of the first peak in the bimodal frequency-composition distribution. In our

  19. Formation of anorthosite on the Moon through magma ocean fractional crystallization

    Directory of Open Access Journals (Sweden)

    Tatsuyuki Arai

    2017-03-01

    Full Text Available Lunar anorthosite is a major rock of the lunar highlands, which formed as a result of plagioclase-floatation in the lunar magma ocean (LMO. Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite (mode of plagioclase >95 vol.% is a key to reveal the early magmatic evolution of the terrestrial planets. To form the pure lunar anorthosite, plagioclase should have separated from the magma ocean with low crystal fraction. Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma (φ is higher than ca. 40–60 vol.%, which inhibit the formation of pure anorthosite. In contrast, when φ is small, the magma ocean is highly turbulent, and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt. To determine the necessary conditions in which anorthosite forms from the LMO, this study adopted the energy criterion formulated by Solomatov. The composition of melt, temperature, and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt. When plagioclase starts to crystallize, the Mg# of melt becomes 0.59 at 1291 °C. The density of the melt is smaller than that of plagioclase for P > 2.1 kbar (ca. 50 km deep, and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase (1.8–3 cm. This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize. When the Mg# of melt becomes 0.54 at 1263 °C, the density of melt becomes larger than that of plagioclase even for 0 kbar. When the Mg# of melt decreases down to 0.46 at 1218 °C, the critical diameter of plagioclase to separate from the melt becomes 1.5–2.5 cm, which is nearly equal to the typical plagioclase of the lunar anorthosite. This suggests that plagioclase could separate from the

  20. Redox Evolution in Magma Oceans Due to Ferric/Ferrous Iron Partitioning

    Science.gov (United States)

    Schaefer, L.; Elkins-Tanton, L. T.; Pahlevan, K.

    2017-12-01

    A long-standing puzzle in the evolution of the Earth is that while the present day upper mantle has an oxygen fugacity close to the QFM buffer, core formation during accretion would have occurred at much lower oxygen fugacities close to IW. We present a new model based on experimental evidence that normal solidification and differentiation processes in the terrestrial magma ocean may explain both core formation and the current oxygen fugacity of the mantle without resorting to a change in source material or process. A commonly made assumption is that ferric iron (Fe3+) is negligible at such low oxygen fugacities [1]. However, recent work on Fe3+/Fe2+ ratios in molten silicates [2-4] suggests that the Fe3+ content should increase at high pressure for a given oxygen fugacity. While disproportionation was not observed in these experiments, it may nonetheless be occurring in the melt at high pressure [5]. Therefore, there may be non-negligible amounts of Fe3+ formed through metal-silicate equilibration at high pressures within the magma ocean. Homogenization of the mantle and further partitioning of Fe2+/Fe3+ as the magma ocean crystallizes may explain the oxygen fugacity of the Earth's mantle without requiring additional oxidation mechanisms. We present here models using different parameterizations for the Fe2+/Fe3+ thermodynamic relationships in silicate melts to constrain the evolution of the redox state of the magma ocean as it crystallizes. The model begins with metal-silicate partitioning at high pressure to form the core and set the initial Fe3+ abundance. Combined with previous work on oxygen absorption by magma oceans due to escape of H from H2O [6], we show that the upper layers of solidifying magma oceans should be more oxidized than the lower mantle. This model also suggests that large terrestrial planets should have more oxidized mantles than small planets. From a redox perspective, no change in the composition of the Earth's accreting material needs to be

  1. The Lunar Magma Ocean: Sharpening the Focus on Process and Composition

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2014-01-01

    The currently accepted model for the formation of the lunar anorthositic crust is by flotation from a crystallizing lunar magma ocean (LMO) shortly following lunar accretion. Anorthositic crust is globally distributed and old, whereas the mare basalts are younger and derived from a source region that has experienced plagioclase extraction. Several attempts at modelling such a crystallization sequence have been made [e.g. 1, 2], but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. This abstract presents results from our ongoing ex-periments simulating LMO crystallization and address-ing a range of variables. We investigate two bulk com-positions, which span most of the range of suggested lunar bulk compositions, from the refractory element enriched Taylor Whole Moon (TWM) [3] to the more Earth-like Lunar Primitive Upper Mantle (LPUM) [4]. We also investigate two potential crystallization mod-els: Fully fractional, where crystallizing phases are separated from the magma as they form and sink (or float in the case of plagioclase) throughout magma ocean solidification; and a two-step process suggested by [1, 5] with an initial stage of equilibrium crystalliza-tion, where crystals remain entrained in the magma before the crystal burden increases viscosity enough that convection slows and the crystals settle, followed by fractional crystallization. Here we consider the frac-tional crystallization part of this process; the equilibri-um cumulates having been determined by [6].

  2. Mantle to surface degassing of alkalic magmas at Erebus volcano, Antarctica

    Science.gov (United States)

    Oppenheimer, C.; Moretti, R.; Kyle, P.R.; Eschenbacher, A.; Lowenstern, J. B.; Hervig, R.L.; Dunbar, N.W.

    2011-01-01

    Continental intraplate volcanoes, such as Erebus volcano, Antarctica, are associated with extensional tectonics, mantle upwelling and high heat flow. Typically, erupted magmas are alkaline and rich in volatiles (especially CO2), inherited from low degrees of partial melting of mantle sources. We examine the degassing of the magmatic system at Erebus volcano using melt inclusion data and high temporal resolution open-path Fourier transform infrared (FTIR) spectroscopic measurements of gas emissions from the active lava lake. Remarkably different gas signatures are associated with passive and explosive gas emissions, representative of volatile contents and redox conditions that reveal contrasting shallow and deep degassing sources. We show that this unexpected degassing signature provides a unique probe for magma differentiation and transfer of CO2-rich oxidised fluids from the mantle to the surface, and evaluate how these processes operate in time and space. Extensive crystallisation driven by CO2 fluxing is responsible for isobaric fractionation of parental basanite magmas close to their source depth. Magma deeper than 4kbar equilibrates under vapour-buffered conditions. At shallower depths, CO2-rich fluids accumulate and are then released either via convection-driven, open-system gas loss or as closed-system slugs that ascend and result in Strombolian eruptions in the lava lake. The open-system gases have a reduced state (below the QFM buffer) whereas the closed-system gases preserve their deep oxidised signatures (close to the NNO buffer). ?? 2011 Elsevier B.V.

  3. Magma Chamber Model of Batur Caldera, Bali, Indonesia: Compositional Variation of Two Facies, Large-Volume Dacitic Ignimbrites

    Directory of Open Access Journals (Sweden)

    Igan S. Sutawidjaja

    2015-05-01

    Full Text Available DOI:10.17014/ijog.2.2.111-124Batur is one of the finest known calderas on Earth, and is the source of at least two major ignimbrite eruptions with a combined volume of some 84 km3 and 19 km3. These ignimbrites have a similar compositions, raising the question of whether they are geneticaly related. The Batur Ignimbrite-1 (BI-1 is crystal poor, containing rhyodacitic (68 - 70wt % SiO2, white to grey pumices and partly welded and unwelded. The overlying Batur Ignimbrite-2 (BI-2 is a homogeneous grey to black dacitic pumices (64 - 66 wt % SiO2, unwelded and densely welded (40 - 60% vesicularity, crystal and lithic rich. Phase equilibria indicate that the Batur magma equilibrated at temperatures of 1100 - 1300oC with melt water contents of 3 - 6 wt%. The post-eruptive Batur magma was cooler (<1100oC and it is melt more water rich (> 6 wt % H2O. A pressure of 20 kbar is infered from mineral barometry for the Batur magma chamber. Magmatic chamber model is one in which crystals and melt separate from a convecting Batur magma by density differences, resulting in a stratified magma chamber with a homogeneous central zone, a crystal-rich accumulation zone near the walls or base, and a buoyant, melt-rich zone near the top. This is consistent with the estimated magma temperatures and densities: the pre-eruptive BI-1 magma was hoter (1300oC and more volatile rich (6 wt % H2O with density 2.25 g/cm3 than the BI-2 magma (1200oC; 4 wt % H2O in density was higher (2.50 g/cm3. Batur melt characteristics and intensive parameters are consistent with a volatile oversaturation-driven eruption. However, the higher H2O content, high viscosity and low crystal content of the BI-1 magma imply an external eruption trigger.

  4. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins.

    Science.gov (United States)

    Benson, Thomas R; Coble, Matthew A; Rytuba, James J; Mahood, Gail A

    2017-08-16

    The omnipresence of lithium-ion batteries in mobile electronics, and hybrid and electric vehicles necessitates discovery of new lithium resources to meet rising demand and to diversify the global lithium supply chain. Here we demonstrate that lake sediments preserved within intracontinental rhyolitic calderas formed on eruption and weathering of lithium-enriched magmas have the potential to host large lithium clay deposits. We compare lithium concentrations of magmas formed in a variety of tectonic settings using in situ trace-element measurements of quartz-hosted melt inclusions to demonstrate that moderate to extreme lithium enrichment occurs in magmas that incorporate felsic continental crust. Cenozoic calderas in western North America and in other intracontinental settings that generated such magmas are promising new targets for lithium exploration because lithium leached from the eruptive products by meteoric and hydrothermal fluids becomes concentrated in clays within caldera lake sediments to potentially economically extractable levels.Lithium is increasingly being utilized for modern technology in the form of lithium-ion batteries. Here, using in situ measurements of quartz-hosted melt inclusions, the authors demonstrate that preserved lake sediments within rhyolitic calderas have the potential to host large lithium-rich clay deposits.

  5. The Acoculco caldera magmas: genesis, evolution and relation with the Acoculco geothermal system

    Science.gov (United States)

    Sosa-Ceballos, G.; Macías, J. L.; Avellán, D.

    2017-12-01

    The Acoculco Caldera Complex (ACC) is located at the eastern part of the Trans Mexican Volcanic Belt; México. This caldera complex have been active since 2.7 Ma through reactivations of the system or associated magmatism. Therefore the ACC is an excellent case scenario to investigate the relation between the magmatic heat supply and the evolution processes that modified magmatic reservoirs in a potential geothermal field. We investigated the origin and the magmatic processes (magma mixing, assimilation and crystallization) that modified the ACC rocks by petrography, major oxides-trace element geochemistry, and isotopic analysis. Magma mixing is considered as the heat supply that maintain active the magmatic system, whereas assimilation yielded insights about the depth at which processes occurred. In addition, we performed a series of hydrothermal experiments in order to constrain the storage depth for the magma tapped during the caldera collapse. Rocks from the ACC were catalogued as pre, syn and post caldera. The post caldera rocks are peralkaline rhyolites, in contrast to all other rocks that are subalkaline. Our investigation is focus to investigate if the collapse modified the plumbing system and the depth at which magmas stagnate and recorded the magmatic processes.

  6. Volatile Contents in Mafic Magmas from two Aleutian volcanoes: Augustine and Makushin

    Science.gov (United States)

    Zimmer, M. M.; Plank, T.; Hauri, E. H.; Nye, C.; Faust Larsen, J.; Kelemen, P. B.

    2004-12-01

    There are several competing theories for the origin of tholeiitic (TH) vs. calc-alkaline (CA) fractionation trends in arc magmas. One relates to water (TH-dry magma, CA-wet magma), another to pressure (TH-low pressure crystallization, CA-high pressure), and a third to primary magma composition (TH-low Si/Fe#, CA-hi Si/Fe#) These theories have been difficult to test without quantitative measures of the water contents and pressures of crystallization of arc magmas. We are in the process of studying several Aleutian arc tephra suites (phenocrysts and melt inclusions) with the aim of obtaining volatile element concentrations (by SIMS), major and trace element concentrations and thermobarometric data (by EMP and laser-ICPMS). We report preliminary results on olivine-hosted melt inclusions from Augustine and Makushin volcanoes that support the role of water in calc-alkaline fractionation. Basaltic melt inclusions from Augustine, a low-K2O, calc-alkaline volcano, are hosted in Fo80-82 olivine. The inclusions yield high water contents, up to 5 wt%, and contain 60-90 ppm CO2, 3000-4500 ppm S, and 3000-6000 ppm Cl. Inclusions record vapor-saturation pressures near 2 kbar. Cl/K2O ratios in Augustine inclusions (ave. 1.9) are among the highest documented in an arc setting, and likely record a Cl- and H2O- rich fluid from the subducting plate. High water contents in Augustine primary melts may have contributed to the strong calc-alkaline trend observed at this volcano. Basaltic melt inclusions from Pakushin, a medium-K2O, tholeiitic cone on the flanks of Makushin volcano, are hosted in Fo80-86 olivine. These inclusions have low water contents (pressures (high sulfur (2000-4000 ppm) and Cl (>2000 ppm) in Pakushin melt inclusions, however, indicate that degassing was minimal. The low water contents and low vapor saturation pressures recorded in Pakushin melt inclusions are consistent with development of its tholeiitic trend, but we cannot distinguish whether the low water

  7. How does the architecture of a fault system controls magma upward migration through the crust?

    Science.gov (United States)

    Iturrieta, P. C.; Cembrano, J. M.; Stanton-Yonge, A.; Hurtado, D.

    2017-12-01

    The orientation and relative disposition of adjacent faults locally disrupt the regional stress field, thus enhancing magma flow through previous or newly created favorable conduits. Moreover, the brittle-plastic transition (BPT), due to its stronger rheology, governs the average state of stress of shallower portions of the fault system. Furthermore, the BPT may coincide with the location of transient magma reservoirs, from which dikes can propagate upwards into the upper crust, shaping the inner structure of the volcanic arc. In this work, we examine the stress distribution in strike-slip duplexes with variable geometry, along with the critical fluid overpressure ratio (CFOP), which is the minimum value required for individual faults to fracture in tension. We also determine the stress state disruption of the fault system when a dike is emplaced, to answer open questions such as: what is the nature of favorable pathways for magma to migrate? what is the architecture influence on the feedback between fault system kinematics and magma injection? To this end, we present a 3D coupled hydro-mechanical finite element model of the continental lithosphere, where faults are represented as continuum volumes with an elastic-plastic rheology. Magma flow upon fracturing is modeled through non-linear Stoke's flow, coupling solid and fluid equilibrium. A non-linear sensitivity analysis is performed in function of tectonic, rheology and geometry inputs, to assess which are the first-order factors that governs the nature of dike emplacement. Results show that the CFOP is heterogeneously distributed in the fault system, and within individual fault segments. Minimum values are displayed near fault intersections, where local kinematics superimpose on regional tectonic loading. Furthermore, when magma is transported through a fault segment, the CFOP is now minimized in faults with non-favorable orientations. This suggests that these faults act as transient pathways for magma to

  8. Magma transport and storage at Kilauea volcano, Hawaii I: 1790-1952

    Science.gov (United States)

    Wright, T. L.; Klein, F.

    2011-12-01

    We trace the evolution of Kilauea from the time of the first oral records of an explosive eruption in 1790 to the long eruption in Halemaumau crater in 1952. The establishment of modern seismic and geodetic networks in the early 1960s showed that eruptions and intrusions were fed from two magma sources beneath the summit at depths of 2-6 and ~1 km respectively (sources 1 and 2), and that seaward spreading of the south flank took place on a decollement at 10-12 km depth at the base of the Kilauea edifice. A third diffuse, pressure-transmitting magma system (source 3) between the shallow East rift zone and the decollement was also identified. We test the null hypothesis that the volcano has behaved similarly throughout its lifetime, and conclude that the null hypothesis is not met for the period preceding the 1952 summit eruption because of changes in magma supply rate and differences in ground deformation patterns. The western missionaries arriving at Kilauea in 1823 were confronted with a caldera-wide lava lake. Filling rates determined by visual observation correspond to magma supply rates that averaged more than 0.3 km3/yr prior to 1840 and declined to 1894, when lava disappeared altogether at Halemaumau crater. The Hawaiian Volcano Observatory (HVO) was established by Thomas A. Jaggar in 1912 adjacent to the Volcano House Hotel on the rim of Kilauea. Instrumental observation at HVO began using a seismometer that doubled as a tiltmeter. A 1912-1924 magma supply rate of 0.024 km3/yr agreed with the rate of filling of Kilauea caldera from 1840-1894. 1924 was a critical year. An intrusion that moved down Kilauea's East rift zone beginning in February culminated beneath the lower East rift zone in April. In May, explosive eruptions accompanied a dramatic draining of Halemaumau. Triangulation results between 1912 and 1921 showed uplift extending far beyond Kilauea caldera and an equally large regional subsidence occurred between 1921 and 1927. HVO tilt narrows the

  9. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    Science.gov (United States)

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  10. Improving Student Understanding of Magmatic Differentiation Using an M&M Magma Chamber

    Science.gov (United States)

    Wirth, K. R.

    2003-12-01

    Many students, especially those in introductory geology courses, have difficulty developing a deep understanding of the processes of magmatic differentiation. In particular, students often struggle to understand Bowen's reaction series and fractional crystallization. The process of fractional crystallization by gravity settling can be illustrated using a model magma chamber consisting of M&M's. In this model, each major cation (e.g., Si, Ti, Al, Fe, Mg, Ca, Na, K) is represented by a different color M&M; other kinds of differently colored or shaped pieces could also be used. Appropriate numbers of each color M&M are combined to approximate the cation proportions of a basaltic magma. Students then fractionate the magma by moving M&M's to the bottom of the magma chamber forming a series of cumulus layers; the M&M's are removed in the stoichiometric proportions of cations in the crystallizing minerals (e.g., olivine, pyroxene, feldspars, quartz, magnetite, ilmenite). Students observe the changing cation composition (proportions of colors of M&M's) in the cumulus layers and in the magma chamber and graph the results using spreadsheet software. More advanced students (e.g., petrology course) can classify the cumulates and resulting liquid after each crystallization step, and they can compare the model system with natural magmatic systems (e.g., absence of important fractionating phases, volatiles). Students who have completed this exercise generally indicate a positive experience and demonstrate increased understanding of Bowen's reaction series and fractionation processes. They also exhibit greater familiarity with mineral stoichiometry, classification, solid-solution in minerals, element behavior (e.g., incompatibility), and chemical variation diagrams. Other models (e.g., paths of equilibrium and fractional crystallization on phase diagrams) can also be used to illustrate differentiation processes in upper level courses (e.g., mineralogy and petrology).

  11. Multiple Magma Batches Recorded in Tephra Deposits from the Toba Complex, Sumatra.

    Science.gov (United States)

    Pearce, N. J. G.; Westgate, J.; Gatti, E.

    2015-12-01

    The Toba Caldera Complex is the largest Quaternary caldera on Earth, and has generated three voluminous and compositionally similar rhyolitic tuffs, viz. the Oldest (OTT, 800 ka), Middle (MTT, ~500 ka) and Youngest Toba Tuffs (YTT, 75 ka). These tephra deposits are widespread across Indonesia, Malaysia, South China Sea, Sea of Bengal, India and Indian Ocean and provide useful stratigraphic markers in oceanic, lacustrine and terrestrial environments. Single shard trace element analysis of these deposits reveals the changing availability of different batches of magma through time, with Sr, Ba and Y contents defining 5 discrete magma populations in YTT, 4 populations in MTT and only a single, low Ba population in OTT. Within an individual eruption these populations are clearly distinct, but between eruptions (e.g. MTT and YTT) some of these populations overlap while others do not, indicating both the longevity (and/or continuous supply of fresh material) and evolution of these magma batches in the Toba Complex. Major element compositions of the different groups show equilibration at different pressures (based on Q'-Ab'-Or'), with the equilibration of low Ba populations at ~160 MPa, increasing to depths of ~210 MPa for the highest Ba population. The proportions of different populations of glass in distal YTT shows that relatively little of the high Ba population makes it into the distal record across India, and that this population appears to be over-represented in the proximal free glass and pumice from the caldera walls. This data may shed light on magma availability and tephra dispersal during the YTT eruption. Similarly, the glass composition of individual pumices from proximal deposits record regional, compositional and temporal differences in the erupted products. These show, for example, the apparent mingling of some of the magma batches and also that the high Ba population appears early (i.e. stratigraphically lower) in the northern caldera wall.

  12. Integrating cut-and-solve and semi-Lagrangean based dual ascent for the single-source capacitated facility location problem

    DEFF Research Database (Denmark)

    Gadegaard, Sune Lauth

    polytope with generalized upper bounds. From our computational study, we show that the semi-Lagrangean relaxation approach has its merits when the instances are tightly constrained with regards to the capacity of the system, but that it is very hard to compete with a standalone implementation of the cut......This paper describes how the cut-and-solve framework and semi-Lagrangean based dual ascent algorithms can be integrated in two natural ways in order to solve the single source capacitated facility location problem. The first uses the cut-and-solve framework both as a heuristic and as an exact...... solver for the semi-Lagrangean subproblems. The other uses a semi-Lagrangean based dual ascent algorithm to solve the sparse problems arising in the cut-and-solve algorithm. Furthermore, we developed a simple way to separate a special type of cutting planes from what we denote the effective capacity...

  13. Advancement of magma fragmentation by inhomogeneous bubble distribution.

    Science.gov (United States)

    Kameda, M; Ichihara, M; Maruyama, S; Kurokawa, N; Aoki, Y; Okumura, S; Uesugi, K

    2017-12-01

    Decompression times reported in previous studies suggest that thoroughly brittle fragmentation is unlikely in actual explosive volcanic eruptions. What occurs in practice is brittle-like fragmentation, which is defined as the solid-like fracture of a material whose bulk rheological properties are close to those of a fluid. Through laboratory experiments and numerical simulation, the link between the inhomogeneous structure of bubbles and the development of cracks that may lead to brittle-like fragmentation was clearly demonstrated here. A rapid decompression test was conducted to simulate the fragmentation of a specimen whose pore morphology was revealed by X-ray microtomography. The dynamic response during decompression was observed by high-speed photography. Large variation was observed in the responses of the specimens even among specimens with equal bulk rheological properties. The stress fields of the specimens under decompression computed by finite element analysis shows that the presence of satellite bubbles beneath a large bubble induced the stress concentration. On the basis of the obtained results, a new mechanism for brittle-like fragmentation is proposed. In the proposed scenario, the second nucleation of bubbles near the fragmentation surface is an essential process for the advancement of fragmentation in an upward magma flow in a volcanic conduit.

  14. Using rocks to reveal the inner workings of magma chambers below volcanoes in Alaska’s National Parks

    Science.gov (United States)

    Coombs, Michelle L.; Bacon, Charles R.

    2012-01-01

    Alaska is one of the most vigorously volcanic regions on the planet, and Alaska’s national parks are home to many of the state’s most active volcanoes. These pose both local and more distant hazards in the form of lava and pyroclastic flows, lahars (mudflows), ash clouds, and ash fall. Alaska’s volcanoes lie along the arc of the Aleutian-Alaskan subduction zone, caused as the oceanic Pacific plate moves northward and dips below the North American plate. These volcanoes form as water-rich fluid from the down-going Pacific plate is released, lowering the melting temperature of rock in the overlying mantle and enabling it to partially melt. The melted rock (magma) migrates upward, collecting at the base of the approximately 25 mile (40 km) thick crust, occasionally ascending into the shallow crust, and sometimes erupting at the earth’s surface.During volcanic unrest, scientists use geophysical signals to remotely visualize volcanic processes, such as movement of magma in the upper crust. In addition, erupted volcanic rocks, which are quenched samples of magmas, can tell us about subsurface magma characteris-tics, history, and the processes that drive eruptions. The chemical compositions of and the minerals present in the erupted magmas can reveal conditions under which these magmas were stored in crustal “chambers”. Studies of the products of recent eruptions of Novarupta (1912), Aniakchak (1931), Trident (1953-74), and Redoubt (2009) volcanoes reveal the depths and temperatures of magma storage, and tell of complex interactions between magmas of different compositions. One goal of volcanology is to determine the processes that drive or trigger eruptions. Information recorded in the rocks tells us about these processes. Here, we demonstrate how geologists gain these insights through case studies from four recent eruptions of volcanoes in Alaska national parks.

  15. Shear thinning behaviors in magmas

    Science.gov (United States)

    Vetere, F. P.; Cassetta, M.; Perugini, D.

    2017-12-01

    Studies on magma rheology are of fundamental importance to understanding magmatic processes from depth to surface. Since viscosity is one of the most important parameter controlling eruption mechanisms, as well as lava flow emplacement, a comprehensive knowledge on the evolution of magma viscosities during crystallization is required. We present new viscosity data on partly crystalized basalt, andesite and analogue lavas comparable to those erupted on Mercury's northern volcanic plains. High-temperature viscosity measurements were performed using a rotational Anton Paar RheolabQC viscometer head at the PVRG labs, in Perugia (Italy) (http://pvrg.unipg.it). The relative proportion of phases in each experimental run were determined by image analysis on BS-SEM images at different magnifications; phases are glasses, clinopyroxene, spinel, plagioclase for the basalt, plagioclase and spinel for the andesite and pure enstatite and clinopyroxenes, for the analogue Mercury's composition. Glass and crystalline fractions determined by image analysis well correlate with compositions of residual melts. In order to constrain the viscosity (η) variations as a function of crystallinity, shear rate (γ) was varied from 0.1 to 5 s-1. Viscosity vs. time at constant temperature shows a typical S-shape curve. In particular, for basaltic composition η vary from 3.1-3.8 Pa s [log η] at 1493 K and crystallinity of 19 area % as γ vary from 1.0 to 0.1 s-1; the andesite viscosity evolution is 3.2 and 3.7 Pa s [log η] as γ varies from 1 to 0.1 at 1493 K and crystal content of 17 area %; finally, Mercury's analogue composition was investigated at different temperature ranging from 1533 to 1502 K (Vetere et al., 2017). Results, for γ = 0.1, 1.0 and 5.0 s-1, show viscosity variation between 2.7-4.0, 2.5-3.4 and 2.0-3.0 [log η inPa s] respectively while crystallinity vary from 9 to 27 (area %). As viscosity decreases as shear rate increases, these data points to a shear thinning behaviour

  16. Experimental and petrological constraints on long-term magma dynamics and post-climactic eruptions at the Cerro Galán caldera system, NW Argentina

    Science.gov (United States)

    Grocke, Stephanie B.; Andrews, Benjamin J.; de Silva, Shanaka L.

    2017-11-01

    Cerro Galán in NW Argentina records > 3.5 Myr of magmatic evolution of a major resurgent caldera complex. Beginning at 5.72 Ma, nine rhyodacitic ignimbrites (68-71 wt% SiO2) with a combined minimum volume of > 1200 km3 (Dense Rock Equivalent; DRE) have been erupted. The youngest of those ignimbrites is the eponymous, geochemically homogenous, caldera-forming 2.08 ± 0.02 Ma Cerro Galán Ignimbrite (CGI; > 630 km3 DRE). Following this climactic supereruption, structural and magmatic resurgence led to the formation of a resurgent dome and post-climactic lava domes and their associated pyroclastic deposits. A clear transition from amphibole to sanidine-bearing magmas occurred during the evolution of Cerro Galán and is inferred to represent a shallowing of the magma system. We test this hypothesis here using experimental phase equilibria. We conducted a series of phase equilibria experiments on the post-climactic dome lithologies under H2O-saturated conditions using cold seal Waspaloy pressure vessels with an intrinsic log fO2 of NNO + 1 ± 0.5 across a temperature-pressure range of 750-900 °C and 50-200 MPa (PH2O = Ptotal), respectively. Petrologic and geochemical analysis of the post-climactic lithologies shows that the natural phase assemblage (plagioclase + quartz + biotite + sanidine + Fe-Ti oxides ± apatite ± zircon) is stable at history of Cerro Galán is informed through a detailed investigation of the textural differences among the post-climactic dome lithologies, and a comparison of those textures with previously published decompression experiments. These suggest that the highly vesiculated, pumiceous clasts with rare microlites represent magma stored within the core of the lava dome that decompressed relatively rapidly (0.003-0.0003 MPa s-1) and evolved via closed system degassing. Resulting over-pressure of the dome may have triggered superficial explosion. In contrast, dense clasts with abundant crystalline silica precipitates represent more typical

  17. Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas

    International Nuclear Information System (INIS)

    Holohan, Eoghan P; Walsh, John J; Vries, Benjamin van Wyk de; Troll, Valentin R; Walter, Thomas R

    2008-01-01

    Plan-view ellipticity of a pre-caldera magma reservoir, and its influence on the development of caldera ring fracturing and eruptive behaviour, have not previously been subjected to dedicated evaluation. We experimentally simulated caldera collapse into elliptical magma chambers and found that collapse into highly-elliptical chambers produced a characteristic pattern of ring-fault localization and lateral propagation. Although results are preliminary, the general deformation pattern for elliptical resurgence shows strong similarities to elliptical collapse. Ring faults accommodating uplift again initiate around the chamberos short axis and are reverse, but dip inward. Field and geophysical observations at several elliptical calderas of varying scale (e.g. Long Valley, Katmai, and Rabaul calderas) are consistent with a control from elliptical magma chamber geometry on ring fracturing and eruption, as predicted from our experiments.

  18. Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas

    Energy Technology Data Exchange (ETDEWEB)

    Holohan, Eoghan P; Walsh, John J [Fault Analysis Group, School of Geological Sciences, University College Dublin, Belfield, Dublin 4 (Ireland); Vries, Benjamin van Wyk de [Laboratoire Magmas et Volcans, 5 rue Kessler, 63038 Clermont-Ferrand (France); Troll, Valentin R [Department of Earth Sciences, Uppsala University, SE-752 36, Uppsala (Sweden); Walter, Thomas R [GFZ Potsdam, Telegrafenberg, Potsdam, D-14473 (Germany)], E-mail: Eoghan.Holohan@ucd.ie

    2008-10-01

    Plan-view ellipticity of a pre-caldera magma reservoir, and its influence on the development of caldera ring fracturing and eruptive behaviour, have not previously been subjected to dedicated evaluation. We experimentally simulated caldera collapse into elliptical magma chambers and found that collapse into highly-elliptical chambers produced a characteristic pattern of ring-fault localization and lateral propagation. Although results are preliminary, the general deformation pattern for elliptical resurgence shows strong similarities to elliptical collapse. Ring faults accommodating uplift again initiate around the chamberos short axis and are reverse, but dip inward. Field and geophysical observations at several elliptical calderas of varying scale (e.g. Long Valley, Katmai, and Rabaul calderas) are consistent with a control from elliptical magma chamber geometry on ring fracturing and eruption, as predicted from our experiments.

  19. Conditions of deep magma chamber beneath Fuji volcano estimated from high- P experiments

    Science.gov (United States)

    Asano, K.; Takahashi, E.; Hamada, M.; Ushioda, M.; Suzuki, T.

    2012-12-01

    Fuji volcano, the largest in volume and eruption rate in Japan, is located at the center of Honshu, where North America, Eurasia and Philippine Sea plates meets. Because of the significance of Fuji volcano both in tectonic settings and potential volcanic hazard (particularly after the M9 earthquake in 2011), precise knowledge on its magma feeding system is essentially important. Composition of magma erupted from Fuji volcano in the last 100ky is predominantly basalt (SiO2=50-52wt%, FeO/MgO=1.5-3.0). Total lack of silica-rich magma (basaltic andesite and andesite) which are always present in other nearby volcanoes (e.g., Hakone, Izu-Oshima, see Fig.1) is an important petrologic feature of Fuji volcano. Purpose of this study is to constrain the depth of magma chamber of Fuji volcano and explain its silica-nonenrichment trend. High pressure melting experiments were carried out using two IHPVs at the Magma Factory, Tokyo Institute of Technology (SMC-5000 and SMC-8600, Tomiya et al., 2010). Basalt scoria Tr-1 which represents the final ejecta of Hoei eruption in AD1707, was adopted as a starting material. At 4kbar, temperature conditions were 1050, 1100 and 1150C, and H2O contents were 1.3, 2.7 and 4.7 wt.%, respectively. At 7kbar, temperature conditions were 1075, 1100 and 1125C, and H2O contents were 1.0, 1.1, 3.6 and 6.3wt.%, respectively. The fO2 was controlled at NNO buffer. At 4kbar, crystallization sequence at 3 wt% H2O is magnetite, plagioclase, clinopyroxene and finally orthopyroxene. At 7 kbar, and ~3 wt% H2O, the three minerals (opx, cpx, pl) appears simultaneously near the liquidus. Compositional trend of melt at 4 kbar and 7 kbar are shown with arrows in Fig.1. Because of the dominant crystallization of silica-rich opx at 7 kbar, composition of melt stays in the range SiO2=50-52wt% as predicted by Fujii (2007). Absence of silica-rich rocks in Fuji volcano may be explained by the tectonic setting of the volcano. Because Fuji volcano locates on the plate

  20. Continental rift architecture and patterns of magma migration: a dynamic analysis based on centrifuge models.

    NARCIS (Netherlands)

    Corti, G.; Bonini, M.; Sokoutis, D.; Innocenti, F.; Manetti, P.; Cloetingh, S.A.P.L.; Mulugeta, G.

    2004-01-01

    Small-scale centrifuge models were used to investigate the role of continental rift structure in controlling patterns of magma migration and emplacement. Experiments considered the reactivation of weakness zones in the lower crust and the presence of magma at Moho depths. Results suggest that

  1. A magma ocean and the Earth's internal water budget

    Science.gov (United States)

    Ahrens, Thomas J.

    1992-01-01

    There are lines of evidence which relate bounds on the primordial water content of the Earth's mantle to a magma ocean and the accompanying Earth accretion process. We assume initially (before a magma ocean could form) that as the Earth accreted, it grew from volatile- (H2O, CO2, NH3, CH4, SO2, plus noble) gas-rich planetesimals, which accreted to form an initial 'primitive accretion core' (PAC). The PAC retained the initial complement of planetesimal gaseous components. Shock wave experiments in which both solid, and more recently, the gaseous components of materials such as serpentine and the Murchison meteorite have demonstrated that planetesimal infall velocities of less than 0.5 km/sec, induce shock pressures of less than 0.5 GPa and result in virtually complete retention of planetary gases.

  2. Storage conditions of the mafic and silicic magmas at Cotopaxi, Ecuador

    Science.gov (United States)

    Martel, Caroline; Andújar, Joan; Mothes, Patricia; Scaillet, Bruno; Pichavant, Michel; Molina, Indira

    2018-04-01

    The 2015 reactivation of the Cotopaxi volcano urges us to understand the complex eruptive dynamics of Cotopaxi for better management of a potential major crisis in the near future. Cotopaxi has commonly transitioned from andesitic eruptions of strombolian style (lava flows and scoria ballistics) or nuées ardentes (pyroclastic flows and ash falls) to highly explosive rhyolitic ignimbrites (pumiceous pyroclastic flows), which entail drastically different risks. To better interpret geophysical and geochemical signals, Cotopaxi magma storage conditions were determined via existing phase-equilibrium experiments that used starting materials chemically close to the Cotopaxi andesites and rhyolites. The results suggest that Cotopaxi's most mafic andesites (last erupted products) can be stored over a large range of depth from 7 km to ≥16 km below the summit (pressure from 200 to ≥400 MPa), 1000 °C, NNO +2, and contain 4.5-6.0±0.7 wt% H2O dissolved in the melt in equilibrium with 30-40% phenocrysts of plagioclase, two pyroxenes, and Fe-Ti oxides. These mafic andesites sometimes evolve towards more silicic andesites by cooling to 950 °C. Rhyolitic magmas are stored at 200-300 MPa (i.e. 7-11 km below the summit), 750 °C, NNO +2, and contain 6-8 wt% H2O dissolved in a nearly aphyric melt (<5% phenocrysts of plagioclase, biotite, and Fe-Ti oxides). Although the andesites produce the rhyolitic magmas by fractional crystallization, the Cotopaxi eruptive history suggests reactivation of either reservoirs at distinct times, likely reflecting flux or time fluctuations during deep magma recharge.

  3. An improved Lagrangian relaxation and dual ascent approach to facility location problems

    DEFF Research Database (Denmark)

    Jörnsten, Kurt; Klose, Andreas

    2016-01-01

    not be reduced to the same extent as in the case of ordinary semi-Lagrangian relaxation. Hence, an effective method for optimizing the Lagrangian dual function is of utmost importance for obtaining a computational advantage from the simplified Lagrangian dual function. In this paper, we suggest a new dual ascent...... method for optimizing both the semi-Lagrangian dual function as well as its simplified form for the case of a generic discrete facility location problem and apply the method to the uncapacitated facility location problem. Our computational results show that the method generally only requires a very few...

  4. Finite automata over magmas: models and some applications in Cryptography

    Directory of Open Access Journals (Sweden)

    Volodymyr V. Skobelev

    2018-05-01

    Full Text Available In the paper the families of finite semi-automata and reversible finite Mealy and Moore automata over finite magmas are defined and analyzed in detail. On the base of these models it is established that the set of finite quasigroups is the most acceptable subset of the set of finite magmas at resolving model problems in Cryptography, such as design of iterated hash functions and stream ciphers. Defined families of finite semi-automata and reversible finite automata over finite $T$-quasigroups are investigated in detail. It is established that in this case models time and space complexity for simulation of the functioning during one instant of automaton time can be much lower than in general case.

  5. Granites petrology, structure, geological setting, and metallogeny

    CERN Document Server

    Nédélec, Anne; Bowden, Peter

    2015-01-01

    Granites are emblematic rocks developed from a magma that crystallized in the Earth’s crust. They ultimately outcrop at the surface worldwide. This book, translated and updated from the original French edition Pétrologie des Granites (2011) is a modern presentation of granitic rocks from magma genesis to their crystallization at a higher level into the crust. Segregation from the source, magma ascent and shapes of granitic intrusions are also discussed, as well as the eventual formation of hybrid rocks by mingling/mixing processes and the thermomechanical aspects in country rocks around granite plutons. Modern techniques for structural studies of granites are detailed extensively. Granites are considered in their geological spatial and temporal frame, in relation with plate tectonics and Earth history from the Archaean eon. A chapter on granite metallogeny explains how elements of economic interest are concentrated during magma crystallization, and examples of Sn, Cu, F and U ore deposits are presented. Mi...

  6. Magma Fertility is the First-Order Factor for the Formation of Porphyry Cu±Au Deposits

    Science.gov (United States)

    Park, J. W.; Campbell, I. H.; Malaviarachchi, S. P. K.; Cocker, H.; Nakamura, E.; Kay, S. M.

    2017-12-01

    Magma fertility, the metal abundance in magma, has been considered to be one of the key factors for the formation of porphyry Cu±Au deposits. In this study we provide clear evidence to support the hypothesis that the platinum group element (PGE) can be used to distinguish barren from ore-bearing Cu±Au felsic suites. We determined the PGE contents of three barren volcanic and subvolcanic suites from Argentina and Japan, and compare the results with two porphyry Cu-bearing subvolcanic suites from Chile and two porphyry Cu-Au-bearing suites from Australia. The barren suites are significantly depleted in PGE abundances by the time of fluid exsolution, which is attributed to early sulfide saturation at mid to lower crust depths or assimilation of chalcophile element-poor crustal materials. Barren magma, produced by melting continental crust, may have been initially deficient in chalcophile elements. In contrast, the Cu±Au ore-bearing suites contain at least an order of magnitude higher PGE contents than those of the barren suites by the time of fluid saturation. They are characterized by late sulfide saturation in a shallow magma chamber, which allows the chalcophile elements to concentrate in the fractionating magma from which they are sequestered by ore-forming fluids. We suggest the Pd/MgO and Pd/Pt ratios of igneous rocks can be used as magma fertility indicators, and to distinguish between barren, porphyry Cu and porphyry Cu-Au magmatic systems.

  7. The Origin of Tholeiitic and Calc-Alkaline Trends in Arc Magmas

    Science.gov (United States)

    Luffi, P. I.; Lee, C.

    2012-12-01

    It has long been recognized that tholeiitic (TH, high-Fe/Mg) and calc-alkaline (CA, low-Fe/Mg) magmatic series define the two most important igneous differentiation trends shaping Earth's crust. While oceanic crust formation at mid-ocean ridges is typically confined to a TH trend, arc magmatism at convergent margins, considered to significantly contribute to continent formation, generates both TH and CA trends. Thus, the origin of these trends - a key issue to understanding how continental crust forms - is matter of ongoing debate. Prevalent factors thought to contribute to the TH-CA duality are: 1) redox conditions (oxygen fugacity, fO2) and H2O contents in magmas, which control the onset and abundance of high-Fe/Mg oxide mineral fractionation; 2) crystallization depths that regulate the fractionating solid assemblage and thereby the solid/liquid Kd(Fe-Mg). Relying on an extensive geochemical dataset of modern arc volcanics and thermodynamic phase equilibria modeling, here we examine the validity and relative importance of these factors in arc petrogenesis. First, to discriminate igneous rocks more efficiently, we formulate an improved CA/TH index solely based on FeO-MgO systematics. We then confirm on a quantitative basis that, on regional scales, arcs formed on thick crust tend to be more calk-alkaline than those emplaced on thinner crust are, and show that the effect of fO2 on the CA/TH index in arc magmas is more significant than that of H2O. Importantly, we demonstrate that CA trends typical for continental arcs only form when crystal fractionation is accompanied by the assimilation of oxidized crustal components; in the absence of buffering oxidized assimilants fractionating magmas follow a TH trend more common in island arcs, irrespective of their H2O content and initial fO2 level. We find that high-pressure fractionation of amphibole and garnet in arc magmas occurs too late to have a significant influence on the CA/TH index; in addition, garnet-melt and

  8. Magma-sponge hypothesis and stratovolcanoes: Case for a compressible reservoir and quasi-steady deep influx at Soufrière Hills Volcano, Montserrat

    Science.gov (United States)

    Voight, Barry; Widiwijayanti, Christina; Mattioli, Glen; Elsworth, Derek; Hidayat, Dannie; Strutt, M.

    2010-02-01

    We use well-documented time histories of episodic GPS surface deformation and efflux of compressible magma to resolve apparent magma budget anomalies at Soufrière Hills volcano (SHV) on Montserrat, WI. We focus on data from 2003 to 2007, for an inflation succeeded by an episode of eruption-plus-deflation. We examine Mogi-type and vertical prolate ellipsoidal chamber geometries to accommodate both mineralogical constraints indicating a relatively shallow pre-eruption storage, and geodetic constraints inferring a deeper mean-pressure source. An exsolved phase involving several gas species greatly increases andesite magma compressibility to depths >10 km (i.e., for water content >4 wt%, crystallinity ˜40%), and this property supports the concept that much of the magma transferred into or out of the crustal reservoir could be accommodated by compression or decompression of stored reservoir magma (i.e., the “magma-sponge”). Our results suggest quasi-steady deep, mainly mafic magma influx of the order of 2 m3s-1, and we conclude that magma released in eruptive episodes is approximately balanced by cumulative deep influx during the eruptive episode and the preceding inflation. Our magma-sponge model predicts that between 2003 and 2007 there was no evident depletion of magma reservoir volume at SHV, which comprises tens of km3 with radial dimensions of order ˜1-2 km, in turn implying a long-lived eruption.

  9. Magma fluxes and recurreance rate of eruptions at Nevado de Toluca volcano (Mexico)

    Science.gov (United States)

    Weber, Gregor; Probst, Line; Arce, José L.; Caricchi, Luca

    2017-04-01

    Forecasting the frequency and size of volcanic eruptions is a long-term goal for hazard mitigation. The frequency at which a given crustal magmatic system is driven towards a critical state and the magnitude of the resulting volcanic events are linked to the supply rate of fresh magma, crustal properties, and tectonic setting. Our ability to forecast the recurrence rate of eruptions is hampered by the lack of data on key variables such as the average magma flux locally and globally. The aim of this project is to identify the average magma supply rate and injection frequency for eruptions of different magnitude and eruptive style. We centred our study at Nevado de Toluca in Mexico, a subduction-related volcano with an eruptive history spanning about 1.5 million years of comparatively well documented effusive and explosive eruptions dominantly of dacitic composition. We carry out in-situ high precision zircon geochronology for a sequence of eruptions of different magnitude to obtain a distribution of crystal ages from which average crustal magma fluxes can be calculated. Eruptive fluxes will be constrained by extracting lava flow volumes from a digital elevation model. A combination of whole rock and mineral chemistry will provide quantitative insights on petrogenetic processes and on the frequency at which intensive parameters changed within the magma reservoir before the eruptions. Our results will be integrated in a global database including other volcanic systems and literature data to attempt to identify similarities and differences between magmatic reservoirs feeding volcanic eruptions of different magnitude. The final target of this project is to identify the physical factors controlling the recurrence rate of volcanic eruptions at regional and global scale.

  10. Magma transport in sheet intrusions of the Alnö carbonatite complex, central Sweden.

    Science.gov (United States)

    Andersson, Magnus; Almqvist, Bjarne S G; Burchardt, Steffi; Troll, Valentin R; Malehmir, Alireza; Snowball, Ian; Kübler, Lutz

    2016-06-10

    Magma transport through the Earth's crust occurs dominantly via sheet intrusions, such as dykes and cone-sheets, and is fundamental to crustal evolution, volcanic eruptions and geochemical element cycling. However, reliable methods to reconstruct flow direction in solidified sheet intrusions have proved elusive. Anisotropy of magnetic susceptibility (AMS) in magmatic sheets is often interpreted as primary magma flow, but magnetic fabrics can be modified by post-emplacement processes, making interpretation of AMS data ambiguous. Here we present AMS data from cone-sheets in the Alnö carbonatite complex, central Sweden. We discuss six scenarios of syn- and post-emplacement processes that can modify AMS fabrics and offer a conceptual framework for systematic interpretation of magma movements in sheet intrusions. The AMS fabrics in the Alnö cone-sheets are dominantly oblate with magnetic foliations parallel to sheet orientations. These fabrics may result from primary lateral flow or from sheet closure at the terminal stage of magma transport. As the cone-sheets are discontinuous along their strike direction, sheet closure is the most probable process to explain the observed AMS fabrics. We argue that these fabrics may be common to cone-sheets and an integrated geology, petrology and AMS approach can be used to distinguish them from primary flow fabrics.

  11. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    Science.gov (United States)

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  12. Nature of the magma storage system beneath the Damavand volcano (N. Iran): An integrated study

    Science.gov (United States)

    Eskandari, Amir; Amini, Sadraddin; De Rosa, Rosanna; Donato, Paola

    2018-02-01

    Damavand intraplate stratovolcano constructed upon a moderately thick crust (58-67 km) over the last 2 Ma. The erupted products are dominantly trachyandesite-trachyte (TT) lavas and pyroclasts, with minor mafic magmas including tephrite-basanite-trachybasalt and alkali olivine basalts emplaced as cinder cones at the base of the stratovolcano. The TT products are characterized by a mineral assemblage of clinopyroxene (diopside-augite), orthopyroxene (clinoenstatite), feldspar (An2-58, Ab6-69, Or2-56), high Ti phlogopite, F-apatite, Fesbnd Ti oxides, and minor amounts of olivine (Fo73-80), amphibole and zircon, whereas olivine (Fo78-88), high Mg# (80-89) diopside, feldspar, apatite and Fesbnd Ti oxide occur in the mafic magmas. The presence of hydrous and anhydrous minerals, normal zonings, mafic cumulates, and the composition of magmatic inclusions in the TT products suggest evolutionary processes in polybaric conditions. In the same way, disequilibrium textures - including orthopyroxene mantled with clinopyroxene, reaction rim of phlogopite and amphibole, the coexistence of olivine and orthopyroxene, reverse, oscillatory and complex zonings of pyroxene and feldspar crystals - suggest magmatic evolutions in open systems with a varying temperature, oxygen fugacity, water as well as pressure and, to a lesser extent, melt chemistry. Mineral assemblages are used to model the physicochemical conditions and assess default parameters for the thermodynamic simulation of crystallization using MELTS software to track the P-T-H2O-ƒO2 evolution of the magma plumbing system. Thermobarometry and MELTS models estimated the initial nucleation depth at 16-17 kb (56-60 km) for olivine (Fo89) and high Al diopside crystals occurring in the mafic primary magma; it then stopped and underwent fractionation between 8 and 10 kb (28-35 km), corresponding with Moho depth, and continued to differentiate in the lower crust, in agreement with the geophysical models. The mafic rocks were formed

  13. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    Science.gov (United States)

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  14. Estimating rates of decompression from textures of erupted ash particles produced by 1999-2006 eruptions of Tungurahua volcano, Ecuador

    Science.gov (United States)

    Wright, Heather M.N.; Cashman, Katharine V.; Mothes, Patricia A.; Hall, Minard L.; Ruiz, Andrés Gorki; Le Pennec, Jean-Luc

    2012-01-01

    Persistent low- to moderate-level eruptive activity of andesitic volcanoes is difficult to monitor because small changes in magma supply rates may cause abrupt transitions in eruptive style. As direct measurement of magma supply is not possible, robust techniques for indirect measurements must be developed. Here we demonstrate that crystal textures of ash particles from 1999 to 2006 Vulcanian and Strombolian eruptions of Tungurahua volcano, Ecuador, provide quantitative information about the dynamics of magma ascent and eruption that is difficult to obtain from other monitoring approaches. We show that the crystallinity of erupted ash particles is controlled by the magma supply rate (MSR); ash erupted during periods of high magma supply is substantially less crystalline than during periods of low magma supply. This correlation is most easily explained by efficient degassing at very low pressures (<<50 MPa) and degassing-driven crystallization controlled by the time available prior to eruption. Our data also suggest that the observed transition from intermittent Vulcanian explosions at low MSR to more continuous periods of Strombolian eruptions and lava fountains at high MSR can be explained by the rise of bubbles through (Strombolian) or trapping of bubbles beneath (Vulcanian) vent-capping, variably viscous (and crystalline) magma.

  15. Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements

    Science.gov (United States)

    Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.

    2013-01-01

    A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).

  16. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles

    Science.gov (United States)

    Mungall, J. E.; Brenan, J. M.; Godel, B.; Barnes, S. J.; Gaillard, F.

    2015-03-01

    Emissions of sulphur and metals from magmas in Earth’s shallow crust can have global impacts on human society. Sulphur-bearing gases emitted into the atmosphere during volcanic eruptions affect climate, and metals and sulphur can accumulate in the crust above a magma reservoir to form giant copper and gold ore deposits, as well as massive sulphur anomalies. The volumes of sulphur and metals that accumulate in the crust over time exceed the amounts that could have been derived from an isolated magma reservoir. They are instead thought to come from injections of multiple new batches of vapour- and sulphide-saturated magmas into the existing reservoirs. However, the mechanism for the selective upward transfer of sulphur and metals is poorly understood because their main carrier phase, sulphide melt, is dense and is assumed to settle to the bottoms of magma reservoirs. Here we use laboratory experiments as well as gas-speciation and mass-balance models to show that droplets of sulphide melt can attach to vapour bubbles to form compound drops that float. We demonstrate the feasibility of this mechanism for the upward mobility of sulphide liquids to the shallow crust. Our work provides a mechanism for the atmospheric release of large amounts of sulphur, and contradicts the widely held assumption that dense sulphide liquids rich in sulphur, copper and gold will remain sequestered in the deep crust.

  17. Crystallization sequence of the Upper Border Series of the Skaergaard Intrusion: Revised subdivision and implications for Chamber-Scale Magma Homogeneity

    DEFF Research Database (Denmark)

    Salmonsen, Lars Peter; Tegner, Christian

    2013-01-01

    from the roof of the magma chamber, differs from that in the Layered Series formed at the floor. The proposed deviation would require chemical stratification of the magma, and a reexamination of the crystallization sequence therefore has important implications for understanding the dynamics...... of the crystallization sequences and the anorthite contents of plagioclase cores in the three series imply that the Skaergaard magma chamber solidified by in situ crystallization along the floor, walls and roof from one, largely homogenous, convecting magma body....

  18. Long-Term Volumetric Eruption Rates and Magma Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Scott M. White Dept. Geological Sciences University of South Carolina Columbia, SC 29208; Joy A. Crisp Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA 91109; Frank J. Spera Dept. Earth Science University of California, Santa Barbara Santa Barbara, CA 93106

    2005-01-01

    A global compilation of 170 time-averaged volumetric volcanic output rates (Qe) is evaluated in terms of composition and petrotectonic setting to advance the understanding of long-term rates of magma generation and eruption on Earth. Repose periods between successive eruptions at a given site and intrusive:extrusive ratios were compiled for selected volcanic centers where long-term (>104 years) data were available. More silicic compositions, rhyolites and andesites, have a more limited range of eruption rates than basalts. Even when high Qe values contributed by flood basalts (9 ± 2 Å~ 10-1 km3/yr) are removed, there is a trend in decreasing average Qe with lava composition from basaltic eruptions (2.6 ± 1.0 Å~ 10-2 km3/yr) to andesites (2.3 ± 0.8 Å~ 10-3 km3/yr) and rhyolites (4.0 ± 1.4 Å~ 10-3 km3/yr). This trend is also seen in the difference between oceanic and continental settings, as eruptions on oceanic crust tend to be predominately basaltic. All of the volcanoes occurring in oceanic settings fail to have statistically different mean Qe and have an overall average of 2.8 ± 0.4 Å~ 10-2 km3/yr, excluding flood basalts. Likewise, all of the volcanoes on continental crust also fail to have statistically different mean Qe and have an overall average of 4.4 ± 0.8 Å~ 10-3 km3/yr. Flood basalts also form a distinctive class with an average Qe nearly two orders of magnitude higher than any other class. However, we have found no systematic evidence linking increased intrusive:extrusive ratios with lower volcanic rates. A simple heat balance analysis suggests that the preponderance of volcanic systems must be open magmatic systems with respect to heat and matter transport in order to maintain eruptible magma at shallow depth throughout the observed lifetime of the volcano. The empirical upper limit of Å`10-2 km3/yr for magma eruption rate in systems with relatively high intrusive:extrusive ratios may be a consequence of the fundamental parameters

  19. The evolution of hydrous magmas in the Tongariro Volcanic Centre : the 10 ka Pahoka-Mangamate eruptions

    International Nuclear Information System (INIS)

    Auer, A.; Palin, J.M.; White, J.D.L.; Nakagawa, M.; Stirling, C.

    2015-01-01

    The majority of arc-type andesites in the Tongariro Volcanic Centre are highly porphyritic, hornblende-free, two-pyroxene andesites. An exception is tephras from the c. 10,000 ka Pahoka-Mangamate event. Magmas of these Plinian eruptions bypassed the extensive crustal mush columns under the central volcanoes and sequentially derived a series of almost aphyric rocks spanning a compositional range from dacite to basaltic andesite. Mineral composition, trace element and isotopic data suggest that this eruptive series tapped a mid-crustal magma reservoir, resulting in the initial eruption of an hydrous dacitic magma and several following eruptions characterised by less-evolved and less-hydrous compositions at progressively higher temperatures and substantially lower 87 Sr/ 86 Sr ratios. Systematic changes in magma chemistry are also reflected in a sequential change in phenocryst content starting with an early hornblende-plagioclase-dominated assemblage to a late olivine-plagioclase-dominated assemblage. (author).

  20. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July-August 2008

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel

    2010-01-01

    A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ∼3 km below sea level (bsl), which began immediately after Okmok's previous eruption in 1997. In this paper we use data from several radar satellites and advanced interferometric synthetic aperture radar (InSAR) techniques to produce a suite of 2008 coeruption deformation maps. Most of the surface deformation that occurred during the eruption is explained by deflation of a Mogi-type source located beneath the center of the caldera and 2–3 km bsl, i.e., essentially the same source that inflated prior to the eruption. During the eruption the reservoir deflated at a rate that decreased exponentially with time with a 1/e time constant of ∼13 days. We envision a sponge-like network of interconnected fractures and melt bodies that in aggregate constitute a complex magma storage zone beneath Okmok caldera. The rate at which the reservoir deflates during an eruption may be controlled by the diminishing pressure difference between the reservoir and surface. A similar mechanism might explain the tendency for reservoir inflation to slow as an eruption approaches until the pressure difference between a deep magma production zone and the reservoir is great enough to drive an intrusion or eruption along the caldera ring-fracture system.

  1. Numerical linear algebra on emerging architectures: The PLASMA and MAGMA projects

    International Nuclear Information System (INIS)

    Agullo, Emmanuel; Demmel, Jim; Dongarra, Jack; Hadri, Bilel; Kurzak, Jakub; Langou, Julien; Ltaief, Hatem; Luszczek, Piotr; Tomov, Stanimire

    2009-01-01

    The emergence and continuing use of multi-core architectures and graphics processing units require changes in the existing software and sometimes even a redesign of the established algorithms in order to take advantage of now prevailing parallelism. Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) and Matrix Algebra on GPU and Multics Architectures (MAGMA) are two projects that aims to achieve high performance and portability across a wide range of multi-core architectures and hybrid systems respectively. We present in this document a comparative study of PLASMA's performance against established linear algebra packages and some preliminary results of MAGMA on hybrid multi-core and GPU systems.

  2. Heart rate variability changes at 2400 m altitude predicts acute mountain sickness on further ascent at 3000-4300 m altitudes

    Directory of Open Access Journals (Sweden)

    Heikki Mikael Karinen

    2012-08-01

    Full Text Available ObjectiveIf the body fails to acclimatize at high altitude, acute mountain sickness (AMS may result. For the early detection of AMS, changes in cardiac autonomic function measured by heart rate variability (HRV may be more sensitive than clinical symptoms alone. The purpose of this study was to ascertain if the changes in HRV during ascent are related to AMS.MethodsWe followed Lake Louise Score (LLS, arterial oxygen saturation at rest (R-SpO2 and exercise (Ex-SpO2 and HRV parameters daily in 36 different healthy climbers ascending from 2400 m to 6300 m altitudes during five different expeditions.ResultsAfter an ascent to 2400 m, standard deviation (RMSSD2 min, high-frequency power (HF2 min of HRV were 17-51 % and Ex-SpO2 was 3% lower in those climbers who suffered from AMS at 3000- 4300 m than in those only developing AMS later (≥ 5000 m or not at all (all p < 0.01. At the altitude of 2400 m RMSSD2 min ≤ 30 ms and Ex-SpO2 ≤ 91% both had 92% sensitivity for AMS if ascent continued without extra acclimatization days.ConclusionsChanges in supine HRV parameters at 2400 m were related to AMS at 3000-4300 m Thus, diverse analyses of HRV could offer potential markers for identifying the climbers at risk for AMS.

  3. Geochemical differentiation processes for arc magma of the Sengan volcanic cluster, Northeastern Japan, constrained from principal component analysis

    Science.gov (United States)

    Ueki, Kenta; Iwamori, Hikaru

    2017-10-01

    In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.

  4. Magma evolution in the Pliocene Pleistocene succession of Kos, South Aegean arc (Greece)

    Science.gov (United States)

    Pe-Piper, Georgia; Moulton, Ben

    2008-11-01

    This study investigates the petrogenesis of Pliocene-Quaternary andesites, dacites and rhyolites of the island of Kos. These volcanic rocks differ from other volcanic centres in the South Aegean arc in the narrow range of Pliocene volcanic products, the abundance of high-silica rhyolite, the lower ɛNd for a given Sr isotope composition, and greater depth to the subducting slab. Pliocene and early Pleistocene dacite stocks and rhyolite domes are succeeded by younger tuffs, notably the 0.16 Ma Kos Plateau Tuff derived from a super-eruption of an andesite stratocone now subsided beneath the sea south of Kos. Volcanic products in tuffs have been sampled from lithic clasts. Andesite, dacite and rhyolite all have ɛNd ˜+ 1.5 to -1.5 and 86Sr/ 87Sr ˜ 0.7042; this unusual composition is argued to be the result of subduction of sediments derived from the River Nile. All rock types show structures indicative of widespread magma mixing, including complexly zoned plagioclase, clinopyroxene and amphibole containing glass inclusions of trachyte and rhyolite compositions. The observed rocks result from fractionation and mixing of three principal magma types: (a) calc-alkaline high-Al basalt that fractionated to andesite at the base of crust; (b) partially melted metabasaltic amphibolite underplated at the base of crust, that fractionated to produce high-SiO 2 rhyolite; and (c) a minor component of trachytic magma from partial melting of enriched subcontinental lithospheric mantle. The complexly zoned phenocrysts with glass inclusions provide specific evidence for mixing of these three components. Specifically, it was the emplacement of the andesite into a voluminous rhyolite magma in a mid-crustal magma chamber that led to the explosive Kos Plateau Tuff super-eruption.

  5. Production and Preservation of Sulfide Layering in Mercury's Magma Ocean

    Science.gov (United States)

    Boukare, C.-E.; Parman, S. W.; Parmentier, E. M.; Anzures, B. A.

    2018-05-01

    Mercury's magma ocean (MMO) would have been sulfur-rich. At some point during MMO solidification, it likely became sulfide saturated. Here we present physiochemical models exploring sulfide layer formation and stability.

  6. Students Enroll in a Model Television Course: Evaluation of City Colleges of Chicago's Use of "Ascent of Man."

    Science.gov (United States)

    Duby, Paul B.; Giltrow, David R.

    TV College of Chicago utilized the British Broadcasting Company's series, "Ascent of Man," as the core of a televised college credit course. Student evaluations of the course, total enrollment, and course completion data were used to compare the educational differences between the British series and typical TV College productions which…

  7. Experimental Constraints on a Vesta Magma Ocean

    Science.gov (United States)

    Hoff, C.; Jones, J. H.; Le, L.

    2014-01-01

    A magma ocean model was devised to relate eucrites (basalts) and diogenites (orthopyroxenites), which are found mixed together as clasts in a suite of polymict breccias known as howardites. The intimate association of eucritic and diogenitic clasts in howardites argues strongly that these three classes of achondritic meteorites all originated from the same planetoid. Reflectance spectral evidence (including that from the DAWN mission) has long suggested that Vesta is indeed the Eucrite Parent Body. Specifically, the magma ocean model was generated as follows: (i) the bulk Vesta composition was taken to be 0.3 CV chondrite + 0.7 L chondrite but using only 10% of the Na2O from this mixture; (ii) this composition is allowed to crystallize at 500 bar until approx. 80% of the system is solid olivine + low-Ca pyroxene; (iii) the remaining 20% liquid crystallizes at one bar from 1250C to 1110C, a temperature slightly above the eucrite solidus. All crystallization calculations were performed using MELTS. In this model, diogenites are produced by cocrystallization of olivine and pyroxene in the >1250C temperature regime, with Main Group eucrite liquids being generated in the 1300-1250C temperature interval. Low-Ca pyroxene reappears at 1210C in the one-bar calculations and fractionates the residual liquid to produce evolved eucrite compositions (Stannern Trend). We have attempted to experimentally reproduce the magma ocean. In the MELTS calculation, the change from 500 bar to one bar results in a shift of the olivine:low-Ca pyroxene boundary so that the 1250C liquid is now in the olivine field and, consequently, olivine should be the first-crystallizing phase, followed by low-Ca pyroxene at 1210C, and plagioclase at 1170C. Because at one bar the olivine:low-Ca pyroxene boundary is a peritectic, fractional crystallization of the 1210C liquid proceeds with only pyroxene crystallization until plagioclase appears. Thus, the predictions of the MELTS calculation are clear and

  8. Crystallization of Magma. CEGS Programs Publication Number 14.

    Science.gov (United States)

    Berry, R. W.

    Crystallization of Magma is one of a series of single-topic problem modules intended for use in undergraduate geology and earth science courses. Through problems and observations based on two sets of experiments, this module leads to an understanding of how an igneous rock can form from molten material. Environmental factors responsible for…

  9. On the source material of magmas - with special reference to Nd isotopic ratios of igneous rocks

    International Nuclear Information System (INIS)

    Shuto, Kenji

    1980-01-01

    In 1973, the Sm-Nd method was first used for the measurement of the absolute age of igneous rocks and meteorites. Subsequently in the following years, the research works by means of the Nd isotopic ratio in igneous rocks have been made strenuously in order to reveal the chemistry of the source materials of magma giving rise to the igneous rocks and further the evolution process of mantle and earth's crust. The fundamental items for the Sm-Nd method are explained. Then, the research results more important in the above connection are given. Finally, the ideas by the author concerning the source materials of magma are presented from the data available on the Nd isotopes in meteorites and igneous rocks. The following matters are described: the fundamentals of Sm-Nd method, the Nd content in seawater, the negative correlation between Nd and Sr isotopic ratios in igneous rocks, magma source materials and Nd isotopes, and considerations on magma source materials. (J.P.N.)

  10. 238U-230Th-226Ra systematics applied to the active oceanic volcanism. Constraints on the duration and processes of magmas formation

    International Nuclear Information System (INIS)

    Claude-Ivana, Ch.

    1997-02-01

    The development of a new precise analytical technique for measuring radioactive disequilibria by TIMS has enabled to put constraints on both the extend and time scale of incompatible element fractionation during magma formation in oceanic islands. Three different settings have been studied: the Grande Comore volcanoes (Comores archipelago), Tenerife and Lanzarote volcanism (Canary islands) and four islands within the Azores: Sao Miguel, Terceira, Pico and Faial islands. The Comores and Canaries archipelagoes are both lying on an old thick oceanic lithosphere. The detailed case in Grande Comore shows evidence for a process of interaction of the Comore plume with the underlying lithosphere. In the Canaries, the lithosphere also contributes to lava formation either during the differentiation (in Tenerife) or during mantle melting (in Lanzarote). Within the Azores, U-series measurements reveal large geochemical and isotopic variations between the different islands that we interpret as reflecting heterogeneities in the Azore plume. In particular, the U-Th fractionation in Sao Miguel volcanics is though to result from melting of an hydrous sediment-bearing mantle. The magma transit times have been found to be very short (1000 yr) in all the basaltic series. This very rapid migration of the melts is an evidence for the absence of large magma chamber and for processes of fracturing during melt transports. However, this model does not apply in the case of the very evolved volcanic series in Tenerife island (Canaries) where transit times of c.a. 100000 yr indicate the presence of a large magmatic reservoir. (author)

  11. Magmatic architecture within a rift segment: Articulate axial magma storage at Erta Ale volcano, Ethiopia

    Science.gov (United States)

    Xu, Wenbin; Rivalta, Eleonora; Li, Xing

    2017-10-01

    Understanding the magmatic systems beneath rift volcanoes provides insights into the deeper processes associated with rift architecture and development. At the slow spreading Erta Ale segment (Afar, Ethiopia) transition from continental rifting to seafloor spreading is ongoing on land. A lava lake has been documented since the twentieth century at the summit of the Erta Ale volcano and acts as an indicator of the pressure of its magma reservoir. However, the structure of the plumbing system of the volcano feeding such persistent active lava lake and the mechanisms controlling the architecture of magma storage remain unclear. Here, we combine high-resolution satellite optical imagery and radar interferometry (InSAR) to infer the shape, location and orientation of the conduits feeding the 2017 Erta Ale eruption. We show that the lava lake was rooted in a vertical dike-shaped reservoir that had been inflating prior to the eruption. The magma was subsequently transferred into a shallower feeder dike. We also find a shallow, horizontal magma lens elongated along axis inflating beneath the volcano during the later period of the eruption. Edifice stress modeling suggests the hydraulically connected system of horizontal and vertical thin magmatic bodies able to open and close are arranged spatially according to stresses induced by loading and unloading due to topographic changes. Our combined approach may provide new constraints on the organization of magma plumbing systems beneath volcanoes in continental and marine settings.

  12. Eruption Depths, Magma Storage and Magma Degassing at Sumisu Caldera, Izu-Bonin Arc: Evidence from Glasses and Melt Inclusions

    Science.gov (United States)

    Johnson, E. R.

    2015-12-01

    Island arc volcanoes can become submarine during cataclysmal caldera collapse. The passage of a volcanic vent from atmospheric to under water environment involves complex modifications of the eruption style and subsequent transport of the pyroclasts. Here, we use FTIR measurements of the volatile contents of glass and melt inclusions in the juvenile pumice clasts in the Sumisu basin and its surroundings (Izu-Bonin arc) to investigate changes in eruption depths, magma storage and degassing over time. This study is based on legacy cores from ODP 126, where numerous unconsolidated (250 m), massive to normally graded pumice lapilli-tuffs were recovered over four cores (788C, 790A, 790B and 791A). Glass and clast geochemistry indicate the submarine Sumisu caldera as the source of several of these pumice lapilli-tuffs. Glass chips and melt inclusions from these samples were analyzed using FTIR for H2O and CO2 contents. Glass chips record variable H2O contents; most chips contain 0.6-1.6 wt% H2O, corresponding to eruption depths of 320-2100 mbsl. Variations in glass H2O and pressure estimates suggest that edifice collapse occurred prior-to or during eruption of the oldest of these samples, and that the edifice may have subsequently grown over time. Sanidine-hosted melt inclusions from two units record variably degassed but H2O-rich melts (1.1-5.6 wt% H2O). The lowest H2O contents overlap with glass chips, consistent with degassing and crystallization of melts until eruption, and the highest H2O contents suggest that large amounts of degassing accompanied likely explosive eruptions. Most inclusions, from both units, contain 2-4 wt% H2O, which further indicates that the magmas crystallized at pressures of ~50-100 MPa, or depths ~400-2800 m below the seafloor. Further glass and melt inclusion analyses, including major element compositions, will elucidate changes in magma storage, degassing and evolution over time.

  13. Magmas near the critical degassing pressure drive volcanic unrest towards a critical state

    Science.gov (United States)

    Chiodini, Giovanni; Paonita, Antonio; Aiuppa, Alessandro; Costa, Antonio; Caliro, Stefano; De Martino, Prospero; Acocella, Valerio; Vandemeulebrouck, Jean

    2016-01-01

    During the reawaking of a volcano, magmas migrating through the shallow crust have to pass through hydrothermal fluids and rocks. The resulting magma–hydrothermal interactions are still poorly understood, which impairs the ability to interpret volcano monitoring signals and perform hazard assessments. Here we use the results of physical and volatile saturation models to demonstrate that magmatic volatiles released by decompressing magmas at a critical degassing pressure (CDP) can drive volcanic unrest towards a critical state. We show that, at the CDP, the abrupt and voluminous release of H2O-rich magmatic gases can heat hydrothermal fluids and rocks, triggering an accelerating deformation that can ultimately culminate in rock failure and eruption. We propose that magma could be approaching the CDP at Campi Flegrei, a volcano in the metropolitan area of Naples, one of the most densely inhabited areas in the world, and where accelerating deformation and heating are currently being observed. PMID:27996976

  14. A Physical Model for Three-Phase Compaction in Silicic Magma Reservoirs

    Science.gov (United States)

    Huber, Christian; Parmigiani, Andrea

    2018-04-01

    We develop a model for phase separation in magma reservoirs containing a mixture of silicate melt, crystals, and fluids (exsolved volatiles). The interplay between the three phases controls the dynamics of phase separation and consequently the chemical and physical evolution of magma reservoirs. The model we propose is based on the two-phase damage theory approach of Bercovici et al. (2001, https://doi.org/10.1029/2000JB900430) and Bercovici and Ricard (2003, https://doi.org/10.1046/j.1365-246X.2003.01854.x) because it offers the leverage of considering interface (in the macroscopic limit) between phases that can deform depending on the mechanical work and phase changes taking place locally in the magma. Damage models also offer the advantage that pressure is defined uniquely to each phase and does not need to be equal among phases, which will enable us to consider, in future studies, the large capillary pressure at which fluids are mobilized in mature, crystal-rich, magma bodies. In this first analysis of three-phase compaction, we solve the three-phase compaction equations numerically for a simple 1-D problem where we focus on the effect of fluids on the efficiency of melt-crystal separation considering the competition between viscous and buoyancy stresses only. We contrast three sets of simulations to explore the behavior of three-phase compaction, a melt-crystal reference compaction scenario (two-phase compaction), a three-phase scenario without phase changes, and finally a three-phase scenario with a parameterized second boiling (crystallization-induced exsolution). The simulations show a dramatic difference between two-phase (melt crystals) and three-phase (melt-crystals-exsolved volatiles) compaction-driven phase separation. We find that the presence of a lighter, significantly less viscous fluid hinders melt-crystal separation.

  15. Automatic Compound Annotation from Mass Spectrometry Data Using MAGMa.

    NARCIS (Netherlands)

    Ridder, L.O.; Hooft, van der J.J.J.; Verhoeven, S.

    2014-01-01

    The MAGMa software for automatic annotation of mass spectrometry based fragmentation data was applied to 16 MS/MS datasets of the CASMI 2013 contest. Eight solutions were submitted in category 1 (molecular formula assignments) and twelve in category 2 (molecular structure assignment). The MS/MS

  16. Geochemical reversals within the lower 100 m of the Palisades sill, New Jersey

    Science.gov (United States)

    Gorring, Matthew L.; Naslund, H. R.

    1995-03-01

    Transects through the lower part of the Palisades sill were made at Fort Lee and Alpine, New Jersey in order to characterize the petrologic signature of previously proposed “reversals” in the normal, tholeiitic differentiation trend. Petrographic and geochemical data include: (1) modal and grain size analyses, (2) bulk rock major and trace element concentrations by DCP-AES, and (3) augite, orthopyroxene, magnetite, and olivine compositions by electron microprobe analysis. Anomalous horizons, defined by increased bulk rock Mg?, Cr, Ni, and Co concentrations and abrupt modal and grain-size changes, occur at 10 m (the well known olivine zone), 27 m, 45 m, and 95 m above the basal contact. Thermal models coupled with estimates of the emplacement rate and total magma volume indicate that the olivine zone (OZ) is an early-stage feature, related to the emplacement of initial magma into the Palisades chamber. Stoke’s Law calculations indicate that the settling velocity of average-sized olivine crystals in a high-titanium, quartz-normative (HTQ) magma is too slow for significant gravity settling to have occurred prior to the solidification of the basal 20 m of the sill. It is suggested that the OZ resulted from the emplacement of a heterogeneous initial magma from a compositionally stratified, sub-Palisades storage chamber located within the upper crust; however, heterogeneity may have been derived directly from the mantle or during rapid ascent. Geochemical models indicate that the OZ contains accumulated olivine that is not in cotectic (or constant) proportions with the other cumulus phases, suggesting a mechanical sorting process. Magma chamber recharge is proposed to have occurred at the 27 m and 45 m levels, when a slightly more-primitive HTQ magma was injected into the Palisades sill cha- mber. Zones of elevated Mg? and Cr, 6 to 10 m thick, at these two horizons may indicate the thickness of the hybrid magma formed by the mixing of these two compositions

  17. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000-2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael P.

    2016-08-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35-100% between 2001 and 2006 (from 0.11-0.17 to 0.18-0.28 km3/yr), before subsequently decreasing to 0.08-0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60-150% between 2001 and

  18. {sup 238}U-{sup 230}Th-{sup 226}Ra systematics applied to the active oceanic volcanism. Constraints on the duration and processes of magmas formation; Systematique {sup 238}U-{sup 230}Th-{sup 226}Ra appliquee au volcanisme actif oceanique. Contraintes sur la duree et les processus de formation des magmas

    Energy Technology Data Exchange (ETDEWEB)

    Claude-Ivana, Ch

    1997-02-01

    The development of a new precise analytical technique for measuring radioactive disequilibria by TIMS has enabled to put constraints on both the extend and time scale of incompatible element fractionation during magma formation in oceanic islands. Three different settings have been studied: the Grande Comore volcanoes (Comores archipelago), Tenerife and Lanzarote volcanism (Canary islands) and four islands within the Azores: Sao Miguel, Terceira, Pico and Faial islands. The Comores and Canaries archipelagoes are both lying on an old thick oceanic lithosphere. The detailed case in Grande Comore shows evidence for a process of interaction of the Comore plume with the underlying lithosphere. In the Canaries, the lithosphere also contributes to lava formation either during the differentiation (in Tenerife) or during mantle melting (in Lanzarote). Within the Azores, U-series measurements reveal large geochemical and isotopic variations between the different islands that we interpret as reflecting heterogeneities in the Azore plume. In particular, the U-Th fractionation in Sao Miguel volcanics is though to result from melting of an hydrous sediment-bearing mantle. The magma transit times have been found to be very short (1000 yr) in all the basaltic series. This very rapid migration of the melts is an evidence for the absence of large magma chamber and for processes of fracturing during melt transports. However, this model does not apply in the case of the very evolved volcanic series in Tenerife island (Canaries) where transit times of c.a. 100000 yr indicate the presence of a large magmatic reservoir. (author)

  19. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of 3 m3 s-1) for magma with lower relative yield strengths (p = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  20. Magma addition rates in continental arcs: New methods of calculation and global implications

    Science.gov (United States)

    Ratschbacher, B. C.; Paterson, S. R.

    2017-12-01

    The transport of mass, heat and geochemical constituents (elements and volatiles) from the mantle to the atmosphere occurs via magma addition to the lithosphere. Calculation of magma addition rates (MARs) in continental arcs based on exposed proportions of igneous arc rocks is complex and rarely consistently determined. Multiple factors influence MAR calculations such as crust versus mantle contributions to magmas, a change in MARs across the arc and with depths throughout the arc crustal column, `arc tempos' with periods of high and low magmatic activity, the loss of previous emplaced arc rocks by subsequent magmatism and return to the mantle, arc migration, variations in the intrusive versus extrusive additions and evolving arc widths and thicknesses during tectonism. All of these factors need to be considered when calculating MARs.This study makes a new attempt to calculate MARs in continental arcs by studying three arc sections: the Famatinian arc, Argentina, the Sierra Nevada batholith, California and the Coast Mountain batholith, Washington and British Columbia. Arcs are divided into fore-arc, main arc and back arc sections and `boxes' with a defined width, length and thickness spanning upper middle and lower crustal levels are assigned to each section. Representative exposed crustal slices for each depth are then used to calculate MARs based on outcrop proportions for each box. Geochemical data is used to infer crustal recycling percentages and total thickness of the arc. Preliminary results show a correlation between MARs, crustal thicknesses and magmatic flare-up durations. For instance, the Famatinian arc shows a strong decrease in MARs between the main arc section (9.4 km3/Ma/arc-km) and the fore-arc (0.61 km3/Ma/arc-km) and back-arc (1.52 km3/Ma/arc-km) regions and an increase in the amount of magmatism with depth.Global MARs over geologic timescales have the potential to investigate mantle melt generation rates and the volatile outgassing contribution

  1. Case Study: A Bio-Inspired Control Algorithm for a Robotic Foot-Ankle Prosthesis Provides Adaptive Control of Level Walking and Stair Ascent

    Directory of Open Access Journals (Sweden)

    Uzma Tahir

    2018-04-01

    Full Text Available Powered ankle-foot prostheses assist users through plantarflexion during stance and dorsiflexion during swing. Provision of motor power permits faster preferred walking speeds than passive devices, but use of active motor power raises the issue of control. While several commercially available algorithms provide torque control for many intended activities and variations of terrain, control approaches typically exhibit no inherent adaptation. In contrast, muscles adapt instantaneously to changes in load without sensory feedback due to the intrinsic property that their stiffness changes with length and velocity. We previously developed a “winding filament” hypothesis (WFH for muscle contraction that accounts for intrinsic muscle properties by incorporating the giant titin protein. The goals of this study were to develop a WFH-based control algorithm for a powered prosthesis and to test its robustness during level walking and stair ascent in a case study of two subjects with 4–5 years of experience using a powered prosthesis. In the WFH algorithm, ankle moments produced by virtual muscles are calculated based on muscle length and activation. Net ankle moment determines the current applied to the motor. Using this algorithm implemented in a BiOM T2 prosthesis, we tested subjects during level walking and stair ascent. During level walking at variable speeds, the WFH algorithm produced plantarflexion angles (range = −8 to −19° and ankle moments (range = 1 to 1.5 Nm/kg similar to those produced by the BiOM T2 stock controller and to people with no amputation. During stair ascent, the WFH algorithm produced plantarflexion angles (range −15 to −19° that were similar to persons with no amputation and were ~5 times larger on average at 80 steps/min than those produced by the stock controller. This case study provides proof-of-concept that, by emulating muscle properties, the WFH algorithm provides robust, adaptive control of level walking at

  2. Constraints on timescales and mechanics of magmatic underplating from InSAR observations of large active magma sills in the Earth's crust.

    Science.gov (United States)

    Fialko, Y.

    2002-12-01

    Theoretical models of the granitoid magma generation due to magmatic underplating predict that anatectic melts are produced on quite short timescales of the order of the crystallization time of typical mafic underplates (e.g., 102-10^3 years for sill intrusions that are a few tens to a few hundred meters thick). If so, the intrusion of mafic underplates, the volume changes associated with in situ melting, and the subsequent evacuation of the resulting granitoid magmas can each generate geodetically observable deformation. Geodetic measurements in areas of contemporaneous large active magma bodies may therefore provide critical constraints on the timescales and dynamics of crustal anatexis. We use Interferometric Synthetic Aperture Radar (InSAR) observations in regions of the ongoing crustal magmatism to constrain typical rates of the large-scale melt generation and/or migration, and to test the proposed models of the granitic melt production. Our primary targets include large mid-crustal magma bodies imaged by seismic studies, in particular, the Socorro (New Mexico, USA), the Altiplano-Puna (south America), and the south Tibet (Asia) magma bodies. All these magma bodies are located at depth of 19-20 km, suggesting a strong rheological or buoyancy control on the transition from a vertical to a horizontal magma flow. Stacked interferometric data from the Socorro magma body indicate a quasi-steady uplift with a maximum rate of 3-4 mm/yr over the last 10 years covered by the InSAR observations. The uplift morphology can be well described by an elastic inflation of the Socorro sill. We show that deformation models that allow for the viscous-like rheology of the mid-to-lower crust cannot be easily reconciled with the geodetic data. However, thermodynamic modeling, in conjunction with inferences of the nearly constant uplift rates, suggest that the deformations associated with the intrusion emplacement must involve a significant inelastic component. Such inelastic

  3. Yamato 980459: Crystallization of Martian Magnesian Magma

    Science.gov (United States)

    Koizumi, E.; Mikouchi, T.; McKay, G.; Monkawa, A.; Chokai, J.; Miyamoto, M.

    2004-01-01

    Recently, several basaltic shergottites have been found that include magnesian olivines as a major minerals. These have been called olivinephyric shergottites. Yamato 980459, which is a new martian meteorite recovered from the Antarctica by the Japanese Antarctic expedition, is one of them. This meteorite is different from other olivine-phyric shergottites in several key features and will give us important clues to understand crystallization of martian meteorites and the evolution of Martian magma.

  4. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption

    Science.gov (United States)

    Di Vito, Mauro A.; Acocella, Valerio; Aiello, Giuseppe; Barra, Diana; Battaglia, Maurizio; Carandente, Antonio; Del Gaudio, Carlo; de Vita, Sandro; Ricciardi, Giovanni; Rico, Ciro; Scandone, Roberto; Terrasi, Filippo

    2017-04-01

    Defining and understanding the shallow transfer of magma at volcanoes is crucial to forecast eruptions, possibly the ultimate goal of volcanology. This is particularly challenging at felsic calderas experiencing unrest, which typically includes significant changes in seismicity, deformation and degassing rates. Caldera unrest is particularly frequent, affects wide areas and often does not culminate in an eruption. Moreover its evidence is usually complicated by the presence of a hydrothermal system. As a result, forecasting any eruption and vent-opening sites within a caldera is very difficult. The Campi Flegrei caldera (CFc), in the densely inhabited area of Naples (Italy), is commonly considered one of the most dangerous active volcanic systems. CFc is a 12 km wide depression hosting two nested calderas formed during the eruptions of the Campanian Ignimbrite ( 39 ka) and the Neapolitan Yellow Tuff ( 15 ka). In the last 5 ka, resurgence, with uplift >60 m close to the central part of the caldera, was accompanied by volcanism between 4.8 and 3.8 ka. After 3 ka of quiescence, increasing seismicity and uplift preceded the last eruption at Monte Nuovo in 1538 for several decades. The most recent activity culminated in four unrest episodes between 1950-1952, 1969-1972, 1982-1984 and 2005-Present, with a cumulative uplift at Pozzuoli of 4.5 m; the present unrest episode has been interpreted as being magma-driven. These unrest episodes are considered the most evident expression of a longer-term (centuries or more) restless activity. The post-1980 deformation largely results from a magmatic oblate or sill-like source at 4 km depth below Pozzuoli. Despite the restless activity of CFc, the recent unrest episodes did not culminate in eruption, so that any possibility to define the pre-eruptive shallow transfer of magma remains elusive. Indeed, this definition is a crucial step in order to identify and understand pre-eruptive processes, and thus to make any forecast. To fill

  5. Influence of magma fragmentation on the plume dynamics of Vulcanian explosions

    Science.gov (United States)

    Scheu, B.; Alatorre-Ibarguengoitia, M.; Dingwell, D. B.

    2013-12-01

    Over the last 40 years analytical, numerical and experimental studies have provided insights into many aspects of volcanic eruptions, from the fragmentation behaviour of magma to the development of volcanic plumes, subsequent ash dispersal and pyroclastic density currents. Initially research on volcanic plumes was mainly focussed on Plinian-type eruptions with quasi-steady vent conditions. However, several studies have recently investigated the plume dynamics from short-lived, Vulcanian explosions highlighting the importance of conditions at the vent for the evolution of the plume and its transition from buoyant rise to gravitational collapse (Clarke et al. 2002, Odgen et al. 2008). Previous studies have revealed the complex nature of brittle magma fragmentation in discrete fracturing events, with the time interval between two fracturing events depending on pressure evolution over the fragmentation surface (Fowler et al. 2010, McGuinness et al. 2012). In this study we investigate the influence of magma fragmentation on the dynamics of the evolving plume. We conduct rapid decompression experiments (most closely mimicking Vulcanian-type explosions) using pumice samples from the February 2010 eruption period of Soufriere Hills volcano in Montserrat, West Indies. We compare experiments of solid cylindrical samples undergoing brittle fragmentation to experiments conducted with loose granular particles of the same material (previously fragmented). All experiments are conducted at room temperature and monitored with a series of pressure sensors along the experimental conduit. A transparent setup allows us to capture the entire process from pumice fragmentation, expansion in the conduit to the ejection into the atmosphere (low pressure tank) with a high-speed video camera. In both the fragmentation and granular case, at the initial phase of the experiment the vent pressure exceeds atmospheric pressure resulting in supersonic ejection of the gas phase and the formation of a

  6. Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Flexser, S.

    1984-12-01

    Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

  7. Tüüri "Magma" kuuplaat. Pärt Saksa romaani kangelasena

    Index Scriptorium Estoniae

    2007-01-01

    Erkki-Sven Tüüri heliplaat "Magma" oli kuuplaat nii BBC Music Magazine'is kui ka Gramophone'is. Saksa kirjanik Adam Thorpe avaldas romaani "Taktverschiebung" ("Taktimuutus"), mille peategelast, inglise heliloojat Jack Middletoni iseloomustatakse Arvo Pärdi suure austajana

  8. Characteristics and Significance of Magma Emplacement Horizons, Black Sturgeon Sill, Nipigon, Ontario

    Science.gov (United States)

    Zieg, M. J.; Hone, S. V.

    2017-12-01

    Spatial scales strongly control the timescales of processes in igneous intrusions, particularly through the thermal evolution of the magma, which in turn governs the evolution of crystallinity, viscosity, and other important physical and chemical properties of the system. In this study, we have collected a highly detailed data set comprising geochemical (bulk rock composition), textural (size and alignment of plagioclase crystals), and mineralogical (modal abundance) profiles through the central portion of the 250 m thick Black Sturgeon diabase sill. In this data, we have identified characteristic signals in texture (soft and somewhat diffuse chills), composition (reversals in differentiation trends), and mineralogy (olivine accumulations), all coinciding and recurring at roughly 10 meter intervals. Based on these signatures, we are able to map out multiple zones representing discrete pulses of magma that were emplaced sequentially as the intrusion was inflated. Simple thermal calculations suggest that each 10 meters of new crystallization would require repose times on the order of 10-100 years. To build up 250 meters of magma at this rate would only require approximately 250-2500 years, significantly less than the thermal lifetime of the entire sill. The soft chills we observe in the Black Sturgeon sill are therefore consistent with a system that remained warm throughout the emplacement process. Successive pulses were injected into partially crystalline mush, rather than pure liquid (which would result in hybridization) or solid (which would produce sharp hard chills). Episodic emplacement is by now widely recognized as a fundamental process in the formation of large felsic magma chambers; our results suggest that this also may be an important consideration in understanding the evolution of smaller mafic intrusions.

  9. Effects of rotation on crystal settling in a terrestrial magma ocean: Spherical shell model

    Science.gov (United States)

    Maas, C.; Hansen, U.

    2015-12-01

    Like Moon or Mars, Earth experienced one or several deep magma ocean periods of globalextent in a later stage of its accretion. The crystallization of these magma oceans is of keyimportance for the chemical structure of Earth, the mantle evolution and the onset of platetectonics. Due to the fast rotation of early Earth and the small magma viscosity, rotationprobably had a profound effect on differentiation processes. For example, Matyska et al.[1994] propose that the distribution of heterogeneities like the two large low shear velocityprovinces (LLSVP) at the core mantle boundary is influenced by rotational dynamicsof early Earth. Further Garnero and McNamara [2008] suggest that the LLSVPs arevery long-living anomalies, probably reaching back to the time of differentiation andsolidification of Earth. However, nearly all previous studies neglect the effects of rotation.In our previous work using a Cartesian model, a strong influence of rotation as well asof latitude on the differentiation processes in an early magma ocean was revealed. Weshowed that crystal settling in an early stage of magma ocean crystallization cruciallydepends on latitude as well as on rotational strength and crystal density.In order to overcome the restrictions as to the geometry of the Cartesian model, we arecurrently developing a spherical model to simulate crystal settling in a rotating sphericalshell. This model will allow us not only to investigate crystal settling at the poles andthe equator, but also at latitudes in-between these regions, as well as the migration ofcrystals between poles and equator. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle.Science, 320(5876):626-628, 2008.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transferon the formation of megaplumes in the lower mantle. Earth and Planetary ScienceLetters, 125(1):255-266, 1994.

  10. Magma storage conditions of historic Plinian eruptions of Volcán de Colima, México

    Science.gov (United States)

    Macias, J.; Arce, J.; Sosa, G.; Gardner, J. E.; Saucedo, R.

    2013-12-01

    Volcán de Colima has a historical record with major explosive eruptions occurring every ~100 years (1606, 1690, 1818, and 1913) followed by intra-Plinian effusive activity. The 1818 and 1913 Plinian eruptions erupted andesitic magmas (Pl > Opx > Cpx >> Hbl + Fe-Ti oxides + Ap and rare resorbed Ol) with homogeneous bulk compositions (1913; 58.3 × 0.5 wt.% SiO2, 1818; 58.9 × 0.2 wt.% SiO2; Saucedo et al., 2010). Instead, intra-Plinian magmas are devoid of hornblende and have compositions of 59-61 wt. % in silica (Savov et al., 2008). Pre-eruptive temperatures of oxide Fe-Ti pairs in 1818 and 1913 products yielded temperatures of 830×20°C colder than intra-Plinian magmas usually >970°C (Luhr et al., 2002) depending on the mineral phase analyzed. Amphibole in 1818 and 1913 products consists of two populations: a) large xenocrysts, with plag-px-Fe-Ti oxide rims with equilibrium pressures and temperatures of 380 MPa and 950 °C (Ridolfi et al., 2010), and b) microphenocryst with equilibrium pressures and temperatures of 190-280 MPa and 870-910 °C, respectively. Some phenocrysts in the 1818 magma have a high pressure core overgrowth by a low pressure rim. In order to understand the storage conditions of Colima explosive magmas we carried out a set of hydrothermal experiments with a 1818 pumice sample. Experiments were water oversaturated and close to the oxygen fugacity of the NNO buffer. Experiments show that amphibole is stable at pressures greater than 75 MPa at 850°C, and greater than 100 MPa at 925°C. For the same range of temperature, plagioclase is stable at pressures below ~210 MPa and 100 MPa, respectively. Experimental plagioclase and experimental glass were analyzed and compared to those from the natural sample, yielding an approximate storage pressure of 210 MPa. This pressure is confirmed by the chemical equilibrium of microphenocrystic amphibole of the natural sample. Given the nearly equivalent composition of the most recent Plinain magmas is

  11. Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna

    Directory of Open Access Journals (Sweden)

    D. Giordano

    2010-07-01

    Full Text Available In the period from January to June 2000 Mt. Etna exhibited an exceptional explosive activity characterized by a succession of 64 Strombolian and fire-fountaining episodes from the summit South-East Crater. Textural analysis of the eruptive products reveals that the magma associated with the Strombolian phases had a much larger crystal content (>55 vol% with respect to the magma discharged during the fire-fountain phases (~35 vol%. Rheological modelling shows that the crystal-rich magma falls in a region beyond a critical crystal content where small addition of solid particles causes an exponential increase of the effective magma viscosity. When implemented into the modeling of steady magma ascent dynamics (as assumed for the fire-fountain activity, a large crystal content as the one found for products of Strombolian eruption phases results in a one order of magnitude decrease of mass flow-rate, and in the onset of conditions where small heterogeneities in the solid fraction carried by the magma translate into highly unsteady eruption dynamics. We argue that crystallization on top of the magmatic column during the intermediate phases when magma was not discharged favoured conditions corresponding to Strombolian activity, with fire-fountain activity resuming after removal of the highly crystalline top. The numerical simulations also provide a consistent interpretation of the association between fire-fountain activity and emergence of lava flows from the crater flanks.

  12. Chronological evidence that the Moon is either young or did not have a global magma ocean.

    Science.gov (United States)

    Borg, Lars E; Connelly, James N; Boyet, Maud; Carlson, Richard W

    2011-08-17

    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 ± 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  13. The Steel and Shipbuilding Industries of South Korea: Rising East Asia and Globalization

    Directory of Open Access Journals (Sweden)

    Kyoung-ho Shin

    2015-08-01

    Full Text Available In this paper, we focus on the roles of the steel and shipbuilding industries as generative sectors in Korea’s rapid economic ascent. We argue that a world-systems analysis focusing on these generative sectors provides a more complete understanding of Korea’s rapid economic ascent than do other theoretical models. We outline the similarities between this case and those analyzed by Bunker and Ciccantell (2005, 2007 both in terms of the central role of generative sectors in raw materials and transport industries and how the creation and growth of these two industrial sectors shaped institutional patterns and the broader economic ascent of South Korea and East Asia. Even though South Korea has not and may never become a challenger for global hegemony, its rapid ascent has helped reshape East Asia and the capitalist world-economy. We use the model of generative sectors to analyze the critical industries that underlay and shaped South Korea’s ascent from a low wage, light industry base to a world leader in electronics, automobiles, and other advanced industries.

  14. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kīlauea Volcano, 2000–2012

    Science.gov (United States)

    Anderson, Kyle R.; Poland, Michael

    2016-01-01

    Estimating rates of magma supply to the world's volcanoes remains one of the most fundamental aims of volcanology. Yet, supply rates can be difficult to estimate even at well-monitored volcanoes, in part because observations are noisy and are usually considered independently rather than as part of a holistic system. In this work we demonstrate a technique for probabilistically estimating time-variable rates of magma supply to a volcano through probabilistic constraint on storage and eruption rates. This approach utilizes Bayesian joint inversion of diverse datasets using predictions from a multiphysical volcano model, and independent prior information derived from previous geophysical, geochemical, and geological studies. The solution to the inverse problem takes the form of a probability density function which takes into account uncertainties in observations and prior information, and which we sample using a Markov chain Monte Carlo algorithm. Applying the technique to Kīlauea Volcano, we develop a model which relates magma flow rates with deformation of the volcano's surface, sulfur dioxide emission rates, lava flow field volumes, and composition of the volcano's basaltic magma. This model accounts for effects and processes mostly neglected in previous supply rate estimates at Kīlauea, including magma compressibility, loss of sulfur to the hydrothermal system, and potential magma storage in the volcano's deep rift zones. We jointly invert data and prior information to estimate rates of supply, storage, and eruption during three recent quasi-steady-state periods at the volcano. Results shed new light on the time-variability of magma supply to Kīlauea, which we find to have increased by 35–100% between 2001 and 2006 (from 0.11–0.17 to 0.18–0.28 km3/yr), before subsequently decreasing to 0.08–0.12 km3/yr by 2012. Changes in supply rate directly impact hazard at the volcano, and were largely responsible for an increase in eruption rate of 60–150% between

  15. Fault-Magma Interactions during Early Continental Rifting: Seismicity of the Magadi-Natron-Manyara basins, Africa

    Science.gov (United States)

    Weinstein, A.; Oliva, S. J.; Ebinger, C.; Aman, M.; Lambert, C.; Roecker, S. W.; Tiberi, C.; Muirhead, J.

    2017-12-01

    Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2D studies. We analyze seismicity data from a 13-month, 39-station broadband seismic array to determine the role of magma intrusion on state-of-stress and strain localization, and their along-strike variations. Precise earthquake locations using cluster analyses and a new 3D velocity model reveal lower crustal earthquakes along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6-10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b-value of 0.87 ± 0.03. Focal mechanisms for 66 earthquakes, and a longer time period of relocated earthquakes from global arrays reveal an along-axis stress rotation of 50 o ( N150 oE) in the magmatically active zone. Using Kostrov summation of local and teleseismic mechanisms, we find opening directions of N122ºE and N92ºE north and south of the magmatically active zone. The stress rotation facilitates strain transfer from border fault systems, the locus of early stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Earthquakes are largely driven by stress state around inflating magma bodies, and more dike intrusions with surface faulting, eruptions, and earthquakes are expected.

  16. Pb isotopes during crustal melting and magma mingling - A cautionary tale from the Miki Fjord macrodike, central east Greenland

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Lesher, Charles

    2010-01-01

    Pb isotopic data are presented for hybrid rocks formed by mingling between mantle-derived tholeiitic magma of the Eocene Miki Fjord macrodike (East Greenland) and melt derived from the adjacent Precambrian basement. Bulk mixing and AFC processes between end-members readily identified in the field...... grain boundaries during disequilibrium melting of the host rock by the mafic magma. The crustal melt involved in magma interactions was therefore heterogeneous with respect to Pb isotopes on a metre-scale. These results illustrate the difficulties inherent in interpreting isotopic variations...... in contaminated mafic magmas even when the end-members are well constrained by field relations. We show that the Pb isotopic composition of the crustal contaminants and contamination trajectories for the Miki Fjord hybrid magmatic lithologies are markedly different from regional basement gneisses and contaminated...

  17. Permeability During Magma Expansion and Compaction

    Science.gov (United States)

    Gonnermann, Helge. M.; Giachetti, Thomas; Fliedner, Céline; Nguyen, Chinh T.; Houghton, Bruce F.; Crozier, Joshua A.; Carey, Rebecca J.

    2017-12-01

    Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset of the samples were deformed at a temperature of 975°, under shear and normal stress, and postdeformation porosities and permeabilities were measured. Almost all undeformed samples fall within a narrow range of vesicularity (0.7-0.9), encompassing permeabilities between approximately 10-15 m2 and 10-10 m2. A percolation threshold of approximately 0.7 is required to fit the data by a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap with a range of explosively erupted silicic samples, and it remains unclear whether the erupting magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation resulted in compaction and vesicle connectivity either increased or decreased. At small strains permeability of some samples increased, but at higher strains permeability decreased. Samples remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence during shear deformation. We provide an equation that approximates the change in permeability during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose that this equation can be used to model the change in permeability during compaction of effusively erupting magmas.

  18. Special relativity derived from spacetime magma.

    Science.gov (United States)

    Greensite, Fred

    2014-01-01

    We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  19. Special relativity derived from spacetime magma.

    Directory of Open Access Journals (Sweden)

    Fred Greensite

    Full Text Available We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  20. Io's theothermal (sulfur) - Lithosphere cycle inferred from sulfur solubility modeling of Pele's magma supply

    Science.gov (United States)

    Battaglia, Steven M.; Stewart, Michael A.; Kieffer, Susan W.

    2014-06-01

    Surface deposits of volatile compounds such as water (Earth) or sulfur (Io) on volcanically active bodies suggest that a magmatic distillation process works to concentrate volatiles in surface reservoirs. On Earth, this is the combined hydrologic and tectonic cycle. On Io, sulfurous compounds are transferred from the interior to the surface reservoirs through a combination of a mantle-sourced magmatic system, vertical cycling of the lithosphere, and a sulfur-dominated crustal thermal system that we here call the "theothermal" system. We present a geochemical analysis of this process using previously inferred temperature and oxygen fugacity constraints of Pele's basaltic magma to determine the behavior of sulfur in the ionian magmas. Sulfate to sulfide ratios of Pele's magma are -4.084 ± 0.6 and -6.442 ± 0.7 log10 units, comparable to or lower than those of mid-ocean ridge basalts. This reflects the similarity of Io's oxidation state with Earth's depleted mantle as previously suggested by Zolotov and Fegley (Zolotov, M.Y., Fegley, B. [2000]. Geophys. Res. Lett. 27, 2789-2792). Our calculated limits of sulfur solubility in melts from Pele's patera (˜1100-1140 ppm) are also comparable to terrestrial mid-ocean ridge basalts, reflecting a compositional similarity of mantle sources. We propose that the excess sulfur obvious on Io's surface comes from two sources: (1) an insoluble sulfide liquid phase in the magma and (2) theothermal near-surface recycling.

  1. Partial delamination of continental mantle lithosphere, uplift-related crust mantle decoupling, volcanism and basin formation: a new model for the Pliocene Quaternary evolution of the southern East-Carpathians, Romania

    Science.gov (United States)

    Chalot-Prat, F.; Girbacea, R.

    2000-11-01

    A geodynamic model is proposed for the Mid-Miocene to Quaternary evolution of the southern East-Carpathians in order to explain the relationships between shallow and deep geological phenomena that occurred synchronously during late-collision tectonics. In this area, an active volcanic zone cross-cuts since 2 My the suture between the overriding Tisza-Dacia and subducting European continental plates. Mafic calc-alkaline and alkaline magmas (south Harghita and Persani volcanoes) erupted contemporaneously. These magmas were supplied by partial melting of the mantle lithosphere of the subducting, and not of the overriding, plate. In an effort to decipher this geodynamically a-typical setting of magma generation, the spatial and temporal distribution of shallow and deep phenomena was successively examined in order to establish the degree of their interdependence. Our model indicates that intra-mantle delamination of the subducting European plate is the principal cause of a succession of events. It caused upwelling of the hot asthenosphere below a thinned continental lithosphere of the Carpathians, inducing the uplift of the lithosphere and its internal decoupling at the Moho level by isostatic and mostly thermal effects. During this uplift, the crust deformed flexurally whilst the mantle deformed in a ductile way. This triggered decompressional partial melting of the uppermost mantle lithosphere. Flexural deformation of the crust induced its fracturing, allowing for the rapid ascent of magmas to the surface, as well as reactivation of an older detachment horizon at the base of the Carpathian nappe stack above which the Brasov, Ciuc and Gheorghieni hinterland basins formed by extension and gravity spreading. The rapid subsidence of the Focsani foreland basin is controlled by the load exerted on the lithosphere by the delaminated mantle slab that is still attached to it. In this model, crust-mantle decoupling, magma genesis and volcanism, local near-surface hinterland

  2. Glass inclusions in volcanic rocks in the Okinawa Trough back-arc basin: constraints on magma genesis and evolution

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major elemnt compositions of glass inclusions in plagioclase and pyroxene phenocrysts of basalt and pumice in the Okinawa Trough back-arc basin are determined by electron microprobe. The results indicate that basalt and pumice are cognate and respectively represent the proluots at early stages of mgmtism and at late stage of crystal fractionation. The initial magrma in the trough is rich in H2O. The variation of H2O content in magma may play an important role in the magma evolution. Plagioclase is the mineral crystallized throughout the whole magrmatic process and accumulates in the zoned magma chamber. From these features it can he inferred that the initial magma in the Okinawa Trough, whose opening began in recent years, is serious ly affected by fluid or other materials carried by subducting slab and the geocbemical feature of volcanic rocks is in some degree similar to that of lavas in island-arc environments.

  3. Silica-enriched mantle sources of subalkaline picrite-boninite-andesite island arc magmas

    Science.gov (United States)

    Bénard, A.; Arculus, R. J.; Nebel, O.; Ionov, D. A.; McAlpine, S. R. B.

    2017-02-01

    Primary arc melts may form through fluxed or adiabatic decompression melting in the mantle wedge, or via a combination of both processes. Major limitations to our understanding of the formation of primary arc melts stem from the fact that most arc lavas are aggregated blends of individual magma batches, further modified by differentiation processes in the sub-arc mantle lithosphere and overlying crust. Primary melt generation is thus masked by these types of second-stage processes. Magma-hosted peridotites sampled as xenoliths in subduction zone magmas are possible remnants of sub-arc mantle and magma generation processes, but are rarely sampled in active arcs. Published studies have emphasised the predominantly harzburgitic lithologies with particularly high modal orthopyroxene in these xenoliths; the former characteristic reflects the refractory nature of these materials consequent to extensive melt depletion of a lherzolitic protolith whereas the latter feature requires additional explanation. Here we present major and minor element data for pristine, mantle-derived, lava-hosted spinel-bearing harzburgite and dunite xenoliths and associated primitive melts from the active Kamchatka and Bismarck arcs. We show that these peridotite suites, and other mantle xenoliths sampled in circum-Pacific arcs, are a distinctive peridotite type not found in other tectonic settings, and are melting residues from hydrous melting of silica-enriched mantle sources. We explore the ability of experimental studies allied with mantle melting parameterisations (pMELTS, Petrolog3) to reproduce the compositions of these arc peridotites, and present a protolith ('hybrid mantle wedge') composition that satisfies the available constraints. The composition of peridotite xenoliths recovered from erupted arc magmas plausibly requires their formation initially via interaction of slab-derived components with refractory mantle prior to or during the formation of primary arc melts. The liquid

  4. Chemical Evidence for Vertical Transport from Magma Chambers to the Surface During Mid-Ocean Ridge Volcanic Eruptions

    Science.gov (United States)

    Sinton, J. M.; Rubin, K. H.

    2009-12-01

    Many mid-ocean ridge eruptions show significant internal chemical heterogeneity; in general, the amount of chemical heterogeneity within eruptions scales with erupted volume. These variations reflect magmatic processes occurring in magma reservoirs prior to or possibly during eruption. For example, systematic variations in Mg# with along-axis distance in the early 90’s Aldo-Kihi (S. EPR near 17.5°S), 1996 N. Gorda, 1993 Co-Axial (Juan de Fuca Ridge), and 1991-2 and 2005-6 9°50’N EPR eruptions is unlikely to be related to fractionation during emplacement, and rather reflects variations in sub-axial magma reservoirs prior to eruption. Such variations are inconsistent with well-mixed sub-axial reservoirs and, in some cases, require relatively long-lived, systematic variations in reservoir temperatures along axis. Chemical heterogeneity within the Aldo-Kihi eruption preserves spatial variations in mantle-derived isotopic and trace element ratios with implications for the temporal and spatial scales of magma injections to the crust and along-axis mixing within shallow reservoirs. These spatial variations are difficult to reconcile with significant (> ~1 km) along-axis magma transport, as are striking correlations of chemical compositions with surface geological discontinuities or seismically imaged sub-axial magma chamber reflectors in the S. Hump (S. EPR), 9°50’N EPR, N. Gorda and 1975-1984 Krafla (N. Iceland) eruptive units. Rather, spatial correlations between surface lava compositions and sub-axial magma chamber properties or long-lived axial morphology suggest that most of the erupted magma was transported nearly vertically from the underlying reservoirs to the surface during these eruptions. In the case of the Krafla eruption, coincident deformation suggests a component of lateral melt migration at depth, despite chemical evidence for vertical transport of erupted lava from more than one chemical reservoir. In addition, along-ridge movement of earthquake

  5. Potential Magma Chambers beneath the Tatun Volcanic Area, Taiwan: Results from Magnetotelluric Survey and Monitoring

    Science.gov (United States)

    Chen, C.

    2013-12-01

    Previous earthquakes analysis indicated existing seismicity anomaly beneath Tatun volcano, Taiwan, possibly caused by the fluid activity of the volcano. Helium isotope studies also indicated that over 60% of the fumarolic gases and vapors originated from deep mantle in the Tatun volcano area. The chemistry of the fumarolic gases and vapors and seismicity anomaly are important issues in view of possible magma chamber in the Tatun volcano, where is in the vicinity of metropolitan Taipei, only 15 km north of the capital city. In this study magnetotelluric (MT) soundings and monitoring were deployed to understand the geoelectric structures in the Tatun volcano as Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. An anticline extending more than 10 km beneath the Chih-Shin-Shan and Da-You-Kan areas was recognized. Low resistivity at a shallow and highly porous layer 500m thick might indicate circulation of heated water. However, a high resistivity layer at depth between 2 and 6 km was detected. This layer could be associated with high micro-earthquakes zone. The characteristics of this layer produced by either the magma chamber or other geothermal activity were similar to that of some other active volcanic areas in the world. At 6 km underground was a dome structure of medium resistivity. This structure could be interpreted as a magma chamber in which the magma is possibly cooling down, as judged by its relatively high resistivity. The exact attributes of the magma chamber were not precisely determined from the limited MT soundings. At present, a joint monitors including seismic activity, ground deformation, volcanic gases, and changes in water levels and chemistry are conducted by universities and government agencies. When unusual activity is detected, a response team may do more ground surveys to better determine if an eruption is likely.

  6. Numerical Simulations of Melting-Crystallisation Processes at the Boundaries Between Magma Oceans and Solid Mantle

    Science.gov (United States)

    Bolrão, D. P.; Rozel, A.; Morison, A.; Labrosse, S.; Tackley, P. J.

    2017-12-01

    The idea that the Earth had a global magma ocean, mostly created by impacts, core formation, radiogenic and tidal heating, is well accepted nowadays. When this ocean starts to crystallise, if the melt is denser than the solid, a basal magma ocean is created below the solid part. These two magma oceans influence the dynamics and evolution of solid mantle. Near the boundaries, the vertical flow in the solid part creates a topography. If this topography is destroyed by melting/crystallisation processes in a time scale much shorter than the time needed to adjust the topography by viscous relaxation, then matter can cross the boundary. In this case, the boundary is said to be permeable. On the other hand, if this time is longer, matter cannot cross and the boundary is said impermeable. This permeability is defined by a non-dimensional phase change number, φ, introduced by Deguen, 2013. This φ is the ratio of the two timescales mentioned, and defines a permeable boundary when φ « 1, and an impermeable one when φ » 1. To understand the impact of magma oceans on the dynamics of the solid mantle, we use the convection code StagYY, with a 2D spherical annulus geometry, to compute the convection of the solid part. Our results show different convection behaviours depending on the type of boundary chosen. For the permeable case, we investigate the thermo-compositional evolution of the solid domain, explicitly taking into account the compositional evolution of the magma oceans. Reference: Deguen, R. Thermal convection in a spherical shell with melting/freezing at either or both of its boundaries. Journal of Earth Science, Vol. 24, No. 5, p. 669-682, 2013. doi: 10.1007/s12583-013-0364-8

  7. Fault-magma interactions during early continental rifting: Seismicity of the Magadi-Natron-Manyara basins, Africa

    Science.gov (United States)

    Weinstein, A.; Oliva, S. J.; Ebinger, C. J.; Roecker, S.; Tiberi, C.; Aman, M.; Lambert, C.; Witkin, E.; Albaric, J.; Gautier, S.; Peyrat, S.; Muirhead, J. D.; Muzuka, A. N. N.; Mulibo, G.; Kianji, G.; Ferdinand-Wambura, R.; Msabi, M.; Rodzianko, A.; Hadfield, R.; Illsley-Kemp, F.; Fischer, T. P.

    2017-10-01

    Although magmatism may occur during the earliest stages of continental rifting, its role in strain accommodation remains weakly constrained by largely 2-D studies. We analyze seismicity data from a 13 month, 39-station broadband seismic array to determine the role of magma intrusion on state-of-stress and strain localization, and their along-strike variations. Precise earthquake locations using cluster analyses and a new 3-D velocity model reveal lower crustal earthquakes beneath the central basins and along projections of steep border faults that degas CO2. Seismicity forms several disks interpreted as sills at 6-10 km below a monogenetic cone field. The sills overlie a lower crustal magma chamber that may feed eruptions at Oldoinyo Lengai volcano. After determining a new ML scaling relation, we determine a b-value of 0.87 ± 0.03. Focal mechanisms for 65 earthquakes, and 13 from a catalogue prior to our array reveal an along-axis stress rotation of ˜60° in the magmatically active zone. New and prior mechanisms show predominantly normal slip along steep nodal planes, with extension directions ˜N90°E north and south of an active volcanic chain consistent with geodetic data, and ˜N150°E in the volcanic chain. The stress rotation facilitates strain transfer from border fault systems, the locus of early-stage deformation, to the zone of magma intrusion in the central rift. Our seismic, structural, and geochemistry results indicate that frequent lower crustal earthquakes are promoted by elevated pore pressures from volatile degassing along border faults, and hydraulic fracture around the margins of magma bodies. Results indicate that earthquakes are largely driven by stress state around inflating magma bodies.

  8. Loki Patera as the Surface of a Magma Sea

    Science.gov (United States)

    Matson, D. L.; Davies, A. G.; Veeder, G. J.; Rathbun, J. A.; Johnson, T. V.

    2004-01-01

    Inspired by the finding of Schubert et al that Io's figure is consistent with a hydrostatic shape, we explore the consequences of modeling Loki Patera as the surface of a large magma sea. This model is attractive because of its sheer simplicity and its usefulness in interpreting and predicting observations. Here, we report on that work.

  9. Estimates of volume and magma input in crustal magmatic systems from zircon geochronology: the effect of modelling assumptions and system variables

    Directory of Open Access Journals (Sweden)

    Luca eCaricchi

    2016-04-01

    Full Text Available Magma fluxes in the Earth’s crust play an important role in regulating the relationship between the frequency and magnitude of volcanic eruptions, the chemical evolution of magmatic systems and the distribution of geothermal energy and mineral resources on our planet. Therefore, quantifying magma productivity and the rate of magma transfer within the crust can provide valuable insights to characterise the long-term behaviour of volcanic systems and to unveil the link between the physical and chemical evolution of magmatic systems and their potential to generate resources. We performed thermal modelling to compute the temperature evolution of crustal magmatic intrusions with different final volumes assembled over a variety of timescales (i.e., at different magma fluxes. Using these results, we calculated synthetic populations of zircon ages assuming the number of zircons crystallising in a given time period is directly proportional to the volume of magma at temperature within the zircon crystallisation range. The statistical analysis of the calculated populations of zircon ages shows that the mode, median and standard deviation of the populations varies coherently as function of the rate of magma injection and final volume of the crustal intrusions. Therefore, the statistical properties of the population of zircon ages can add useful constraints to quantify the rate of magma injection and the final volume of magmatic intrusions.Here, we explore the effect of different ranges of zircon saturation temperature, intrusion geometry, and wall rock temperature on the calculated distributions of zircon ages. Additionally, we determine the effect of undersampling on the variability of mode, median and standards deviation of calculated populations of zircon ages to estimate the minimum number of zircon analyses necessary to obtain meaningful estimates of magma flux and final intrusion volume.

  10. A Thermodynamic Approach for Modeling H2O-CO2 Solubility in Alkali-rich Mafic Magmas at Mid-crustal Pressures

    Science.gov (United States)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2017-12-01

    Volatile solubility in magmas is dependent on several factors, including composition and pressure. Mafic (basaltic) magmas with high concentrations of alkali elements (Na and K) are capable of dissolving larger quantities of H2O and CO2 than low-alkali basalt. The exsolution of abundant gases dissolved in alkali-rich mafic magmas can contribute to large explosive eruptions. Existing volatile solubility models for alkali-rich mafic magmas are well calibrated below 200 MPa, but at greater pressures the experimental data is sparse. To allow for accurate interpretation of mafic magmatic systems at higher pressures, we conducted a set of mixed H2O-CO2 volatile solubility experiments between 400 and 600 MPa at 1200 °C in six mafic compositions with variable alkali contents. Compositions include magmas from volcanoes in Italy, Antarctica, and Arizona. Results from our experiments indicate that existing volatile solubility models for alkali-rich mafic magmas, if extrapolated beyond their calibrated range, over-predict CO2 solubility at mid-crustal pressures. Physically, these results suggest that volatile exsolution can occur at deeper levels than what can be resolved from the lower-pressure experimental data. Existing thermodynamic models used to calculate volatile solubility at different pressures require two experimentally derived parameters. These parameters represent the partial molar volume of the condensed volatile species in the melt and its equilibrium constant, both calculated at a standard temperature and pressure. We derived these parameters for each studied composition and the corresponding thermodynamic model shows good agreement with the CO2 solubility data of the experiments. A general alkali basalt solubility model was also constructed by establishing a relationship between magma composition and the thermodynamic parameters. We utilize cation fractions from our six compositions along with four compositions from the experimental literature in a linear

  11. Evidence for on-going inflation of the Socorro Magma Body, New Mexico, from interferometric synthetic aperture radar imaging

    Science.gov (United States)

    Fialko, Yuri; Simons, Mark

    Interferometric synthetic aperture radar (InSAR) imaging of the central Rio Grande rift (New Mexico, USA) during 1992-1999 reveals a crustal uplift of several centimeters that spatially coincides with the seismologically determined outline of the Socorro magma body, one of the largest currently active magma intrusions in the Earth’s continental crust. Modeling of interferograms shows that the observed deformation may be due to elastic opening of a sill-like intrusion at a rate of a few millimeters per year. Despite an apparent constancy of the geodetically determined uplift rate, thermodynamic arguments suggest that it is unlikely that the Socorro magma body has formed via steady state elastic inflation.

  12. Superheat in magma oceans

    Science.gov (United States)

    Jakes, Petr

    1992-01-01

    The existence of 'totally molten' planets implies the existence of a superheat (excess of heat) in the magma reservoirs since the heat buffer (i.e., presence of crystals having high latent heat of fusion) does not exist in a large, completely molten reservoir. Any addition of impacting material results in increase of the temperature of the melt and under favorable circumstances heat is stored. The behavior of superheat melts is little understood; therefore, we experimentally examined properties and behavior of excess heat melts at atmospheric pressures and inert gas atmosphere. Highly siliceous melts (70 percent SiO2) were chosen for the experiments because of the possibility of quenching such melts into glasses, the slow rate of reaction in highly siliceous composition, and the fact that such melts are present in terrestrial impact craters and impact-generated glasses. Results from the investigation are presented.

  13. Design Concept for a Minimal Volume Spacecraft Cabin to Serve as a Mars Ascent Vehicle Cabin and Other Alternative Pressurized Vehicle Cabins

    Science.gov (United States)

    Howard, Robert L., Jr.

    2016-01-01

    The Evolvable Mars Campaign is developing concepts for human missions to the surface of Mars. These missions are round-trip expeditions, thereby requiring crew launch via a Mars Ascent Vehicle (MAV). A study to identify the smallest possible pressurized cabin for this mission has developed a conceptual vehicle referred to as the minimal MAV cabin. The origin of this concept will be discussed as well as its initial concept definition. This will lead to a description of possible configurations to integrate the minimal MAV cabin with ascent vehicle engines and propellant tanks. Limitations of this concept will be discussed, in particular those that argue against the use of the minimal MAV cabin to perform the MAV mission. However, several potential alternative uses for the cabin are identified. Finally, recommended forward work will be discussed, including current work in progress to develop a full scale mockup and conduct usability evaluations.

  14. Primitive magmas at five Cascade volcanic fields: Melts from hot, heterogeneous sub-arc mantle

    Science.gov (United States)

    Bacon, C.R.; Bruggman, P.E.; Christiansen, R.L.; Clynne, M.A.; Donnelly-Nolan, J. M.; Hildreth, W.

    1997-01-01

    Major and trace element concentrations, including REE by isotope dilution, and Sr, Nd, Pb, and O isotope ratios have been determined for 38 mafic lavas from the Mount Adams, Crater Lake, Mount Shasta, Medicine Lake, and Lassen volcanic fields, in the Cascade arc, northwestern part of the United States. Many of the samples have a high Mg# [100Mg/(Mg + FeT) > 60] and Ni content (>140 ppm) such that we consider them to be primitive. We recognize three end-member primitive magma groups in the Cascades, characterized mainly by their trace-element and alkali-metal abundances: (1) High-alumina olivine tholeiite (HAOT) has trace element abundances similar to N-MORB, except for slightly elevated LILE, and has Eu/Eu* > 1. (2) Arc basalt and basaltic andesite have notably higher LILE contents, generally have higher SiO2 contents, are more oxidized, and have higher Cr for a given Ni abundance than HAOT. These lavas show relative depletion in HFSE, have lower HREE and higher LREE than HAOT, and have smaller Eu/Eu* (0.94-1.06). (3) Alkali basalt from the Simcoe volcanic field east of Mount Adams represents the third end-member, which contributes an intraplate geochemical signature to magma compositions. Notable geochemical features among the volcanic fields are: (1) Mount Adams rocks are richest in Fe and most incompatible elements including HFSE; (2) the most incompatible-element depleted lavas occur at Medicine Lake; (3) all centers have relatively primitive lavas with high LILE/HFSE ratios but only the Mount Adams, Lassen, and Medicine Lake volcanic fields also have relatively primitive rocks with an intraplate geochemical signature; (4) there is a tendency for increasing 87Sr/86Sr, 207Pb/204Pb, and ??18O and decreasing 206Pb/204Pb and 143Nd/144Nd from north to south. The three end-member Cascade magma types reflect contributions from three mantle components: depleted sub-arc mantle modestly enriched in LILE during ancient subduction; a modern, hydrous subduction component

  15. Satellite Geodesy Captures Offset Magma Supply Associated With Lava Lake Appearance at Masaya Volcano, Nicaragua

    Science.gov (United States)

    Stephens, K. J.; Wauthier, C.

    2018-03-01

    Ascending and descending Interferometric Synthetic Aperture Radar data sets from various satellites (CSK, RSAT-2, ALOS-2, and Sentinel-1) show a maximum of ˜8 cm ground inflation in Masaya caldera over a 15 month period (6 November 2015 to 1 September 2016). The center of inflation is located in the NW part of the caldera, north of the active Santiago vent which has hosted a new lava lake since 11 December 2015. Simultaneous inversions of those Interferometric Synthetic Aperture Radar data sets using a neighbourhood algorithm demonstrate that a spherical magma reservoir explains the geodetic data, with a horizontal location ˜3 km north of the active Santiago vent and a depth-to-center ˜3 km. The associated modeled volume increase (˜0.0042 km3) is lower than the "excess" magma volume inferred from gas measurements from November 2015 to February 2016. The magma reservoir offset from the current center of eruptive activity may be the result of preexisting caldera structures.

  16. Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.

    Science.gov (United States)

    Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone

    2016-10-05

    Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.

  17. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia

    Science.gov (United States)

    Reid, Mary R; Vazquez, Jorge A.

    2017-01-01

    The paroxysmal eruption of the 74 ka Youngest Toba Tuff (YTT) of northern Sumatra produced an extraordinary 2800 km3 of non-welded to densely welded ignimbrite and co-ignimbrite ash-fall. We report insights into the duration of YTT magma assembly obtained from ion microprobe U-Th and U-Pb dates, including continuous age spectra over >50% of final zircon growth, for pumices and a welded tuff spanning the compositional range of the YTT. A relatively large subpopulation of zircon crystals nucleated before the penultimate caldera-related eruption at 501 ka, but most zircons yielded interior dates 100-300 ka thereafter. Zircon nucleation and growth was likely episodic and from diverse conditions over protracted time intervals of >100 to >500 ka. Final zircon growth is evident as thin rim plateaus that are in Th/U chemical equilibrium with hosts, and that give crystallization ages within tens of ka of eruption. The longevity and chemical characteristics of the YTT zircons, as well as evidence for intermittent zircon isolation and remobilization associated with magma recharge, is especially favored at the cool and wet eutectoid conditions that characterize at least half of the YTT, wherein heat fluxes could dissolve major phases but have only a minor effect on larger zircon crystals. Repeated magma recharge may have contributed to the development of compositional zoning in the YTT but, considered together with limited allanite, quartz, and other mineral dating and geospeedometry, regular perturbations to the magma reservoir over >400 ka did not lead to eruption until 74 ka ago.

  18. Reassessment of the origin of the Dun Mountain Ophiolite, New Zealand : Nd-isotopic and geochemical evolution of magma suites

    International Nuclear Information System (INIS)

    Sivell, W.J.; McCulloch, M.T.

    2000-01-01

    Magmatic suites with contrasting isotopic and geochemical compositions, sequentially emplaced in different tectonic regimes, comprise the Dun Mountain Ophiolite Belt (DMOB), New Zealand. At D'Urville Island, the northernmost exposure of the DMOB, earliest erupted (stage 1) pillow basalts ε Nd (T) = +6.3 to +7.5, and are incompatible element enriched, like basalts from geochemically anomalous ridge segments. Overlying stage 2 basalts (sheeted flows) show a narrow range of ε Nd (T) = +8.3 + or -0.2, with chemical characteristics of depleted backarc basin basalts. These rocks are intruded by mafic to silicic stage 3 magmas, which have high uniform initial 143 Nd/ 144 Nd ratios (ε Nd (T) = +9.3 + or -0.2) over a wide range of 147 Sm/ 144 Nd values (yielding a precise Early Permian Nd-isotope age of 278 ± 4 Ma (MSWD = 0.48)). Stage 3 magmas show pronounced subduction-related geochemical signatures similar to island arc tholeiites (IAT) from immature arcs. They are closely analogous to some (boninite)-IAT magmas which characterise 'infant arc' eruptive activity in forearc basins of present-day Western Pacific island arc systems. A wide variety of stage 3 magma compositions, ranging from near-primary basaltic dikes (Mg = 74) to extremely fractionated silicic plagiogranites with uniformly very depleted isotopic ratios, is consistent with slow spreading rates which gave rise to polybaric, closed-system fractionation of magmas and periodic chamber abandonment. Some stage 3 rocks with SiO 2 levels in the andesite range have low-TiO 2 contents and high Mg, and may be fractionated equivalents of boninites. High ε Nd (T) values of stage 3 magmas indicate a lack of subducted sediment with inherited crustal residence signatures, and reflect the extent of supra-subduction zone (SSZ) mantle wedge depletion. DMOB stage 3 magmas may represent foreac magmatism that was the precursor to normal subduction-related volcanism established by c. 265 Ma in the Brook Street Arc and derived

  19. Magma replenishment and volcanic unrest inferred from the analysis of VT micro-seismicity and seismic velocity changes at Piton de la Fournaise Volcano

    Science.gov (United States)

    Brenguier, F.; Rivemale, E.; Clarke, D. S.; Schmid, A.; Got, J.; Battaglia, J.; Taisne, B.; Staudacher, T.; Peltier, A.; Shapiro, N. M.; Tait, S.; Ferrazzini, V.; Di Muro, A.

    2011-12-01

    Piton de la Fournaise volcano (PdF) is among the most active basaltic volcanoes worldwide with more than one eruption per year on average. Also, PdF is densely instrumented with short-period and broad-band seismometers as well as with GPS receivers. Continuous seismic waveforms are available from 1999. Piton de la Fournaise volcano has a moderate inter-eruptive seismic activity with an average of five detected Volcano-Tectonic (VT) earthquakes per day with magnitudes ranging from 0.5 to 3.5. These earthquakes are shallow and located about 2.5 kilometers beneath the edifice surface. Volcanic unrest is captured on average a few weeks before eruptions by measurements of increased VT seismicity rate, inflation of the edifice summit, and decreased seismic velocities from correlations of seismic noise. Eruptions are usually preceded by seismic swarms of VT earthquakes. Recently, almost 50 % of seismic swarms were not followed by eruptions. Within this work, we aim to gather results from different groups of the UnderVolc research project in order to better understand the processes of deep magma transfer, volcanic unrest, and pre-eruptive magma transport initiation. Among our results, we show that the period 1999-2003 was characterized by a long-term increase of VT seismicity rate coupled with a long-term decrease of seismic velocities. These observations could indicate a long-term replenishment of the magma storage area. The relocation of ten years of inter-eruptive micro-seismicity shows a narrow (~300 m long) sub-vertical fault zone thus indicating a conduit rather than an extended magma reservoir as the shallow magma feeder system. Also, we focus on the processes of short-term volcanic unrest and prove that magma intrusions within the edifice leading to eruptions activate specific VT earthquakes that are distinct from magma intrusions that do not lead to eruptions. We thus propose that, among the different pathways of magma transport within the edifice, only one will

  20. Wallops Low Elevation Link Analysis for the Constellation Launch/Ascent Links

    Science.gov (United States)

    Cheung, Keith; Ho, C.; Kantak, A.; Lee, C.; Tye, R.; Richards, E.; Sham, C.; Schlesinger, A.; Barritt, B.

    2011-01-01

    To execute the President's Vision for Space Exploration, the Constellation Program (CxP) was formed to build the next generation spacecraft Orion and launch vehicles Ares, to transport human and cargo to International Space Station (ISS), moon, and Mars. This paper focuses on the detailed link analysis for Orion/Ares s launch and ascent links with Wallops 11.3m antenna (1) Orion's Dissimilar Voice link: 10.24 Kbps, 2-way (2) Ares Developmental Flight Instrument link, 20 Mbps, downlink. Three launch trajectories are considered: TD7-E, F (Feb), and G (Aug). In certain launch scenarios, the critical events of main engine cutoff (MECO) and Separation occur during the low elevation regime of WFF s downrange -- less than 5 degree elevation angle. The goal of the study is to access if there is enough link margins for WFF to track the DV and DFI links.