WorldWideScience

Sample records for rapid low-pressure proteolysis

  1. Modeling the Rapid Boil-Off of a Cryogenic Liquid When Injected into a Low Pressure Cavity

    Science.gov (United States)

    Lira, Eric

    2016-01-01

    Many launch vehicle cryogenic applications require the modeling of injecting a cryogenic liquid into a low pressure cavity. The difficulty of such analyses lies in accurately predicting the heat transfer coefficient between the cold liquid and a warm wall in a low pressure environment. The heat transfer coefficient and the behavior of the liquid is highly dependent on the mass flow rate into the cavity, the cavity wall temperature and the cavity volume. Testing was performed to correlate the modeling performed using Thermal Desktop and Sinda Fluint Thermal and Fluids Analysis Software. This presentation shall describe a methodology to model the cryogenic process using Sinda Fluint, a description of the cryogenic test set up, a description of the test procedure and how the model was correlated to match the test results.

  2. Rapid and efficient proteolysis through laser-assisted immobilized enzyme reactors.

    Science.gov (United States)

    Zhang, Peng; Gao, Mingxia; Zhu, Shaochun; Lei, Jie; Zhang, Xiangmin

    2011-11-25

    In this report, laser radiation (808nm) for the first time was employed to enhance the efficiency of proteolysis through immobilized enzyme reactor (IMER). IMER based monolithic support was prepared in the fused-silica capillary via a simple two-step procedure including acryloylation on trypsin surface and in situ aqueous polymerization/immobilization. The feasibility and high efficiency of the laser-assisted IMER were demonstrated by the digestion of bovine serum albumin (BSA), cytochrome c (Cyt-c) and β-casein. The digestion process was achieved in 60s. The peptides were identified by MALDI-TOF-MS, yielding the sequence coverage of 33% for BSA, 73% for Cyt-c and 22% for β-casein. The comparisons between the in-solution digestion and on IMER reaction with/without laser assistance were made. To further confirm its efficiency in proteome analysis, the laser-assisted IMER was also applied to the analysis of one fraction of human serum sample through two-dimensional (2-D) separation of strong anion exchange/reversed-phase liquid chromatography (SAX/RPLC). After a database search, 49 unique peptides corresponding to 5 proteins were identified. The results showed that the laser-assisted IMER provides a promising platform for the high-throughput protein identification. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Rapid micro-scale proteolysis of proteins for MALDI-MS peptide mapping using immobilized trypsin

    Science.gov (United States)

    Gobom, Johan; Nordhoff, Eckhard; Ekman, Rolf; Roepstorff, Peter

    1997-12-01

    In this study we present a rapid method for tryptic digestion of proteins using micro-columns with enzyme immobilized on perfusion chromatography media. The performance of the method is exemplified with acyl-CoA-binding protein and reduced carbamidomethylated bovine serum albumin. The method proved to be significantly faster and yielded a better sequence coverage and an improved signal-to-noise ratio for the MALDI-MS peptide maps, compared to in-solution- and on-target digestion. Only a single sample transfer step is required, and therefore sample loss due to adsorption to surfaces is reduced, which is a critical issue when handling low picomole to femtomole amounts of proteins. An example is shown with on-column proteolytic digestion and subsequent elution of the digest into a reversed-phase micro-column. This is useful if the sample contains large amounts of salt or is too diluted for MALDI-MS analysis. Furthermore, by step-wise elution from the reversedphase column, a complex digest can be fractionated, which reduces signal suppression and facilitates data interpretation in the subsequent MS-analysis. The method also proved useful for consecutive digestions with enzymes of different cleavage specificity. This is exemplified with on-column tryptic digestion, followed by reversed-phase step-wise elution, and subsequent on-target V8 protease digestion.

  4. Toxoplasma gondii infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix.

    Science.gov (United States)

    Ólafsson, Einar B; Varas-Godoy, Manuel; Barragan, Antonio

    2018-03-01

    Dendritic cells (DCs) infected by Toxoplasma gondii rapidly acquire a hypermigratory phenotype that promotes systemic parasite dissemination by a "Trojan horse" mechanism in mice. Recent paradigms of leukocyte migration have identified the amoeboid migration mode of DCs as particularly suited for rapid locomotion in extracellular matrix and tissues. Here, we have developed a microscopy-based high-throughput approach to assess motility and matrix degradation by Toxoplasma-challenged murine and human DCs. DCs challenged with T. gondii exhibited dependency on metalloproteinase activity for hypermotility and transmigration but, strikingly, also dramatically reduced pericellular proteolysis. Toxoplasma-challenged DCs up-regulated expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) and their supernatants impaired matrix degradation by naïve DCs and by-stander DCs dose dependently. Gene silencing of TIMP-1 by short hairpin RNA restored matrix degradation activity in Toxoplasma-infected DCs. Additionally, dissolution of podosome structures in parasitised DCs coincided with abrogated matrix degradation. Toxoplasma lysates inhibited pericellular proteolysis in a MyD88-dependent fashion whereas abrogated proteolysis persevered in Toxoplasma-infected MyD88-deficient DCs. This indicated that both TLR/MyD88-dependent and TLR/MyD88-independent signalling pathways mediated podosome dissolution and the abrogated matrix degradation. We report that increased TIMP-1 secretion and cytoskeletal rearrangements encompassing podosome dissolution are features of Toxoplasma-induced hypermigration of DCs with an impact on matrix degradation. Jointly, the data highlight how an obligate intracellular parasite orchestrates key regulatory cellular processes consistent with non-proteolytic amoeboid migration of the vehicle cells that facilitate its dissemination. © 2017 John Wiley & Sons Ltd.

  5. Low-pressure

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Richard [Membrane Technology And Research, Inc., Newark, CA (United States); Kniep, Jay [Membrane Technology And Research, Inc., Newark, CA (United States); Hao, Pingjiao [Membrane Technology And Research, Inc., Newark, CA (United States); Chan, Chi Cheng [Membrane Technology And Research, Inc., Newark, CA (United States); Nguyen, Vincent [Membrane Technology And Research, Inc., Newark, CA (United States); Huang, Ivy [Membrane Technology And Research, Inc., Newark, CA (United States); Amo, Karl [Membrane Technology And Research, Inc., Newark, CA (United States); Freeman, Brice [Membrane Technology And Research, Inc., Newark, CA (United States); Fulton, Don [Membrane Technology And Research, Inc., Newark, CA (United States); Ly, Jennifer [Membrane Technology And Research, Inc., Newark, CA (United States); Lipscomb, Glenn [Membrane Technology And Research, Inc., Newark, CA (United States); Lou, Yuecun [Membrane Technology And Research, Inc., Newark, CA (United States); Gogar, Ravikumar [Membrane Technology And Research, Inc., Newark, CA (United States)

    2015-01-29

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  6. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  7. Proteolysis in hyperthermophilic microorganisms

    Directory of Open Access Journals (Sweden)

    Donald E. Ward

    2002-01-01

    Full Text Available Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus, the crenarchaeote Sulfolobus solfataricus, and the bacterium Thermotoga maritima. An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putative proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.

  8. Ammonia Synthesis at Low Pressure.

    Science.gov (United States)

    Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi

    2017-08-23

    Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.

  9. Peptidomics for Studying Limited Proteolysis.

    Science.gov (United States)

    Tsuchiya, Takashi; Osaki, Tsukasa; Minamino, Naoto; Sasaki, Kazuki

    2015-11-06

    Limited proteolysis is a pivotal mechanism regulating protein functions. Identifying physiologically or pathophysiologically relevant cleavage sites helps to develop molecular tools that can be used for diagnostics or therapeutics. During proteolysis of secretory and membrane proteins, part of the cleaved protein is liberated and destined to undergo degradation but should retain original cleavage sites created by proteolytic enzymes. We profiled endogenous peptides accumulated for 4 h in media conditioned by primary cultured rat cardiac fibroblasts. A total of 3916 redundant peptide sequences from 94 secretory proteins and membrane proteins served to identify limited cleavage sites, both annotated and unannotated, for signal peptide or propeptide removal, peptide hormone processing, ectodomain shedding, and regulated intramembrane proteolysis. Incorrectly predicted signal cleavage sites are found in typical proteins such as extracellular matrix proteins and the peptide hormone precursor adrenomedullin ADM. The revealed signal peptide cleavage site for ADM was experimentally verified by identifying the major molecular form of flanking proadrenomedullin N-terminal peptide. We suggest that profiling of endogenous peptides, like transcriptome sequence reads, makes sense in regular cells such as fibroblasts and that peptidomics provides insight into proteolysis-regulated protein functions.

  10. Negative Ions in low pressure discharges

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Vender, D.; Haverlag, M.; Kroesen, G.M.W.; Hoog, de F.J.

    1995-01-01

    Several aspects of negative ions in low pressure discharges are treated. The elementary processes, in which negative ions are produced and destroyed, are summarized. The influence of negative ions on plasma operation is analyzed in terms of transport equations. It is shown that diffusion, electric

  11. Simulation of low pressure water hammer

    Science.gov (United States)

    Himr, D.; Habán, V.

    2010-08-01

    Numerical solution of water hammer is presented in this paper. The contribution is focused on water hammer in the area of low pressure, which is completely different than high pressure case. Little volume of air and influence of the pipe are assumed in water, which cause sound speed change due to pressure alterations. Computation is compared with experimental measurement.

  12. Perlecan and the Blood-Brain Barrier: Beneficial Proteolysis?

    Directory of Open Access Journals (Sweden)

    Jill eRoberts

    2012-08-01

    Full Text Available The cerebral microvasculature is important for maintaining brain homeostasis. This is achieved via the blood-brain barrier (BBB, composed of endothelial cells with specialized tight junctions, astrocytes and a basement membrane. Prominent components of the basement membrane extracellular matrix (ECM include fibronectin, laminin, collagen IV and perlecan, all of which regulate cellular processes via signal transduction through various cell membrane bound ECM receptors. Expression and proteolysis of these ECM components can be rapidly altered during pathological states of the central nervous system. In particular, proteolysis of perlecan, a heparan sulfate proteoglycan, occurs within hours following ischemia induced by experimental stroke. Proteolysis of ECM components following stroke results in the degradation of the basement membrane and further disruption of the BBB. While it is clear that such proteolysis has negative consequences for the BBB, we propose that it also may lead to generation of ECM protein fragments, including the C-terminal domain V (DV of perlecan, that potentially have a positive influence on other aspects of CNS health. Indeed, perlecan DV has been shown to be persistently generated after stroke and beneficial as a neuroprotective molecule and promoter of post-stroke brain repair. This mini-review will discuss beneficial roles of perlecan protein fragment generation within the brain during stroke.

  13. Low Pressure Nuclear Thermal Rocket (LPNTR) concept

    International Nuclear Information System (INIS)

    Ramsthaler, J.H.

    1991-01-01

    A background and a description of the low pressure nuclear thermal system are presented. Performance, mission analysis, development, critical issues, and some conclusions are discussed. The following subject areas are covered: LPNTR's inherent advantages in critical NTR requirement; reactor trade studies; reference LPNTR; internal configuration and flow of preliminary LPNTR; particle bed fuel assembly; preliminary LPNTR neutronic study results; multiple LPNTR engine concept; tank and engine configuration for mission analysis; LPNTR reliability potential; LPNTR development program; and LPNTR program costs

  14. Investigation of low pressure ES-SAGD

    Energy Technology Data Exchange (ETDEWEB)

    Ivory, J.; Zheng, R.; Nasr, T.; Deng, X.; Beaulieu, G.; Heck, G. [Alberta Research Council, Edmonton, AB (Canada)

    2008-10-15

    This paper described a scaled model experiment conducted to investigate the effectiveness of expanding solvent steam assisted gravity drainage (ES-SAGD) processes at low pressures. Lower SAGD pressures typically result in reduced oil production as a result of correspondingly lower steam temperatures. However, lower pressures may also result in a reduced steam to oil ratio (SOR) and a higher vaporization heat. Steam was injected into an injection well at 33 cm{sup 3} per minute and in a production well at 31 cm{sup 3} per minute. Steam and solvents were then co-injected into the injection well at a temperature of 206 degrees C. The experiment was history-matched and a parametric analysis was conducted using a simulation tool. The 2-D and 3-D field-scale simulations investigated the impact of operating pressures, injection rates; sub-cool; oil and gas phase diffusion and dispersion; live oil versus dead oil performance; and the use of drawdown when oil rates declined. Low pressure ES-SAGD was then compared with low-pressure SAGD. Results of the study suggested that production pressures, sub-cool and solvent concentrations are important parameters in ES-SAGD processes. At 1500 kPa production pressure and 10 degrees C sub-cool, the co-injection of solvent with steam increased average oil rates by 15 per cent more than the SAGD process. SOR was also reduced. 6 refs., 8 tabs., 20 figs.

  15. Current limitation in low pressure mercury arcs

    International Nuclear Information System (INIS)

    Torven, S.; Babic, M.

    1976-06-01

    When the electric current in a low pressure arc with a long positive column is increased sufficiently, an electrostatic instability develops in the plasma which leads to formation of thin space charge layers across the column. The instability is investigated in a mercury plasma column kept axially homogeneous by a special technique. Values of some plasma parameters are measured at the instability threshold. It is found that the plasma is in a weakly ionized state in contrast to predictions by widely accepted current limitation theories. It is concluded that new types of theories are required to explain the observations. (Auth.)

  16. Thermal applications of low-pressure diamond

    International Nuclear Information System (INIS)

    Haubner, R.; Lux, B.

    1997-01-01

    During the last decade several applications of low-pressure diamond were developed. Main products are diamond heat-spreaders using its high thermal conductivity, diamond windows with their high transparency over a wide range of wavelengths and wear resistant tool coatings because of diamonds superhardness. A short description of the most efficient diamond deposition methods (microwave, DC-glow discharge, plasma-jet and arc discharge) is given. The production and applications of diamond layers with high thermal conductivity will be described. Problems of reproducibility of diamond deposition, the influence of impurities, the heat conductivity in electronic packages, reliability and economical mass production will be discussed. (author)

  17. Experimental study on low pressure flow instability

    International Nuclear Information System (INIS)

    Jiang Shengyao; Wu Xinxin; Wu Shaorong; Bo Jinhai; Zhang Youjie

    1997-05-01

    The experiment was performed on the test loop (HRTL-5), which simulates the geometry and system design of the 5 MW reactor. The flow behavior for a wide range of inlet subcooling, in which the flow undergoes from single phase to two phase, is described in a natural circulation system at low pressure (p = 0.1, 0.24 MPa). Several kinds of flow instability, e.g. subcooled boiling instability, subcooled boiling induced flashing instability, pure flashing instability as well as flashing coupled density wave instability and high frequency flow oscillation, are investigated. The mechanism of flashing and flashing concerned flow instability, which has never been studied well in this field, is especially interpreted. The experimental results show that, firstly, for a low pressure natural circulation system the two phase flow is unstable in most of inlet subcooling conditions, the two phase stable flow can only be reached at very low inlet subcooling; secondly, at high inlet subcooling the flow instability is dominated by subcooled boiling in the heated section, and at middle inlet subcooling is dominated by void flashing in the adiabatic long riser; thirdly, in two phase stable flow region the condition for boiling out of the core, namely, single phase flow in the heated section, two phase flow in the riser due to vapor flashing, can be realized. The experimental results are very important for the design and accident analysis of the vessel and swimming pool type natural circulation nuclear heating reactor. (7 refs., 10 figs., 1 tab.)

  18. Investigations into low pressure methanol synthesis

    DEFF Research Database (Denmark)

    Sharafutdinov, Irek

    The central topic of this work has been synthesis, characterization and optimization of novel Ni-Ga based catalysts for hydrogenation of CO2 to methanol. The overall goal was to search for materials that could be used as a low temperature (and low pressure) methanol synthesis catalyst....... This is required for small scale delocalized methanol production sites, where installation of energy demanding compression units should be avoided. The work was triggered by DFT calculations, which showed that certain bimetallic systems are active towards methanol synthesis from CO2 and H2 at ambient pressure...... containing 5:3 molar ratio of Ni:Ga, the intrinsic activity (methanol production rate per active surface area) is comparable to that of highly optimised Cu/ZnO/Al2O3. Formation of the catalyst was investigated with the aid of in-situ XRD and in-situ XAS techniques. The mechanism of alloying was proposed...

  19. Quality Management and Control of Low Pressure Cast Aluminum Alloy

    Science.gov (United States)

    Zhang, Dianxi; Zhang, Yanbo; Yang, Xiufan; Chen, Zhaosong; Jiang, Zelan

    2018-01-01

    This paper briefly reviews the history of low pressure casting and summarizes the major production processes of low pressure casting. It briefly introduces the quality management and control of low pressure cast aluminum alloy. The main processes include are: preparation of raw materials, Melting, refining, physical and chemical analysis, K-mode inspection, sand core, mold, heat treatment and so on.

  20. MODEL TESTING OF LOW PRESSURE HYDRAULIC TURBINE WITH HIGHER EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. K. Nedbalsky

    2007-01-01

    Full Text Available A design of low pressure turbine has been developed and it is covered by an invention patent and a useful model patent. Testing of the hydraulic turbine model has been carried out when it was installed on a vertical shaft. The efficiency was equal to 76–78 % that exceeds efficiency of the known low pressure blade turbines. 

  1. Proteolysis and consistency of Meshanger cheese

    NARCIS (Netherlands)

    Jong, de L.

    1978-01-01

    Proteolysis in Meshanger cheese, estimated by quantitative polyacrylamide gel electrophoresis is discussed. The conversion of α s1 -casein was proportional to rennet concentration in the cheese. Changes in consistency, after a maximum, were correlated to breakdown of

  2. Experimental study an a low pressure solar still

    International Nuclear Information System (INIS)

    Sriram, V.; Kalidasa Murugavel, K.; Samuel Hansen, R.

    2013-01-01

    In this work, a low pressure, single basin double slope Solar Still was fabricated and tested for different depths and with different wick and porous materials. A vacuum pump was used to maintain low pressure inside the still. External condenser was used to condense the vapor with raw water as cooling fluid. The performance of the low pressure still was compared with conventional still. The total production of the still was increased by 88.66% when a light cotton cloth was used as wick material in the basin along with minimum depth of water. (authors)

  3. Shock tubes: compressions in the low pressure chamber

    International Nuclear Information System (INIS)

    Schins, H.; Giuliani, S.

    1986-01-01

    The gas shock tube used in these experiments consists of a low pressure chamber and a high pressure chamber, divided by a metal-diaphragm-to-rupture. In contrast to the shock mode of operation, where incident and reflected shocks in the low pressure chamber are studied which occur within 3.5 ms, in this work the compression mode of operation was studied, whose maxima occur (in the low pressure chamber) about 9 ms after rupture. Theoretical analysis was done with the finite element computer code EURDYN-1M, where the computation was carried out to 30 ms

  4. Low pressure cooling seal system for a gas turbine engine

    Science.gov (United States)

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  5. High performance electrodes for low pressure H{sub 2}-air PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Besse, S; Bronoel, G; Fauvarque, J F [Laboratoires SORAPEC (France)

    1998-12-31

    Proton exchange membrane fuel cells (PEMFCs) were first developed for space applications in the 1960s. Currently, they are being manufactured for terrestrial portable power applications. One of the challenges is to develop a low pressure H{sub 2}/Air PEMFC in order to minimize the cathodic mass transport overpotentials. The hydrogen oxidation reaction is considered to be sufficiently rapid. Hydrogen transport limitations are very low even at high current densities. The different applications considered for hydrogen/air PEMFC need to work at atmospheric pressure. An optimization of the structure of the oxygen electrode and the membrane electrode assembly (MEA) are essential in order to decrease mass transport limitations and to obtain good water management even at low pressures. Efforts have been made to produce electrodes and MEA for PEMFC with low platinum loading. The electrode structure was developed to ensure a good diffusion of reactants and an effective charge collection. It has also been optimized for low pressure restrictions. It was concluded that high performances can be achieved even at low pressures by improving the electrode gas diffusion layer (PTFE content) and by improving the catalyst. 12 refs., 7 figs.

  6. Protein trafficking and maturation regulate intramembrane proteolysis.

    Science.gov (United States)

    Morohashi, Yuichi; Tomita, Taisuke

    2013-12-01

    Intramembrane-cleaving proteases (I-CLiPs) are membrane embedded proteolytic enzymes. All substrates identified so far are also membrane proteins, involving a number of critical cellular signaling as well as human diseases. After synthesis and assembly at the endoplasmic reticulum, membrane proteins are exported to the Golgi apparatus and transported to their sites of action. A number of studies have revealed the importance of the intracellular membrane trafficking in i-CLiP-mediated intramembrane proteolysis, not only for limiting the unnecessary encounter between i-CLiPs and their substrate but also for their cleavage site preference. In this review, we will discuss recent advances in our understanding of how each i-CLiP proteolysis is regulated by intracellular vesicle trafficking. This article is part of a Special Issue entitled: Intramembrane Proteases. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. CFD simulation of subcooled flow boiling at low pressure

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2001-01-01

    An increased interest to numerically simulate the subcooled flow boiling at low pressures (1 to 10 bar) has been aroused in recent years, pursued by the need to perform safety analyses of research nuclear reactors and to investigate the sump cooling concept for future light water reactors. In this paper the subcooled flow boiling has been simulated with a multidimensional two-fluid model used in a CFX-4.3 computational fluid dynamics (CFD) code. The existing model was adequately modified for low pressure conditions. It was shown that interfacial forces, which are usually used for adiabatic flows, need to be modeled to simulate subcooled boiling at low pressure conditions. Simulation results are compared against published experimental data [1] and agree well with experiments.(author)

  8. Non-equilbrium behavior of low-pressure plasma jets

    International Nuclear Information System (INIS)

    Chang, C.H.; Pfender, E.

    1989-01-01

    After establishing the basic equations, some sample calculations are presented to examine the thermodynamic state of the plasma from atmospheric to low pressures (80 mbar). These results indicate the validity of local thermodynamic equilibrium (LTE) at atmospheric pressure as well as strong deviations from LTE at lower pressures especially in terms of chemical equilibrium. Departures from kinetic equilibrium are not as severe as those from chemical equilibrium along the centerline of the jet. However, there are some departures from transitional equilibrium in the fringes of the jet. It is demonstrated that conventional methods based on the LTE assumption are not appropriate for describing low-pressure plasma jets

  9. A Plasma Focus operated at a very low pressure range

    International Nuclear Information System (INIS)

    Bruzzone, H.; Grondona, D.; Kelly, H.; Marquez, A.

    1990-01-01

    Several characteristics of the neutron production and the hard X-ray emission from a Plasma Focus device operating at 30 kV (6 kV of stored energy) and at an unusually low pressure range are presented. (Author)

  10. LOW PRESSURE ULTRAVEIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS

    Science.gov (United States)

    Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...

  11. A low pressure filter system for new containment concepts

    Energy Technology Data Exchange (ETDEWEB)

    Dillmann, H.G.; Pasler, H. [Kernforschungszentrum Karlsruhe GmbH Laboratorium fuer Isotopentechnik, Karlsruhe (Germany)

    1995-02-01

    It is demonstrated that after severe accidents the decay heat can be removed in a passive mode in a convective flow, i.e. without needing a fan. The filter components with sufficiently low pressure drop values which are required for this purpose will be described and the results indicated.

  12. Bulk characterization of pharmaceutical powders by low-pressure compression

    DEFF Research Database (Denmark)

    Sørensen, A.H.; Sonnergaard, Jørn; Hovgaard, L.

    2005-01-01

    Low-pressure compression of pharmaceutical powders using small amounts of sample (50 mg) was evaluated as an alternative to traditional bulk powder characterization by tapping volumetry. Material parameters were extrapolated directly from the compression data and by fitting with the Walker...

  13. Gain measurements in CO2 CW low pressure lasers

    International Nuclear Information System (INIS)

    Rodrigues, N.A.S.; Chanes Junior, J.B.; Jayaram, K.

    1983-01-01

    A series of gain measurements in low pressure CO 2 CW laser were performed in order to study the behaviour of a CO 2 laser ampliflier as a function of pressure and discharge current. A theoretical model, based on rate equations is also presented to describe the laser behaviour and the experimental procedure adopted. (C.L.B.) [pt

  14. A system to control low pressure turbine temperatures

    International Nuclear Information System (INIS)

    1980-01-01

    An improved system to control low pressure turbine cycle steam and metal temperatures by governing the heat transfer operation in a moisture separator-reheater is described. The use of the present invention in a pressurized water reactor or a boiling water reactor steam turbine system is demonstrated. (UK)

  15. Taking a position on intramembrane proteolysis.

    Science.gov (United States)

    Lemieux, M Joanne

    2018-03-30

    Decades of work have contributed to our in-depth mechanistic understanding of soluble proteases, but much less is known about the catalytic mechanism of intramembrane proteolysis due to inherent difficulties in both preparing and analyzing integral membrane enzymes and transmembrane substrates. New work from Naing et al. tackles this challenge by examining the catalytic parameters of an aspartyl intramembrane protease homologous to the enzyme that cleaves amyloid precursor protein, finding that both chemistry and register contribute to specificity in substrate cleavage. © 2018 Joanne Lemieux.

  16. Ubiquitin-mediated proteolysis in Xenopus extract.

    Science.gov (United States)

    McDowell, Gary S; Philpott, Anna

    2016-01-01

    The small protein modifier, ubiquitin, can be covalently attached to proteins in the process of ubiquitylation, resulting in a variety of functional outcomes. In particular, the most commonly-associated and well-studied fate for proteins modified with ubiquitin is their ultimate destruction: degradation by the 26S proteasome via the ubiquitin-proteasome system, or digestion in lysosomes by proteolytic enzymes. From the earliest days of ubiquitylation research, a reliable and versatile "cell-in-a-test-tube" system has been employed in the form of cytoplasmic extracts from the eggs and embryos of the frog Xenopus laevis. Biochemical studies of ubiquitin and protein degradation using this system have led to significant advances particularly in the study of ubiquitin-mediated proteolysis, while the versatility of Xenopus as a developmental model has allowed investigation of the in vivo consequences of ubiquitylation. Here we describe the use and history of Xenopus extract in the study of ubiquitin-mediated protein degradation, and highlight the versatility of this system that has been exploited to uncover mechanisms and consequences of ubiquitylation and proteolysis.

  17. New low pressure (LP) turbines for NE Krsko

    International Nuclear Information System (INIS)

    Nemcic, K.; Novsak, M.

    2004-01-01

    During the evaluation of possible future maintenance strategies on steam turbine in very short period of time, engineering decision was made by NE Krsko in agreement with Owners to replace the existing two Low Pressure (LP) Turbines with new upgrading LP Turbines. This decision is presented with review of the various steam turbine problems as: SCC on turbine discs; blades cracking; erosion-corrosion with comparison of various maintenance options and efforts undertaken by the NE Krsko to improve performance of the original low pressure turbines. This paper presents the NEK approach to solve the possible future problems with steam turbine operation in NE Krsko as pro-active engineering and maintenance activities on the steam turbine. This paper also presents improvements involving retrofits, confined to the main steam turbine path, with major differences between original and new LP Turbines as beneficial replacement because of turbine MWe upgrading and return capital expenditures.(author)

  18. Low Pressure Circuit Control and adjust System Test

    International Nuclear Information System (INIS)

    Rubio, R.O; Brendstrup, C.J; Ocampo, A.C

    2000-01-01

    The hydraulic mechanism (MSAC) is a system that will be employed in the movement of the control rods of the CAREM-25 reactor.In this report, the experimental work on a prototype of MSAC in a low pressure circuit is presented: also the methodology and conclusions.Basic thermalhydraulic data from the MSAC was obtained, and the most relevant control parameters were determined.The response of the mechanism to changes in the control parameters was also evaluated. In conclusion, the response of the MSAC fulfills the aspects of reliability and repetitive movement with water flow pulses control, in the low pressure circuit at the Laboratorio de Mecanica, Materiales y Mediciones of INVAP S.E

  19. A low pressure bipolar nickel-hydrogen battery

    Energy Technology Data Exchange (ETDEWEB)

    Golben, M.; Nechev, K.; DaCosta, D.H.; Rosso, M.J.

    1997-12-01

    Ergenics is developing a low pressure high power rechargeable battery for electric vehicles and other large battery applications. The Hy-Stor{trademark} battery couples a bipolar nickel-hydrogen electrochemical system with the high energy storage density of metal hydride technology. In addition to its long cycle life, high specific power, and energy density, this battery offers safety and economic advantages over other rechargeable batteries. Results from preliminary testing of the first Hy-Stor battery are presented.

  20. Downflow film boiling in a rod bundle at low pressure

    International Nuclear Information System (INIS)

    Hochreiter, L.E.; Rosal, E.R.; Fayfich, R.R.

    1978-01-01

    A series of low pressure downflow film boiling heat transfer experiments were conducted in a 14-foot (4.27 m) long electrically heater rod bundle containing 336 heater rods. The resulting data was compared with the Dougall-Rohsenow dispersed flow film boiling correlation. The data was found to lie below this correlation as the quality was increased. It is believed that buoyancy effects decreased the heat transfer in downflow film boiling. (author)

  1. Testing of low pressure proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Bettoni, M; Naso, V; Lucentini, M; Rubini, L

    1998-07-01

    One of the main issues concerning PEMFC is the choice of operating pressure, for both stationary and automotive applications. This is because the air compressor may absorb a significant amount--up to 25%--of the power output of the fuel cells stack. A comparison has been made between the performance of various stacks of different dimensions, tested in the De Nora Laboratories operated at high (4 bar) and low (1.5 bar) pressures, considering power output reduced by the compressor power absorption. Differences of performance and efficiency between high and low pressure stacks have been noticed in the range of 10%. In operating at low pressure, higher efficiency is obtainable, but the maximum power of the stack is less; this means less fuel consumption, but requires a greater reacting surface and larger dimension of the stack. Consequently low pressures make the system simpler (a blower can be used instead of a compressor), and safer (there is practically no risk of breaking the membrane).

  2. Responses of low pressure Andersen sampler for collecting substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, K. [Research Reactor Institute, Kyoto University, Osaka (Japan); Yamada, Y.; Miyamoto, K.; Shimo, M. [Division of Radiotoxicology and Protection, National Institute of Radiological Sciences, Chiba (Japan)

    2000-05-01

    Some types of low pressure cascade impactors (Andersen, Berner, Davies, and MOUDI etc) have been used to measure the activity size distribution of radon progeny in the environment. In spite of their careful uses, their nonideal responses are not adequately known. Some important factors such as the wall loss, electrostatic attraction, and the surface nature of collecting substrates may affect the reliability of the impactor data. Size selective characteristics of a low pressure Andersen sampler for various collecting substrates were examined in a radon exposure chamber using several kinds of liquid (DOS) or solid (carnauba wax) carrier aerosols labelled with radon progeny. These carrier aerosols were produced by commercial condensation aerosol generator. Tested collecting substrates were, (1) uncoated clean stainless steel plate, (2) silicone oil or grease coated stainless steel plate, (3) polyethylene sheet covered stainless steel plate, (4) membrane filter, (5) glass fiber filter, and (6) quartz fiber filter. In the case of collecting liquid or sticky carrier aerosols, the effect of particle bounce was small and nearly any substrates might used on the impaction plate. On the other hand, in the case of solid carrier aerosols, an adhesive layer such as grease or oil might have to be applied to the substrate. It was concluded that a low pressure cascade impactor such as Andersen sampler might need an appropriate calibration procedure including the interstage characteristics for determining the accurate activity size distribution. (author)

  3. Peptides Displayed as High Density Brush Polymers Resist Proteolysis and Retain Bioactivity

    Science.gov (United States)

    2015-01-01

    We describe a strategy for rendering peptides resistant to proteolysis by formulating them as high-density brush polymers. The utility of this approach is demonstrated by polymerizing well-established cell-penetrating peptides (CPPs) and showing that the resulting polymers are not only resistant to proteolysis but also maintain their ability to enter cells. The scope of this design concept is explored by studying the proteolytic resistance of brush polymers composed of peptides that are substrates for either thrombin or a metalloprotease. Finally, we demonstrate that the proteolytic susceptibility of peptide brush polymers can be tuned by adjusting the density of the polymer brush and offer in silico models to rationalize this finding. We contend that this strategy offers a plausible method of preparing peptides for in vivo use, where rapid digestion by proteases has traditionally restricted their utility. PMID:25314576

  4. Properties of thick GEM in low-pressure deuterium

    International Nuclear Information System (INIS)

    Lee, C S; Ota, S; Tokieda, H; Kojima, R; Watanabe, Y N; Uesaka, T

    2014-01-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241 Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 10 3 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time

  5. Magnesium based composites fabricated by low pressure infiltration

    International Nuclear Information System (INIS)

    Johansson, P.; Micski, A.; Savage, S.J.

    1993-01-01

    Magnesiumbased fiber composites have been produced by so called low pressure infiltration. The initial material consist of 'saffil' pre-forms and two magnesium alloys, Mg-9Al-1Zn and WE 54 (approximate composition Mg-5Y-1.5Nd-2(Tb,Er,Dy,Gd)-0.5Zr), and pure magnesium. The preforms consists of 10-30 vol% of short fibers linked together by SiO 2 or Al 2 O 3 . Three different routes have been tested in the search for a good low pressure infiltration method. The experiments cover corrosion testing in NaCl-solution, sliding wear, abrasion and erosion testing. Of the tested infiltration methods the best results were obtained in a resistance heated evacuable furnace, in which the metal was molted in a steel crucible and the preform was conveyed into the melt under protective atmosphere. The infiltration takes place at atmospheric pressure and the cooling is performed in a sealed tube in air. The microscopy studies shows that low pressure infiltrated composites contain considerable amounts of porosity in distinction from those fabricated by squeeze casting. The corrosion test has shown that in the tested environment the alloy WE 54 has good corrosion resistance while Mg-9Al-1Zn and pure magnesium show low corrosion resistance. The influence of fibres in the matrix seems to be very small. Both magnesium and the alloy Mg-9Al-1Zn show for two body abrasion an almost linear improvement of abrasion resistance with increased fiber content. Pure magnesium shows decreasing erosion resistance with increasing fibre content. The Mg-9Al-1Zn-alloy appears to show a maximum in erosion resistance at 10 vol% fibers. In sliding wear the materials show an optimum initial and steady state wear resistance at a fiber content of about 10%. In general Al 2 O 3 -binder gives better wear resistance than SiO 2 -binder. Tensile testing was performed on low pressure infiltrated and squeeze cast composites with WE 54 matrix. It shows that the low pressure infiltrated composites are inferior to those

  6. Properties of thick GEM in low-pressure deuterium

    Science.gov (United States)

    Lee, C. S.; Ota, S.; Tokieda, H.; Kojima, R.; Watanabe, Y. N.; Uesaka, T.

    2014-05-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 103 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time.

  7. Functional Imaging of Proteolysis: Stromal and Inflammatory Cells Increase Tumor Proteolysis

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2003-07-01

    Full Text Available The underlying basement membrane is degraded during progression of breast and colon carcinoma. Thus, we imaged degradation of a quenched fluorescent derivative of basement membrane type IV collagen (DQ-collagen IV by living human breast and colon tumor spheroids. Proteolysis of DQ-collagen IV by HCT 116 and HKh-2 human colon tumor spheroids was both intracellular and pericellular. In contrast, proteolysis of DQ-collagen IV by BT20 human breast tumor spheroids was pericellular. As stromal elements can contribute to proteolytic activities associated with tumors, we also examined degradation of DQ-collagen IV by human monocytes/macrophages and colon and breast fibroblasts. Fibroblasts themselves exhibited a modest amount of pericellular degradation. Degradation was increased 4–17-fold in cocultures of fibroblasts and tumor cells as compared to either cell type alone. Inhibitors of matrix metalloproteinases, plasmin, and the cysteine protease, cathepsin B, all reduced degradation in the cocultures. Monocytes did not degrade DQ-collagen IV; however, macrophages degraded DQ-collagen IV intracellularly. In coculture of tumor cells, fibroblasts, and macrophages, degradation of DQ-collagen IV was further increased. Imaging of living tumor and stromal cells has, thus, allowed us to establish that tumor proteolysis occurs pericellularly and intracellularly and that tumor, stromal, and inflammatory cells all contribute to degradative processes.

  8. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    Science.gov (United States)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  9. Data needs for diagnostics of low pressure plasmas

    International Nuclear Information System (INIS)

    Graham, Bill

    2000-01-01

    The low pressure plasma processing environment is complex and presents many diagnostic challenges. Here the diagnostic techniques used for accurate and detailed measurement of the density and energy distributions of charged and neutral species are reviewed. Most of the techniques rely heavily on atomic and molecular data. The specific data needs of each diagnostic are outlined. It is shown that in total these data needs are vast and diverse and cannot all be met from specific measurements or calculations. The real need is for generic scaling rules for each of the significant atomic and molecular processes

  10. Heat transfers in a low-pressure arc-jet

    Energy Technology Data Exchange (ETDEWEB)

    Dudeck, M [Centre National de la Recherche Scientifique (CNRS), 92 - Meudon-Bellevue (France); Kaminska, A [Politechnika Poznanska, Poznan (Poland)

    1995-03-01

    In the framework of low-pressure arc-jet applications to thermodynamical condition simulation for reentry vehicles at hypersonic speed, an analytical study has been carried out concerning the thermodynamical conditions of a plasma in an arc-source for plasmatron usual operating conditions. After a review of gas physical properties, the gas flow in the plasmatron with a divergent nozzle is modelled; temperature profiles in the arc and in the divergent and the wall heat flux are then computed. Results are given. 8 refs., 6 figs.

  11. Adsorption of helium gas near Tλ at low pressures

    International Nuclear Information System (INIS)

    Kachalin, G.V.; Kryukov, A.P.; Nesterov, S.B.

    1998-01-01

    Cryosorption of helium isotopes ( 4 He and 3 He) on thin argon cryo layers is studied experimentally in the temperature range 4.2-2 K at low pressures. It is shown that the sorption iso stere 4 He is anomalous at temperatures close to be temperature of the phase transition in the bulk of 4 He, T λ . An abrupt pressure change is observed for a 4 He film thickness approximately equal to two monolayers. The experiments on cryosorption of 3 He gas on an argon layer with a 3 He film thickness of approximately one monolayer display monotonous changes in the pressure within the whole temperature range

  12. Low pressure chemical vapour deposition of temperature resistant colour filters

    International Nuclear Information System (INIS)

    Verheijen, J.; Bongaerts, P.; Verspui, G.

    1987-01-01

    The possibility to deposit multilayer colour filters, based on optical inference, by means of Low Pressure Chemical Vapour Deposition (LPCVD) was investigated. The filters were made in a standard LPCVD system by alternate deposition of Si/sub 3/N/sub 4/ and SiO/sub 2/ layers. This resulted in filters with excellent colour uniformity on glass and quartz substrates. No difference was measured between theoretically calculated transmission and the transmission of the filters deposited by LPCVD. Temperature treatment at 600 0 C in air air showed no deterioration of filter quality and optical properties

  13. Protonation enhancement by dichloromethane doping in low-pressure photoionization.

    Science.gov (United States)

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH 2 Cl 2 ) doping. CH 2 Cl 2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500-1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH 2 Cl 2 , meanwhile CH 2 Cl 2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  14. Low pressure storage of natural gas on activated carbon

    Science.gov (United States)

    Wegrzyn, J.; Wiesmann, H.; Lee, T.

    The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

  15. Allosteric regulation of rhomboid intramembrane proteolysis.

    Science.gov (United States)

    Arutyunova, Elena; Panwar, Pankaj; Skiba, Pauline M; Gale, Nicola; Mak, Michelle W; Lemieux, M Joanne

    2014-09-01

    Proteolysis within the lipid bilayer is poorly understood, in particular the regulation of substrate cleavage. Rhomboids are a family of ubiquitous intramembrane serine proteases that harbour a buried active site and are known to cleave transmembrane substrates with broad specificity. In vitro gel and Förster resonance energy transfer (FRET)-based kinetic assays were developed to analyse cleavage of the transmembrane substrate psTatA (TatA from Providencia stuartii). We demonstrate significant differences in catalytic efficiency (kcat/K0.5) values for transmembrane substrate psTatA (TatA from Providencia stuartii) cleavage for three rhomboids: AarA from P. stuartii, ecGlpG from Escherichia coli and hiGlpG from Haemophilus influenzae demonstrating that rhomboids specifically recognize this substrate. Furthermore, binding of psTatA occurs with positive cooperativity. Competitive binding studies reveal an exosite-mediated mode of substrate binding, indicating allostery plays a role in substrate catalysis. We reveal that exosite formation is dependent on the oligomeric state of rhomboids, and when dimers are dissociated, allosteric substrate activation is not observed. We present a novel mechanism for specific substrate cleavage involving several dynamic processes including positive cooperativity and homotropic allostery for this interesting class of intramembrane proteases. © 2014 The Authors.

  16. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    Science.gov (United States)

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  17. Effects of proteolysis on the adenosinetriphosphatase activities of thymus myosin

    International Nuclear Information System (INIS)

    Vu, N.D.; Wagner, P.D.

    1987-01-01

    Limited proteolysis was used to identify regions on the heavy chains of calf thymus myosin which may be involved in ATP and actin binding. Assignments of the various proteolytic fragments to different parts of the myosin heavy chain were based on solubility, gel filtration, electron microscopy, and binding of 32 P-labeled regulatory light chains. Chymotrypsin rapidly cleaved within the head of thymus myosin to give a 70,000-dalton N-terminal fragment and a 140,000-dalton C-terminal fragment. These two fragments did not dissociate under nondenaturing conditions. Cleavage within the myosin tail to give heavy meromyosin occurred more slowly. Cleavage at the site 70,000 daltons from the N-terminus of the heavy chain caused about a 30-fold decrease in the actin concentration required to achieve half-maximal stimulation of the magnesium-adenosinetriphosphatase (Mg-ATPase) activity of unphosphorylated thymus myosin. The actin-activated ATPase activity of this digested myosin was only slightly affected by light chain phosphorylation. Actin inhibited the cleavage at this site by chymotrypsin. In the presence of ATP, chymotrypsin rapidly cleaved the thymus myosin heavy chain at an additional site about 4000 daltons from the N-terminus. Cleavage at this site caused a 2-fold increase in the ethylenediaminetetraacetic acid-ATPase activity and 3-fold decreases in the Ca 2+ - and Mg-ATPase activities of thymus myosin. Thus, cleavage at the N-terminus of thymus myosin was affected by ATP, and this cleavage altered ATPase activity. Papain cleaved the thymus myosin heavy chain about 94,000 daltons from the N-terminus to give subfragment 1. Although this subfragment 1 contained intact light chains, its actin-activated ATPase activity was not affected by light chain phosphorylation

  18. Disintegration of liquid metals by low pressure water blasting

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.

    1981-01-01

    The feasibility of disintegrating metals by a low cost system and subsequently incorporating them into grout mixtures has been demonstrated. A low pressure water blasting technique consisting of multiple nozzles and a converging-line jet stream was developed to disintegrate liquid metals and produce coarse metal powder and shot. Molten iron resulted in spherical shot, while copper, aluminum, and tin produced irregular shaped particles. The particle size was between 0.05 and 3 mm (0.002 and 0.1 in.), and about half the particles were smaller than 1 mm (0.04 in.) in all cases. The water consumption was rather low, while the production rate was relatively high. The method proved to be simple and reliable. The coarse metal powders were suspendable in grout fluids, indicating that they are probably disposable by the shale hydrofracture technique

  19. Low pressure powder injection moulding of stainless steel powders

    Energy Technology Data Exchange (ETDEWEB)

    Zampieron, J.V.; Soares, J.P.; Mathias, F.; Rossi, J.L. [Powder Processing Center CCP, Inst. de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil); Filho, F.A. [IPEN, Inst. de Pesquisas Energeticas e Nucleares, Cidade Univ., Sao Paulo, SP (Brazil)

    2001-07-01

    Low-pressure powder injection moulding was used to obtain AISI 316L stainless steel parts. A rheological study was undertaken using gas-atomised powders and binders. The binders used were based on carnauba wax, paraffin, low density polyethylene and microcrystalline wax. The metal powders were characterised in terms of morphology, particle size distribution and specific surface area. These results were correlated to the rheological behaviour. The mixture was injected in the shape of square bar specimens to evaluate the performance of the injection process in the green state, and after sintering. The parameters such as injection pressure, viscosity and temperature were analysed for process optimisation. The binders were thermally removed in low vacuum with the assistance of alumina powders. Debinding and sintering were performed in a single step. This procedure shortened considerably the debinding and sintering time. (orig.)

  20. Temperature measurement in low pressure plasmas. Temperaturmessungen im Niederdruckplasma

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbauer, K.A.; Wilting, H.; Schramm, G. (Duesseldorf Univ. (Germany, F.R.). Abt. fuer Histologie und Embryologie)

    1989-11-01

    The present work discusses the influence of various parameters on the substrate temperature in a low pressure plasma. The measurement method chosen utilized Signotherm (Merck) temperature sensors embedded in silicon between two glass substrates. All measurements were made in a 200 G Plasma Processor from Technics Plasma GmbH. The substrate temperature is dependent on the process time, the RF power, the process gas and the position in the chamber. The substrate temperature increases with increasing process time and increasing power. Due to the location of the microwave port from the magnetron to the chamber, the substrate temperature is highest in the center of the chamber. Measurements performed in an air plasma yielded higher results than in an oxygen plasma. (orig.).

  1. Electron heating in low pressure capacitive discharges revisited

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences University of California, Berkeley, California 94720 (United States)

    2014-12-15

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  2. Electron heating in low pressure capacitive discharges revisited

    International Nuclear Information System (INIS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-01-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account

  3. Electron heating in low pressure capacitive discharges revisited

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  4. Very low pressure high power impulse triggered magnetron sputtering

    Science.gov (United States)

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  5. Study on the hydrogen negative ion in low pressure discharges

    International Nuclear Information System (INIS)

    Bruneteau, A.M.

    1983-07-01

    A new use of negative hydrogen ions is the production of intense fast neutral atom beams useful in plasma heating in thermonuclear heating. That is one of the reasons that started this study. The density of negative hydrogen ions in diffusion, and multipole-type low pressure (10 -3 - 10-2 Torr) discharges is deduced from the various formation and destruction processes of the species present in these discharges. The H - ions are essentially produced by dissociative attachment to vibrationally excited molecules and destroyed by processes the relative importance of which is discussed as a function of the discharge parameters. The experimental study of the density of the H - ions, measured by photodetachment, as a function of these parameters, coroborates the theoretical model [fr

  6. Numerical simulation of low pressure die-casting aluminum wheel

    Directory of Open Access Journals (Sweden)

    Mi Guofa

    2009-02-01

    Full Text Available The FDM numerical simulation software, ViewCast system, was employed to simulate the low pressure die casting (LPDC of an aluminum wheel. By analyzing the mold-fi lling and solidifi cation stage of the LPDC process, the distribution of liquid fraction, temperature field and solidification pattern of castings were studied. The potential shrinkage defects were predicted to be formed at the rim/spoke junctions, which is in consistence with the X-ray detection result. The distribution pattern of the defects has also been studied. A solution towards reducing such defects has been presented. The cooling capacity of the mold was improved by installing water pipes both in the side mold and the top mold. Analysis on the shrinkage defects under forced cooling mode proved that adding the cooling system in the mold is an effective method for reduction of shrinkage defects.

  7. THYC qualification on Vatican-1 low pressure tests

    International Nuclear Information System (INIS)

    Duval, C.; Guichard, J.

    1991-06-01

    PWR cores or fuel assemblies are components of a nuclear power plant involving single and two-phase flows in rod bundles. The knowledge of the detailed two-phase and three-dimensional flow patterns is necessary to evaluate the singularity (grids) and bypass effects on the Departure from Nucleate Boiling (DNB) in reactor cores during incidental transients. For that purpose, since 1989, the VATICAN experiment has been performed at EDF as a part of the qualification program of the three-dimensional computer code THYC, developed by EDF. The qualification strategy of the THYC software for PWR cores is the following: assuming the theoretical or experimental knowledge of regular and singular pressure drops and grid turbulence sources in single-phase, pressure drop multipliers and relative velocity in two-phase flow, the VATICAN experiment allows to evaluate the diffusion phenomena in two-phase flow. It provides thermalhydraulic measurements on a mock-up of a part of 900 MWe PWR fuel assembly in single and two-phase flows, with power and quality gradients. The first configuration of the mock-up, with simple spacer grids, is studied (VATICAN-1). The specific effects of mixing spacer grids will be compared to these data through a second configuration. The last void fraction measurements, using a γ-ray technique, performed on VATICAN-1 low pressure tests allowed to qualify a set of closure relations, particularly a model of little two-phase diffusion, adapted to two-phase flows at low pressure (5.0MPa). The qualification of subcooled boiling and diffusion models will continue on next VATICAN and other experimental campaigns [fr

  8. Complementary methods for the identification of substrates of proteolysis.

    Science.gov (United States)

    Pham, Victoria C; Anania, Veronica G; Phung, Qui T; Lill, Jennie R

    2014-01-01

    Proteolysis describes the cleavage of proteins into smaller components, which in vivo occurs typically to either activate or impair the functionality of cellular proteins. Proteolysis can occur during cellular homeostasis or can be induced due to external stress stimuli such as heat, biological or chemical insult, and is mediated by the activity of cellular enzymes, namely, proteases. Proteolytic cleavage of proteins can influence protein activation by exposing an active site or disrupting inhibitor binding. Conversely, proteolytic cleavage of many proteins has also been shown to lead to protein degradation resulting in inactivation of the substrate. Thousands of proteolytic events are known to take place in regulated cellular processes such as apoptosis and pyroptosis, however, their individual contribution to these processes remains poorly understood. Additionally, many cellular homeostatic processes are regulated by proteolytic events, however, in some cases, few proteolytic substrates have been identified. To gain further insight into the mechanism of action of these cellular processes, and to characterize biomarkers of cell death and other pathological indications, it is imperative to utilize a complete arsenal of tools for studying proteolysis events in vivo and in vitro. In this chapter, we focus on alternative methodologies to N-terminomics for profiling substrates of proteolysis and describe an additional suite of tools including orthogonal biophysical separation techniques such as COFRADIC or GASSP, and affinity capture tools that can enrich for newly formed C-termini (C-terminomics) generated as a result of caspase-mediated proteolysis. © 2014 Elsevier Inc. All rights reserved.

  9. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    Science.gov (United States)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  10. Development of hybrid low-pressure MSGC neutron detectors

    International Nuclear Information System (INIS)

    Gebauer, B.; Alimov, S.S.; Klimov, A.Yu.; Levchanovski, F.V.; Litvinenko, E.I.; Nikiforov, A.S.; Prikhodko, V.I.; Richter, G.; Rogov, V.; Schulz, Ch.; Shashkin, V.I.; Wilhelm, M.; Wilpert, Th.

    2004-01-01

    For very high rate and resolution time-resolved experiments at next generation pulsed spallation neutron sources like ESS large-area hybrid low-pressure micro-strip gas chamber detectors are being developed. Due to their thin composite converter foil and exponential gas multiplication commencing at the converter surfaces the detectors are free of parallax, and according to detailed modeling the very high transverse and longitudinal localization accuracies in the conversion and gas multiplication processes allow position and time resolutions of ∼100 μm and 8 cps. This will open up novel applications based on time-of-flight (TOF) and single-event detection with very high dynamic range, replacing integrating CCD and image plate detectors, e.g. in radiography/tomography, TOF Laue diffraction, single crystal diffraction and focusing low-Q SANS. In this conference report new results concerning the technical realization of this detector system are reported in conjunction with a brief summary of the detector principle and with reference to earlier results

  11. Endoscopic PIV measurements in a low pressure turbine rig

    Energy Technology Data Exchange (ETDEWEB)

    Kegalj, Martin; Schiffer, Heinz-Peter [Technische Universitaet Darmstadt (Germany). Department of Gas Turbines and Aerospace Propulsion

    2009-10-15

    Particle-Image-Velocimetry (PIV) is a useful way to acquire information about the flow in turbomachinery. Several premises have to be fulfilled to achieve high-quality data, for example, optical access, low vibrations and low reflections. However, not all test facilities comply with these requirements. If there is no optical access to the test area, measurements cannot be performed. The use of borescopic optics is a possible solution to this issue, as the access required is very small. Several different techniques can be used to measure the three components of the velocity vector, one of which is Stereo-PIV. These techniques require either large optical access from several viewing angles or highly complex setups. Orthogonal light sheet orientations in combination with borescopic optics using Planar-PIV can deliver sufficient information about the flow. This study will show the feasibility of such an approach in an enclosed test area, such as the interblade space in a Low-Pressure-Turbine-Rig. The results from PIV will be compared with data collected with conventional techniques, such as the Five-Hole-Probe and the 2-component Hot-Wire-Anemometry. An analysis of time- and phase-averaged data will be performed. (orig.)

  12. μ+ charge exchange and muonium formation in low pressure gases

    International Nuclear Information System (INIS)

    Fleming, D.G.; Mikula, R.J.; Garner, D.M.

    1982-04-01

    Using the basic muon spin rotation technique, the fractions of energetic positive muons thermalizing in diamagnetic environments (fsub(μ)) or as the paramagnetic muonium atom (fsub(Mu)) have been measured in low pressure pure gases (He, Ne, Ar, Kr, Xe, H 2 , N 2 , NH 3 , and CH 4 ) as well as in several gas mixtures (Ne/Xe, Ne/Ar, Ne/NH 3 , Ne/CH 4 ). In the pure gases, the muonium fractions fsub(Mu) are generally found to be smaller than expected from analogous proton charge exchange studies, particularly in the molecular gases. This is probably due to hot atom reactions of muonium following the charge exchange regime. Comparisons with monium formation in condensed matter as well as positronium formation in gases are also presented. In the gas mixtures, the addition of only a few hundred ppm of a dopant gas, which is exothermic for muonium formation (e.g. Xe), gives rise to an fsub(Mu) characteristic of the pure dopant gas itself, demonstrating the importance of the neutralization process right down to thermal energies. In all cases, the experimental signal amplitudes are found to be strongly pressure dependent, which is interpreted in terms of the time spent by the muon as neutral muonium in the charge exchange regime: tsub(n) < 0.2 ns. This time is generally shorter in the case of molecular gases than in rare gases

  13. Structure and oxygen incorporation in low pressure sputtered YBCO films

    International Nuclear Information System (INIS)

    Chaudhary, S.; Pandya, D. K.; Kashyap, S. C.

    2002-01-01

    Thin films of YBa 2 Cu 3 O 7- δ (YBCO) have been successfully grown by reactive RF-magnetron sputtering technique at low pressure. The oxygen partial pressure of 0.95 mTorr, a total pressure (argon and oxygen) of 1.9 mTorr, and a substrate temperature of 775 grad C resulted in good quality films with T C (R=0) = 85.3 K and J Cmag (4.2 K) ≅ 2x10 7 A/cm 2 . The incorporation of oxygen in the as-grown films has been controlled by using different ambient - oxygen, air or argon during in-situ cooling. The superconducting behaviour of the films was studied using resistance-temperature and low field ac-susceptibility measurements and correlated with their structure. All the films exhibited metallic conduction in the normal state. The oxygen- and air- cooled films were superconducting, possessing the usual orthorhombic structure. The argon-cooled films were non-superconducting possessing the tetragonal structure, thus implying that the structure of the film during deposition is tetragonal which transforms to either of the oxygen rich orthorhombic-I or -II phases depending upon the oxygen/air ambient. The 'δ' values of 0.14, 0.32 and 0.70 and higher 'c'-parameters of 1.1785, 1.180 and 1.183 nm have been obtained for oxygen, air and argon cooled films respectively. (Authors)

  14. Sheath heating in low-pressure capacitive radio frequency discharges

    International Nuclear Information System (INIS)

    Wood, B.P.

    1991-01-01

    Capacitively coupled, parallel plate, r.f. discharges are commonly used for materials processing. The electrons in such a discharge gain and lose energy by reflection from the oscillating sheaths which form at the electrodes. Previous models of the electron heating by this mechanism have assumed that the sheath motion is slow compared to the electron thermal velocity, so that the electron energy change from each reflection is small. Here, the heating rate, density, and sheath width relations are derived analytically in the limit of very fast sheath motion. Numerical results are presented spanning the slow and fast limits. Results from particle-in-cell simulations show that in the large-energy-change regime, an electron beam is produced on each sheath expansion. At low pressure, this beam can traverse the plasma and interact with the sheath at the opposite electrode, producing a beam energy and density dependence on the length of the discharge. The beam produces a time and space varying warm tail on the electron energy distribution. Two revised heating models are derived, assuming power-law and two-temperature electron energy distributions, with temporal variation in electron temperature. These revised models yield new predictions for the variation of the power, density, and sheath thickness with applied r.f. voltage. These predictions are compared with simulation results and laboratory experiment. The electron sheath motion is investigated experimentally by observing the signal on a floating probe in the sheath region. This is compared to the signal product by a non-linear circuit model which accounts for the perturbation of the sheath potential by the probe and includes various forms of sheath motion. The experimental observations are consistent with the analytical predictions. Experimental observations of plasma-sheath resonance oscillations are presented which agree with analytical predictions

  15. H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 νm

    KAUST Repository

    Li, Sijie; Farooq, Aamir; Hanson, Ronald Kenneth

    2011-01-01

    Making use of a newly available rapid-tuning diode laser operating at wavelengths up to 2.9 νm, an absorption-based temperature sensor was developed for in situ measurements in low-pressure flames. Based on the systematic analysis of H2O vapor

  16. Ultrasonic nebulization extraction/low pressure photoionization mass spectrometry for direct analysis of chemicals in matrices.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Zhou, Zhongyue; Yang, Jiuzhong; Qi, Fei; Pan, Yang

    2015-09-03

    A novel ultrasonic nebulization extraction/low-pressure photoionization (UNE-LPPI) system has been designed and employed for the rapid mass spectrometric analysis of chemicals in matrices. An ultrasonic nebulizer was used to extract the chemicals in solid sample and nebulize the solvent in the nebulization cell. Aerosols formed by ultrasonic were evaporated by passing through a transferring tube, and desolvated chemicals were ionized by the emitted light (10.6 eV) from a Krypton discharge lamp at low pressure (∼68 Pa). First, a series of semi/non-volatile compounds with different polarities, such as polycyclic aromatic hydrocarbons (PAHs), amino acids, dipeptides, drugs, nucleic acids, alkaloids, and steroids were used to test the system. Then, the quantification capability of UNE-LPPI was checked with: 1) pure chemicals, such as 9,10-phenanthrenequinone and 1,4-naphthoquinone dissolved in solvent; 2) soil powder spiked with different amounts of phenanthrene and pyrene. For pure chemicals, the correlation coefficient (R(2)) for the standard curve of 9,10-phenanthrenequinone in the range of 3 ng-20 μg mL(-1) was 0.9922, and the measured limits of detection (LOD) was 1 ng ml(-1). In the case of soil powder, linear relationships for phenanthrene and pyrene from 10 to 400 ng mg(-1) were obtained with correlation coefficients of 0.9889 and 0.9893, respectively. At last, the feasibility of UNE-LPPI for the detection of chemicals in real matrices such as tablets and biological tissues (tea, Citrus aurantium peel and sage (Salvia officinalis) leaf) were successfully demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. [Pharmacological mechanism analysis of oligopeptide from Pinctada fucata based on in silico proteolysis and protein interaction network].

    Science.gov (United States)

    Chen, Yan-Kun; Qiao, Lian-Sheng; Huo, Xiao-Qian; Zhang, Xu; Han, Na; Zhang, Yan-Ling

    2017-09-01

    Pinctada fucata oligopeptide is one of key pharmaceutical effective constituents of P. fucata. It is significant to analyze its pharmacological effect and mechanism. This study aims to discover the potential oligopeptides from P. fucata and analyze the mechanism of P. fucata oligopeptide based on in silico technologies and protein interaction network(PIN). First, main protein sequences of P. fucata were collected, and oligopeptides were obtained using in silico gastrointestinal tract proteolysis. Then, key potential targets of P. fucata oligopeptides were obtained through pharmacophore screening. The protein-protein interaction(PPI) of targets was achieved and implemented to construct PIN and analyze the mechanism of P. fucata oligopeptides. P. fucata oligopeptide database was constructed based on in silico technologies, including 458 oligopeptides. Twelve modules were identified from PIN by a graph theoretic clustering algorithm Molecular Complex Detection(MCODE) and analyzed by Gene ontology(GO) enrichment. The results indicated that P. fucata oligopeptides have an effect in treating neurological diseases, such as Alzheimer's disease. In silico proteolysis could be used to analyze the protein sequences of traditional Chinese medicine(TCM). According to the combination of in silico proteolysis and PIN, the biological activity of oligopeptides could be interpreted rapidly based on the known TCM protein sequence. The study provides the methodology basis for rapidly and efficiently implementing the mechanism analysis of TCM oligopeptides. Copyright© by the Chinese Pharmaceutical Association.

  18. The effect of different packaging materials on proteolysis, sensory ...

    African Journals Online (AJOL)

    In this study, tulum cheese was manufactured using raw ewe's milk and was ripened in goat's skin and plastic bags. The effect of ripening materials (skin bag or plastic) on proteolysis was investigated during 120 days of ripening. In addition, sensory scores of the cheeses were assessed at the 90th and 120th days.

  19. Physiological regulation of epithelial sodium channel by proteolysis

    DEFF Research Database (Denmark)

    Svenningsen, Per; Friis, Ulla G; Bistrup, Claus

    2011-01-01

    PURPOSE OF REVIEW: Activation of epithelial sodium channel (ENaC) by proteolysis appears to be relevant for day-to-day physiological regulation of channel activity in kidney and other epithelial tissues. Pathophysiogical, proteolytic activation of ENaC in kidney has been demonstrated in proteinuric...

  20. Surface chemical structure of poly(ethylene naphthalate) films during degradation in low-pressure high-frequency plasma treatments

    Science.gov (United States)

    Kamata, Noritsugu; Yuji, Toshifumi; Thungsuk, Nuttee; Arunrungrusmi, Somchai; Chansri, Pakpoom; Kinoshita, Hiroyuki; Mungkung, Narong

    2018-06-01

    The surface chemical structure of poly(ethylene naphthalate) (PEN) films treated with a low-pressure, high-frequency plasma was investigated by storing in a box at room temperature to protect the PEN film surface from dust. The functional groups on the PEN film surface changed over time. The functional groups of –C=O, –COH, and –COOH were abundant in the Ar + O2 mixture gas plasma-treated PEN samples as compared with those in untreated PEN samples. The changes occurred rapidly after 2 d following the plasma treatment, reaching steady states 8 d after the treatment. Hydrophobicity had an inverse relationship with the concentration of these functional groups on the surface. Thus, the effect of the low-pressure high-frequency plasma treatment on PEN varies as a function of storage time. This means that radical oxygen and oxygen molecules are clearly generated in the plasma, and this is one index to confirm that radical reaction has definitely occurred between the gas and the PEN film surface with a low-pressure high-frequency plasma.

  1. Chemotherapy inhibits skeletal muscle ubiquitin-proteasome-dependent proteolysis.

    Science.gov (United States)

    Tilignac, Thomas; Temparis, Sandrine; Combaret, Lydie; Taillandier, Daniel; Pouch, Marie-Noëlle; Cervek, Matjaz; Cardenas, Diana M; Le Bricon, Thierry; Debiton, Eric; Samuels, Susan E; Madelmont, Jean-Claude; Attaix, Didier

    2002-05-15

    Chemotherapy has cachectic effects, but it is unknown whether cytostatic agents alter skeletal muscle proteolysis. We hypothesized that chemotherapy-induced alterations in protein synthesis should result in the increased incidence of abnormal proteins, which in turn should stimulate ubiquitin-proteasome-dependent proteolysis. The effects of the nitrosourea cystemustine were investigated in skeletal muscles from both healthy and colon 26 adenocarcinoma-bearing mice, an appropriate model for testing the impact of cytostatic agents. Muscle wasting was seen in both groups of mice 4 days after a single cystemustine injection, and the drug further increased the loss of muscle proteins already apparent in tumor-bearing animals. Cystemustine cured the tumor-bearing mice with 100% efficacy. Surprisingly, within 11 days of treatment, rates of muscle proteolysis progressively decreased below basal levels observed in healthy control mice and contributed to the cessation of muscle wasting. Proteasome-dependent proteolysis was inhibited by mechanisms that include reduced mRNA levels for 20S and 26S proteasome subunits, decreased protein levels of 20S proteasome subunits and the S14 non-ATPase subunit of the 26S proteasome, and impaired chymotrypsin- and trypsin-like activities of the enzyme. A combination of cisplatin and ifosfamide, two drugs that are widely used in the treatment of cancer patients, also depressed the expression of proteasomal subunits in muscles from rats bearing the MatB adenocarcinoma below basal levels. Thus, a down-regulation of ubiquitin-proteasome-dependent proteolysis is observed with various cytostatic agents and contributes to reverse the chemotherapy-induced muscle wasting.

  2. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating pressure...

  3. Bulk characterization of pharmaceutical powders by low-pressure compression II

    DEFF Research Database (Denmark)

    Hagsten Sørensen, A.; Sonnergaard, Jørn; Hovgaard, L.

    2006-01-01

    The aim of the present study was to investigate the effect of punch and die diameter, sample size, compression speed, and particle size on two low-pressure compression-derived parameters; the compressed density and the Walker w parameter. The excellent repeatability of the low-pressure compressio...

  4. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    Science.gov (United States)

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  5. Complex regulation controls Neurogenin3 proteolysis

    Directory of Open Access Journals (Sweden)

    Ryan Roark

    2012-10-01

    The ubiquitin proteasome system (UPS is known to be responsible for the rapid turnover of many transcription factors, where half-life is held to be critical for regulation of transcriptional activity. However, the stability of key transcriptional regulators of development is often very poorly characterised. Neurogenin 3 (Ngn3 is a basic helix–loop–helix transcription factor that plays a central role in specification and differentiation of endocrine cells of the pancreas and gut, as well as spermatogonia and regions of the brain. Here we demonstrate that Ngn3 protein stability is regulated by the ubiquitin proteasome system and that Ngn3 can be ubiquitylated on lysines, the N-terminus and, highly unusually, on non-canonical residues including cysteines and serines/threonines. Rapid turnover of Ngn3 is regulated both by binding to its heterodimeric partner E protein and by the presence of cdk inhibitors. We show that protein half-life does appear to regulate the activity of Ngn3 in vivo, but, unlike the related transcription factor c-myc, ubiquitylation on canonical sites is not a requirement for transcriptional activity of Ngn3. Hence, we characterise an important new level of Ngn3 post-translational control, which may regulate its transcriptional activity.

  6. Ignition and combustion of pyrotechnics at low pressures and at temperature extremes

    Directory of Open Access Journals (Sweden)

    Clive Woodley

    2017-06-01

    Full Text Available Rapid and effective ignition of pyrotechnic countermeasure decoy flares is vitally important to the safety of expensive military platforms such as aircraft. QinetiQ is conducting experimental and theoretical research into pyrotechnic countermeasure decoy flares. A key part of this work is the development and application of improved models to increase the understanding of the ignition processes occurring for these flares. These models have been implemented in a two-dimensional computational model and details are described in this paper. Previous work has conducted experiments and validated the computational model at ambient temperature and pressure. More recently the computational model has been validated at pressures down to that equivalent to 40,000 feet but at ambient temperature (∼290 K. This paper describes further experimental work in which the ignition delays of the priming material in inert countermeasure decoy flares were determined for pressures down to 40,000 feet and at temperature extremes of −40 °C and 100 °C. Also included in this paper is a comparison of the measured and predicted ignition delays at low pressures and temperature extremes. The agreement between the predicted and measured ignition delays is acceptable.

  7. A model of proteolysis and amino acid biosynthesis for Lactobacillus delbrueckii subsp. bulgaricus in whey.

    Science.gov (United States)

    Liu, Enuo; Zheng, Huajun; Hao, Pei; Konno, Tomonobu; Yu, Yao; Kume, Hisae; Oda, Munehiro; Ji, Zai-Si

    2012-12-01

    Lactobacillus delbrueckii subsp. bulgaricus 2038 (L. bulgaricus 2038) is a bacterium that is used as a starter for dairy products by Meiji Co., Ltd of Japan. Culturing L. bulgaricus 2038 with whey as the sole nitrogen source results in a shorter lag phase than other milk proteins under the same conditions (carbon source, minerals, and vitamins). Microarray results of gene expression revealed characteristics of amino acid anabolism with whey as the nitrogen source and established a model of proteolysis and amino acid biosynthesis for L. bulgaricus. Whey peptides and free amino acids are readily metabolized, enabling rapid entry into the logarithmic growth phase. The oligopeptide transport system is the primary pathway for obtaining amino acids. Amino acid biosynthesis maintains the balance between amino acids required for cell growth and the amount obtained from environment. The interconversion of amino acids is also important for L. bulgaricus 2038 growth.

  8. A new method for decontamination of radioactive waste using low-pressure arc discharge

    International Nuclear Information System (INIS)

    Fujiwara, Kazutoshi; Furukawa, Shizue; Adachi, Kazuo; Amakawa, Tadashi; Kanbe, Hiromi

    2006-01-01

    In this paper, the decontamination features of the low-pressure arc-discharge method for radioactive waste generated in the operation and maintenance of nuclear power plants were examined. The low-pressure arc-discharge method was applied to type 304 stainless-steel, type 316L stainless-steel, alloy 600 and carbon-steel covered with radioactive corrosion products. Approximately, 80% of the radioactivity build up on stainless-steels could be removed by the low-pressure arc discharge

  9. A reavaluation of the reliability analysis of the low pressure injection system for Angra-1

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.; Tayt-Sohn, L.C.

    1983-01-01

    The emergency core cooling system of Angra 1 is analysed aiming at the low pressure injection systems, using the fault tree technique. All the failure mode of the components are considered for this analyse. (author) [pt

  10. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  11. Low pressure microenvironments: Methane production at 50 mbar and 100 mbar by methanogens

    Science.gov (United States)

    Mickol, Rebecca L.; Kral, Timothy A.

    2018-04-01

    Low pressure is often overlooked in terms of possible biocidal effects when considering a habitable environment on Mars. Few experiments have investigated the ability for microorganisms to actively grow under low pressure conditions, despite the atmosphere being a location on Earth where organisms could be exposed to these pressures. Three species of methanogens (Methanobacterium formicicum, Methanosarcina barkeri, Methanococcus maripaludis) were tested for their ability to actively grow (demonstrate an increase in methane production and optical density) within low-pressure microenvironments at 50 mbar or 100 mbar. M. formicicum was the only species to demonstrate both an increase in methane and an increase in optical density during the low-pressure exposure period for experiments conducted at 50 mbar and 100 mbar. In certain experiments, M. barkeri showed an increase in optical density during the low-pressure exposure period, likely due to the formation of multicellular aggregates, but minimal methane production (conditions. Results indicate that low pressure exposure may just be inhibitory during the exposure itself, and metabolism may resume following incubation under more ideal conditions. Further work is needed to address growth/survival under Mars surface pressures.

  12. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    Science.gov (United States)

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-07-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting.

  13. Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus.

    Science.gov (United States)

    Macierzanka, Adam; Böttger, Franziska; Rigby, Neil M; Lille, Martina; Poutanen, Kaisa; Mills, E N Clare; Mackie, Alan R

    2012-12-18

    Fundamental knowledge of physicochemical interactions in the gastrointestinal environment is required in order to support rational designing of protein-stabilized colloidal food and pharmaceutical delivery systems with controlled behavior. In this paper, we report on the colloidal behavior of emulsions stabilized with the milk protein sodium caseinate (Na-Cas), and exposed to conditions simulating the human upper gastrointestinal tract. In particular, we looked at how the kinetics of proteolysis was affected by adsorption to an oil-water interface in emulsion and whether the proteolysis and the emulsion stability could be manipulated by enzymatic structuring of the interface. After cross-linking with the enzyme transglutaminase, the protein was digested with use of an in vitro model of gastro-duodenal proteolysis in the presence or absence of physiologically relevant surfactants (phosphatidylcholine, PC; bile salts, BS). Significant differences were found between the rates of digestion of Na-Cas cross-linked in emulsion (adsorbed protein) and in solution. In emulsion, the digestion of a population of polypeptides of M(r) ca. 50-100 kDa was significantly retarded through the gastric digestion. The persistent interfacial polypeptides maintained the original emulsion droplet size and prevented the system from phase separating. Rapid pepsinolysis of adsorbed, non-cross-linked Na-Cas and its displacement by PC led to emulsion destabilization. These results suggest that structuring of emulsions by enzymatic cross-linking of the interfacial protein may affect the phase behavior of emulsion in the stomach and the gastric digestion rate in vivo. Measurements of ζ-potential revealed that BS displaced the remaining protein from the oil droplets during the simulated duodenal phase of digestion. Diffusion of the postdigestion emulsion droplets through ex vivo porcine intestinal mucus was only significant in the presence of BS due to the high negative charge these

  14. In vitro digestion and physicochemical characteristics of corn starch mixed with amino acid modified by low pressure treatment.

    Science.gov (United States)

    Ji, Ying

    2018-03-01

    The digestibility and molecular structure of corn starch mixed with amino acid modified by low-pressure treatment (LPT) was investigated. Amino acid induced a significant increase in the slowly digestible starch (SDS) and decrease in the rapidly digestible starch (RDS) after LPT. The reason is the formation of ester bond between the molecular chains of amino acid and starch. Low pressure treatment altered greatly the morphology of corn starch mixed with or without amino acid. After LPT, less ordered Maltese and more granule fragments were observed for starch-amino acid complex. An increase in size distribution was obvious after LPT and the size distribution curves provided from a new variety. We found that higher enthalpy and relative crystallinity of the starch-amino acid complex were associated with a higher SDS content. It can be inferred that LPT had a greater impact on the digestion and structural characterization of corn starch mixed with amino acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Plant senescence and proteolysis: two processes with one destiny.

    Science.gov (United States)

    Diaz-Mendoza, Mercedes; Velasco-Arroyo, Blanca; Santamaria, M Estrella; González-Melendi, Pablo; Martinez, Manuel; Diaz, Isabel

    2016-01-01

    Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutrients from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to develop their proteolytic activity at the right place and at the proper time. All these events associated with senescence have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic proteins as source for nitrogen recycling.

  16. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars

    Science.gov (United States)

    Mickol, R. L.; Kral, T. A.

    2017-12-01

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species ( Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  17. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars.

    Science.gov (United States)

    Mickol, R L; Kral, T A

    2017-12-01

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  18. Estrogen receptor of primary breast cancers: evidence for intracellular proteolysis

    International Nuclear Information System (INIS)

    Maaroufi, Younes; Lacroix, Marc; Lespagnard, Laurence; Journé, Fabrice; Larsimont, Denis; Leclercq, Guy

    2000-01-01

    Iodinated oestradiol-labeled oestrogen receptor (ER) isoforms devoid of amino-terminal ABC domains represent about two-thirds of the whole receptor population detected in cytosol samples from human breast cancers. This high frequency could not be ascribed to the expression of truncated mRNAs, or to the proteolysis of the native ER peptide at the time of homogenization or assay, suggesting an intracellular proteolysis. Free amino-terminal and ligand-binding domains maintained together within oligomeric structure(s); increase of ionic strength separated them. The amino-terminal region was consistently detected in the cell nucleus by specific immunohistochemistry leading to the concept of a potential intranuclear association between ER cleavage products and/or other regulatory proteins. We previously reported that about two-thirds of [ 125 I]oestradiol-labelled cytosolic ERs from breast cancer samples eluted as low-molecular-weight isoforms (≤ 37 kDa, size-exclusion fast pressure liquid chromatography [FPLC]). These isoforms failed to adsorb strongly to hydroxylapatite at high ionic strength, a property that was ascribed to receptors devoid of amino-terminal ABC domains. In view of recent data concerning intracellular proteolysis of several transcriptional regulators, the possibility of such behaviour for ER was assessed. The clinical significance of ER measurement in breast cancer cytosols is well established; approximately 50% of ER-positive cases respond to endocrine therapy. Whether such a poor correlation is related to a high proportion of cleaved ER is a question of prime importance. Failure of routine ER assays to discriminate between full-length and cleaved receptors led us to develop an oestradiol-binding assay based on hydroxylapatite adsorption. The aims of the present study were to demonstrate that hydroxylapatite adsorption assay easily identifies cleaved cytosolic ER forms and to assess the origin of such ER forms. Breast cancer cytosols classified as

  19. Experimental Investigation of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    Science.gov (United States)

    Hultgren, Lennart S.; Volino, Ralph J.

    2002-01-01

    Modern low-pressure turbine airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and to reduce part count. The adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation, particularly under cruise conditions. Separation bubbles, notably those which fail to reattach, can result in a significant degradation of engine efficiency. Accurate prediction of separation and reattachment is hence crucial to improved turbine design. This requires an improved understanding of the transition flow physics. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions, has a strong influence on subsequent reattachment, and may even eliminate separation. Further complicating the problem are the high free-stream turbulence levels in a real engine environment, the strong pressure gradients along the airfoils, the curvature of the airfoils, and the unsteadiness associated with wake passing from upstream stages. Because of the complicated flow situation, transition in these devices can take many paths that can coexist, vary in importance, and possibly also interact, at different locations and instances in time. The present work was carried out in an attempt to systematically sort out some of these issues. Detailed velocity measurements were made along a flat plate subject to the same nominal dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil ('Pak-B'). The Reynolds number based on wetted plate length and nominal exit velocity, Re, was varied from 50;000 to 300; 000, covering cruise to takeoff conditions. Low, 0.2%, and high, 7%, inlet free-stream turbulence intensities were set using passive grids. These turbulence levels correspond to about 0.2% and 2.5% turbulence intensity in the test section when normalized with the exit velocity. The Reynolds number and free

  20. Laser-light backscattering response to water content and proteolysis in dry-cured ham

    DEFF Research Database (Denmark)

    Fulladosa, E.; Rubio-Celorio, M.; Skytte, Jacob Lercke

    2017-01-01

    on the acquisition conditions used. Laser backscattering was influenced by both dryness and proteolysis intensity showing an average light intensity decrease of 0.2 when decreasing water content (1% weight loss) and increasing proteolysis (equivalent to one-hour enzyme action). However, a decrease of scattering area...... was only detected when the water content was decreased (618 mm(2) per 1% weight loss). Changes on scattering of light profiles were only observed when the water content changed. Although there is a good correlation between water content and LBI parameters when analysing commercial samples, proteolysis...... of laser incidence) and to analyse the laser-light backscattering changes caused by additional hot air drying and proteolysis of dry-cured ham slices. The feasibility of the technology to determine water content and proteolysis (which is related to textural characteristics) of commercial sliced dry...

  1. Replacement of low pressure reheater and performance evaluation on domestic NPP moisture separator reheater

    International Nuclear Information System (INIS)

    Choi, Y. S.; Jeong, W. T.; Shon, S. Y.; Kim, M. H.

    2003-01-01

    Moisture Separator Reheater is one of the most important equipment for the integrity of low pressure turbine and the total efficiency of the nuclear power plant, It supplies the dry steam to low pressure turbine after separation of moisture and reheating the wet steam out of high pressure turbine. This equipment is always operated under severe conditions, therefore it should be carefully maintained for safe operation and operating confidence. After replacement low pressure reheater of moister separator reheater on domestic nuclear power plant, there was MSR performance degradation and vibration of condensate drain line. So I found out root cause and commented a solution, site people modified the equipment. Finally I concluded the performanc of MSR was good condition, after I inspected the equipment and evaluated the performance of MSR

  2. Design and experiment of high-current low-pressure plasma-cathode e-gun

    International Nuclear Information System (INIS)

    Xie Wenkai; Li Xiaoyun; Wang Bin; Meng Lin; Yan Yang; Gao Xinyan

    2006-01-01

    The preliminary design of a new high-power low pressure plasma-cathode e-gun is presented. Based on the hollow cathode effect and low-pressure glow discharge empirical formulas, the hollow cathode, the accelerating gap, and the working gas pressure region are given. The general experimental device of the low-pressure plasma cathode electron-gun generating high current density e-beam source is shown. Experiments has been done in continuous filled-in gases and gases-puff condition, and the discharging current of 150-200 A, the width of 60 μs and the collector current of 30-80 A, the width of 60 μs are obtained. The results show that the new plasma cathode e-gun can take the place of material cathode e-gun, especially in plasma filled microwave tubes. (authors)

  3. Study on low pressure evaporation of fresh water generation system model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Han Shik; Wibowo, Supriyanto; Shin, Yong Han; Jeong, Hyo Min [Gyeongsang National University, Tongyeong (Korea, Republic of); Fajar, Berkah [University of Diponegoro, Semarang (Indonesia)

    2012-02-15

    A low pressure evaporation fresh water generation system is designed for converting brackish water or seawater into fresh water by distillation in low pressure and temperature. Distillation through evaporation of feed water and subsequent vapor condensation as evaporation produced fresh water were studied; tap water was employed as feed water. The system uses the ejector as a vacuum creator of the evaporator, which is one of the most important parts in the distillation process. Hence liquid can be evaporated at a lower temperature than at normal or atmospheric conditions. Various operating conditions, i.e. temperature of feed water and different orifice diameters, were applied in the experiment to investigate the characteristics of the system. It was found that these parameters have a significant effect on the performance of fresh water generation systems with low pressure evaporation.

  4. A study on the manufacturing conditions of metal matrix composites by low pressure infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Won Jo; Hessian, Md Anowar; Park, Sung Ho [Gyeongsang National University, Tongyoung (Korea, Republic of); Huh, Sun Chul [Gyeongsang National University, JinJu (Korea, Republic of)

    2007-10-15

    Metal fiber preform reinforced aluminum alloy composite as made by the infiltration of molten metal under low pressure casting process. The infiltration behavior of filling pattern and the velocity profile with low-pressure casting process was investigated. The thermocouple was inserted into the preform in order to observe the infiltration behavior. The infiltration of applied pressure time, 1, 2 and 5 s under constant pressure of 0.4 MPa was completely filled during 0.4 s. In these conditions, molten aluminum alloy has successfully infiltrated to FeCrSi metal fiber preform by low-pressure casting process. It was observed the porosity of composites for reliability of composites. The automobile piston was developed with FeCrSi reinforced aluminum alloy that is 0% porosity by the optimal applied pressure and applied pressure time.

  5. An experimental and kinetic modeling study of premixed nitroethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Zhang, Lidong; Xie, Mingfeng

    2013-01-01

    An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass spectrome......An experimental and kinetic modeling study is reported on three premixed nitroethane/oxygen/argon flames at low pressure (4.655kPa) with the equivalence ratios (Φ) of 1.0, 1.5 and 2.0. Over 30 flame species were identified with tunable synchrotron vacuum ultraviolet photoionization mass...

  6. Improvement of the RELAP5 subcooled boiling model for low pressure conditions

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2000-01-01

    The RELAP5/MOD3.2.2 Gamma code was assessed against low pressure subcooled boiling experiments performed by Zeitoun and Shoukri [1] in a vertical annulus. The predictions of subcooled boiling bubbly flow showed that the present version of the RELAP5 code underestimates the void fraction growth along the tube. To improve the void fraction prediction at low pressure conditions a set of model changes is proposed, which includes modifications of bubbly-slug transition criterion, drift-flux model, interphase heat transfer coefficient and wall evaporation modeling. The improved experiment predictions with the modified RELAP5 code are presented and analysed. (author)

  7. The Ontario hydro low pressure turbine disc inspection program automated ultrasonic inspection systems - an overview

    International Nuclear Information System (INIS)

    Huggins, J.W.; Chopcian, M.; Grabish, M.

    1990-01-01

    An overview of the Ontario Hydro Low Pressure Turbine Disc Inspection Program is presented. The ultrasonic inspection systems developed in-house to inspect low pressure turbine discs at Pickering and Bruce Nuclear Generating stations are described. Three aspects of the program are covered: PART I - Background to inspection program, disc cracking experience, and development of an in-house inspection capability: PART II - System development requirements; ultrasonic equipment, electromechanical subsystems and instrumentation console: PART III - Customized software for flaw detection, sizing, data acquisition/storage, advanced signal processing, reports, documentation and software based diagnostics

  8. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.

    Science.gov (United States)

    Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang

    2016-02-19

    Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The Degradome database: mammalian proteases and diseases of proteolysis.

    Science.gov (United States)

    Quesada, Víctor; Ordóñez, Gonzalo R; Sánchez, Luis M; Puente, Xose S; López-Otín, Carlos

    2009-01-01

    The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes.

  10. Conformational changes in DNA gyrase revealed by limited proteolysis

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1998-01-01

    We have used limited proteolysis to identify conformational changes in DNA gyrase. Gyrase exhibits a proteolytic fingerprint dominated by two fragments, one of approximately 62 kDa, deriving from the A protein, and another of approximately 25 kDa from the B protein. Quinolone binding to the enzyme......-DNA intermediate by calcium ions does not reveal any protection, suggesting that the quinolone-induced conformational change is different from an "open-gate" state of the enzyme. A quinolone-resistant mutant of gyrase fails to give the characteristic quinolone-associated proteolytic signature. The ATP...... does not prevent dimerization since incubation of the enzyme-DNA complex with both ADPNP and quinolones gives rise to a complex whose proteolytic pattern retains the characteristic signature of dimerization but has lost the quinolone-induced protection. As a result, the quinolone-gyrase complex can...

  11. Age-related changes in factor VII proteolysis in vivo.

    Science.gov (United States)

    Ofosu, F A; Craven, S; Dewar, L; Anvari, N; Andrew, M; Blajchman, M A

    1996-08-01

    Previous studies have reported that pre-operative plasmas of patients over the age of 40 years who developed post-operative deep vein thrombosis (DVT) had approximately twice the amount of proteolysed factor VII found in plasmas of patients in whom prophylaxis with heparin or low M(r) heparin was successful. These and other studies also reported higher concentrations of thrombin-antithrombin III in pre- and post-operative plasmas of patients who developed post-operative thrombosis than in plasmas of patients in whom prophylaxis was successful. Whether the extent of factor VII proteolysis seen in the patients who developed post-operative DVT is related to the severity of their disease or age is not known. This report investigated age-related changes in the concentrations of total factor VII protein, factor VII zymogen, factor VIIa, tissue factor pathway inhibitor, thrombin-antithrombin III, and prothrombin fragment 1 + 2 in normal plasmas and the relationships between these parameters. With the exception of thrombin-antithrombin III, statistically significant increases in the concentrations of these parameters with age were found. Additionally, the differences between the concentrations of total factor VII protein and factor VII zymogen, an index factor VII proteolysis in vivo, were statistically significant only for individuals over age 40. Using linear regression analysis, a significant correlation was found to exist between the concentrations of plasma factor VIIa and prothrombin fragment 1 + 2. Since factor VIIa-tissue factor probably initiates coagulation in vivo, we hypothesize that the elevated plasma factor VIIa (reflecting a less tightly regulated tissue factor activity and therefore increased thrombin production in vivo) accounts for the high risk for post-operative thrombosis seen in individuals over the age of 40.

  12. Low-pressure chemical vapor deposition as a tool for deposition of thin film battery materials

    NARCIS (Netherlands)

    Oudenhoven, J.F.M.; Dongen, van T.; Niessen, R.A.H.; Croon, de M.H.J.M.; Notten, P.H.L.

    2009-01-01

    Low Pressure Chemical Vapor Deposition was utilized for the deposition of LiCoO2 cathode materials for all-solid-state thin-film micro-batteries. To obtain insight in the deposition process, the most important process parameters were optimized for the deposition of crystalline electrode films on

  13. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE REVERSE OSMOSIS MEMBRANES - PHASE II FINAL REPORT

    Science.gov (United States)

    Extensive experimental studies showed that thin-film, composite membranes can be used effectively for the separation of selected hazardous organic compounds. This waste treatment technique offers definite advantages in terms of high solute separations at low pressures (<2MPa) and...

  14. ASSESSING THE EFFECTIVENESS OF LOW PRESSURE ULTRAVIOLET LIGHT FOR INACTIVATING HELICOBACTER PYLORI

    Science.gov (United States)

    Three strains of Helicobacter pylori were exposed to ultraviolet (UV) light from a low-pressure source to determine log inactivation versus applied fluence. Results indicate that H. pylori is readily inactivated at UV fluences typically used in water treatment r...

  15. An experimental and kinetic modeling study of premixed nitromethane flames at low pressure

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Li, Yuyang; Yuan, Tao

    2011-01-01

    An experimental and modeling study is reported on three premixed nitromethane/oxygen/argon flames at low pressure (4.655kPa) with equivalence ratios (ϕ) of 1.0, 1.5 and 2.0. Flame species were identified with tunable synchrotron vacuum ultraviolet photoionization. The mole fraction profiles of more...

  16. Pre-breakdown light emission phenomena in low-pressure argon between parabolic electrodes

    NARCIS (Netherlands)

    Wagenaars, E.; Perriëns, N.W.B.; Brok, W.J.M.; Bowden, M.D.; Veldhuizen, van E.M.; Kroesen, G.M.W.

    2006-01-01

    An experimental study on pre-breakdown light emission in low-pressure argon gas was performed. In a pulsed discharge, pre-breakdown phenomena were observed for repetition rates between 100 and 2000 Hz and pulse duration of 100 ¿s. These phenomena were studied with time-resolved emission imaging

  17. Gray water recycle: Effect of pretreatment technologies on low pressure reverse osmosis treatment

    Science.gov (United States)

    Gray water can be a valuable source of water when properly treated to reduce the risks associated with chemical and microbial contamination to acceptable levels for the intended reuse application. In this study, the treatment of gray water using low pressure reverse osmosis (RO) filtration after pre...

  18. Low-pressure degenerate four-wave mixing spectroscopy with flam atomization

    International Nuclear Information System (INIS)

    Nolan, T.G.; Koutny, L.B.; Blazewicz, P.R.; Whitten, W.B.; Ramsey, J.M.

    1988-01-01

    A combination of degenerate four-wave mixing spectroscopy and a low-pressure sampling technique has been studied for isotopic analysis in an air-acetylene flame. Hyperfine spectra of D lines of sodium and several mixtures of lithium isotopes obtained in this way are presented

  19. Thomson scattering in a low-pressure argon mercury positive column

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.

    2000-01-01

    The electron density and the electron temperature in a low-pressure argon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 5

  20. Thomson scattering in a low-pressure neon mercury positive column

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.

    2001-01-01

    The electron density and the electron temperature in a low-pressure neon mercury positive column are determined using Thomson scattering. Special attention has been given to the stray light reduction in the Thomson scattering setup. The results are obtained in a discharge tube with a 26 mm diam, 10

  1. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NARCIS (Netherlands)

    Vries, de N.; Palomares, J.M.; Iordanova, E.I.; Veldhuizen, van E.M.; Mullen, van der J.J.A.M.

    2008-01-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined

  2. Nitrogen aggregation in Ib type synthetic diamonds at low pressure and high-temperature annealing

    International Nuclear Information System (INIS)

    Kazyuchits, N.M.; Rusetskij, M.S.; Latushko, Ya.I.; Kazyuchits, V.N.; Zajtsev, A.M.

    2015-01-01

    A new technique for annealing of diamonds at low pressure and high temperature (LPHT) is considered. The absorption spectra of synthetic Ib diamonds are given before and after annealing. This is evident from a comparison of the spectra that nitrogen aggregation process takes place at the LPHT annealing diamond. (authors)

  3. Simulation and experimental investigation of mechanical and thermal non-equilibrium effect on choking flow at low pressure

    International Nuclear Information System (INIS)

    Yoon, H.J.; Ishii, M.; Revankar, S.T.

    2004-01-01

    The prediction of two-phase choking flow at low pressure (<1MPa) is much more difficult than at relatively higher pressure due to the large density ratio and relatively large thermal and mechanical non-equilibrium between the phases. At low pressure currently available choking flow models are not reliable and satisfactory. In view of this, separate effect tests were conducted to systematically investigate the effects of mechanical and thermal non-equilibrium on the two-phase choking flow in a pipe. The systematic studies is not available in literature, therefore no clear understanding of these effects has been attained until now. A scaled integral facility called PUMA was used for these tests with specific boundary condition with several unique in-;line instruments. The mechanical non-equilibrium effect was studied with air-water choking flow. Subcooled water two-phase choking flow was studied to identify the effects of mechanical and thermal non-equilibrium. A typical nozzle and orifice were used as the choking flow section to evaluate the degree of non-equilibrium due to geometry. The slip ratio, which is a key parameter to express the mechanical non-equilibrium, is obtained upstream of the choking section in the air-water test. The measured choking mass flux for the nozzle was higher than the orifice at low flow quality (<0.05) for the same upstream flow quality indicating that there is a strong mechanical non-equilibrium at the choking plane. The thermal non-equilibrium effect was very strong at low pressure, however, no major influence of the geometry on this effect was observed. Experimental data were compared with RELAP5/MOD3.2.1.2, MOD3.3 beta and TRAC-M code predictions. The code predictions in general were not in agreement with the air-water choking flow test data. This indicated that the mechanical non-equilibrium effects were not properly modeled in the codes. The test data for subcooled water showed moderate decrease of choking mass flux with decrease

  4. Automated mini-column solid-phase extraction cleanup for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography – tandem mass spectrometry

    Science.gov (United States)

    This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...

  5. H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 νm

    KAUST Repository

    Li, Sijie

    2011-10-19

    Making use of a newly available rapid-tuning diode laser operating at wavelengths up to 2.9 νm, an absorption-based temperature sensor was developed for in situ measurements in low-pressure flames. Based on the systematic analysis of H2O vapor transitions in the fundamental vibrational bands (ν1 and ν3) of H2O in the range of 2.5-3.0 νm, an optimal closely-spaced spectral line pair near 2.9 νm was selected for its temperature sensitivity in the range of 1000-2500 K. The narrow-linewidth room-temperature laser was scanned repetitively across these spectral features at 5 kHz, enabling fast, accurate temperature sensing. Use of the temperature sensor was investigated in low-pressure flames supported on a McKenna burner at 15, 25 and 60 Torr. To avoid absorption by the cold gases in the flame edges and the recirculation region between the burner and the vacuum chamber wall, a variable-path in situ probe was designed and an optimal path length was determined to accurately measure the flame centerline temperature. Different flame conditions were investigated to illustrate the potential of this sensor system for sensitive measurements of combustion temperature in low-pressure flames. © 2011 IOP Publishing Ltd.

  6. Continuous fast Fourier transforms cyclic voltammetry as a new approach for investigation of skim milk k-casein proteolysis, a comparative study.

    Science.gov (United States)

    Shayeh, Javad Shabani; Sefidbakht, Yahya; Siadat, Seyed Omid Ranaei; Niknam, Kaveh

    2017-10-01

    Cheese production is relied upon the action of Rennet on the casein micelles of milk. Chymosin assay methods are usually time consuming and offline. Herein, we report a new electrochemical technique for studying the proteolysis of K-casein. The interaction of rennet and its substrate was studied by fast Fourier transform continuous cyclic voltammetry (FFTCCV) based on a determination of k-casein in aqueous solution. FFTCCV technique is a very useful method for studying the enzymatic procedures. Fast response, no need of modified electrodes or complex equipment is some of FFTCCV advantages. Various concentrations of enzyme and substrate were selected and the increase in the appearance of charged species in solution as a result of the addition of rennet was studied. Data obtained using FFTCCV technique were also confirmed by turbidity analysis. The results show that rennet proteolysis activity occurs in much shorter time scales compare with its aggregation. Hence, following the appearance of charged segments as a result of proteolysis could be under consideration as a rapid and online method. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    Science.gov (United States)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Modem low-pressure turbines, in general, utilize highly loaded airfoils in an effort to improve efficiency and to lower the number of airfoils needed. Typically, the airfoil boundary layers are turbulent and fully attached at takeoff conditions, whereas a substantial fraction of the boundary layers on the airfoils may be transitional at cruise conditions due to the change of density with altitude. The strong adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation at the latter low Reynolds number conditions. Large separation bubbles, particularly those which fail to reattach, cause a significant degradation of engine efficiency. A component efficiency drop of the order 2% may occur between takeoff and cruise conditions for large commercial transport engines and could be as large as 7% for smaller engines at higher altitude. An efficient means of of separation elimination/reduction is, therefore, crucial to improved turbine design. Because the large change in the Reynolds number from takeoff to cruise leads to a distinct change in the airfoil flow physics, a separation control strategy intended for cruise conditions will need to be carefully constructed so as to incur minimum impact/penalty at takeoff. A complicating factor, but also a potential advantage in the quest for an efficient strategy, is the intricate interplay between separation and transition for the situation at hand. Volino gives a comprehensive discussion of several recent studies on transition and separation under low-pressure-turbine conditions, among them one in the present facility. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions. If the transition occurs early in the boundary layer then separation may be reduced or completely eliminated. Transition in the shear layer of a separation bubble can lead to rapid reattachment. This suggests using control mechanisms to trigger and enhance early

  8. Proteolysis in model Portuguese cheeses: Effects of rennet and starter culture.

    Science.gov (United States)

    Pereira, Cláudia I; Gomes, Eliza O; Gomes, Ana M P; Malcata, F Xavier

    2008-06-01

    To shed further light onto the mechanisms of proteolysis that prevail throughout ripening of Portuguese cheeses, model cheeses were manufactured from bovine milk, following as much as possible traditional manufacture practices - using either animal or plant rennet. The individual role upon proteolysis of two (wild) strains of lactic acid bacteria - viz. Lactococcus lactis and Lactobacillus brevis, which are normally found to high viable numbers in said cheeses, was also considered, either as single or mixed cultures. Our experimental results confirmed the influence of rennet on the proteolysis extent, but not on proteolysis depth. On the other hand, the aforementioned strains clearly improved release of medium- and small-sized peptides, and contributed as well to the free amino acid pool in cheese. Copyright © 2007 Elsevier Ltd. All rights reserved.

  9. Effects of natural plant tenderizers on proteolysis and texture of dry ...

    African Journals Online (AJOL)

    , and overall acceptability. From these results, it is shown that those enzymes as a raw plant juices could be used as tenderizers in dry sausage production. Keywords: Dry sausages, wild boar meat, plant enzymes, proteolysis, texture, sensory ...

  10. Exploring the limits: A low-pressure, low-temperature Haber-Bosch process

    Science.gov (United States)

    Vojvodic, Aleksandra; Medford, Andrew James; Studt, Felix; Abild-Pedersen, Frank; Khan, Tuhin Suvra; Bligaard, T.; Nørskov, J. K.

    2014-04-01

    The Haber-Bosch process for ammonia synthesis has been suggested to be the most important invention of the 20th century, and called the ‘Bellwether reaction in heterogeneous catalysis’. We examine the catalyst requirements for a new low-pressure, low-temperature synthesis process. We show that the absence of such a process for conventional transition metal catalysts can be understood as a consequence of a scaling relation between the activation energy for N2 dissociation and N adsorption energy found at the surface of these materials. A better catalyst cannot obey this scaling relation. We define the ideal scaling relation characterizing the most active catalyst possible, and show that it is theoretically possible to have a low pressure, low-temperature Haber-Bosch process. The challenge is to find new classes of catalyst materials with properties approaching the ideal, and we discuss the possibility that transition metal compounds have such properties.

  11. Power supply improvements for ballasts-low pressure mercury/argon discharge lamp for water purification

    Science.gov (United States)

    Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.

    2017-02-01

    The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.

  12. Relation between surface roughness and number of cathode spots of a low-pressure arc

    International Nuclear Information System (INIS)

    Sato, Atsushi; Iwao, Toru; Yumoto, Motoshige

    2008-01-01

    A remarkable characteristic of the cathode spot of a low-pressure arc is that it can remove an oxide layer preferentially. Recently, cathode spots of a low-pressure arc have been used for cleaning metal oxide surfaces before thermal spraying or surface modification. Nevertheless, few reports have described the cathode spot movement or the oxide removal process. This experiment was carried out using a Fe+C cathode workpiece and a cylindrical copper anode. The cathode spot movement was recorded using a high-speed video camera. The images were later analysed using plasma image processing. The workpiece surface, which was covered with a 9.67 μm thick oxide, was analysed using laser microscopy after processing. The surface roughness and the number of cathode spots showed no direct relation because the current density per cathode spot did not change according to the number of cathode spots.

  13. An experimental study on two-phase flow pattern in low pressure natural circulation system

    International Nuclear Information System (INIS)

    Wu Shaorong; Han Bing; Zhou Lei; Zhang Youjie; Jiang Shengyao; Wu Xinxin

    1991-10-01

    An experimental study on two-phase flow pattern in the riser of low pressure natural circulation system was performed. The local differential pressure signal was analysed for flow pattern. It is considered that Sr f·d/v can be used to distinguish different flow patterns and it has clear and definite physical meaning. Flow patterns at different inlet temperature with different system pressures (1.5 MPa, 0.24 MPa and 0.1 MPa) are described. It is considered that the flow pattern is only bubble flow without flow pattern change during the period of low quality density-wave instability at 1.5 MPa. There is no density-wave oscillation in the system, when flow pattern is in bubble-intermittent transition area. The effect of flash vaporization on stability at low pressure is discussed

  14. Extreme accident mitigation - analysis of a low pressure secondary containment building

    International Nuclear Information System (INIS)

    Vaughan, G.J.; Dunbar, I.H.

    1987-01-01

    Although whole core accidents are sufficiently unlikely as to be beyond the design basis, the Secondary Containment Building [SCB] is expected to have some effect in mitigating the consequences of such accidents. From a design point of view there are many advantages in having a low pressure SCB fitted with a filtered vent, so studies have been undertaken of the response of such a building to the large sodium fires that might follow a severe accident. The behaviour of the sodium oxide aerosols has been studied using the code AEROSIM. The efficiency of an aerosol scrubber has been investigated experimentally. A simple code, SECCONTAIN, has been developed to model the effects of sodium fires in buildings, and has been applied to a specific design of a low pressure SCB. (author)

  15. Study of SmS properties in the low pressure phase (black phase)

    International Nuclear Information System (INIS)

    Bordier, G.

    1986-01-01

    SmS was studied for the transition from low pressure phase (black phase) to high pressure phase with an intermediate valence. But the study of the black phase is very rich. The variations of electron transport properties with pressure at low temperature show a semi-metal phase located, in the pressure-temperature diagram in the black phase for pressure over 4 kbars, corresponding to the phase B'of the doping-temperature diagram. Electron spin resonance shows a lack of sulfur and nearby this defect a samarium ion, magnetically coupled with the matrix, presents a divalent trivalent transition. Resonance lines are broadened with temperature. Conductivity relaxations occur at low pressure and low temperature by trapping a conduction electron, by magnetic exchange giving a bounded magnetic polaron. The relaxation time at null magnetic field is activated. An approximation of trapping barrier and critical field corresponding the maximum magnetoresistance is given by a model [fr

  16. Improvement of technical purpose materials performance characteristics with the radio frequency low pressure plasma

    Science.gov (United States)

    Makhotkina, L. Yu; Khristoliubova, V. I.

    2017-11-01

    The main aim of the work is to solve the actual problem of increasing the competitiveness of tanning products by reducing the prime cost and improving the quality of finished products due to the increased durability of the working elements of tanneries. The impact of the low pressure radio frequency (RF) plasma in the processes of treating for modification of the materials for special purposes is considered in the article. The results of working elements of tanneries and the materials for special purposes sample processing by a RF low pressure plasma are described. As a result of leather materials nano structuring and nano modifying physical, mechanical and hygienic characteristics were increased. Processing of the technical purpose materials allows to increase operational performance of products and extend their lifespan.

  17. Low-pressure injection molding of alumina ceramics using a carnauba wax binder: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo Nogueira, R.E.F.; Bezerra, A.C.; Santos, F.C. dos [Dept. de Engenharia Mecanica, Centro de Tecnologia-UFC, Fortaleza, CE (Brazil); Sousa, M.R. de; Acchar, W. [Dept. de Engenharia Mecanica, Univ. Federal do Rio Grande do Norte, UFRN-Campus Univ., Natal, RN (Brazil)

    2001-07-01

    Carnauba wax, a natural product from Northeastern Brazil, has found application in the processing of ceramics. However, the use of pure carnauba wax is not recommended due to its narrow melting range and poor mechanical properties. In the present work carnauba wax based organic vehicles with the addition of low-density polyethylene and stearic acid were developed for use in the low-pressure injection molding of alumina ceramics. Viscosimetric testing was employed for the determination of optimal composition of the organic vehicle. The optimal content of ceramic powder in the mixture was also determined. All the materials used are easily available in the Brazilian market. A simple ceramic part was injected at low pressures (0.6 MPa) using a semi-automatic injection molding machine. For this purpose a double cavity mold was designed and built. Preliminary results demonstrate the technical viability of the process using the organic vehicle developed. (orig.)

  18. The RF voltage dependence of the electron sheath heating in low pressure capacitively coupled rf discharges

    International Nuclear Information System (INIS)

    Buddemeier, U.; Kortshagen, U.; Pukropski, I.

    1995-01-01

    In low pressure capacitively coupled RF discharges two competitive electron heating mechanisms have been discussed for some time now. At low pressures the stochastic sheath heating and for somewhat higher pressures the Joule heating in the bulk plasma have been proposed. When the pressure is increased at constant RF current density a transition from concave electron distribution functions (EDF) with a pronounced cold electron group to convex EDFs with a missing strong population of cold electrons is found. This transition was interpreted as the transition from dominant stochastic to dominant Joule heating. However, a different interpretation has been given by Kaganovich and Tsendin, who attributed the concave shaped EDFs to the spatially inhomogeneous RF field in combination with the nonlocality of the EDF

  19. Postoperative shoulder pain after laparoscopic hysterectomy with deep neuromuscular blockade and low-pressure pneumoperitoneum

    DEFF Research Database (Denmark)

    Madsen, Matias Vested; Istre, Olav; Staehr-Rye, Anne K

    2016-01-01

    indicate that the use of deep neuromuscular blockade (NMB) improves surgical conditions during a low-pressure pneumoperitoneum (8 mmHg). OBJECTIVE: The aim of this study was to investigate whether low-pressure pneumoperitoneum (8 mmHg) and deep NMB (posttetanic count 0 to 1) compared with standard......: Ninety-nine patients. INTERVENTIONS: Randomisation to either deep NMB and 8 mmHg pneumoperitoneum (Group 8-Deep) or moderate NMB and 12 mmHg pneumoperitoneum (Group 12-Mod). Pain was assessed on a visual analogue scale (VAS) for 14 postoperative days. MAIN OUTCOME MEASURES: The primary endpoint...... was the incidence of shoulder pain during 14 postoperative days. Secondary endpoints included area under curve VAS scores for shoulder, abdominal, incisional and overall pain during 4 and 14 postoperative days; opioid consumption; incidence of nausea and vomiting; antiemetic consumption; time to recovery...

  20. Low pressure injection sequence sensitivity study of the M1 module of MEDICI

    International Nuclear Information System (INIS)

    Corradini, M.L.; Moses, G.A.; Norkus, J.K.; Welzbacker, R.T.

    1985-01-01

    In order to assess the consequences of a PWR containment failure and the ensuing radiological source term following a severe reactor accident, it is necessary to understand the ex-vessel behavior of the molten core. The M1 module of MEDICI models the dynamic fuel-coolant mixing, energetic interaction, and ejection of fuel and coolant from the reactor cavity following such an accident. A sensitivity study of the low pressure injection sequence was performed utilizing a Box-Behnken statistical design to treat five sets of input variables considered to be significant in the mixing and steam explosion processes. The low pressure injection sequence was studied in which the molten corium is modeled as a pour stream entering the cavity without entraining or sweeping out fuel or coolant

  1. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Maya, Jakob

    1987-01-01

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.

  2. A Low-Pressure Oxygen Storage System for Oxygen Supply in Low-Resource Settings.

    Science.gov (United States)

    Rassool, Roger P; Sobott, Bryn A; Peake, David J; Mutetire, Bagayana S; Moschovis, Peter P; Black, Jim Fp

    2017-12-01

    Widespread access to medical oxygen would reduce global pneumonia mortality. Oxygen concentrators are one proposed solution, but they have limitations, in particular vulnerability to electricity fluctuations and failure during blackouts. The low-pressure oxygen storage system addresses these limitations in low-resource settings. This study reports testing of the system in Melbourne, Australia, and nonclinical field testing in Mbarara, Uganda. The system included a power-conditioning unit, a standard oxygen concentrator, and an oxygen store. In Melbourne, pressure and flows were monitored during cycles of filling/emptying, with forced voltage fluctuations. The bladders were tested by increasing pressure until they ruptured. In Mbarara, the system was tested by accelerated cycles of filling/emptying and then run on grid power for 30 d. The low-pressure oxygen storage system performed well, including sustaining a pressure approximately twice the standard working pressure before rupture of the outer bag. Flow of 1.2 L/min was continuously maintained to a simulated patient during 30 d on grid power, despite power failures totaling 2.9% of the total time, with durations of 1-176 min (mean 36.2, median 18.5). The low-pressure oxygen storage system was robust and durable, with accelerated testing equivalent to at least 2 y of operation revealing no visible signs of imminent failure. Despite power cuts, the system continuously provided oxygen, equivalent to the treatment of one child, for 30 d under typical power conditions for sub-Saharan Africa. The low-pressure oxygen storage system is ready for clinical field trials. Copyright © 2017 by Daedalus Enterprises.

  3. Burnout correlations for even- and odd-numbered peripheral rod clusters over low pressure range

    International Nuclear Information System (INIS)

    Akaho, E.H.K.

    1995-01-01

    Burnout data with low pressure Freon-113 for even- and odd- numbered peripheral rod clusters with relatively large spacings were used to derive equations in terms of dimensionless parameters suggested by Barnett. The equations which are for three different flow regimes for each rod geometry (even or odd) were found to predict burnout data with maximum RMS deviation being 3.8%. (author). 11 figs., 3 tabs., 15 refs

  4. Unimolecular decomposition reactions at low-pressure: A comparison of competitive methods

    Science.gov (United States)

    Adams, G. F.

    1980-01-01

    The lack of a simple rate coefficient expression to describe the pressure and temperature dependence hampers chemical modeling of flame systems. Recently developed simplified models to describe unimolecular processes include the calculation of rate constants for thermal unimolecular reactions and recombinations at the low pressure limit, at the high pressure limit and in the intermediate fall-off region. Comparison between two different applications of Troe's simplified model and a comparison between the simplified model and the classic RRKM theory are described.

  5. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    OpenAIRE

    Paladino, Domenico; Huggenberger, Max; Schäfer, Frank

    2008-01-01

    Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural c...

  6. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  7. Modeling low pressure baroreceptors and their contribution to blood pressure control

    OpenAIRE

    Sánchez de Zambrano, Betsy Mirley; Rojas-Sulbarán, Rubén Darío

    2016-01-01

    The main mechanism for blood pressure (BP) control is coordinated by the central nervous system through the sympathetic and parasympathetic systems. In order to simulate this mechanism, different mathematical models are available, but they take into account only the high pressure receptors as sensing systems for BP. However, other receptors located in low pressure areas have not, as far as we know, been considered in the models described in the literature, despite their important role in the ...

  8. On the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic field

    International Nuclear Information System (INIS)

    Smolyakov, A.I.; Garbet, X.; Bourdelle, C.

    2009-01-01

    This paper describes the structure of the parallel momentum balance in low pressure plasmas with an inhomogeneous magnetic field. The parallel momentum balance equation is derived from magnetohydrodynamic equations by an expansion in the inverse magnetic field 1/B as a small parameter. Contributions of the gyroviscosity and inertia terms are clarified. It is shown that magnetic field curvature leads to important coupling of parallel flow with fluctuations of the electric field and plasma pressure.

  9. Pre-cure freezing affects proteolysis in dry-cured hams.

    Science.gov (United States)

    Bañón, S; Cayuela, J M; Granados, M V; Garrido, M D

    1999-01-01

    Several parameters (sodium chloride, moisture, intramuscular fat, total nitrogen, non-protein nitrogen, white precipitates, free tyrosine, L* a* b* values and acceptability) related with proteolysis during the curing were compared in dry-cured hams manufactured from refrigerated and frozen/thawed raw material. Pre-cure freezing increased the proteolysis levels significantly (pcured meat, although it does not significantly affect the sensory quality of the dry-cured ham.

  10. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    OpenAIRE

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-01-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlyso...

  11. Experimental and modelling investigations of a dielectric barrier discharge in low-pressure argon

    International Nuclear Information System (INIS)

    Wagenaars, E; Brandenburg, R; Brok, W J M; Bowden, M D; Wagner, H-E

    2006-01-01

    The discharge behaviour of a dielectric barrier discharge (DBD) in low-pressure argon gas was investigated by experiments and modelling. The electrical characteristics and light emission dynamics of the discharge were measured and compared with the results of a two-dimensional fluid model. Our investigations showed that the discharge consisted of a single, diffuse discharge per voltage half-cycle. The breakdown phase of the low-pressure DBD (LPDBD) was investigated to be similar to the ignition phase of a low-pressure glow discharge without dielectrics, described by Townsend breakdown theory. The stable discharge phase of the LPDBD also showed a plasma structure with features similar to those of a classical glow discharge. The presence of the dielectric in the discharge gap led to the discharge quenching and thus the decay of the plasma. Additionally, the argon metastable density was monitored by measuring light emission from nitrogen impurities. A metastable density of about 5 x 10 17 m -3 was present during the entire voltage cycle, with only a small (∼10%) increase during the discharge. Finally, a reduction of the applied voltage to the minimum required to sustain the discharge led to a further reduction of the role of the dielectric. The discharge was no longer quenched by the dielectrics only but also by a reduction of the applied voltage

  12. Low-pressure pulsed focused ultrasound with microbubbles promotes an anticancer immunological response.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Han-Yi; Lu, Li-An; Kang, Chiao-Wen; Wu, Ming-Fang; Lin, Chun-Yen

    2012-11-11

    High-intensity focused-ultrasound (HIFU) has been successfully employed for thermal ablation of tumors in clinical settings. Continuous- or pulsed-mode HIFU may also induce a host antitumor immune response, mainly through expansion of antigen-presenting cells in response to increased cellular debris and through increased macrophage activation/infiltration. Here we demonstrated that another form of focused ultrasound delivery, using low-pressure, pulsed-mode exposure in the presence of microbubbles (MBs), may also trigger an antitumor immunological response and inhibit tumor growth. A total of 280 tumor-bearing animals were subjected to sonographically-guided FUS. Implanted tumors were exposed to low-pressure FUS (0.6 to 1.4 MPa) with MBs to increase the permeability of tumor microvasculature. Tumor progression was suppressed by both 0.6 and 1.4-MPa MB-enhanced FUS exposures. We observed a transient increase in infiltration of non-T regulatory (non-Treg) tumor infiltrating lymphocytes (TILs) and continual infiltration of CD8+ cytotoxic T-lymphocytes (CTL). The ratio of CD8+/Treg increased significantly and tumor growth was inhibited. Our findings suggest that low-pressure FUS exposure with MBs may constitute a useful tool for triggering an anticancer immune response, for potential cancer immunotherapy.

  13. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    Science.gov (United States)

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  14. Modeling low pressure baroreceptors and their contribution to blood pressure control

    Directory of Open Access Journals (Sweden)

    Sánchez de Zambrano, Betsy Mirley

    2016-10-01

    Full Text Available The main mechanism for blood pressure (BP control is coordinated by the central nervous system through the sympathetic and parasympathetic systems. In order to simulate this mechanism, different mathematical models are available, but they take into account only the high pressure receptors as sensing systems for BP. However, other receptors located in low pressure areas have not, as far as we know, been considered in the models described in the literature, despite their important role in the nervous BP control. This paper presents a mathematical model for the representation of low pressure receptors by means of the detection of atrial volume changes, and their contribution to immediate BP control through nervous stimulation of the heart rate. The proposed model was coupled to the sensor mechanism of a larger model. With this model it is possible to analyze the contribution and behavior of low pressure receptors, thus allowing a better understanding of this complex system under normal and pathological conditions, since it includes important variables in the immediate BP control, not included in previous models.

  15. 11S Storage globulin from pumpkin seeds: regularities of proteolysis by papain.

    Science.gov (United States)

    Rudakova, A S; Rudakov, S V; Kakhovskaya, I A; Shutov, A D

    2014-08-01

    Limited proteolysis of the α- and β-chains and deep cleavage of the αβ-subunits by the cooperative (one-by-one) mechanism was observed in the course of papain hydrolysis of cucurbitin, an 11S storage globulin from seeds of the pumpkin Cucurbita maxima. An independent analysis of the kinetics of the limited and cooperative proteolyses revealed that the reaction occurs in two successive steps. In the first step, limited proteolysis consisting of detachments of short terminal peptides from the α- and β-chains was observed. The cooperative proteolysis, which occurs as a pseudo-first order reaction, started at the second step. Therefore, the limited proteolysis at the first step plays a regulatory role, impacting the rate of deep degradation of cucurbitin molecules by the cooperative mechanism. Structural alterations of cucurbitin induced by limited proteolysis are suggested to generate its susceptibility to cooperative proteolysis. These alterations are tentatively discussed on the basis of the tertiary structure of the cucurbitin subunit pdb|2EVX in comparison with previously obtained data on features of degradation of soybean 11S globulin hydrolyzed by papain.

  16. Regulation of proteolysis in Bacillus subtilis: effects of calcium ions and energy poisons

    International Nuclear Information System (INIS)

    O'Hara, M.B.; Hageman, J.H.

    1987-01-01

    Bacillus subtilis cells carry out extensive intracellular proteolysis (k = 0.15-0.23/h) during sporulation. Protein degradation was measured in cells growing in chemically defined sporulation medium, by following the release of [ 14 C]-leucine from the cells during spore formation. Sodium arsenate, carbonyl cyanide 3-chlorophenyl hydrazone, and sodium azide strongly inhibited proteolysis without altering cell viability greatly, which suggested that bulk proteolysis in B. subtilis is energy dependent. The authors have tested the hypothesis that the energy requirement may be for pumping in Ca 2+ . When [Ca 2+ ] was -6 , rates of proteolysis in sporulating cells were reduced 4-8 times that in cells in calcium ion- sufficient medium. Further, omission of Ca 2+ from the medium prevented the increase in the activity of the major intracellular serine protease. However, the presence of energy poisons in the media at levels which inhibited proteolysis, had no detectable effect on the uptake of by cells [ 45 Ca]. The authors concluded that B. subtilis cells required both metabolic energy and calcium ions for normal proteolysis

  17. Sequence analysis of PROTEOLYSIS 6 from Solanum lycopersicum

    Science.gov (United States)

    Roslan, Nur Farhana; Chew, Bee Lyn; Goh, Hoe-Han; Isa, Nurulhikma Md

    2018-04-01

    The N-end rule pathway is a protein degradation pathway that relates the protein half-life with the identity of its N-terminal residues. A destabilizing N-terminal residues is created by enzymatic reaction or chemical modifications. This destabilized substrate will be recognized by PROTEOLYSIS 6 (PRT6) protein, which encodes an E3 ligase enzyme and resulted in substrate degradation by proteasome. PRT6 has been studied in Arabidopsis thaliana and barley but not yet been studied in fleshy fruit plants. Hence, this study was carried out in tomato that is known as the model for fleshy fruit plants. BLASTX analysis identified that Solyc09g010830 which encodes for a PRT6 gene in tomato based on its sequence similarity with PRT6 in A. thaliana. In silico gene expression analysis shows that PRT6 gene was highly expressed in tomato fruits breaker +5. Co-expression analysis shows that PRT6 may not only involved in abiotic stresses but also in biotic stresses. The objective is to analyze the sequence and characterize PRT6 gene in tomato.

  18. Acid-Mediated Tumor Proteolysis: Contribution of Cysteine Cathepsins

    Directory of Open Access Journals (Sweden)

    Jennifer M Rothberg

    2013-10-01

    Full Text Available One of the noncellular microenvironmental factors that contribute to malignancy of solid tumors is acidic peritumoral pH. We have previously demonstrated that extracellular acidosis leads to localization of the cysteine pro-tease cathepsin B on the tumor cell membrane and its secretion. The objective of the present study was to determine if an acidic extracellular pH such as that observed in vivo (i.e., pHe 6.8 affects the activity of proteases, e.g., cathepsin B, that contribute to degradation of collagen IV by tumor cells when grown in biologically relevant three-dimensional (3D cultures. For these studies, we used 1 3D reconstituted basement membrane overlay cultures of human carcinomas, 2 live cell imaging assays to assess proteolysis, and 3 in vivo imaging of active tumor proteases. At pHe 6.8, there were increases in pericellular active cysteine cathepsins and in degradation of dye-quenched collagen IV, which was partially blocked by a cathepsin B inhibitor. Imaging probes for active cysteine cathepsins localized to tumors in vivo. The amount of bound probe decreased in tumors in bicarbonate-treated mice, a treatment previously shown to increase peritumoral pHe and reduce local invasion of the tumors. Our results are consistent with the acid-mediated invasion hypothesis and with a role for cathepsin B in promoting degradation of a basement membrane protein substrate, i.e., type IV collagen, in an acidic peritumoral environment.

  19. Proteolysis of truncated hemolysin A yields a stable dimerization interface

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Walter R.P.; Bhattacharyya, Basudeb; Grilley, Daniel P.; Weaver, Todd M. (Wabash); (UW)

    2017-02-21

    Wild-type and variant forms of HpmA265 (truncated hemolysin A) fromProteus mirabilisreveal a right-handed, parallel β-helix capped and flanked by segments of antiparallel β-strands. The low-salt crystal structures form a dimeric structureviathe implementation of on-edge main-chain hydrogen bonds donated by residues 243–263 of adjacent monomers. Surprisingly, in the high-salt structures of two variants, Y134A and Q125A-Y134A, a new dimeric interface is formedviamain-chain hydrogen bonds donated by residues 203–215 of adjacent monomers, and a previously unobserved tetramer is formed. In addition, an eight-stranded antiparallel β-sheet is formed from the flap regions of crystallographically related monomers in the high-salt structures. This new interface is possible owing to additional proteolysis of these variants after Tyr240. The interface formed in the high-salt crystal forms of hemolysin A variants may mimic the on-edge β-strand positioning used in template-assisted hemolytic activity.

  20. Imaging Proteolysis by Living Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2000-01-01

    Full Text Available Malignant progression is accompanied by degradation of extracellular matrix proteins. Here we describe a novel confocal assay in which we can observe proteolysis by living human breast cancer cells (BT20 and BT549 through the use of quenchedfluorescent protein substrates. Degradation thus was imaged, by confocal optical sectioning, as an accumulation of fluorescent products. With the BT20 cells, fluorescence was localized to pericellular focal areas that coincide with pits in the underlying matrix. In contrast, fluorescence was localized to intracellular vesicles in the BT549 cells, vesicles that also label for lysosomal markers. Neither intracellular nor pericellular fluorescence was observed in the BT549 cells in the presence of cytochalasin B, suggesting that degradation occurred intracellularly and was dependent on endocytic uptake of substrate. In the presence of a cathepsin 13-selective cysteine protease inhibitor, intracellular fluorescence was decreased ~90% and pericellular fluorescence decreased 67% to 96%, depending on the protein substrate. Matrix metallo protease inhibitors reduced pericellular fluorescence ~50%, i.e., comparably to a serine and a broad spectrum cysteine protease inhibitor. Our results suggest that: 1 a proteolytic cascade participates in pericellular digestion of matrix proteins by living human breast cancer cells, and 2 the cysteine protease cathepsin B participates in both pericellular and intracellular digestion of matrix proteins by living human breast cancer cells.

  1. System transient analysis code development for low pressure and low power

    International Nuclear Information System (INIS)

    Kim, Hee Cheol

    1998-02-01

    A real time reactor system analysis code, ARTIST, based on drift flux model has been developed to investigate the transient system behavior under low pressure, low flow and low power conditions with noncondensable gas present in the system. The governing equations of the ARTIST code consist of three mass continuity equations (steam, liquid and noncondensable), two energy equations (gas and mixture) and one momentum equation (mixture) constituted with the drift flux model. The capability of ARTIST in predicting two-phase flow void distribution in the system has been validated against experimental data. The results of the ARTIST axial void distribution at low pressure and low flow, are far better than the results of both the homogeneous model of TASS code and the two-fluid model of RELAP5/MOD3 code. Also, RELAP5/MOD3 calculation shows the large amplitude of void fraction oscillations at low pressure. These results imply that interfacial momentum transfer terms in the two-fluid model formulation should be carefully constituted, especially for the low pressure condition due to the big density differences between steam and water. Thermal-hydraulic state solution scheme is developed when noncondensable gas exists. Numerical consistency and convergence of obtaining equilibrium state is tested with the ideal problems for various situations including very low partial pressure conditions. Calculated thermal-hydraulic state for each test shows consistent and expected behaviour. A new multi-layer back propagation network algorithm for calculating the departure from nucleate boiling ratio (DNBR) is developed and adopted in ARTIST code in order to have real-time DNBR evaluation by eliminating the tandem procedure of the transient DNBR calculation. The algorithm trained by different patterns generated by latin hypercube sampling method on the performance space is tested for the randomly sampled untrained data and the transient DNBR data. The uncertainty of the algorithm is

  2. Transparent and Flexible Zinc Tin Oxide Thin Film Transistors and Inverters using Low-pressure Oxygen Annealing Process

    Science.gov (United States)

    Lee, Kimoon; Kim, Yong-Hoon; Kim, Jiwan; Oh, Min Suk

    2018-05-01

    We report on the transparent and flexible enhancement-load inverters which consist of zinc tin oxide (ZTO) thin film transistors (TFTs) fabricated at low process temperature. To control the electrical characteristics of oxide TFTs by oxygen vacancies, we applied low-pressure oxygen rapid thermal annealing (RTA) process to our devices. When we annealed the ZTO TFTs in oxygen ambient of 2 Torr, they showed better electrical characteristics than those of the devices annealed in the air ambient of 760 Torr. To realize oxide thin film transistor and simple inverter circuits on flexible substrate, we annealed the devices in O2 of 2 Torr at 150° C and could achieve the decent electrical properties. When we used transparent conductive oxide electrodes such as indium zinc oxide (IZO) and indium tin oxide (ITO), our transparent and flexible inverter showed the total transmittance of 68% in the visible range and the voltage gain of 5. And the transition voltage in voltage transfer curve was located well within the range of operation voltage.

  3. Low pressure drop filtration of airborne molecular organic contaminants using open-channel networks

    Science.gov (United States)

    Dallas, Andrew J.; Joriman, Jon; Ding, Lefei; Weineck, Gerald; Seguin, Kevin

    2007-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Besides airborne acids and bases, airborne organic contaminants such as 1-methyl-2-pyrrolidinone (NMP), hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), perfluoroalkylamines and condensables are of primary concern in these applications. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for organics is offered by granular carbon filter beds. However, the attributes that make packed beds of activated carbon extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the lower pressure drop AMC filters currently offered are quite expensive and are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCN's), offer good filter life and removal efficiency with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and fan filter units (FFUs) this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for the removal of airborne organics in a wide range of applications.

  4. Observations of nonlinear behaviour in a low-pressure discharge column

    International Nuclear Information System (INIS)

    Cartier, S.L.; Merlino, R.L.

    1984-01-01

    Sudden and abrupt jumps in the plasma density and discharge current of low-pressure magnetized argon and helium plasmas are observed. These jumps are found to depend on the discharge bias voltage, the neutral gas pressure, and the magnetic field strength and occur with a substantial hysteresis in those parameters. These jumps are accompanied by the onset of intense and coherent low-frequency plasma oscillations. In addition, under certain conditions, the radial density profile of the plasma is found to be significantly different following a jump. Some possibly related plasma instabilities are discussed

  5. Degradation of nitride coatings in low-pressure gas discharge plasma

    Science.gov (United States)

    Ivanov, Yurii; Shugurov, Vladimir; Krysina, Olga; Petrikova, Elizaveta; Tolkachev, Oleg

    2017-12-01

    The paper provides research data on the defect structure, mechanical characteristics, and tribological properties of commercially pure VT1-0 titanium exposed to surface modification on a COMPLEX laboratory electron-ion plasma setup which allows nitriding, coating deposition, and etching in low-pressure gas discharge plasma in a single vacuum cycle. It is shown that preliminary plasma nitriding forms a columnar Ti2N phase in VT1-0 titanium and that subsequent TiN deposition results in a thin nanocrystalline TiN layer. When the coating-substrate system is etched, the coating fails and the tribological properties of the material degrade greatly.

  6. Modeling and control of diffusion and low-pressure chemical vapor deposition furnaces

    Science.gov (United States)

    De Waard, H.; De Koning, W. L.

    1990-03-01

    In this paper a study is made of the heat transfer inside cylindrical resistance diffusion and low-pressure chemical vapor deposition furnaces, aimed at developing an improved temperature controller. A model of the thermal behavior is derived which also covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. It is shown that currently used temperature controllers are highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the linear-quadratic-Gaussian type is proposed which features direct wafer temperature control. Some simulation results are given.

  7. Low-pressure argon adsorption assessment of micropore connectivities in activated carbons.

    Science.gov (United States)

    Zimny, T; Villieras, F; Finqueneisel, G; Cossarutto, L; Weber, J V

    2006-01-01

    Low-pressure argon adsorption has been used to study the energetic distribution of microporous activated carbons differing by their burn-off. The collected isotherms were analyzed using the derivative isotherm summation method. Some oscillations on the experimental curves for very low partial pressures were detected. The results are analyzed and discussed according to the literature and could be attributed to local overheating caused by spontaneous mass transfer of argon through constrictions between former pores and the new opening pore or deadend pores. We used the dynamic character of the experimental method and mainly the discrepancy of the quasi-equilibrium state to deduce key parameters related to the porosity topology.

  8. Insects at low pressure: applications to artificial ecosystems and implications for global windborne distribution

    Science.gov (United States)

    Cockell, C.; Catling, D.; Waites, H.

    1999-01-01

    Insects have a number of potential roles in closed-loop life support systems. In this study we examined the tolerance of a range of insect orders and life stages to drops in atmospheric pressure using a terrestrial atmosphere. We found that all insects studied could tolerate pressures down to 100 mb. No effects on insect respiration were noted down to 500 mb. Pressure toleration was not dependent on body volume. Our studies demonstrate that insects are compatible with plants in low-pressure artificial and closed-loop ecosystems. The results also have implications for arthropod colonization and global distribution on Earth.

  9. Highly ionized physical vapor deposition plasma source working at very low pressure

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Herrendorf, A.-P.; Drache, S.; Čada, Martin; Hubička, Zdeněk; Tichý, M.; Hippler, R.

    2012-01-01

    Roč. 100, č. 14 (2012), "141604-1"-"141604-3" ISSN 0003-6951 R&D Projects: GA TA ČR TA01010517; GA ČR(CZ) GAP205/11/0386; GA ČR GAP108/12/1941 Institutional research plan: CEZ:AV0Z10100522 Keywords : magnetron * ECWR * low-pressure * sputtering * plasma diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.794, year: 2012 http://dx.doi.org/10.1063/1.3699229

  10. Conditions for sustaining low-pressure plasma columns by travelling electromagnetic UHF waves

    International Nuclear Information System (INIS)

    Benova, E.; Zhelyazkov, I.

    1997-01-01

    The paper considers the conditions for sustaining low-pressure plasma columns by travelling electromagnetic waves in symmetric and dipolar modes, respectively. The treatment is fully electrodynamic. It is shown that the wave energy flux along the plasma column determines the conditions for sustaining the discharge. In particular as the plasma is sustained by a symmetric wave whose flux depends mainly on the radial distribution of the wave electric field whilst for a dipolar wave sustained plasma the flux is specified by the magnitude of the axial wave field component at the plasma-dielectric interface. (orig.)

  11. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Low Pressure Casting

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Kennett, Andrew (Inventor)

    2018-01-01

    Systems and methods to fabricate objects including metallic glass-based materials using low-pressure casting techniques are described. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: introducing molten alloy into a mold cavity defined by a mold using a low enough pressure such that the molten alloy does not conform to features of the mold cavity that are smaller than 100 microns; and cooling the molten alloy such that it solidifies, the solid including a metallic glass-based material.

  12. Low pressure broadening and shift of the 540.06 nm line of neon

    International Nuclear Information System (INIS)

    Bielski, A.; Dokurno, W.; Szudy, J.; Wolnikowski, J.

    1980-01-01

    The collision broadening and shift of the 540.06 nm line of neon emitted from a low pressure glow discharge in pure neon and a neon-helium mixture have been measured. The values of the broadening and shift coefficients were determined and compared with the results of calculations based on the Lindholm-Foley impact theory assuming a Lennard-Jones potential. The results for pure neon demonstrate the inadequacy of the Lennard-Jones potential for the Ne-Ne interaction. (orig.)

  13. Propargyl Recombination: Estimation of the High Temperature, Low Pressure Rate Constant from Flame Measurements

    DEFF Research Database (Denmark)

    Rasmussen, Christian Lund; Skjøth-Rasmussen, Martin Skov; Jensen, Anker

    2005-01-01

    The most important cyclization reaction in hydrocarbon flames is probably recombination of propargyl radicals. This reaction may, depending on reaction conditions, form benzene, phenyl or fulvene, as well as a range of linear products. A number of rate measurements have been reported for C3H3 + C3H......3 at temperatures below 1000 K, while data at high temperature and low pressure only can be obtained from flames. In the present work, an estimate of the rate constant for the reaction at 1400 +/- 50 K and 20 Torr is obtained from analysis of the fuel-rich acetylene flame of Westmoreland, Howard...

  14. Study of the decarburization of 18-8 stainless steel by oxygen at low pressure

    International Nuclear Information System (INIS)

    Armand, G.; Lapujoulade, J.

    1964-01-01

    The kinetic of the decarburization of a 18-8 stainless-steel by oxygen at low pressure has been studied between 1050 and 1200 C. The measurement of the carbon content of the sample is carried out by chemical analysis. Three mechanisms take place in that decarburization: diffusion of carbon in the steel; velocity at the superficial reaction C + 1/2 O 2 ↔ CO; pumping out of CO. The second mechanism seems to govern the overall kinetic. The activation energy of the phenomenon is 108 ± 24 Kcal/mole. (authors) [fr

  15. Low-pressure dynamics of a natural-circulation two-phase flow loop

    International Nuclear Information System (INIS)

    Manera, A.; Kruijf, W.J.M. de; Hartmann, H.; Mudde, R.F.; Hagen, T.H.J.J. van der

    2001-01-01

    Flashing induced oscillations in a natural circulation loop are studied as function of heating power and inlet subcooling in symmetrical and asymmetrical power conditions. To unveil the effects of power/velocity asymmetries on the two-phase flow stability at low power and low pressure conditions different signals at several locations in the loop are recorded. In particular a Laser Doppler Anemometry set-up is used to measure the velocity simultaneously in two parallel channels and a wire-mesh sensor is used to measure the 2D void fraction distribution in a section of the ascendant part of the loop. (orig.)

  16. Ion time-of-flight study of laser ablation of silver in low pressure gases

    DEFF Research Database (Denmark)

    Hansen, T.N.; Schou, Jørgen; Lunney, J.G.

    1999-01-01

    The dynamics of ions from a laser-ablated silver target in low pressure background atmospheres have been investigated in a simple geometry using an electrical probe. A simple scattering picture for the first transmitted peak of the observed plume splitting has been used to calculate cross section...... of the ablated silver ions in oxygen (sigma{O(2)} = 4.8 x 10(-16) cm(2)) and in argon (sigma{Ar} = 6.7 x 10(-16) cm(2)). The dynamics of the blast wave is well described by blast wave theory. (C) 1999 Elsevier Science B.V. All rights reserved....

  17. Unsteady effects at the interface between impeller-vaned diffuser in a low pressure centrifugal compressor

    Directory of Open Access Journals (Sweden)

    Mihai Leonida NICULESCU

    2013-03-01

    Full Text Available In this paper, Proper Orthogonal Decomposition (POD is applied to the analysis of the unsteady rotor-stator interaction in a low-pressure centrifugal compressor. Numerical simulations are carried out through finite volumes method using the Unsteady Reynolds-Averaged Navier-Stokes Equations (URANS model. Proper Orthogonal Decomposition allows an accurate reconstruction of flow field using only a small number of modes; therefore, this method is one of the best tools for data storage. The POD results and the data obtained by the Adamczyk decomposition are compared. Both decompositions show the behavior of unsteady rotor-stator interaction, but the POD modes allow quantifying better the numerical errors.

  18. Characterization of the large area plane-symmetric low-pressure DC glow discharge

    Science.gov (United States)

    Avtaeva, S.; Gorokhovsky, V.; Myers, S.; Robertson, S.; Shunko, E.; Zembower, Z.

    2016-10-01

    Electron density and temperature as well as nitrogen dissociation degree in the low-pressure (10-50 mTorr) large area plane-symmetric DC glow discharge in Ar-N2 mixtures are studied by probes and spectral methods. Electron density measured by a hairpin probe is in good agreement with that derived from the intensity ratio of the N2 2nd positive system bands IC, 1 - 3/IC, 0 - 2 and from the intensity ratio of argon ions and atom lines IArII/IArI, while Langmuir probe data provides slightly higher values of electron density. Electron density in the low-pressure DC glow discharge varies with the discharge conditions in the limits of 108-1010 cm- 3. The concept of electron temperature can be used in low-pressure glow discharges with reservations. The intensity ratio of (0-0) vibrational bands of N2 1st negative and 2nd positive systems I391.4/I337.1 exhibits the electron temperature of 1.5-2.5 eV when argon fraction in the mixture is higher than nitrogen fraction and this ratio quickly increases with nitrogen fraction up to 10 eV in pure nitrogen. The electron temperature calculated from Langmuir probe I-V characteristics assuming a Maxwellian EEDF, gives Te 0.3-0.4 eV. In-depth analysis of the EEDF using the second derivative of Langmuir probe I-V characteristics shows that in a low-pressure glow discharge the EEDF is non-Maxwellian. The EEDF has two populations of electrons: the main background non-Maxwellian population of ;cold; electrons with the mean electron energy of 0.3-0.4 eV and the small Maxwellian population of ;hot; electrons with the mean electron energy of 1.0-2.5 eV. Estimations show that with electron temperature lower than 1 eV the rate of the direct electron impact ionization of N2 is low and the main mechanism of N2 ionization becomes most likely Penning and associative ionization. In this case, assumptions of the intensity ratio IN2+, 391/IN2, 337 method are violated. In the glow discharge, N2 dissociation degree reaches about 7% with the argon

  19. Low pressure gas detectors for molecular-ion break up studies

    International Nuclear Information System (INIS)

    Breskin, A.; Chechik, R.; Zwang, N.

    1981-01-01

    Two detector systems for Molecular ions like OH + and CH 2 + and like H 2 + and H 3 + were developed and are described. The first detector is installed in a magnetic spectrometer. Both systems are made of various types of gas detectors operating at low pressures. In the study of the Coulomb explosion of molecular ions like OH + , CH 2 + or H 3 + these detectors provide the position and time coordinates of all the fragments of the molecular ion, in coincidence, in order to determine their energy and angular distribution. In the case of molecules containing atoms other than hydrogen, information on the electronic charge state is obtained. (H.K.)

  20. Is the use of low-pressure pulsatile lavage for pressure ulcer management associated with environmental contamination with Acinetobacter baumannii?

    Science.gov (United States)

    Ho, Chester H; Johnson, Tova; Miklacic, Joan; Donskey, Curtis J

    2009-10-01

    Ho CH, Johnson T, Miklacic J, Donskey CJ. Is the use of low-pressure pulsatile lavage for pressure ulcer management associated with environmental contamination with Acinetobacter baumannii? To determine the extent of environmental contamination associated with low-pressure pulsatile lavage of stage III or IV pressure ulcers in patients with spinal cord injury (SCI) when routine infection control precautions are used for wounds colonized or infected with Acinetobacter baumannii. Prospective investigation in which pressure ulcer cultures and environmental cultures were obtained before and after low-pressure pulsatile lavage treatment, and before and after regular dressing changes. Environmental cultures included the patient's bedrail and settle plates placed 0.6, 1.5, and 2.4m from the wound to assess airborne spread of A. baumannii. SCI inpatient unit in a Department of Veterans Affairs Medical Center. Inpatients (N=15) with SCI receiving daily low-pressure pulsatile lavage treatment for stage III or IV pressure ulcers with standard dressing change, as well as regular dressing changes without low-pressure pulsatile lavage at other times of the day. Standard, regular dressing changes and dressing changes with low-pressure pulsatile lavage. Comparison of frequency of environmental contamination with A. baumannii associated with low-pressure pulsatile lavage versus regular dressing changes. Of the 15 SCI inpatients meeting inclusion criteria, 9 (60%) grew A. baumannii from their wounds. Of the 9 patients with wound cultures positive for A. baumannii, only 1 (11%) had environmental contamination with this organism after performance of low-pressure pulsatile lavage, and the same patient had environmental contamination after a standard dressing change. The antibiotic susceptibility patterns of the wound and environmental A. baumannii isolates were identical. Low-pressure pulsatile lavage using the infection control methods described is not associated with an increased

  1. The development of an auto-sealing system using an electrically shrinkable tube under a low-pressure condition

    Energy Technology Data Exchange (ETDEWEB)

    Okano, Yoshihiro; Kitagawa, Takao [NKK Corp, Tsu, Mie (Japan); Shoji, Norio [NKK Corp., Yokohama (Japan); Namioka, Toshiyuki [Nippon Kokan Koji Corp., Yokohama (Japan). Research and Development Dept.; Komura, Minoru [Nitto Denko Corp., Fukaya, Saitama (Japan)

    1997-04-01

    This article describes the development of a system to create high quality, automatic sealing of field joints of polyethylene coated pipelines. The system uses a combination of an electrically heated shrinkable tube and a low-pressure chamber. The self-heating shrinkable tube includes electric heater wires that heat when connected to electricity. A method was developed to eliminate air trapped between the tube and the steel pipe by shrinking the tube under a low-pressure condition. The low-pressure condition was automatic and easily attained by using a vacuum chamber. It was verified that the system produced high quality sealing of the field joints.

  2. Ultra-low-pressure sputtering to improve exchange bias and tune linear ranges in spin valves

    Energy Technology Data Exchange (ETDEWEB)

    Tang, XiaoLi, E-mail: tangtang1227@163.com; Yu, You; Liu, Ru; Su, Hua; Zhang, HuaiWu; Zhong, ZhiYong; Jing, YuLan

    2017-05-01

    A series of CoFe/IrMn exchange bilayers was grown by DC-sputtering at different ultra-low argon pressures ranging from 0.008 to 0.1 Pa. This pressure range was one to two orders lower than the normal sputtering pressure. Results revealed that the exchange bias increased from 140 to 250 Oe in CoFe(10 nm)/IrMn (15 nm) bilayers of fixed thickness because of the improved crystalline structure and morphological uniformity of films. Since ferromagnetic /antiferromagnetic (FM/AF) bilayers are always used in linear magnetic sensors as detection layers, the varying exchange bias can successfully achieve tunable linear range in a crossed pinning spin valve. The linear range could be adjustable from −80 Oe – +80 Oe to −150 Oe – +150 Oe on the basis of giant magnetoresistance responses. Therefore, this method provides a simple method to tune the operating range of magnetic field sensors. - Highlights: • Increasing exchange bias was achieved in bilayer at ultra-low-pressure sputtering. • The low void density and smooth surface were achieved in low pressure. • Varying exchange bias achieved tunable linear range in spin valve.

  3. Boron, arsenic and phosphorus dopant incorporation during low temperature low pressure silicon epitaxial growth

    International Nuclear Information System (INIS)

    Borland, J.O.; Thompson, T.; Tagle, V.; Benzing, W.

    1987-01-01

    Submicron silicon epitaxial structures with very abrupt epi/substrate transition widths have been realized through the use of low temperature silicon epitaxial growth techniques. At these low temperature and low pressure epitaxial growth conditions there is minimal, if any, dopant diffusion from the substrate into the epilayer during deposition. The reincorporation of autodoped dopant as well as the incorporation of intentional dopant can be a trade-off at low temperatures and low pressures. For advanced CMOS and Bi-CMOS technologies, five to six orders of magnitude change in concentration levels are desirable. In this investigation, all of the epitaxial depositions were carried out in an AMC-7810 epi-reactor with standard jets for a turbulent mixing system, and using a modified center inject configuration to achieve a single pass laminar flow system. To simulate the reincorporation of various autodoped dopant, the authors ran a controlled dopant flow of 100 sccm for each of the three dopants (boron, phosphorus and arsenic) to achieve the controlled background dopant level in the reactor gas stream

  4. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    International Nuclear Information System (INIS)

    Vasilyak, L. M.; Vasiliev, A. I.; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu.; Kudryavtsev, N. N.

    2011-01-01

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  5. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Vasiliev, A. I., E-mail: vasiliev@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu. [Joint Stock Company NPO LIT (Russian Federation); Kudryavtsev, N. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  6. Investigation on Active Thermal Control Method with Pool Boiling Heat Transfer at Low Pressure

    Science.gov (United States)

    Sun, Chuang; Guo, Dong; Wang, Zhengyu; Sun, Fengxian

    2018-06-01

    In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m2 and 20 kW/m2. The chosen material of the heat surface was aluminium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10°C for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the horizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.

  7. Evaluation of heat transfer coefficient of tungsten filaments at low pressures and high temperatures

    International Nuclear Information System (INIS)

    Chondrakis, N.G.; Topalis, F.V.

    2011-01-01

    The paper presents an experimental method for the evaluation of the heat transfer coefficient of tungsten filaments at low pressures and high temperatures. For this purpose an electrode of a T5 fluorescent lamp was tested under low pressures with simultaneous heating in order to simulate the starting conditions in the lamp. It was placed in a sealed vessel in which the pressure was varied from 1 kM (kilo micron) to 760 kM. The voltage applied to the electrode was in the order of the filament's voltage of the lamp at the normal operation with the ballast during the preheating process. The operating frequency ranged from DC to 50 kHz. The experiment targeted on estimating the temperature of the electrode at the end of the first and the ninth second after initiating the heating process. Next, the heat transfer coefficient was calculated at the specific experimental conditions. A mathematical model based on the results was developed that estimates the heat transfer coefficient. The experiments under different pressures confirm that the filament's temperature strongly depends on the pressure.

  8. Laparoscopic Cholecystectomy Under Spinal Anesthesia with Low-Pressure Pneumoperitoneum - Prospective Study of 150 Cases

    Directory of Open Access Journals (Sweden)

    Sunder Goyal

    2012-08-01

    Materials and Methods: In a private rural medical college, 150 patients were selected prospectively for laparoscopic cholecystectomy, under low-pressure (8mmHg pneumoperitoneum and under spinal anesthesia over a span of one and a half years. Injection bupivacaine (0.5% was used for spinal anesthesia. All ports were made in a head-down position to avoid hypotension. Shoulder pain was managed by reassurance as well as by diverting the attention and sedation in a few cases. Results: We successfully performed the operations in 145 patients without major complications. Spinal anesthesia was converted to general anesthesia in five patients due to severe shoulder pain. Age varied between 21 and 75 years. Duration of operation time (skin to skin was between 40 and 80 minutes. Twenty-nine patients complained of right shoulder pain. Most of them were managed by reassurance from the anesthetist and a few needed an injection of fentanyl along with midazolam. Conclusion: Laparoscopic cholecystectomy with low-pressure CO2 pneumoperitoneum is feasible and safe under spinal anesthesia. Incidence of postoperative shoulder pain and complications are comparable with laparoscopic cholecystectomy under general anesthesia. [Arch Clin Exp Surg 2012; 1(4.000: 224-228

  9. Study of the low pressure (Black Phase) SmS properties

    International Nuclear Information System (INIS)

    Bordier, G.

    1987-03-01

    SmS has been studied for its transition from the low pressure black phase to the high pressure intermediate valence phase; but the black phase properties seem to be very rich. The variations which pressure of the low-temperature electronic transport properties show the existence of a semi-metallic phase within the black phase domain in a pressure-temperature diagram, for a pressure above 4 kbar, which corresponds to the so-called B'phase. We study the insulating low pressure phase with a model involving acceptor like states. Using electronic paramagnetic resonance experiments we observe a square symmetry trivalent samarium ion neighbour of a sulfure defect, and magnetically coupled with the lattice. This defect exists in two nearly symmetric configurations and the resonance line broadens with temperature in an actived way. It gives rise to metastable effects yielding conductivity relaxations, analysed with stretched exponential laws, because the defect traps magnetically conduction electrons forming a bound magnetic polaron. The relaxation time at zero field is temperature actived. We develop a phenomenological model that gives the good orders of magnitude for the trapping barrier and for the critical field corresponding to the maximum of the low temperature magnetoresistance [fr

  10. Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy

    Science.gov (United States)

    Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei

    2017-12-01

    A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.

  11. Sterilization of beehive material with a double inductively coupled low pressure plasma

    International Nuclear Information System (INIS)

    Priehn, M; Leichert, L I; Denis, B; Awakowicz, P; Aumeier, P; Kirchner, W H

    2016-01-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae . Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs. (paper)

  12. Useful effectiveness of plastic pipes for gas pipelines operating at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zayutsev, K I

    1976-06-01

    Because a significant portion of the feeder lines in the Soviet union operate at relatively low pressures up to 75 to 150 psi, it is economically feasible to replace the conventional pipeline material (steel) with plastic. Cost savings result from lower material costs and ease of laying plastic pipe. Because of stiffness and corrosion requirements, the steel pipe used for these low-pressure pipelines is much thicker than needed to withstand the pressure used. Data are tabulated on the comparative costs and manpower requirements for the construction of 1 km of steel, polyvinyl chloride, and polyethylene gas pipelines ranging in diameter from 3 to 14 in. Generally, the plastic pipelines required 15 to 30% less man-days and were 20 to 35% lower in cost to build. The plastic pipelines can operate at 150 to 175 psi pressure and at temperatures up to 100 to 140/sup 0/F. In research conducted at VNIIST (All-Union Research Institute for the Construction of Trunk Pipelines) on plastic pipelines, a 2.5-mile test section has been operating successfully for 2 years, and new techniques and equipment for joining plastic pipe up to 25-in. diameter are being developed.

  13. Theoretical and experimental investigation of plasma and wave characteristics of coaxial discharges at low pressures

    International Nuclear Information System (INIS)

    Neichev, Z; Benova, E; Gamero, A; Sola, A

    2006-01-01

    The paper discusses a new configuration of the surface-wave sustained plasma - 'the coaxial structure'. The coaxial structure is investigated on the base of one-dimensional axial fluid model. That model is adequate enough for low pressure plasma, when the main process for charged particles production is the direct ionization from the ground state and the loss of electrons is due to diffusion to the wall. The role of the geometric factors is evaluated and discussed, varying the discharge conditions in the theoretical model. The main equations of the model - the local dispersion relation and the wave energy balance equation are obtained from Maxwell's equations with appropriate boundary conditions. The phase diagrams, the radial profiles of the electric field and the axial profiles of dimensionless electron number density, wave number, wave power are obtained at various plasma radii and dielectric tube thickness. The results are compared with those for the typical cylindrical plasma column at similar conditions. For the purpose of modelling at low pressure of a coaxial discharge sustained by a travelling electromagnetic wave, some important characteristics of the propagation of surface waves have been investigated experimentally. The axial profiles of the propagation coefficient and radial profiles of the electric field at different experimental conditions have been obtained and discussed

  14. Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Hedwig, Rinda [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Ramli, Muliadi [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Jobiliong, Eric [Department of Industrial Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Suyanto, Hery [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Marpaung, Alion Mangasi [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, 10 Rawamangun, Jakarta 13220 (Indonesia); Suliyanti, Maria Margaretha [Research Center for Physics, Indonesia Institute of Sciences, Kawasan Puspiptek, Serpong, Tangerang Selatan, 15314 Banten (Indonesia); Tjia, May On [Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Lie, Tjung Jie; Lie, Zener Sukra; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Kagawa, Kiichiro [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Fukui Science Education Academy, Takagi Chuou 2 choume, Fukui 910-0804 (Japan)

    2015-03-21

    We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission characteristics using 40 mJ laser irradiation with He and N{sub 2} ambient gases. The results obtained with N{sub 2} ambient gas show undesirable interference effect between the native CN emission and the emission of CN molecules arising from the recombination of native C ablated from the sample with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger emission lines. The result of applying this favorable experimental condition to emission spectrochemical measurement of milk sample having various protein concentrations is shown to yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low detection limit of 5 μg/g is found in this experiment, making it potentially applicable for quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy with low pressure He gas is also demonstrated by the result of its application to spectrochemical analysis of fossil samples. Furthermore, with the use of CO{sub 2} ambient gas at 600 Pa mimicking the Mars atmosphere, this technique also shows promising applications to exploration in Mars.

  15. Weak interactions between water and clathrate-forming gases at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  16. Effect of Low Pressure End Conditions on Steam Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Ali Syed Haider

    2014-07-01

    Full Text Available Most of the electricity produced throughout the world today is from steam power plants and improving the performance of power plants is crucial to minimize the greenhouse gas emissions and fuel consumption. Energy efficiency of a thermal power plant strongly depends on its boiler-condenser operating conditions. The low pressure end conditions of a condenser have influence on the power output, steam consumption and efficiency of a plant. Hence, the objective this paper is to study the effect of the low pressure end conditions on a steam power plant performance. For the study each component was modelled thermodynamically. Simulation was done and the results showed that performance of the condenser is highly a function of its pressure which in turn depends on the flow rate and temperature of the cooling water. Furthermore, when the condenser pressure increases both net power output and plant efficiency decrease whereas the steam consumption increases. The results can be used to run a steam power cycle at optimum conditions.

  17. Alkyl ammonium cation stabilized biocidal polyiodides with adaptable high density and low pressure.

    Science.gov (United States)

    He, Chunlin; Parrish, Damon A; Shreeve, Jean'ne M

    2014-05-26

    The effective application of biocidal species requires building the active moiety into a molecular back bone that can be delivered and decomposed on demand under conditions of low pressure and prolonged high-temperature detonation. The goal is to destroy storage facilities and their contents while utilizing the biocidal products arising from the released energy to destroy any remaining harmful airborne agents. Decomposition of carefully selected iodine-rich compounds can produce large amounts of the very active biocides, hydroiodic acid (HI) and iodine (I2). Polyiodide anions, namely, I3(-), I5(-), which are excellent sources of such biocides, can be stabilized through interactions with large, symmetric cations, such as alkyl ammonium salts. We have designed and synthesized suitable compounds of adaptable high density up to 3.33 g cm(-3) that are low-pressure polyiodides with various alkyl ammonium cations, deliverable iodine contents of which range between 58.0-90.9%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of ultra-low pressure reverse osmosis membranes; Choteiatsu gyakushintomaku no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, M.; Ito, H.; Ohara, T. [Nitto Denko Corp., Osaka (Japan)

    1998-06-05

    Described herein is development of ultra-low pressure reverse osmosis (RO) membranes. The composite RO membrane, which is now widely used, has a cross-sectional structure consisting of an ultrafilter membrane as the support and a very thin skin layer responsible for filtration. It is confirmed that the skin layer is of a pleated structure. Growing this structure can greatly accelerate permeation of water without damaging arresting and durability characteristics of the membrane, and hence is a desired approach. Utilization of molecular structure simulation of the skin layer materials is investigated by the molecular dynamics. The results show that the stable structure of the material for the skin layer in the RO membrane is a network structure with regularly arranged honeycombs, when it should arrest at least 99% of salt. These techniques serve as the bases for development of the ultra-low pressure RO membranes (ES Series), where the skin layer is made of cross-linked, totally aromatic polyamide. The membrane passes twice as large a quantity of water as the conventional one, is highly resistant to chemicals, and arrests 99.7% of salt. 3 refs., 4 figs.

  19. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    Science.gov (United States)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  20. Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling.

    Science.gov (United States)

    Le Gall, Sylvain M; Szabo, Roman; Lee, Melody; Kirchhofer, Daniel; Craik, Charles S; Bugge, Thomas H; Camerer, Eric

    2016-06-23

    The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.

  1. Molecular characterization of a proteolysis-resistant lipase from Bacillus pumilus SG2

    Directory of Open Access Journals (Sweden)

    R. Sangeetha

    2014-06-01

    Full Text Available Proteolysis-resistant lipases can be well exploited by industrial processes which employ both lipase and protease as biocatalysts. A proteolysis resistant lipase from Bacillus pumilus SG2 was isolated, purified and characterized earlier. The lipase was resistant to native and commercial proteases. In the present work, we have characterized the lip gene which encodes the proteolysis-resistant lipase from Bacillus pumilus SG2. The parameters and structural details of lipase were analysed. The lip gene consisted of 650 bp. The experimental molecular weight of SG2 lipase was nearly double that of its theoretical molecular weight, thus suggesting the existence of the functional lipase as a covalent dimer. The proteolytic cleavage sites of the lipase would have been made inaccessible by dimerisation, thus rendering the lipase resistant to protease.

  2. Experimental and theoretical investigations on condensation heat transfer at very low pressure to improve power plant efficiency

    International Nuclear Information System (INIS)

    Berrichon, J.D.; Louahlia-Gualous, H.; Bandelier, Ph.; Bariteau, N.

    2014-01-01

    Highlights: • Theoretical model for condensation heat transfer at very low pressure is developed using only one iterative loop. • Experimental results on steam and air steam condensation heat transfer at very low pressure are presented. • The developed model gives the good predictions for local condensation heat transfer at low pressure. • A maximal deterioration of 50% in condensation heat transfer is obtained at low pressure for air fraction of 4%. • A new correlation including effect of a wavy film surface for steam condensation at low pressure is suggested. - Abstract: This paper presents experimental investigation on the influence of very low pressure on local and average condensation heat transfer in a vertical tube. Furthermore, this paper develops an analytical study for film condensation heat transfer coefficient in the presence of non-condensable gas inside a vertical tube. The condensate film thickness is calculated for each location in a tube using mass and heat transfer analogy. The effects of interfacial shear stress and waves on condensate film surface are included in the model. The comparative studies show that the present model well predicts the experimental data of Khun et al. [1]for local condensation of steam air mixture at high pressure. Different correlations defined for condensation heat transfer are evaluated. It is found that the correlations of Cavallini and Zecchin [2] and Shah [3] are the closest to the calculated steam condensation local heat transfer coefficient. The model gives a satisfactory accuracy with the experimental results for condensation heat transfer at very low pressure. The mean deviation between the predictions of the theoretical model with the measurements for pure saturated vapor is 12%. Experimental data show that the increase of air fraction to 4% deteriorates condensation heat transfer at low pressure up to 50%

  3. The cachectic mediator proteolysis inducing factor activates NF-kappaB and STAT3 in human Kupffer cells and monocytes

    NARCIS (Netherlands)

    Watchorn, T.M.; Dowidar, N.; Dejong, C.H.; Waddell, I.D.; Garden, O.J.; Ross, J.A.

    2005-01-01

    A novel proteoglycan, proteolysis inducing factor (PIF), is capable of inducing muscle proteolysis during the process of cancer cachexia, and of inducing an acute phase response in human hepatocytes. We investigated whether PIF is able to activate pro-inflammatory pathways in human Kupffer cells,

  4. Spectroscopic investigation of indium halides as substitudes of mercury in low pressure discharges for lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Briefi, Stefan

    2012-05-22

    Low pressure discharges with indium halides as radiator are discussed as substitutes for hazardous mercury in conventional fluorescent lamps. In this work, the applicability of InBr and InCl in a low pressure discharge light source is investigated. The aim is to identify and understand the physical processes which determine the discharge characteristics and the efficiency of the generated near-UV emission of the indium halide molecule and of the indium atom which is created due to dissociation processes in the plasma. As discharge vessels sealed cylindrical quartz glass tubes which contain a defined amount of indium halide and a rare gas are used. Preliminary investigations showed that for a controlled variation of the indium halide density a well-defined cold spot setup is mandatory. This was realized in the utilized experimental setup. The use of metal halides raises the issue, that power coupling by internal electrodes is not possible as the electrodes would quickly be eroded by the halides. The comparison of inductive and capacitive RF-coupling with external electrodes revealed that inductively coupled discharges provide higher light output and much better long term stability. Therefore, all investigations are carried out using inductive RF-coupling. The diagnostic methods optical emission and white light absorption spectroscopy are applied. As the effects of absorption-signal saturation and reabsorption of emitted radiation within the plasma volume could lead to an underestimation of the determined population densities by orders of magnitude, these effects are considered in the data evaluation. In order to determine the electron temperature and the electron density from spectroscopic measurements, an extended corona model as population model of the indium atom has been set up. A simulation of the molecular emission spectra has been implemented to investigate the rovibrational population processes of the indium halide molecules. The impact of the cold spot

  5. Stress corrosion cracking of low pressure turbine discs - an industry survey

    International Nuclear Information System (INIS)

    Lyle, F.F. Jr.; Lamping, G.A.; Leverant, G.R.

    1981-01-01

    Comprehensive industry survey identifies the key factors responsible for a large number of stress corrosion cracking incidents in low-pressure steam turbine discs of U.S. power plants. The survey included interviews with domestic and foreign utilities, as well as a review of available public documents. Plant operating practices, water treatment methods, turbine design and stress levels, and alloy chemistry and mechanical properties were among the principal variables considered in the study. Analyses of the data identified six potential key variables. Summaries of foreign and U.S. disc-cracking experience, relationship between variables and cracking experience, and the potential key cracking variables identified are presented in this paper. 11 refs

  6. Liquefaction of Warukin Formation Coal, Barito Basin, South Kalimantan on Low Pressure and Low Temperature

    Directory of Open Access Journals (Sweden)

    Edy Nursanto

    2013-06-01

    Full Text Available Research focusing on the quality of coal in Warukin Formation has been conducted in coal outcrops located on Tabalong area, particularly in 3 coal seams, namely Wara 120 which consists of low rank coal (lignite. Meanwhile, coals in seam Tutupan 210 and Paringin 712 are medium rank coal (sub-bituminous. Coal liquefaction is conducted in an autoclave on low pressure and temperature. Pressure during the process is 14 psi and temperature is 120oC. Catalyst used are alumina, hydrogen donor NaOH and water solvent. Liquefaction is conducted in three times variables of 30 minutes, 60 minutes and 90 minutes. This process shows following yield : Wara seam 120: 25.37% - 51.27%; Tutupan seam 210: 3.02%-15.45% and seam Paringin 712:1.99%-11.95%. The average result of yield shows that coals in seam Wara has higher yield conversion than coals in seam Tutupan and Paringin.

  7. Theoretical Current-Voltage Curve in Low-Pressure Cesium Diode for Electron-Rich Emission

    Science.gov (United States)

    Coldstein, C. M.

    1964-01-01

    Although considerable interest has been shown in the space-charge analysis of low-pressure (collisionless case) thermionic diodes, there is a conspicuous lack in the presentation of results in a way that allows direct comparison with experiment. The current-voltage curve of this report was, therefore, computed for a typical case within the realm of experimental interest. The model employed in this computation is shown in Fig. 1 and is defined by the limiting potential distributions [curves (a) and (b)]. Curve (a) represents the potential V as a monotonic function of position with a slope of zero at the anode; curve (b) is similarly monotonic with a slope of zero at the cathode. It is assumed that by a continuous variation of the anode voltage, the potential distributions vary continuously from one limiting form to the other. Although solutions for infinitely spaced electrodes show that spatically oscillatory potential distributions may exist, they have been neglected in this computation.

  8. Partial-depth modulation study of anions and neutrals in low pressure silane plasmas

    International Nuclear Information System (INIS)

    Cozurteille, C.; Dorier, J.L.; Hollenstein, C.; Sansonnens; Howling, A.A.

    1995-10-01

    Partial-depth modulation of the rf power in a capacitive discharge is used to investigate the relative importance of negative ions and neutral radicals for particle formation in low power, low pressure silane plasmas. For less than 85% modulation depth, anions are trapped indefinitely in the plasma and particle formation ensues, whereas the polymerised neutral flux magnitudes and dynamics are independent of the modulation depth and the powder formation. These observations suggest that negative ions could be the particle precursors in plasma conditions where powder appears many seconds after plasma ignition. Microwave interferometry and mass spectrometry were combined to infer an anion density of ≅7.10 9 cm -3 which is approximately twice the free electron density in these modulated plasmas. (author) 6 figs., tabs., refs

  9. CATS, a low pressure multiwire proportional chamber for secondary beam tracking at GANIL

    CERN Document Server

    Ottini-Hustache, S; Auger, F; Musumarra, A; Alamanos, N; Cahan, B; Gillibert, A; Lagoyannis, A; Maillard, O; Pollacco, E; Sida, J L; Riallot, M

    1999-01-01

    A beam detector system, CATS (Chambre A Trajectoires de Saclay), was designed to provide event-by-event particle tracking in experiments with radioactive beams at GANIL. It consists of two low pressure multiwire proportional chambers with one plane of anode wires placed between two cathode planes (active area: 70x70 mm sup 2), respectively segmented into 28 vertical or horizontal strips (2.54 mm wide). The anode wires deliver a time signal allowing a time of flight measurement with an accuracy between 440 ps and 1.2 ns, depending on the energy loss of incident particles in the detector. The cathode strips are individually read out and the position of incoming particles is reconstructed using a charge centroid finding algorithm. A spatial resolution of 400 mu m (700 mu m) was achieved during in beam experiment, with a counting rate of 1.5x10 sup 5 (10 sup 6) particles per second. (author)

  10. Numerical simulation and optimization of Al alloy cylinder body by low pressure die casting

    Directory of Open Access Journals (Sweden)

    Mi Guofa

    2008-05-01

    Full Text Available Shrinkage defects can be formed easily at Critical location during low pressure die casting (LPDC of aluminum alloy cylinder body. It has harmful effect on the products. Mold fi lling and solidifi cation process of a cylinder body was simulated by using of Z-CAST software. The casting method was improved based on the simulation results. In order to create effective feeding passage, the structure of casting was modifi ed by changing the location of strengthening ribs at the bottom, without causing any adverse effect on the part’s performance. Inserting copper billet at suitable location of the die is a valid way to create suitable solidifi cation sequence that is benefi cial to the feeding. Using these methods, the shrinkage defect was completely eliminated at the critical location.

  11. Emission spectroscopy of argon ferrocene mixture jet in a low pressure plasma reactor

    International Nuclear Information System (INIS)

    Tiwari, N.; Tak, A.K.; Chakravarthy, Y.; Shukla, A.; Meher, K.C.; Ghorui, S.; Thiyagarajan, T.K.

    2015-01-01

    Emission spectroscopy is employed to measure the plasma temperature and species identification in a reactor used for studying homogenous nucleation and growth of iron nano particle. Reactor employs segmented non transferred plasma torch mounted on water cooled cylindrical chamber. The plasma jet passes through graphite nozzle and expands in low pressure reactor. Ferrocene is fed into the nozzle where it mixes with Argon plasma jet. A high resolution spectrograph (SHAMROCK 303i, resolution 0.06 nm) has been used to record the spectra over a wide range. Identification of different emission lines has been done using NIST database. Lines from (700 to 860nm) were considered for calculation of temperature. Spectra were recorded for different axial location, pressure and power. Temperature was calculated using Maxwell Boltzman plot method. Variation in temperature with pressure and location is presented and possible reasons for different behaviour are explored. (author)

  12. Low-pressure, multistep, multiwire proportional counter for the time-of-flight isochronous spectrometer

    International Nuclear Information System (INIS)

    Vieira, D.J.

    1985-01-01

    A low-pressure, multistep, multiwire proportional counter (MSMWPC) has been developed for the characterization and testing of the time-of-flight isochronous (TOFI) spectrometer and its associated secondary-beam transport line. This type of counter was selected because of its high sensitivity, large dynamic range, and good position (0.2 mm FWHM) and timing (180 ps FWHM) resolution. Furthermore, because the counter operates at low gas pressures (1-10 torr) and high electric-field strengths, which enable short collection times, it can be used as a transmission counter with thin gas-isolation windows and it can operate at high counting rates. Here the authors discuss the basic operating principle of the MSMWPC, describe the technical details of the detector and signal processing, and report on the performance they have measured for alpha particles and fission fragments

  13. Fabrication of carbon nanotube thermal interface material on aluminum alloy substrates with low pressure CVD

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Z L; Zhang, K; Yuen, M M F, E-mail: megzl@ust.hk [Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Hong Kong)

    2011-07-01

    High quality vertically aligned carbon nanotube (VACNT) arrays have been synthesized on bulk Al alloy (Al6063) substrates with an electron-beam (E-beam) evaporated Fe catalyst using low pressure chemical vapor deposition (LPCVD). The pretreatment process of the catalyst was shown to play a critical role. This was studied comprehensively and optimized to repeatedly grow high quality VACNT arrays within a wide range of thicknesses of catalyst layer (2-11 nm) and acetylene (C{sub 2}H{sub 2}) flow rates (100-300 sccm). The thermal performance of the resulting VACNT arrays was evaluated. The minimum interfacial thermal resistance of the Si/VACNT/Al interfaces achieved so far is only 4 mm{sup 2} K W{sup -1}, and the average value is 14.6 mm{sup 2} K W{sup -1}.

  14. Study on the behavior of moisture droplets in low pressure steam turbines

    International Nuclear Information System (INIS)

    Kimura, Y.; Kuramoto, Y.; Yoshida, K.; Etsu, M.

    1978-01-01

    Low pressure stages of fossil turbines and almost all stages of nuclear and geothermal turbines operate on wet steam. Turbine operating on wet steam have the following two disadvantages: decrease of efficiency and erosion of blades. Decrease of efficiency results from an increase in profile loss caused by water films on the blade surface; loss of steam energy in breaking up the films and accelerating moisture droplets; undercooling and condensation shocks associated with it; velocity difference between water and steam phases and consequent decelerating action of moisture droplets in the rotating blades, etc. Impingement of moisture droplets on the rotating blades also causes quick erosion of the blades. In this paper, the behavior of moisture droplets in wet steam flow is described and the correlation between their behavior and the abovementioned two disadvantages of turbines operating on wet steam is clarified. (author)

  15. On designing low pressure loss working spaces for a planar Stirling micromachine

    Science.gov (United States)

    Hachey, M.-A.; Léveillé, É.; Fréchette, L. G.; Formosa, F.

    2015-12-01

    In this paper, research was undertaken with the objective to design low pressure loss working spaces for a Stirling cycle micro heat engine operating from low temperature waste heat. This planar free-piston heat engine is anticipated to operate at the kHz level with mm3 displacement. Given the resonant nature of the free-piston configuration, the complexity of its working gas’ flow geometry and its projected high operating frequency, flow analysis is relatively complex. Design considerations were thus based on fast prototyping and experimentation. Results show that geometrical features, such as a sharp 90° corner between the regenerator and working spaces, are strong contributors to pressure losses. This research culminated into a promising revised working space configuration for engine start-up, as it considerably reduced total pressure losses, more than 80% at Re = 700, from the original design.

  16. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    Directory of Open Access Journals (Sweden)

    Domenico Paladino

    2008-01-01

    Full Text Available Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural circulation loops in a range with increased attention. This paper presents a synthesis of a part of the results obtained within the EU-Project NACUSP “natural circulation and stability performance of boiling water reactors.” It does so by using the experimental results produced in PANDA and by showing some examples of numerical simulations performed with the thermal-hydraulic code ATHLET.

  17. Synthesis and characterization of carbon coated nanoparticles produced by a continuous low-pressure plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Vineet; Neergat, Manoj [Indian Institute of Technology Bombay, Department of Energy Science and Engineering (India); Bhandarkar, Upendra, E-mail: bhandarkar@iitb.ac.in [Indian Institute of Technology Bombay, Department of Mechanical Engineering (India)

    2011-09-15

    Core-shell nanoparticles coated with carbon have been synthesized in a single chamber using a continuous and entirely low-pressure plasma-based process. Nanoparticles are formed in an argon plasma using iron pentacarbonyl Fe(CO){sub 5} as a precursor. These particles are trapped in a pure argon plasma by shutting off the precursor and then coated with carbon by passing acetylene along with argon as the main background gas. Characterization of the particles was carried out using TEM for morphology, XPS for elemental composition and PPMS for magnetic properties. Iron nanoparticles obtained were a mixture of FeO and Fe{sub 3}O{sub 4}. TEM analysis shows an average size of 7-14 nm for uncoated particles and 15-24 nm for coated particles. The effect of the carbon coating on magnetic properties of the nanoparticles is studied in detail.

  18. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk [Departments of Physics and Astronomy, University College London, Thomas Young Center, London Centre for Nanotechnology, London WC1E 6BT (United Kingdom); Cohen, R. E. [Extreme Materials Initiative, Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015 (United States); Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333 (Germany); Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-08-14

    We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.

  19. Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade

    International Nuclear Information System (INIS)

    Sideridis, A.; Yakinthos, K.; Goulas, A.

    2011-01-01

    The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.

  20. Low-pressure approach to the formation and study of exciplex systems. Final report

    International Nuclear Information System (INIS)

    Sanzone, G.

    1981-06-01

    Under this contract, the following goals were set. (1) Development and construction of an experimental system for the study of the kinetics of excimers, and demonstrate the validity of the low-pressure approach to such studies. The apparatus was to consist of the following: (a) cluster-molecular-beam source of van der Waals dimers and higher oligomers; (b) modulated-beam mass spectrometer; (c) low-energy electron beam for the production of excimers; (d) vacuum-ultraviolet to Visible detection and photon-counting system to monitor excimer emission; (e) flash-excited tunable laser for studies of resonant self-absorptions. (2) Form Ar 2 in its van der Waals ground state. (3) Produce Ar 2 * by electron bombardment of Ar 2 . (4) Perform fluorescence and photon absorption studies of Ar 2 *. At the end of the contract period, goals 1 and 2 have been met; experiments 3 and 4 have been designed

  1. Effects of Tightening Torque on Dynamic Characteristics of Low Pressure Rotors Connected by a Spline Coupling

    Institute of Scientific and Technical Information of China (English)

    Chen Xi; Liao M ingfu; Li Quankun

    2017-01-01

    A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic character-istics of low pressure rotors connected by a spline coupling .The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement .Through simulating calculation and experiments ,the effects of tightening torque on the dynamic characteristics of the rotor system con-nected by a spline coupling including critical speeds ,vibration modes and unbalance responses are analyzed .The results show that when increasing the tightening torque ,the first two critical speeds and the amplitudes of unbal-ance response gradually increase in varying degrees while the vibration modes are essentially unchanged .In addi-tion ,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change .

  2. Experimental testing of cooling by low pressure adsorption in a zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Redman, C.M.

    1985-01-01

    A small scale facility was designed, constructed, and utilized to test the use of zeolite adsorption of water vapor to augment chill storage in ice for conventional space cooling. The facility uses solar-derived energy, for the heat source and evaporatively chilled water for the heat sump. The product cooling uses sublimation of ice instead of melting. The ZCAT facility utilizes a heat pumping technique in which a water vapor adsorbent functions as the compressor and condenser. The design was based on use of 13X zeolite as the adsorber because of its high adsorbence at low pressures. However, it has been determined that other materials such as silica gel should give superior performance. While zeolite 13X holds more water in the pressure and temperature ranges of interest, silica gel cycles more water and has less residue water. Both points are very important in the design of an efficient and cost effective system.

  3. H_{2} adsorption on multiwalled carbon nanotubes at low temperatures and low pressures

    Directory of Open Access Journals (Sweden)

    F. Xu

    2008-11-01

    Full Text Available We present an experimental study on H_{2} adsorption on multiwalled carbon nanotubes (MWCNTs at low temperatures (12–30 K and low pressures (2×10^{-5}  Torr using the temperature programmed desorption technique. Our results show that the molecular hydrogen uptake increases nearly exponentially from 6×10^{-9}  wt. % at 24.5 K to 2×10^{-7}  wt. % at 12.5 K and that the desorption kinetics is of the first order. Comparative measurements indicate that MWCNTs have an adsorption capacity about two orders higher than that of activated carbon (charcoal making them a possible candidate as hydrogen cryosorber for eventual applications in accelerators and synchrotrons.

  4. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    International Nuclear Information System (INIS)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D; Kylian, O

    2009-01-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O 2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  5. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E. Fermi 2749, 21027 Ispra (Vatican City State, Holy See) (Italy); Kylian, O [Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)], E-mail: francois.rossi@jrc.ec.europa.eu

    2009-11-15

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O{sub 2} mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  6. An extended CFD model to predict the pumping curve in low pressure plasma etch chamber

    Science.gov (United States)

    Zhou, Ning; Wu, Yuanhao; Han, Wenbin; Pan, Shaowu

    2014-12-01

    Continuum based CFD model is extended with slip wall approximation and rarefaction effect on viscosity, in an attempt to predict the pumping flow characteristics in low pressure plasma etch chambers. The flow regime inside the chamber ranges from slip wall (Kn ˜ 0.01), and up to free molecular (Kn = 10). Momentum accommodation coefficient and parameters for Kn-modified viscosity are first calibrated against one set of measured pumping curve. Then the validity of this calibrated CFD models are demonstrated in comparison with additional pumping curves measured in chambers of different geometry configurations. More detailed comparison against DSMC model for flow conductance over slits with contraction and expansion sections is also discussed.

  7. Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft

    Science.gov (United States)

    Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.

    1972-01-01

    The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.

  8. Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.

    Science.gov (United States)

    Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei

    2008-12-25

    Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.

  9. Low-pressure Environmental TEM (ETEM) studies of Au assisted MgO nanorod growth

    DEFF Research Database (Denmark)

    Duchstein, Linus Daniel Leonhard; Damsgaard, Christian Danvad; Hansen, Thomas Willum

    2012-01-01

    where they become inactive for CO oxidation. Here, we present an environmental transmission electron microscopy (ETEM) study of shape changes of Au nanoparticles supported on MgO in a controlled gas atmosphere, in order to elucidate the mobility of surface species and the configuration of the Au...... and interface structure of supported nanoparticles in a controlled environment [7]. This allows for a deeper understanding of the dynamic response of the surface and interface to changes in gas composition, pressure and temperature. Additionally, an Ultra High Vacuum (UHV) TEM has been used in order to have...... a higher degree of control of the initial state and probe the low-pressure regime. This combination is a powerful toolbox for charactering the behavior of the mobility of atomic species at the MgO surface leading to the formation of nanorods. Figure 1 shows Au particles on MgO cubes being irradiated...

  10. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    Science.gov (United States)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  11. On correction factor in scaling law for low pressure DC gas breakdown

    International Nuclear Information System (INIS)

    Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" data-affiliation=" (Instituto de Física Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" >Ronchi, G; Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" data-affiliation=" (Instituto de Física Gleb Wataghin, UNICAMP, Campinas, SP (Brazil))" >Machida, M

    2014-01-01

    The low pressure gas breakdown described by Paschen's law in Townsend theory, i.e. the breakdown voltage as a function of gas pressure p and the electrode distance d, provides an accurate description of breakdown in DC discharges when the ratio between inter-electrode gap distance d and electrode radii R tends to zero. On increasing of the ratio d/R, the Paschen's curves are shifted to the region of higher breakdown voltage and higher pd values. A modified Paschen's law recently proposed is well satisfied in our measurements. However, the value of constant b changes not only due to gas type but also according to electrode gap distance; furthermore, gas breakdown voltages are considerably modified by plasma-wall interactions due to glass tube proximity in the discharge.

  12. Cracking of low-pressure steam turbine rotor discs in nuclear power plants

    International Nuclear Information System (INIS)

    McMinn, A.; Burghard, H.C. Jr.; Lyle, F.F. Jr.; Leverant, G.R.

    1984-01-01

    This paper describes the results of several metallurgical analyses of retired low pressure (LP) turbine discs that had suffered in-service cracking. Cracks were found in four locations; keyways, bores, web faces and rim attachment areas. In every case, the metallurgical analyses identified intergranular stress corrosion cracking (IGSCC) as the operative mechanism. The cracks normally have been filled with iron oxides; but chlorides, sulphates, carbonates, copper and copper oxide have been found in, or near cracks. In some cases deposits have been strongly alkaline. However, no specific corrodent has been identified as being uniquely responsible for the cracking in any of the discs. In every case, the disc materials met all mechanical-properties and chemical-composition requirements, and had normal microstructures

  13. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    CERN Document Server

    Assamagan, Ketevi A; Bayatyan, G L; Carlini, R; Danagulyan, S; Eden, T; Egiyan, K; Ent, R; Fenker, H; Gan, L; Gasparian, A; Grigoryan, N K; Greenwood, Z; Gueye, P; Hashimoto, O; Johnston, K; Keppel, C; Knyazyan, S; Majewski, S; Margaryan, A; Margaryan, Yu L; Marikian, G G; Martoff, J; Mkrtchyan, H G; Parlakyan, L; Sato, Y; Sawafta, R; Simicevic, N; Tadevosyan, V; Takahashi, T; Tang, L; Vartanian, G S; Vulcan, W; Wells, S; Wood, S

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a sup 2 sup 5 sup 2 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm sup 2 was achieved.

  14. A research program: The investigation of heat transfer and fluid flow at low pressure

    International Nuclear Information System (INIS)

    El-Genk, Mohamed S.; Philbin, Jeffrey S.; Foushee, Fabian C.

    1986-01-01

    This paper gives an overview of a multiyear joint research program being conducted at the University of New Mexico (UNM) with support from Sandia National Laboratories and GA Technologies. This research focuses on heat removal and fluid dynamics in flow regimes characterized by low pressure and low Reynolds number. The program was motivated by a desire to characterize and analyze cooling in a broad class of TRIGA-type reactors under: a) typical operating conditions, b) anticipated, new operating regimes, and c) postulated accident conditions. It has also provided experimental verification of analytical tools used in design analysis. The paper includes descriptions of the UNM thermal-hydraulics test facility and the experimental test sections. During the first two years experiments were conducted using single, electrically heated rod in water and air annuli. This configuration provides an observable and serviceable simulation of a fuel rod and its coolant channel. (author)

  15. Low pressure process for continuous fiber reinforced polyamic acid resin matrix composite laminates

    Science.gov (United States)

    Druyun, Darleen A. (Inventor); Hou, Tan-Hung (Inventor); Kidder, Paul W. (Inventor); Reddy, Rakasi M. (Inventor); Baucom, Robert M. (Inventor)

    1994-01-01

    A low pressure processor was developed for preparing a well-consolidated polyimide composite laminate. Prepreg plies were formed from unidirectional fibers and a polyamic acid resin solution. Molding stops were placed at the sides of a matched metal die mold. The prepreg plies were cut shorter than the length of the mold in the in-plane lateral direction and were stacked between the molding stops to a height which was higher than the molding stops. The plies were then compressed to the height of the stops and heated to allow the volatiles to escape and to start the imidization reaction. After removing the stops from the mold, the heat was increased and 0 - 500 psi was applied to complete the imidization reaction. The heat and pressure were further increased to form a consolidated polyimide composite laminate.

  16. Enhancement of low pressure cold sprayed copper coating adhesion by laser texturing on aluminum substrates

    Science.gov (United States)

    Knapp, Wolfgang; Gillet, Vincent; Courant, Bruno; Aubignat, Emilie; Costil, Sophie; Langlade, Cécile

    2017-02-01

    Surface pre-treatment is fundamental in thermal spraying processes to obtain a sufficient bonding strength between substrate and coating. Different pre-treatments can be used, mostly grit-blasting for current industrial applications. This study is focused on Cu-Al2O3 coatings obtained by Low Pressure Cold Spray on AW5083 aluminum alloy substrate. Bonding strength is measured by tensile adhesion test, while deposition efficiency is measured. Substrates are textured by laser, using a pattern of equally spaced grooves with almost constant diameter and variations of depth. Results show that bonding strength is improved up to +81% compared to non-treated substrate, while deposition efficiency remains constant. The study of the samples after rupture reveals a modification of the failure mode, from mixed failure to cohesive failure. A modification of crack propagation is also noticed, the shape of laser textured grooves induces a deviation of cracks inside the coating instead of following the interface between the layers.

  17. Ultrasensitive detection of explosives and chemical warfare agents by low-pressure photoionization mass spectrometry.

    Science.gov (United States)

    Sun, Wanqi; Liang, Miao; Li, Zhen; Shu, Jinian; Yang, Bo; Xu, Ce; Zou, Yao

    2016-08-15

    On-spot monitoring of threat agents needs high sensitive instrument. In this study, a low-pressure photoionization mass spectrometer (LPPI-MS) was employed to detect trace amounts of vapor-phase explosives and chemical warfare agent mimetics under ambient conditions. Under 10-s detection time, the limits of detection of 2,4-dinitrotoluene, nitrotoluene, nitrobenzene, and dimethyl methyl phosphonate were 30, 0.5, 4, and 1 parts per trillion by volume, respectively. As compared to those obtained previously with PI mass spectrometric techniques, an improvement of 3-4 orders of magnitude was achieved. This study indicates that LPPI-MS will open new opportunities for the sensitive detection of explosives and chemical warfare agents. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment

    Science.gov (United States)

    Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti

    2017-04-01

    Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation

  19. Pre-breakdown light emission phenomena in low-pressure argon between parabolic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wagenaars, E [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Perriens, N W B [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Brok, W J M [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Bowden, M D [Department of Physics and Astronomy, The Open University, Milton Keynes, MK7 6AA (United Kingdom); Veldhuizen, E M van [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Kroesen, G M W [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2006-09-07

    An experimental study on pre-breakdown light emission in low-pressure argon gas was performed. In a pulsed discharge, pre-breakdown phenomena were observed for repetition rates between 100 and 2000 Hz and pulse duration of 100 {mu}s. These phenomena were studied with time-resolved emission imaging using an intensified charge coupled device camera. The origin of the pre-breakdown emission was identified as diffusion of volume charges left over from previous discharges. These charges were accelerated towards the anode in small electron avalanches causing excitation of argon atoms. Different spatial distributions of the pre-breakdown light emission for different times between discharges were measured and the effects of the pre-breakdown phenomena on the main breakdown phase were studied using a double voltage pulse. The observed effects were attributed to the distribution of volume charges, left over from previous discharges, in the discharge gap during the pre-breakdown phase.

  20. High- and low-pressure operation of the gas electron multiplier

    International Nuclear Information System (INIS)

    Bondar, A.; Buzulutskov, A.; Shekhtman, L.; Sauli, F.

    1998-01-01

    We have studied the operation of the gas electron multiplier (GEM) in gas mixtures Xe-CO 2 , Ar-CO 2 and CH 4 at different pressures varying from 0.1 to 5 atm. In Ar- and Xe-based mixtures, the maximum GEM gain considerably decreases with pressure, from a few hundreds at 1 atm to below 10 at 5 atm. Combined gain of GEM and the micro-strip gas chamber (MSGC) can exceed values of 10000 at 1 atm and 100 at 5 atm. High GEM gains, of above 1000, were obtained in CH 4 at low pressures. We have observed the effect of the avalanche confinement in GEM micro-holes, resulting in violation of the pressure scaling and in the possibility of GEM operation in pure noble gases. (author)

  1. Measurement of the non-thermal properties in a low-pressure spraying plasma

    International Nuclear Information System (INIS)

    Jung, Yong Ho; Chung, Kyu Sun

    2002-01-01

    The non-thermal properties of a low-pressure spraying plasma have been characterized by using optical emission spectroscopy and single probes installed in a fast scanning probe system. A two-temperature model of the electrons is introduced to explain their non-isothermal properties, which are measured using single probes. The excitation temperatures of the atomic and the ionic lines are calculated from measurements of the emission intensities of Ar (I) and Ar (II), and those temperatures can be explained by using a local thermodynamic equilibrium (LTE) or a non-local thermodynamic equilibrium (non-LTE) model. In order to deduce more reasonable values (excitation temperatures), we introduce a multi-thermodynamic equilibrium (MTE) model, which gives different temperatures, depending upon the atomic excitation states

  2. Simulation of rarefied low pressure RF plasma flow around the sample

    International Nuclear Information System (INIS)

    Zheltukhin, V S; Shemakhin, A Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 10 3 K, in the plasma jet is (3.2-10) • 10 2 K, the degree of ionization is 10 -7 -10 -5 , electron density is 10 15 -10 19 m -3 . For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out. (paper)

  3. Simulation of rarefied low pressure RF plasma flow around the sample

    Science.gov (United States)

    Zheltukhin, V. S.; Shemakhin, A. Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 103 K, in the plasma jet is (3.2-10) • 102 K, the degree of ionization is 10-7-10-5, electron density is 1015-1019 m-3. For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out.

  4. Highly ionized physical vapor deposition plasma source working at very low pressure

    Science.gov (United States)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.

    2012-04-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.

  5. Highly ionized physical vapor deposition plasma source working at very low pressure

    International Nuclear Information System (INIS)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Hippler, R.; Cada, M.; Hubicka, Z.; Tichy, M.

    2012-01-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti + and Ti ++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density n e ∼ 10 18 m -3 , measured during the HiPIMS pulse.

  6. Time-zero fission-fragment detector based on low-pressure multiwire proportional chambers

    International Nuclear Information System (INIS)

    Assamagan, K.; Baker, K.; Bayatyan, G.; Carlini, R.; Danagoulian, S.; Eden, T.; Egiyan, K.; Ent, R.; Fenker, H.; Gan, L.; Gasparian, A.; Grigoryan, N.; Greenwood, Z.; Gueye, P.; Hashimoto, O.; Johnston, K.; Keppel, C.; Knyazyan, S.; Majewski, S.; Margaryan, A.; Margaryan, Yu.; Marikyan, G.; Martoff, J.; Mkrtchyan, H.; Parlakyan, L.; Sato, Y.; Sawafta, R.; Simicevic, N.; Tadevosyan, V.; Takahashi, T.; Tang, L.; Vartanyan, G.; Vulcan, W.; Wells, S.; Wood, S.

    1999-01-01

    A time-zero fission fragment (FF) detector, based on the technique of low-pressure multiwire proportional chambers (LPMWPC), has been designed and constructed for the heavy hypernuclear lifetime experiment (E95-002) at Thomas Jefferson National Accelerator Facility. Its characteristics and the method of time-zero reconstruction were investigated using fission fragments from a 252 Cf spontaneous fission source. The influence of the ionization energy loss was also studied. It is shown that Heptane, Hexane, and Isobutane gases at a pressure of 1-2 Torr are all suitable for such a FF detector. As desired by experiment, a timing resolution of about 200 ps (FWHM) for a chamber size of 21x21 cm 2 was achieved

  7. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    DEFF Research Database (Denmark)

    Fumagalli, F; Kylian, O; Amato, Letizia

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can...... be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several...... operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water...

  8. Experimental study of unipolar arcs in a low pressure mercury discharge

    International Nuclear Information System (INIS)

    Johnson, C.T.

    1979-01-01

    An experimental study of unipolar arcs was conducted in a low pressure mercury discharge inductively heated with RF. The results were found to be consistent with the concept of a sheath mechanism for driving the unipolar arcs. Floating double-probe measurements of the unipolar arc plasma parameters yielded electron temperatures of approx. 2 eV and electron number densities of approx. 1 x 10 11 cm -3 assuming quasi-neutral plasma conditions. The variation of the unipolar arc current with: (1) the RF power input; and (2) the metal surface area exposed to the plasma verified the predicted dependence of the arc current on the plasma parameters and the metal surface area. Finally, alternative mechanisms for sustaining the observed arcs by high frequency rectification were ruled out on the basis of the recorded current waveforms of the unipolar arcs

  9. OES control of a low-pressure DC arc at TiN layer deposition

    International Nuclear Information System (INIS)

    Andreev, M.A.; Maksimenko, V.N.; Ershov-Pavlov, E.A.

    1995-01-01

    Results are presented of a low-pressure DC arc study as applied for a deposition of TiN wear-resistant coatings in a commercial plant. Plasma parameters of the arc have been measured by optical emission spectroscopy. The plasma emission spectra have been recorded using a grating spectrometer equipped with an on line computer. Changes in the resulting layers due to a difference in working conditions have been determined by metallography and X-ray analysis giving composition, microstructure and thickness of the resulting layers. Using the data, a correlation between emission spectra of the arc and the TiN layer characteristics has been found. The results allow monitoring parameters of the deposition process to obtain necessary quality of the layer and to increase the process efficiency

  10. Transients in low pressure pumping circuits: a language oriented for the problem

    International Nuclear Information System (INIS)

    De Bernardinis, B.; Siccardi, F.

    1977-01-01

    Following a previous work (Vallombrosa 1974) a specialized language was developed for transients in low pressure pumping circuits, when the liquid column separation phenomenon may happen or is to be avoided. The first generation of the programming code is given. Numerical schemes go beyond the usual characteristic integration techniques now available and make it possible to atrack the solution of problems in which on the one hand, the differential equations are nonlinear on account of the variations of the celerity with pressure, and on the other, the pressure of a dispersed gaseous phase in the liquid influences the energetic dissipation mechanisms. The oriented language allows the simulation of the main constituents of the circuits, pumping stations, reservoirs, air tanks, piezometric wells, condensers, variable resistances, conduit junctions, both during normal functioning and in cavitation conditions. Special control instructions on the programming code allow such a simulation language to be easily employed even by people not specifically competent in computer progr

  11. Effects of Alternate Leading Edge Cutback on the Space Shuttle Main Engine Low Pressure Fuel Pump

    Science.gov (United States)

    Mulder, Andrew; Skelley, Stephen

    2016-01-01

    A higher order cavitation oscillation observed in the SSME low pressure fuel pump has been eliminated in water flow testing of a modified subscale replica of the inducer. The low pressure pump was modified by removing the outboard sections of two opposing blades of the four-bladed inducer, blending the "cutback" regions into the blades at the leading edge and tip, and removing material on the suction sides to decrease the exposed leading edge thickness. The leading edge tips of the cutback blades were moved approximately 25 degrees from their previous locations, thereby increasing one blade to blade spacing, decreasing the second, while simultaneously moving the cutback tips downstream. The test was conducted in MSFC's inducer test loop at scaled operating conditions in degassed and filtered water. In addition to eliminating HOC across the entire scaled operating regime, rotating cavitation was suppressed while the range of both alternate blade and asymmetric cavitation were increased. These latter phenomena, and more significantly, the shifts between these cavitation modes also resulted in significant changes to the head coefficient at low cavitation numbers. Reverse flow was detected at a slightly larger flow coefficient with the cutback inducer and suction capability was reduced by approximately 1 velocity head at and above approximately 90% of the reference flow coefficient. These performance changes along with more intense reverse flow are consistent with poor flow area management and increased incidence in the cutback region. Although the test demonstrated that the inducer modification was successful at eliminating the higher order cavitation across the entire scaled operating regime, different, previously unobserved, cavitation oscillations were introduced and significant performance penalties were imposed.

  12. Low-Pressure Hydrocephalus: A Case Report and Review of the Literature.

    Science.gov (United States)

    Strand, Adam; Balise, Stephen; Leung, Lawrence Jun; Durham, Susan

    2018-01-01

    The entity of low-pressure hydrocephalus remains poorly understood and thoroughly debated. Symptomatic improvement accompanied by decrease in ventricular size after prolonged subatmospheric drainage has been well documented, and this method has been considered the criterion standard of management. Few studies have examined alternative treatment options, either to avoid the risks associated with prolonged external ventricular drainage or because of the failure of traditional methods. This study compiled and examined reported cases of low-pressure hydrocephalus in an attempt to provide an up-to-date summary of the condition. A literature search was conducted by use of Ovid Medline and PubMed filtered for the past 25 years with specific key terms, inclusion criteria, and exclusion criteria. Selected case studies and case series were then compared, and statistical analysis was performed where appropriate. Over 25 years, 17 articles met our criteria. In addition to our case, 90 cases of LPH were reported. Magnetic resonance elastography (MRE) has proved to be an effective means of studying the viscoelastic properties of the brain. Endoscopic third ventriculostomy (ETV) appears to be a strong alternative, or additional, treatment. MRE may prove to be effective in studying LPH because of its ability to quantify viscoelastic properties in response to therapy. Additionally, ETV should be considered in cases of LPH, although there is little evidence in the current literature to support its use. There are suggestions that it may lead to fewer shunt-dependent patients. Future studies are needed because there are few documented examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects of feed solution chemistry on low pressure reverse osmosis filtration of cesium and strontium

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Shiyuan, E-mail: dingshiyuan@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Yang, Yu, E-mail: yangyu@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Huang, Haiou, E-mail: huanghaiou@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Liu, Hengchen, E-mail: 799599501@qq.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Hou, Li-an, E-mail: houlian678@hotmail.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing 100875 (China); Xi’an High-Tech Institute, No. 2, Tongxin Street, Baqiao District, Xi’an 710025 (China)

    2015-08-30

    Highlights: • A low pressure spiral wound RO membrane can reject Cs and Sr efficiently. • The rejection of Cs and Sr is dependent on feed pH and co-existing ions. • Donnan exclusion and electrostatic interaction govern the rejection of Cs and Sr. • The differences of filtration mechanism were influenced by the size of ions. • Sr could strengthen the irreversible membrane fouling resistance with HA. - Abstract: The objective of this study was to identify the removal mechanisms of radionuclides by reverse osmosis (RO) membranes under conditions relevant to full-scale water treatment. For this purpose, the effects of feed solution chemistry on the removal of Cs and Sr by a low pressure RO system was investigated by systematically varying membrane surface charge, ionic composition, and organic matter concentrations. The results showed that the effects of solution chemistry on the filtration of Cs and Sr were related to their hydrated ionic radius, resulting in the predominance of the Donnan’s effect and electrostatic interactions, respectively. Consequently, the rejection of Cs increased more pronouncedly than Sr with the increases of feed concentration. Due to the Donnan’s effect, different anions decreased the rejection of Cs to different extents in accordance to the order of anions’ radii as SO{sub 4}{sup 2−} > Cl{sup −} > NO{sub 3}{sup −} > F{sup −}. The variations in Sr rejection were influenced by the electrostatic interactions between Sr{sup 2+} and the membrane. In addition, humic acid (HA) lowered the rejection of Cs and caused significant membrane flux decline, but did not change the rejection of Sr. Sr also aggravated HA fouling of the membrane.

  14. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells

    International Nuclear Information System (INIS)

    O'Hara, M.B.; Hageman, J.H.

    1990-01-01

    The authors have shown, with an optimized [ 14 C]leucine-labeling and chasing procedure, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent. Sodium arsenate, sodium azide, carbonyl cyanide m-chlorophenylhydrozone, and N,N'-dicyclohexylcarbodiimide, at levels which did not induce appreciable lysis (≤ 10%) over 10-h periods of sporulation, inhibited intracellular proteolysis by 13 to 93%. Exponentially growing cells acquired arsenate resistance. In contrast to earlier reports, the authors found that chloramphenicol strongly inhibited proteolysis even when added 6 h into the sporulation process. Restricting the calcium ion concentration in the medium had no effect on rates or extent of vegetative growth, strongly inhibited sporulation, and inhibited rates of proteolysis by 60% or more. Inhibitors of energy metabolism, at the same levels which inhibited proteolysis, did not affect the rate or degree of uptake of Ca 2+ by cells. Restricting the Ca 2+ concentration in the medium reduced by threefold of the specific activity in cells of the major intracellular serine proteinase after 12 h of sporulation. finally, cells of a mutant of B. subtilis bearing an insertionally inactivated gene for the Ca 2+ -dependent intracellular proteinase-1 degraded protein in chemically defined sporulation medium at a rate indistinguishable from that of the wild-type cells for period of 8 h

  15. A primary study on texture modification and proteolysis of mao-tofu ...

    African Journals Online (AJOL)

    Proteolysis occurred during fermentation was evaluated by SDS-PAGE and chemical analysis. Results from Texture Profile Analysis showed that adhesiveness of mao-tofu had an increase trend while hardness, cohesiveness and springiness had a decrease trend as fermentation progressed. SEM analysis showed that the ...

  16. Characterization of linear forms of the circular enterocin AS-48 obtained by limited proteolysis

    NARCIS (Netherlands)

    Montalbán-López, Manuel; Spolaore, Barbara; Pinato, Odra; Martínez-Bueno, Manuel; Valdivia, Eva; Maqueda, Mercedes; Fontana, Angelo

    2008-01-01

    AS-48 is a 70-residue circular peptide from Enterococcus faecalis with a broad antibacterial activity. Here, we produced by limited proteolysis a protein species carrying a single nicking and fragments of 55 and 38 residues. Nicked AS-48 showed a lower helicity by far-ultraviolet circular dichroism

  17. Immobilization of trypsin on miniature incandescent bulbs for infrared-assisted proteolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Huimin; Bao, Huimin; Zhang, Luyan; Chen, Gang, E-mail: gangchen@fudan.edu.cn

    2014-10-03

    Highlights: • Trypsin was immobilized on miniature incandescent bulbs via chitosan coating. • The bulbs acted as enzymatic reactors and the generators of infrared radiation. • The bulb bioreactors were successfully employed in infrared-assisted proteolysis. • The proteolysis could accomplish within 5 min with high sequence coverages. - Abstract: A novel efficient proteolysis approach was developed based on trypsin-immobilized miniature incandescent bulbs and infrared (IR) radiation. Trypsin was covalently immobilized in the chitosan coating on the outer surface of miniature incandescent bulbs with the aid of glutaraldehyde. When an illuminated enzyme-immobilized bulb was immersed in protein solution, the emitted IR radiation could trigger and accelerate heterogeneous protein digestion. The feasibility and performance of the novel proteolysis approach were demonstrated by the digestion of hemoglobin (HEM), cytochrome c (Cyt-c), lysozyme (LYS), and ovalbumin (OVA) and the digestion time was significantly reduced to 5 min. The obtained digests were identified by MALDI-TOF-MS with the sequence coverages of 91%, 77%, 80%, and 52% for HEM, Cyt-c, LYS, and OVA (200 ng μL{sup −1} each), respectively. The suitability of the prepared bulb bioreactors to complex proteins was demonstrated by digesting human serum.

  18. Proteolysis produced within biofilms of bacterial isolates from raw milk tankers.

    Science.gov (United States)

    Teh, Koon Hoong; Flint, Steve; Palmer, Jon; Andrewes, Paul; Bremer, Phil; Lindsay, Denise

    2012-06-15

    In this study, six bacterial isolates that produced thermo-resistant enzymes isolated from the internal surfaces of raw milk tankers were evaluated for their ability to produce proteolysis within either single culture biofilms or co-culture biofilms. Biofilms were formed in an in vitro model system that simulated the upper internal surface of a raw milk tanker during a typical summer's day of milk collection in New Zealand. The bacterial isolates were further evaluated for their ability to form biofilms at 25, 30 and 37°C. Mutual and competitive effects were observed in some of the co-culture biofilms, with all isolates being able to form biofilms in either single culture or co-culture at the three temperatures. The proteolysis was also evaluated in both biofilms and corresponding planktonic cultures. The proteolysis per cell decreased as the temperature of incubation (20-37°C) increased. Furthermore, mutualistic interactions in terms of proteolysis were observed when cultures were grown as co-culture biofilms. This is the first study to show that proteolytic enzymes can be produced in biofilms on the internal surfaces of raw milk tankers. This has important implications for the cleaning and the temperature control of raw milk transport tankers. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A comparison of low-pressure and supercharged operation of polymer electrolyte membrane fuel cell systems for aircraft applications

    Science.gov (United States)

    Werner, C.; Preiß, G.; Gores, F.; Griebenow, M.; Heitmann, S.

    2016-08-01

    Multifunctional fuel cell systems are competitive solutions aboard future generations of civil aircraft concerning energy consumption, environmental issues, and safety reasons. The present study compares low-pressure and supercharged operation of polymer electrolyte membrane fuel cells with respect to performance and efficiency criteria. This is motivated by the challenge of pressure-dependent fuel cell operation aboard aircraft with cabin pressure varying with operating altitude. Experimental investigations of low-pressure fuel cell operation use model-based design of experiments and are complemented by numerical investigations concerning supercharged fuel cell operation. It is demonstrated that a low-pressure operation is feasible with the fuel cell device under test, but that its range of stable operation changes between both operating modes. Including an external compressor, it can be shown that the power demand for supercharging the fuel cell is about the same as the loss in power output of the fuel cell due to low-pressure operation. Furthermore, the supercharged fuel cell operation appears to be more sensitive with respect to variations in the considered independent operating parameters load requirement, cathode stoichiometric ratio, and cooling temperature. The results indicate that a pressure-dependent self-humidification control might be able to exploit the potential of low-pressure fuel cell operation for aircraft applications to the best advantage.

  20. Comparison of three mineral candidates in middle and low-pressure condition. Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Heng; Zhang, Jun-ying; Zhao, Yong-chun; Wang, Zhi-lang; Pan, Xia; Xu, Jun; Zheng, Chu-guang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    ''Greenhouse Effect'', which is scientifically proven to be main caused by the increasing concentration of CO{sub 2}, has become a topic of national and international concern. Mineral carbonation, such as carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a potentially attractive route to mitigate possible global warming on the basis of industrial imitation of natural weathering processes. In this paper, three typical natural mineral candidates in China, serpentine, olivine and wollastonite, were selected as carbonation raw materials for direct mineral carbonation experiments under middle and low-pressure. A series number of experiments were carried out to investigate the factors that influence the conversion of carbonation reaction, such as reaction temperature, reaction pressure, particle size, solution composition and pretreatment. The solid products from carbonation experiments were filtered, collected, dried and analyzed by X-ray diffraction (XRD) and field scanning electron microscopy equipped with energy dispersive X-ray analysis (FSEM-EDX) to identify the reaction of mineral carbonation. And the method of mass equilibrium after heat decomposition was used to calculate the mineral carbonation conversion. All the XRD and FSEM analysis validate that carbonation reaction was occurred during the experiments and mineral carbonation is one of the potential techniques for carbon dioxide sequestration. The data of mass equilibrium after heat decomposition was collected and then the conversion formula was used to calculate the carbonation conversion of all the three mineral candidates. The mass equilibrium results show that, for all of the three mineral materials, the carbonation conversion increases with the increasing of reaction temperature. But once the temperature increases above 150 C, the conversion of serpentine decreases a little. Reaction pressure is also an important factor to mineral

  1. Heat and mass transfer of a low-pressure Mars greenhouse: Simulation and experimental analysis

    Science.gov (United States)

    Hublitz, Inka

    Biological life support systems based on plant growth offer the advantage of producing fresh food for the crew during a long surface stay on Mars. Greenhouses on Mars are also used for air and water regeneration and waste treatment. A major challenge in developing a Mars greenhouse is its interaction with the thin and cold Mars environment. Operating a Mars greenhouse at low interior pressure reduces the pressure differential across the structure and therefore saves structural mass as well as reduces leakage. Experiments were conducted to analyze the heating requirements as well as the temperature and humidity distribution within a small-scale greenhouse that was placed in a chamber simulating the temperatures, pressure and light conditions on Mars. Lettuce plants were successfully grown inside of the Mars greenhouse for up to seven days. The greenhouse atmosphere parameters, including temperature, total pressure, oxygen and carbon dioxide concentration were controlled tightly; radiation level, relative humidity and plant evapo-transpiration rates were measured. A vertical stratification of temperature and humidity across the greenhouse atmosphere was observed. Condensation formed on the inside of the greenhouse when the shell temperature dropped below the dew-point. During the night cycles frost built up on the greenhouse base plate and the lower part of the shell. Heat loss increased significantly during the night cycle. Due to the placement of the heating system and the fan blowing warm air directly on the upper greenhouse shell, condensation above the plants was avoided and therefore the photosynthetically active radiation at plant level was kept constant. Plant growth was not affected by the temperature stratification due to the tight temperature control of the warmer upper section of the greenhouse, where the lettuce plants were placed. A steady state and a transient heat transfer model of the low pressure greenhouse were developed for the day and the night

  2. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  3. Design and Application of a High Sensitivity Piezoresistive Pressure Sensor for Low Pressure Conditions

    Science.gov (United States)

    Yu, Huiyang; Huang, Jianqiu

    2015-01-01

    In this paper, a pressure sensor for low pressure detection (0.5 kPa–40 kPa) is proposed. In one structure (No. 1), the silicon membrane is partly etched to form a crossed beam on its top for stress concentration. An aluminum layer is also deposited as part of the beam. Four piezoresistors are fabricated. Two are located at the two ends of the beam. The other two are located at the membrane periphery. Four piezoresistors connect into a Wheatstone bridge. To demonstrate the stress concentrate effect of this structure, two other structures were designed and fabricated. One is a flat membrane structure (No. 2), the other is a structure with the aluminum beam, but without etched silicon (No. 3). The measurement results of these three structures show that the No.1 structure has the highest sensitivity, which is about 3.8 times that of the No. 2 structure and 2.7 times that of the No. 3 structure. They also show that the residual stress in the beam has some backside effect on the sensor performance. PMID:26371001

  4. The deterministic prediction of failure of low pressure steam turbine disks

    International Nuclear Information System (INIS)

    Liu, Chun; Macdonald, D.D.

    1993-01-01

    Localized corrosion phenomena, including pitting corrosion, stress corrosion cracking, and corrosion fatigue, are the principal causes of corrosion-induced damage in electric power generating facilities and typically result in more than 50% of the unscheduled outages. Prediction of damage, so that repairs and inspections can be made during scheduled outages, could have an enormous impact on the economics of electric power generation. To date, prediction of corrosion damage has been made on the basis of empirical/statistical methods that have proven to be insufficiently robust and accurate to form the basis for the desired inspection/repair protocol. In this paper, we describe a deterministic method for predicting localized corrosion damage. We have used the method to illustrate how pitting corrosion initiates stress corrosion cracking (SCC) for low pressure steam turbine disks downstream of the Wilson line, where a thin condensed liquid layer exists on the steel disk surfaces. Our calculations show that the SCC initiation and propagation are sensitive to the oxygen content of the steam, the environment in the thin liquid condensed layer, and the stresses that the disk experiences in service

  5. Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp

    International Nuclear Information System (INIS)

    Sande, M.J. van de; Mullen, J.J.A.M. van der

    2002-01-01

    Excitation and light production processes in gas discharge lamps are the result of inelastic collisions between atoms and free electrons in the plasma. Therefore, knowledge of the electron density n e and temperature T e is essential for a proper understanding of such plasmas. In this paper, an experimental system for laser Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp and measurements of n e and T e in this lamp are presented. The experimental system is suitable for low electron temperatures (down to below 0.2 eV) and employs a triple grating spectrograph for a high stray light rejection, or equivalently a low stray light redistribution (R eff approximately 7x10 -9 nm -1 at 0.5 nm from the laser wavelength). The electron density detection limit of the system is n e approximately 10 16 m -3 . The modifications to the lamp that were necessary for the measurements are described, and results are presented and compared to previous work and trends expected from the electron particle and energy balances. The electron density and temperature are about n e approximately 10 19 m -3 and T e approximately 1 eV in the most active part of the plasma; the exact values depend on the argon filling pressure, the mercury pressure and the position in the lamp. (author)

  6. Post-dryout heat transfer and entrained droplet sizes at low pressure and low flow conditions

    International Nuclear Information System (INIS)

    Jeong, H.Y.; No, H.C.

    1997-01-01

    The entrainment mechanisms and the entrained droplet sizes with relation to the flow regimes are investigated. Through the analysis of many experimental post-dryout data, it is shown that the most probable flow regime near dryout or quench front is not annular flow but churn-turbulent flow when the mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. The history-dependent post-dryout model of Varone and Rohsenow replaced by the Webb-Chen model for wall-vapor heat transfer is used as a reference model in the analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is not applicable when the vapor superficial velocity is very low. This is explained by the change of main entrainment mechanism with the change of flow regime. In bubbly or slug flow a number of tiny droplets generated from bubble burst become important in the heat transfer after dryout. Therefore, the suggested correlation is valid only in the churn-turbulent flow regime (j g * = 0.5∼4.5). It is also suggested that the droplet size generated from the churn-turbulent surface is dependent not only on the pressure but also on the vapor velocity. It turns out that the present model can predict the measured cladding and vapor temperatures within 20% and 25%, respectively

  7. Numerical simulations of self-pinched transport of intense ion beams in low-pressure gases

    International Nuclear Information System (INIS)

    Rose, D.V.; Ottinger, P.F.; Welch, D.R.; Oliver, B.V.; Olson, C.L.

    1999-01-01

    The self-pinched transport of intense ion beams in low-pressure background gases is studied using numerical simulations and theoretical analysis. The simulations are carried out in a parameter regime that is similar to proton beam experiments being fielded on the Gamble II pulsed power generator [J. D. Shipman, Jr., IEEE Trans. Nucl. Sci. NS-18, 243 (1971)] at the Naval Research Laboratory. Simulation parameter variations provide information on scaling with background gas species, gas pressure, beam current, beam energy, injection angles, and boundaries. The simulation results compare well with simple analytic scaling arguments for the gas pressure at which the effective net current should peak and with estimates for the required confinement current. The analysis indicates that the self-pinched transport of intense proton beams produced on Gamble II (1.5 MeV, 100 kA, 3 cm radius) is expected to occur at gas pressures between 30 and 80 mTorr of He or between 3 and 10 mTorr of Ar. The significance of these results to ion-driven inertial confinement fusion is discussed. copyright 1999 American Institute of Physics

  8. The simulation of magnesium wheel low pressure die casting based on PAM-CASTTM

    International Nuclear Information System (INIS)

    Peng Yinghong; Wang Yingchun; Li Dayong; Zeng Xiaoqin

    2004-01-01

    Magnesium is the lightest metal commonly used in engineering, with various excellent characteristics such as high strength and electromagnetic interference shielding capability. Particularly, the usage of magnesium in automotive industry can meet better the need to reduce fuel consumption and CO2 emissions. Nowadays, most current magnesium components in automobiles are made by die casting. In this paper, commercial software for die casting, PAM-CAST TM , was utilized to simulate the low pressure die casting process of magnesium wheel. Through calculating temperature field and velocity field during filling and solidification stages, the evolution of temperature distribution and liquid fraction was analyzed. Then, the potential defects including the gas entrapments in the middle of the spokes, shrinkages between the rim and the spokes were forecasted. The analytical results revealed that the mold geometry and die casting parameters should be improved in order to get the sound magnesium wheel. The reasons leading to these defects were also analyzed and the solutions to eliminate them were put forward. Furthermore, through reducing the pouring velocity, the air gas entrapments and partial shrinkages were eliminated effectively

  9. Development and investigation of a neutron radiography imaging system with a low-pressure multistep chamber

    International Nuclear Information System (INIS)

    Anisimov, Yu.S.; Chernenko, S.P.; Ivanov, A.B.; Netusil, T.; Peshekhonov, V.D.; Smykov, L.P.; Zanevsky, Yu.V.; Cisar, M.; Horacek, J.; Knourek, J.; Moucka, L.; Nezmar, L.; Pellar, L.; Pochman, J.; Schneider, Z.; Sidak, Z.; Vrba, I.; Bizek, V.; Zavadil, Z.; Beran, P.; Cerny, K.

    1988-01-01

    An imaging system of thermal neutrons for an investigation of digital neutron radiography has been developed and tested. Some characteristics obtained on a neutron radiography beam of an experimental reactor are reported. The coordinates of each event are determined in this system. After processing in a LSI 11/23 computer, a radiograph, accumulated in a histogramming memory of 64 K 16-bit words, is presented on a colour display. A 230x180 mm 2 low-pressure multistep chamber is used as a detector. Neutron conversion takes place in a 6 μm boron layer enriched to 86% in 10 B. The detection efficiency of thermal neutrons is no less than 3%. The count rate of the system reaches up to 2x10 5 events per second. A radiograph can be obtained within 10 minutes. The sensitivity of this system to gamma-background is low. One event/s is detected for a background of 1 R/h. The spatial resolution is found to be 0.7 mm (FWHM) using a cadmium knife edge. The integral nonlinearity is less than 0.4%. The possibility of using a hydrogeneous converter in this system for neutron radiography is discussed. (orig.)

  10. Remote communications technology redefines integrity verification and monitoring of low pressure isolation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-01-15

    In 2007, a ship collided with the southeast face of a satellite platform jacket in the North Sea, damaging the 12-inch export riser. Emergency shutdown valves immediately shut-in production from the platform, leaving the pressure in the pipeline at approximately 4 barg. The riser had to be repaired before production could resume. TDW Offshore Services (TDW) was hired to develop a low pressure solution to isolate the damaged section of the pipeline riser from the export pipeline gas inventory. TDW used its range of specialist pipeline pigging, pig tracking and remote communications technology to solve the problem. The solution consisted of a custom-designed TDW pig trap and pigging spread; a high friction pig train furnished with the SmartTrack remote tracking and pressure-monitoring system; a SmartTrack subsea remote tracking and pressure-monitoring system; a SmartTrack topside tracking and monitoring system with radio link to the dive support vessel; and a pipeline isolation ball valve. TDW was able to monitor the downstream pressure of each isolation pig continuously throughout the operation using its innovative technology that sends isolation integrity data by radio link to a dive support vessel through pipe wall communications. The use of remote tracking and pressure monitoring technology enabled TDW to make repairs to the damaged riser while maintaining a continuous flow throughout the duration of the operation. 4 figs.

  11. Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment

    KAUST Repository

    Ayache, C.; Pidou, Marc; Croue, Jean-Philippe; Labanowski, Jé rô me; Poussade, Yvan; Tazi-Pain, Annie; Keller, Jurg R.; Gernjak, Wolfgang

    2013-01-01

    This study aims at comparing low-pressure membrane fouling obtained with two different secondary effluents at bench and pilot-scale based on the determination of two fouling indices: the total fouling index (TFI) and the hydraulically irreversible fouling index (HIFI). The main objective was to investigate if simpler and less costly bench-scale experimentation can substitute for pilot-scale trials when assessing the fouling potential of secondary effluent in large scale membrane filtration plants producing recycled water. Absolute values for specific flux and total fouling index for the bench-scale system were higher than those determined from pilot-scale, nevertheless a statistically significant correlation (r2 = 0.63, α = 0.1) was obtained for the total fouling index at both scales. On the contrary no such correlation was found for the hydraulically irreversible fouling index. Advanced water characterization tools such as excitation-emission matrix fluorescence spectroscopy (EEM) and liquid chromatography with organic carbon detection (LC-OCD) were used for the characterization of foulants. On the basis of statistical analysis, biopolymers and humic substances were found to be the major contribution to total fouling (r2 = 0.95 and r2 = 0.88, respectively). Adsorption of the low molecular weight neutral compounds to the membrane was attributed to hydraulically irreversible fouling (r2 = 0.67). © 2013 Elsevier Ltd.

  12. Thermal Stress Analysis for Ceramics Stalk in the Low Pressure Die Casting Machine

    Science.gov (United States)

    Noda, Nao-Aki; Hendra, Nao-Aki; Takase, Yasushi; Li, Wenbin

    Low pressure die casting (LPDC) is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The LPDC process is playing an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. The LPDC process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal by means of a pressurized gas in order to rise into a ceramic tube, which connects the die to the furnace. The ceramics tube called stalk has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk is dipped into the molten aluminum. It is important to develop the design of the stalk to reduce the risk of fracture because of low fracture toughness of ceramics. In this paper, therefore, the finite element method is applied to calculate the thermal stresses when the stalk is dipped into the crucible by varying the dipping speeds and dipping directions. It is found that the thermal stress can be reduced by dipping slowly if the stalk is dipped into the crucible vertically, while the thermal stress can be reduced by dipping fast if it is dipped horizontally.

  13. Experimental and Numerical Study of the Evaporation of Water at Low Pressures.

    Science.gov (United States)

    Kazemi, Mohammad Amin; Nobes, David S; Elliott, Janet A W

    2017-05-09

    Although evaporation is considered to be a surface phenomenon, the rate of molecular transport across a liquid-vapor boundary is strongly dependent on the coupled fluid dynamics and heat transfer in the bulk fluids. Recent experimental thermocouple measurements of the temperature field near the interface of evaporating water into its vapor have begun to show the role of heat transfer in evaporation. However, the role of fluid dynamics has not been explored sufficiently. Here, we have developed a mathematical model to describe the coupling of the heat, mass, and momentum transfer in the fluids with the transport phenomena at the interface. The model was used to understand the experimentally obtained velocity field in the liquid and temperature profiles in the liquid and vapor, in evaporation from a concave meniscus for various vacuum pressures. By using the model, we have shown that an opposing buoyancy flow suppressed the thermocapillary flow in the liquid during evaporation at low pressures in our experiments. As such, in the absence of thermocapillary convection, the evaporation is controlled by heat transfer to the interface, and the predicted behavior of the system is independent of choosing between the existing theoretical expressions for evaporation flux. Furthermore, we investigated the temperature discontinuity at the interface and confirmed that the discontinuity strongly depends on the heat flux from the vapor side, which depends on the geometrical shape of the interface.

  14. Aluminum oxide films deposited in low pressure conditions by reactive pulsed dc magnetron sputtering

    CERN Document Server

    Seino, T

    2002-01-01

    The reactive pulsed dc sputtering technique is widely used for the deposition of oxide films. The operating pressure for sputtering is commonly above 0.13 Pa. In this study, however, aluminum oxide (alumina) films were deposited at operating pressures from 0.06 to 0.4 Pa using a sputtering system equipped with a scanning magnetron cathode and a pulsed dc power supply. The pulsed dc power was found to be useful not only to reduce arcing, but also to sustain the discharge at low pressure. The electrical breakdown field, intrinsic stress, O/Al ratio, refractive index, and surface roughness were investigated. Both a low intrinsic stress and an O/Al ratio around the stoichiometry were required to get the film having a high breakdown field. A low operating pressure of 0.1 Pa was found to provide the necessary stress and O/Al ratio targets. A 50-nm-thick alumina film having a maximum breakdown field of 7.4 MV/cm was obtained.

  15. Exhaust Aftertreatment and Low Pressure Loop EGR Applied to an Off-Highway Engine

    Energy Technology Data Exchange (ETDEWEB)

    Baumgard, Kirby; Triana, Antonio; Johnson, John; Yang, Song; Premchand, Kiran

    2006-01-30

    The goal of the project was to demonstrate that low pressure loop EGR incorporating a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF) can be applied to an off-highway engine to meet Tier 3 (Task I) and Interim Tier 4 (Task II) off-road emissions standards. Task I data was collected using a John Deere 8.1 liter engine modified with a low pressure loop EGR system. The engine and EGR system was optimized and final data over the ISO 8178 eight mode test indicated the NOx emissions were less than 4 g/kWh and the PM was less than 0.02 g/kWh which means the engine met the Tier 3 off-road standard. Considerable experimental data was collected and used by Michigan Tech University to develop and calibrate the MTU-Filter 1D DPF model. The MTU-Filter 1D DPF code predicts the particulate mass evolution (deposition and oxidation) in the diesel particulate filter (DPF) during simultaneous loading and during thermal and NO{sub 2}-assisted regeneration conditions. It also predicts the pressure drop across the DPF, the flow and temperature fields, the solid filtration efficiency and the particle number distribution downstream of the DPF. A DOC model was also used to predict the NO{sub 2} upstream of the DPF. The DPF model was calibrated to the experimental data at temperatures from 230 C to 550 C, and volumetric flow rates from 9 to 39 actual m{sup 3}/min. Model predictions of the solid particulate mass deposited in the DPF after each loading and regeneration case were in agreement within +/-10g (or +/-10%) of experimental measurements at the majority of the engine operating conditions. The activation temperatures obtained from the model calibration are in good agreement with values reported in the literature and gave good results in the model calibration by using constant pre-exponential factors throughout the entire range of conditions evaluated. The average clean filter permeability was 2.372 x 10{sup -13} m{sup 2}. Estimates of the solid particulate mass

  16. Control of the thermostressed state of low-pressure cylinder rotors for power steam turbines

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.

    1980-01-01

    The principle arrangement of an analog device for operation control of the low pressure cylinder (LPC) heating at large steam turbine start-up has been developed. Different forms of representation of the thermal conductivity equation used for realization by means of analog models are analized. Presented are the results of calculating the heating indices for the welded rotor of LPC during the turbine start-up from a cold state and the curves of temperature distribution in the disc of the first sections of welded LPC rotor at start-up from a cold state and in a steady-state regime. The results obtained show that in the process of start-up the error of the temperature difference DELTAt determination according to the suggested scheme does not exceed 10 deg C. After achieving the maximum of DELTAt in the process of the rotor temperature field flattening, this error increases and constitutes 32 deg C in steady-state regime, mainly, due to the error of temperature determination on the rotation axis in controlled cross section. As far as the control for the LPC rotor heating is necessary only during start-up and the requirements for its accuracy are not equivalent, therefore, for all regimes, representativity and accuracy of control provided by the accepted calculation scheme is quite satisfactory

  17. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery - Part 1.

    Science.gov (United States)

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H(2) storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1(st) hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body.

  18. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery – Part 1

    Science.gov (United States)

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H2 storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1st hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body. PMID:22423175

  19. Experimental Verification of Integrity of Low-Pressure Injection Piles Structure - Pile Internal Capacity

    Science.gov (United States)

    Pachla, Henryk

    2017-12-01

    The idea of strengthening the foundation using injection piles lies in transferring loads from the foundation to the piles anchorage in existing structure and formed in the soil. Such a system has to be able to transfer loads from the foundation to the pile and from the pile onto the soil. Pile structure often reinforced with steel element has to also be able to transfer such a loading. According to the rules of continuum mechanics, the bearing capacity of such a system and a deformation of its individual elements can be determined by way of an analysis of the contact problem of three interfaces. Each of these surfaces is determined by different couples of materials. Those surfaces create: pile-foundation anchorage, bonding between reinforcement and material from which the pile is formed and pilesoil interface. What is essential is that on the contact surfaces the deformation of materials which adhere to each other can vary and depends on the mechanical properties and geometry of these surfaces. Engineering practice and experimental research point out that the failure in such structures occurs at interfaces. The paper is concentrating on presenting the experiments on interaction between cement grout and various types of steel reinforcement. The tests were conducted on the special low pressure injection piles widely used to strengthen foundations of already existing structures of historical buildings due to the technology of formation and injection pressure.

  20. Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Avik; Kilianová, Martina; Yang, Bing; Tyo, Eric C.; Seifert, Soenke; Prucek, Robert; Panáček, Aleš; Suchomel, Petr; Tomanec, Ondřej; Gosztola, David J.; Milde, David; Wang, Hsien-Hau; Kvítek, Libor; Zbořil, Radek; Vajda, Stefan

    2018-06-01

    We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the starting nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.

  1. Corrosion fatigue of bladed disk attachments of low-pressure turbine

    International Nuclear Information System (INIS)

    Asai, K.; Sakurai, S.; Nomura, K.; Saito, E.; Namura, K.

    2004-01-01

    The mechanism of a disk cracking in a low-pressure steam turbine was investigated by finite-element and fracture mechanics analysis and, based on the results of the investigation, a life assessment method was derived. The disk cracking was found to be caused by growth of corrosion pits, superposition of multiple vibration modes, and an increase in the standard deviation of the natural frequency of grouped blades after long-term operation. Taking these findings into consideration, the authors then developed a life-assessment method for disk cracking composed of evaluations (1) maximum corrosion pit size at the current situation, (2) corrosion pit growth after a certain term, and (3) failure-occurrence ratio for the estimated corrosion pit depth. Maximum corrosion-pit size is evaluated by extreme value statistical analysis using the data obtained by replica inspection. The failure-occurrence ratio is evaluated by Monte Carlo simulation considering two uncertainties, namely, the standard deviation of the natural frequency of grouped blades and the stimulus ratio. The values of both uncertainties were determined by the inverse problem analysis of the disk cracking. In light of these results, the authors found that replacing conventional tenon-shroud grouped blades with continuous-cover blades is effective from the view point of vibratory behavior. (orig.)

  2. High-beta plasma effects in a low-pressure helicon plasma

    International Nuclear Information System (INIS)

    Corr, C. S.; Boswell, R. W.

    2007-01-01

    In this work, high-beta plasma effects are investigated in a low-pressure helicon plasma source attached to a large volume diffusion chamber. When operating above an input power of 900 W and a magnetic field of 30 G a narrow column of bright blue light (due to Ar II radiation) is observed along the axis of the diffusion chamber. With this blue mode, the plasma density is axially very uniform in the diffusion chamber; however, the radial profiles are not, suggesting that a large diamagnetic current might be induced. The diamagnetic behavior of the plasma has been investigated by measuring the temporal evolution of the magnetic field (B z ) and the plasma kinetic pressure when operating in a pulsed discharge mode. It is found that although the electron pressure can exceed the magnetic field pressure by a factor of 2, a complete expulsion of the magnetic field from the plasma interior is not observed. In fact, under our operating conditions with magnetized ions, the maximum diamagnetism observed is ∼2%. It is observed that the magnetic field displays the strongest change at the plasma centre, which corresponds to the maximum in the plasma kinetic pressure. These results suggest that the magnetic field diffuses into the plasma sufficiently quickly that on a long time scale only a slight perturbation of the magnetic field is ever observed

  3. Experimental Verification of Integrity of Low-Pressure Injection Piles Structure – Pile Internal Capacity

    Directory of Open Access Journals (Sweden)

    Pachla Henryk

    2017-12-01

    Full Text Available The idea of strengthening the foundation using injection piles lies in transferring loads from the foundation to the piles anchorage in existing structure and formed in the soil. Such a system has to be able to transfer loads from the foundation to the pile and from the pile onto the soil. Pile structure often reinforced with steel element has to also be able to transfer such a loading. According to the rules of continuum mechanics, the bearing capacity of such a system and a deformation of its individual elements can be determined by way of an analysis of the contact problem of three interfaces. Each of these surfaces is determined by different couples of materials. Those surfaces create: pile-foundation anchorage, bonding between reinforcement and material from which the pile is formed and pilesoil interface. What is essential is that on the contact surfaces the deformation of materials which adhere to each other can vary and depends on the mechanical properties and geometry of these surfaces. Engineering practice and experimental research point out that the failure in such structures occurs at interfaces. The paper is concentrating on presenting the experiments on interaction between cement grout and various types of steel reinforcement. The tests were conducted on the special low pressure injection piles widely used to strengthen foundations of already existing structures of historical buildings due to the technology of formation and injection pressure.

  4. Low-pressure glow discharges with oscillating electrons in different electrode systems

    International Nuclear Information System (INIS)

    Bersenev, V.V.; Gavriolv, N.V.; Nikulin, S.P.

    1995-01-01

    One of the main applications of low - pressure glow discharges is the development on their basis of charged - particle beam sources. The use of glow discharges with oscillating electrons, which can operate stably in the voltage and pressure range to the left of the left branch of Pashen's curve, shows promise, because the decrease in critical pressure p 0 , below which the discharge operation becomes impossible, in the discharge system of a source promotes an increase in the electrical strength of its accelerating system. This, in its turn, makes possible the expansion of the operation range of accelerating voltages. This experimental investigation of glow discharges in such well - known systems with oscillating electrons, as Hollow Cathode (HC), Penning's System (PS) and Inverse Magnetron (IM), is aimed at revealing the system operating at the lowest pressure. Besides, both common features and peculiarities of discharge operation in these systems are discussed. Though there is an extensive amount of published information covering all the specified discharges, the carrying out of such investigation is justified, since a comparative analysis of results obtained by different authors is hampered by various conditions of their experiments

  5. Performances of nanofiltration and low pressure reverse osmosis membranes for desalination: characterization and modelling

    Science.gov (United States)

    Boussouga, Y. A.; Lhassani, A.

    2017-03-01

    The nanofiltration and the reverse osmosis processes are the most common techniques for the desalination of water contaminated by an excess of salts. In this present study, we were interested in the characterization of commercial, composite and asymmetric membranes of nanofiltration (NF90, NF270) and low pressure reverse osmosis (BW30LE). The two types of characterization that we opted for our study: (i) characterization of electrical proprieties, in terms of the surface charge of various membranes studied by the measurement of the streaming potential, (ii) hydrodynamic characterization in terms of hydraulic permeability with pure water, mass transfer and phenomenological parameters for each system membrane/salt using hydrodynamic approaches. The irreversible thermodynamics allowed us to model the observed retention Robs of salts (NaCl and Na2SO4) for the different membranes studied, to understand and to predict a good filtration with a membrane. A study was conducted on the type of mass transfer for each system membrane/salt: convection and diffusion. The results showed that all tested membranes are negatively charged for the solutions at neutral pH, this is explained by their material composition. The results also showed competitiveness between the different types of membranes. In view of that the NF remains effective in terms of selective retention with less energy consumption than LPRO.

  6. Development of a 1200 KW/CYL low pressure dual fuel engine for LNG carriers

    Energy Technology Data Exchange (ETDEWEB)

    Grosshans, G. [S.E.M.T.-Pielstick, Thermodynamical Project Dept. (France)

    1998-12-31

    This paper describes the design and feasibility tests of a 570 mm bore 4 stroke low pressure (L.P.) dual fuel engine rated at 20.9 bar BMEP meant for the propulsion of LNG carriers. The basic design features which are to be in accordance with classification societies safety rules are described: individual electro hydraulic valves located in the air manifold ducts, pilot injection, monitoring system etc. The engine capability to burn variable liquid/gas fuel proportions have been investigated with diesel oil and heavy fuel and possible running zones are defined. This ensures the possibility of the engine to cope with the different boil off gas quantity emanating from the ship`s tank during her loaded - and ballast - journeys. With the very lean setting of this engine, no adverse influence of the high ash lube-oil additives were found during the tests. Further tests are necessary to confirm that possible more significant fouling of the combustion chamber is still acceptable. (au)

  7. Nanoparticle formation in a low pressure argon/aniline RF plasma

    Science.gov (United States)

    Pattyn, C.; Kovacevic, E.; Hussain, S.; Dias, A.; Lecas, T.; Berndt, J.

    2018-01-01

    The formation of nanoparticles in low temperature plasmas is of high importance for different fields: from astrophysics to microelectronics. The plasma based synthesis of nanoparticles is a complex multi-scale process that involves a great variety of different species and comprises timescales ranging from milliseconds to several minutes. This contribution focuses on the synthesis of nanoparticles in a low temperature, low pressure capacitively coupled plasma containing mixtures of argon and aniline. Aniline is commonly used for the production of polyaniline, a material that belongs to the family of conductive polymers, which has attracted increasing interest in the last few years due to the large number of potential applications. The nanoparticles which are formed in the plasma volume and levitate there due to the collection of negative charges are investigated in this contribution by means of in-situ FTIR spectroscopy. In addition, the plasma is analyzed by means of plasma (ion) mass spectroscopy. The experiments reveal the possibility to synthesize nanoparticles both in continuous wave and in pulsed discharges. The formation of particles in the plasma volume can be suppressed by pulsing the plasma in a specific frequency range. The in-situ FTIR analysis also reveals the influence of the argon plasma on the characteristics of the nanoparticles.

  8. Transient effects caused by pulsed gas and liquid injections into low pressure plasmas

    International Nuclear Information System (INIS)

    Ogawa, D; Goeckner, M; Overzet, L; Chung, C W

    2010-01-01

    The fast injection of liquid droplets into a glow discharge causes significant time variations in the pressure, the chemical composition of the gas and the phases present (liquid and/or solid along with gas). While the variations can be large and important, very few studies, especially kinetic studies, have been published. In this paper we examine the changes brought about in argon plasma by injecting Ar (gas), N 2 (gas) hexane (gas) and hexane (liquid droplets). The changes in the RF capacitively coupled power (forward and reflected), electron and ion density (n e , n i ), electron temperature (T e ) and optical emissions were monitored during the injections. It was found that the Ar injection (pressure change only) caused expected variations. The electron temperature reduced, the plasma density increased and the optical emission intensity remained nearly constant. The N 2 and hexane gas injections (chemical composition and pressure changes) also followed expected trends. The plasma densities increased and electron temperature decreased while the optical emissions changed from argon to the injected gas. These all serve to highlight the fact that the injection of evaporating hexane droplets in the plasma caused very little change. This is because the number of injected droplets is too small to noticeably affect the plasma, even though the shift in the chemical composition of the gas caused by evaporation from those same droplets can be very significant. The net conclusion is that using liquid droplets to inject precursors for low pressure plasmas is both feasible and controllable.

  9. Low-pressure sequential compression of lower limbs enhances forearm skin blood flow.

    Science.gov (United States)

    Amah, Guy; Voicu, Sebastian; Bonnin, Philippe; Kubis, Nathalie

    2016-12-01

    We investigated whether forearm skin blood flow could be improved when a multilayer pulsatile inflatable suit was applied at a low pressure to the lower limbs and abdomen. We hypothesized that a non-invasive purely mechanical stimulation of the lower limbs could induce remote forearm blood flow modifications. The pulsatile suit induced a sequential compartmentalized low compression (65 mmHg), which was synchronized with each diastole of the cardiac cycle with each phase evolving centripetally (lower limbs to abdomen). Modifications of the forearm skin blood flow were continuously recorded by laser Doppler flowmetry (LDF) at baseline and during the pulsatile suit application. Endothelium-dependent and endothelium-independent vasodilations of the forearm skin microcirculation were measured by LDF in response to a local transdermal iontophoretic application of acetylcholine (ACh-test) and to hyperthermia (hyperT- test). Twenty-four healthy volunteers, 12 men and 12 women (43±14 years) were included in the study. LDF responses increased 1) under pulsatile suit (97±106%, p.

  10. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil.

    Science.gov (United States)

    Giannakopoulou, Kanellina; Lukas, Michael; Vasiliev, Aleksey; Brunner, Christoph; Schnitzer, Hans

    2010-05-01

    Zeolite catalysts of three types (H-ZSM-5, Fe-ZSM-5 and H-Beta) were tested in the catalytic co-conversion of rapeseed cake and safflower oil into bio-fuel. This low pressure process was carried out at the temperatures of 350 and 400 degrees Celsius. The yields and compositions of the product mixtures depended on the catalyst nature and the process temperatures. The produced organic phases consisted mainly of hydrocarbons, fatty acids and nitriles. This mixture possessed improved characteristics (e.g. heating value, water content, density, viscosity, pH) compared with the bio-oils, making possible its application as a bio-fuel. The most effective catalyst, providing the highest yield of organic liquid phase, was the highly acidic/wide-pore H-Beta zeolite. The products obtained on this catalyst demonstrated the highest degree of deoxygenation and the higher HHV (Higher Heating Value). The aqueous liquid phase contained water-soluble carboxylic acids, phenols and heterocyclic compounds. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Two-Phase Instability Characteristics of Printed Circuit Steam Generator for the Low Pressure Condition

    International Nuclear Information System (INIS)

    Kang, Han-Ok; Han, Hun Sik; Kim, Young-In; Kim, Keung Koo

    2015-01-01

    Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall manufacturing cost for the components. A PCHE(Printed Circuit Heat Exchanger) is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. PCSG(Printed Circuit Steam Generator) is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. For the introduction of new steam generator, design requirement for the two-phase flow instability should be considered. This paper describes two-phase flow instability characteristics of PCSG for the low pressure condition. PCSG is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. Interconnecting flow path was developed to mitigate the two-phase flow instability in the cold side. The flow characteristics of two-phase flow instability at the PCSG is examined experimentally in this study

  12. Influence of upstream stator on rotor flutter stability in a low pressure steam turbine stage

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X.; He, L. [University of Durham (United Kingdom). School of Engineering; Bell, D. [ALSTOM Power Ltd., Rugby (United Kingdom)

    2006-07-01

    Conventional blade flutter prediction is normally based on an isolated blade row model, however, little is known about the influence of adjacent blade rows. In this article, an investigation is presented into the influence of the upstream stator row on the aero-elastic stability of rotor blades in the last stage of a low pressure (LP) steam turbine. The influence of the upstream blade row is computed directly by a time-marching, unsteady, Navier-Stokes flow solver in a stator-rotor coupled computational domain. The three-dimensional flutter solution is obtained, with adequate mesh resolution, in a single passage domain through application of the Fourier-Transform based Shape-Correction method. The capability of this single-passage method is examined through comparison with predictions obtained from a complete annulus model, and the results demonstrate a good level of accuracy, while achieving a speed up factor of 25. The present work shows that the upstream stator blade row can significantly change the aero-elastic behaviour of an LP steam turbine rotor. Caution is, therefore, advised when using an isolated blade row model for blade flutter prediction. The results presented also indicated that the intra-row interaction is of a strong three-dimensional nature. (author)

  13. Uniformly Distributed Graphene Domain Grows on Standing Copper via Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shih-Hao Chan

    2013-01-01

    Full Text Available Uniformly distributed graphene domains were synthesized on standing copper foil by a low-pressure chemical vapor deposition system. This method improved the distribution of the graphene domains at different positions on the same piece of copper foil along the forward direction of the gas flow. Scanning electron microscopy (SEM showed the average size of the graphene domains to be about ~20 m. This results show that the sheet resistance of monolayer graphene on a polyethylene terephthalate (PET substrate is about ~359 /□ whereas that of the four-layer graphene films is about ~178 /□, with a transmittance value of 88.86% at the 550 nm wavelength. Furthermore, the sheet resistance can be reduced with the addition of HNO3 resulting in a value of 84 /□. These values meet the absolute standard for touch sensor applications, so we believe that this method can be a candidate for some transparent conductive electrode applications.

  14. Molding Properties of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Fouad Fareh

    2016-01-01

    Full Text Available The impact of binders and temperature on the rheological properties of feedstocks used in low-pressure powder injection molding was investigated. Experiments were conducted on different feedstock formulations obtained by mixing Inconel 718 powder with wax-based binder systems. The shear rate sensitivity index and the activation energy were used to study the degree of dependence of shear rate and temperature on the viscosity of the feedstocks. The injection performance of feedstocks was then evaluated using an analytical moldability model. The results indicated that the viscosity profiles of feedstocks depend significantly on the binder constituents, and the secondary binder constituents play an important role in the rheological behavior (pseudoplastic or near-Newtonian exhibited by the feedstock formulations. Viscosity values as low as 0.06 to 2.9 Pa·s were measured at high shear rates and high temperatures. The results indicate that a feedstock containing a surfactant agent exhibits the best moldability characteristics.

  15. Heat transfer and carryover of low pressure water in a heated vertical tube

    International Nuclear Information System (INIS)

    Smith, T.A.

    1976-01-01

    Local heat transfer coefficients in the stable film boiling and dispersed flow regimes were studied for the upward flow of low pressure water in a heated vertical tube. Wall temperatures were maintained constant with time and along the tube so that both axial and time temperature gradients approached zero. Heat flux along the tube was not constant but was applied so as to maintain a steady state temperature profile. A preheater was used to bring the liquid to saturation before it entered the main portion of the test section and in some cases the equilibrium quality was greater than zero at the entrance to the main test section. The test section was made of stainless steel, and the lower portion, the preheater, was heated directly by dc current. Copper block heat spikes were clamped to the upper test section and were used to apply the heat flux to maintain the wall temperature constant with time. Several theories for the different possible types of flow (laminar or turbulent, tube or film) were compared with the experimental data. The carry-over point for low flooding rates (1 inch/sec or less) was inferred from these comparisons and gave good agreement with the Plummer critical mass criterion for liquid carry-over

  16. Influence of emitter temperature on the energy deposition in a low-pressure plasma

    International Nuclear Information System (INIS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-01-01

    The influence of emitter temperature on the energy deposition into low-pressure plasma is studied by the self-consistent one-dimensional Particle-in-Cell Monte Carlo Collisions model. Depending on the emitter temperature, different modes of discharge operation are obtained. The mode type depends on the plasma frequency and does not depend on the ratio between the densities of beam and plasma electrons. Namely, plasma is stable when the plasma frequency is small. For this plasma, the energy transfer from emitted electrons to plasma electrons is inefficient. The increase in the plasma frequency results first in the excitation of two-stream electron instability. However, since the thermal velocity of plasma electrons is smaller than the electrostatic wave velocity, the resonant wave-particle interaction is inefficient for the energy deposition into the plasma. Further increase in the plasma frequency leads to the distortion of beam of emitted electrons. Then, the electrostatic wave generated due to two-stream instability decays into multiple slower waves. Phase velocities of these waves are comparable with the thermal velocity of plasma electrons which makes possible the resonant wave-particle interaction. This results in the efficient energy deposition from emitted electrons into the plasma.

  17. Global model of instabilities in low-pressure inductively coupled chlorine plasmas

    Science.gov (United States)

    Despiau-Pujo, Emilie; Chabert, Pascal

    2009-10-01

    Experimental studies have shown that low-pressure inductive discharges operating with electronegative gases are subject to instabilities near the transition between capacitive (E) and inductive (H) modes. A global model, consisting of two particle balance equations and one energy balance equation, has been previously proposed to describe the instability mechanism in SF6/ArSF6 [1]. This model, which agrees qualitatively well with experimental observations, leaves significant quantitative differences. In this paper, the model is revisited with Cl2 as the feedstock gas. An alternative treatment of the inductive power deposition is evaluated and chlorine chemistry is included. Old and new models are systematically compared. The alternative inductive coupling description slightly modifies the results. The effect of gas chemistry is even more pronounced. The instability window is smaller in pressure and larger in absorbed power, the frequency is higher and the amplitudes of oscillations are reduced. The feedstock gas is weakly dissociated ( 16%) and Cl2^+ is the dominant positive ion, which is consistent with the moderate electron density during the instability cycle. [1] M.A. Lieberman, A.J. Lichtenberg, and A.M. Marakhtanov, Appl. Phys. Lett. 75 (1999) 3617

  18. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  19. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  20. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  1. Welding lines formation in holes obtained by low pressure injection molding of ceramic parts

    Directory of Open Access Journals (Sweden)

    C. A. Costa

    Full Text Available Abstract This work presents a study to evaluate the process of producing internal holes in ceramic disks produced by low pressure injection molding (LPIM process. Two process conditions defined as pre-injection and post-injection were used to test the proposition. In the first one the pin cores that produce the holes were positioned in the cavity before the injection of the feedstock; and in the second one, the pin cores were positioned in the cavity, just after the feeding phase of the injection mold. An experimental injection mold designed and manufactured to test both processes was developed to produce ceramic disk with Ø 50 x 2 mm with four holes of Ø 5 mm, equally and radially distributed through the disk. The feedstock was composed of 86 wt% alumina (Al2O3 and 14 wt% organic vehicle based on paraffin wax. Heating and cooling systems controlled by a data acquisition system were included in the mold. The results showed that there were no welding lines with the post-injection process, proving to be an option for creating holes in the ceramic parts produced by LPIM. It was observed that best results were obtained at 58 °C mold temperature. The pins extraction temperature was about 45 °C, and the injection pressure was 170 kPa.

  2. Kinetics of low pressure chemical vapor deposition of tungsten silicide from dichlorocilane reduction of tungsten hexafluoride

    International Nuclear Information System (INIS)

    Srinivas, D.; Raupp, G.B.; Hillman, J.

    1990-01-01

    The authors report on experiments to determine the intrinsic surface reaction rate dependences and film properties' dependence on local reactant partial pressures and wafer temperature in low pressure chemical vapor deposition (LPCVD) of tungsten silicide from dichlorosilane reduction of tungsten hexafluoride. Films were deposited in a commercial-scale Spectrum CVD cold wall single wafer reactor under near differential, gradientless conditions. Over the range of process conditions investigated, deposition rate was found to be first order in dichlorosillane and negative second order in tungsten hexafluoride partial pressure. The apparent activation energy in the surface reaction limited regime was found to be 70-120 kcal/mol. The silicon to tungsten ratio of as deposited silicide films ranged from 1.1 to 2.4, and increased with increasing temperature and dichlorosillane partial pressure, and decreased with increasing tungsten hexafluoride pressure. These results suggest that the apparent silicide deposition rate and composition are controlled by the relative rates of at least two competing reactions which deposit stoichiometric tungsten silicides and/or silicon

  3. Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment

    KAUST Repository

    Ayache, C.

    2013-05-01

    This study aims at comparing low-pressure membrane fouling obtained with two different secondary effluents at bench and pilot-scale based on the determination of two fouling indices: the total fouling index (TFI) and the hydraulically irreversible fouling index (HIFI). The main objective was to investigate if simpler and less costly bench-scale experimentation can substitute for pilot-scale trials when assessing the fouling potential of secondary effluent in large scale membrane filtration plants producing recycled water. Absolute values for specific flux and total fouling index for the bench-scale system were higher than those determined from pilot-scale, nevertheless a statistically significant correlation (r2 = 0.63, α = 0.1) was obtained for the total fouling index at both scales. On the contrary no such correlation was found for the hydraulically irreversible fouling index. Advanced water characterization tools such as excitation-emission matrix fluorescence spectroscopy (EEM) and liquid chromatography with organic carbon detection (LC-OCD) were used for the characterization of foulants. On the basis of statistical analysis, biopolymers and humic substances were found to be the major contribution to total fouling (r2 = 0.95 and r2 = 0.88, respectively). Adsorption of the low molecular weight neutral compounds to the membrane was attributed to hydraulically irreversible fouling (r2 = 0.67). © 2013 Elsevier Ltd.

  4. Thermodynamics of Methane Adsorption on Copper HKUST-1 at Low Pressure.

    Science.gov (United States)

    Wu, Di; Guo, Xiaofeng; Sun, Hui; Navrotsky, Alexandra

    2015-07-02

    Metal-organic frameworks (MOFs) can be engineered as natural gas storage materials by tuning the pore structures and surface properties. Here we report the direct measurement of CH4 adsorption enthalpy on a paddlewheel MOF (Cu HKUST-1) using gas adsorption calorimetry at 25 °C at low pressures (below 1 bar). In this pressure region, the CH4-CH4 intermolecular interactions are minimized and the energetics solely reflects the CH4-MOF interactions. Our results suggest moderately exothermic physisorption with an enthalpy of -21.1 ± 1.1 kJ/mol CH4 independent of coverage. This calorimetric investigation complements previous computational and crystallographic studies by providing zero coverage enthalpies of CH4 adsorption. The analysis of the new and literature data suggests that in initial stages of adsorption the CH4-HKUST-1 interaction tends to be more sensitive to the pore dimension than to the guest polarizability, suggesting a less specific chemical binding role for the open Cu site.

  5. Experimental Verification of Statistically Optimized Parameters for Low-Pressure Cold Spray Coating of Titanium

    Directory of Open Access Journals (Sweden)

    Damilola Isaac Adebiyi

    2016-06-01

    Full Text Available The cold spray coating process involves many process parameters which make the process very complex, and highly dependent and sensitive to small changes in these parameters. This results in a small operational window of the parameters. Consequently, mathematical optimization of the process parameters is key, not only to achieving deposition but also improving the coating quality. This study focuses on the mathematical identification and experimental justification of the optimum process parameters for cold spray coating of titanium alloy with silicon carbide (SiC. The continuity, momentum and the energy equations governing the flow through the low-pressure cold spray nozzle were solved by introducing a constitutive equation to close the system. This was used to calculate the critical velocity for the deposition of SiC. In order to determine the input temperature that yields the calculated velocity, the distribution of velocity, temperature, and pressure in the cold spray nozzle were analyzed, and the exit values were predicted using the meshing tool of Solidworks. Coatings fabricated using the optimized parameters and some non-optimized parameters are compared. The coating of the CFD-optimized parameters yielded lower porosity and higher hardness.

  6. Residual heat removal pump and low pressure safety injection pump retrofit program

    International Nuclear Information System (INIS)

    Dudiak, J.G.; McKenna, J.M.

    1992-01-01

    Residual Heat Removal (RHR) and low pressure safety injection (LPSI) pumps installed in pressurized water-to-reactor power plants are used to provide low-head safety injection in the event of loss of coolant in the reactor coolant system. Because these pumps are subjected to rather severe temperature and pressure transients, the majority of pumps installed in the RHR service are vertical pumps with a single stage impeller. Typically the pump impeller is mounted on an extended motor shaft (close-coupled configuration) and a mechanical seal is employed at the pump end of the shaft. Traditionally RHR and LPSI pumps have been a significant maintenance item for many utilities. Periodic mechanical seal of motor bearing replacement often is considered routine maintenance. The closed-coupled pump design requires disassembly of the casing cover from the lower pump casing while performing these routine maintenance tasks. This paper introduces a design modification developed to convert the close-coupled RHR and LPSI pumps to a coupled configuration

  7. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  8. Low-pressure c-BN deposition - is a CVD process possible?

    International Nuclear Information System (INIS)

    Haubner, R.; Tang, X.

    2001-01-01

    Since the low-pressure diamond deposition was discovered in 1982 there is a high interest to find a similar process for the c-BN synthesis. A review about the c-BN deposition process as well as its characterization is given. Experiments with a simple chemical vapor deposition(CVD) reactor using tris(dimethylamino)borane as precursor were carried out. In a cold-wall reactor substrates were heated up by high-frequency. Argon was used as protecting and carrying the precursor, it was saturated with tris(dimethylamino)borane (precursor) according to its vapor pressure and transports the pressure to the hot substrate, where deposition occurs. WC-Co hardmetal plates containing 6 wt. % Co, Mo and Si were used as substrates. Various BN layers were deposited and characterized. X-ray diffraction, IR-spectroscopy and SIMS indicate that BN-coatings containing c-BN were deposited. However a final verification of c-BN crystallites by TEM investigations was not possible till now. (nevyjel)

  9. GENERAL RULES OF SIC FORMATION IN DIAMOND-CONTAINING COMPOSITION AT LOW PRESSURE

    Directory of Open Access Journals (Sweden)

    A. E. Zhuk

    2007-01-01

    Full Text Available Results of experimental investigations of structure-formation process of «diamond-carbide silicon» composite at low pressure which is obtained by liquid silicon impregnation of a porous blank made of diamond crystals with nano-coatings have made it possible to establish the following general rules of the process concerning a sintering reaction in the coating and composite material: vacuum magnetronic spraying of composite cathodes leads to formation of nano-coating which is made of silicon and hydrogen atoms or clusters, and their subsequent treatment with plasma of glow discharge is accompanied by formation of α-SiC at low temperatures in a hard phase; silicon impregnation at 1500 °C with given pyrolytic carbon in the charge may result in β-SiC matrix formation.The formed «diamond-carbide silicon» composite material contains a frame structure of diamond crystals with nano-coating impregnated by silicon carbide and is characterized by high physical and mechanical properties. 

  10. Influence of depth of neuromuscular blockade on surgical conditions during low-pressure pneumoperitoneum laparoscopic cholecystectomy: A randomized blinded study.

    Science.gov (United States)

    Barrio, Javier; Errando, Carlos L; García-Ramón, Jaime; Sellés, Rafael; San Miguel, Guillermo; Gallego, Juan

    2017-11-01

    To evaluate the influence of neuromuscular blockade (NMB) on surgical conditions during low-pressure pneumoperitoneum (8mmHg) laparoscopic cholecystectomy (LC), while comparing moderate and deep NMB. Secondary objective was to evaluate if surgical conditions during low-pressure pneumoperitoneum LC performed with deep NMB could be comparable to those provided during standard-pressure pneumoperitoneum (12mmHg) LC. Prospective, randomized, blinded clinical trial. Operating room. Ninety ASA 1-2 patients scheduled for elective LC. Patients were allocated into 3 groups: Group 1: low-pressure pneumoperitoneum with moderate-NMB (1-3 TOF), Group 2: low-pressure pneumoperitoneum with deep-NMB (1-5 PTC) and Group 3: standard pneumoperitoneum (12mmHg). Rocuronium was used to induce NMB and acceleromiography was used for NMB monitoring (TOF-Watch-SX). Three experienced surgeons evaluated surgical conditions using a four-step scale at three time-points: surgical field exposure, dissection of the gallbladder and extraction/closure. Low-pressure pneumoperitoneum (Group 1 vs. 2): good conditions: 96.7 vs. 96.7%, 90 vs. 80% and 89.6 vs. 92.3%, respectively for the time-points, p>0.05. No differences in optimal surgical conditions were observed between the groups. Surgery completion at 8mmHg pneumoperitoneum: 96.7 vs. 86.7%, p=0.353. Standard-pressure pneumoperitoneum vs. low-pressure pneumoperitoneum with deep NMB (Group 3 vs. 2): good conditions: 100% in Group 3 for the three time-points (p=0.024 vs. Group 2 at dissection of the gallbladder). Significantly greater percentage of optimal conditions during standard-pressure pneumoperitoneum LC at the three time points of evaluation. The depth of NMB was found not to be decisive neither in the improvement of surgical conditions nor in the completion of low-pressure pneumoperitoneum LC performed by experienced surgeons. Surgical conditions were considered better with a standard-pressure pneumoperitoneum, regardless of the depth of NMB

  11. Inhibition of post-traumatic septic proteolysis and ureagenesis and stimulation of hepatic acute-phase protein production by branched-chain amino acid TPN.

    Science.gov (United States)

    Chiarla, C; Siegel, J H; Kidd, S; Coleman, B; Mora, R; Tacchino, R; Placko, R; Gum, M; Wiles, C E; Belzberg, H

    1988-08-01

    Previous studies have shown that severe sepsis after major trauma results in the reprioritization of release of hepatic acute-phase proteins (APP). They suggest competition for leucine for nutritional utilization may be responsible. To test this hypothesis, a branched-chain enriched (46.6%) amino acid mixture (BCAA) was administered on a prospective randomized basis with standard TPN therapy to 16 septic post-trauma patients. After sepsis was diagnosed, a randomized therapy (control-TPN or BCAA-TPN) was given for 12 days, or until death occurred. Total calories and amino acid nitrogen (N) administered were not different in the two groups (t-test) and q 8 h (347 study periods) amino acid clearances, urinary urea nitrogen excretion, muscle proteolysis from 3-methyl-histidine (3-MH) excretion, and standard indices of sepsis severity and hepatic function were measured, as well as platelets (PLAT), leucocytes (WBC), albumin (ALB), and six acute-phase proteins: C-reactive protein (CRP), alpha-1-antitrypsin (A1TRIP), fibrinogen (FIBRIN), alpha-2-macroglobulin (AMACRO), ceruloplasmin (CERUL), and transferrin (TRANS). Using Scheffé analysis of all contrasts the data showed: BCAA resulted in a fall in 24-hour urea N excretion (24.0 to 20.0 gm/24 hr) and in proteolysis (138 to 126 gm/24 hr) (p less than 0.0001). Prestudy CRP levels were all elevated, but compared to control where APP reprioritization occurred, over the initial 10 days of therapy BCAA patients had a more rapid fall in CRP with a more rapid rise in FIBRIN, TRANS, CERUL, ALBUMIN, AMACRO, and A1TRIP (all p less than 0.0001) relative to CRP. Also, the sepsis-reduced clearances of glutamine and glutamate, alanine, and proline were increased (p less than 0.0001) during BCAA even though urea nitrogen production was reduced (p less than 0.0001). The increase in leucine clearance with BCAA-enriched TPN was positively correlated (r2 = 0.601; p less than 0.0001) with the increase in the sum of all APP and ALB and was

  12. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    Science.gov (United States)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  13. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju

    2017-11-15

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  14. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung Gil; Jeong, Sanghyun; Jang, Am

    2017-01-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  15. Identification of effluent organic matter fractions responsible for low-pressure membrane fouling

    KAUST Repository

    Filloux, Emmanuelle

    2012-11-01

    Anion exchange resin (AER), powder activated carbon (PAC) adsorption and ozonation treatments were applied on biologically treated wastewater effluent with the objective to modify the effluent organic matter (EfOM) matrix. Both AER and PAC led to significant total organic carbon (TOC) removal, while the TOC remained nearly constant after ozonation. Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis showed that the AER treatment preferentially removed high and intermediate molecular weight (MW) humic-like structures while PAC removed low MW compounds. Only a small reduction of the high MW colloids (i.e. biopolymers) was observed for AER and PAC treatments. Ozonation induced a large reduction of the biopolymers and an important increase of the low MW humic substances (i.e. building blocks).Single-cycle microfiltration (MF) and ultrafiltration (UF) tests were conducted using commercially available hollow fibres at a constant flux. After reconcentration to their original organic carbon content, the EfOM matrix modified by AER and PAC treatments exhibited higher UF membrane fouling compared to untreated effluent; result that correlated with the higher concentration of biopolymers. On the contrary, ozonation which induced a significant degradation of the biopolymers led to a minor flux reduction for both UF and MF filtration tests. Based on a single filtration, results indicate that biopolymers play a major role in low pressure membrane fouling and that intermediate and low MW compounds have minor impact. Thus, this approach has shown to be a valid methodology to identify the foulant fractions of EfOM. © 2012 Elsevier Ltd.

  16. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation.

    Science.gov (United States)

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am

    2018-03-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Consideraciones sobre el hidrocefalo de baja presion Considerations on low pressure hydrocephalus

    Directory of Open Access Journals (Sweden)

    E. Herskovits

    1976-12-01

    Full Text Available Se analizan las condiciones fisiopatológicas del sindrome de hidrocéfalo de presión normal. De un grupo de 21 pacientes con sintomatologia clínica correspondiente a esta entidad, se seleccionan 10 que presentan un diagnóstico clínico, radiológico y cisternográfico indudable de la entidad en estudio. Se observó que, a pesar de esta selección solamente un 50% de ellos se vió beneficiado con la colocación de una válvula de baja presión. Surge entonces la hipotésis de que este cuadro es un sindrome multicausal; que por un proceso fisiopatogenico común produce un cuadro clínico, radiológico y cisternográfico similar y que serían beneficiados únicamente aquellos enfermos en los que se soluciona el problema mecánico.The physiopathological conditions of the normal pressure hydrocephalus syndrome are analysed. Within a group of 21 patients with clinical sinto- mathology pertaining this entity, only were 10 selected with a clinical, radiological and cisternografic indubitable diagnosis. It has been noticed that in spite of the stricked selection only a 50% of them have been beneficed by the application of a low pressure valve. Then, the hypothesis that the disease is a multicausal syndrome appears, which by an identical physiopathologic process produces or exhibits a similar clinical, radiological and cisternographic picture. Only those patients on whom the mechanical problem is solved would be beneficed by neurosurgery.

  18. A Shock Tube Study of the CO + OH Reaction Near the Low-Pressure Limit

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2016-01-01

    Rate coefficients for the reaction between carbon monoxide and hydroxyl radical were measured behind reflected shock waves over 700 – 1230 K and 1.2 – 9.8 bar. The temperature/pressure conditions correspond to the predicted low-pressure limit of this reaction, where the channel leading to carbon dioxide formation is dominant. The reaction rate coefficients were inferred by measuring the formation of carbon dioxide using quantum cascade laser absorption near 4.2 µm. Experiments were performed under pseudo-first order conditions with tert-butyl hydroperoxide (TBHP) as the OH precursor. Using ultraviolet laser absorption by OH radicals, the TBHP decomposition rate was measured to quantify potential facility effects under extremely dilute conditions used here. The measured CO + OH rate coefficients are provided in Arrhenius form for three different pressure ranges: kCO+OH (1.2 – 1.6 bar) = 9.14 x 10-13 exp(-1265/T) cm3 molecule-1 s-1 kCO+OH (4.3 – 5.1 bar) = 8.70 x 10-13 exp(-1156/T) cm3 molecule-1 s-1 kCO+OH (9.6 – 9.8 bar) = 7.48 x 10-13 exp(-929/T) cm3 molecule-1 s-1 The measured rate coefficients are found to be lower than the master equation modeling results by Weston et al. [J. Phys. Chem. A, 117 (2013) 821] at 819 K and in closer agreement with the expression provided by Joshi and Wang [Int. J. Chem. Kinet., 38 (2006) 57].

  19. Low-pressure hydraulic technique for slurrying radioactive sludges in waste tanks

    International Nuclear Information System (INIS)

    Bradley, R.F.; Parsons, F.A.; Goodlett, C.B.; Mobley, R.M.

    1977-11-01

    Present technology for the removal of sludges from radioactive liquid waste storage tanks at the Savannah River Plant (SRP) requires large volumes of fresh water added through high-pressure (approx.3000 psig) nozzles positioned to resuspend and slurry the sludge. To eliminate the cost of storing and evaporating these large volumes of water (several hundred thousand gallons per tank cleaned), a technique was developed at the Savannah River Laboratory (SRL) to use recirculating, radioactive, supernate solution to resuspend the sludge. The system consists in part of a single-stage centrifugal pump operating in the sludge at approx.100 psia. Recirculating supernate is drawn into the bottom of the pump and forced out through two oppositely directed nozzles to give liquid jets with a sludge-slurrying capability equal to that obtained with the present high-pressure system. In addition to eliminating the addition of large quantities of water to the tanks, the low-pressure recirculating technique requires only approximately one-sixth of the power required by the high-pressure system. Test results with clay (as a simulant for sludge) in a waste tank mockup confirmed theoretical predictions that jets with the same momentum gave essentially the same sludge-slurrying patterns. The effective cleaning radius of the recirculating jet was directly proportional to the product of the nozzle velocity and the nozzle diameter (U 0 D). At the maximum U 0 D developed by the pump (approx.14 ft 2 /s), the effective cleaning radius in the tank mockup was approx.20 feet

  20. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    International Nuclear Information System (INIS)

    Vries, N de; Iordanova, E I; Van Veldhuizen, E M; Mullen, J J A M van der; Palomares, J M

    2008-01-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, n e , is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, T e , is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the n e values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) x 10 19 m -3 , whereas the n e value (2 ± 0.5) x 10 19 m -3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (∼10 20 m -3 ). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the T e values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  1. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vries, N de; Iordanova, E I; Van Veldhuizen, E M; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Palomares, J M [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)], E-mail: j.j.a.m.v.d.Mullen@tue.nl

    2008-10-21

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, n{sub e}, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, T{sub e}, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the n{sub e} values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 {+-} 0.5) x 10{sup 19} m{sup -3}, whereas the n{sub e} value (2 {+-} 0.5) x 10{sup 19} m{sup -3} obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high ({approx}10{sup 20} m{sup -3}). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the T{sub e} values obtained with TS are equal to 13 400 {+-} 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  2. A Shock Tube Study of the CO + OH Reaction Near the Low-Pressure Limit

    KAUST Repository

    Nasir, Ehson Fawad

    2016-05-16

    Rate coefficients for the reaction between carbon monoxide and hydroxyl radical were measured behind reflected shock waves over 700 – 1230 K and 1.2 – 9.8 bar. The temperature/pressure conditions correspond to the predicted low-pressure limit of this reaction, where the channel leading to carbon dioxide formation is dominant. The reaction rate coefficients were inferred by measuring the formation of carbon dioxide using quantum cascade laser absorption near 4.2 µm. Experiments were performed under pseudo-first order conditions with tert-butyl hydroperoxide (TBHP) as the OH precursor. Using ultraviolet laser absorption by OH radicals, the TBHP decomposition rate was measured to quantify potential facility effects under extremely dilute conditions used here. The measured CO + OH rate coefficients are provided in Arrhenius form for three different pressure ranges: kCO+OH (1.2 – 1.6 bar) = 9.14 x 10-13 exp(-1265/T) cm3 molecule-1 s-1 kCO+OH (4.3 – 5.1 bar) = 8.70 x 10-13 exp(-1156/T) cm3 molecule-1 s-1 kCO+OH (9.6 – 9.8 bar) = 7.48 x 10-13 exp(-929/T) cm3 molecule-1 s-1 The measured rate coefficients are found to be lower than the master equation modeling results by Weston et al. [J. Phys. Chem. A, 117 (2013) 821] at 819 K and in closer agreement with the expression provided by Joshi and Wang [Int. J. Chem. Kinet., 38 (2006) 57].

  3. Transition to chaos in periodically driven thermionic diodes at low pressure

    International Nuclear Information System (INIS)

    Klinger, T.; Timm, R.; Piel, A.

    1992-01-01

    The static I(U) characteristic of thermionic diodes at mbar pressures shows a large hysteresis, which describes the transition from the 'anode-glow-mode' (AGM), with essentially negative plasma potential, to the 'temperature-limited-mode' (TLM), with positive plasma potential. Many features of these modes are also found in magnetic-box discharges with filament cathodes at pressures of 10 -2 -10 -1 Pa. Although these two pressure regimes are basically different concerning the transport properties (diffusion vs. free streaming), the elementary processes that establish the AGM in the low pressure regime are very similar to the high pressure regime. Ions are produced in that part of the anode sheath where the potential exceeds the ionization energy. The production rate is enhanced by multiple reflections of electrons between the magnetic fields of the permanent magnet array at the anode and the repulsive potential of the cathode plasma. Although the mean free path for charge exchange or elastic collisions substantially exceeds the anode-cathode distance, some few ions are stopped and trapped within the potential well of the virtual cathode. This accumulation of ions forms a cathodic plasma, which is essentially at cathode potential. Plasma formation in the anode sheath is suppressed as long as the ion production time is larger than the ion transit time through the sheath. These model ideas are supported by 1d-Particle-in-cell simulations using a modified PDP1-code. The AGM is attractive for studies of nonlinear dynamics because of its feedback processes and oscillations, which occur close to the hysteresis point. (author) 7 refs., 3 figs

  4. A study on the critical heat flux for annuli and round tubes under low pressure conditions

    International Nuclear Information System (INIS)

    Park, Jae Wook

    1997-02-01

    This study aims to reveal the characteristics of the critical heat flux (CHF) of internally heated concentric annuli and vertical round tubes in low-pressure and low-flow (LPLF) conditions. Although many efforts have been devote to the subject of the CHF during the last forty years, the information on the CHF phenomenon for LPLF conditions is still very limited. The applicable ranges of the CHF correlations for annuli and round tubes are concentrate on the operating conditions of nuclear power plant (NPP), namely high-pressure and high-flow (HPHF) conditions. these facts promoted to collect the reliable CHF data for LPLF conditions for both annuli and round tubes. The critical heat flux data for vertical flow boiling of water in annuli and round tubes at low pressures and low mass fluxes show the following trends: The observed CHF mechanism for annuli was changed in the order of flooding, churn-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. The observed parametric trends for annuli are consistent with the previous understanding except that the CHF for downward flow is considerably lower (up to 40%) than that for upward flow. The critical quality is much lower than that for round tubes at the same inlet conditions. The observed parametric trends for round tubes are generally consistent with the previous understanding except for system pressure an tube diameter effect. For the system pressure effect, it is observed that the pressure effect is complicated but not so large, whereas the existing CHF correlations do not present the parametric trend exactly. For tube diameter effect, the decreasing trends of CHF with respect to tube diameter was the general understanding so far, but in this region the CHF show a increasing trend of tube diameter. The prediction and the parametric trend analyses are performed by two view points, I.e., for fixed inlet conditions and for local

  5. Test beam results of a low-pressure micro-strip gas chamber with a secondary-electron emitter

    International Nuclear Information System (INIS)

    Kwan, S.; Anderson, D.F.; Zimmerman, J.; Sbarra, C.; Salomon, M.

    1994-10-01

    We present recent results, from a beam test, on the angular dependence of the efficiency and the distribution of the signals on the anode strips of a low-pressure microstrip gas chamber with a thick CsI layer as a secondary-electron emitter. New results of CVD diamond films as secondary-electron emitters are discussed

  6. Space-time electrostatic probing of low-pressure discharge lamps during the early stages of electrical breakdown

    NARCIS (Netherlands)

    Gendre, M.F.; Bowden, M.D.; Haverlag, M.; Nieuwenhuizen, van den H.C.M.; Gielen, J.W.A.M.; Kroesen, G.M.W.

    2005-01-01

    The lime and space evolution of the electrostatic potential of a low-pressure lamp is investigated during ignition with a special capacitive probe. Observations show that ionisation waves propagate back and forth in the lamp, coinciding with the displacement of a local region of strong potential

  7. An experimental and kinetic modeling study of premixed NH3/CH4/O-2/Ar flames at low pressure

    DEFF Research Database (Denmark)

    Tian, Z.Y.; Li, Y. Y.; Zhang, L. D.

    2009-01-01

    An experimental and modeling study of 11 premixed NH3/CH4/O-2/Ar flames at low pressure (4.0 kPa) with the same equivalence ratio of 1.0 is reported. Combustion intermediates and products are identified using tunable synchrotron vacuum Ultraviolet (VUV) photoionization and molecular-beam mass...

  8. Experimental and Kinetic Modeling Study of Nitroethane Pyrolysis at a Low Pressure: Competition Reactions in the Primary Decomposition

    DEFF Research Database (Denmark)

    Zhang, Kuiwen; Glarborg, Peter; Zhou, Xueyao

    2016-01-01

    The pyrolysis of nitroethane has been investigated over the temperature range of 682-1423 K in a plug flow reactor at a low pressure. The major species in the pyrolysis process have been identified and quantified using tunable synchrotron vacuum ultraviolet photoionization mass spectrometry...

  9. NO kinetics in pulsed low-pressure nitrogen plasmas studied by time resolved quantum cascade laser absorption spectroscopy

    NARCIS (Netherlands)

    Welzel, S.; Guaitella, O.; Lazzaroni, C.; Pintassilgo, C.; Rousseau, A.; Röpcke, J.

    2011-01-01

    Time-resolved quantum cascade laser absorption spectroscopy at 1897 cm-1 (5.27 µm) has been applied to study the NO(X) kinetics on the micro- and millisecond time scale in pulsed low-pressure N2/NO dc discharges. Experiments have been performed under flowing and static gas conditions to infer the

  10. Analysis of the dynamic behaviour of the low-pressure emergency core cooling system tank at Paks NPP

    International Nuclear Information System (INIS)

    1999-01-01

    The low pressure emergency core cooling system tanks (LP ECCS) at WWER-440/V213 units have unique worm-shaped geometry. Analytical and experimental investigations were performed to make an adequate basis for seismic assessment of the worm-shaped tank. The full scale dynamic tests results are presented in comparison with shaking table model experiments and analytical studies. (author)

  11. Analysis of the dynamic behaviour of the low pressure emergency core cooling system tank at Paks NPP

    International Nuclear Information System (INIS)

    Tamas, K.

    2001-01-01

    The low pressure emergency core cooling system tanks (LP ECCS) at WWER-440/V213 units have unique worm-shaped geometry. Analytical and experimental investigations were performed to make an adequate basis for seismic assessment of the worm-shaped tank. The full scale dynamic tests results are presented in comparison with shaking table model experiments and analytical studies. (author)

  12. Assessing the effectiveness of low-pressure ultraviolet light for inactivating Mycobacterium avium complex (MAC) micro-organisms

    Science.gov (United States)

    Aims: To assess low-pressure ultraviolet light (LP-UV) inactivation kinetics of Mycobacterium avium complex (MAC) strains in a water matrix using collimated beam apparatus. Methods and Results: Strains of M. avium (n = 3) and Mycobacterium intracellulare (n = 2) were exposed t...

  13. Measurement of the non-thermal properties of a low pressure spraying plasma by electric and spectroscopic methods

    International Nuclear Information System (INIS)

    Jung, Yong Ho

    2003-02-01

    For the case of an atmospheric plasma, the local thermodynamic equilibrium (LTE) model can be applied to plasmas at a nozzle entrance and to those on the axis of the plasma flame, but it is not easy to justify applying the LTE model to off-center plasma and to a low-pressure spraying plasma. Although the energy distribution of the electrons is assumed to be Maxwellian for the most of spraying plasmas, the non-Maxwellian distribution is possible for the case of low-pressure spaying plasma and edge plasma of atmospheric spraying plasma. In this work, the non-Maxwellian distribution of electrons was measured by using an electric probe installed on the fast scanning probe system, and non-LTE effects were measured by using the optical emission spectroscopy system. Distribution of the electrons of a low-pressure spraying plasma is observed not as Maxwellian but as bi-Maxwellian by the measurement of the single probe. Bi-Maxwellian distribution appears in the edge of a low pressure spraying plasma and seems to be due to the reduction of the collisonality by the drastic variation of the plasma density. Non-LTE characteristics of a low-pressure spraying plasma can be deuced from the measured results of the optical emission spectroscopy and is analyzed by the collisional radiative equilibrium (CRE) model, where the Maxwellian and the non-Maxwellian distributions are assumed for comparison. For the electron temperature, the results from optical emission spectroscopy were similar to the results from the single probe (3∼5 % in error)

  14. Autophagic dysfunction in a lysosomal storage disorder due to impaired proteolysis

    OpenAIRE

    Elrick, Matthew J.; Lieberman, Andrew P.

    2013-01-01

    Alterations in macroautophagy (hereafter referred to as “autophagy”) are a common feature of lysosomal storage disorders, and have been hypothesized to play a major role in the pathogenesis of these diseases. We have recently reported multiple defects in autophagy contributing to the lysosomal storage disorder Niemann-Pick type C (NPC). These include increased formation of autophagosomes, slowed turnover of autophagosomes secondary to impaired lysosomal proteolysis, and delivery of stored lip...

  15. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus

    Directory of Open Access Journals (Sweden)

    Grzegorz eWiera

    2015-11-01

    Full Text Available Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed LTP that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tPA/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1 and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

  16. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis.

    Science.gov (United States)

    Perumal, Shiamalee; Antipova, Olga; Orgel, Joseph P R O

    2008-02-26

    We describe the molecular structure of the collagen fibril and how it affects collagen proteolysis or "collagenolysis." The fibril-forming collagens are major components of all mammalian connective tissues, providing the structural and organizational framework for skin, blood vessels, bone, tendon, and other tissues. The triple helix of the collagen molecule is resistant to most proteinases, and the matrix metalloproteinases that do proteolyze collagen are affected by the architecture of collagen fibrils, which are notably more resistant to collagenolysis than lone collagen monomers. Until now, there has been no molecular explanation for this. Full or limited proteolysis of the collagen fibril is known to be a key process in normal growth, development, repair, and cell differentiation, and in cancerous tumor progression and heart disease. Peptide fragments generated by collagenolysis, and the conformation of exposed sites on the fibril as a result of limited proteolysis, regulate these processes and that of cellular attachment, but it is not known how or why. Using computational and molecular visualization methods, we found that the arrangement of collagen monomers in the fibril (its architecture) protects areas vulnerable to collagenolysis and strictly governs the process. This in turn affects the accessibility of a cell interaction site located near the cleavage region. Our observations suggest that the C-terminal telopeptide must be proteolyzed before collagenase can gain access to the cleavage site. Collagenase then binds to the substrate's "interaction domain," which facilitates the triple-helix unwinding/dissociation function of the enzyme before collagenolysis.

  17. New concepts in molecular imaging: non-invasive MRI spotting of proteolysis using an Overhauser effect switch.

    Directory of Open Access Journals (Sweden)

    Philippe Mellet

    Full Text Available Proteolysis, involved in many processes in living organisms, is tightly regulated in space and time under physiological conditions. However deregulation can occur with local persistent proteolytic activities, e.g. in inflammation, cystic fibrosis, tumors, or pancreatitis. Furthermore, little is known about the role of many proteases, hence there is a need of new imaging methods to visualize specifically normal or disease-related proteolysis in intact bodies.In this paper, a new concept for non invasive proteolysis imaging is proposed. Overhauser-enhanced Magnetic Resonance Imaging (OMRI at 0.2 Tesla was used to monitor the enzymatic hydrolysis of a nitroxide-labeled protein. In vitro, image intensity switched from 1 to 25 upon proteolysis due to the associated decrease in the motional correlation time of the substrate. The OMRI experimental device used in this study is consistent with protease imaging in mice at 0.2 T without significant heating. Simulations show that this enzymatic-driven OMRI signal switch can be obtained at lower frequencies suitable for larger animals or humans.The method is highly sensitive and makes possible proteolysis imaging in three dimensions with a good spatial resolution. Any protease could be targeted specifically through the use of taylor-made cleavable macromolecules. At short term OMRI of proteolysis may be applied to basic research as well as to evaluate therapeutic treatments in small animal models of experimental diseases.

  18. Direct imaging of APP proteolysis in living cells.

    Science.gov (United States)

    Parenti, Niccoló; Del Grosso, Ambra; Antoni, Claudia; Cecchini, Marco; Corradetti, Renato; Pavone, Francesco S; Calamai, Martino

    2017-01-01

    Alzheimer's disease is a multifactorial disorder caused by the interaction of genetic, epigenetic and environmental factors. The formation of cytotoxic oligomers consisting of A β peptide is widely accepted as being one of the main key events triggering the development of Alzheimer's disease. A β peptide production results from the specific proteolytic processing of the amyloid precursor protein (APP). Deciphering the factors governing the activity of the secretases responsible for the cleavage of APP is still a critical issue. Kits available commercially measure the enzymatic activity of the secretases from cells lysates, in vitro . By contrast, we have developed a prototypal rapid bioassay that provides visible information on the proteolytic processing of APP directly in living cells. APP was fused to a monomeric variant of the green fluorescent protein and a monomeric variant of the red fluorescent protein at the C-terminal and N-terminal (mChAPPmGFP), respectively. Changes in the proteolytic processing rate in transfected human neuroblastoma and rat neuronal cells were imaged with confocal microscopy as changes in the red/green fluorescence intensity ratio. The significant decrease in the mean red/green ratio observed in cells over-expressing the β -secretase BACE1, or the α -secretase ADAM10, fused to a monomeric blue fluorescent protein confirms that the proteolytic site is still accessible. Specific siRNA was used to evaluate the contribution of endogenous BACE1. Interestingly, we found that the degree of proteolytic processing of APP is not completely homogeneous within the same single cell, and that there is a high degree of variability between cells of the same type. We were also able to follow with a fluorescence spectrometer the changes in the red emission intensity of the extracellular medium when BACE1 was overexpressed. This represents a complementary approach to fluorescence microscopy for rapidly detecting changes in the proteolytic processing

  19. “Virtual IED sensor” at an rf-biased electrode in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanova, M. A.; Zyryanov, S. M. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation); Faculty of Physics, Moscow State University, MSU, Moscow (Russian Federation); Lopaev, D. V.; Rakhimov, A. T. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, SINP MSU, Moscow (Russian Federation)

    2016-07-15

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a “virtual IED sensor” which represents “in-situ” IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The “virtual IED sensor” should also involve some external calibration procedure. Applicability and accuracy of the “virtual IED sensor” are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H{sub 2}) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the “virtual IED sensor” based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λ{sub i} (s < λ{sub i}). At higher pressure (when s > λ{sub i}), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low

  20. First results on nitriding aluminium alloys in a low-pressure RF plasma

    International Nuclear Information System (INIS)

    Fewell, M.P.; Priest, J.M.; Collins, G.A.; Short, K.T.

    2000-01-01

    Full text: Aluminium alloys are now well established as materials of choice for many commercial applications, especially where strength-to-weight ratio is a critical parameter. However, their more widespread use is inhibited by their low surface hardness. For steels, similar problems can be overcome by nitriding. The nitrogen-rich surface layer has high hardness and load-bearing capacity, and is very well bonded to the substrate. The development of a similar surface-treatment process for aluminium alloys is clearly a desirable goal. It is therefore not surprising that many research groups worldwide have attempted to nitride aluminium. Much of this work studied pure aluminium, a material of no interest for structural applications. Previous investigations into nitriding aluminium alloys' had indifferent results. However, they have served to identify the key issues, which are the importance of a pre-cleaning steps to remove the surface oxide, of impurity control during the nitriding and the desirability of using as low a process temperature as possible. In all of these areas, our process using a low-pressure RF plasma is likely to be competitive. In view of this, we have undertaken a comparative study of a range of commercially available aluminium alloys. All treatments were carried out in the hot-wall nitriding reactor at ANSTO. The samples consist of disks 25mm in diameter and ∼3mm thick which were polished and ultrasonically cleaned in alcohol prior to treatment. The samples were stored in air at all times except when in the nitriding reactor. In a series of treatments, the treatment time was varied in the range 1-16 h and the temperature in the range 350-500 deg C. All treatments were preceeded by a plasma cleaning step in a H 2 /50%Ar mixture for a duration of 1.5-2.0 h while the reactor reached processing temperature. The treatments all used pure N 2 at a pressure of 0.4Pa and a nitrogen flow rate of 12μmol s -1 , with 245W of rf power at 13.56MHz applied to

  1. Economic Analysis on Shrunk-on Type Low Pressure Turbine Retrofit

    International Nuclear Information System (INIS)

    Lee, Seong-hoon; Roh, Myung-sub

    2015-01-01

    Stress corrosion cracking (SCC) of low pressure turbines (LPTs) is one of the most critical aging issues. In particular, LPTs with shrunk-on type rotors are more susceptible to SCC as cracks can be initiated in the disk keyway regions as well as in bucket attachment areas. Many utilities have been replacing old LPTs with the advanced designs which improve not only SCC reliability but thermal performance. However LPT retrofit still requires a substantial capital investment, and the plant owners should perform an economic analysis prior to making a decision on the timing of LPT retrofit. In Korea, seventy (70) LPTs are being operated at twenty-four (24) nuclear power plants (NPPs). Eight stations (Kori-1-4, Hanbit-1-2, and Hanul-1-2) have already replaced their LPTs. Considering the operation age of remaining LPTs in Korea, the next targets for retrofit will be the twelve (12) shrunk-on type LPTs at four plants (Hanbit-3-4, Hanul-3-4). In this study, we will review the inspection status of shrunk-on type LPTs in Korea, and perform economic analysis on LPT retrofit based on four alternative cases. Now that operation age of twelve (12) shrunk-on type PWR LPTs in Korea has reached about twenty (20) years, a program needs to be considered to manage retrofit projects as a of long term maintenance. In this paper, the inspection status of those LPTs was reviewed along with an economic assessment on LPT retrofit based on the four alternative scenarios. To date, NDE results for the shrunk-on type LPT fleet in Korea have been quite positive (i.e. indications have been below the threshold size). However, the current NDE intervals should be maintained to closely monitor those indications which can develop into SCC cracks in the future. In addition, retrofit of LPTs should be considered to minimize the probability of future failure. According to the simplified economic analysis here, revenue can be maximized for the case LPT retrofit implementation after thirty (30) years of

  2. Economic Analysis on Shrunk-on Type Low Pressure Turbine Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong-hoon; Roh, Myung-sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    Stress corrosion cracking (SCC) of low pressure turbines (LPTs) is one of the most critical aging issues. In particular, LPTs with shrunk-on type rotors are more susceptible to SCC as cracks can be initiated in the disk keyway regions as well as in bucket attachment areas. Many utilities have been replacing old LPTs with the advanced designs which improve not only SCC reliability but thermal performance. However LPT retrofit still requires a substantial capital investment, and the plant owners should perform an economic analysis prior to making a decision on the timing of LPT retrofit. In Korea, seventy (70) LPTs are being operated at twenty-four (24) nuclear power plants (NPPs). Eight stations (Kori-1-4, Hanbit-1-2, and Hanul-1-2) have already replaced their LPTs. Considering the operation age of remaining LPTs in Korea, the next targets for retrofit will be the twelve (12) shrunk-on type LPTs at four plants (Hanbit-3-4, Hanul-3-4). In this study, we will review the inspection status of shrunk-on type LPTs in Korea, and perform economic analysis on LPT retrofit based on four alternative cases. Now that operation age of twelve (12) shrunk-on type PWR LPTs in Korea has reached about twenty (20) years, a program needs to be considered to manage retrofit projects as a of long term maintenance. In this paper, the inspection status of those LPTs was reviewed along with an economic assessment on LPT retrofit based on the four alternative scenarios. To date, NDE results for the shrunk-on type LPT fleet in Korea have been quite positive (i.e. indications have been below the threshold size). However, the current NDE intervals should be maintained to closely monitor those indications which can develop into SCC cracks in the future. In addition, retrofit of LPTs should be considered to minimize the probability of future failure. According to the simplified economic analysis here, revenue can be maximized for the case LPT retrofit implementation after thirty (30) years of

  3. Direct imaging of APP proteolysis in living cells

    Directory of Open Access Journals (Sweden)

    Niccoló Parenti

    2017-04-01

    Full Text Available Alzheimer’s disease is a multifactorial disorder caused by the interaction of genetic, epigenetic and environmental factors. The formation of cytotoxic oligomers consisting of Aβ peptide is widely accepted as being one of the main key events triggering the development of Alzheimer’s disease. Aβ peptide production results from the specific proteolytic processing of the amyloid precursor protein (APP. Deciphering the factors governing the activity of the secretases responsible for the cleavage of APP is still a critical issue. Kits available commercially measure the enzymatic activity of the secretases from cells lysates, in vitro. By contrast, we have developed a prototypal rapid bioassay that provides visible information on the proteolytic processing of APP directly in living cells. APP was fused to a monomeric variant of the green fluorescent protein and a monomeric variant of the red fluorescent protein at the C-terminal and N-terminal (mChAPPmGFP, respectively. Changes in the proteolytic processing rate in transfected human neuroblastoma and rat neuronal cells were imaged with confocal microscopy as changes in the red/green fluorescence intensity ratio. The significant decrease in the mean red/green ratio observed in cells over-expressing the β-secretase BACE1, or the α-secretase ADAM10, fused to a monomeric blue fluorescent protein confirms that the proteolytic site is still accessible. Specific siRNA was used to evaluate the contribution of endogenous BACE1. Interestingly, we found that the degree of proteolytic processing of APP is not completely homogeneous within the same single cell, and that there is a high degree of variability between cells of the same type. We were also able to follow with a fluorescence spectrometer the changes in the red emission intensity of the extracellular medium when BACE1 was overexpressed. This represents a complementary approach to fluorescence microscopy for rapidly detecting changes in the

  4. Critical heat flux in vertical flows at low pressures; Flux de chaleur critique en ecoulements verticaux aux pressions faibles

    Energy Technology Data Exchange (ETDEWEB)

    Olekhnowitch, A [Ecole Polytechnique, Montreal, PQ (Canada)

    1994-12-31

    This paper presents some critical heat flux (CHF) data obtained for vertical upflow of water in an 8 mm test section, for exit pressures ranging from 5 to 30 bar. The experiments were carried out for heated lengths of 0.75, 1, 1.4 and 1.8 m. In general, the collected data show trends similar to those described in the open literature. However, it was observed that for low pressures CHF depends on the heated length; this dependence begins to disappear for exit pressure of about 30 bar. The data have been compared with a look-up table and predictions of well known correlations. For low pressures and low mass fluxes, the look-up table seems to give better predictions, but for medium pressures and mass fluxes, the correlations perform better. 19 refs., 5 figs.

  5. Pulsed laser ablation of silicon with low laser fluence in a low-pressure of ammonia ambient

    International Nuclear Information System (INIS)

    Choo, Cheow-Keong; Tohara, Makoto; Enomoto, Kazuhiro; Tanaka, Katsumi

    2004-01-01

    Silicon was ablated by 532 nm wavelength of Nd:YAG laser in ammonia gas ambient. The influence of laser fluence and gas ambient pressures between 1.33x10 1 to 1.33x10 -5 Pa on the deposited compound was studied by in situ X-ray photoelectron spectroscopy and transmission Fourier transform infrared spectroscopy techniques. The results indicate that the deposited compound is composed of nonstoichiometric silicon nitride (SiN x , x=0-0.84). It has been shown that the composition of nitrogen to silicon is sensitive to the laser fluence; it increases with decreasing laser fluence. However, the ammonia gas ambient in these low pressures range had no influence on the composition of the deposited compound. The reaction of the ablated silicon with low-pressure ambient ammonia is proposed to be occurred on the substrate

  6. Application of a support vector machine algorithm to the safety precaution technique of medium-low pressure gas regulators

    Science.gov (United States)

    Hao, Xuejun; An, Xaioran; Wu, Bo; He, Shaoping

    2018-02-01

    In the gas pipeline system, safe operation of a gas regulator determines the stability of the fuel gas supply, and the medium-low pressure gas regulator of the safety precaution system is not perfect at the present stage in the Beijing Gas Group; therefore, safety precaution technique optimization has important social and economic significance. In this paper, according to the running status of the medium-low pressure gas regulator in the SCADA system, a new method for gas regulator safety precaution based on the support vector machine (SVM) is presented. This method takes the gas regulator outlet pressure data as input variables of the SVM model, the fault categories and degree as output variables, which will effectively enhance the precaution accuracy as well as save significant manpower and material resources.

  7. Chaotic oscillations in a low pressure two-phase natural circulation loop under low power and high inlet subcooling conditions

    International Nuclear Information System (INIS)

    Wu, C.Y.; Wang, S.B.; Pan, C.

    1996-01-01

    The oscillation characteristics of a low pressure two-phase natural circulation loop have been investigated experimentally in this study. Experimental results indicate that the characteristics of the thermal hydraulic oscillations can be periodic, with 2-5 fundamental frequencies, or chaotic, depending on the heating power and inlet subcooling. The number of fundamental frequencies of oscillation increases if the inlet subcooling is increased at a given heating power or the heating power is decreased at a given inlet subcooling; chaotic oscillations appear if the inlet subcooling is further increased and/or the heating power is further decreased. A map of the oscillation characteristics is thus established. The change in oscillation characteristics is evident from the time evolution and power spectrum of a thermal hydraulic parameter and the phase portraits of two thermal hydraulic parameters. These results reveal that a strange attractor exists in a low pressure two-phase natural circulation loop with low power and very high inlet subcooling. (orig.)

  8. The NASA Low-Pressure Turbine Flow Physics Program: A Review

    Science.gov (United States)

    Ashpis, David E.

    2002-01-01

    An overview of the NASA Glenn Low-Pressure Turbine (LPT) Flow Physics Program will be presented. The flow in the LPT is unique for the gas turbine. It is characterized by low Reynolds number and high freestream turbulence intensity and is dominated by interplay of three basic mechanisms: transition, separation and wake interaction. The flow of most interest is on the suction surface, where large losses are generated due to separation. The LPT is a large, multistage, heavy, jet engine component that suffers efficiency degradation between takeoff and cruise conditions due to decrease in Reynolds number with altitude. The performance penalty is around 2 points for large commercial bypass engines and as much as 7 points for small, high cruise altitude, military engines. The gas-turbine industry is very interested in improving the performance of the LPT and in reducing its weight, part count and cost. Many improvements can be accomplished by improved airfoil design, mainly by increasing the airfoil loading that can yield reduction of airfoils and improved performance. In addition, there is a strong interest in reducing the design cycle time and cost. Key enablers of the needed improvements are computational tools that can accurately predict LPT flows. Current CFD tools in use cannot yet satisfactorily predict the unsteady, transitional and separated flow in the LPT. The main reasons are inadequate transition & turbulence models and incomplete understanding of the LPT flow physics. NASA Glenn has established its LPT program to answer these needs. The main goal of the program is to develop and assess models for unsteady CFD of LPT flows. An approach that consists of complementing and augmenting experimental and computational work elements has been adopted. The work is performed in-house and by several academic institutions, in cooperation and interaction with industry. The program was reviewed at the Minnowbrook II meeting in 1997. This review will summarize the progress

  9. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    OpenAIRE

    Aceves-Mijares, M.; González-Fernández, A. A.; López-Estopier, R.; Luna-López, A.; Berman-Mendoza, D.; Morales, A.; Falcony, C.; Domínguez, C.; Murphy-Arteaga, R.

    2012-01-01

    Silicon Rich Oxide (SRO) has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD). In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept th...

  10. Effect of low-pressure plasma treatment on the color and oxidative stability of raw pork during refrigerated storage.

    Science.gov (United States)

    Ulbin-Figlewicz, Natalia; Jarmoluk, Andrzej

    2016-06-01

    The effect of low-pressure plasma on quality attributes of meat is an important aspect, which must be considered before application in food. The aim of this study was to determine the color, fatty acid composition, lipid oxidation expressed as thiobarbituric acid reactive substances and total antioxidant capacity of raw pork samples exposed to helium low-pressure plasma treatment (20 kPa) for 0, 2, 5, and 10 min during the storage period. The thiobarbituric acid reactive substance concentrations of all plasma-treated samples during storage were in the range from 0.26 to 0.61 mg malondialdehyde/kg. Exposure time caused significant changes only in total color difference, hue angle, and chroma after 10 min of treatment. Ferric reducing ability of plasma values of meat samples decreased from 1.93 to 1.40 mmol Trolox Eq/kg after 14 days of storage. The storage period significantly affected proportion of polyunsaturated fatty acids, with an increase about 3% after 14 days of refrigeration storage while the content of saturated fatty acids was at the same level. Helium low-pressure plasma does not induce oxidative processes. Application of this decontamination technique while maintaining product quality is possible in food industry. © The Author(s) 2015.

  11. On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions

    Science.gov (United States)

    Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.

    2018-01-01

    Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.

  12. Microstructure characteristics of nickel reinforced metal matrix composites (Ni/AC8A) by low-pressure metal infiltration process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jun; Rong, Hua Wei; Jun, Ji Ang; Park, Sung Ho; Huh, Sun Chul; Park, Won Jo [Gyeongsang National University, Jinju (Korea, Republic of)

    2009-07-01

    MMCs(Metal Matrix Composites) can obtain mechanical characteristics of application purposes that a single material is difficult to obtain. Al alloy composite material that nickel is added by reinforcement is used for piston of diesel engine, because high temperature properties, strength, corrosion resistant are improved excellently than existent Al alloy. And, in case of processing, interface between Ni and Al improves wear resistant by intermetallic compound of high hardness. Also, in the world, industrial circles are proceeding research to apply excellent composite material. Existent process methods of MMC using preform were manufactured by high-pressure. But, it cause deformation of preform or fault of completed MMC. Using low-pressure as infiltration pressure can prevent this problem, and there is an advantage that is able to reduce the cost of production by small scale of production equipment. Accordingly, process methods of MMC have to consider low-pressure infiltration for the strength of preform, and nowadays, there are many studies about reducing infiltration pressure. In this study produced Al composite material that Ni is added by reinforcement by low-pressure infiltration, and observed microstructure of completed MMCs.

  13. Landau Damping and Anomalous Skin Effect in Low-pressure Gas Discharges: Self-consistent Treatment of Collisionless Heating

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg V.; Theodosiou, Constantine E.

    2004-01-01

    In low-pressure discharges, where the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially nonlocal. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the nonlocal conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, nonuniform, nearly collisionless plasmas of low-pressure discharges is reported. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. This system was applied to the calculation of collisionless heating in capacitively and inductively coupled plasmas. In particular, the importance of accounting for the nonuniform plasma density profile for computing the current density profile and the EEDF is demonstrated. The enhancement of collisionless heating due to the bounce resonance between the electron motion in the potential well and the external radio-frequency electric field is investigated. It is shown that a nonlinear and self-consistent treatment is necessary for the correct description of collisionless heating

  14. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes.

    Science.gov (United States)

    Bergantin, Leandro Bueno; Figueiredo, Leonardo Bruno; Godinho, Rosely Oliveira

    2011-12-01

    The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.

  15. cAMP-dependent proteolysis of GATA-6 is linked to JNK-signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ushijima, Hironori [Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694 (Japan); Maeda, Masatomo, E-mail: mmaeda@iwate-med.ac.jp [Department of Molecular Biology, School of Pharmacy, Iwate Medical University, 2-1-1, Nishitokuta, Yahaba, Shiwagun, Iwate 028-3694 (Japan)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6. Black-Right-Pointing-Pointer Effect of a JNK activator anisomycin on the proteolysis was examined. Black-Right-Pointing-Pointer Anisomycin stimulated the export of nuclear GATA-6 into the cytoplasm. Black-Right-Pointing-Pointer JNK activated the CRM1 mediated nuclear export of GATA-6. Black-Right-Pointing-Pointer JNK further stimulated slowly the degradation of GATA-6 by cytoplasmic proteasomes. -- Abstract: A JNK inhibitor SP600125 inhibited cAMP-dependent proteolysis of GATA-6 by proteasomes around its IC50. We further examined the effects of SP600125 on the degradation of GATA-6 in detail, since an activator of JNK (anisomycin) is available. Interestingly, anisomycin immediately stimulated the export of nuclear GATA-6 into the cytoplasm, and then the cytoplasmic content of GATA-6 decreased slowly through degradation by proteasomes. Such an effect of anisomycin was inhibited by SP600125, indicating that the observed phenomenon might be linked to the JNK signaling pathway. The inhibitory effect of SP600125 could not be ascribed to the inhibition of PKA, since phosphorylation of CREB occurred in the presence of dbcAMP and SP600125. The nuclear export of GATA-6 was inhibited by leptomycin B, suggesting that CRM1-mediated export could be activated by anisomycin. Furthermore, it seems likely that the JNK activated by anisomycin may stimulate not only the nuclear export of GATA-6 through CRM1 but also the degradation of GATA-6 by cytoplasmic proteasomes. In contrast, A-kinase might activate only the latter process through JNK.

  16. Use of high-gradient magnetic fishing for reducing proteolysis during fermentation

    DEFF Research Database (Denmark)

    Maury, Trine Lütken; Ottow, Kim Ekelund; Brask, Jesper

    2012-01-01

    Proteolysis during fermentation may have a severe impact on the yield and quality of a secreted product. In the current study, we demonstrate the use of high-gradient magnetic fishing (HGMF) as an efficient alternative to the more conventional methods of preventing proteolytic degradation....... Bacitracin-linked magnetic affinity adsorbents were employed directly in a fermenter during Bacillus licheniformis cultivation to remove trace amounts of unwanted proteases. The constructed magnetic adsorbents had excellent, highly specific binding characteristics in the fermentation broth (K(d) = 1...

  17. Autophagic dysfunction in a lysosomal storage disorder due to impaired proteolysis.

    Science.gov (United States)

    Elrick, Matthew J; Lieberman, Andrew P

    2013-02-01

    Alterations in macroautophagy (hereafter referred to as "autophagy") are a common feature of lysosomal storage disorders, and have been hypothesized to play a major role in the pathogenesis of these diseases. We have recently reported multiple defects in autophagy contributing to the lysosomal storage disorder Niemann-Pick type C (NPC). These include increased formation of autophagosomes, slowed turnover of autophagosomes secondary to impaired lysosomal proteolysis, and delivery of stored lipids to the lysosome via autophagy. The study summarized here describes novel methods for the interrogation of individual stages of the autophagic pathway, and suggests mechanisms by which lipid storage may result in broader lysosomal dysfunction.

  18. Histopathological growth pattern, proteolysis and angiogenesis in chemonaive patients resected for multiple colorectal liver metastases

    DEFF Research Database (Denmark)

    Eefsen, Rikke Løvendahl; Van den Eynden, Gert G; Høyer-Hansen, Gunilla

    2012-01-01

    The purpose of this study was to characterise growth patterns, proteolysis, and angiogenesis in colorectal liver metastases from chemonaive patients with multiple liver metastases. Twenty-four patients were included in the study, resected for a median of 2.6 metastases. The growth pattern......-type plasminogen activator receptor (P = 0.0008). Angiogenesis was most pronounced in metastases with a pushing growth pattern in comparison to those with desmoplastic (P = 0.0007) and replacement growth pattern (P = 0.021). Although a minor fraction of the patients harboured metastases with different growth...

  19. Lipolysis and proteolysis profiles of fresh artisanal goat cheese made with raw milk with 3 different fat contents.

    Science.gov (United States)

    Sánchez-Macías, D; Morales-Delanuez, A; Moreno-Indias, I; Hernández-Castellano, L E; Mendoza-Grimón, V; Castro, N; Argüello, A

    2011-12-01

    The objective of this study was to describe the proteolysis and lipolysis profiles in goat cheese made in the Canary Islands (Spain) using raw milk with 3 different fat contents (0.5, 1.5, and 5%) and ripened for 1, 7, 14, and 28 d. β-Casein was the most abundant protein in all cheeses and at all ripening times. Quantitative analysis showed a general decrease in caseins as ripening progressed, and degradation rates were higher for α(S1)-casein than for β-casein and α(S2)-casein. Furthermore, the degradation rate during the experimental time decreased with lower fat contents. The α(S2)-casein and α(S1)-casein levels that remained in full-fat and reduced-fat cheeses were less than those in low-fat cheese. In contrast, β-casein also showed degradation along with ripening, but differences in degradation among the 3 cheese types were not significant at 28 d. The degradation products increased with the ripening time in all cheeses, but they were higher in full-fat cheese than in reduced-fat and low-fat cheeses. The free fatty acid concentration per 100g of cheese was higher in full-fat cheese than in reduced- and low-fat cheese; however, when the results were expressed as milligrams of free fatty acids per gram of fat in cheese, then lipolysis occurred more rapidly in low-fat cheese than in reduced- and full-fat cheeses. These results may explain the atypical texture and off-flavors found in low-fat goat cheeses, likely the main causes of non-acceptance. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Low pressure plasma spray deposition of W-Ni-Fe alloy

    International Nuclear Information System (INIS)

    Mutasim, Z.Z.; Smith, R.W.

    1991-01-01

    The production of net shape refractory metal structural preforms are increasing in importance in chemical processing, defense and aerospace applications. Conventional methods become limited for refractory metal processing due to the high melting temperatures and fabrication difficulties. Plasma spray forming, a high temperature process, has been shown to be capable of refractory metal powder consolidation in net shape products. The research reported here has evaluated this method for the deposition of heavy tungsten alloys. Plasma Melted Rapidly Solidified (PMRS) W 8%Ni-2%Fe refractory metal powders were spray formed using vacuum plasma spray (VPS) process and produced 99% dense, fine grain and homogeneous microstructures. In this paper plasma operating parameters (plasma arc gas type and flowrate plasma gun nozzle size and spray distance) were studied and their effects on deposit's density and microstructure are reported

  1. Modeling the Effects of Ice Accretion on the Low Pressure Compressor and the Overall Turbofan Engine System Performance

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Wright, William B.

    2011-01-01

    The focus of this study is on utilizing a mean line compressor flow analysis code coupled to an engine system thermodynamic code, to estimate the effects of ice accretion on the low pressure compressor, and quantifying its effects on the engine system throughout a notional flight trajectory. In this paper a temperature range in which engine icing would occur was assumed. This provided a mechanism to locate potential component icing sites and allow the computational tools to add blockages due to ice accretion in a parametric fashion. Ultimately the location and level of blockage due to icing would be provided by an ice accretion code. To proceed, an engine system modeling code and a mean line compressor flow analysis code were utilized to calculate the flow conditions in the fan-core and low pressure compressor and to identify potential locations within the compressor where ice may accrete. In this study, an "additional blockage" due to the accretion of ice on the metal surfaces, has been added to the baseline aerodynamic blockage due to boundary layer, as well as the blade metal blockage. Once the potential locations of ice accretion are identified, the levels of additional blockage due to accretion were parametrically varied to estimate the effects on the low pressure compressor blade row performance operating within the engine system environment. This study includes detailed analysis of compressor and engine performance during cruise and descent operating conditions at several altitudes within the notional flight trajectory. The purpose of this effort is to develop the computer codes to provide a predictive capability to forecast the onset of engine icing events, such that they could ultimately help in the avoidance of these events.

  2. Observation of Cherenkov rings using a low-pressure parallel-plate chamber and a solid cesium-iodide photocathode

    International Nuclear Information System (INIS)

    Lockyer, N.S.; Millan, J.E.; Lu, C.; McDonald, K.T.; Lopez, A.

    1993-01-01

    We have observed Cherenkov rings from minimum-ionizing particles using a low-pressure, parallel-plate pad-chamber with a cesium-iodide solid photocathode. This detector is blind to minimum-ionizing particles, and sensitive to Cherenkov photons of wavelengths 170-210 nm. An average of 5 photoelectrons per Cherenkov ring were detected using a 2-cm-thick radiator of liquid C 6 F 14 . This paper reports on the chamber construction, photocathode preparation and testbeam results. (orig.)

  3. Study of Boundary Layer Convective Heat Transfer with Low Pressure Gradient Over a Flat Plate Via He's Homotopy Perturbation Method

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Aroujalian, A.

    2012-01-01

    The boundary layer convective heat transfer equations with low pressure gradient over a flat plate are solved using Homotopy Perturbation Method, which is one of the semi-exact methods. The nonlinear equations of momentum and energy solved simultaneously via Homotopy Perturbation Method are in good agreement with results obtained from numerical methods. Using this method, a general equation in terms of Pr number and pressure gradient (λ) is derived which can be used to investigate velocity and temperature profiles in the boundary layer.

  4. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    International Nuclear Information System (INIS)

    Kraloua, B.; Hennad, A.

    2008-01-01

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  5. High pressure, low pressure and hot water heating systems in hospitals. Hochdruck-, Niederdruck- und Warmwasserheizungsanlagen im Krankenhaus

    Energy Technology Data Exchange (ETDEWEB)

    Riedle, K [H. Riedle GmbH, Wiesbaden (Germany)

    1994-07-01

    In hospital nowadays the limitation of the use of steam boilers and their direct supply network to the possible minimum is aimed at when the heating system is exchanged or retrofitted. Independent of the fact whether high pressure or low pressure steam or hot water is used the optimum water treatment should be carried out with a minimum of chemical substances. Here hydroquinone, neutralizing amines, carbohydrazide, sodium sulphite and tannins can be used. The dimensioning of hot water heating circuits is shown with examples. (BWI)

  6. Measurement of the refractive index of air in a low-pressure regime and the applicability of traditional empirical formulae

    Science.gov (United States)

    Schödel, René; Walkov, Alexander; Voigt, Michael; Bartl, Guido

    2018-06-01

    The refractive index of air is a major limiting factor in length measurements by interferometry, which are mostly performed under atmospheric conditions. Therefore, especially in the last century, measurement and description of the air refractive index was a key point in order to achieve accuracy in the realisation of the length by interferometry. Nevertheless, interferometric length measurements performed in vacuum are much more accurate since the wavelength of the light is not affected by the air refractive index. However, compared with thermal conditions in air, in high vacuum heat conduction is missing. In such a situation, dependent on the radiative thermal equilibrium, a temperature distribution can be very inhomogeneous. Using a so-called contact gas instead of high vacuum is a very effective way to enable heat conduction on nearly the same level as under atmospheric pressure conditions whereby keeping the effect of the air refractive index on a small level. As physics predicts, and as we have demonstrated previously, helium seems like the optimal contact gas because of its large heat conduction and its refractive index that can be calculated from precisely known parameters. On the other hand, helium gas situated in a vacuum chamber could easily be contaminated, e.g. by air leakage from outside. Above the boiling point of oxygen (‑183 °C) it is therefore beneficial to use dry air as a contact gas. In such an approach, the air refractive index could be calculated based on measured quantities for pressure and temperature. However, existing formulas for the air refractive index are not valid in the low-pressure regime. Although it seems reasonable that the refractivity (n  ‑  1) of dry air simply downscales with the pressure, to our knowledge there is no experimental evidence for the applicability of any empirical formula. This evidence is given in the present paper which reports on highly accurate measurements of the air refractive index for the

  7. Formation of a Boundary-Free Dust Cluster in a Low-Pressure Gas-Discharge Plasma

    International Nuclear Information System (INIS)

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Annaratone, B. M.; Thoma, M. H.; Hoefner, H.; Kretschmer, M.; Fink, M.; Morfill, G. E.

    2009-01-01

    An attraction between negatively charged micron-sized plastic particles was observed in the bulk of a low-pressure gas-discharge plasma under microgravity conditions. This attraction had led to the formation of a boundary-free dust cluster, containing one big central particle with a radius of about 6 μm and about 30 1 μm-sized particles situated on a sphere with a radius of 190 μm and with the big particle in the center. The stability of this boundary-free dust cluster was possible due to its confinement by the plasma flux on the central dust particle

  8. Supra-thermal charged particle energies in a low pressure radio-frequency electrical discharge in air

    International Nuclear Information System (INIS)

    Littlefield, R.G.

    1976-01-01

    Velocity spectra of supra-thermal electrons escaping from a low-pressure radio-frequency discharge in air have been measured by a time-of-flight method of original design. In addition, the energy spectra of the supra-thermal electrons and positive ions escaping from the rf discharge have been measured by a retarding potential method. Various parameters affecting the energy of the supra-thermal charged particles are experimentally investigated. A model accounting for the supra-thermal charged particle energies is developed and is shown to be consistent with experimental observations

  9. A Stochastic Reliability Model for Application in a Multidisciplinary Optimization of a Low Pressure Turbine Blade Made of Titanium Aluminide

    OpenAIRE

    Dresbach,Christian; Becker,Thomas; Reh,Stefan; Wischek,Janine; Zur,Sascha; Buske,Clemens; Schmidt,Thomas; Tiefers,Ruediger

    2016-01-01

    Abstract Currently, there are a lot of research activities dealing with gamma titanium aluminide (γ-TiAl) alloys as new materials for low pressure turbine (LPT) blades. Even though the scatter in mechanical properties of such intermetallic alloys is more distinctive as in conventional metallic alloys, stochastic investigations on γ -TiAl alloys are very rare. For this reason, we analyzed the scatter in static and dynamic mechanical properties of the cast alloy Ti-48Al-2Cr-2Nb. It wa...

  10. Numerical modeling and investigation of two-phase reactive flow in a high-low pressure chambers system

    International Nuclear Information System (INIS)

    Cheng, Cheng; Zhang, Xiaobing

    2016-01-01

    Highlights: • A novel two-dimensional two-phase flow model is established for the high-low pressure chambers system. • A strong packing of particles is observed at the projectile base and will cause the pressure to rise faster. • Different length–diameter ratios can affect the flow behavior through the vent-holes obviously. • The muzzle velocity decreases with the length–diameter ratio of the high-pressure chamber. - Abstract: A high-low pressure chambers system is proposed to meet the demands of low launch acceleration for informative equipment in many special fields such as Aeronautics, Astronautics and Weaponry. A two-dimensional two-phase flow numerical model is established to describe the complex physical process based on a modified two-fluid theory, which takes into account gas production, interphase drag, intergranular stress, and heat transfer between two phases. In order to reduce the computational cost, the parameters in the high-pressure chamber at the instant the vent-holes open are calculated by the zero-dimensional model as the initial conditions for the two-phase flow simulation in the high-low pressure chambers system. The simulation results reveal good agreement with the experiments and the launch acceleration of a projectile can be improved by this system. The propellant particles can be tracked clearly in both chambers and a strong packing of particles at the base of projectile will cause the pressure to rise faster than at other areas both in the axis and radial directions. The length–diameter ratio of the high-pressure chamber (a typical multi-dimensional parameter) is investigated. Different length–diameter ratios can affect the maximum pressure drop and the loss of total pressure impulse through the vent-hole, then the muzzle velocity and the launch acceleration of projectiles can be influenced directly. This article puts forward a new prediction tool for the understanding and design of transient processes in high-low pressure

  11. Standard values of fugacity for sulfur which are self-consistent with the low-pressure phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Robert A., E-mail: rob.marriott@ucalgary.ca [Alberta Sulphur Research Ltd., University of Calgary, Alberta (Canada); Wan, Herman H. [Alberta Sulphur Research Ltd., University of Calgary, Alberta (Canada)

    2011-08-15

    Highlights: > We have provided a method for calculating the fugacity for elemental sulfur. > Calculated sulfur fugacities can be used in sulfur equilibrium models. > The sulfur fugacities also can be used to locate the phase changes in the low-pressure phase diagram. > We have measured the 'natural' melting point of sulfur, and found it to be T = 388.5 {+-} 0.2 K. - Abstract: A method for calculating the fugacity of pure sulfur in the {alpha}-solid, {beta}-solid and liquid phase regions has been reported for application to industrial equilibrium conditions, e.g., high-pressure solubility of sulfur in sour gas. The fugacity calculations are self-consistent with the low-pressure phase diagram. As recently discussed by Ferreira and Lobo , empirical fitting of the experimental data does not yield consistent behaviour for the low-pressure phase diagram of elemental sulfur. In particular, there is a discrepancy between the vapour pressure of {beta}-solid (monoclinic) and liquid sulfur at the fusion temperature. We have provided an alternative semi-empirical approach which allows one to calculate values of the fugacity at conditions removed from the conditions of the pure sulfur phase transitions. For our approach, we have forced the liquid vapour pressure to equal the {beta}-solid vapour pressure at the {beta}-l-g triple point corresponding to the 'natural' fusion temperature for {beta}-solid. Many studies show a higher 'observed' fusion temperature for elemental sulfur. The non-reversible conditions for 'observed' fusion conditions for elemental sulfur result from a kinetically hindered melt which causes some thermodynamic measurements to be related to a metastable S{sub 8} liquid. We have measured the 'natural' fusion temperature, T{sub fus}{sup {beta}}(exp.)=(388.5{+-}0.2)K at p = 89.9 kPa, which is consistent with literature fusion data at higher-pressures. Using our semi-empirical approach, we have used or found the

  12. Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis

    Science.gov (United States)

    Park, Sei-Kyoung; Hong, Joo Y.; Arslan, Fatih; Tietsort, Alex; Tank, Elizabeth M. H.; Li, Xingli

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. PMID:28531192

  13. Proteolysis of proBDNF is a key regulator in the formation of memory.

    Directory of Open Access Journals (Sweden)

    Philip Barnes

    2008-09-01

    Full Text Available It is essential to understand the molecular processes underlying long-term memory to provide therapeutic targets of aberrant memory that produce pathological behaviour in humans. Under conditions of recall, fully-consolidated memories can undergo reconsolidation or extinction. These retrieval-mediated memory processes may rely on distinct molecular processes. The cellular mechanisms initiating the signature molecular events are not known. Using infusions of protein synthesis inhibitors, antisense oligonucleotide targeting brain-derived neurotrophic factor (BDNF mRNA or tPA-STOP (an inhibitor of the proteolysis of BDNF protein into the hippocampus of the awake rat, we show that acquisition and extinction of contextual fear memory depended on the increased and decreased proteolysis of proBDNF (precursor BDNF in the hippocampus, respectively. Conditions of retrieval that are known to initiate the reconsolidation of contextual fear memory, a BDNF-independent memory process, were not correlated with altered proBDNF cleavage. Thus, the processing of BDNF was associated with the acquisition of new information and the updating of information about a salient stimulus. Furthermore, the differential requirement for the processing of proBDNF by tPA in distinct memory processes suggest that the molecular events actively engaged to support the storage and/or the successful retrieval of memory depends on the integration of ongoing experience with past learning.

  14. Proteolysis of Sardine (Sardina pilchardus and Anchovy (Stolephorus commersonii by Commercial Enzymes in Saline Solutions

    Directory of Open Access Journals (Sweden)

    Chau Minh Le

    2015-01-01

    Full Text Available Fish sauce production is a very long process and there is a great interest in shortening it. Among the different strategies to speed up this process, the addition of external proteases could be a solution. This study focuses on the eff ect of two commercial enzymes (Protamex and Protex 51FP on the proteolysis of two fish species traditionally converted into fish sauce: sardine and anchovy, by comparison with classical autolysis. Hydrolysis reactions were conducted with fresh fish at a temperature of 30 °C and under different saline conditions (from 0 to 30 % NaCl. Hydrolysis degree and liquefaction of the raw material were used to follow the process. As expected, the proteolysis decreased with increasing amount of salt. Regarding the fi sh species, higher rate of liquefaction and higher hydrolysis degree were obtained with anchovy. Between the two proteases, Protex 51FP gave better results with both fi sh types. This study demonstrates that the addition of commercial proteases could be helpful for the liquefaction of fi sh and cleavage of peptide bonds that occur during fi sh sauce production and thus speed up the production process.

  15. The role of extracellular proteolysis in synaptic plasticity of the central nervous system 

    Directory of Open Access Journals (Sweden)

    Anna Konopka

    2012-11-01

    Full Text Available The extracellular matrix (ECM of the central nervous system has a specific structure and protein composition that are different from those in other organs. Today we know that the ECM not only provides physical scaffolding for the neurons and glia, but also actively modifies their functions. Over the last two decades, a growing body of research evidence has been collected, suggesting an important role of ECM proteolysis in synaptic plasticity of the brain. So far the majority of data concern two large families of proteases: the serine proteases and the matrix metalloproteinases. The members of these families are localized at the synapses, and are secreted into the extracellular space in an activity-dependent manner. The proteases remodel the local environment as well as influencing synapse structure and function. The structural modifications induced by proteases include shape and size changes, as well as synapse elimination, and synaptogenesis. The functional changes include modifications of receptor function in the postsynaptic part of the synapse, as well as the potentiation or depression of neurotransmitter secretion by the presynaptic site. The present review summarizes the current view on the role of extracellular proteolysis in the physiological synaptic plasticity underlying the phenomena of learning and memory, as well as in the pathological plasticity occurring during epileptogenesis or development of drug addiction. 

  16. Increased intracellular proteolysis reduces disease severity in an ER stress-associated dwarfism.

    Science.gov (United States)

    Mullan, Lorna A; Mularczyk, Ewa J; Kung, Louise H; Forouhan, Mitra; Wragg, Jordan Ma; Goodacre, Royston; Bateman, John F; Swanton, Eileithyia; Briggs, Michael D; Boot-Handford, Raymond P

    2017-10-02

    The short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen. In MCDS mice expressing the Col10a1.pN617K mutation, CBZ reduced the MCDS-associated expansion of the growth plate hypertrophic zone, attenuated enhanced expression of ER stress markers such as Bip and Atf4, increased bone growth, and reduced skeletal dysplasia. CBZ produced these beneficial effects by reducing the MCDS-associated abnormalities in hypertrophic chondrocyte differentiation. Stimulation of intracellular proteolysis using CBZ treatment may therefore be a clinically viable way of treating the ER stress-associated dwarfism MCDS.

  17. The use of in situ proteolysis in the crystallization of murine CstF-77

    International Nuclear Information System (INIS)

    Bai, Yun; Auperin, Thierry C.; Tong, Liang

    2007-01-01

    In situ proteolysis with fungal protease or subtilisin is crucial for the crystallization of murine CstF-77. The cleavage-stimulation factor (CstF) is required for the cleavage of the 3′-end of messenger RNA precursors in eukaryotes. During structure determination of the 77 kDa subunit of the murine CstF complex (CstF-77), it was serendipitously discovered that a solution infected by a fungus was crucial for the crystallization of this protein. CstF-77 was partially proteolyzed during crystallization; this was very likely to have been catalyzed by a protease secreted by the fungus. It was found that the fungal protease can be replaced by subtilisin and this in situ proteolysis protocol produced crystals of sufficient size for structural studies. After an extensive search, it was found that 55% glucose can be used as a cryoprotectant while maintaining the diffraction quality of the crystals; most other commonly used cryoprotectants were detrimental to the diffraction quality

  18. Bystander protein protects potential vaccine-targeting ligands against intestinal proteolysis.

    Science.gov (United States)

    Reuter, Fabian; Bade, Steffen; Hirst, Timothy R; Frey, Andreas

    2009-07-20

    Endowing mucosal vaccines with ligands that target antigen to mucosal lymphoid tissues may improve immunization efficacy provided that the ligands withstand the proteolytic environment of the gastro-intestinal tract until they reach their destination. Our aim was to investigate whether and how three renowned ligands - Ulex europaeus agglutinin I and the B subunits of cholera toxin and E. coli heat-labile enterotoxin - master this challenge. We assessed the digestive power of natural murine intestinal fluid (natIF) using assays for trypsin, chymotrypsin and pancreatic elastase along with a test for nonspecific proteolysis. The natIF was compared with simulated murine intestinal fluid (simIF) that resembled the trypsin, chymotrypsin and elastase activities of its natural counterpart but lacked or contained albumins as additional protease substrates. The ligands were exposed to the digestive fluids and degradation was determined. The studies revealed that (i) the three pancreatic endoproteases constitute only one third of the total protease activity of natIF and (ii) the ligands resist proteolysis in natIF and protein-enriched simIF over 3 h but (iii) are partially destroyed in simIF that lacks additional protease substrate. We assume that the proteins of natIF are preferred substrates for the intestinal proteases and thus can protect vaccine-targeting ligands from destruction.

  19. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle.

    Science.gov (United States)

    Gokhin, David S; Tierney, Matthew T; Sui, Zhenhua; Sacco, Alessandra; Fowler, Velia M

    2014-03-01

    Duchenne muscular dystrophy (DMD) induces sarcolemmal mechanical instability and rupture, hyperactivity of intracellular calpains, and proteolytic breakdown of muscle structural proteins. Here we identify the two sarcomeric tropomodulin (Tmod) isoforms, Tmod1 and Tmod4, as novel proteolytic targets of m-calpain, with Tmod1 exhibiting ∼10-fold greater sensitivity to calpain-mediated cleavage than Tmod4 in situ. In mdx mice, increased m-calpain levels in dystrophic soleus muscle are associated with loss of Tmod1 from the thin filament pointed ends, resulting in ∼11% increase in thin filament lengths. In mdx/mTR mice, a more severe model of DMD, Tmod1 disappears from the thin filament pointed ends in both tibialis anterior (TA) and soleus muscles, whereas Tmod4 additionally disappears from soleus muscle, resulting in thin filament length increases of ∼10 and ∼12% in TA and soleus muscles, respectively. In both mdx and mdx/mTR mice, both TA and soleus muscles exhibit normal localization of α-actinin, the nebulin M1M2M3 domain, Tmod3, and cytoplasmic γ-actin, indicating that m-calpain does not cause wholesale proteolysis of other sarcomeric and actin cytoskeletal proteins in dystrophic skeletal muscle. These results implicate Tmod proteolysis and resultant thin filament length misspecification as novel mechanisms that may contribute to DMD pathology, affecting muscles in a use- and disease severity-dependent manner.

  20. Excess alpha chains are lost from beta-thalassemic reticulocytes by proteolysis

    International Nuclear Information System (INIS)

    Testa, U.; Hinard, N.; Beuzard, Y.; Tsapis, A.; Galacteros, F.; Thomopoulos, P.; Rosa, J.

    1981-01-01

    During incubation of reticulocytes from patients with beta-thalassemia, after labeling of the hemoglobin with radioactive amino acids, the excess alpha chains are gradually lost from the cells. The aim of this study was to investigate the mechanism of this phenomenon. A system was developed in which reticulocytes from beta-thalassemia patients are labeled with [3H]leucine, washed several times in nonradioactive medium, and then incubated in the same medium containing puromycin added in order to stop further protein synthesis. The results have clearly shown that excess alpha chains are gradually degraded by proteolysis. N-ethylmaleimide or epsilon-aminocaproic acid inhibited the proteolysis of free alpha chains. The addition of either ATP or hemin did not change the rate of alpha chain degradation. The time required to degrade 50% of the pool of free alpha chains was directly dependent on the initial value of this pool. This finding suggests the absence of a significant individual variation in the ability to proteolyse free alpha chains

  1. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    International Nuclear Information System (INIS)

    Inami, Yoshihiro; Yamashina, Shunhei; Izumi, Kousuke; Ueno, Takashi; Tanida, Isei; Ikejima, Kenichi; Watanabe, Sumio

    2011-01-01

    Highlights: → Acidification of autophagosome was blunted in steatotic hepatocytes. → Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. → Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. → Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  2. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression

    Energy Technology Data Exchange (ETDEWEB)

    Inami, Yoshihiro [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Yamashina, Shunhei, E-mail: syamashi@juntendo.ac.jp [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Izumi, Kousuke [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Ueno, Takashi [Department of Biochemistry, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan); Tanida, Isei [Department of Biochemistry and Cell Biology, Laboratory of Biomembranes, National Institute of Infectious Disease, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640 (Japan); Ikejima, Kenichi; Watanabe, Sumio [Department of Gastroenterology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421 (Japan)

    2011-09-09

    Highlights: {yields} Acidification of autophagosome was blunted in steatotic hepatocytes. {yields} Hepatic steatosis did not disturb fusion of isolated autophagosome and lysosome. {yields} Proteinase activity of cathepsin B and L in autolysosomes was inhibited by steatosis. {yields} Hepatic expression of cathepsin B and L was suppressed by steatosis. -- Abstract: Autophagy, one of protein degradation system, contributes to maintain cellular homeostasis and cell defense. Recently, some evidences indicated that autophagy and lipid metabolism are interrelated. Here, we demonstrate that hepatic steatosis impairs autophagic proteolysis. Though accumulation of autophagosome is observed in hepatocytes from ob/ob mice, expression of p62 was augmented in liver from ob/ob mice more than control mice. Moreover, degradation of the long-lived protein leucine was significantly suppressed in hepatocytes isolated from ob/ob mice. More than 80% of autophagosomes were stained by LysoTracker Red (LTR) in hepatocytes from control mice; however, rate of LTR-stained autophagosomes in hepatocytes were suppressed in ob/ob mice. On the other hand, clearance of autolysosomes loaded with LTR was blunted in hepatocytes from ob/ob mice. Although fusion of isolated autophagosome and lysosome was not disturbed, proteinase activity of cathepsin B and L in autolysosomes and cathepsin B and L expression of liver were suppressed in ob/ob mice. These results indicate that lipid accumulation blunts autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression.

  3. Impact of microencapsulated peptidase (Aspergillus oryzae) on cheddar cheese proteolysis and its biologically active peptide profile.

    Science.gov (United States)

    Seneweera, Saman; Kailasapathy, Kaila

    2011-07-01

    We investigated the delivery of calcium-alginate encapsulated peptidase (Flavourzyme(®), Aspergillus oryzae) on proteolysis of Cheddar cheese. Physical and chemical characteristics such as moisture, pH and fat content were measured, and no differences were found between control and experimental cheese at day 0. SDS-PAGE analysis clearly showed that proteolysis of α and k casein was significantly accelerated after three months of maturity in the experimental cheese. A large number of low molecular weight peptides were found in the water soluble fraction of the experimental cheeses and some of these peptides were new. N-terminal amino acid sequence analysis identified these as P(1), Leu-Thu-Glu; P(3), Asp-Val-Pro-Ser-Glu) and relatively abundant stable peptides P(2), P(4), Arg-Pro-Lys-His-Pro-Ile; P(5), Arg-Pro-Lys-His-Pro-Ile-Lys and P(6). These peptides were mainly originated from αs1-CN and β-CN. Three of the identified peptides (P(1), P(2), P(3) and P(4)) are known to biologically active and P(1) and P(3) were only present in experimental cheese suggesting that experimental cheese has improved health benefits.

  4. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity.

    Science.gov (United States)

    Dickey, Seth W; Baker, Rosanna P; Cho, Sangwoo; Urban, Siniša

    2013-12-05

    Enzymatic cleavage of transmembrane anchors to release proteins from the membrane controls diverse signaling pathways and is implicated in more than a dozen diseases. How catalysis works within the viscous, water-excluding, two-dimensional membrane is unknown. We developed an inducible reconstitution system to interrogate rhomboid proteolysis quantitatively within the membrane in real time. Remarkably, rhomboid proteases displayed no physiological affinity for substrates (K(d) ~190 μM/0.1 mol%). Instead, ~10,000-fold differences in proteolytic efficiency with substrate mutants and diverse rhomboid proteases were reflected in k(cat) values alone. Analysis of gate-open mutant and solvent isotope effects revealed that substrate gating, not hydrolysis, is rate limiting. Ultimately, a single proteolytic event within the membrane normally takes minutes. Rhomboid intramembrane proteolysis is thus a slow, kinetically controlled reaction not driven by transmembrane protein-protein affinity. These properties are unlike those of other studied proteases or membrane proteins but are strikingly reminiscent of one subset of DNA-repair enzymes, raising important mechanistic and drug-design implications. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Manufacturing of ceramic microcomponents by a rapid prototyping process chain

    International Nuclear Information System (INIS)

    Knitter, R.; Bauer, W.; Goehring, D.; Hausselt, J.

    2001-01-01

    Manufacturing of new ceramic components may be improved significantly by the use of rapid prototyping processes especially in the development of miniaturized or micropatterned components. Most known generative ceramic molding processes do not provide a sufficient resolution for the fabrication of microstructured components. In contrast to this, a rapid prototyping process chain that for example, combines micro-stereolithography and low-pressure injection molding, allows the rapid manufacturing of ceramic microcomponents from functional models to preliminary or small-lot series. (orig.)

  6. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization

    International Nuclear Information System (INIS)

    Manakhov, Anton; Nečas, David; Čechal, Jan; Pavliňák, David; Eliáš, Marek

    2015-01-01

    Amine-rich films are of high interest for the bio-applications including drug delivery and tissue engineering thanks to their high reactivity allowing the formation of the covalent linkages between biomolecules and a surface. However, the bio-applications of amine-rich films require their good stability in water which is often achieved at large expenses of the amine concentration. Recently, non-toxic cyclopropylamine (CPA) has been applied for the plasma polymerization of films bearing high NH x environment combined with the moderate thickness loss (20%) after water immersion for 48 h. In this work, the amine-rich film with the NH x concentration over 7 at.% was deposited on Si substrates and polycaprolactone nanofiber meshes by using CPA plasma polymerization (pulsed mode) in a vertically oriented stainless steel reactor. The substrates were placed at the radio frequency electrode and the ion bombardment caused by direct-current self-bias was suppressed by using high pressure of 50 Pa. Analysis of samples by scanning electron microscopy did not reveal any cracks in the deposited layer formed during a sample immersion in water. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed a slight oxidation of amine groups in water but the film still contained 5 at.% of NH x (according to the N1s XPS fitting) after the immersion. The rapid oxidation of amine groups was observed during the aging experiment carried out in air at room temperature because FTIR revealed an increase of amide peaks that increased progressively with aging time. However, this oxidation was significantly reduced if the plasma polymer was stored at − 20 °C. Since the films exhibit high amine concentration and very good water stability they have great potential for applications as biocompatible functional coatings. - Highlights: • Cyclopropylamine plasma polymers deposited on polycaprolactone nanofibers • Amine-rich films with high water stability

  7. Preparation of YBa2Cu3O7 films by low pressure MOCVD using liquid solution sources

    International Nuclear Information System (INIS)

    Weiss, F.; Froehlich, K.; Haase, R.; Labeau, M.; Selbmann, D.; Senateur, J.P.; Thomas, O.

    1993-01-01

    A hybrid low pressure MOCVD process is described for reproducible preparation of superconducting thin films of YBa 2 Cu 3 O 7 . The process uses a single solution source of Y, Ba, and Cu β-diketonates dissolved in suitable organic solvents. This liquid precursor is atomized using an ultrasonic aerosol generator and transported as small droplets (∼1μm) into a CVD reactor where solvent and precursor are first evaporated before deposition takes place at low pressure on heated substrates in a cold wall geometry. This process allows, with stable evaporation rates for all three precursors, to grow in-situ superconducting films with constant composition from film to film. Thin and thick films with high critical temperatures and critical currents have been obtained (Tc>80K, Jc>10 4 A/cm 2 at 77K in self field) which are highly c-axis oriented. Experimental details of this new process are described and the effects of different process parameters are studied in order to improve the quality of the deposited layers. (orig.)

  8. Effects of non-Maxwellian electron velocity distribution function on two-stream instability in low-pressure discharges

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2007-01-01

    Electron emission from discharge chamber walls is important for plasma maintenance in many low-pressure discharges. The electrons emitted from the walls are accelerated by the sheath electric field and are injected into the plasma as an electron beam. Penetration of this beam through the plasma is subject to the two-stream instability, which tends to slow down the beam electrons and heat the plasma electrons. In the present paper, a one-dimensional particle-in-cell code is used to simulate these effects both in a collisionless plasma slab with immobile ions and in a cross-field discharge of a Hall thruster. The two-stream instability occurs if the total electron velocity distribution function of the plasma-beam system is a nonmonotonic function of electron speed. Low-pressure plasmas can be depleted of electrons with energy above the plasma potential. This study reveals that under such conditions the two-stream instability depends crucially on the velocity distribution function of electron emission. It is shown that propagation of the secondary electron beams in Hall thrusters may be free of the two-stream instability if the velocity distribution of secondary electron emission is a monotonically decaying function of speed. In this case, the beams propagate between the walls with minimal loss of the beam current and the secondary electron emission does not affect the thruster plasma properties

  9. Effective inactivation of Saccharomyces cerevisiae in minimally processed Makgeolli using low-pressure homogenization-based pasteurization.

    Science.gov (United States)

    Bak, Jin Seop

    2015-01-01

    In order to address the limitations associated with the inefficient pasteurization platform used to make Makgeolli, such as the presence of turbid colloidal dispersions in suspension, commercially available Makgeolli was minimally processed using a low-pressure homogenization-based pasteurization (LHBP) process. This continuous process demonstrates that promptly reducing the exposure time to excessive heat using either large molecules or insoluble particles can dramatically improve internal quality and decrease irreversible damage. Specifically, optimal homogenization increased concomitantly with physical parameters such as colloidal stability (65.0% of maximum and below 25-μm particles) following two repetitions at 25.0 MPa. However, biochemical parameters such as microbial population, acidity, and the presence of fermentable sugars rarely affected Makgeolli quality. Remarkably, there was a 4.5-log reduction in the number of Saccharomyces cerevisiae target cells at 53.5°C for 70 sec in optimally homogenized Makgeolli. This value was higher than the 37.7% measured from traditionally pasteurized Makgeolli. In contrast to the analytical similarity among homogenized Makgeollis, our objective quality evaluation demonstrated significant differences between pasteurized (or unpasteurized) Makgeolli and LHBP-treated Makgeolli. Low-pressure homogenization-based pasteurization, Makgeolli, minimal processing-preservation, Saccharomyces cerevisiae, suspension stability.

  10. Design and development of low pressure evaporator/condenser unit for water-based adsorption type climate control systems

    Science.gov (United States)

    Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.

    2016-11-01

    Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.

  11. Self-organized pattern on the surface of a metal anode in low-pressure DC discharge

    Science.gov (United States)

    Yaqi, YANG; Weiguo, LI

    2018-03-01

    Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100-200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1-10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.

  12. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    International Nuclear Information System (INIS)

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-01-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N 2 -Ar and O 2 -Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N 2 -Ar and O 2 -Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N 2 -Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O 2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O 2 -Ar discharges, the dissociation fraction of O 2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  13. Low pressure bottom-up synthesis of metal@oxide and oxide nanoparticles: control of structure and functional properties

    Science.gov (United States)

    D'Addato, Sergio; Chiara Spadaro, Maria

    2018-03-01

    Experimental activity on core@shell, metal@oxide, and oxide nanoparticles (NPs) grown with physical synthesis, and more specifically by low pressure gas aggregation sources (LPGAS) is reviewed, through a selection of examples encompassing some potential applications in nanotechnology. After an introduction to the applications of NPs, a brief description of the main characteristics of the growth process of clusters and NPs in LPGAS is given. Thereafter, some relevant case studies are reported: • Formation of native oxide shells around the metal cores in core@shell NPs. • Experimental efforts to obtain magnetic stabilization in magnetic core@shell NPs by controlling their structure and morphology. • Recent advancements in NP source design and new techniques of co-deposition, with relevant results in the realization of NPs with a greater variety of functionalities. • Recent results on reducible oxide NPs, with potentialities in nanocatalysis, energy storage, and other applications. Although this list is far from being exhaustive, the aim of the authors is to provide the reader a descriptive glimpse into the physics behind the growth and studies of low pressure gas-phase synthesized NPs, with their ever-growing potentialities for the rational design of new functional materials.

  14. Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions

    International Nuclear Information System (INIS)

    Luján, José Manuel; Guardiola, Carlos; Pla, Benjamín; Reig, Alberto

    2015-01-01

    EGR (Exhaust gas recirculation) plays a major role in current Diesel internal combustion engines as a cost-effective solution to reduce NO_x emissions. EGR systems will suffer a significant evolution with the introduction of NO_x after-treatment and the proliferation of more complex EGR architectures such as low pressure EGR or dual EGR. In this paper the combination of HPEGR (high pressure EGR) LPEGR (low pressure EGR) is presented as a method to minimise fuel consumption with reduced NO_x emissions. Particularly, the paper proposes to switch between HPEGR and LPEGR architectures depending on the engine operating conditions in order to exploit the potential of both systems. In this sense, given a driving cycle, in the case at hand the NEDC, the proposed strategy seeks the EGR layout to use at each instant of the cycle to minimise the fuel consumption such that NO_x emissions are kept below a certain limit. The experimental results obtained show that combining both EGR systems sequentially along the NEDC allows to keep NO_x emission below a much lower limit with minimum fuel consumption. - Highlights: • The combination of HP–LPEGR reduces the NO_x with a small impact on consumption. • The switching strategy between HP – LPEGR is derived from Optimal Control Theory. • The proposed strategy is validated experimentally.

  15. The effect of flow direction and magnitude on CHF for low pressure water in thin rectangular channels

    International Nuclear Information System (INIS)

    Mishima, K.; Nishihara, H.

    1985-01-01

    Critical heat flow (CHF) at low flow condition can become important in an MTR-type research reactor under a number of accident conditions. Regardless of the initial stages of these accidents, a condition which is basically the decay heat removal by natural convention boiling can develop. Under such conditions, burnout may occur even at a very low heat flow. In view of this, the CHF at low-flow-rate and low-pressure conditions has been studied for water flowing in thin rectangular channels. Experiments were carried out with two types of rectangular test sections, namely, the one heated from one wide side and the other heated from two opposite sides. In order to observe the effects of gravity, CHF was measured both in upflow and downflow. The CHF at complete bottom blockage was also studied. The results indicate that burnout can occur at a much lower heat flux than pool-boiling CHF or than predicted by the conventional correlations. There was observed a minimum CHF at complete bottom blockage and at very low downflow. The low CHF at very low downflow appears to be due to the stagnation of the bubble in the heated section. This fact indicates that special care should be taken in analyzing the boiling phenomenon which occurs when the coolant flow is very low in a low pressure system. (author)

  16. Deposition of stable amine coating onto polycaprolactone nanofibers by low pressure cyclopropylamine plasma polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Manakhov, Anton [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Nečas, David [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Čechal, Jan [CEITEC — Central European Institute of Technology, Brno University of Technology, Technická 3058/10, 616 00 Brno (Czech Republic); Pavliňák, David [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Eliáš, Marek [Plasma Technologies, CEITEC — Central European Institute of Technology, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, Brno 61137 (Czech Republic); and others

    2015-04-30

    Amine-rich films are of high interest for the bio-applications including drug delivery and tissue engineering thanks to their high reactivity allowing the formation of the covalent linkages between biomolecules and a surface. However, the bio-applications of amine-rich films require their good stability in water which is often achieved at large expenses of the amine concentration. Recently, non-toxic cyclopropylamine (CPA) has been applied for the plasma polymerization of films bearing high NH{sub x} environment combined with the moderate thickness loss (20%) after water immersion for 48 h. In this work, the amine-rich film with the NH{sub x} concentration over 7 at.% was deposited on Si substrates and polycaprolactone nanofiber meshes by using CPA plasma polymerization (pulsed mode) in a vertically oriented stainless steel reactor. The substrates were placed at the radio frequency electrode and the ion bombardment caused by direct-current self-bias was suppressed by using high pressure of 50 Pa. Analysis of samples by scanning electron microscopy did not reveal any cracks in the deposited layer formed during a sample immersion in water. Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed a slight oxidation of amine groups in water but the film still contained 5 at.% of NH{sub x} (according to the N1s XPS fitting) after the immersion. The rapid oxidation of amine groups was observed during the aging experiment carried out in air at room temperature because FTIR revealed an increase of amide peaks that increased progressively with aging time. However, this oxidation was significantly reduced if the plasma polymer was stored at − 20 °C. Since the films exhibit high amine concentration and very good water stability they have great potential for applications as biocompatible functional coatings. - Highlights: • Cyclopropylamine plasma polymers deposited on polycaprolactone nanofibers • Amine-rich films with high

  17. The ATPase and protease domains of yeast mitochondrial Lon : Roles in proteolysis and respiration-dependent growth

    NARCIS (Netherlands)

    van Dijl, JM; Kutejova, E; Suda, K; Perecko, D; Schatz, G; Suzuki, CK

    1998-01-01

    The ATP-dependent Lon protease of Saccharomyces cerevisiae mitochondria is required for selective proteolysis in the matrix, maintenance of mitochondrial DNA, and respiration-dependent growth. Lon may also possess a chaperone-like function that facilitates protein degradation and protein-complex

  18. Chemical and proteolysis-derived changes during long-term storage of lactose-hydrolyzed ultrahigh-temperature (UHT) milk.

    Science.gov (United States)

    Jansson, Therese; Jensen, Hanne B; Sundekilde, Ulrik K; Clausen, Morten R; Eggers, Nina; Larsen, Lotte B; Ray, Colin; Andersen, Henrik J; Bertram, Hanne C

    2014-11-19

    Proteolytic activity in milk may release bitter-tasting peptides and generate free amino terminals that react with carbohydrates, which initiate Maillard reaction. Ultrahigh temperature (UHT) heat treatment inactivates the majority of proteolytic enzymes in milk. In lactose-hydrolyzed milk a β-galactosidase preparation is applied to the milk after heat treatment, which has proteolytic side activities that may induce quality deterioration of long-term-stored milk. In the present study proteolysis, glycation, and volatile compound formation were investigated in conventional (100% lactose), filtered (60% lactose), and lactose-hydrolyzed (<1% lactose) UHT milk using reverse phase high-pressure liquid chromatography-mass spectrometry, proton nuclear magnetic resonance, and gas chromatography-mass spectrometry. Proteolysis was observed in all milk types. However, the degree of proteolysis was significantly higher in the lactose-hydrolyzed milk compared to the conventional and filtered milk. The proteins most prone to proteolysis were β-CN and αs1-CN, which were clearly hydrolyzed after approximately 90 days of storage in the lactose-hydrolyzed milk.

  19. Modeling the Deterioration of Engine and Low Pressure Compressor Performance During a Roll Back Event Due to Ice Accretion

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip, C. E.; Jones, Scott M.

    2014-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) of NASA Glenn Research Center. A data point was selected for analysis during which the engine experienced a full roll back event due to the ice accretion on the blades and flow path of the low pressure compressor. The computational tool consists of the Numerical Propulsion System Simulation (NPSS) engine system thermodynamic cycle code, and an Euler-based compressor flow analysis code, that has an ice particle melt estimation code with the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Decreasing the performance characteristics of the low pressure compressor (LPC) within the NPSS cycle analysis resulted in matching the overall engine performance parameters measured during testing at data points in short time intervals through the progression of the roll back event. Detailed analysis of the fan-core and LPC with the compressor flow analysis code simulated the effects of ice accretion by increasing the aerodynamic blockage and pressure losses through the low pressure compressor until achieving a match with the NPSS cycle analysis results, at each scan. With the additional blockages and losses in the LPC, the compressor flow analysis code results were able to numerically reproduce the performance that was determined by the NPSS cycle analysis, which was in agreement with the PSL engine test data. The compressor flow analysis indicated that the blockage due to ice accretion in the LPC exit guide vane stators caused the exit guide vane (EGV) to be nearly choked, significantly reducing the air flow rate into the core. This caused the LPC to eventually be in stall due to increasing levels of diffusion in the rotors and high incidence angles in the inlet guide vane (IGV) and EGV stators. The flow analysis indicating

  20. Improving a variation of the DSC technique for measuring the boiling points of pure compounds at low pressures

    International Nuclear Information System (INIS)

    Troni, Kelly L.; Damaceno, Daniela S.; Ceriani, Roberta

    2016-01-01

    Highlights: • Improvement of a variation of the DSC technique for boiling points at low pressures. • Use of a ballpoint pen ball over the pinhole of the DSC crucible. • Effects of configuration variables of the DSC technique accounted by factorial design. • An optimized region was obtained and tested for selected compounds. - Abstract: This study aims to improve a variation of the differential scanning calorimetry (DSC) technique for measuring boiling points of pure compounds at low pressures. Using a well-known n-paraffin (n-hexadecane), experimental boiling points at a pressure of 3.47 kPa with u(P) = 0.07 kPa were obtained by using a variation of the DSC technique, which consists of placing samples inside hermetically sealed aluminum crucibles, with a pinhole (diameter of 0.8 mm) made on the lid and a tungsten carbide ball with a diameter of 1.0 mm over it. Experiments were configured at nine different combinations of heating rates (K·min"−"1) and sample sizes (mg) following a full factorial design (2"2 trials plus a star configuration and three central points). Individual and combined effects of these two independent variables on the difference between experimental and estimated boiling points (NIST Thermo Data Engine v. 5.0 – Aspen Plus v. 8.4) were investigated. The results obtained in this work reveal that although both factors affect individually the accuracy of this variation of the DSC technique, the effect of heating rate is the most important. An optimized region of combinations of heating rate and sample size for determining boiling points of pure compounds at low pressures was obtained using the response-surface methodology (RSM). Within this optimized region, a selected condition, combining a heating rate of 24.52 K·min"−"1 and a sample size of (4.6 ± 0.5) mg, was tested for six different compounds (92.094–302.37 g mol"−"1) comprising four fatty compounds (tributyrin, monocaprylin, octanoic acid and 1-octadecanol), glycerol and n

  1. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta

    Science.gov (United States)

    Lindert, Uschi; Cabral, Wayne A.; Ausavarat, Surasawadee; Tongkobpetch, Siraprapa; Ludin, Katja; Barnes, Aileen M.; Yeetong, Patra; Weis, Maryann; Krabichler, Birgit; Srichomthong, Chalurmpon; Makareeva, Elena N.; Janecke, Andreas R.; Leikin, Sergey; Röthlisberger, Benno; Rohrbach, Marianne; Kennerknecht, Ingo; Eyre, David R.; Suphapeetiporn, Kanya; Giunta, Cecilia; Marini, Joan C.; Shotelersuk, Vorasuk

    2016-01-01

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. PMID:27380894

  2. VEGFR2 Trafficking, Signaling and Proteolysis is Regulated by the Ubiquitin Isopeptidase USP8.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2016-01-01

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular function. VEGF-A binding to vascular endothelial growth factor receptor 2 (VEGFR2) stimulates endothelial signal transduction and regulates multiple cellular responses. Activated VEGFR2 undergoes ubiquitination but the enzymes that regulate this post-translational modification are unclear. In this study, the de-ubiquitinating enzyme, USP8, is shown to regulate VEGFR2 trafficking, de-ubiquitination, proteolysis and signal transduction. USP8-depleted endothelial cells displayed altered VEGFR2 ubiquitination and production of a unique VEGFR2 extracellular domain proteolytic fragment caused by VEGFR2 accumulation in the endosome-lysosome system. In addition, perturbed VEGFR2 trafficking impaired VEGF-A-stimulated signal transduction in USP8-depleted cells. Thus, regulation of VEGFR2 ubiquitination and de-ubiquitination has important consequences for the endothelial cell response and vascular physiology. © 2015 The Authors. Traffic published by John Wiley & Sons Ltd.

  3. Cross-system excision of chaperone-mediated proteolysis in chaperone-assisted recombinant protein production

    Science.gov (United States)

    Martínez-Alonso, Mónica; Villaverde, Antonio

    2010-01-01

    Main Escherichia coli cytosolic chaperones such as DnaK are key components of the control quality network designed to minimize the prevalence of polypeptides with aberrant conformations. This is achieved by both favoring refolding activities but also stimulating proteolytic degradation of folding reluctant species. This last activity is responsible for the decrease of the proteolytic stability of recombinant proteins when co-produced along with DnaK, where an increase in solubility might be associated to a decrease in protein yield. However, when DnaK and its co-chaperone DnaJ are co-produced in cultured insect cells or whole insect larvae (and expectedly, in other heterologous hosts), only positive, folding-related effects of these chaperones are observed, in absence of proteolysis-mediated reduction of recombinant protein yield. PMID:21326941

  4. Implications of the Maillard reaction on bovine alpha-lactalbumin and its proteolysis during in vitro infant digestion.

    Science.gov (United States)

    Joubran, Yousef; Moscovici, Alice; Portmann, Reto; Lesmes, Uri

    2017-06-21

    This study investigated the functionality and digestibility of Maillard reaction products (MRPs) of alpha-lactalbumin (α-la), a major whey protein and component of infant formulas. The impact of different carbohydrates (glucose, galactose or galacto-oligosaccharides (GOS)) and heating duration was studied. SDS-PAGE, UV and color measurements monitored reaction extent, which varied between carbohydrates whereby galactose reacted more readily than glucose. Surface hydrophobicity and antioxidant capacity were found to be significantly (p Maillard conjugation, with GOS-based MRPs elevating antioxidant capacity ∼50-fold compared to α-la. In addition, the digestive proteolysis of MRPs was evaluated using an infant in vitro gastro-duodenal model. SDS-PAGE analyses of digesta revealed Maillard conjugation generally increased α-la's susceptibility to proteolysis. Interestingly, GOS-based MRPs presented an optimization challenge, since heating for 12 h delayed proteolysis, while extended heating resulted in the highest susceptibility to proteolysis. Proteomic analyses further demonstrated the differences in enzymatic cleavage patterns and helped identify bioactive peptides rendered bioaccessible during the digestion of α-la or its MRPs. Bioinformatic mining of the proteomic data using PeptideRanker also gave rise to two potentially novel bioactive peptides, FQINNKIW and GINYWLAHKALCS. Finally, antioxidant capacity of luminal contents, measured by DPPH, revealed Maillard conjugation increased the antioxidant capacity of both gastric and duodenal digesta. Overall, this work draws a link between the Maillard reaction, digestive proteolysis and the bioaccessibility of bioactive peptides and antioxidant species in the infant alimentary canal. This could help rationally process infant formulas towards improved nutritional and extra-nutritional benefits.

  5. Approximations to the electron energy distribution and positive column models for low-pressure discharge light sources

    International Nuclear Information System (INIS)

    Lister, G G; Sheverev, V A; Uhrlandt, D

    2002-01-01

    The applicability of 'fluid' models based on analytic approximations of the electron energy distribution function (EEDF) and of kinetic models for low-pressure discharge light sources is discussed. Traditionally, 'fluid' models of fluorescent lamps assume that the EEDF is Maxwellian up to the energy of the first excited state. It is shown that such an approach is sufficiently accurate in most cases of conventional as well as of 'highly loaded' fluorescent lamps. However, this assumption is strongly violated for many rare gas glow discharges for mercury free light sources. As an example, a neon dc discharge is studied. The densities of the four lowest excited states and the electric field have been measured. The experimental results can be fairly well reproduced by a kinetic positive column model. This article was scheduled to appear in issue 14 of J. Phys. D: Appl. Phys. To access this special issue please follow this link: http://stacks.iop.org/0022-3727/35/i=14/

  6. Modelling for post-dryout heat transfer and droplet sizes at low pressure and low flow conditions

    International Nuclear Information System (INIS)

    Jeong, H.Y.; No, H.C.

    1996-01-01

    A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. The history-dependent post-dryout model of Varone and Rohsenow replaced by the Webb-Chen model for wall-vapor heat transfer is used as a reference model in the analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is valid only in the churn-turbulent flow regime (j* g = 0.5 ∼ 4.5). It is also suggested that the droplet size generated from the churn-turbulent surface is dependent not only on the pressure but also on the vapor velocity. It turns out that the present model can predict the measured cladding and vapor temperatures within 20% and 15%, respectively

  7. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M•+, MH+, [M - H2O]+, and solvent adducts were observed in positive LPPI, [M - H]- and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure.

  8. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharge: Part II. Model

    International Nuclear Information System (INIS)

    Gielen, John W A M; Groot, Simon de; Dijk, Jan van; Mullen, Joost J A M van der

    2004-01-01

    In a previous paper we had presented experimental results on mercury segregation due to cataphoresis in direct current operated low-pressure argon-mercury gas discharges. In this paper, we present our model to describe cataphoretic segregation in argon (or another noble gas)-mercury discharges. The model is based on the balance equations for mass and momentum and includes electrophoresis effects of electrons on mercury. Good agreement is found between the experimental results and model calculations. The model confirms our experimental observation that the mercury vapour pressure gradient depends on the local mercury vapour pressure. Furthermore, the model predicts the reversal of the direction of the transport of mercury under certain conditions (the phenomenon known as retrograde cataphoresis)

  9. A Concept for a Low Pressure Noble Gas Fill Intervention in the IFE Fusion Test Facility (FTF) Target Chamber

    International Nuclear Information System (INIS)

    Gentile, C.A.; Blanchard, W.R.; Kozub, T.A.; Aristova, M.; McGahan, C.; Natta, S.; Pagdon, K.; Zelenty, J.

    2010-01-01

    An engineering evaluation has been initiated to investigate conceptual engineering methods for implementing a viable gas shield strategy in the Fusion Test Facility (FTF) target chamber. The employment of a low pressure noble gas in the target chamber to thermalize energetic helium ions prior to interaction with the wall could dramatically increase the useful life of the first wall in the FTF reactor1. For the purpose of providing flexibility, two target chamber configurations are addressed: a five meter radius sphere and a ten meter radius sphere. Experimental studies at Nike have indicated that a low pressure, ambient gas resident in the target chamber during laser pulsing does not appear to impair the ability of laser light from illuminating targets2. In addition, current investigations into delivering, maintaining, and processing low pressure gas appear to be viable with slight modification to current pumping and plasma exhaust processing technologies3,4. Employment of a gas fill solution for protecting the dry wall target chamber in the FTF may reduce, or possibly eliminate the need for other attenuating technologies designed for keeping He ions from implanting in first wall structures and components. The gas fill concept appears to provide an effective means of extending the life of the first wall while employing mostly commercial off the shelf (COTS) technologies. Although a gas fill configuration may provide a methodology for attenuating damage inflicted on chamber surfaces, issues associated with target injection need to be further analyzed to ensure that the gas fill concept is viable in the integrated FTF design5. In the proposed system, the ambient noble gas is heated via the energetic helium ions produced by target detonation. The gas is subsequently cooled by the chamber wall to approximately 800oC, removed from the chamber, and processed by the chamber gas processing system (CGPS). In an optimized scenario of the above stated concept, the chamber

  10. Modification of the surface properties of glass-ceramic materials at low-pressure RF plasma stream

    Science.gov (United States)

    Tovstopyat, Alexander; Gafarov, Ildar; Galeev, Vadim; Azarova, Valentina; Golyaeva, Anastasia

    2018-05-01

    The surface roughness has a huge effect on the mechanical, optical, and electronic properties of materials. In modern optical systems, the specifications for the surface accuracy and smoothness of substrates are becoming even more stringent. Commercially available pre-polished glass-ceramic substrates were treated with the radio frequency (RF) inductively coupled (13.56 MHz) low-pressure plasma to clean the surface of the samples and decrease the roughness. Optical emission spectroscopy was used to investigate the plasma stream parameters and phase-shifted interferometry to investigate the surface of the specimen. In this work, the dependence of RF inductively coupled plasma on macroscopic parameters was investigated with the focus on improving the surfaces. The ion energy, sputtering rate, and homogeneity were investigated. The improvements of the glass-ceramic surfaces from 2.6 to 2.2 Å root mean square by removing the "waste" after the previous operations had been achieved.

  11. Numerical determination of the amplification of a cylindrical proportional counter operating at low pressure. Application to nano-dosimetry

    International Nuclear Information System (INIS)

    Moutarde, Cyrille

    1994-01-01

    This work is devoted to a study of proportional counters used to measure the energy deposition in micrometer biological sites. Tissue equivalent gas filling improve typical operating mode of those counters. Specially, the extension of the multiplication zone becomes important at low pressures. A Monte Carlo simulation has been used to study the behaviour of an electron swarm in the sensitive volume. The calculations show that electrons are not in equilibrium with the applied electric field in this geometry. The influence of the gradient field and the rotation of the electrons around the anode wire has been studied carefully. The importance of non-equilibrium effects on the theoretical amplification calculated through the ionisation coefficient has been confirmed by experimental investigations. The statistical fluctuations of multiplication process has been calculated by the determination of avalanche spectra at the anode. Resolution of an ultra-miniature counter have been calculated to improve technological limitations of experimental nanodosimetry. (author) [fr

  12. Effects of Solvent and Ion Source Pressure on the Analysis of Anabolic Steroids by Low Pressure Photoionization Mass Spectrometry.

    Science.gov (United States)

    Liu, Chengyuan; Zhu, Yanan; Yang, Jiuzhong; Zhao, Wan; Lu, Deen; Pan, Yang

    2017-04-01

    Solvent and ion source pressure were two important factors relating to the photon induced ion-molecule reactions in low pressure photoionization (LPPI). In this work, four anabolic steroids were analyzed by LPPI mass spectrometry. Both the ion species present and their relative abundances could be controlled by switching the solvent and adjusting the ion source pressure. Whereas M •+ , MH + , [M - H 2 O] + , and solvent adducts were observed in positive LPPI, [M - H] - and various oxidation products were abundant in negative LPPI. Changing the solvent greatly affected formation of the ion species in both positive and negative ion modes. The ion intensities of the solvent adduct and oxygen adduct were selectively enhanced when the ion source pressure was elevated from 68 to 800 Pa. The limit of detection could be decreased by increasing the ion source pressure. Graphical Abstract ᅟ.

  13. Design of passive decay heat removal system using thermosyphon for low temperature and low pressure pool type LWR

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; You, Byung Hyun; Jung, Yong Hun; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-10-15

    In seawater desalination process which doesn't need high temperature steam, the reactor has profitability. KAIST has be developing the new reactor design, AHR400, for only desalination. For maximizing safety, the reactor requires passive decay heat removal system. In many nuclear reactors, DHR system is loop form. The DHR system can be designed simple by applying conventional thermosyphon, which is fully passive device, shows high heat transfer performance and simple structure. DHR system utilizes conventional thermosyphon and its heat transfer characteristics are analyzed for AHR400. For maximizing safety of the reactor, passive decay heat removal system are prepared. Thermosyphon is useful device for DHR system of low pressure and low temperature pool type reactor. Thermosyphon is operated fully passive and has simple structure. Bundle of thermosyphon get the goal to prohibit boiling in reactor and high pressure in reactor vessel.

  14. Effect of Reynolds number, turbulence level and periodic wake flow on heat transfer on low pressure turbine blades.

    Science.gov (United States)

    Suslov, D; Schulz, A; Wittig, S

    2001-05-01

    The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.

  15. Performance of molten carbonate fuel cells with the electrolyte molded at low pressure (3) The stability of anode microlayers

    Energy Technology Data Exchange (ETDEWEB)

    Sonai, Atsuo; Suzuki, Nobukazu; Murata, Kenji; Shirogami, Tamotsu

    1987-01-01

    It is known that an addition of organic binder to the electrolyte layer which composes a fuel cell enables to produce a large plate of electrolyte even in low temperature and low pressure conditions. However, when the binder is volatilized, bores remain making poor performance as a sepa-rator plate of the reacting gas. In order to prevent the gas permeation, it is necessary to combine a double layered electrode with microporous layers on the electrode surface ajacent to the electrolyte layer. In this study, stability of microporous layers of the anode electrode was examined, and it was found that the microporous layers made by sintering Ni-powders was unstable and dissoluted, but the impregnation of such second element as Chromium oxide, Yttrium oxide, Aluminum oxide into the layer improved the stability. (10 figs, 1 tab, 6 refs)

  16. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. Aceves-Mijares

    2012-01-01

    Full Text Available Silicon Rich Oxide (SRO has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD. In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept that SRO emission properties are due to oxidation state nanoagglomerates rather than to nanocrystals. The emission mechanism is similar to Donor-Acceptor decay in semiconductors, and a wide emission spectrum, from 450 to 850 nm, has been observed. The results show that emission is a function of both silicon excess in the film and excitation energy. As a result different color emissions can be obtained by selecting the suitable excitation energy.

  17. Detection of X-ray fluorescence of light elements by electron counting in a low-pressure gaseous electron multiplier

    International Nuclear Information System (INIS)

    Pansky, A.; Breskin, A.; Chechik, R.; Malamud, G.

    1992-12-01

    Ionization electrons deposited by soft X-rays in a low pressure (10 Torr) gas medium are efficiently counted by a multistage electron multiplier, providing an accurate measurement of the X-ray photon energy. Energy resolution of 56-28% FWHM were measured for X-rays of 110-676 eV, recording electrical induced charges or visible photons emitted during the avalanche process. It is demonstrated that a combined analysis of the number of electron trail length of an event, provides a powerful and competitive way of resolving ultra soft X-rays. We present the experimental technique, discuss the advantages and limitations of the Primary Electron Counter, and suggest ways to improve its performances. (authors)

  18. Evaluation of corrosion behaviour of tantalum coating obtained by low pressure chemical vapor deposition using electrochemical polarization

    Science.gov (United States)

    Levesque, A.; Bouteville, A.; de Baynast, H.; Laveissière, B.

    2002-06-01

    antalum coatings are elaborated on titanium substrates through Low Pressure Chemical Vapor Deposition from tantalum pentachloride-hydrogen gaseous phase at a deposition temperature of 800 °C and a total pressure of 3.3 mbar. The aim of this paper is to evaluate the effectiveness of this tantalum coating in corrosive solution. Optical Microscopy and Scanning Electron Microscopy observations reveal that deposits are of 1.7 μm in thickness and conformal. The corrosion resistance of tantalum coated titanium substrates is quantified through standard potentiodynamic polarization method. Even for tantalum coatings exhibiting some defects as pores, the corrosion current density is as low as 0.25 mA/cm^2.in very agressive solutions like kroll reagent (HN03/HF).

  19. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    International Nuclear Information System (INIS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-01-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation. (orig.)

  20. Sudden Disappearance of the First-Order Transition in β-Pyrochlore KOs2O6 under Low Pressure

    Science.gov (United States)

    Umeo, Kazunori; Kubo, Hirokazu; Yamaura, Jun-ichi; Hiroi, Zenji; Takabatake, Toshiro

    2009-12-01

    We report the first observation of the pressure effect on the first-order transition at Tp = 7.5 K in the β-pyrochlore oxide superconductor KOs2O6 by specific-heat measurement. The peak in the specific heat at Tp disappeared at a low pressure of 0.02 GPa. With increasing pressure up to 0.02 GPa, the coefficient of the T5 dependence of the specific heat increases by 30%. This finding implies that low-energy excitations of phonons are enhanced by the suppression of the first-order transition. However, the specific-heat jump at Tc is unchanged with pressure up to 1 GPa, indicating that the strong coupling superconductivity is rather robust under pressure.

  1. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    De Nardo, L., E-mail: laura.denardo@unipd.it [University of Padova, Physics and Astronomy Department and PD-INFN, via Marzolo 8, I-35131 Padova (Italy); Farahmand, M., E-mail: majid.farahmand@rivm.nl [Centre for Environmental Safety and Security, National Institute for Public Health and the Environment (RIVM), PO Box 1, NL-3720 BA Bilthoven (Netherlands)

    2016-05-21

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 µm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a {sup 244}Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×10{sup 3} has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  2. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications

    International Nuclear Information System (INIS)

    Pandiyaraj, K. Navaneetha; Ferraria, Ana Maria; Rego, Ana Maria Botelho do; Deshmukh, Rajendra R.; Su, Pi-Guey; Halleluyah, Jr. Mercy; Halim, Ahmad Sukari

    2015-01-01

    Highlights: • Acrylic acid (AAc) was grafted on LDPE film by in situ plasma polymerization. • Molecules of PEG and chitosan were immobilized on AAc grafted LDPE films. • Surface modified LDPE exhibits excellent hydrophilic property. • Surface modified LDPE resist the adsorption of protein and adhesion of platelets. - Abstract: With the aim of improving blood compatibility of low density polyethylene (LDPE) films, an effective low-pressure plasma technology was employed to functionalize the LDPE film surfaces through in-situ grafting of acrylic acid (AAc). Subsequently, the molecules of poly(ethylene glycol) (PEG) and chitosan (CHI) were immobilized on the surface of grafted LDPE films. The unmodified and modified LDPE films were analyzed using various characterization techniques such as contact angle, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) to understand the changes in surface properties such as hydrophilicity, surface topography and chemical composition, respectively. Furthermore, LDPE films have been subjected to an ageing process to determine the durability of the plasma assisted surface modification. The blood compatibility of the surface modified LDPE films was confirmed by in vitro tests. It was found that surface modified LDPE films show better hydrophilic behavior compared with the unmodified one. FTIR and XPS results confirm the successful immobilization of CHI on the surface of LDPE films. LDPE films showed marked morphological changes after grafting of AAc, PEG and CHI which were confirmed through AFM imaging. The in vitro blood compatibility tests have clearly demonstrated that CHI immobilized LDPE films exhibit remarkable anti thrombogenic nature compared with other modified films. Surface modified LDPE films through low-pressure plasma technique could be adequate for biomedical implants such as artificial skin substrates, urethral catheters or cardiac stents

  3. Numerical Investigation of the Interaction between Mainstream and Tip Shroud Leakage Flow in a 2-Stage Low Pressure Turbine

    Science.gov (United States)

    Jia, Wei; Liu, Huoxing

    2014-06-01

    The pressing demand for future advanced gas turbine requires to identify the losses in a turbine and to understand the physical mechanisms producing them. In low pressure turbines with shrouded blades, a large portion of these losses is generated by tip shroud leakage flow and associated interaction. For this reason, shroud leakage losses are generally grouped into the losses of leakage flow itself and the losses caused by the interaction between leakage flow and mainstream. In order to evaluate the influence of shroud leakage flow and related losses on turbine performance, computational investigations for a 2-stage low pressure turbine is presented and discussed in this paper. Three dimensional steady multistage calculations using mixing plane approach were performed including detailed tip shroud geometry. Results showed that turbines with shrouded blades have an obvious advantage over unshrouded ones in terms of aerodynamic performance. A loss mechanism breakdown analysis demonstrated that the leakage loss is the main contributor in the first stage while mixing loss dominates in the second stage. Due to the blade-to-blade pressure gradient, both inlet and exit cavity present non-uniform leakage injection and extraction. The flow in the exit cavity is filled with cavity vortex, leakage jet attached to the cavity wall and recirculation zone induced by main flow ingestion. Furthermore, radial gap and exit cavity size of tip shroud have a major effect on the yaw angle near the tip region in the main flow. Therefore, a full calculation of shroud leakage flow is necessary in turbine performance analysis and the shroud geometric features need to be considered during turbine design process.

  4. Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low-Pressure Vapor-Assisted Solution Process.

    Science.gov (United States)

    Li, Ming-Hsien; Yeh, Hung-Hsiang; Chiang, Yu-Hsien; Jeng, U-Ser; Su, Chun-Jen; Shiu, Hung-Wei; Hsu, Yao-Jane; Kosugi, Nobuhiro; Ohigashi, Takuji; Chen, Yu-An; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2018-06-08

    The fabrication of multidimensional organometallic halide perovskite via a low-pressure vapor-assisted solution process is demonstrated for the first time. Phenyl ethyl-ammonium iodide (PEAI)-doped lead iodide (PbI 2 ) is first spin-coated onto the substrate and subsequently reacts with methyl-ammonium iodide (MAI) vapor in a low-pressure heating oven. The doping ratio of PEAI in MAI-vapor-treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV-vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI 2 ratio, which suggests the coexistence of low-dimensional perovskite (PEA 2 MA n -1 Pb n I 3 n +1 ) with various values of n after vapor reaction. The dimensionality of the as-fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI 2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI-containing perovskite grain is presumably formed around the MAPbI 3 perovskite grain to benefit MAPbI 3 grain growth. The device employing perovskite with PEAI/PbI 2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open-circuit voltage of 1.08 V, a current density of 21.91 mA cm -2 , and a remarkable fill factor of 80.36%. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore, 641062 (India); Ferraria, Ana Maria; Rego, Ana Maria Botelho do [Centro de Química- Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon (Portugal); Deshmukh, Rajendra R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. Mercy; Halim, Ahmad Sukari [Reconstructive Science Unit, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-02-15

    Highlights: • Acrylic acid (AAc) was grafted on LDPE film by in situ plasma polymerization. • Molecules of PEG and chitosan were immobilized on AAc grafted LDPE films. • Surface modified LDPE exhibits excellent hydrophilic property. • Surface modified LDPE resist the adsorption of protein and adhesion of platelets. - Abstract: With the aim of improving blood compatibility of low density polyethylene (LDPE) films, an effective low-pressure plasma technology was employed to functionalize the LDPE film surfaces through in-situ grafting of acrylic acid (AAc). Subsequently, the molecules of poly(ethylene glycol) (PEG) and chitosan (CHI) were immobilized on the surface of grafted LDPE films. The unmodified and modified LDPE films were analyzed using various characterization techniques such as contact angle, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) to understand the changes in surface properties such as hydrophilicity, surface topography and chemical composition, respectively. Furthermore, LDPE films have been subjected to an ageing process to determine the durability of the plasma assisted surface modification. The blood compatibility of the surface modified LDPE films was confirmed by in vitro tests. It was found that surface modified LDPE films show better hydrophilic behavior compared with the unmodified one. FTIR and XPS results confirm the successful immobilization of CHI on the surface of LDPE films. LDPE films showed marked morphological changes after grafting of AAc, PEG and CHI which were confirmed through AFM imaging. The in vitro blood compatibility tests have clearly demonstrated that CHI immobilized LDPE films exhibit remarkable anti thrombogenic nature compared with other modified films. Surface modified LDPE films through low-pressure plasma technique could be adequate for biomedical implants such as artificial skin substrates, urethral catheters or cardiac stents

  6. Improved outcome with novel device for low-pressure PTCA in de novo and in-stent lesions

    International Nuclear Information System (INIS)

    Ischinger, Thomas A.; Solar, Ronald J.; Hitzke, Evelyn

    2003-01-01

    Purpose: Complex lesion morphology requiring the use of high pressure to effect lumen expansion and in-stent restenosis (ISR) remain two indications that challenge conventional PTCA balloons. We report on a new PTCA device that is designed to provide precise, low-pressure dilatation of both de novo and in-stent lesions. Methods: The FX miniRAIL catheter (FX) has an integral wire positioned external to a dilating balloon and a short, 12-mm guidewire lumen distal to the balloon. The balloon inflates against the guidewire and the external wire to prevent slippage and to introduce high focal longitudinal stresses at low inflation pressures. In this initial study, the FX was used in 37 lesions (25 de novo, 12 in-stent; vessel reference diameter=2.73±0.49 mm) in 30 patients. A stepwise inflation protocol and QCA were used to determine the balloon pressure at which the stenosis was resolved (stenosis resolution pressure, SRP). Results: All lesions (100%) were easily reached, crossed and dilated without complication. The SRP was 4.5±2.9 atm, and no balloon slippage was observed. Residual stenosis after FX was 26.39±13.29%. Minor dissections (Types A and B) were observed in eight lesions (21.6%). Target lesion revascularization (TLR) and target vessel revascularization (TVR) at follow-up (8.1±1.5 months) were 8.3% and 12.5%, respectively. Conclusion: The design of the FX is versatile and appears to provide for a safe, effective and improved low-pressure PTCA technique in de novo and in-stent lesions

  7. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weimin [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Zhou, Xiaoyan, E-mail: zhouxiaoyan@njfu.edu.cn [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Zhang, Xiaotao [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Bian, Jie [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Wan, Jinglin [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China)

    2017-06-15

    Highlights: • Plasma working under low pressure is easy to realize industrialization. • Enhancing process finished within 75 s. • Plasma treatment leads to the increase in equilibrium contact angle by 330%. • Tinfoil film with simple chemical structure was used to reveal the mechanism. - Abstract: The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Si−O−C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  8. Unusual Sediment Transportation Processes Under Low Pressure Environments and Implications For Gullies and Recurring Slope Lineae (RSL)

    Science.gov (United States)

    Raack, J.; Herny, C.; Conway, S. J.; Balme, M. R.; Carpy, S.; Patel, M.

    2017-12-01

    Recently and presently active mass wasting features such as gullies and recurring slope lineae (RSL) are common on the surface of Mars, but their origin and triggering mechanisms are under intense debate. While several active mass wasting features have been linked to sublimation of CO2ice, dry granular flows (avalanches), or a combination of both effects, others have been more closely linked to liquid water or briny outflows (e.g. for RSL). However, liquid water on the surface of Mars is unstable under present-day low pressures and surface temperatures. Nevertheless, numerical modeling and remote sensing data have shown that maximum surface temperatures can exceed the frost point of water and that liquid water could exist on the surface of actual Mars in a transient state. But to explain the observed spatial extent of RSL and recent modification of gullies, it is estimated that relatively large amounts of liquid water are necessary. It is proving challenging to generate such quantities from the atmosphere. In this contribution we explore the potential effects of boiling water (boiling occurs at martian pressures slightly above the frost point of 273 K) on sediment transport. We will present the outcomes of a series of experiments under low surface and water temperatures (between 278 and 297 K, analogous to surface temperatures observed near RSL) and low pressures (between 8 and 11 mbar). We simulate sediment transport by boiling liquid water over a sloping bed of unconsolidated sediment. Our results reveal a suite of unusual and very reactive sediment transportation processes, which are not produced under terrestrial pressures. We will discuss the impact of these unusual sediment transport processes on estimates of water budgets for active mass wasting processes.

  9. Proteolysis of bovine beta-lactoglobulin during thermal treatment in subdenaturing conditions highlights some structural features of the temperature-modified protein and yields fragments with low immunoreactivity

    DEFF Research Database (Denmark)

    Iametti, S.; Rasmussen, P.; Frøkiær, Hanne

    2002-01-01

    Bovine beta-lactoglobulin was hydrolyzed with trypsin or chymotrypsin in the course of heat treatment at 55, 60 and 65 C at neutral pH. At these temperatures beta-lactoglobulin undergoes significant but reversible structural changes. In the conditions used in the present study, beta......-lactoglobulin was virtually insensitive to proteolysis by either enzyme at room temperature, but underwent extensive proteolysis when either protease was present during the heat treatment. High-temperature proteolysis occurs in a progressive manner. Mass spectrometry analysis of some large-sized breakdown intermediates...

  10. Low-pressure balloon angioplasty with adjuvant pharmacological therapy in patients with acute ischemic stroke caused by intracranial arterial occlusions

    International Nuclear Information System (INIS)

    Nogueira, Raul G.; Schwamm, Lee H.; Buonanno, Ferdinando S.; Koroshetz, Walter J.; Yoo, Albert J.; Rabinov, James D.; Pryor, Johnny C.; Hirsch, Joshua A.

    2008-01-01

    The use of coronary balloons in the cerebral vasculature is limited due to their poor trackability and increased risk of vessel injury. We report our experience using more compliant elastomer balloons for thrombus resistant to intraarterial (IA) pharmacological and mechanical thrombolysis in acute stroke. We retrospectively analyzed 12 consecutive patients with an occluded intracranial artery treated with angioplasty using a low-pressure elastomer balloon. Angiograms were graded according to the Thrombolysis in Cerebral Infarction (TICI) and Qureshi grading systems. Outcomes were categorized as independent (modified Rankin scale, mRS, score ≤2), dependent (mRS score 3-5), or dead (mRS score 6). Included in the study were 12 patients (mean age 66±17 years, range 31-88 years; mean baseline National Institutes of Health stroke scale score 17±3, range 12-23). The occlusion sites were: internal carotid artery (ICA) terminus (five patients, including two concomitant cervical ICA occlusions), M1 segment (two patients), and basilar artery (two patients). Pharmacological treatment included intravenous (IV) t-PA only (two patients), IA urokinase only (nine patients), both IV t-PA and IA urokinase (one patient), and IV and/or IA eptifibatide (eight patients). Mean time to treatment was 5.9±3.9 h (anterior circulation) and 11.0±7.2 h (posterior circulation). Overall recanalization rate (TICI grade 2/3) was 91.6%. Procedure-related morbidity occurred in one patient (distal posterior inferior cerebellar artery embolus). There were no symptomatic hemorrhages. Outcomes at 90 days were independent (five patients), dependent (three patients) and dead (four patients, all due to progression of stroke with withdrawal of care). Angioplasty of acutely occluded intracranial arteries with low-pressure elastomer balloons results in high recanalization rates with an acceptable degree of safety. Prior use of thrombolytics may increase the chances of recanalization, and glycoprotein IIb

  11. Forward Osmosis/Low Pressure Reverse Osmosis for Water Reuse: Removal of Organic Micropollutants, Fouling and Cleaning

    KAUST Repository

    Linares, Rodrigo

    2011-07-01

    Forward osmosis (FO) is a natural process in which a solution with high concentration of solutes is diluted when being in contact, through a semipermeable membrane, with a low concentration solution. This osmotic process has been demonstrated to be efficient to recover wastewater effluents while diluting a saline draw solution. Nevertheless, the study of the removal of micropollutants by FO is barely described in the literature. This research focuses on the removal of these substances spiked in a secondary wastewater effluent, while diluting water from the Red Sea, generating feed water that can be desalinated with a low pressure reverse osmosis (LPRO) system. Another goal of this work is to characterize the fouling of the FO membrane, and its effect on micropollutants rejection, as well as the membrane cleaning efficiency of different methods. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% to 95.2%, 48.7% to 91.5% and 96.9% to 98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity and reduced mass transport capacity, membrane swelling, and the higher negative charge of the surface, related to the foulants. However, when coupled with low pressure reverse osmosis, the rejections for both, the clean and fouled membrane, increased above 98%. The fouling layer, after characterizing the wastewater effluent and the concentrated wastewater after the FO process, proved to be composed of biopolymers, which can be removed with air scouring during short periods

  12. Formation of electrostatic double-layers and electron-holes in a low pressure mercury plasma column

    International Nuclear Information System (INIS)

    Petraconi, G; Maciel, Homero S

    2003-01-01

    Experimental studies of the formation of electrostatic double layers (DLs) and electron-holes (e-holes) are reported. The measurements were performed in the positive column of a mercury arc discharge operating in the low-pressure range of (2.0-14.0) x 10 -2 Pa with current density in the range of (3.0-8.0) x 10 3 A m -2 . Stable and unstable modes of the discharge were identified as the current was gradually increased, keeping constant the vapour pressure. The discharge remains stable until a critical current from which a slight increase of the current leads to an unstable regime characterized by high discharge impedance and strong oscillations. This mode ceased after a DL was formed in the plasma column. To induce the DL formation and to transport it smoothly along the discharge column, a low intensity B-field (7-10) x 10 -3 T produced by a movable single coil was used. The B-field locally increases the electron current density and makes the DL form at the centre of the magnetic constriction where it remained at rest. Electrostatic potential structures compatible with ordinary DLs and multiple-layers could be formed in the plasma column by dealing with the combined effects of the operational parameters of the discharge. It is noticeable that a pure e-hole, which is a symmetric triple-layer having a bell shape potential profile, could easily be formed by means of this experimental technique. A partial kinetic description, based on the space charge structure derived from an experimental e-hole, is presented in order to infer the charged particle populations that could contribute to the space charge of the e-hole. Evidence is shown that strong e-hole formation might be driven by an ion beam, therefore it could not be formed in isolation since its formation requires a nearby ion accelerating potential structure. Probe measurements of the plasma properties, at various radial positions of the stable positive column, are also presented. In the stable mode, prior to

  13. Spatiotemporally regulated proteolysis to dissect the role of vegetative proteins during Bacillus subtilis sporulation: cell-specific requirement of σH and σA.

    Science.gov (United States)

    Riley, Eammon P; Trinquier, Aude; Reilly, Madeline L; Durchon, Marine; Perera, Varahenage R; Pogliano, Kit; Lopez-Garrido, Javier

    2018-04-01

    Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation-specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell- and developmental stage-specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σ H and σ A , during sporulation. The results suggest that σ H is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σ A plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth. © 2018 John Wiley & Sons Ltd.

  14. Discovery of Anti-Hypertensive Oligopeptides from Adlay Based on In Silico Proteolysis and Virtual Screening

    Directory of Open Access Journals (Sweden)

    Liansheng Qiao

    2016-12-01

    Full Text Available Adlay (Coix larchryma-jobi L. was the commonly used Traditional Chinese Medicine (TCM with high content of seed storage protein. The hydrolyzed bioactive oligopeptides of adlay have been proven to be anti-hypertensive effective components. However, the structures and anti-hypertensive mechanism of bioactive oligopeptides from adlay were not clear. To discover the definite anti-hypertensive oligopeptides from adlay, in silico proteolysis and virtual screening were implemented to obtain potential oligopeptides, which were further identified by biochemistry assay and molecular dynamics simulation. In this paper, ten sequences of adlay prolamins were collected and in silico hydrolyzed to construct the oligopeptide library with 134 oligopeptides. This library was reverse screened by anti-hypertensive pharmacophore database, which was constructed by our research team and contained ten anti-hypertensive targets. Angiotensin-I converting enzyme (ACE was identified as the main potential target for the anti-hypertensive activity of adlay oligopeptides. Three crystal structures of ACE were utilized for docking studies and 19 oligopeptides were finally identified with potential ACE inhibitory activity. According to mapping features and evaluation indexes of pharmacophore and docking, three oligopeptides were selected for biochemistry assay. An oligopeptide sequence, NPATY (IC50 = 61.88 ± 2.77 µM, was identified as the ACE inhibitor by reverse-phase high performance liquid chromatography (RP-HPLC assay. Molecular dynamics simulation of NPATY was further utilized to analyze interactive bonds and key residues. ALA354 was identified as a key residue of ACE inhibitors. Hydrophobic effect of VAL518 and electrostatic effects of HIS383, HIS387, HIS513 and Zn2+ were also regarded as playing a key role in inhibiting ACE activities. This study provides a research strategy to explore the pharmacological mechanism of Traditional Chinese Medicine (TCM proteins based on

  15. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    International Nuclear Information System (INIS)

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-01-01

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies

  16. Self-Consistent System of Equations for a Kinetic Description of the Low-Pressure Discharges Accounting for the Nonlocal and Collisionless Electron Dynamics

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg

    2003-01-01

    In low-pressure discharges, when the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially non-local. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the non-local conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, non-uniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the non-uniform plasma density profile on both the current density profile and the EEDF is demonstrated

  17. Effect of pulp preconditioning on acidification, proteolysis, sugars and free fatty acids concentration during fermentation of cocoa (Theobroma cacao) beans.

    Science.gov (United States)

    Afoakwa, Emmanuel Ohene; Quao, Jennifer; Budu, Agnes Simpson; Takrama, Jemmy; Saalia, Firibu Kwesi

    2011-11-01

    Changes in acidification, proteolysis, sugars and free fatty acids (FFAs) concentrations of Ghanaian cocoa beans as affected by pulp preconditioning (pod storage or PS) and fermentation were investigated. Non-volatile acidity, pH, proteolysis, sugars (total, reducing and non-reducing) and FFAs concentrations were analysed using standard methods. Increasing PS consistently decreased the non-volatile acidity with concomitant increase in pH during fermentation of the beans. Fermentation decreased the pH of the unstored beans from 6.7 to 4.9 within the first 4 days and then increased slightly again to 5.3 by the sixth day. Protein, total sugars and non-reducing sugars decreased significantly (p cocoa beans was largely affected by fermentation than by PS.

  18. Cell cycle- and cell growth-regulated proteolysis of mammalian CDC6 is dependent on APC-CDH1

    DEFF Research Database (Denmark)

    Petersen, B O; Wagener, C; Marinoni, F

    2000-01-01

    is targeted for ubiquitin-mediated proteolysis by the anaphase promoting complex (APC)/cyclosome in G(1). A combination of point mutations in the destruction box and KEN-box motifs in CDC6 stabilizes the protein in G(1) and in quiescent cells. Furthermore, APC, in association with CDH1, ubiquitinates CDC6...... in vitro, and both APC and CDH1 are required and limiting for CDC6 proteolysis in vivo. Although a stable mutant of CDC6 is biologically active, overexpression of this mutant or wild-type CDC6 is not sufficient to induce multiple rounds of DNA replication in the same cell cycle. The APC-CDH1-dependent...

  19. Characterization of dip-coated ITO films derived from nanoparticles synthesized by low-pressure spray pyrolysis

    International Nuclear Information System (INIS)

    Ogi, Takashi; Iskandar, Ferry; Itoh, Yoshifumi; Okuyama, Kikuo

    2006-01-01

    In 2 O 3 :Sn (Indium Tin Oxide; ITO) films were prepared from a sol solution with highly crystalline ITO nanoparticles (less than 20 nm in size with 10 at.% Sn) which had been prepared by low-pressure spray pyrolysis (LPSP) in a single step. The ITO sol solution was prepared by dispersing LPSP-prepared ITO nanoparticles into ultra pure water. The nanoparticle ITO film was deposited on a glass substrate using a dip-coating method and then annealed in air at various temperatures. The optical transmittances of the ITO films were measured by UV-Vis spectrometry, and the films were found to have a high transparency to visible light (in the case of a film thickness of 250 nm annealed at 400 deg. C, the transparency was in excess of 95% over the range λ=450-800 nm, with a maximum value near 100% at wavelengths above λ=700 nm). The optical transmittances of the films were influenced by the size of the ITO particle used, the film thickness and the annealing temperature. The ITO films showed a minimum resistivity of 9.5x10 -2 Ω cm, and their resistivity was affected by both the ITO particle size and the annealing temperature used

  20. Cr2O3 thin films grown at room temperature by low pressure laser chemical vapour deposition

    International Nuclear Information System (INIS)

    Sousa, P.M.; Silvestre, A.J.; Conde, O.

    2011-01-01

    Chromia (Cr 2 O 3 ) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have been used for large area synthesis of Cr 2 O 3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr 2 O 3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO) 6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm -2 and a partial pressure ratio of O 2 to Cr(CO) 6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s -1 and mean particle sizes of 1.85 μm were measured for these films.

  1. Simulation of the aspersion system of the core low pressure (LPCS) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    Membrillo G, O. E.; Chavez M, C.

    2012-10-01

    The present work presents the modeling and simulation of the aspersion system to low pressure of reactor of the nuclear power plant of Laguna Verde using the nuclear code RELAP/SCDAP. The objective of the emergency systems inside a nuclear reactor is the cooling of the core, nor caring the performance of any other emergency system in the case of an accident design base for coolant loss. To obtain a simulation of the system is necessary to have a model based on their main components, pipes, pumps, valves, etc. This article describes the model for the simulation of the main line and the test line for the HPCS. At the moment we have the simulation of the reactor vessel and their systems associated to the nuclear power plant of Laguna Verde, this work will allow to associate the emergency system model LPCS to the vessel model. The simulation of the vessel and the emergency systems will allow knowing the behavior of the reactor in the stage of the coolant loos, giving the possibility to analyze diverse scenarios. The general model will provide an auxiliary tool for the training in classroom and at distance in the operation of nuclear power plants. (Author)

  2. Hg+ ion density in low-pressure Ar-Hg discharge plasma used for liquid crystal display back-lighting

    International Nuclear Information System (INIS)

    Goto, Miki; Arai, Toshihiko

    1995-01-01

    The positive column of a low-pressure Ar-Hg discharge has been applied as a fluorescent light source for illumination. Many studies on the diagnostics and fundamental mechanisms have been carried out on both the classical fluorescent lamp (d=36 mm) and the compact fluorescent lamp (d=12 mm). On the other hand, a lamp of extremely narrow diameter (usually below 6 mm) has been recently developed for liquid crystal display (LCD) back-lighting and its importance is undoubtedly increasing. Some characteristics or mechanisms of the narrow-diameter lamp may be similar to those of the 36 mm one; however the similarity rule does not hold between them due to the contributions from a stepwise ionization process. Therefore, in order to clarify the excitation mechanism in the narrow-diameter lamp quantitatively, various parameters must be measured directly and some analysis must be done. The Hg + ion density and electron density are important parameters for the purpose of clarifying the excitation mechanism quantitatively. In this work, we have measured the Hg + ion density using the modified absorption method, and the electron density using the probe method in the Ar-Hg discharge of the 4 mm bore tube on bath temperature. Moreover, with combining the modified absorption method and the probe method, the Hg 2 + molecular ion density has been determined

  3. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hedwig, Rinda [Department of Computer Engineering, Faculty of Computer Studies, Bina Nusantara University, 9 K.H. Syahdan, Jakarta Barat 11480 (Indonesia); Budi, Wahyu Setia [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Tembalang Campus, Semarang, Central Java (Indonesia); Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh, Nanggroe Aceh Darussalam (Indonesia); Pardede, Marincan [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Suliyanti, Maria Margaretha [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Davy Putra [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Koo Hendrik [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia)]. E-mail: kurnia18@cbn.net.id; Kagawa, Kiichiro [Department of Physics, Faculty of Education and Regional Studies, 9-1 bunkyo 3-chome, Fukui 910-8507 (Japan); Tjia, May On [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia)

    2006-12-15

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  4. Investigation of high-current low pressure quasistationary volume discharge in cross-field ExH

    International Nuclear Information System (INIS)

    Bashutin, O.A.; Vovchenko, E.D.; Kirnev, G.S.

    1995-01-01

    Different types of high current discharge permitted to create large volume of high density homogeneous plasma are widely used in modern technique. Such discharges are applied as plasma emitters of charged particles and also in various technologies for sputtering, implantation and etching of materials. The results of a plasma electron density dynamics investigation of low pressure quasistationary volume discharge in cross-field E x H is described in this paper. The discharge was created in a quadrupole magnetic system with special form electrodes and has following characteristics current up to 1,8 kA, voltage on the interval 80-120 V, existence time up to 1,5 ms. The discharge conserves diffusive character of plasma and cathode layer on all current range. On a first research stage plasma parameters of discharge were determined by means of Langmuir probe, that could been used in central discharge region only, where magnetic field was equal to zero. An obtained plasma density was reached 1,5*10 15 cm -3 with electron temperature T e =10 eV. The research of discharge plasma in regions with magnetic field had required to use interferometric measurement technique

  5. Critical heat flux of water in vertical round tubes at low-pressure and low-flow conditions

    International Nuclear Information System (INIS)

    Park, Jae-Wook; Kim, Hong-Chae; Beak, Won-Pil; Chang, Soon Heung

    1997-01-01

    A series of critical heat flux (CHF) tests have been performed to provide a reliable set of CHF data for water flow in vertical round tubes at low pressure and low flow (LPLF) conditions. The range of experimental conditions is as follows: diameter 8, 10 mm; heated length 0.5, 1 m; pressure 2-9 bar, mass flux 50-200 kg/m 2 s; inlet subcooling 350, 450 kJ/kg. The observed parametric trends are generally consistent with the previous understanding except for the effects of system pressure and tube diameter. The pressure effect is small but very complicated; existing CHF correlations do not represent this parametric trend properly. CHF increases with the increase in diameter at fixed exit conditions, contrary to the general understanding. The artificial neural networks are applied to the round tube CHF data base at LPLF (P = 110-1100 kPa, G = 0-500 kg/m 2 s) conditions. The trained backpropagation networks (BPNs) predict CHF better than any other CHF correlations. Parametric trends of CHF based on the BPN for fixed inlet conditions generally agree well with our experimental results. (author)

  6. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    International Nuclear Information System (INIS)

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-01-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function

  7. Evaluation of Low Pressure Fogging System for Improving Crop Yield of Tomato (Lycopersicon esculentum Mill.: Grown under Heat Stress Conditions

    Directory of Open Access Journals (Sweden)

    Kobi Shilo

    2013-06-01

    Full Text Available In Mediterranean regions, many tomato plants are grown throughout the hot summer period (May–September in sheltered cultivation, mainly for plant protection reasons. Most of the shelters that are used are low cost net houses covered with 50 mesh insect proof net. In most cases these net houses have a flat roof and no ventilation or climate control measures. This insufficient ventilation during the hot summer leads to above optimal air temperatures and causes moderate heat stress inside the shelters, which leads to yield reduction. The aim of this study was to evaluate the ability of a simple and inexpensive low pressure fogging system installed in a naturally ventilated net house to lower temperatures and improve the yield during the summer. The study showed that in areas where relative air humidity (RH during the daytime is less than 60%, tomato plants improved their performance when grown through the summer in net houses under moderate heat stress. Under fogging conditions pollen grain viability and fruit set were significantly improved. This improvement influenced the yield picked during September (104–136 DAP. However, total seasonal yield was not affected by the fogging treatment.

  8. Indian Monsoon Low-Pressure Systems Feed Up-and-Over Moisture Transport to the Southwestern Tibetan Plateau

    Science.gov (United States)

    Dong, Wenhao; Lin, Yanluan; Wright, Jonathon S.; Xie, Yuanyu; Xu, Fanghua; Xu, Wenqing; Wang, Yan

    2017-11-01

    As an integral part of the South Asian summer monsoon system, monsoon low-pressure systems (LPSs) bring large amounts of precipitation to agrarian north and central India during their passage across the subcontinent. In this study, we investigate the role of LPSs in supplying moisture from north and central India to the southwestern Tibetan Plateau (SWTP) and quantify the contribution of these systems to summer rainfall over the SWTP. The results show that more than 60% of total summer rainfall over the SWTP is related to LPS occurrence. LPSs are associated with a 15% rise in average daily rainfall and a 10% rise in rainy days over the SWTP. This relationship is maintained primarily through up-and-over transport, in which convectively lifted moisture over the Indian subcontinent is swept over the SWTP by southwesterly winds in the middle troposphere. LPSs play two roles in supplying up-and-over moisture transport. First, these systems elevate large amounts of water vapor and condensed water to the midtroposphere. Second, the circulations associated with LPSs interact with the background westerlies to induce southwesterly flow in the midtroposphere, transporting elevated moisture and condensate over the Himalayan Mountains. Our findings indicate that LPSs are influential in extending the northern boundary of the South Asian monsoon system across the Himalayas into the interior of the SWTP. The strength of this connection depends on both LPS characteristics and the configuration of the midtropospheric circulation, particularly the prevailing westerlies upstream of the SWTP.

  9. Low-Pressure H2, NH3 Microwave Plasma Treatment of Polytetrafluoroethylene (PTFE) Powders: Chemical, Thermal and Wettability Analysis

    Science.gov (United States)

    Hunke, Harald; Soin, Navneet; Shah, Tahir H.; Kramer, Erich; Pascual, Alfons; Karuna, Mallampalli Sri Lakshmi; Siores, Elias

    2015-01-01

    Functionalization of Polytetrafluoroethylene (PTFE) powders of ~6 μm particle size is carried out using low-pressure 2.45 GHz H2, NH3 microwave plasmas for various durations (2.5, 10 h) to chemically modify their surface and alter their surface energy. The X-ray Photoelectron Spectroscopy (XPS) analyses reveal that plasma treatment leads to significant defluorination (F/C atomic ratio of 1.13 and 1.30 for 10 h NH3 and H2 plasma treatments, respectively vs. 1.86 for pristine PTFE), along with the incorporation of functional polar moieties on the surface, resulting in enhanced wettability. Analysis of temperature dependent XPS revealed a loss of surface moieties above 200 °C, however, the functional groups are not completely removable even at higher temperatures (>300 °C), thus enabling the use of plasma treated PTFE powders as potential tribological fillers in high temperature engineering polymers. Ageing studies carried over a period of 12 months revealed that while the surface changes degenerate over time, again, they are not completely reversible. These functionalised PTFE powders can be further used for applications into smart, high performance materials such as tribological fillers for engineering polymers and bio-medical, bio-material applications.

  10. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Rowse

    Full Text Available We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS to light emitting diode (LED street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum 'white' light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes, or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these 'light-intolerant' bat species.

  11. The Switch from Low-Pressure Sodium to Light Emitting Diodes Does Not Affect Bat Activity at Street Lights

    Science.gov (United States)

    Rowse, Elizabeth G.; Harris, Stephen; Jones, Gareth

    2016-01-01

    We used a before-after-control-impact paired design to examine the effects of a switch from low-pressure sodium (LPS) to light emitting diode (LED) street lights on bat activity at twelve sites across southern England. LED lights produce broad spectrum ‘white’ light compared to LPS street lights that emit narrow spectrum, orange light. These spectral differences could influence the abundance of insects at street lights and thereby the activity of the bats that prey on them. Most of the bats flying around the LPS lights were aerial-hawking species, and the species composition of bats remained the same after the switch-over to LED. We found that the switch-over from LPS to LED street lights did not affect the activity (number of bat passes), or the proportion of passes containing feeding buzzes, of those bat species typically found in close proximity to street lights in suburban environments in Britain. This is encouraging from a conservation perspective as many existing street lights are being, or have been, switched to LED before the ecological consequences have been assessed. However, lighting of all spectra studied to date generally has a negative impact on several slow-flying bat species, and LED lights are rarely frequented by these ‘light-intolerant’ bat species. PMID:27008274

  12. In-situ epitaxial growth of heavily phosphorus doped SiGe by low pressure chemical vapor deposition

    CERN Document Server

    Lee, C J

    1998-01-01

    We have studied epitaxial crystal growth of Si sub 1 sub - sub x Ge sub x films on silicon substrates at 550 .deg. C by low pressure chemical vapor deposition. In a low PH sub 3 partial pressure region such as below 1.25x10 sup - sup 3 Pa, both the phosphorus and carrier concentrations increased with increasing PH sub 3 partial pressure, but the deposition rate and the Ge fraction remained constant. In a higher PH sub 3 partial pressure region, the deposition rate, the phosphorus concentration, and the carrier concentration decreased, while the Ge fraction increased. These suggest that high surface coverage of phosphorus suppresses both SiH sub 4 and GeH sub 4 adsorption/reactions on the surfaces, and its suppression effect on SiH sub 4 is actually much stronger than on GeH sub 4. In particular, epitaxial crystal growth is largely controlled by surface coverage effect of phosphorus in a higher PH sub 3 partial pressure region.

  13. A Stochastic Reliability Model for Application in a Multidisciplinary Optimization of a Low Pressure Turbine Blade Made of Titanium Aluminide

    Directory of Open Access Journals (Sweden)

    Christian Dresbach

    Full Text Available Abstract Currently, there are a lot of research activities dealing with gamma titanium aluminide (γ-TiAl alloys as new materials for low pressure turbine (LPT blades. Even though the scatter in mechanical properties of such intermetallic alloys is more distinctive as in conventional metallic alloys, stochastic investigations on γ -TiAl alloys are very rare. For this reason, we analyzed the scatter in static and dynamic mechanical properties of the cast alloy Ti-48Al-2Cr-2Nb. It was found that this alloy shows a size effect in strength which is less pronounced than the size effect of brittle materials. A weakest-link approach is enhanced for describing a scalable size effect under multiaxial stress states and implemented in a post processing tool for reliability analysis of real components. The presented approach is a first applicable reliability model for semi-brittle materials. The developed reliability tool was integrated into a multidisciplinary optimization of the geometry of a LPT blade. Some processes of the optimization were distributed in a wide area network, so that specialized tools for each discipline could be employed. The optimization results show that it is possible to increase the aerodynamic efficiency and the structural mechanics reliability at the same time, while ensuring the blade can be manufactured in an investment casting process.

  14. Kinetic theory of the positive column of a low-pressure discharge in a transverse magnetic field

    International Nuclear Information System (INIS)

    Londer, Ya. I.; Ul’yanov, K. N.

    2011-01-01

    The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampère force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.

  15. The verification of subcooled boiling models in CFX-4.2 at low pressure in annulus channel flow

    International Nuclear Information System (INIS)

    Kim, Seong-Jin; Kim, Moon-Oh; Park, Goon-Cherl

    2003-01-01

    Heat transfer in subcooled boiling is an important issue to increase the effectiveness of design and safety in operation of engineering system such as nuclear plant. The subcooled boiling, which may occur in the hot channel of reactor in normal state and in decreased pressure condition in transient state, can cause multi-dimensional and complicated respects. The variation of local heat transfer phenomena is created by changing of liquid and vapor velocity, by simultaneous bubble break-ups and coalescences, and by corresponding to bubble evaporation and condensation, and that can affect the stability of the system. The established researches have carried out not a point of local distributions of two-phase variables, but a point of systematical distributions, mostly. Although the subcooled boiling models have been used to numerical analysis using CFX-4.2, there are few verification of subcooled boiling models. This paper demonstrated locally and systematically the validation of subcooled boiling model in numerical calculations using CFX-4.2 especially, in annulus channel flow condition in subcooled boiling at low pressure with respect to subcooled boiling models such as mean bubble diameter model, bubble departure diameter model or wall heat flux model and models related with phase interface. (author)

  16. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin, E-mail: wangxx@tsinghua.edu.cn [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  17. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    Science.gov (United States)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  18. Gating system optimization of low pressure casting A356 aluminum alloy intake manifold based on numerical simulation

    Directory of Open Access Journals (Sweden)

    Jiang Wenming

    2014-03-01

    Full Text Available To eliminate the shrinkage porosity in low pressure casting of an A356 aluminum alloy intake manifold casting, numerical simulation on filling and solidification processes of the casting was carried out using the ProCAST software. The gating system of the casting is optimized according to the simulation results. Results show that when the gating system consists of only one sprue, the filling of the molten metal is not stable; and the casting does not follow the sequence solidification, and many shrinkage porosities are observed through the casting. After the gating system is improved by adding one runner and two in-gates, the filling time is prolonged from 4.0 s to 4.5 s, the filling of molten metal becomes stable, but this casting does not follow the sequence solidification either. Some shrinkage porosity is also observed in the hot spots of the casting. When the gating system was further improved by adding risers and chill to the hot spots of the casting, the shrinkage porosity defects were eliminated completely. Finally, by using the optimized gating system the A356 aluminum alloy intake manifold casting with integrated shape and smooth surface as well as dense microstructure was successfully produced.

  19. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water.

    Science.gov (United States)

    Sholtes, Kari A; Lowe, Kincaid; Walters, Glenn W; Sobsey, Mark D; Linden, Karl G; Casanova, Lisa M

    2016-09-01

    Ultraviolet (UV) light-emitting diodes (LEDs) emitting at 260 nm were evaluated to determine the inactivation kinetics of bacteria, viruses, and spores compared to low-pressure (LP) UV irradiation. Test microbes were Escherichia coli B, a non-enveloped virus (MS-2), and a bacterial spore (Bacillus atrophaeus). For LP UV, 4-log10 reduction doses were: E. coli B, 6.5 mJ/cm(2); MS-2, 59.3 mJ/cm(2); and B. atrophaeus, 30.0 mJ/cm(2). For UV LEDs, the 4-log10 reduction doses were E. coli B, 6.2 mJ/cm(2); MS-2, 58 mJ/cm(2); and B. atrophaeus, 18.7 mJ/cm(2). Microbial inactivation kinetics of the two UV technologies were not significantly different for E. coli B and MS-2, but were different for B. atrophaeus spores. UV LEDs at 260 nm are at least as effective for inactivating microbes in water as conventional LP UV sources and should undergo further development in treatment systems to disinfect drinking water.

  20. Spectrochemical analysis of powder using 355 nm Nd-YAG laser-induced low-pressure plasma.

    Science.gov (United States)

    Lie, Zener S; Pardede, M; Hedwig, R; Suliyanti, M M; Kurniawan, Koo Hendrik; Munadi; Lee, Yong-Inn; Kagawa, Kiichiro; Hattori, Isamu; Tjia, May On

    2008-04-01

    The applicability of spectrochemical analysis of minute amounts of powder samples was investigated using an ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A large variety of chemical powder samples of different composition were employed in the experiment. These included a mixture of copper(II) sulfate pentahydrate, zinc sulfide, and chromium(III) sulfate n-hydrate powders, baby powder, cosmetic powders, gold films, zinc supplement tablet, and muds and soils from different areas. The powder samples were prepared by pulverizing the original samples to an average size of around 30 microm in order to trap them in the tiny micro holes created on the surface of the quartz subtarget. It was demonstrated that in all cases studied, good quality spectra were obtained with low background, free from undesirable contamination by the subtarget elements and featuring ppm sensitivity. A further measurement revealed a linear calibration curve with zero intercept. These results clearly show the potential application of this technique for practical qualitative and quantitative spectrochemical analysis of powder samples in various fields of study and investigation.

  1. Synthesis and characterization of graphene layers prepared by low-pressure chemical vapor deposition using triphenylphosphine as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Mastrapa, G.C.; Maia da Costa, M.E.H. Maia [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Larrude, D.G., E-mail: dunigl@vdg.fis.puc-rio.br [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Freire, F.L. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Brazilian Center for Physical Research, 22290-180, Rio de Janeiro, RJ (Brazil)

    2015-09-15

    The synthesis of a single-layer graphene using a low-pressure Chemical Vapor Deposition (CVD) system with triphenylphosphine as precursor is reported. The amount of triphenylphosphine used as precursor was in the range of 10–40 mg. Raman spectroscopy was employed to analyze samples prepared with 10 mg of the precursor, and these spectra were found typical of graphene. The Raman measurements indicate that the progressive degradation of graphene occurs as the amount of triphenylphosphine increases. X-ray photoelectron spectroscopy measurements were performed to investigate the different chemical environments involving carbon and phosphorous atoms. Scanning electron microscopy and transmission electron microscopy were also employed and the results reveal the formation of dispersed nanostructures on top of the graphene layer, In addition, the number of these nanostructures is directly related to the amount of precursor used for sample growth. - Highlights: • We grow graphene using the solid precursor triphenylphosphine. • Raman analysis confirms the presence of monolayer graphene. • SEM images show the presence of small dark areas dispersed on the graphene surface. • Raman I{sub D}/I{sub G} ratio increases in the dark region of the graphene surface.

  2. Evidence for skill level differences in the thought processes of golfers during high and low pressure situations.

    Directory of Open Access Journals (Sweden)

    Amy Elizabeth Whitehead

    2016-01-01

    Full Text Available Two studies examined differences in the cognition of golfers with differing levels of expertise in high and low pressure situations. In study 1, six high skill and six low skill golfers performed six holes of golf, while verbalizing their thoughts using Think Aloud (TA protocol. Higher skilled golfers’ cognitive processes centered more on planning in comparison to lower skilled golfers. Study 2 investigated whether thought processes of golfers changed in response to competitive pressure. Eight high skill and eight moderate skilled golfers, completed a practice round and a competition round whilst verbalizing thoughts using TA. To create pressure in the competition condition, participants were instructed that monetary prizes would be awarded to the top three performers and scores of all golfers would be published in a league table in the club house. When performing under competitive pressure, it was found that higher skilled golfers were more likely to verbalize technical rules compared to practice conditions, especially during putting performance. This shift in cognition toward more technical aspects of motor performance was strongly related to scores on the Decision Specific Reinvestment Scale, suggesting individuals with a higher propensity for reinvestment show the largest changes in cognition under pressure. From a practical perspective, TA can aid a player, coach or sport psychologist by allowing thought processes to be identified and investigate a performer’s thoughts when faced with the pressure of a competition.

  3. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Science.gov (United States)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-06-01

    The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Sisbnd Osbnd C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  4. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve.

    Science.gov (United States)

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-05-20

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.

  5. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor; Li, Zhenyu; Valladares Linares, Rodrigo; Li, Qingyu; Amy, Gary L.

    2011-01-01

    The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5 kWh/m3) of the energy used for high pressure seawater RO (SWRO) desalination (2.5-4 kWh/m3), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m2-h is needed to compete with water reuse using UF-LPRO, and 5.5 L/m2-h is needed to recover and desalinate water at less cost than SWRO. © 2011 Elsevier B.V.

  6. 2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges

    International Nuclear Information System (INIS)

    Kawamura, E; Lichtenberg, A J; Lieberman, M A; Marakhtanov, A M

    2016-01-01

    A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths. (paper)

  7. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes

    Science.gov (United States)

    Joishi, Chandan; Rafique, Subrina; Xia, Zhanbo; Han, Lu; Krishnamoorthy, Sriram; Zhang, Yuewei; Lodha, Saurabh; Zhao, Hongping; Rajan, Siddharth

    2018-03-01

    We report (010)-oriented β-Ga2O3 bevel-field-plated mesa Schottky barrier diodes grown by low-pressure chemical vapor deposition (LPCVD) using a solid Ga precursor and O2 and SiCl4 sources. Schottky diodes with good ideality and low reverse leakage were realized on the epitaxial material. Edge termination using beveled field plates yielded a breakdown voltage of -190 V, and maximum vertical electric fields of 4.2 MV/cm in the center and 5.9 MV/cm at the edge were estimated, with extrinsic R ON of 3.9 mΩ·cm2 and extracted intrinsic R ON of 0.023 mΩ·cm2. The reported results demonstrate the high quality of homoepitaxial LPCVD-grown β-Ga2O3 thin films for vertical power electronics applications, and show that this growth method is promising for future β-Ga2O3 technology.

  8. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve

    Science.gov (United States)

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-01-01

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D® software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398

  9. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-10-01

    The use of energy still remains the main component of the costs of desalting water. Forward osmosis (FO) can help to reduce the costs of desalination, and extracting water from impaired sources can be beneficial in this regard. Experiments with FO membranes using a secondary wastewater effluent as a feed water and Red Sea water as a draw solution demonstrated that the technology is promising. FO coupled with low pressure reverse osmosis (LPRO) was implemented for indirect desalination. The system consumes only 50% (~1.5 kWh/m3) of the energy used for high pressure seawater RO (SWRO) desalination (2.5-4 kWh/m3), and produces a good quality water extracted from the impaired feed water. Fouling of the FO membranes was not a major issue during long-term experiments over 14 days. After 10 days of continuous FO operation, the initial flux declined by 28%. Cleaning the FO membranes with air scouring and clean water recovered the initial flux by 98.8%. A cost analysis revealed FO per se as viable technology. However, a minimum average FO flux of 10.5 L/m2-h is needed to compete with water reuse using UF-LPRO, and 5.5 L/m2-h is needed to recover and desalinate water at less cost than SWRO. © 2011 Elsevier B.V.

  10. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    International Nuclear Information System (INIS)

    Hedwig, Rinda; Budi, Wahyu Setia; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suliyanti, Maria Margaretha; Lie, Tjung Jie; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2006-01-01

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process

  11. Numerical study of active particles creation and evolution in a nitrogen point-to-plane afterglow discharge at low pressure

    International Nuclear Information System (INIS)

    Potamianou, S; Spyrou, N; Held, B; Loiseau, J-F

    2006-01-01

    The last part of a numerical study of low-pressure nitrogen cold plasma created by a pulsed discharge in a point-to-plane geometry at 4 Torr is presented. The present work deals with the discharge and plasma behaviour during the falling part of a rectangular shaped applied voltage pulse and completes our investigation of the discharge under the stress of this voltage shape. The relative model is based on fluid description of the cold plasma, on Poisson's equation for the electric field and on balance equations for the excited population taking into account only the most important generation and decay mechanisms of the radiative B 3 Π g , C 3 Π u and the metastables A 3 Σ μ + states of nitrogen, according to the conclusions of our recent work (Potamianou et al 2003 Eur. Phys. J. Appl. Phys. 22 179-88). Results for space and time evolution of the charged particles densities, electric field, potential and electron current density are reported. According to these results, a non-neutral channel is formed that evolves slowly and ends in the formation of a double layer. Excited particle distributions are presented and the influence of the electron current density discussed. It seems that, in this kind of discharge, creation of active particles is not only due to electron current density but also physicochemical mechanisms. The obtained results will help to determine optimal conditions for polymer surface treatment

  12. Effects of low pressure plasma treatments on DSSCs based on rutile TiO2 array photoanodes

    International Nuclear Information System (INIS)

    Wang, Weiqi; Chen, Jiazang; Luo, Jianqiang; Zhang, Yuzhi; Gao, Lian; Liu, Yangqiao; Sun, Jing

    2015-01-01

    Graphical abstract: - Highlights: • Plasma treatment effects on rutile nanorod arrays studied. • Dye adsorption amount increased by all plasma treatment. • Flat-band potential positively shifted after NP and OP treatments. • Cell performance improved by NP and OP treatments. - Abstract: In this paper, three types of low pressure plasma including hydrogen (HP), oxygen (OP) and nitrogen (NP) treatments have been utilized for the first time to improve DSSCs based on rutile TiO 2 array photoanodes. Their effects on the photoanodes and the cell performance have been systematically compared by characterizing the dye loading amount, flat-band potential, donor concentration, electron lifetime and the photovoltaic parameters. Experimental results show that all the three plasma treatments increase the dye loading owing to improved hydrophilicity or enhanced surface roughness. It is found that NP and OP treatments significantly increase the TiO 2 donor concentration and decrease trapping sites. By this way, the electron transport is enhanced and the electron recombination is effectively restrained. These comprehensive effects make NP and OP treatments beneficial for the overall performance, by which 13% and 5% increases in efficiency are achieved. However, HP treatment causes obvious reduction in the donor concentration and more severe electron recombination, which decreases the efficiency by about 15%

  13. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    International Nuclear Information System (INIS)

    Pandiyaraj, Krishnasamy Navaneetha; Yoganand, Paramasivam; Selvarajan, Vengatasamy; Deshmukh, Rajendrasing R.; Balasubramanian, Suresh; Maruthamuthu, Sundaram

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  14. Low-Pressure and Low-Temperature Hydriding-Pulverization-Dehydriding Method for Producing Shape Memory Alloy Powders

    Science.gov (United States)

    Murguia, Silvia Briseño; Clauser, Arielle; Dunn, Heather; Fisher, Wendy; Snir, Yoav; Brennan, Raymond E.; Young, Marcus L.

    2018-04-01

    Shape memory alloys (SMAs) are of high interest as active, adaptive "smart" materials for applications such as sensors and actuators due to their unique properties, including the shape memory effect and pseudoelasticity. Binary NiTi SMAs have shown the most desirable properties, and consequently have generated the most commercial success. A major challenge for SMAs, in particular, is their well-known compositional sensitivity. Therefore, it is critical to control the powder composition and morphology. In this study, a low-pressure, low-temperature hydriding-pulverization-dehydriding method for preparing well-controlled compositions, size, and size distributions of SMA powders from wires is presented. Starting with three different diameters of as-drawn martensitic NiTi SMA wires, pre-alloyed NiTi powders of various well-controlled sizes are produced by hydrogen charging the wires in a heated H3PO4 solution. After hydrogen charging for different charging times, the wires are pulverized and subsequently dehydrided. The wires and the resulting powders are characterized using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The relationship between the wire diameter and powder size is investigated as a function of hydrogen charging time. The rate of diameter reduction after hydrogen charging of wire is also examined. Finally, the recovery behavior due to the shape memory effect is investigated after dehydriding.

  15. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    Science.gov (United States)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  16. Feasibility study of a dedicate nuclear desalination system: Low-pressure inherent heat sink nuclear desalination plant (LIND)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Sik; No, Hee Cheon; Jo, Yu Gwan; Wivisono, Andhika Feri; Park, Byung Ha; Choi, Jin Young; Lee, Jeong Ik; Jeong, Yong Hoon; Cho, Nam Zin [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-04-15

    In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND) that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal-hydraulic and neutronic design requirements. In a thermal-hydraulic analysis using an analytical method based on the Wooton-Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MW{sub th} and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  17. Feasibility study of a dedicated nuclear desalination system: Low-pressure Inherent heat sink Nuclear Desalination plant (LIND

    Directory of Open Access Journals (Sweden)

    Ho Sik Kim

    2015-04-01

    Full Text Available In this paper, we suggest the conceptual design of a water-cooled reactor system for a low-pressure inherent heat sink nuclear desalination plant (LIND that applies the safety-related design concepts of high temperature gas-cooled reactors to a water-cooled reactor for inherent and passive safety features. Through a scoping analysis, we found that the current LIND design satisfied several essential thermal–hydraulic and neutronic design requirements. In a thermal–hydraulic analysis using an analytical method based on the Wooton–Epstein correlation, we checked the possibility of safely removing decay heat through the steel containment even if all the active safety systems failed. In a neutronic analysis using the Monte Carlo N-particle transport code, we estimated a cycle length of approximately 6 years under 200 MWth and 4.5% enrichment. The very long cycle length and simple safety features minimize the burdens from the operation, maintenance, and spent-fuel management, with a positive impact on the economic feasibility. Finally, because a nuclear reactor should not be directly coupled to a desalination system to prevent the leakage of radioactive material into the desalinated water, three types of intermediate systems were studied: a steam producing system, a hot water system, and an organic Rankine cycle system.

  18. LOW PRESSURE CARBURIZING IN A LARGE-CHAMBER DEVICE FOR HIGH-PERFORMANCE AND PRECISION THERMAL TREATMENT OF PARTS OF MECHANICAL GEAR

    Directory of Open Access Journals (Sweden)

    Emilia Wołowiec-Korecka

    2017-03-01

    Full Text Available This paper presents the findings of research of a short-pulse low pressure carburizing technology developed for a new large-chamber furnace for high-performance and precision thermal treatment of parts of mechanical gear. Sections of the article discuss the novel constructions of the device in which parts being carburized flow in a stream, as well as the low-pressure carburizing experiment. The method has been found to yield uniform, even and repeatable carburized layers on typical gear used in automotive industry.

  19. High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    Science.gov (United States)

    Zoladz, T. F.; Farr, R. A.

    1991-01-01

    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing.

  20. Perennial peanut (Arachis glabrata Benth.) contains polyphenol oxidase (PPO) and PPO substrates that can reduce post-harvest proteolysis.

    Science.gov (United States)

    Sullivan, Michael L; Foster, Jamie L

    2013-08-15

    Studies of perennial peanut (Arachis glabrata Benth.) suggest its hay and haylage have greater levels of rumen undegraded protein (RUP) than other legume forages such as alfalfa (Medicago sativa L.). Greater RUP can result in more efficient nitrogen utilization by ruminant animals with positive economic and environmental effects. We sought to determine whether, like red clover (Trifolium pretense L.), perennial peanut contains polyphenol oxidase (PPO) and PPO substrates that might be responsible for increased RUP. Perennial peanut extracts contain immunologically detectible PPO protein and high levels of PPO activity (>100 nkatal mg(-1) protein). Addition of caffeic acid (PPO substrate) to perennial peanut extracts depleted of endogenous substrates reduced proteolysis by 90%. Addition of phenolics prepared from perennial peanut leaves to extracts of either transgenic PPO-expressing or control (non-expressing) alfalfa showed peanut phenolics could reduce proteolysis >70% in a PPO-dependent manner. Two abundant likely PPO substrates are present in perennial peanut leaves including caftaric acid. Perennial peanut contains PPO and PPO substrates that together are capable of inhibiting post-harvest proteolysis, suggesting a possible mechanism for increased RUP in this forage. Research related to optimizing the PPO system in other forage crops will likely be applicable to perennial peanut. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  1. Granzyme B-dependent proteolysis acts as a switch to enhance the proinflammatory activity of IL-1α.

    LENUS (Irish Health Repository)

    Afonina, Inna S

    2011-10-21

    Granzyme B is a cytotoxic lymphocyte-derived protease that plays a central role in promoting apoptosis of virus-infected target cells, through direct proteolysis and activation of constituents of the cell death machinery. However, previous studies have also implicated granzymes A and B in the production of proinflammatory cytokines, via a mechanism that remains undefined. Here we show that IL-1α is a substrate for granzyme B and that proteolysis potently enhanced the biological activity of this cytokine in vitro as well as in vivo. Consistent with this, compared with full-length IL-1α, granzyme B-processed IL-1α exhibited more potent activity as an immunoadjuvant in vivo. Furthermore, proteolysis of IL-1α within the same region, by proteases such as calpain and elastase, was also found to enhance its biological potency. Thus, IL-1α processing by multiple immune-related proteases, including granzyme B, acts as a switch to enhance the proinflammatory properties of this cytokine.

  2. Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis.

    Science.gov (United States)

    Lin, Kai; Zhang, Lan-Wei; Han, Xue; Xin, Liang; Meng, Zhao-Xu; Gong, Pi-Min; Cheng, Da-You

    2018-07-15

    Yak milk casein was selected as a potential precursor of bioactive peptides based on in silico analysis. Most notable among these are the angiotensin I-converting enzyme (ACE) inhibitory peptides. First, yak milk casein has high homology with cow milk casein by homologous analysis. The potential of yak milk casein for the releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are many bioactive peptides in yak milk casein sequences. Then, an in silico proteolysis using single or combined enzymes to obtained ACE inhibitory peptides was investigated. Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all in silico proteolysis derived ACE inhibitory peptides are non-cytotoxic. Overall, the present study highlights a in silico proteolysis approach to assist the yak milk casein releasing ACE inhibitory peptides and provides a guidance for the actual hydrolysis of proteins for the production of bioactive peptides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Involvement of μ/m-calpain in the proteolysis and meat quality changes during postmortem storage of chicken breast muscle.

    Science.gov (United States)

    Zhao, Liang; Xing, Tong; Huang, Jichao; Qiao, Yan; Chen, Yulian; Huang, Ming

    2018-02-01

    The objective of this study was to investigate the role of calpain isotypes, especially poultry-specific μ/m-calpain in the proteolysis and meat quality changes of chicken breast muscle during postmortem storage. Calpain activity was detected by casein zymography, while the degradation of titin, desmin and Troponin-T was analyzed by sodium dodecyl sulfate - polyacrylamide gel electrophoresis and western blot. Meat quality indicators such as water holding capacity and tenderness were also studied. The correlation analysis between calpain activity, proteolysis and the changes in meat quality indicators indicated that there were strong correlations for μ-calpain during the first 12 h of storage, while such strong correlations for μ/m-calpain were only found in samples stored from 12 h to 7 days. Our study suggested that μ-calpain played a major role in meat quality changes while μ/m-calpain could also be involved but played a limited role in the proteolysis and meat quality changes during 12 h to 7 days postmortem storage of chicken breast muscle. © 2017 Japanese Society of Animal Science.

  4. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations.

    Science.gov (United States)

    Lee, Ju-Hyun; Yu, W Haung; Kumar, Asok; Lee, Sooyeon; Mohan, Panaiyur S; Peterhoff, Corrinne M; Wolfe, Devin M; Martinez-Vicente, Marta; Massey, Ashish C; Sovak, Guy; Uchiyama, Yasuo; Westaway, David; Cuervo, Ana Maria; Nixon, Ralph A

    2010-06-25

    Macroautophagy is a lysosomal degradative pathway essential for neuron survival. Here, we show that macroautophagy requires the Alzheimer's disease (AD)-related protein presenilin-1 (PS1). In PS1 null blastocysts, neurons from mice hypomorphic for PS1 or conditionally depleted of PS1, substrate proteolysis and autophagosome clearance during macroautophagy are prevented as a result of a selective impairment of autolysosome acidification and cathepsin activation. These deficits are caused by failed PS1-dependent targeting of the v-ATPase V0a1 subunit to lysosomes. N-glycosylation of the V0a1 subunit, essential for its efficient ER-to-lysosome delivery, requires the selective binding of PS1 holoprotein to the unglycosylated subunit and the Sec61alpha/oligosaccharyltransferase complex. PS1 mutations causing early-onset AD produce a similar lysosomal/autophagy phenotype in fibroblasts from AD patients. PS1 is therefore essential for v-ATPase targeting to lysosomes, lysosome acidification, and proteolysis during autophagy. Defective lysosomal proteolysis represents a basis for pathogenic protein accumulations and neuronal cell death in AD and suggests previously unidentified therapeutic targets.

  5. Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk.

    Science.gov (United States)

    Ye, A; Cui, J; Singh, H

    2011-06-01

    The influence of gastric proteolysis on the physicochemical characteristics of milk fat globules and the proteins of the milk fat globule membrane (MFGM) in raw milk and cream was examined in vitro in simulated gastric fluid (SGF) containing various pepsin concentrations at pH 1.6 for up to 2h. Apparent flocculation of the milk fat globules occurred in raw milk samples incubated in SGF containing pepsin, but no coalescence was observed in either raw milk samples or cream samples. The changes in the particle size of the fat globules as a result of the flocculation were dependent on the pepsin concentration. Correspondingly, the physical characteristics of the fat globules and the composition of the MFGM proteins in raw milk changed during incubation in SGF containing pepsin. The major MFGM proteins were hydrolyzed at different rates by the pepsin in the SGF; butyrophilin was more resistant than xanthine oxidase, PAS 6, or PAS 7. Peptides with various molecular weights, which altered with the time of incubation and the pepsin concentration, were present at the surfaces of the fat globules. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. PMA Induces SnoN Proteolysis and CD61 Expression through an Autocrine Mechanism

    Science.gov (United States)

    Li, Chonghua; Peart, Natoya; Xuan, Zhenyu; Lewis, Dorothy E; Xia, Yang; Jin, Jianping

    2014-01-01

    Phorbol-12-myristate-13-acetate, also called PMA, is a small molecule that activates protein kinase C and functions to differentiate hematologic lineage cells. However, the mechanism of PMA-induced cellular differentiation is not fully understood. We found that PMA triggers global enhancement of protein ubiquitination in K562, a myelogenous leukemia cell line and one of the enhanced-ubiquitination targets is SnoN, an inhibitor of the Smad signaling pathway. Our data indicated that PMA stimulated the production of Activin A, a cytokine of the TGF-β family. Activin A then activated the phosphorylation of both Smad2 and Smad3. In consequence, SnoN is ubiquitinated by the APCCdh1 ubiquitin ligase with the help of phosphorylated Smad2. Furthermore, we found that SnoN proteolysis is important for the expression of CD61, a marker of megakaryocyte. These results indicate that protein ubiquitination promotes megakaryopoiesis via degrading SnoN, an inhibitor of CD61 expression, strengths the roles of ubiquitination in cellular differentiation. PMID:24637302

  7. Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10.

    Science.gov (United States)

    Seegar, Tom C M; Killingsworth, Lauren B; Saha, Nayanendu; Meyer, Peter A; Patra, Dhabaleswar; Zimmerman, Brandon; Janes, Peter W; Rubinstein, Eric; Nikolov, Dimitar B; Skiniotis, Georgios; Kruse, Andrew C; Blacklow, Stephen C

    2017-12-14

    Cleavage of membrane-anchored proteins by ADAM (a disintegrin and metalloproteinase) endopeptidases plays a key role in a wide variety of biological signal transduction and protein turnover processes. Among ADAM family members, ADAM10 stands out as particularly important because it is both responsible for regulated proteolysis of Notch receptors and catalyzes the non-amyloidogenic α-secretase cleavage of the Alzheimer's precursor protein (APP). We present here the X-ray crystal structure of the ADAM10 ectodomain, which, together with biochemical and cellular studies, reveals how access to the enzyme active site is regulated. The enzyme adopts an unanticipated architecture in which the C-terminal cysteine-rich domain partially occludes the enzyme active site, preventing unfettered substrate access. Binding of a modulatory antibody to the cysteine-rich domain liberates the catalytic domain from autoinhibition, enhancing enzymatic activity toward a peptide substrate. Together, these studies reveal a mechanism for regulation of ADAM activity and offer a roadmap for its modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Preventing mutant huntingtin proteolysis and intermittent fasting promote autophagy in models of Huntington disease.

    Science.gov (United States)

    Ehrnhoefer, Dagmar E; Martin, Dale D O; Schmidt, Mandi E; Qiu, Xiaofan; Ladha, Safia; Caron, Nicholas S; Skotte, Niels H; Nguyen, Yen T N; Vaid, Kuljeet; Southwell, Amber L; Engemann, Sabine; Franciosi, Sonia; Hayden, Michael R

    2018-03-06

    Huntington disease (HD) is caused by the expression of mutant huntingtin (mHTT) bearing a polyglutamine expansion. In HD, mHTT accumulation is accompanied by a dysfunction in basal autophagy, which manifests as specific defects in cargo loading during selective autophagy. Here we show that the expression of mHTT resistant to proteolysis at the caspase cleavage site D586 (C6R mHTT) increases autophagy, which may be due to its increased binding to the autophagy adapter p62. This is accompanied by faster degradation of C6R mHTT in vitro and a lack of mHTT accumulation the C6R mouse model with age. These findings may explain the previously observed neuroprotective properties of C6R mHTT. As the C6R mutation cannot be easily translated into a therapeutic approach, we show that a scheduled feeding paradigm is sufficient to lower mHTT levels in YAC128 mice expressing cleavable mHTT. This is consistent with a previous model, where the presence of cleavable mHTT impairs basal autophagy, while fasting-induced autophagy remains functional. In HD, mHTT clearance and autophagy may become increasingly impaired as a function of age and disease stage, because of gradually increased activity of mHTT-processing enzymes. Our findings imply that mHTT clearance could be enhanced by a regulated dietary schedule that promotes autophagy.

  9. Activation-induced proteolysis of cytoplasmic domain of zeta in T cell receptors and Fc receptors.

    Science.gov (United States)

    Taupin, J L; Anderson, P

    1994-12-01

    The CD3-T cell receptor (TCR) complex on T cells and the Fc gamma receptor type III (Fc gamma RIII)-zeta-gamma complex on natural killer cells are functionally analogous activation receptors that associate with a family of disulfide-linked dimers composed of the related subunits zeta and gamma. Immunochemical analysis of receptor complexes separated on two-dimensional diagonal gels allowed the identification of a previously uncharacterized zeta-p14 heterodimer. zeta-p14 is a component of both CD3-TCR and Fc gamma RIII-zeta-gamma. Peptide mapping analysis shows that p14 is structurally related to zeta, suggesting that it is either: (i) derived from zeta proteolytically or (ii) the product of an alternatively spliced mRNA. The observation that COS cells transformed with a cDNA encoding zeta express zeta-p14 supports the former possibility. The expression of CD3-TCR complexes including zeta-p14 increases following activation with phorbol 12-myristate 13-acetate or concanavalin A, suggesting that proteolysis of zeta may contribute to receptor modulation or desensitization.

  10. Locked and proteolysis-based transcription activator-like effector (TALE) regulation.

    Science.gov (United States)

    Lonzarić, Jan; Lebar, Tina; Majerle, Andreja; Manček-Keber, Mateja; Jerala, Roman

    2016-02-18

    Development of orthogonal, designable and adjustable transcriptional regulators is an important goal of synthetic biology. Their activity has been typically modulated through stimulus-induced oligomerization or interaction between the DNA-binding and activation/repression domain. We exploited a feature of the designable Transcription activator-like effector (TALE) DNA-binding domain that it winds around the DNA which allows to topologically prevent it from binding by intramolecular cyclization. This new approach was investigated through noncovalent ligand-induced cyclization or through a covalent split intein cyclization strategy, where the topological inhibition of DNA binding by cyclization and its restoration by a proteolytic release of the topologic constraint was expected. We show that locked TALEs indeed have diminished DNA binding and regain full transcriptional activity by stimulation with the rapamycin ligand or site-specific proteolysis of the peptide linker, with much higher level of activation than rapamycin-induced heterodimerization. Additionally, we demonstrated reversibility, activation of genomic targets and implemented logic gates based on combinations of protein cyclization, proteolytic cleavage and ligand-induced dimerization, where the strongest fold induction was achieved by the proteolytic cleavage of a repression domain from a linear TALE. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity.

    Science.gov (United States)

    Wang, Liwei; Wagner, Larry E; Alzayady, Kamil J; Yule, David I

    2017-07-14

    The inositol 1,4,5 trisphosphate receptor (IP 3 R) is an intracellular Ca 2+ release channel expressed predominately on the membranes of the endoplasmic reticulum. IP 3 R1 can be cleaved by caspase or calpain into at least two receptor fragments. However, the functional consequences of receptor fragmentation are poorly understood. Our previous work has demonstrated that IP 3 R1 channels, formed following either enzymatic fragmentation or expression of the corresponding complementary polypeptide chains, retain tetrameric architecture and are still activated by IP 3 binding despite the loss of peptide continuity. In this study, we demonstrate that region-specific receptor fragmentation modifies channel regulation. Specifically, the agonist-evoked temporal Ca 2+ release profile and protein kinase A modulation of Ca 2+ release are markedly altered. Moreover, we also demonstrate that activation of fragmented IP 3 R1 can result in a distinct functional outcome. Our work suggests that proteolysis of IP 3 R1 may represent a novel form of modulation of IP 3 R1 channel function and increases the repertoire of Ca 2+ signals achievable through this channel. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2016-05-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A–VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor–ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145 promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes.

  13. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis.

    Science.gov (United States)

    Fearnley, Gareth W; Smith, Gina A; Abdul-Zani, Izma; Yuldasheva, Nadira; Mughal, Nadeem A; Homer-Vanniasinkam, Shervanthi; Kearney, Mark T; Zachary, Ian C; Tomlinson, Darren C; Harrison, Michael A; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2016-05-15

    Vascular endothelial growth factor A (VEGF-A) binding to the receptor tyrosine kinase VEGFR2 triggers multiple signal transduction pathways, which regulate endothelial cell responses that control vascular development. Multiple isoforms of VEGF-A can elicit differential signal transduction and endothelial responses. However, it is unclear how such cellular responses are controlled by isoform-specific VEGF-A-VEGFR2 complexes. Increasingly, there is the realization that the membrane trafficking of receptor-ligand complexes influences signal transduction and protein turnover. By building on these concepts, our study shows for the first time that three different VEGF-A isoforms (VEGF-A165, VEGF-A121 and VEGF-A145) promote distinct patterns of VEGFR2 endocytosis for delivery into early endosomes. This differential VEGFR2 endocytosis and trafficking is linked to VEGF-A isoform-specific signal transduction events. Disruption of clathrin-dependent endocytosis blocked VEGF-A isoform-specific VEGFR2 activation, signal transduction and caused substantial depletion in membrane-bound VEGFR1 and VEGFR2 levels. Furthermore, such VEGF-A isoforms promoted differential patterns of VEGFR2 ubiquitylation, proteolysis and terminal degradation. Our study now provides novel insights into how different VEGF-A isoforms can bind the same receptor tyrosine kinase and elicit diverse cellular outcomes. © 2016. Published by The Company of Biologists Ltd.

  14. Quantitative proteomics and terminomics to elucidate the role of ubiquitination and proteolysis in adaptive immunity.

    Science.gov (United States)

    Klein, Theo; Viner, Rosa I; Overall, Christopher M

    2016-10-28

    Adaptive immunity is the specialized defence mechanism in vertebrates that evolved to eliminate pathogens. Specialized lymphocytes recognize specific protein epitopes through antigen receptors to mount potent immune responses, many of which are initiated by nuclear factor-kappa B activation and gene transcription. Most, if not all, pathways in adaptive immunity are further regulated by post-translational modification (PTM) of signalling proteins, e.g. phosphorylation, citrullination, ubiquitination and proteolytic processing. The importance of PTMs is reflected by genetic or acquired defects in these pathways that lead to a dysfunctional immune response. Here we discuss the state of the art in targeted proteomics and systems biology approaches to dissect the PTM landscape specifically regarding ubiquitination and proteolysis in B- and T-cell activation. Recent advances have occurred in methods for specific enrichment and targeted quantitation. Together with improved instrument sensitivity, these advances enable the accurate analysis of often rare PTM events that are opaque to conventional proteomics approaches, now rendering in-depth analysis and pathway dissection possible. We discuss published approaches, including as a case study the profiling of the N-terminome of lymphocytes of a rare patient with a genetic defect in the paracaspase protease MALT1, a key regulator protease in antigen-driven signalling, which was manifested by elevated linear ubiquitination.This article is part of the themed issue 'Quantitative mass spectrometry'. © 2016 The Authors.

  15. Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells.

    Directory of Open Access Journals (Sweden)

    Jesse C Wiley

    Full Text Available BACKGROUND: The familial and sporadic forms of Alzheimer's disease (AD have an identical pathology with a severe disparity in the time of onset [1]. The pathological similarity suggests that epigenetic processes may phenocopy the Familial Alzheimer's disease (FAD mutations within sporadic AD. Numerous groups have demonstrated that FAD mutations in presenilin result in 'loss of function' of gamma-secretase mediated APP cleavage [2], [3], [4], [5]. Accordingly, ER stress is prominent within the pathologically impacted brain regions in AD patients [6] and is reported to inhibit APP trafficking through the secretory pathway [7], [8]. As the maturation of APP and the cleaving secretases requires trafficking through the secretory pathway [9], [10], [11], we hypothesized that ER stress may block trafficking requisite for normal levels of APP cleavage and that the small molecular chaperone 4-phenylbutyrate (PBA may rescue the proteolytic deficit. METHODOLOGY/PRINCIPAL FINDINGS: The APP-Gal4VP16/Gal4-reporter screen was stably incorporated into neuroblastoma cells in order to assay gamma-secretase mediated APP proteolysis under normal and pharmacologically induced ER stress conditions. Three unrelated pharmacological agents (tunicamycin, thapsigargin and brefeldin A all repressed APP proteolysis in parallel with activation of unfolded protein response (UPR signaling-a biochemical marker of ER stress. Co-treatment of the gamma-secretase reporter cells with PBA blocked the repressive effects of tunicamycin and thapsigargin upon APP proteolysis, UPR activation, and apoptosis. In unstressed cells, PBA stimulated gamma-secretase mediated cleavage of APP by 8-10 fold, in the absence of any significant effects upon amyloid production, by promoting APP trafficking through the secretory pathway and the stimulation of the non-pathogenic alpha/gamma-cleavage. CONCLUSIONS/SIGNIFICANCE: ER stress represses gamma-secretase mediated APP proteolysis, which replicates

  16. Experimental Studies of Low-Pressure Turbine Flows and Flow Control. Streamwise Pressure Profiles and Velocity Profiles

    Science.gov (United States)

    Volino, Ralph

    2012-01-01

    This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy faculties. The geometry corresponded to "Pak B" LPT airfoil. The test section simulated LPT flow in a passage. Three experimental studies were performed: (a) Boundary layer measurements for ten baseline cases under high and low freestream turbulence conditions at five Reynolds numbers of 25,000, 50,000, 100,000, 200,000, and 300,000, based on passage exit velocity and suction surface wetted length; (b) Passive flow control studies with three thicknesses of two-dimensional bars, and two heights of three-dimensional circular cylinders with different spanwise separations, at same flow conditions as the 10 baseline cases; (c) Active flow control with oscillating synthetic (zero net mass flow) vortex generator jets, for one case with low freestream turbulence and a low Reynolds number of 25,000. The Passive flow control was successful at controlling the separation problem at low Reynolds numbers, with varying degrees of success from case to case and varying levels of impact at higher Reynolds numbers. The active flow control successfully eliminated the large separation problem for the low Reynolds number case. Very detailed data was acquired using hot-wire anemometry, including single and two velocity components, integral boundary layer quantities, turbulence statistics and spectra, turbulent shear stresses and their spectra, and intermittency, documenting transition, separation and reattachment. Models were constructed to correlate the results. The report includes a summary of the work performed and reprints of the publications describing the various studies.This report summarizes research performed in support of the NASA Glenn Research Center (GRC) Low-Pressure Turbine (LPT) Flow Physics Program. The work was performed experimentally at the U.S. Naval Academy

  17. On the climate model simulation of Indian monsoon low pressure systems and the effect of remote disturbances and systematic biases

    Science.gov (United States)

    Levine, Richard C.; Martin, Gill M.

    2018-06-01

    Monsoon low pressure systems (LPS) are synoptic-scale systems forming over the Indian monsoon trough region, contributing substantially to seasonal mean summer monsoon rainfall there. Many current global climate models (GCMs), including the Met Office Unified Model (MetUM), show deficient rainfall in this region, much of which has previously been attributed to remote systematic biases such as excessive equatorial Indian Ocean (EIO) convection, while also substantially under-representing LPS and associated rainfall as they travel westwards across India. Here the sources and sensitivities of LPS to local, remote and short-timescale forcing are examined, in order to understand the poor representation in GCMs. An LPS tracking method is presented using TRACK feature tracking software for comparison between re-analysis data-sets, MetUM GCM and regional climate model (RCM) simulations. RCM simulations, at similar horizontal resolution to the GCM and forced with re-analysis data at the lateral boundaries, are carried out with different domains to examine the effects of remote biases. The results suggest that remote biases contribute significantly to the poor simulation of LPS in the GCM. As these remote systematic biases are common amongst many current GCMs, it is likely that GCMs are intrinsically capable of representing LPS, even at relatively low resolution. The main problem areas are time-mean excessive EIO convection and poor representation of precursor disturbances transmitted from the Western Pacific. The important contribution of the latter is established using RCM simulations forced by climatological 6-hourly lateral boundary conditions, which also highlight the role of LPS in moving rainfall from steep orography towards Central India.

  18. Life cycle cost of a hybrid forward osmosis – low pressure reverse osmosis system for seawater desalination and wastewater recovery

    KAUST Repository

    Valladares Linares, Rodrigo

    2015-10-19

    In recent years, forward osmosis (FO) hybrid membrane systems have been investigated as an alternative to conventional high-pressure membrane processes (i.e. reverse osmosis (RO)) for seawater desalination and wastewater treatment and recovery. Nevertheless, their economic advantage in comparison to conventional processes for seawater desalination and municipal wastewater treatment has not been clearly addressed. This work presents a detailed economic analysis on capital and operational expenses (CAPEX and OPEX) for: i) a hybrid forward osmosis – low-pressure reverse osmosis (FO-LPRO) process, ii) a conventional seawater reverse osmosis (SWRO) desalination process, and iii) a membrane bioreactor – reverse osmosis – advanced oxidation process (MBR-RO-AOP) for wastewater treatment and reuse. The most important variables affecting economic feasibility are obtained through a sensitivity analysis of a hybrid FO-LPRO system. The main parameters taken into account for the life cycle costs are the water quality characteristics (similar feed water and similar water produced), production capacity of 100,000 m3 d−1 of potable water, energy consumption, materials, maintenance, operation, RO and FO module costs, and chemicals. Compared to SWRO, the FO-LPRO systems have a 21% higher CAPEX and a 56% lower OPEX due to savings in energy consumption and fouling control. In terms of the total water cost per cubic meter of water produced, the hybrid FO-LPRO desalination system has a 16% cost reduction compared to the benchmark for desalination, mainly SWRO. Compared to the MBR-RO-AOP, the FO-LPRO systems have a 7% lower CAPEX and 9% higher OPEX, resulting in no significant cost reduction per m3 produced by FO-LPRO. Hybrid FO-LPRO membrane systems are shown to have an economic advantage compared to current available technology for desalination, and comparable costs with a wastewater treatment and recovery system. Based on development on FO membrane modules, packing density, and

  19. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    International Nuclear Information System (INIS)

    Yang, Meng; Sasaki, Shinichirou; Suzuki, Ken; Miura, Hideo

    2016-01-01

    Graphical abstract: - Highlights: • For the first time, we succeeded in the LPCVD growth of monolayer graphene using acetylene as the precursor gas. • The growth rate is very high when acetylene is used as the source gas. Our process has exhibited the potential to shorten the growth time of CVD graphene. • We found that the domain size, defects density, layer number and the sheet resistance of graphene can be changed by changing the acetylene flow rates. • We found that it is also possible to form bilayer graphene using acetylene. However, further study are necessary to reduce the defects density. - Abstract: Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  20. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Wen-Long; Huo, Zheng-Yang; Lu, Yun; Hu, Hong-Ying

    2017-12-01

    Studies on ultraviolet light-emitting diode (UV-LED) water disinfection have shown advantages, such as safety, flexible design, and lower starting voltages. However, information about reactivation after UV-LED disinfection is limited, which is an important issue of UV light-based technology. In this study, the photoreactivation and dark repair of Escherichia coli after UV-LEDs and low pressure (LP) UV disinfection were compared. Four UV-LED units, 265 nm, 280 nm, the combination of 265 + 280 (50%), and 265 + 280 (75%) were tested. 265 nm LEDs was more effective than 280 nm LEDs and LP UV lamps for E. coli inactivation. No synergic effect for disinfection was observed from the combination of 265 and 280 nm LEDs. 265 nm LEDs had no different reactivation performances with that of LP UV, while 280 nm LEDs could significantly repress photoreactivation and dark repair at a low irradiation intensity of 6.9 mJ/cm 2 . Furthermore, the UV-induced damage of 280 nm LEDs was less repaired which was determined by endonuclease sensitive site (ESS) assay. The impaired protein activities by 280 nm LEDs might be one of the reasons that inhibited reactivation. A new reactivation rate constant, K max , was introduced into the logistic model to simulate the reactivation data, which showed positive relationship with the maximum survival ratio and was more reasonable to interpret the results of photoreactivation and dark repair. This study revealed the distinct roles of different UV lights in disinfection and reactivation, which is helpful for the future design of UV-LED equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.