WorldWideScience

Sample records for rapid identification sequence

  1. Rapid identification of sequences for orphan enzymes to power accurate protein annotation.

    Directory of Open Access Journals (Sweden)

    Kevin R Ramkissoon

    Full Text Available The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the "back catalog" of enzymology--"orphan enzymes," those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC database alone. In this study, we demonstrate how this orphan enzyme "back catalog" is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology's "back catalog" another powerful tool to drive accurate genome annotation.

  2. Rapid Identification of Sequences for Orphan Enzymes to Power Accurate Protein Annotation

    Science.gov (United States)

    Ojha, Sunil; Watson, Douglas S.; Bomar, Martha G.; Galande, Amit K.; Shearer, Alexander G.

    2013-01-01

    The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the “back catalog” of enzymology – “orphan enzymes,” those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme “back catalog” is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology’s “back catalog” another powerful tool to drive accurate genome annotation. PMID:24386392

  3. RUCS: Rapid identification of PCR primers for unique core sequences

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Hasman, Henrik; Westh, Henrik

    2017-01-01

    Designing PCR primers to target a specific selection of whole genome sequenced strains can be a long, arduous, and sometimes impractical task. Such tasks would benefit greatly from an automated tool to both identify unique targets, and to validate the vast number of potential primer pairs...... for the targets in silico . Here we present RUCS, a program that will find PCR primer pairs and probes for the unique core sequences of a positive genome dataset complement to a negative genome dataset. The resulting primer pairs and probes are in addition to simple selection also validated through a complex...... in silico PCR simulation. We compared our method, which identifies the unique core sequences, against an existing tool called ssGeneFinder, and found that our method was 6.5-20 times more sensitive. We used RUCS to design primer pairs that would target a set of genomes known to contain the mcr-1 colistin...

  4. Rapid Identification of Different Escherichia coli Sequence Type 131 Clades.

    Science.gov (United States)

    Matsumura, Yasufumi; Pitout, Johann D D; Peirano, Gisele; DeVinney, Rebekah; Noguchi, Taro; Yamamoto, Masaki; Gomi, Ryota; Matsuda, Tomonari; Nakano, Satoshi; Nagao, Miki; Tanaka, Michio; Ichiyama, Satoshi

    2017-08-01

    Escherichia coli sequence type 131 (ST131) is a pandemic clonal lineage that is responsible for the global increase in fluoroquinolone resistance and extended-spectrum-β-lactamase (ESBL) producers. The members of ST131 clade C, especially subclades C2 and C1-M27, are associated with ESBLs. We developed a multiplex conventional PCR assay with the ability to detect all ST131 clades (A, B, and C), as well as C subclades (C1-M27, C1-nM27 [C1-non-M27], and C2). To validate the assay, we used 80 ST131 global isolates that had been fully sequenced. We then used the assay to define the prevalence of each clade in two Japanese collections consisting of 460 ESBL-producing E. coli ST131 (2001-12) and 329 E. coli isolates from extraintestinal sites (ExPEC) (2014). The assay correctly identified the different clades in all 80 global isolates: clades A ( n = 12), B ( n = 12), and C, including subclades C1-M27 ( n = 16), C1-nM27 ( n = 20), C2 ( n = 17), and other C ( n = 3). The assay also detected all 565 ST131 isolates in both collections without any false positives. Isolates from clades A ( n = 54), B ( n = 23), and C ( n = 483) corresponded to the O serotypes and the fimH types of O16-H41, O25b-H22, and O25b-H30, respectively. Of the 483 clade C isolates, C1-M27 was the most common subclade (36%), followed by C1-nM27 (32%) and C2 (15%). The C1-M27 subclade with bla CTX-M-27 became especially prominent after 2009. Our novel multiplex PCR assay revealed the predominance of the C1-M27 subclade in recent Japanese ESBL-producing E. coli isolates and is a promising tool for epidemiological studies of ST131. Copyright © 2017 American Society for Microbiology.

  5. Age-Related Declines in Early Sensory Memory: Identification of Rapid Auditory and Visual Stimulus Sequences.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E; Busey, Thomas A

    2016-01-01

    Age-related temporal-processing declines of rapidly presented sequences may involve contributions of sensory memory. This study investigated recall for rapidly presented auditory (vowel) and visual (letter) sequences presented at six different stimulus onset asynchronies (SOA) that spanned threshold SOAs for sequence identification. Younger, middle-aged, and older adults participated in all tasks. Results were investigated at both equivalent performance levels (i.e., SOA threshold) and at identical physical stimulus values (i.e., SOAs). For four-item sequences, results demonstrated best performance for the first and last items in the auditory sequences, but only the first item for visual sequences. For two-item sequences, adults identified the second vowel or letter significantly better than the first. Overall, when temporal-order performance was equated for each individual by testing at SOA thresholds, recall accuracy for each position across the age groups was highly similar. These results suggest that modality-specific processing declines of older adults primarily determine temporal-order performance for rapid sequences. However, there is some evidence for a second amodal processing decline in older adults related to early sensory memory for final items in a sequence. This selective deficit was observed particularly for longer sequence lengths and was not accounted for by temporal masking.

  6. Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens.

    Directory of Open Access Journals (Sweden)

    Linxiang Chen

    Full Text Available Conventional Sanger sequencing remains time-consuming and laborious. In this study, we developed a rapid improved sequencing protocol of 16S rRNA for pathogens identification by using a new combination of SYBR Green I real-time PCR and Sanger sequencing with FTA® cards. To compare the sequencing quality of this method with conventional Sanger sequencing, 12 strains, including three kinds of strains (1 reference strain and 3 clinical strains, which were previously identified by biochemical tests, which have 4 Pseudomonas aeruginosa, 4 Staphyloccocus aureus and 4 Escherichia coli, were targeted. Additionally, to validate the sequencing results and bacteria identification, expanded specimens with 90 clinical strains, also comprised of the three kinds of strains which included 30 samples respectively, were performed as just described. The results showed that although statistical differences (P<0.05 were found in sequencing quality between the two methods, their identification results were all correct and consistent. The workload, the time consumption and the cost per batch were respectively light versus heavy, 8 h versus 11 h and $420 versus $400. In the 90 clinical strains, all of the Pseudomonas aeruginosa and Staphyloccocus aureus strains were correctly identified, but only 26.7% of the Escherichia coli strains were recognized as Escherichia coli, while 33.3% as Shigella sonnei and 40% as Shigella dysenteriae. The protocol described here is a rapid, reliable, stable and convenient method for 16S rRNA sequencing, and can be used for Pseudomonas aeruginosa and Staphyloccocus aureus identification, yet it is not completely suitable for discriminating Escherichia coli and Shigella strains.

  7. Lncident: A Tool for Rapid Identification of Long Noncoding RNAs Utilizing Sequence Intrinsic Composition and Open Reading Frame Information

    Directory of Open Access Journals (Sweden)

    Siyu Han

    2016-01-01

    Full Text Available More and more studies have demonstrated that long noncoding RNAs (lncRNAs play critical roles in diversity of biological process and are also associated with various types of disease. How to rapidly identify lncRNAs and messenger RNA is the fundamental step to uncover the function of lncRNAs identification. Here, we present a novel method for rapid identification of lncRNAs utilizing sequence intrinsic composition features and open reading frame information based on support vector machine model, named as Lncident (LncRNAs identification. The 10-fold cross-validation and ROC curve are used to evaluate the performance of Lncident. The main advantage of Lncident is high speed without the loss of accuracy. Compared with the exiting popular tools, Lncident outperforms Coding-Potential Calculator, Coding-Potential Assessment Tool, Coding-Noncoding Index, and PLEK. Lncident is also much faster than Coding-Potential Calculator and Coding-Noncoding Index. Lncident presents an outstanding performance on microorganism, which offers a great application prospect to the analysis of microorganism. In addition, Lncident can be trained by users’ own collected data. Furthermore, R package and web server are simultaneously developed in order to maximize the convenience for the users. The R package “Lncident” can be easily installed on multiple operating system platforms, as long as R is supported.

  8. Direct, rapid RNA sequence analysis

    International Nuclear Information System (INIS)

    Peattie, D.A.

    1987-01-01

    The original methods of RNA sequence analysis were based on enzymatic production and chromatographic separation of overlapping oligonucleotide fragments from within an RNA molecule followed by identification of the mononucleotides comprising the oligomer. Over the past decade the field of nucleic acid sequencing has changed dramatically, however, and RNA molecules now can be sequenced in a variety of more streamlined fashions. Most of the more recent advances in RNA sequencing have involved one-dimensional electrophoretic separation of 32 P-end-labeled oligoribonucleotides on polyacrylamide gels. In this chapter the author discusses two of these methods for determining the nucleotide sequences of RNA molecules rapidly: the chemical method and the enzymatic method. Both methods are direct and degradative, i.e., they rely on fragmatic and chemical approaches should be utilized. The single-strand-specific ribonucleases (A, T 1 , T 2 , and S 1 ) provide an efficient means to locate double-helical regions rapidly, and the chemical reactions provide a means to determine the RNA sequence within these regions. In addition, the chemical reactions allow one to assign interactions to specific atoms and to distinguish secondary interactions from tertiary ones. If the RNA molecule is small enough to be sequenced directly by the enzymatic or chemical method, the probing reactions can be done easily at the same time as sequencing reactions

  9. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.

    Science.gov (United States)

    Huo, Heqiang; Henry, Isabelle M; Coppoolse, Eric R; Verhoef-Post, Miriam; Schut, Johan W; de Rooij, Han; Vogelaar, Aat; Joosen, Ronny V L; Woudenberg, Leo; Comai, Luca; Bradford, Kent J

    2016-11-01

    Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single-nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild-type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  11. Low-pass shotgun sequencing of the barley genome facilitates rapid identification of genes, conserved non-coding sequences and novel repeats

    Directory of Open Access Journals (Sweden)

    Graner Andreas

    2008-10-01

    Full Text Available Abstract Background Barley has one of the largest and most complex genomes of all economically important food crops. The rise of new short read sequencing technologies such as Illumina/Solexa permits such large genomes to be effectively sampled at relatively low cost. Based on the corresponding sequence reads a Mathematically Defined Repeat (MDR index can be generated to map repetitive regions in genomic sequences. Results We have generated 574 Mbp of Illumina/Solexa sequences from barley total genomic DNA, representing about 10% of a genome equivalent. From these sequences we generated an MDR index which was then used to identify and mark repetitive regions in the barley genome. Comparison of the MDR plots with expert repeat annotation drawing on the information already available for known repetitive elements revealed a significant correspondence between the two methods. MDR-based annotation allowed for the identification of dozens of novel repeat sequences, though, which were not recognised by hand-annotation. The MDR data was also used to identify gene-containing regions by masking of repetitive sequences in eight de-novo sequenced bacterial artificial chromosome (BAC clones. For half of the identified candidate gene islands indeed gene sequences could be identified. MDR data were only of limited use, when mapped on genomic sequences from the closely related species Triticum monococcum as only a fraction of the repetitive sequences was recognised. Conclusion An MDR index for barley, which was obtained by whole-genome Illumina/Solexa sequencing, proved as efficient in repeat identification as manual expert annotation. Circumventing the labour-intensive step of producing a specific repeat library for expert annotation, an MDR index provides an elegant and efficient resource for the identification of repetitive and low-copy (i.e. potentially gene-containing sequences regions in uncharacterised genomic sequences. The restriction that a particular

  12. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    OpenAIRE

    Farkhondeh Saba; Moslem Papizadeh; Javad Khansha; Mahshid Sedghi; Mehrnoosh Rasooli; Mohammad Ali Amoozegar; Mohammad Reza Soudi; Seyed Abolhassan Shahzadeh Fazeli

    2016-01-01

    Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR). Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Me...

  13. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2017-01-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  14. A Rapid and Reproducible Genomic DNA Extraction Protocol for Sequence-Based Identification of Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and Green Algae

    Directory of Open Access Journals (Sweden)

    Farkhondeh Saba

    2016-09-01

    Full Text Available Background:  Sequence-based identification of various microorganisms including Archaea, Bacteria, Cyanobacteria, Diatoms, Fungi, and green algae necessitates an efficient and reproducible genome extraction procedure though which a pure template DNA is yielded and it can be used in polymerase chain reactions (PCR. Considering the fact that DNA extraction from these microorganisms is time consuming and laborious, we developed and standardized a safe, rapid and inexpensive miniprep protocol. Methods:  According to our results, amplification of various genomic regions including SSU, LSU, ITS, β-tubulin, actin, RPB2, and EF-1 resulted in a reproducible and efficient DNA extraction from a wide range of microorganisms yielding adequate pure genomic material for reproducible PCR-amplifications. Results:   This method relies on a temporary shock of increased concentrations of detergent which can be applied concomitant with multiple freeze-thaws to yield sufficient amount of DNA for PCR amplification of multiple or single fragments(s of the genome. As an advantage, the recipe seems very flexible, thus, various optional steps can be included depending on the samples used.Conclusion:   Having the needed flexibility in each step, this protocol is applicable on a very wide range of samples. Hence, various steps can be included depending on the desired quantity and quality.

  15. Rapid Diagnostics of Onboard Sequences

    Science.gov (United States)

    Starbird, Thomas W.; Morris, John R.; Shams, Khawaja S.; Maimone, Mark W.

    2012-01-01

    Keeping track of sequences onboard a spacecraft is challenging. When reviewing Event Verification Records (EVRs) of sequence executions on the Mars Exploration Rover (MER), operators often found themselves wondering which version of a named sequence the EVR corresponded to. The lack of this information drastically impacts the operators diagnostic capabilities as well as their situational awareness with respect to the commands the spacecraft has executed, since the EVRs do not provide argument values or explanatory comments. Having this information immediately available can be instrumental in diagnosing critical events and can significantly enhance the overall safety of the spacecraft. This software provides auditing capability that can eliminate that uncertainty while diagnosing critical conditions. Furthermore, the Restful interface provides a simple way for sequencing tools to automatically retrieve binary compiled sequence SCMFs (Space Command Message Files) on demand. It also enables developers to change the underlying database, while maintaining the same interface to the existing applications. The logging capabilities are also beneficial to operators when they are trying to recall how they solved a similar problem many days ago: this software enables automatic recovery of SCMF and RML (Robot Markup Language) sequence files directly from the command EVRs, eliminating the need for people to find and validate the corresponding sequences. To address the lack of auditing capability for sequences onboard a spacecraft during earlier missions, extensive logging support was added on the Mars Science Laboratory (MSL) sequencing server. This server is responsible for generating all MSL binary SCMFs from RML input sequences. The sequencing server logs every SCMF it generates into a MySQL database, as well as the high-level RML file and dictionary name inputs used to create the SCMF. The SCMF is then indexed by a hash value that is automatically included in all command

  16. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  17. Memory and learning with rapid audiovisual sequences

    Science.gov (United States)

    Keller, Arielle S.; Sekuler, Robert

    2015-01-01

    We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed. PMID:26575193

  18. Memory and learning with rapid audiovisual sequences.

    Science.gov (United States)

    Keller, Arielle S; Sekuler, Robert

    2015-01-01

    We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed.

  19. Rapid-Sequence Serial Sexual Homicides.

    Science.gov (United States)

    Schlesinger, Louis B; Ramirez, Stephanie; Tusa, Brittany; Jarvis, John P; Erdberg, Philip

    2017-03-01

    Serial sexual murderers have been described as committing homicides in a methodical manner, taking substantial time between offenses to elude the authorities. The results of our study of the temporal patterns (i.e., the length of time between homicides) of a nonrandom national sample of 44 serial sexual murderers and their 201 victims indicate that this representation may not always be accurate. Although 25 offenders (56.8%) killed with longer than a 14-day period between homicides, a sizeable subgroup was identified: 19 offenders (43.2%) who committed homicides in rapid-sequence fashion, with fewer than 14 days between all or some of the murders. Six offenders (13.6%) killed all their victims in one rapid-sequence, spree-like episode, with homicides just days apart or sometimes two murders in the same day. Thirteen offenders (29.5%) killed in one or two rapid-sequence clusters (i.e., more than one murder within a 14-day period, as well as additional homicides with greater than 14 days between each). The purpose of our study was to describe this subgroup of rapid-sequence offenders who have not been identified until now. These findings argue for accelerated forensic assessments of dangerousness and public safety when a sexual murder is detected. Psychiatric disorders with rapidly occurring symptom patterns, or even atypical mania or mood dysregulation, may serve as exemplars for understanding this extraordinary group of offenders. © 2017 American Academy of Psychiatry and the Law.

  20. Analysis of Pteridium ribosomal RNA sequences by rapid direct sequencing.

    Science.gov (United States)

    Tan, M K

    1991-08-01

    A total of 864 bases from 5 regions interspersed in the 18S and 26S rRNA molecules from various clones of Pteridium covering the general geographical distribution of the genus was analysed using a rapid rRNA sequencing technique. No base difference has been detected amongst the three major lineages, two of which apparently separated before the breakup of the ancient supercontinent, Pangaea. These regions of the rRNA sequences have thus been conserved for at least 160 million years and are here compared with other eukaryotic, especially plant rRNAs.

  1. A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences.

    Science.gov (United States)

    Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X

    2008-06-01

    Species-specific primers targeting the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough. The 16S-23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388-1406 of the 16S rRNA gene and to positions 207-189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331). Clone libraries of the resulting amplicons were constructed using a pCR2.1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S-23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNA(Ile) and tRNA(Ala) genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested. Designed species-specific primers enable a rapid and accurate identification of L. mindensis, L. paralimentarius, L. panis, L. pontis and L. frumenti species among other lactobacilli. The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.

  2. Rapid identification and recovery of ENU-induced mutations with next-generation sequencing and Paired-End Low-Error analysis.

    Science.gov (United States)

    Pan, Luyuan; Shah, Arish N; Phelps, Ian G; Doherty, Dan; Johnson, Eric A; Moens, Cecilia B

    2015-02-14

    Targeting Induced Local Lesions IN Genomes (TILLING) is a reverse genetics approach to directly identify point mutations in specific genes of interest in genomic DNA from a large chemically mutagenized population. Classical TILLING processes, based on enzymatic detection of mutations in heteroduplex PCR amplicons, are slow and labor intensive. Here we describe a new TILLING strategy in zebrafish using direct next generation sequencing (NGS) of 250 bp amplicons followed by Paired-End Low-Error (PELE) sequence analysis. By pooling a genomic DNA library made from over 9,000 N-ethyl-N-nitrosourea (ENU) mutagenized F1 fish into 32 equal pools of 288 fish, each with a unique Illumina barcode, we reduce the complexity of the template to a level at which we can detect mutations that occur in a single heterozygous fish in the entire library. MiSeq sequencing generates 250 base-pair overlapping paired-end reads, and PELE analysis aligns the overlapping sequences to each other and filters out any imperfect matches, thereby eliminating variants introduced during the sequencing process. We find that this filtering step reduces the number of false positive calls 50-fold without loss of true variant calls. After PELE we were able to validate 61.5% of the mutant calls that occurred at a frequency between 1 mutant call:100 wildtype calls and 1 mutant call:1000 wildtype calls in a pool of 288 fish. We then use high-resolution melt analysis to identify the single heterozygous mutation carrier in the 288-fish pool in which the mutation was identified. Using this NGS-TILLING protocol we validated 28 nonsense or splice site mutations in 20 genes, at a two-fold higher efficiency than using traditional Cel1 screening. We conclude that this approach significantly increases screening efficiency and accuracy at reduced cost and can be applied in a wide range of organisms.

  3. High-Throughput Block Optical DNA Sequence Identification.

    Science.gov (United States)

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Rapid resistome mapping using nanopore sequencing.

    Science.gov (United States)

    van der Helm, Eric; Imamovic, Lejla; Hashim Ellabaan, Mostafa M; van Schaik, Willem; Koza, Anna; Sommer, Morten O A

    2017-05-05

    The emergence of antibiotic resistance in human pathogens has become a major threat to modern medicine. The outcome of antibiotic treatment can be affected by the composition of the gut. Accordingly, knowledge of the gut resistome composition could enable more effective and individualized treatment of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut resistome of an ICU (intensive care unit) patient. The accuracy of the poreFUME pipeline is with >97% sufficient for the annotation of antibiotic resistance genes. The poreFUME pipeline provides a promising approach for efficient resistome profiling that could inform antibiotic treatment decisions in the future. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Genome-wide ENU mutagenesis in combination with high density SNP analysis and exome sequencing provides rapid identification of novel mouse models of developmental disease.

    Directory of Open Access Journals (Sweden)

    Georgina Caruana

    Full Text Available Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU.ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS we identified novel recessive alleles for Fras1, Ift140 and Lig1.In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.

  6. Rapid whole genome sequencing and precision neonatology.

    Science.gov (United States)

    Petrikin, Joshua E; Willig, Laurel K; Smith, Laurie D; Kingsmore, Stephen F

    2015-12-01

    Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of the currently identified 5588 single gene diseases. When applied to a select population of ill infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic disease in 57% of patients. These diagnoses may lead to clinical management changes ranging from transition to palliative care for uniformly lethal conditions for alteration or initiation of medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time of acute presentation opens the possibility of early implementation of precision medicine. This implementation may create opportunities for early interventional, frequently novel or off-label therapies that may alter disease trajectory in infants with what would otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of incidental findings related to adult onset conditions and carrier status, and implementation of medical therapies for which little is known in terms of risks and benefits. Despite these challenges, precision neonatology has significant potential both to decrease infant mortality related to genetic diseases with onset in newborns and to facilitate parental decision making regarding transition to palliative care. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Rapid identification of staphylococci by Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rebrošová, K.; Šiler, Martin; Samek, Ota; Růžička, F.; Bernatová, Silvie; Holá, V.; Ježek, Jan; Zemánek, Pavel; Sokolová, J.; Petráš, P.

    2017-01-01

    Roč. 7, NOV (2017), s. 1-8, č. článku 14846. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA15-20645S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : coagulase-negative staphylococci * Raman spectroscopy * rapid identification Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.259, year: 2016

  8. Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery

    Directory of Open Access Journals (Sweden)

    Kirkness Ewen

    2006-10-01

    Full Text Available Abstract Background Population genetic studies of dogs have so far mainly been based on analysis of mitochondrial DNA, describing only the history of female dogs. To get a picture of the male history, as well as a second independent marker, there is a need for studies of biallelic Y-chromosome polymorphisms. However, there are no biallelic polymorphisms reported, and only 3200 bp of non-repetitive dog Y-chromosome sequence deposited in GenBank, necessitating the identification of dog Y chromosome sequence and the search for polymorphisms therein. The genome has been only partially sequenced for one male dog, disallowing mapping of the sequence into specific chromosomes. However, by comparing the male genome sequence to the complete female dog genome sequence, candidate Y-chromosome sequence may be identified by exclusion. Results The male dog genome sequence was analysed by Blast search against the human genome to identify sequences with a best match to the human Y chromosome and to the female dog genome to identify those absent in the female genome. Candidate sequences were then tested for male specificity by PCR of five male and five female dogs. 32 sequences from the male genome, with a total length of 24 kbp, were identified as male specific, based on a match to the human Y chromosome, absence in the female dog genome and male specific PCR results. 14437 bp were then sequenced for 10 male dogs originating from Europe, Southwest Asia, Siberia, East Asia, Africa and America. Nine haplotypes were found, which were defined by 14 substitutions. The genetic distance between the haplotypes indicates that they originate from at least five wolf haplotypes. There was no obvious trend in the geographic distribution of the haplotypes. Conclusion We have identified 24159 bp of dog Y-chromosome sequence to be used for population genetic studies. We sequenced 14437 bp in a worldwide collection of dogs, identifying 14 SNPs for future SNP analyses, and

  9. Nanopore Sequencing as a Rapidly Deployable Ebola Outbreak Tool.

    Science.gov (United States)

    Hoenen, Thomas; Groseth, Allison; Rosenke, Kyle; Fischer, Robert J; Hoenen, Andreas; Judson, Seth D; Martellaro, Cynthia; Falzarano, Darryl; Marzi, Andrea; Squires, R Burke; Wollenberg, Kurt R; de Wit, Emmie; Prescott, Joseph; Safronetz, David; van Doremalen, Neeltje; Bushmaker, Trenton; Feldmann, Friederike; McNally, Kristin; Bolay, Fatorma K; Fields, Barry; Sealy, Tara; Rayfield, Mark; Nichol, Stuart T; Zoon, Kathryn C; Massaquoi, Moses; Munster, Vincent J; Feldmann, Heinz

    2016-02-01

    Rapid sequencing of RNA/DNA from pathogen samples obtained during disease outbreaks provides critical scientific and public health information. However, challenges exist for exporting samples to laboratories or establishing conventional sequencers in remote outbreak regions. We successfully used a novel, pocket-sized nanopore sequencer at a field diagnostic laboratory in Liberia during the current Ebola virus outbreak.

  10. Rapid lard identification with portable electronic nose

    Science.gov (United States)

    Latief, Marsad; Khorsidtalab, Aida; Saputra, Irwan; Akmeliawati, Rini; Nurashikin, Anis; Jaswir, Irwandi; Witjaksono, Gunawan

    2017-11-01

    Human sensory systems are limited in many different regards, yet they are great sources of inspiration for development of technologies that help humans to overcome their restraints. This paper signifies the capability of our developed electronic nose in rapid lard identification. The developed device, known as E-Nose, mimics human’s olfactory system’s technique to identify a particular substance. Lard is a common pig derivative which is often used as a food additive, emulsion or shortening. It’s also commonly used as an adulterant or as an alternative for cooking oils, margarine and butter. This substance is prohibited to be consumed by Muslims and Orthodox Jews for religious reasons. A portable reliable device with an ability to identify lard rapidly can be convenient to users concerned about lard adulteration. The prototype was examined using K-Nearest Neighbors algorithm (KNN), Support Vector Machine (SVM), Bagged Trees and Simple Tree, and can identify lard with the highest accuracy of 95.6% among three types of fat (lard, chicken and beef) in liquid form over a certain range of temperature using KNN.

  11. Rapid Molecular Identification of Human Taeniid Cestodes by Pyrosequencing Approach

    Science.gov (United States)

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M.; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2014-01-01

    Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse. PMID:24945530

  12. Rapid molecular identification of human taeniid cestodes by pyrosequencing approach.

    Directory of Open Access Journals (Sweden)

    Tongjit Thanchomnang

    Full Text Available Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1 gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse.

  13. Rapid Methods for the Laboratory Identification of Pathogenic Microorganisms.

    Science.gov (United States)

    1982-09-01

    coli Hemophilus influenzae Bacillus anthracis Bacillus circulans Bacillus coagulans Bacillus cereus T Candida albicans Cryptococcus neoformans Legionel...reveree aide If neceeeary and Identify by block number) Lectins: Rapid Identification, Bacillus anthracisjCryptococcus " neoformans. Neisseria...field-type kit for the rapid identification of Bacillus anthracis. We have shown that certain lectins will selectively interact with B. anthracis

  14. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    Science.gov (United States)

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  15. Cover song identification by sequence alignment algorithms

    Science.gov (United States)

    Wang, Chih-Li; Zhong, Qian; Wang, Szu-Ying; Roychowdhury, Vwani

    2011-10-01

    Content-based music analysis has drawn much attention due to the rapidly growing digital music market. This paper describes a method that can be used to effectively identify cover songs. A cover song is a song that preserves only the crucial melody of its reference song but different in some other acoustic properties. Hence, the beat/chroma-synchronous chromagram, which is insensitive to the variation of the timber or rhythm of songs but sensitive to the melody, is chosen. The key transposition is achieved by cyclically shifting the chromatic domain of the chromagram. By using the Hidden Markov Model (HMM) to obtain the time sequences of songs, the system is made even more robust. Similar structure or length between the cover songs and its reference are not necessary by the Smith-Waterman Alignment Algorithm.

  16. Passive IFF: Autonomous Nonintrusive Rapid Identification of Friendly Assets

    Science.gov (United States)

    Moynihan, Philip; Steenburg, Robert Van; Chao, Tien-Hsin

    2004-01-01

    A proposed optoelectronic instrument would identify targets rapidly, without need to radiate an interrogating signal, apply identifying marks to the targets, or equip the targets with transponders. The instrument was conceived as an identification, friend or foe (IFF) system in a battlefield setting, where it would be part of a targeting system for weapons, by providing rapid identification for aimed weapons to help in deciding whether and when to trigger them. The instrument could also be adapted to law-enforcement and industrial applications in which it is necessary to rapidly identify objects in view. The instrument would comprise mainly an optical correlator and a neural processor (see figure). The inherent parallel-processing speed and capability of the optical correlator would be exploited to obtain rapid identification of a set of probable targets within a scene of interest and to define regions within the scene for the neural processor to analyze. The neural processor would then concentrate on each region selected by the optical correlator in an effort to identify the target. Depending on whether or not a target was recognized by comparison of its image data with data in an internal database on which the neural processor was trained, the processor would generate an identifying signal (typically, friend or foe ). The time taken for this identification process would be less than the time needed by a human or robotic gunner to acquire a view of, and aim at, a target. An optical correlator that has been under development for several years and that has been demonstrated to be capable of tracking a cruise missile might be considered a prototype of the optical correlator in the proposed IFF instrument. This optical correlator features a 512-by-512-pixel input image frame and operates at an input frame rate of 60 Hz. It includes a spatial light modulator (SLM) for video-to-optical image conversion, a pair of precise lenses to effect Fourier transforms, a filter SLM

  17. Rapid Multiplex Small DNA Sequencing on the MinION Nanopore Sequencing Platform

    Directory of Open Access Journals (Sweden)

    Shan Wei

    2018-05-01

    Full Text Available Real-time sequencing of short DNA reads has a wide variety of clinical and research applications including screening for mutations, target sequences and aneuploidy. We recently demonstrated that MinION, a nanopore-based DNA sequencing device the size of a USB drive, could be used for short-read DNA sequencing. In this study, an ultra-rapid multiplex library preparation and sequencing method for the MinION is presented and applied to accurately test normal diploid and aneuploidy samples’ genomic DNA in under three hours, including library preparation and sequencing. This novel method shows great promise as a clinical diagnostic test for applications requiring rapid short-read DNA sequencing.

  18. Identification of Meconopsis species by a DNA barcode sequence ...

    African Journals Online (AJOL)

    Deoxyribonucleic acid (DNA) barcoding is a novel technology that uses a standard DNA sequence to facilitate species identification. Species identification is necessary for the authentication of traditional plant based medicines. Although a consensus has not been agreed regarding which DNA sequences can be used as ...

  19. Rapid identification of ST131 Escherichia coli by a novel multiplex real-time allelic discrimination assay.

    Science.gov (United States)

    François, Patrice; Bonetti, Eve-Julie; Fankhauser, Carolina; Baud, Damien; Cherkaoui, Abdessalam; Schrenzel, Jacques; Harbarth, Stephan

    2017-09-01

    Escherichia coli sequence type 131 is increasingly described in severe hospital infections. We developed a rapid real-time allelic discrimination assay for the rapid identification of E. coli ST131 isolates. This rapid assay represents an affordable alternative to sequence-based strategies before completing characterization of potentially highly virulent isolates of E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Rapid Identification of Bacterial Virulence Factors

    Science.gov (United States)

    2014-04-15

    protein sorting and transport. F/’/wyi-deletion mutants had decreased invasiveness of HeLa cells when compared to their parental strain, and it has...mileux. Bacteria with intracellular life styles and have reductive genomes often have many different ABC transporters. This is certainly the case in...34 Microbiology 151:2975-2986. Newman , R.M., P. Salunkhe, A. Godzik, J.C. Reed. 2006. Identification and Characterization of a Novel Bacterial

  1. The rapid identification for the unaware radioactive material

    International Nuclear Information System (INIS)

    Jin Yuren; Cheng Zhiwei; Xu Hui; Wang Jiang; Han Xiaoyuan; Long Bin

    2010-01-01

    The unaware radioactive material(URM) appeared in the society may induce serious deterministic effect, even result in havoc and instability of the society. The rapid and accurate identification for URM is the premise for its reasonable treatment. In this paper, an identification procedure for URM was developed and which was successfully implemented in the identification of an URM. The In-situ HPGe gamma spectrometry etc was employed for the rapid preliminary identification, and the laboratory HPGe gamma spectrometry and ICP-MS as well as the density measurement were used for its final identification. One unaware radioactive material was assayed, and the results indicate that it is a kind of high pure depleted uranium metal with the 235 U/ 238 U atomic ratio of 0.454%. (authors)

  2. Pleiades rapid rotators - evidence for an evolutionary sequence

    International Nuclear Information System (INIS)

    Butler, R.P.; Marcy, G.W.; Cohen, R.D.; Duncan, D.K.; California Univ., La Jolla; Space Telescope Science Institute, Baltimore, MD)

    1987-01-01

    Four rapidly rotating early-K dwarfs in the Pleiades are shown to contain an order of magnitude more Li than four slow rotators of the same spectral type, as would be expected if they were systematically younger. This supports the idea that late-type stars first arrive on the main sequence with V(rot) greater than about 100 km/s, that they spin down to V(rot) less than about 10 km/s in 10 to the 7th to 10 to the 8th yr, and that the Pleiades lower main sequence shows such an age spread. 14 references

  3. Failed rapid sequence induction in an achondroplastic dwarf

    Directory of Open Access Journals (Sweden)

    Jasleen Kaur

    2011-01-01

    Full Text Available Achondroplasia, a common cause of short limbed type of dwarfism is due to quantitative decrease in rate of endochondral ossification. This abnormal bone growth leads to disproportionate body and head structure, thus placing them under high risk for anaesthetic management. There is paucity in literatures, regarding appropriate drug dosage selection in these patients. Use of drugs as per standard dosage recommendations based on body weight or body surface area, may not be adequate in these patients owing to discrepancies in overall body weight and lean body weight, especially during rapid sequence induction. Here, we report a case of failed rapid sequence induction due to abnormal response to administered drugs in an adult achondroplastic dwarf. Standard doses of thiopentone and rocuronium had to be repeated thrice to achieve adequate conditions for intubation.

  4. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  5. Development of rapid phenotypic system for the identification

    Indian Academy of Sciences (India)

    Rapid and accurate identification of bacterial pathogens is a fundamental goal of clinical microbiology. The diagnosis and surveillance of diseases is dependent, to a great extent, on laboratory services, which cannot function without effective reliable reagents and diagnostics. Despite the advancement in microbiology ...

  6. Ultra-modified rapid sequence induction with transnasal humidified rapid insufflation ventilatory exchange: Challenging convention

    Directory of Open Access Journals (Sweden)

    Ketan Sakharam Kulkarni

    2018-01-01

    Full Text Available During positive pressure ventilation, gastric inflation and subsequent pulmonary aspiration can occur. Rapid sequence induction (RSI technique is an age-old formula to prevent this. We adopted a novel approach of RSI for patients with high risk of aspiration and evaluated it further in patients undergoing laparoscopic surgeries. We believe that, in patients with risk of gastric insufflation and pulmonary aspiration, transnasal humidified rapid-insufflation ventilatory exchange can be useful in facilitating pre- and apnoeic oxygenation till tracheal isolation is achieved.

  7. Rapid and accurate identification of Streptococcus equi subspecies by MALDI-TOF MS

    DEFF Research Database (Denmark)

    Kudirkiene, Egle; Welker, Martin; Knudsen, Nanna Reumert

    2015-01-01

    phenotypic and sequence similarity between three subspecies their discrimination remains difficult. In this study, we aimed to design and validate a novel, Superspectra based, MALDI-TOF MS approach for reliable, rapid and cost-effective identification of SEE and SEZ, the most frequent S. equi subspecies.......3±7.5%). This result may be attributed to the highly clonal population structure of SEE, as opposed to the diversity of SEZ seen in horses. Importantly strains with atypical colony appearance both within SEE and SEZ did not affect correct identification of the strains by MALDI-TOF MS. Atypical colony variants...... are often associated with a higher persistence or virulence of S. equi, thus their correct identification using the current method strengthens its potential use in routine clinical diagnostics. In conclusion, reliable identification of S. equi subspecies was achieved by combining a MALDI-TOF MS method...

  8. Multilocus sequence typing of Pseudomonas syringae sensu lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley.

    Science.gov (United States)

    Bull, Carolee T; Clarke, Christopher R; Cai, Rongman; Vinatzer, Boris A; Jardini, Teresa M; Koike, Steven T

    2011-07-01

    Since 2002, severe leaf spotting on parsley (Petroselinum crispum) has occurred in Monterey County, CA. Either of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from eight distinct outbreaks and once from the same outbreak. Fragment analysis of DNA amplified between repetitive sequence polymerase chain reaction; 16S rDNA sequence analysis; and biochemical, physiological, and host range tests identified the pathogens as Pseudomonas syringae pv. apii and P. syringae pv. coriandricola. Koch's postulates were completed for the isolates from parsley, and host range tests with parsley isolates and pathotype strains demonstrated that P. syringae pv. apii and P. syringae pv. coriandricola cause leaf spot diseases on parsley, celery, and coriander or cilantro. In a multilocus sequence typing (MLST) approach, four housekeeping gene fragments were sequenced from 10 strains isolated from parsley and 56 pathotype strains of P. syringae. Allele sequences were uploaded to the Plant-Associated Microbes Database and a phylogenetic tree was built based on concatenated sequences. Tree topology directly corresponded to P. syringae genomospecies and P. syringae pv. apii was allocated appropriately to genomospecies 3. This is the first demonstration that MLST can accurately allocate new pathogens directly to P. syringae sensu lato genomospecies. According to MLST, P. syringae pv. coriandricola is a member of genomospecies 9, P. cannabina. In a blind test, both P. syringae pv. coriandricola and P. syringae pv. apii isolates from parsley were correctly identified to pathovar. In both cases, MLST described diversity within each pathovar that was previously unknown.

  9. Centrifuge: rapid and sensitive classification of metagenomic sequences.

    Science.gov (United States)

    Kim, Daehwan; Song, Li; Breitwieser, Florian P; Salzberg, Steven L

    2016-12-01

    Centrifuge is a novel microbial classification engine that enables rapid, accurate, and sensitive labeling of reads and quantification of species on desktop computers. The system uses an indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-Manzini (FM) index, optimized specifically for the metagenomic classification problem. Centrifuge requires a relatively small index (4.2 GB for 4078 bacterial and 200 archaeal genomes) and classifies sequences at very high speed, allowing it to process the millions of reads from a typical high-throughput DNA sequencing run within a few minutes. Together, these advances enable timely and accurate analysis of large metagenomics data sets on conventional desktop computers. Because of its space-optimized indexing schemes, Centrifuge also makes it possible to index the entire NCBI nonredundant nucleotide sequence database (a total of 109 billion bases) with an index size of 69 GB, in contrast to k-mer-based indexing schemes, which require far more extensive space. © 2016 Kim et al.; Published by Cold Spring Harbor Laboratory Press.

  10. RAMBO-K: Rapid and Sensitive Removal of Background Sequences from Next Generation Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Simon H Tausch

    Full Text Available The assembly of viral or endosymbiont genomes from Next Generation Sequencing (NGS data is often hampered by the predominant abundance of reads originating from the host organism. These reads increase the memory and CPU time usage of the assembler and can lead to misassemblies.We developed RAMBO-K (Read Assignment Method Based On K-mers, a tool which allows rapid and sensitive removal of unwanted host sequences from NGS datasets. Reaching a speed of 10 Megabases/s on 4 CPU cores and a standard hard drive, RAMBO-K is faster than any tool we tested, while showing a consistently high sensitivity and specificity across different datasets.RAMBO-K rapidly and reliably separates reads from different species without data preprocessing. It is suitable as a straightforward standard solution for workflows dealing with mixed datasets. Binaries and source code (java and python are available from http://sourceforge.net/projects/rambok/.

  11. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    Science.gov (United States)

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  12. Two rapid pigmentation tests for identification of Cryptococcus neoformans.

    Science.gov (United States)

    Kaufmann, C S; Merz, W G

    1982-01-01

    Two tests were developed for the rapid identification of Cryptococcus neoformans based on pigment produced by the organism's phenoloxidase activity. Caffeic acid was incorporated into cornmeal agar, a medium used routinely for yeast identification. When tested on this medium, only C. neoformans isolates produced brown pigment. All other yeasts maintained their normal morphology and did not produce the reaction product. A non-medium-based test was developed for same-day identification of C. neoformans isolates. Paper strips saturated with a buffered L-beta-3,4-dihydroxyphenylalanine-ferric citrate solution were inoculated with isolates and incubated at 37 degrees C. Pigment production occurred only with C. neoformans isolates, many within 60 to 90 min. All other yeasts remained negative. PMID:7040452

  13. Rapid sequence induction has no use in pediatric anesthesia.

    Science.gov (United States)

    Engelhardt, Thomas

    2015-01-01

    (Classic) rapid sequence induction and intubation (RSII) has been considered fundamental to the provision of safe anesthesia. This technique consists of a combination of drugs and techniques and is intended to prevent pulmonary aspiration of gastric content with catastrophic outcomes to the patient. This review investigates aspects of this technique and highlights dangers and frauds if this technique is transferred directly into pediatric anesthesia practice. The author recommends a controlled anesthesia induction by trained pediatric anesthesiologist with suitable equipment for the children considered at risk of pulmonary aspiration. RSSI is a dangerous technique if adopted without modification into pediatric anesthesia and has in its 'classic' form no use. © 2014 John Wiley & Sons Ltd.

  14. Rapid evaluation and quality control of next generation sequencing data with FaQCs.

    Science.gov (United States)

    Lo, Chien-Chi; Chain, Patrick S G

    2014-11-19

    Next generation sequencing (NGS) technologies that parallelize the sequencing process and produce thousands to millions, or even hundreds of millions of sequences in a single sequencing run, have revolutionized genomic and genetic research. Because of the vagaries of any platform's sequencing chemistry, the experimental processing, machine failure, and so on, the quality of sequencing reads is never perfect, and often declines as the read is extended. These errors invariably affect downstream analysis/application and should therefore be identified early on to mitigate any unforeseen effects. Here we present a novel FastQ Quality Control Software (FaQCs) that can rapidly process large volumes of data, and which improves upon previous solutions to monitor the quality and remove poor quality data from sequencing runs. Both the speed of processing and the memory footprint of storing all required information have been optimized via algorithmic and parallel processing solutions. The trimmed output compared side-by-side with the original data is part of the automated PDF output. We show how this tool can help data analysis by providing a few examples, including an increased percentage of reads recruited to references, improved single nucleotide polymorphism identification as well as de novo sequence assembly metrics. FaQCs combines several features of currently available applications into a single, user-friendly process, and includes additional unique capabilities such as filtering the PhiX control sequences, conversion of FASTQ formats, and multi-threading. The original data and trimmed summaries are reported within a variety of graphics and reports, providing a simple way to do data quality control and assurance.

  15. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.

    Science.gov (United States)

    Wala, Jeremiah; Beroukhim, Rameen

    2017-03-01

    We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  16. Continuous-Flow Detector for Rapid Pathogen Identification

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Louise M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Skulan, Andrew J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Singh, Anup K. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Cummings, Eric B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Fiechtner, Gregory J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  17. Peptomics, identification of novel cationic Arabidopsis peptides with conserved sequence motifs

    DEFF Research Database (Denmark)

    Olsen, Addie Nina; Mundy, John; Skriver, Karen

    2002-01-01

    Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence...... similarity to Rapid Alkalinization Factor (RALF), a peptide isolated from tobacco. We therefore refer to this peptide family as RALFL for RALF-Like. RT-PCR analysis confirmed that several of the Arabidopsis genes are expressed and that their expression patterns vary. The identification of a large gene family...

  18. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    Science.gov (United States)

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  19. Rapid molecular identification and characteristics of Lactobacillus strains.

    Science.gov (United States)

    Markiewicz, L H; Biedrzycka, E; Wasilewska, E; Bielecka, M

    2010-09-01

    Eleven type strains and 24 Lactobacillus isolates, preliminarily classified to the species due to phenotypic features, were investigated. Standard methods of identification with species-specific PCRs and typing with PFGE (with ApaI, NotI and SmaI restriction enzymes) allowed us to distinguish 16 unique strains belonging to 5 species (L. acidophilus, L. delbrueckii ssp. bulgaricus, L. plantarum, L. rhamnosus, L. salivarius). Alternative approach with 16S-23S rDNA ARDRA identification (with merely two restrictases, BsuRI and TaqI) and PCR-based typing (RAPD with two random- and rep-PCR with (GTG)(5) primers) showed to be more discriminative, i.e. 21 unique strains were classified in the same species as above. As a result, 7 out of 24 phenotypically species-assigned isolates were reclassified. The alternative procedure of rapid identification and typing of Lactobacillus isolates appeared to be equally effective and shortened from 1 week to 2-3 d (in comparison to the standard methods).

  20. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences

    Directory of Open Access Journals (Sweden)

    Heubl Günther

    2010-11-01

    Full Text Available Abstract Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a

  1. Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences

    Science.gov (United States)

    2010-01-01

    Background In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales. The multiple independent evolution of the carnivorous syndrome, once in Lentibulariaceae and a second time in Byblidaceae, is strongly supported by all analyses and topological tests. The evolution of selected morphological characters such as flower symmetry is discussed. The addition of further sequence data from introns and spacers holds promise to eventually obtain a fully resolved plastid tree of

  2. Flanking sequence determination and specific PCR identification of transgenic wheat B102-1-2.

    Science.gov (United States)

    Cao, Jijuan; Xu, Junyi; Zhao, Tongtong; Cao, Dongmei; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2014-01-01

    The exogenous fragment sequence and flanking sequence between the exogenous fragment and recombinant chromosome of transgenic wheat B102-1-2 were successfully acquired using genome walking technology. The newly acquired exogenous fragment encoded the full-length sequence of transformed genes with transformed plasmid and corresponding functional genes including ubi, vector pBANF-bar, vector pUbiGUSPlus, vector HSP, reporter vector pUbiGUSPlus, promoter ubiquitin, and coli DH1. A specific polymerase chain reaction (PCR) identification method for transgenic wheat B102-1-2 was established on the basis of designed primers according to flanking sequence. This established specific PCR strategy was validated by using transgenic wheat, transgenic corn, transgenic soybean, transgenic rice, and non-transgenic wheat. A specifically amplified target band was observed only in transgenic wheat B102-1-2. Therefore, this method is characterized by high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B102-1-2.

  3. Rapid identification of pathogenic streptococci isolated from moribund red tilapia (Oreochromis spp.).

    Science.gov (United States)

    Abdelsalam, Mohamed; Elgendy, Mamdouh Y; Shaalan, Mohamed; Moustafa, Mohamed; Fujino, Masayuki

    2017-03-01

    Accurate and rapid identification of bacterial pathogens of fish is essential for the effective treatment and speedy control of infections. Massive mortalities in market-sized red tilapia (Oreochromis spp.) were noticed in mariculture concrete ponds in northern Egypt. Histopathological examination revealed marked congestion in the central vein of the liver with the presence of bacterial aggregates inside the lumen and in the vicinity of the central vein. A total of 12 isolates of streptococci were obtained from the moribund fish. This study documented the ability of the MicroSeq 500 16S bacterial sequencing method to accurately identify Streptococcus agalactiae and S. dysgalactiae mixed infections from moribund red tilapia that were difficult to be recognised by the commercial biochemical systems. The continuously decreasing cost of the sequencing technique should encourage its application in routine diagnostic procedures.

  4. Rapid identification of emerging human-pathogenic Sporothrix species with rolling circle amplification

    Directory of Open Access Journals (Sweden)

    Anderson Messias Rodrigues

    2015-12-01

    Full Text Available Sporothrix infections are emerging as an important human and animal threat among otherwise healthy patients, especially in Brazil and China. Correct identification of sporotrichosis agents is beneficial for epidemiological surveillance, enabling implementation of adequate public-health policies and guiding antifungal therapy. In areas of limited resources where sporotrichosis is endemic, high-throughput detection methods that are specific and sensitive are preferred over phenotypic methods that usually result in misidentification of closely related Sporothrix species. We sought to establish rolling circle amplification (RCA as a low-cost screening tool for species-specific identification of human-pathogenic Sporothrix. We developed six species-specific padlock probes targeting polymorphisms in the gene encoding calmodulin. BLAST-searches revealed candidate probes that were conserved intraspecifically; no significant homology with sequences from humans, mice, plants or microorganisms outside members of Sporothrix were found. The accuracy of our RCA-based assay was demonstrated through the specificity of probe-template binding to 25 S. brasiliensis, 58 S. schenckii, 5 S. globosa, 1 S. luriei, 4 S. mexicana, and 3 S. pallida samples. No cross reactivity between closely related species was evident in vitro, and padlock probes yielded 100% specificity and sensitivity down to 3 x 10 6 copies of the target sequence. RCA-based speciation matched identifications via phylogenetic analysis of the gene encoding calmodulin and the rDNA operon (kappa 1.0; 95% confidence interval 1.0-1.0, supporting its use as a reliable alternative to DNA sequencing. This method is a powerful tool for rapid identification and specific detection of medically relevant Sporothrix, and due to its robustness has potential for ecological studies.

  5. Rapid identification of Enterobacter hormaechei and Enterobacter cloacae genetic cluster III.

    Science.gov (United States)

    Ohad, S; Block, C; Kravitz, V; Farber, A; Pilo, S; Breuer, R; Rorman, E

    2014-05-01

    Enterobacter cloacae complex bacteria are of both clinical and environmental importance. Phenotypic methods are unable to distinguish between some of the species in this complex, which often renders their identification incomplete. The goal of this study was to develop molecular assays to identify Enterobacter hormaechei and Ent. cloacae genetic cluster III which are relatively frequently encountered in clinical material. The molecular assays developed in this study are qPCR technology based and served to identify both Ent. hormaechei and Ent. cloacae genetic cluster III. qPCR results were compared to hsp60 sequence analysis. Most clinical isolates were assigned to Ent. hormaechei subsp. steigerwaltii and Ent. cloacae genetic cluster III. The latter was proportionately more frequently isolated from bloodstream infections than from other material (P < 0·05). The qPCR assays detecting Ent. hormaechei and Ent. cloacae genetic cluster III demonstrated high sensitivity and specificity. The presented qPCR assays allow accurate and rapid identification of clinical isolates of the Ent. cloacae complex. The improved identifications obtained can specifically assist analysis of Ent. hormaechei and Ent. cloacae genetic cluster III in nosocomial outbreaks and can promote rapid environmental monitoring. An association was observed between Ent. cloacae cluster III and systemic infection that deserves further attention. © 2014 The Society for Applied Microbiology.

  6. An Extended Multilocus Sequence Typing (MLST Scheme for Rapid Direct Typing of Leptospira from Clinical Samples.

    Directory of Open Access Journals (Sweden)

    Sabrina Weiss

    2016-09-01

    Full Text Available Rapid typing of Leptospira is currently impaired by requiring time consuming culture of leptospires. The objective of this study was to develop an assay that provides multilocus sequence typing (MLST data direct from patient specimens while minimising costs for subsequent sequencing.An existing PCR based MLST scheme was modified by designing nested primers including anchors for facilitated subsequent sequencing. The assay was applied to various specimen types from patients diagnosed with leptospirosis between 2014 and 2015 in the United Kingdom (UK and the Lao Peoples Democratic Republic (Lao PDR. Of 44 clinical samples (23 serum, 6 whole blood, 3 buffy coat, 12 urine PCR positive for pathogenic Leptospira spp. at least one allele was amplified in 22 samples (50% and used for phylogenetic inference. Full allelic profiles were obtained from ten specimens, representing all sample types (23%. No nonspecific amplicons were observed in any of the samples. Of twelve PCR positive urine specimens three gave full allelic profiles (25% and two a partial profile. Phylogenetic analysis allowed for species assignment. The predominant species detected was L. interrogans (10/14 and 7/8 from UK and Lao PDR, respectively. All other species were detected in samples from only one country (Lao PDR: L. borgpetersenii [1/8]; UK: L. kirschneri [1/14], L. santarosai [1/14], L. weilii [2/14].Typing information of pathogenic Leptospira spp. was obtained directly from a variety of clinical samples using a modified MLST assay. This assay negates the need for time-consuming culture of Leptospira prior to typing and will be of use both in surveillance, as single alleles enable species determination, and outbreaks for the rapid identification of clusters.

  7. Identification of failure sequences sensitive to human error

    International Nuclear Information System (INIS)

    1987-06-01

    This report prepared by the participants of the technical committee meeting on ''Identification of Failure Sequences Sensitive to Human Error'' addresses the subjects discussed during the meeting and the conclusions reached by the committee. Chapter 1 reviews the INSAG recommendations and the main elements of the IAEA Programme in the area of human element. In Chapter 2 the role of human actions in nuclear power plants safety from insights of operational experience is reviewed. Chapter 3 is concerned with the relationship between probabilistic safety assessment and human performance associated with severe accident sequences. Chapter 4 addresses the role of simulators in view of training for accident conditions. Chapter 5 presents the conclusions and future trends. The seven papers presented by members of this technical committee are also included in this technical document. A separate abstract was prepared for each of these papers

  8. Capillary gel electrophoresis for rapid, high resolution DNA sequencing.

    OpenAIRE

    Swerdlow, H; Gesteland, R

    1990-01-01

    Capillary gel electrophoresis has been demonstrated for the separation and detection of DNA sequencing samples. Enzymatic dideoxy nucleotide chain termination was employed, using fluorescently tagged oligonucleotide primers and laser based on-column detection (limit of detection is 6,000 molecules per peak). Capillary gel separations were shown to be three times faster, with better resolution (2.4 x), and higher separation efficiency (5.4 x) than a conventional automated slab gel DNA sequenci...

  9. Rocuronium versus succinylcholine for rapid sequence induction intubation.

    Science.gov (United States)

    Tran, Diem T T; Newton, Ethan K; Mount, Victoria A H; Lee, Jacques S; Wells, George A; Perry, Jeffrey J

    2015-10-29

    Patients often require a rapid sequence induction (RSI) endotracheal intubation technique during emergencies or electively to protect against aspiration, increased intracranial pressure, or to facilitate intubation. Traditionally succinylcholine has been the most commonly used muscle relaxant for this purpose because of its fast onset and short duration; unfortunately, it can have serious side effects. Rocuronium has been suggested as an alternative to succinylcholine for intubation. This is an update of our Cochrane review published first in 2003 and then updated in 2008 and now in 2015. To determine whether rocuronium creates intubating conditions comparable to those of succinylcholine during RSI intubation. In our initial review we searched all databases until March 2000, followed by an update to June 2007. This latest update included searching the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 2), MEDLINE (1966 to February Week 2 2015), and EMBASE (1988 to February 14 2015 ) for randomized controlled trials (RCTs) or controlled clinical trials (CCTs) relating to the use of rocuronium and succinylcholine. We included foreign language journals and handsearched the references of identified studies for additional citations. We included any RCT or CCT that reported intubating conditions in comparing the use of rocuronium and succinylcholine for RSI or modified RSI in any age group or clinical setting. The dose of rocuronium was at least 0.6 mg/kg and succinylcholine was at least 1 mg/kg. Two authors (EN and DT) independently extracted data and assessed methodological quality for the 'Risk of bias' tables. We combined the outcomes in Review Manager 5 using a risk ratio (RR) with a random-effects model. The previous update (2008) had identified 53 potential studies and included 37 combined for meta-analysis. In this latest update we identified a further 13 studies and included 11, summarizing the results of 50 trials including 4151 participants

  10. Noisy: Identification of problematic columns in multiple sequence alignments

    Directory of Open Access Journals (Sweden)

    Grünewald Stefan

    2008-06-01

    Full Text Available Abstract Motivation Sequence-based methods for phylogenetic reconstruction from (nucleic acid sequence data are notoriously plagued by two effects: homoplasies and alignment errors. Large evolutionary distances imply a large number of homoplastic sites. As most protein-coding genes show dramatic variations in substitution rates that are not uncorrelated across the sequence, this often leads to a patchwork pattern of (i phylogenetically informative and (ii effectively randomized regions. In highly variable regions, furthermore, alignment errors accumulate resulting in sometimes misleading signals in phylogenetic reconstruction. Results We present here a method that, based on assessing the distribution of character states along a cyclic ordering of the taxa, allows the identification of phylogenetically uninformative homoplastic sites in a multiple sequence alignment. Removal of these sites appears to improve the performance of phylogenetic reconstruction algorithms as measured by various indices of "tree quality". In particular, we obtain more stable trees due to the exclusion of phylogenetically incompatible sites that most likely represent strongly randomized characters. Software The computer program noisy implements this approach. It can be employed to improving phylogenetic reconstruction capability with quite a considerable success rate whenever (1 the average bootstrap support obtained from the original alignment is low, and (2 there are sufficiently many taxa in the data set – at least, say, 12 to 15 taxa. The software can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/noisy/.

  11. Whole-genome in-silico subtractive hybridization (WISH - using massive sequencing for the identification of unique and repetitive sex-specific sequences: the example of Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Parrinello Hugues

    2010-06-01

    Full Text Available Abstract Background Emerging methods of massive sequencing that allow for rapid re-sequencing of entire genomes at comparably low cost are changing the way biological questions are addressed in many domains. Here we propose a novel method to compare two genomes (genome-to-genome comparison. We used this method to identify sex-specific sequences of the human blood fluke Schistosoma mansoni. Results Genomic DNA was extracted from male and female (heterogametic S. mansoni adults and sequenced with a Genome Analyzer (Illumina. Sequences are available at the NCBI sequence read archive http://www.ncbi.nlm.nih.gov/Traces/sra/ under study accession number SRA012151.6. Sequencing reads were aligned to the genome, and a pseudogenome composed of known repeats. Straightforward comparative bioinformatics analysis was performed to compare male and female schistosome genomes and identify female-specific sequences. We found that the S. mansoni female W chromosome contains only few specific unique sequences (950 Kb i.e. about 0.2% of the genome. The majority of W-specific sequences are repeats (10.5 Mb i.e. about 2.5% of the genome. Arbitrarily selected W-specific sequences were confirmed by PCR. Primers designed for unique and repetitive sequences allowed to reliably identify the sex of both larval and adult stages of the parasite. Conclusion Our genome-to-genome comparison method that we call "whole-genome in-silico subtractive hybridization" (WISH allows for rapid identification of sequences that are specific for a certain genotype (e.g. the heterogametic sex. It can in principle be used for the detection of any sequence differences between isolates (e.g. strains, pathovars or even closely related species.

  12. Sequence-based classification and identification of Fungi.

    Science.gov (United States)

    Hibbett, David; Abarenkov, Kessy; Kõljalg, Urmas; Öpik, Maarja; Chai, Benli; Cole, James; Wang, Qiong; Crous, Pedro; Robert, Vincent; Helgason, Thorunn; Herr, Joshua R; Kirk, Paul; Lueschow, Shiloh; O'Donnell, Kerry; Nilsson, R Henrik; Oono, Ryoko; Schoch, Conrad; Smyth, Christopher; Walker, Donald M; Porras-Alfaro, Andrea; Taylor, John W; Geiser, David M

    Fungal taxonomy and ecology have been revolutionized by the application of molecular methods and both have increasing connections to genomics and functional biology. However, data streams from traditional specimen- and culture-based systematics are not yet fully integrated with those from metagenomic and metatranscriptomic studies, which limits understanding of the taxonomic diversity and metabolic properties of fungal communities. This article reviews current resources, needs, and opportunities for sequence-based classification and identification (SBCI) in fungi as well as related efforts in prokaryotes. To realize the full potential of fungal SBCI it will be necessary to make advances in multiple areas. Improvements in sequencing methods, including long-read and single-cell technologies, will empower fungal molecular ecologists to look beyond ITS and current shotgun metagenomics approaches. Data quality and accessibility will be enhanced by attention to data and metadata standards and rigorous enforcement of policies for deposition of data and workflows. Taxonomic communities will need to develop best practices for molecular characterization in their focal clades, while also contributing to globally useful datasets including ITS. Changes to nomenclatural rules are needed to enable validPUBLICation of sequence-based taxon descriptions. Finally, cultural shifts are necessary to promote adoption of SBCI and to accord professional credit to individuals who contribute to community resources.

  13. Rapid Identification and Verification of Indirubin-Containing Medicinal Plants.

    Science.gov (United States)

    Hu, Zhigang; Tu, Yuan; Xia, Ye; Cheng, Peipei; Sun, Wei; Shi, Yuhua; Guo, Licheng; He, Haibo; Xiong, Chao; Chen, Shilin; Zhang, Xiuqiao

    2015-01-01

    Indirubin, one of the key components of medicinal plants including Isatis tinctoria, Polygonum tinctorium, and Strobilanthes cusia, possesses great medicinal efficacy in the treatment of chronic myelocytic leukemia (CML). Due to misidentification and similar name, materials containing indirubin and their close relatives frequently fall prey to adulteration. In this study, we selected an internal transcribed spacer 2 (ITS2) for distinguishing these indirubin-containing species from five of their usual adulterants, after assessing identification efficiency of matK, rbcL, psbA-trnH, and ITS2 among these species. The results of genetic distances and neighbor-joining (NJ) phylogenetic tree indicated that ITS2 region is a powerful DNA barcode to accurately identify these indirubin-containing species and discriminate them from their adulterants. Additionally, high performance liquid chromatography (HPLC) was used to verify indirubin in different organs of the above species. The results showed that indirubin had been detected in the leaves of Is. tinctoria, P. tinctorium, S. cusia, and Indigo Naturalis (made from their mixture), but not in their roots, or in the leaves of their adulterants. Therefore, this study provides a novel and rapid method to identify and verify indirubin-containing medicinal plants for effective natural treatment of CML.

  14. Rapid Identification and Verification of Indirubin-Containing Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Zhigang Hu

    2015-01-01

    Full Text Available Indirubin, one of the key components of medicinal plants including Isatis tinctoria, Polygonum tinctorium, and Strobilanthes cusia, possesses great medicinal efficacy in the treatment of chronic myelocytic leukemia (CML. Due to misidentification and similar name, materials containing indirubin and their close relatives frequently fall prey to adulteration. In this study, we selected an internal transcribed spacer 2 (ITS2 for distinguishing these indirubin-containing species from five of their usual adulterants, after assessing identification efficiency of matK, rbcL, psbA-trnH, and ITS2 among these species. The results of genetic distances and neighbor-joining (NJ phylogenetic tree indicated that ITS2 region is a powerful DNA barcode to accurately identify these indirubin-containing species and discriminate them from their adulterants. Additionally, high performance liquid chromatography (HPLC was used to verify indirubin in different organs of the above species. The results showed that indirubin had been detected in the leaves of Is. tinctoria, P. tinctorium, S. cusia, and Indigo Naturalis (made from their mixture, but not in their roots, or in the leaves of their adulterants. Therefore, this study provides a novel and rapid method to identify and verify indirubin-containing medicinal plants for effective natural treatment of CML.

  15. Rapid DNA sequencing by horizontal ultrathin gel electrophoresis.

    OpenAIRE

    Brumley, R L; Smith, L M

    1991-01-01

    A horizontal polyacrylamide gel electrophoresis apparatus has been developed that decreases the time required to separate the DNA fragments produced in enzymatic sequencing reactions. The configuration of this apparatus and the use of circulating coolant directly under the glass plates result in heat exchange that is approximately nine times more efficient than passive thermal transfer methods commonly used. Bubble-free gels as thin as 25 microns can be routinely cast on this device. The appl...

  16. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  17. Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools.

    Science.gov (United States)

    Kisand, Veljo; Lettieri, Teresa

    2013-04-01

    De novo genome sequencing of previously uncharacterized microorganisms has the potential to open up new frontiers in microbial genomics by providing insight into both functional capabilities and biodiversity. Until recently, Roche 454 pyrosequencing was the NGS method of choice for de novo assembly because it generates hundreds of thousands of long reads (tools for processing NGS data are increasingly free and open source and are often adopted for both their high quality and role in promoting academic freedom. The error rate of pyrosequencing the Alcanivorax borkumensis genome was such that thousands of insertions and deletions were artificially introduced into the finished genome. Despite a high coverage (~30 fold), it did not allow the reference genome to be fully mapped. Reads from regions with errors had low quality, low coverage, or were missing. The main defect of the reference mapping was the introduction of artificial indels into contigs through lower than 100% consensus and distracting gene calling due to artificial stop codons. No assembler was able to perform de novo assembly comparable to reference mapping. Automated annotation tools performed similarly on reference mapped and de novo draft genomes, and annotated most CDSs in the de novo assembled draft genomes. Free and open source software (FOSS) tools for assembly and annotation of NGS data are being developed rapidly to provide accurate results with less computational effort. Usability is not high priority and these tools currently do not allow the data to be processed without manual intervention. Despite this, genome assemblers now readily assemble medium short reads into long contigs (>97-98% genome coverage). A notable gap in pyrosequencing technology is the quality of base pair calling and conflicting base pairs between single reads at the same nucleotide position. Regardless, using draft whole genomes that are not finished and remain fragmented into tens of contigs allows one to characterize

  18. Rapid and Accurate Sequencing of Enterovirus Genomes Using MinION Nanopore Sequencer.

    Science.gov (United States)

    Wang, Ji; Ke, Yue Hua; Zhang, Yong; Huang, Ke Qiang; Wang, Lei; Shen, Xin Xin; Dong, Xiao Ping; Xu, Wen Bo; Ma, Xue Jun

    2017-10-01

    Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  19. Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting.

    Science.gov (United States)

    Andrés-Barrao, Cristina; Benagli, Cinzia; Chappuis, Malou; Ortega Pérez, Ruben; Tonolla, Mauro; Barja, François

    2013-03-01

    Acetic acid bacteria (AAB) are widespread microorganisms characterized by their ability to transform alcohols and sugar-alcohols into their corresponding organic acids. The suitability of matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS) for the identification of cultured AAB involved in the industrial production of vinegar was evaluated on 64 reference strains from the genera Acetobacter, Gluconacetobacter and Gluconobacter. Analysis of MS spectra obtained from single colonies of these strains confirmed their basic classification based on comparative 16S rRNA gene sequence analysis. MALDI-TOF analyses of isolates from vinegar cross-checked by comparative sequence analysis of 16S rRNA gene fragments allowed AAB to be identified, and it was possible to differentiate them from mixed cultures and non-AAB. The results showed that MALDI-TOF MS analysis was a rapid and reliable method for the clustering and identification of AAB species. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method

    Directory of Open Access Journals (Sweden)

    Bingfu Guo

    2016-07-01

    Full Text Available Molecular characterization of sequences flanking exogenous fragment insertions is essential for safety assessment and labeling of genetically modified organisms (GMO. In this study, the T-DNA insertion sites and flanking sequences were identified in two newly developed transgenic glyphosate-tolerant soybeans GE-J16 and ZH10-6 based on whole genome sequencing (WGS method. About 21 Gb sequence data (~21× coverage for each line was generated on Illumina HiSeq 2500 platform. The junction reads mapped to boundary of T-DNA and flanking sequences in these two events were identified by comparing all sequencing reads with soybean reference genome and sequence of transgenic vector. The putative insertion loci and flanking sequences were further confirmed by PCR amplification, Sanger sequencing, and co-segregation analysis. All these analyses supported that exogenous T-DNA fragments were integrated in positions of Chr19: 50543767-50543792 and Chr17: 7980527-7980541 in these two transgenic lines. Identification of the genomic insertion site of the G2-EPSPS and GAT transgenes will facilitate the use of their glyphosate-tolerant traits in soybean breeding program. These results also demonstrated that WGS is a cost-effective and rapid method of identifying sites of T-DNA insertions and flanking sequences in soybean.

  1. A pneumatic device for rapid loading of DNA sequencing gels.

    Science.gov (United States)

    Panussis, D A; Cook, M W; Rifkin, L L; Snider, J E; Strong, J T; McGrane, R M; Wilson, R K; Mardis, E R

    1998-05-01

    This work describes the design and construction of a device that facilitates the loading of DNA samples onto polyacrylamide gels for detection in the Perkin Elmer/Applied Biosystems (PE/ABI) 373 and 377 DNA sequencing instruments. The device is mounted onto the existing gel cassettes and makes the process of loading high-density gels less cumbersome while the associated time and errors are reduced. The principle of operation includes the simultaneous transfer of the entire batch of samples, in which a spring-loaded air cylinder generates positive pressure and flexible silica capillaries transfer the samples. A retractable capillary array carrier allows the delivery ends of the capillaries to be held up clear of the gel during loader attachment on the gel plates, while enabling their insertion in the gel wells once the device is securely mounted. Gel-loading devices capable of simultaneously transferring 72 samples onto the PE/ABI 373 and 377 are currently being used in our production sequencing groups while a 96-sample transfer prototype undergoes testing.

  2. Identification and evaluation of accident sequences in nuclear power reactors

    International Nuclear Information System (INIS)

    Amendola, A.; Capobianchi, S.; Mancini, G.; Olivi, L.; Volta, G.; Reina, G.

    1981-01-01

    Probabilistic analysis techniques are being more and more used for the evaluation of accident progression in nuclear power plants, especially after the issue of the Reactor Safety Study (Report WASH-1400). This study and subsequent discussions have indicated the necessity of better investigating some major items, namely: adequate data base for the probabilistic evaluations; completeness of the analysis with respect both to accident initiation and behaviour; adequate treatment of uncertainties on the physical and operational parameters governing the accident behaviour. Furthermore, recent occurrences have stressed the importance of the operational aspects of reactor safety, such as plant-specific identification of possible occurrences, their prompt recognition, on-line prediction of subsequent developments and actions to be taken. The paper reviews the contributions in progress at JRC-Ispra to all these aspects, and specifically reports on the following: (1) The set-up of a European Reliability Data System for the acquisition and organisation of operational data of LWRs in the European Community. (2) The development of more complete and realistic models of systems. This work includes multistate static models of components and systems with a view to automatic fault-tree construction and dynamic models for accident sequence identification. The dynamic modelling approach ESCS (Event Sequence and Consequences Spectrum), shown in detail with an example, represents a step forward with respect to event-tree technique and opens new possibilities in dealing with human factors and on-line diagnosis problems. (3) The development of RSM (Response Surface Methodology) for the analysis of uncertainty propagations in consequence and in probability of accident chains. (author)

  3. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology.

    Science.gov (United States)

    Amoako, Kingsley K; Janzen, Timothy W; Shields, Michael J; Hahn, Kristen R; Thomas, Matthew C; Goji, Noriko

    2013-08-01

    The development of advanced methodologies for the detection of Bacillus anthracis has been evolving rapidly since the release of the anthrax spores in the mail in 2001. Recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence based such as pyrosequencing, which has the capability to determine short DNA stretches in real-time using biotinylated PCR amplicons, has potential biodefense applications. Using markers from the virulence plasmids (pXO1 and pXO2) and chromosomal regions, we have demonstrated the power of this technology in the rapid, specific and sensitive detection of B. anthracis spores in food matrices including milk, juice, bottled water, and processed meat. The combined use of immunomagnetic separation and pyrosequencing showed positive detection when liquid foods (bottled water, milk, juice), and processed meat were experimentally inoculated with 6CFU/mL and 6CFU/g, respectively, without an enrichment step. Pyrosequencing is completed in about 60min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence. The entire assay (from sample preparation to sequencing information) can be completed in about 7.5h. A typical run on food samples yielded 67-80bp reads with 94-100% identity to the expected sequence. This sequence based approach is a novel application for the detection of anthrax spores in food with potential application in foodborne bioterrorism response and biodefense involving the use of anthrax spores. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Technique for human-error sequence identification and signification

    International Nuclear Information System (INIS)

    Heslinga, G.

    1988-01-01

    The aim of the present study was to investigate whether the event-tree technique can be used for the analysis of sequences of human errors that could cause initiating events. The scope of the study was limited to a consideration of the performance of procedural actions. The event-tree technique was modified to adapt it for this study and will be referred to as the 'Technique for Human-Error-Sequence Identification and Signification' (THESIS). The event trees used in this manner, i.e. THESIS event trees, appear to present additional problems if they are applied to human performance instead of technical systems. These problems, referred to as the 'Man-Related Features' of THESIS, are: the human capability to choose among several procedures, the ergonomics of the panel layout, human actions of a continuous nature, dependence between human errors, human capability to recover possible errors, the influence of memory during the recovery attempt, variability in human performance and correlations between human;erropr probabilities. The influence of these problems on the applicability of THESIS was assessed by means of mathematical analysis, field studies and laboratory experiments (author). 130 refs.; 51 figs.; 24 tabs

  5. Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers

    DEFF Research Database (Denmark)

    Friis-Nielsen, Jens; Kjartansdóttir, Kristín Rós; Mollerup, Sarah

    2016-01-01

    have developed a species independent pipeline that utilises sequence clustering for the identification of nucleotide sequences that co-occur across multiple sequencing data instances. We applied the workflow to 686 sequencing libraries from 252 cancer samples of different cancer and tissue types, 32...

  6. Integration of point-of-care ultrasound during rapid sequence intubation in trauma resuscitation

    Directory of Open Access Journals (Sweden)

    Prakash Ranjan Mishra

    2018-01-01

    Full Text Available Introduction: Airway and breathing management play critical role in trauma resuscitation. Early identification of esophageal intubation and detection of fatal events is critical. Authors studied the utility of integration of point-of-care ultrasound (POCUS during different phases of rapid sequence intubation (RSI in trauma resuscitation. Methods: It was prospective, randomized single-centered study conducted at the Emergency Department of a level one trauma center. Patients were divided into ultrasonography (USG and clinical examination (CE arm. The objectives were to study the utility of POCUS in endotracheal tube placement and confirmations and identification of potentially fatal conditions as tracheal injury, midline vessels, paratracheal hematoma, vocal cord pathology, pneumothorax, and others during RSI. Patient >1 year of age were included. Time taken for procedure, number of incorrect intubations, and pathologies detected were noted. The data were collected in Microsoft Excel spread sheets and analyzed using Stata (version 11.2, Stata Corp, Texas, U. S. A software. Results: One hundred and six patients were recruited. The mean time for primary survey USG versus CE arm was (20 ± 10.01 vs. 18 ± 11.03 seconds. USG detected four pneumothorax, one tracheal injury, and one paratracheal hematoma. The mean procedure time USG versus CE arm was (37.3 ± 21.92 vs. 58 ± 32.04 seconds. Eight esophageal intubations were identified in USG arm by POCUS and two in CE arm by EtCO2 values. Conclusion: Integration of POCUS was useful in all three phases of RSI. It identified paratracheal hematoma, tracheal injury, and pneumothorax. It also identified esophageal intubation and confirmed main stem tracheal intubation in less time compared to five-point auscultation and capnography.

  7. Rapid sequence induction and intubation with rocuronium-sugammadex compared with succinylcholine

    DEFF Research Database (Denmark)

    Sørensen, M K; Bretlau, C; Gätke, M R

    2012-01-01

    An unanticipated difficult airway may arise during rapid sequence induction and intubation (RSII). The aim of the trial was to assess how rapidly spontaneous ventilation could be re-established after RSII. We hypothesized that the time period from tracheal intubation to spontaneous ventilation wo...... would be shorter with rocuronium-sugammadex than with succinylcholine....

  8. An Extended Multilocus Sequence Typing (MLST) Scheme for Rapid Direct Typing of Leptospira from Clinical Samples

    OpenAIRE

    Weiss, Sabrina; Menezes, Angela; Woods, Kate; Chanthongthip, Anisone; Dittrich, Sabine; Opoku-Boateng, Agatha; Kimuli, Maimuna; Chalker, Victoria

    2016-01-01

    Background Rapid typing of Leptospira is currently impaired by requiring time consuming culture of leptospires. The objective of this study was to develop an assay that provides multilocus sequence typing (MLST) data direct from patient specimens while minimising costs for subsequent sequencing. Methodology and Findings An existing PCR based MLST scheme was modified by designing nested primers including anchors for facilitated subsequent sequencing. The assay was applied to various specimen t...

  9. Rapid method for identification of transgenic fish zygosity

    Directory of Open Access Journals (Sweden)

    . Alimuddin

    2007-07-01

    Full Text Available Identification of zygosity in transgenik fish is normally achieved by PCR analysis with genomic DNA template extracted from the tissue of progenies which are derived by mating the transgenic fish and wild-type counterpart.  This method needs relatively large amounts of fish material and is time- and labor-intensive. New approaches addressing this problem could be of great help for fish biotechnologists.  In this experiment, we applied a quantitative real-time PCR (qr-PCR method to analyze zygosity in a stable line of transgenic zebrafish (Danio rerio carrying masu salmon, Oncorhynchus masou D6-desaturase-like gene. The qr-PCR was performed using iQ SYBR Green Supermix in the iCycler iQ Real-time PCR Detection System (Bio-Rad Laboratories, USA.  Data were analyzed using the comparative cycle threshold method.  The results demonstrated a clear-cut identification of all transgenic fish (n=20 classified as a homozygous or heterozygous.  Mating of those fish with wild-type had revealed transgene transmission to the offspring following expected Mendelian laws. Thus, we found that the qTR-PCR to be effective for a rapid and precise determination of zygosity in transgenic fish. This technique could be useful in the establishment of breeding programs for mass transgenic fish production and in experiments in which zygosity effect could have a functional impact. Keywords: quantitative real-time PCR; zygosity; transgenic fish; mass production   ABSTRAK Identifikasi sigositas ikan transgenik biasanya dilakukan menggunakan analisa PCR dengan cetakan DNA genomik yang diekstraksi dari jaringan ikan hasil persilangan antara ikan transgenik dan ikan normal.   Metode ini memerlukan ikan dalam jumlah yang banyak, dan juga waktu serta tenaga.  Pendekatan baru untuk mengatasi masalah tersebut akan memberikan manfaat besar kepada peneliti bioteknologi perikanan.  Pada penelitian ini, kami menggunakan metode PCR real-time kuantitatif (krt-PCR untuk

  10. Rapid Detection and Identification of Human Hookworm Infections through High Resolution Melting (HRM) Analysis

    Science.gov (United States)

    Ngui, Romano; Lim, Yvonne A. L.; Chua, Kek Heng

    2012-01-01

    Background Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. Methods Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. Conclusion The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species. PMID:22844538

  11. Rapid detection and identification of human hookworm infections through high resolution melting (HRM analysis.

    Directory of Open Access Journals (Sweden)

    Romano Ngui

    Full Text Available BACKGROUND: Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR coupled with high resolution melting-curve (HRM analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. METHODS: Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2 of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. CONCLUSION: The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species.

  12. PCR-Restriction Fragment Length Polymorphism for Rapid, Low-Cost Identification of Isoniazid-Resistant Mycobacterium tuberculosis▿

    Science.gov (United States)

    Caws, Maxine; Tho, Dau Quang; Duy, Phan Minh; Lan, Nguyen Thi Ngoc; Hoa, Dai Viet; Torok, Mili Estee; Chau, Tran Thi Hong; Van Vinh Chau, Nguyen; Chinh, Nguyen Tran; Farrar, Jeremy

    2007-01-01

    PCR-restriction fragment length poymorphism (PCR-RFLP) is a simple, robust technique for the rapid identification of isoniazid-resistant Mycobacterium tuberculosis. One hundred consecutive isolates from a Vietnamese tuberculosis hospital were tested by MspA1I PCR-RFLP for the detection of isoniazid-resistant katG_315 mutants. The test had a sensitivity of 80% and a specificity of 100% against conventional phenotypic drug susceptibility testing. The positive and negative predictive values were 1 and 0.86, respectively. None of the discrepant isolates had mutant katG_315 codons by sequencing. The test is cheap (less than $1.50 per test), specific, and suitable for the rapid identification of isoniazid resistance in regions with a high prevalence of katG_315 mutants among isoniazid-resistant M. tuberculosis isolates. PMID:17428939

  13. Sequence protein identification by randomized sequence database and transcriptome mass spectrometry (SPIDER-TMS): from manual to automatic application of a 'de novo sequencing' approach.

    Science.gov (United States)

    Pascale, Raffaella; Grossi, Gerarda; Cruciani, Gabriele; Mecca, Giansalvatore; Santoro, Donatello; Sarli Calace, Renzo; Falabella, Patrizia; Bianco, Giuliana

    Sequence protein identification by a randomized sequence database and transcriptome mass spectrometry software package has been developed at the University of Basilicata in Potenza (Italy) and designed to facilitate the determination of the amino acid sequence of a peptide as well as an unequivocal identification of proteins in a high-throughput manner with enormous advantages of time, economical resource and expertise. The software package is a valid tool for the automation of a de novo sequencing approach, overcoming the main limits and a versatile platform useful in the proteomic field for an unequivocal identification of proteins, starting from tandem mass spectrometry data. The strength of this software is that it is a user-friendly and non-statistical approach, so protein identification can be considered unambiguous.

  14. An approach for identification of unknown viruses using sequencing-by-hybridization.

    Science.gov (United States)

    Katoski, Sarah E; Meyer, Hermann; Ibrahim, Sofi

    2015-09-01

    Accurate identification of biological threat agents, especially RNA viruses, in clinical or environmental samples can be challenging because the concentration of viral genomic material in a given sample is usually low, viral genomic RNA is liable to degradation, and RNA viruses are extremely diverse. A two-tiered approach was used for initial identification, then full genomic characterization of 199 RNA viruses belonging to virus families Arenaviridae, Bunyaviridae, Filoviridae, Flaviviridae, and Togaviridae. A Sequencing-by-hybridization (SBH) microarray was used to tentatively identify a viral pathogen then, the identity is confirmed by guided next-generation sequencing (NGS). After optimization and evaluation of the SBH and NGS methodologies with various virus species and strains, the approach was used to test the ability to identify viruses in blinded samples. The SBH correctly identified two Ebola viruses in the blinded samples within 24 hr, and by using guided amplicon sequencing with 454 GS FLX, the identities of the viruses in both samples were confirmed. SBH provides at relatively low-cost screening of biological samples against a panel of viral pathogens that can be custom-designed on a microarray. Once the identity of virus is deduced from the highest hybridization signal on the SBH microarray, guided (amplicon) NGS sequencing can be used not only to confirm the identity of the virus but also to provide further information about the strain or isolate, including a potential genetic manipulation. This approach can be useful in situations where natural or deliberate biological threat incidents might occur and a rapid response is required. © 2015 Wiley Periodicals, Inc.

  15. Utility of 16S rDNA Sequencing for Identification of Rare Pathogenic Bacteria.

    Science.gov (United States)

    Loong, Shih Keng; Khor, Chee Sieng; Jafar, Faizatul Lela; AbuBakar, Sazaly

    2016-11-01

    Phenotypic identification systems are established methods for laboratory identification of bacteria causing human infections. Here, the utility of phenotypic identification systems was compared against 16S rDNA identification method on clinical isolates obtained during a 5-year study period, with special emphasis on isolates that gave unsatisfactory identification. One hundred and eighty-seven clinical bacteria isolates were tested with commercial phenotypic identification systems and 16S rDNA sequencing. Isolate identities determined using phenotypic identification systems and 16S rDNA sequencing were compared for similarity at genus and species level, with 16S rDNA sequencing as the reference method. Phenotypic identification systems identified ~46% (86/187) of the isolates with identity similar to that identified using 16S rDNA sequencing. Approximately 39% (73/187) and ~15% (28/187) of the isolates showed different genus identity and could not be identified using the phenotypic identification systems, respectively. Both methods succeeded in determining the species identities of 55 isolates; however, only ~69% (38/55) of the isolates matched at species level. 16S rDNA sequencing could not determine the species of ~20% (37/187) of the isolates. The 16S rDNA sequencing is a useful method over the phenotypic identification systems for the identification of rare and difficult to identify bacteria species. The 16S rDNA sequencing method, however, does have limitation for species-level identification of some bacteria highlighting the need for better bacterial pathogen identification tools. © 2016 Wiley Periodicals, Inc.

  16. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building.

    Science.gov (United States)

    Pomerantz, Aaron; Peñafiel, Nicolás; Arteaga, Alejandro; Bustamante, Lucas; Pichardo, Frank; Coloma, Luis A; Barrio-Amorós, César L; Salazar-Valenzuela, David; Prost, Stefan

    2018-04-01

    Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism.

  17. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A great deal of effort has gone into the development of point-of-use methods to meet the challenge of rapid bacterial identification for both environmental...

  18. Full-length sequencing and identification of novel polymorphisms in ...

    Indian Academy of Sciences (India)

    The aim of this work was to sequence the entirecoding region of ACACA gene in Valle del Belice sheep breed to identify polymorphic sites. A total of 51 coding exons of ACACA gene were sequenced in 32 individuals of Valle del Belice sheep breed. Sequencing analysis and alignment of obtained sequences showed the ...

  19. Rapid direct identification of Cryptococcus neoformans from pigeon droppings by nested PCR using CNLAC1 gene.

    Science.gov (United States)

    Chae, H S; Park, G N; Kim, S H; Jo, H J; Kim, J T; Jeoung, H Y; An, D J; Kim, N H; Shin, B W; Kang, Y I; Chang, K S

    2012-08-01

    Isolation and identification of Cryptococcus neoformans and pathogenic yeast-like fungi from pigeon droppings has been taken for a long time and requires various nutrients for its growth. In this study, we attempted to establish a rapid direct identification method of Cr. neoformans from pigeon dropping samples by nested-PCR using internal transcribed spacer (ITS) CAP64 and CNLAC1 genes, polysaccharide capsule gene and laccase-associated gene to produce melanin pigment, respectively, which are common genes of yeasts. The ITS and CAP64 genes were amplified in all pathogenic yeasts, but CNLAC1 was amplified only in Cr. neoformans. The ITS gene was useful for yeast genotyping depending on nucleotide sequence. Homology of CAP64 genes among the yeasts were very high. The specificity of PCR using CNLAC1 was demonstrated in Cr. neoformans environmental strains but not in other yeast-like fungi. The CNLAC1 gene was detected in 5 serotypes of Cr. neoformans. The nested-PCR amplified up to 10(-11) μg of the genomic DNA and showed high sensitivity. All pigeon droppings among 31 Cr. neoformans-positive samples were positive and all pigeon droppings among 348 Cr. neoformans-negative samples were negative by the direct nested-PCR. In addition, after primary enrichment of pigeon droppings in Sabouraud dextrose broth, all Cr. neoformans-negative samples were negative by the nested-PCR, which showed high specificity. The nested-PCR showed high sensitivity without culture of pigeon droppings. Nested-PCR using CNLAC1 provides a rapid and reliable molecular diagnostic method to overcome weak points such as long culture time of many conventional methods.

  20. Comparison of traditional phenotypic identification methods with partial 5' 16S rRNA gene sequencing for species-level identification of nonfermenting Gram-negative bacilli.

    Science.gov (United States)

    Cloud, Joann L; Harmsen, Dag; Iwen, Peter C; Dunn, James J; Hall, Gerri; Lasala, Paul Rocco; Hoggan, Karen; Wilson, Deborah; Woods, Gail L; Mellmann, Alexander

    2010-04-01

    Correct identification of nonfermenting Gram-negative bacilli (NFB) is crucial for patient management. We compared phenotypic identifications of 96 clinical NFB isolates with identifications obtained by 5' 16S rRNA gene sequencing. Sequencing identified 88 isolates (91.7%) with >99% similarity to a sequence from the assigned species; 61.5% of sequencing results were concordant with phenotypic results, indicating the usability of sequencing to identify NFB.

  1. Rapid identification and detection of pathogenic Fungi by padlock probes

    NARCIS (Netherlands)

    Tsui, C.K.M.; Wang, B.; Schoen, C.D.; Hamelin, R.C.

    2013-01-01

    Fungi are important pathogens of human diseases, as well as to agricultural crop and trees. Molecular diagnostics can detect diseases early, and improve identification accuracy and follow-up disease management. The use of padlock probe is effective to facilitate these detections and pathogen

  2. Rapid identification of the medicinal plant Taraxacum formosanum ...

    African Journals Online (AJOL)

    Original identification of medicinal plants is essential for quality control. In this study, the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA served as a DNA barcode and was amplified by allele-specific PCR. This approach was exploited to differentiate Taraxacum formosanum from five related adulterants. Using a ...

  3. Rapid analysis for the identification of the seagrass Halophila ovalis ...

    African Journals Online (AJOL)

    Maslin

    2015-02-25

    Feb 25, 2015 ... 48-well plate Helixis using an initial denaturing step at 95°C for 5 min followed by 35 ... species. Position based on sequence of GenBank Accession Number JN225349. Species ... Based on the searches, both regions offered ...

  4. Isolation, sequence identification and tissue expression profile of a ...

    African Journals Online (AJOL)

    The complete expressed sequence tag (CDS) sequence of Banna mini-pig inbred line (BMI) ribokinase gene (RBKS) was amplified using the reverse transcription-polymerase chain reaction (RT-PCR) based on the conserved sequence information of the cattle or other mammals and known highly homologous swine ESTs.

  5. Direct typing of Canine parvovirus (CPV) from infected dog faeces by rapid mini sequencing technique.

    Science.gov (United States)

    V, Pavana Jyothi; S, Akila; Selvan, Malini K; Naidu, Hariprasad; Raghunathan, Shwethaa; Kota, Sathish; Sundaram, R C Raja; Rana, Samir Kumar; Raj, G Dhinakar; Srinivasan, V A; Mohana Subramanian, B

    2016-12-01

    Canine parvovirus (CPV) is a non-enveloped single stranded DNA virus with an icosahedral capsid. Mini-sequencing based CPV typing was developed earlier to detect and differentiate all the CPV types and FPV in a single reaction. This technique was further evaluated in the present study by performing the mini-sequencing directly from fecal samples which avoided tedious virus isolation steps by cell culture system. Fecal swab samples were collected from 84 dogs with enteritis symptoms, suggestive of parvoviral infection from different locations across India. Seventy six of these samples were positive by PCR; the subsequent mini-sequencing reaction typed 74 of them as type 2a virus, and 2 samples as type 2b. Additionally, 25 of the positive samples were typed by cycle sequencing of PCR products. Direct CPV typing from fecal samples using mini-sequencing showed 100% correlation with CPV typing by cycle sequencing. Moreover, CPV typing was achieved by mini-sequencing even with faintly positive PCR amplicons which was not possible by cycle sequencing. Therefore, the mini-sequencing technique is recommended for regular epidemiological follow up of CPV types, since the technique is rapid, highly sensitive and high capacity method for CPV typing. Copyright © 2016. Published by Elsevier B.V.

  6. Identification of a Flavivirus Sequence in a Marine Arthropod.

    Directory of Open Access Journals (Sweden)

    Michael J Conway

    Full Text Available Phylogenetic analysis has yet to uncover the early origins of flaviviruses. In this study, I mined a database of expressed sequence tags in order to discover novel flavivirus sequences. Flavivirus sequences were identified in a pool of mRNA extracted from the sea spider Endeis spinosa (Pycnogonida, Pantopoda. Reconstruction of the translated sequences and BLAST analysis matched the sequence to the flavivirus NS5 gene. Additional sequences corresponding to envelope and the NS5 MTase domain were also identified. Phylogenetic analysis of homologous NS5 sequences revealed that Endeis spinosa NS5 (ESNS5 is likely related to classical insect-specific flaviviruses. It is unclear if ESNS5 represents genetic material from an active viral infection or an integrated viral genome. These data raise the possibility that classical insect-specific flaviviruses and perhaps medically relevant flaviviruses, evolved from progenitors that infected marine arthropods.

  7. New Technologies for Rapid Bacterial Identification and Antibiotic Resistance Profiling.

    Science.gov (United States)

    Kelley, Shana O

    2017-04-01

    Conventional approaches to bacterial identification and drug susceptibility testing typically rely on culture-based approaches that take 2 to 7 days to return results. The long turnaround times contribute to the spread of infectious disease, negative patient outcomes, and the misuse of antibiotics that can contribute to antibiotic resistance. To provide new solutions enabling faster bacterial analysis, a variety of approaches are under development that leverage single-cell analysis, microfluidic concentration and detection strategies, and ultrasensitive readout mechanisms. This review discusses recent advances in this area and the potential of new technologies to enable more effective management of infectious disease.

  8. Rapid identification of drugs in the overdosed patient.

    Science.gov (United States)

    Hackett, L P; Dusci, L J

    1977-01-01

    A rapid analytical procedure is described for a variety of drugs that could be present in the overdosed patient. The technique used gives quantitative results for most of the drugs analyzed in serum using gas chromatography and incorporates thin-layer chromatography and spot tests for drug confirmation. The procedure is novel for it relies on the initial extraction of acidics, basics, and neutrals from serum acidified with hydroxhloric acid.

  9. Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions.

    Science.gov (United States)

    Fior, Simone; Li, Mingai; Oxelman, Bengt; Viola, Roberto; Hodges, Scott A; Ometto, Lino; Varotto, Claudio

    2013-04-01

    Aquilegia is a well-known model system in the field of evolutionary biology, but obtaining a resolved and well-supported phylogenetic reconstruction for the genus has been hindered by its recent and rapid diversification. Here, we applied 454 next-generation sequencing to PCR amplicons of 21 of the most rapidly evolving regions of the plastome to generate c. 24 kb of sequences from each of 84 individuals from throughout the genus. The resulting phylogeny has well-supported resolution of the main lineages of the genus, although recent diversification such as in the European taxa remains unresolved. By producing a chronogram of the whole Ranunculaceae family based on published data, we inferred calibration points for dating the Aquilegia radiation. The genus originated in the upper Miocene c. 6.9 million yr ago (Ma) in Eastern Asia, and diversification occurred c. 4.8 Ma with the split of two main clades, one colonizing North America, and the other Western Eurasia through the mountains of Central Asia. This was followed by a back-to-Asia migration, originating from the European stock using a North Asian route. These results provide the first backbone phylogeny and spatiotemporal reconstruction of the Aquilegia radiation, and constitute a robust framework to address the adaptative nature of speciation within the group. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  10. Visual Perceptual Echo Reflects Learning of Regularities in Rapid Luminance Sequences.

    Science.gov (United States)

    Chang, Acer Y-C; Schwartzman, David J; VanRullen, Rufin; Kanai, Ryota; Seth, Anil K

    2017-08-30

    A novel neural signature of active visual processing has recently been described in the form of the "perceptual echo", in which the cross-correlation between a sequence of randomly fluctuating luminance values and occipital electrophysiological signals exhibits a long-lasting periodic (∼100 ms cycle) reverberation of the input stimulus (VanRullen and Macdonald, 2012). As yet, however, the mechanisms underlying the perceptual echo and its function remain unknown. Reasoning that natural visual signals often contain temporally predictable, though nonperiodic features, we hypothesized that the perceptual echo may reflect a periodic process associated with regularity learning. To test this hypothesis, we presented subjects with successive repetitions of a rapid nonperiodic luminance sequence, and examined the effects on the perceptual echo, finding that echo amplitude linearly increased with the number of presentations of a given luminance sequence. These data suggest that the perceptual echo reflects a neural signature of regularity learning.Furthermore, when a set of repeated sequences was followed by a sequence with inverted luminance polarities, the echo amplitude decreased to the same level evoked by a novel stimulus sequence. Crucially, when the original stimulus sequence was re-presented, the echo amplitude returned to a level consistent with the number of presentations of this sequence, indicating that the visual system retained sequence-specific information, for many seconds, even in the presence of intervening visual input. Altogether, our results reveal a previously undiscovered regularity learning mechanism within the human visual system, reflected by the perceptual echo. SIGNIFICANCE STATEMENT How the brain encodes and learns fast-changing but nonperiodic visual input remains unknown, even though such visual input characterizes natural scenes. We investigated whether the phenomenon of "perceptual echo" might index such learning. The perceptual echo is a

  11. Next-generation sequencing library preparation method for identification of RNA viruses on the Ion Torrent Sequencing Platform.

    Science.gov (United States)

    Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng

    2018-05-09

    Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.

  12. [Rapid identification of hogwash oil by using synchronous fluorescence spectroscopy].

    Science.gov (United States)

    Sun, Yan-Hui; An, Hai-Yang; Jia, Xiao-Li; Wang, Juan

    2012-10-01

    To identify hogwash oil quickly, the characteristic delta lambda of hogwash oil was analyzed by three dimensional fluorescence spectroscopy with parallel factor analysis, and the model was built up by using synchronous fluorescence spectroscopy with support vector machines (SVM). The results showed that the characteristic delta lambda of hogwash oil was 60 nm. Collecting original spectrum of different samples under the condition of characteristic delta lambda 60 nm, the best model was established while 5 principal components were selected from original spectrum and the radial basis function (RBF) was used as the kernel function, and the optimal penalty factor C and kernel function g were 512 and 0.5 respectively obtained by the grid searching and 6-fold cross validation. The discrimination rate of the model was 100% for both training sets and prediction sets. Thus, it is quick and accurate to apply synchronous fluorescence spectroscopy to identification of hogwash oil.

  13. Rapid identification of ascomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays.

    Science.gov (United States)

    Page, Brent T; Shields, Christine E; Merz, William G; Kurtzman, Cletus P

    2006-09-01

    This study was designed to compare the identification of ascomycetous yeasts recovered from clinical specimens by using phenotypic assays (PA) and a molecular flow cytometric (FC) method. Large-subunit rRNA domains 1 and 2 (D1/D2) gene sequence analysis was also performed and served as the reference for correct strain identification. A panel of 88 clinical isolates was tested that included representatives of nine commonly encountered species and six infrequently encountered species. The PA included germ tube production, fermentation of seven carbohydrates, morphology on corn meal agar, urease and phenoloxidase activities, and carbohydrate assimilation tests when needed. The FC method (Luminex) employed species-specific oligonucleotides attached to polystyrene beads, which were hybridized with D1/D2 amplicons from the unidentified isolates. The PA identified 81 of 88 strains correctly but misidentified 4 of Candida dubliniensis, 1 of C. bovina, 1 of C. palmioleophila, and 1 of C. bracarensis. The FC method correctly identified 79 of 88 strains and did not misidentify any isolate but did not identify nine isolates because oligonucleotide probes were not available in the current library. The FC assay takes approximately 5 h, whereas the PA takes from 2 h to 5 days for identification. In conclusion, PA did well with the commonly encountered species, was not accurate for uncommon species, and takes significantly longer than the FC method. These data strongly support the potential of FC technology for rapid and accurate identification of medically important yeasts. With the introduction of new antifungals, rapid, accurate identification of pathogenic yeasts is more important than ever for guiding antifungal chemotherapy.

  14. Small acid soluble proteins for rapid spore identification.

    Energy Technology Data Exchange (ETDEWEB)

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  15. Identification of a Baeyer-Villiger monooxygenase sequence motif

    NARCIS (Netherlands)

    Fraaije, MW; Kamerbeek, NM; van Berkel, WJH; Janssen, DB; Kamerbeek, Nanne M.; Berkel, Willem J.H. van

    2002-01-01

    Baeyer-Villiger monooxygenases (BVMOs) form a distinct class of flavoproteins that catalyze the insertion of an oxygen atom in a C-C bond using dioxygen and NAD(P)H. Using newly characterized BVMO sequences, we have uncovered a BVMO-identifying sequence motif: FXGXXXRXXXW(P/D). Studies with

  16. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    Science.gov (United States)

    de Souza, Sandro J.; Camargo, Anamaria A.; Briones, Marcelo R. S.; Costa, Fernando F.; Nagai, Maria Aparecida; Verjovski-Almeida, Sergio; Zago, Marco A.; Andrade, Luis Eduardo C.; Carrer, Helaine; El-Dorry, Hamza F. A.; Espreafico, Enilza M.; Habr-Gama, Angelita; Giannella-Neto, Daniel; Goldman, Gustavo H.; Gruber, Arthur; Hackel, Christine; Kimura, Edna T.; Maciel, Rui M. B.; Marie, Suely K. N.; Martins, Elizabeth A. L.; Nóbrega, Marina P.; Paçó-Larson, Maria Luisa; Pardini, Maria Inês M. C.; Pereira, Gonçalo G.; Pesquero, João Bosco; Rodrigues, Vanderlei; Rogatto, Silvia R.; da Silva, Ismael D. C. G.; Sogayar, Mari C.; de Fátima Sonati, Maria; Tajara, Eloiza H.; Valentini, Sandro R.; Acencio, Marcio; Alberto, Fernando L.; Amaral, Maria Elisabete J.; Aneas, Ivy; Bengtson, Mário Henrique; Carraro, Dirce M.; Carvalho, Alex F.; Carvalho, Lúcia Helena; Cerutti, Janete M.; Corrêa, Maria Lucia C.; Costa, Maria Cristina R.; Curcio, Cyntia; Gushiken, Tsieko; Ho, Paulo L.; Kimura, Elza; Leite, Luciana C. C.; Maia, Gustavo; Majumder, Paromita; Marins, Mozart; Matsukuma, Adriana; Melo, Analy S. A.; Mestriner, Carlos Alberto; Miracca, Elisabete C.; Miranda, Daniela C.; Nascimento, Ana Lucia T. O.; Nóbrega, Francisco G.; Ojopi, Élida P. B.; Pandolfi, José Rodrigo C.; Pessoa, Luciana Gilbert; Rahal, Paula; Rainho, Claudia A.; da Ro's, Nancy; de Sá, Renata G.; Sales, Magaly M.; da Silva, Neusa P.; Silva, Tereza C.; da Silva, Wilson; Simão, Daniel F.; Sousa, Josane F.; Stecconi, Daniella; Tsukumo, Fernando; Valente, Valéria; Zalcberg, Heloisa; Brentani, Ricardo R.; Reis, Luis F. L.; Dias-Neto, Emmanuel; Simpson, Andrew J. G.

    2000-01-01

    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central coding regions of the resulting transcripts. They are termed ORF expressed sequence tags (ORESTES). The 250,000 ORESTES were assembled into 81,429 contigs. Of these, 1,181 (1.45%) were found to match sequences in chromosome 22 with at least one ORESTES contig for 162 (65.6%) of the 247 known genes, for 67 (44.6%) of the 150 related genes, and for 45 of the 148 (30.4%) EST-predicted genes on this chromosome. Using a set of stringent criteria to validate our sequences, we identified a further 219 previously unannotated transcribed sequences on chromosome 22. Of these, 171 were in fact also defined by EST or full length cDNA sequences available in GenBank but not utilized in the initial annotation of the first human chromosome sequence. Thus despite representing less than 15% of all expressed human sequences in the public databases at the time of the present analysis, ORESTES sequences defined 48 transcribed sequences on chromosome 22 not defined by other sequences. All of the transcribed sequences defined by ORESTES coincided with DNA regions predicted as encoding exons by genscan. (http://genes.mit.edu/GENSCAN.html). PMID:11070084

  17. Functional brain activation differences in stuttering identified with a rapid fMRI sequence

    Science.gov (United States)

    Kraft, Shelly Jo; Choo, Ai Leen; Sharma, Harish; Ambrose, Nicoline G.

    2011-01-01

    The purpose of this study was to investigate whether brain activity related to the presence of stuttering can be identified with rapid functional MRI (fMRI) sequences that involved overt and covert speech processing tasks. The long-term goal is to develop sensitive fMRI approaches with developmentally appropriate tasks to identify deviant speech motor and auditory brain activity in children who stutter closer to the age at which recovery from stuttering is documented. Rapid sequences may be preferred for individuals or populations who do not tolerate long scanning sessions. In this report, we document the application of a picture naming and phoneme monitoring task in three minute fMRI sequences with adults who stutter (AWS). If relevant brain differences are found in AWS with these approaches that conform to previous reports, then these approaches can be extended to younger populations. Pairwise contrasts of brain BOLD activity between AWS and normally fluent adults indicated the AWS showed higher BOLD activity in the right inferior frontal gyrus (IFG), right temporal lobe and sensorimotor cortices during picture naming and and higher activity in the right IFG during phoneme monitoring. The right lateralized pattern of BOLD activity together with higher activity in sensorimotor cortices is consistent with previous reports, which indicates rapid fMRI sequences can be considered for investigating stuttering in younger participants. PMID:22133409

  18. Rapidly Learned Identification of Epileptic Seizures from Sonified EEG

    Directory of Open Access Journals (Sweden)

    Psyche eLoui

    2014-10-01

    Full Text Available Sonification refers to a process by which data are converted into sound, providing an auditory alternative to visual display. Currently, the prevalent method for diagnosing seizures in epilepsy is by visually reading a patient’s electroencephalogram (EEG. However, sonification of the EEG data provides certain advantages due to the nature of human auditory perception. We hypothesized that human listeners will be able to identify seizures from EEGs using the auditory modality alone, and that accuracy of seizure identification will increase after a short training session. Here we describe an algorithm we have used to sonify EEGs of both seizure and non-seizure activity, followed by a training study in which subjects listened to short clips of sonified EEGs and determine whether each clip was of seizure or normal activity, both before and after a short training session. Results show that before training subjects performed at chance level in differentiating seizures vs. non-seizures, but there was a significant improvement of accuracy after the training session. After training, subjects successfully distinguished seizures from non-seizures using the auditory modality alone. Further analyses using signal detection theory demonstrated improvement in sensitivity and reduction in response bias as a result of training. This study demonstrates the potential of sonified EEGs to be used for the detection of seizures. Future studies will attempt to increase accuracy using novel training and sonification modifications, with the goals of managing, predicting, and ultimately controlling seizures using sonification as a possible biofeedback-based intervention for epilepsy.

  19. Genome-wide identification of coding and non-coding conserved sequence tags in human and mouse genomes

    Directory of Open Access Journals (Sweden)

    Maggi Giorgio P

    2008-06-01

    Full Text Available Abstract Background The accurate detection of genes and the identification of functional regions is still an open issue in the annotation of genomic sequences. This problem affects new genomes but also those of very well studied organisms such as human and mouse where, despite the great efforts, the inventory of genes and regulatory regions is far from complete. Comparative genomics is an effective approach to address this problem. Unfortunately it is limited by the computational requirements needed to perform genome-wide comparisons and by the problem of discriminating between conserved coding and non-coding sequences. This discrimination is often based (thus dependent on the availability of annotated proteins. Results In this paper we present the results of a comprehensive comparison of human and mouse genomes performed with a new high throughput grid-based system which allows the rapid detection of conserved sequences and accurate assessment of their coding potential. By detecting clusters of coding conserved sequences the system is also suitable to accurately identify potential gene loci. Following this analysis we created a collection of human-mouse conserved sequence tags and carefully compared our results to reliable annotations in order to benchmark the reliability of our classifications. Strikingly we were able to detect several potential gene loci supported by EST sequences but not corresponding to as yet annotated genes. Conclusion Here we present a new system which allows comprehensive comparison of genomes to detect conserved coding and non-coding sequences and the identification of potential gene loci. Our system does not require the availability of any annotated sequence thus is suitable for the analysis of new or poorly annotated genomes.

  20. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Directory of Open Access Journals (Sweden)

    Ji Hun Paek

    2013-01-01

    Full Text Available The ethyl acetate (EtOAc soluble fraction of methanol extracts of Perilla frutescens (P. frutescens inhibits aldose reductase (AR, the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR. The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2 (IC50 = 3.16 μM, rosmarinic acid (4 (IC50 = 2.77 μM, luteolin (5 (IC50 = 6.34 μM, and methyl rosmarinic acid (6 (IC50 = 4.03 μM.

  1. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags

    DEFF Research Database (Denmark)

    de Souza, S J; Camargo, A A; Briones, M R

    2000-01-01

    Transcribed sequences in the human genome can be identified with confidence only by alignment with sequences derived from cDNAs synthesized from naturally occurring mRNAs. We constructed a set of 250,000 cDNAs that represent partial expressed gene sequences and that are biased toward the central ...

  2. A multiplex PCR method for rapid identification of Brachionus rotifers.

    Science.gov (United States)

    Vasileiadou, Kalliopi; Papakostas, Spiros; Triantafyllidis, Alexander; Kappas, Ilias; Abatzopoulos, Theodore J

    2009-01-01

    Cryptic species are increasingly being recognized in many organisms. In Brachionus rotifers, many morphologically similar yet genetically distinct species/biotypes have been described. A number of Brachionus cryptic species have been recognized among hatchery strains. In this study, we present a simple, one-step genetic method to detect the presence of those Brachionus sp. rotifers that have been found in hatcheries. With the proposed technique, each of the B. plicatilis sensu stricto, B. ibericus, Brachionus sp. Nevada, Brachionus sp. Austria, Brachionus sp. Manjavacas, and Brachionus sp. Cayman species and/or biotypes can be identified with polymerase chain reaction (PCR) analysis. Based on 233 cytochrome c oxidase subunit I sequences, we reviewed all the available cryptic Brachionus sp. genetic polymorphisms, and we designed six nested primers. With these primers, a specific amplicon of distinct size is produced for every one of the involved species/biotypes. Two highly sensitive protocols were developed for using the primers. Many of the primers can be combined in the same PCR. The proposed method has been found to be an effective and practical tool to investigate the presence of the above six cryptic species/biotypes in both individual and communal (bulk) rotifer deoxyribonucleic acid extractions from hatcheries. With this technique, hatchery managers could easily determine their rotifer composition at the level of cryptic species and monitor their cultures more efficiently.

  3. Rapid identification of HEXA mutations in Tay-Sachs patients.

    Science.gov (United States)

    Giraud, Carole; Dussau, Jeanne; Azouguene, Emilie; Feillet, François; Puech, Jean-Philippe; Caillaud, Catherine

    2010-02-19

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder due to mutations in the HEXA gene resulting in a beta-hexosaminidase A (Hex A) deficiency. The purpose of this study was to characterize the molecular abnormalities in patients with infantile or later-onset forms of the disease. The complete sequencing of the 14 exons and flanking regions of the HEXA gene was performed with a unique technical condition in 10 unrelated TSD patients. Eleven mutations were identified, including five splice mutations, one insertion, two deletions and three single-base substitutions. Four mutations were novel: two splice mutations (IVS8+5G>A, IVS2+4delAGTA), one missense mutation in exon 6 (c.621T>G (p.D207E)) and one small deletion (c.1211-1212delTG) in exon 11 resulting in a premature stop codon at residue 429. The c.621T>G missense mutation was found in a patient presenting an infantile form. Its putative role in the pathogenesis of TSD is suspected as residue 207 is highly conserved in human, mouse and rat. Moreover, structural modelling predicted changes likely to affect substrate binding and catalytic activity of the enzyme. The time-saving procedure reported here could be useful for the characterization of Tay-Sachs-causing mutations, in particular in non-Ashkenazi patients mainly exhibiting rare mutations. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. Identification of a Likely Radio Counterpart to the Rapid Burster

    Science.gov (United States)

    Moore, Christopher B.; Rutledge, Robert E.; Fox, Derek W.; Guerriero, Robert A.; Lewin, Walter H. G.; Fender, Robert; van Paradijs, Jan

    2000-04-01

    We have identified a likely radio counterpart to the low-mass X-ray binary MXB 1730-335 (the Rapid Burster). The counterpart has shown 8.4 GHz radio on/off behavior correlated with the X-ray on/off behavior as observed by the RXTE/ASM during six VLA observations. The probability of an unrelated, randomly varying background source duplicating this behavior is 1%-3% depending on the correlation timescale. The location of the radio source is R.A. 17h33m24.61s, decl. -33 deg23'19.8" (J2000), +/-0.1". We do not detect 8.4 GHz radio emission coincident with type II (accretion-driven) X-ray bursts. The ratio of radio to X-ray emission during such bursts is constrained to be below the ratio observed during X-ray-persistent emission at the 2.9 σ level. Synchrotron bubble models of the radio emission can provide a reasonable fit to the full data set, collected over several outbursts, assuming that the radio evolution is the same from outburst to outburst but given the physical constraints the emission is more likely to be due to ~1 hr radio flares such as have been observed from the X-ray binary GRS 1915+105.

  5. Growth medium for the rapid isolation and identification of anthrax

    Science.gov (United States)

    Kiel, Johnathan L.; Parker, Jill E.; Grubbs, Teri R.; Alls, John L.

    2000-07-01

    Anthrax has been recognized as a highly likely biological warfare or terrorist agent. The purpose of this work was to design a culture technique to rapidly isolate and identify `live' anthrax. In liquid or solid media form, 3AT medium (3-amino-L-tyrosine, the main ingredient) accelerated germination and growth of anthrax spores in 5 to 6 hours to a point expected at 18 to 24 hours with ordinary medium. During accelerated growth, standard definitive diagnostic tests such as sensitivity to lysis by penicillin or bacteriophage can be run. During this time, the bacteria synthesized a fluorescent and thermochemiluminescent polymer. Bacteria captured by specific antibody are, therefore, already labeled. Because living bacteria are required to generate the polymer, the test converts immunoassays for anthrax into viability assays. Furthermore, the polymer formation leads to the death of the vegetative form and non-viability of the spores produced in the medium. By altering the formulation of the medium, other microbes and even animal and human cells can be grown in it and labeled (including viruses grown in the animal or human cells).

  6. A rapid PCR-based approach for molecular identification of filamentous fungi.

    Science.gov (United States)

    Chen, Yuanyuan; Prior, Bernard A; Shi, Guiyang; Wang, Zhengxiang

    2011-08-01

    In this study, a novel rapid and efficient DNA extraction method based on alkaline lysis, which can deal with a large number of filamentous fungal isolates in the same batch, was established. The filamentous fungal genomic DNA required only 20 min to prepare and can be directly used as a template for PCR amplification. The amplified internal transcribed spacer regions were easy to identify by analysis. The extracted DNA also can be used to amplify other protein-coding genes for fungal identification. This method can be used for rapid systematic identification of filamentous fungal isolates.

  7. Improving ITS sequence data for identification of plant pathogenic fungi

    Science.gov (United States)

    R. Henrik Nilsson; Kevin D. Hyde; Julia Pawłowska; Martin Ryberg; Leho Tedersoo; Anders Bjørnsgard Aas; Siti A. Alias; Artur Alves; Cajsa Lisa Anderson; Alexandre Antonelli; A. Elizabeth Arnold; Barbara Bahnmann; Mohammad Bahram; Johan Bengtsson-Palme; Anna Berlin; Sara Branco; Putarak Chomnunti; Asha Dissanayake; Rein Drenkhan; Hanna Friberg; Tobias Guldberg Frøslev; Bettina Halwachs; Martin Hartmann; Beatrice Henricot; Ruvishika Jayawardena; Ari Jumpponen; Håvard Kauserud; Sonja Koskela; Tomasz Kulik; Kare Liimatainen; Björn D. Lindahl; Daniel Lindner; Jian-Kui Liu; Sajeewa Maharachchikumbura; Dimuthu Manamgoda; Svante Martinsson; Maria Alice Neves; Tuula Niskanen; Stephan Nylinder; Olinto Liparini Pereira; Danilo Batista Pinho; Teresita M. Porter; Valentin Queloz; Taavi Riit; Marisol Sánchez-García; Filipe de Sousa; Emil Stefańczyk; Mariusz Tadych; Susumu Takamatsu; Qing Tian; Dhanushka Udayanga; Martin Unterseher; Zheng Wang; Saowanee Wikee; Jiye Yan; Ellen Larsson; Karl-Henrik Larsson; Urmas Kõljalg; Kessy Abarenkov

    2014-01-01

    Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult...

  8. Rapid identification of red-flesh loquat cultivars using EST-SSR markers based on manual cultivar identification diagram strategy.

    Science.gov (United States)

    Li, X Y; Xu, H X; Chen, J W

    2014-04-29

    Manual cultivar identification diagram is a new strategy for plant cultivar identification based on DNA markers, providing information to efficiently separate cultivars. We tested 25 pairs of apple EST-SSR primers for amplification of PCR products from loquat cultivars. These EST-SSR primers provided clear amplification products from the loquat cultivars, with a relatively high transferability rate of 84% to loquat; 11 pairs of primers amplified polymorphic products. After analysis of 24 red-fleshed loquat accessions, we found that only 7 pairs of primers could clearly separate all of them. A cultivar identification diagram of the 24 cultivars was constructed using polymorphic bands from the DNA fingerprints and EST-SSR primers. Any two of the 24 cultivars could be rapidly separated from each other, according to the polymorphic bands from the cultivars; the corresponding primers were marked in the correct position on the cultivar identification diagram. This red-flesh loquat cultivar identification diagram can separate the 24 red-flesh loquat cultivars, which is of benefit for loquat cultivar identification for germplasm management and breeding programs.

  9. Differences in a ribosomal DNA sequence of Strongylus species allows identification of single eggs.

    Science.gov (United States)

    Campbell, A J; Gasser, R B; Chilton, N B

    1995-03-01

    In the current study, molecular techniques were evaluated for the species identification of individual strongyle eggs. Adult worms of Strongylus edentatus, S. equinus and S. vulgaris were collected at necropsy from horses from Australia and the U.S.A. Genomic DNA was isolated and a ribosomal transcribed spacer (ITS-2) amplified and sequenced using polymerase chain reaction (PCR) techniques. The length of the ITS-2 sequence of S. edentatus, S. equinus and S. vulgaris ranged between 217 and 235 nucleotides. Extensive sequence analysis demonstrated a low degree (0-0.9%) of intraspecific variation in the ITS-2 for the Strongylus species examined, whereas the levels of interspecific differences (13-29%) were significantly greater. Interspecific differences in the ITS-2 sequences allowed unequivocal species identification of single worms and eggs using PCR-linked restriction fragment length polymorphism. These results demonstrate the potential of the ribosomal spacers as genetic markers for species identification of single strongyle eggs from horse faeces.

  10. Identification of Y-Chromosome Sequences in Turner Syndrome.

    Science.gov (United States)

    Silva-Grecco, Roseane Lopes da; Trovó-Marqui, Alessandra Bernadete; Sousa, Tiago Alves de; Croce, Lilian Da; Balarin, Marly Aparecida Spadotto

    2016-05-01

    To investigate the presence of Y-chromosome sequences and determine their frequency in patients with Turner syndrome. The study included 23 patients with Turner syndrome from Brazil, who gave written informed consent for participating in the study. Cytogenetic analyses were performed in peripheral blood lymphocytes, with 100 metaphases per patient. Genomic DNA was also extracted from peripheral blood lymphocytes, and gene sequences DYZ1, DYZ3, ZFY and SRY were amplified by Polymerase Chain Reaction. The cytogenetic analysis showed a 45,X karyotype in 9 patients (39.2 %) and a mosaic pattern in 14 (60.8 %). In 8.7 % (2 out of 23) of the patients, Y-chromosome sequences were found. This prevalence is very similar to those reported previously. The initial karyotype analysis of these patients did not reveal Y-chromosome material, but they were found positive for Y-specific sequences in the lymphocyte DNA analysis. The PCR technique showed that 2 (8.7 %) of the patients with Turner syndrome had Y-chromosome sequences, both presenting marker chromosomes on cytogenetic analysis.

  11. The Sequences of 1504 Mutants in the Model Rice Variety Kitaake Facilitate Rapid Functional Genomic Studies.

    Science.gov (United States)

    Li, Guotian; Jain, Rashmi; Chern, Mawsheng; Pham, Nikki T; Martin, Joel A; Wei, Tong; Schackwitz, Wendy S; Lipzen, Anna M; Duong, Phat Q; Jones, Kyle C; Jiang, Liangrong; Ruan, Deling; Bauer, Diane; Peng, Yi; Barry, Kerrie W; Schmutz, Jeremy; Ronald, Pamela C

    2017-06-01

    The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake ( Oryza sativa ssp japonica ), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations. © 2017 American Society of Plant Biologists. All rights reserved.

  12. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc

    2015-05-27

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing.

  13. Rapid detection of SMARCB1 sequence variation using high resolution melting

    Directory of Open Access Journals (Sweden)

    Ashley David M

    2009-12-01

    Full Text Available Abstract Background Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM, for detecting sequence variations in SMARCB1. Methods Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. Results The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4% showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA. A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. Conclusions This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to

  14. Rapid detection of SMARCB1 sequence variation using high resolution melting

    International Nuclear Information System (INIS)

    Dagar, Vinod; Chow, Chung-Wo; Ashley, David M; Algar, Elizabeth M

    2009-01-01

    Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM), for detecting sequence variations in SMARCB1. Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4%) showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA). A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to facilitate whole gene mutation screening

  15. Identification of Biomolecular Building Blocks by Recognition Tunneling: Stride towards Nanopore Sequencing of Biomolecules

    Science.gov (United States)

    Sen, Suman

    DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling Microscope (STM). A single layer of specially designed recognition molecule is attached to the STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their different binding interactions with the recognition molecules, the analyte molecules generate stochastic signal trains accommodating their "electronic fingerprints". Signal features are used to detect the molecules using a machine learning algorithm and different molecules can be identified with significantly high accuracy. This, in turn, paves the way for rapid, economical nanopore sequencing platform, overcoming the drawbacks of Next Generation Sequencing (NGS) techniques. To read DNA nucleotides with high accuracy in an STM tunnel junction a series of nitrogen-based heterocycles were designed and examined to check their capabilities to interact with naturally occurring DNA nucleotides by hydrogen bonding in the tunnel junction. These recognition molecules are Benzimidazole, Imidazole, Triazole and Pyrrole. Benzimidazole proved to be best among them showing DNA nucleotide classification accuracy close to 99%. Also, Imidazole reader can read an abasic monophosphate (AP), a product from depurination or depyrimidination that occurs 10,000 times per human cell per day. In another study, I have investigated a new universal reader, 1-(2-mercaptoethyl)pyrene (Pyrene reader) based on stacking interactions, which should be more specific to the canonical DNA nucleosides. In addition

  16. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry.

    Science.gov (United States)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Sacks, David B; Yu, Yi-Kuo

    2018-06-05

    Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

  17. Automatic identification of temporal sequences in chewing sounds

    NARCIS (Netherlands)

    Amft, O.D.; Kusserow, M.; Tröster, G.

    2007-01-01

    Chewing is an essential part of food intake. The analysis and detection of food patterns is an important component of an automatic dietary monitoring system. However chewing is a time-variable process depending on food properties. We present an automated methodology to extract sub-sequences of

  18. Food Fish Identification from DNA Extraction through Sequence Analysis

    Science.gov (United States)

    Hallen-Adams, Heather E.

    2015-01-01

    This experiment exposed 3rd and 4th y undergraduates and graduate students taking a course in advanced food analysis to DNA extraction, polymerase chain reaction (PCR), and DNA sequence analysis. Students provided their own fish sample, purchased from local grocery stores, and the class as a whole extracted DNA, which was then subjected to PCR,…

  19. Time is of essence; rapid identification of veterinary pathogens using MALDI TOF

    DEFF Research Database (Denmark)

    Nonnemann, Bettina; Dalsgaard, Inger; Pedersen, Karl

    Rapid and accurate identification of microbial pathogens is a cornerstone for timely and correct treatment of diseases of livestock and fish. The utility of the MALDI-TOF technique in the diagnostic laboratory is directly related to the quality of mass spectra and quantity of different microbial...

  20. A rapid and direct real time PCR-based method for identification of Salmonella spp

    DEFF Research Database (Denmark)

    Rodriguez-Lazaro, D.; Hernández, Marta; Esteve, T.

    2003-01-01

    The aim of this work was the validation of a rapid, real-time PCR assay based on TaqMan((R)) technology for the unequivocal identification of Salmonella spp. to be used directly on an agar-grown colony. A real-time PCR system targeting at the Salmonella spp. invA gene was optimized and validated ...

  1. COMPARISON OF ROCURONIUM BROMIDE AND SUCCINYLCHOLINE CHLORIDE FOR USE DURING RAPID SEQUENCE INTUBATION IN ADULTS

    Directory of Open Access Journals (Sweden)

    Ch. Penchalaiah

    2015-08-01

    Full Text Available BACKGROUND AND OBJECTIVE : The goal of rapid sequence intubation is to secure the patients airway smoothly and quickly, minimizing the chances of regurgitation and aspiration of gastric contents. Traditionally succinylcholine chloride has been the neuromuscular blocking drug of choi ce for use in rapid sequence intubation because of its rapid onset of action and profound relaxation. Succinylcholine chloride remains unsurpassed in providing ideal intubating conditions. However the use of succinylcholine chloride is associated with many side effects like muscle pain, bradycardia, hyperkalaemia and rise in intragastric and intraocular pressure. Rocuronium bromide is the only drug currently available which has the rapidity of onset of action like succinylcholine chloride. Hence the present study was undertaken to compare rocuronium bromide with succinylcholine chloride for use during rapid sequence intubation in adult patients. METHODOLOGY : The study population consisted of 90 patients aged between 18 - 60 years posted for various elective su rgeries requiring general anaesthesia . S tudy population was randomly divided into 3 groups with 30 patients in each sub group. 1. Group I : Intubated with 1 mg kg - 1 of succinylcholine chloride (n=30 . 2. Grou p II : Intubated with rocuronium bromide 0.6 mg kg - 1 (n=30 . 3. Group III : Intubated with rocuronium bromide 0.9 mg kg - 1 (n=30 . Intubating conditions were assessed at 60 seconds based on the scale adopted by Toni Magorian et al. 1993. The haemodynamic para meters in the present study were compared using p - value obtained from student t - test . RESULTS : It was noted that succinylcholine chloride 1 mg kg - 1 body weight produced excellent intubating conditions in all patients. Rocuronium bromide 0.6 mg kg - 1 body we ight produced excellent intubating conditions in 53.33% of patients but produced good to excellent intubating conditions in 96.67% of patients. Rocuronium bromide 0.9 mg kg - 1

  2. Identification and characterization of Highlands J virus from a Mississippi sandhill crane using unbiased next-generation sequencing

    Science.gov (United States)

    Ip, Hon S.; Wiley, Michael R.; Long, Renee; Gustavo, Palacios; Shearn-Bochsler, Valerie; Whitehouse, Chris A.

    2014-01-01

    Advances in massively parallel DNA sequencing platforms, commonly termed next-generation sequencing (NGS) technologies, have greatly reduced time, labor, and cost associated with DNA sequencing. Thus, NGS has become a routine tool for new viral pathogen discovery and will likely become the standard for routine laboratory diagnostics of infectious diseases in the near future. This study demonstrated the application of NGS for the rapid identification and characterization of a virus isolated from the brain of an endangered Mississippi sandhill crane. This bird was part of a population restoration effort and was found in an emaciated state several days after Hurricane Isaac passed over the refuge in Mississippi in 2012. Post-mortem examination had identified trichostrongyliasis as the possible cause of death, but because a virus with morphology consistent with a togavirus was isolated from the brain of the bird, an arboviral etiology was strongly suspected. Because individual molecular assays for several known arboviruses were negative, unbiased NGS by Illumina MiSeq was used to definitively identify and characterize the causative viral agent. Whole genome sequencing and phylogenetic analysis revealed the viral isolate to be the Highlands J virus, a known avian pathogen. This study demonstrates the use of unbiased NGS for the rapid detection and characterization of an unidentified viral pathogen and the application of this technology to wildlife disease diagnostics and conservation medicine.

  3. Molecular Identification of Unusual Pathogenic Yeast Isolates by Large Ribosomal Subunit Gene Sequencing: 2 Years of Experience at the United Kingdom Mycology Reference Laboratory▿

    Science.gov (United States)

    Linton, Christopher J.; Borman, Andrew M.; Cheung, Grace; Holmes, Ann D.; Szekely, Adrien; Palmer, Michael D.; Bridge, Paul D.; Campbell, Colin K.; Johnson, Elizabeth M.

    2007-01-01

    Rapid identification of yeast isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. We present here an analysis of the utility of PCR amplification and sequence analysis of the hypervariable D1/D2 region of the 26S rRNA gene for the identification of yeast species submitted to the United Kingdom Mycology Reference Laboratory over a 2-year period. A total of 3,033 clinical isolates were received from 2004 to 2006 encompassing 50 different yeast species. While more than 90% of the isolates, corresponding to the most common Candida species, could be identified by using the AUXACOLOR2 yeast identification kit, 153 isolates (5%), comprised of 47 species, could not be identified by using this system and were subjected to molecular identification via 26S rRNA gene sequencing. These isolates included some common species that exhibited atypical biochemical and phenotypic profiles and also many rarer yeast species that are infrequently encountered in the clinical setting. All 47 species requiring molecular identification were unambiguously identified on the basis of D1/D2 sequences, and the molecular identities correlated well with the observed biochemical profiles of the various organisms. Together, our data underscore the utility of molecular techniques as a reference adjunct to conventional methods of yeast identification. Further, we show that PCR amplification and sequencing of the D1/D2 region reliably identifies more than 45 species of clinically significant yeasts and can also potentially identify new pathogenic yeast species. PMID:17251397

  4. Identification of 10 882 porcine microsatellite sequences and virtual mapping of 4528 of these sequences

    DEFF Research Database (Denmark)

    Karlskov-Mortensen, Peter; Hu, Z.L.; Gorodkin, Jan

    2007-01-01

    the human genome (BLAST cut-off threshold = 1 x 10-5). All microsatellite sequences placed on the comparative map are accessible at http://www.animalgenome.org/QTLdb/pig.html . These sequences increase the number of identified microsatellites in the porcine genome by several orders of magnitude...

  5. Identification of Bacterial Small RNAs by RNA Sequencing

    DEFF Research Database (Denmark)

    Gómez Lozano, María; Marvig, Rasmus Lykke; Molin, Søren

    2014-01-01

    sequencing (RNA-seq) is described that involves the preparation and analysis of three different sequencing libraries. As a signifi cant number of unique sRNAs are identifi ed in each library, the libraries can be used either alone or in combination to increase the number of sRNAs identifi ed. The approach......Small regulatory RNAs (sRNAs) in bacteria are known to modulate gene expression and control a variety of processes including metabolic reactions, stress responses, and pathogenesis in response to environmental signals. A method to identify bacterial sRNAs on a genome-wide scale based on RNA...... may be applied to identify sRNAs in any bacterium under different growth and stress conditions....

  6. Computational identification of MoRFs in protein sequences.

    Science.gov (United States)

    Malhis, Nawar; Gsponer, Jörg

    2015-06-01

    Intrinsically disordered regions of proteins play an essential role in the regulation of various biological processes. Key to their regulatory function is the binding of molecular recognition features (MoRFs) to globular protein domains in a process known as a disorder-to-order transition. Predicting the location of MoRFs in protein sequences with high accuracy remains an important computational challenge. In this study, we introduce MoRFCHiBi, a new computational approach for fast and accurate prediction of MoRFs in protein sequences. MoRFCHiBi combines the outcomes of two support vector machine (SVM) models that take advantage of two different kernels with high noise tolerance. The first, SVMS, is designed to extract maximal information from the general contrast in amino acid compositions between MoRFs, their surrounding regions (Flanks), and the remainders of the sequences. The second, SVMT, is used to identify similarities between regions in a query sequence and MoRFs of the training set. We evaluated the performance of our predictor by comparing its results with those of two currently available MoRF predictors, MoRFpred and ANCHOR. Using three test sets that have previously been collected and used to evaluate MoRFpred and ANCHOR, we demonstrate that MoRFCHiBi outperforms the other predictors with respect to different evaluation metrics. In addition, MoRFCHiBi is downloadable and fast, which makes it useful as a component in other computational prediction tools. http://www.chibi.ubc.ca/morf/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Comparison between MALDI-TOF MS and FilmArray Blood Culture Identification panel for rapid identification of yeast from positive blood culture.

    Science.gov (United States)

    Paolucci, M; Foschi, C; Tamburini, M V; Ambretti, S; Lazzarotto, T; Landini, M P

    2014-09-01

    In this study we evaluated MALDI-TOF MS and FilmArray methods for the rapid identification of yeast from positive blood cultures. FilmArray correctly identified 20/22 of yeast species, while MALDI-TOF MS identified 9/22. FilmArray is a reliable and rapid identification system for the direct identification of yeasts from positive blood cultures. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. SeqAnt: A web service to rapidly identify and annotate DNA sequence variations

    Directory of Open Access Journals (Sweden)

    Patel Viren

    2010-09-01

    Full Text Available Abstract Background The enormous throughput and low cost of second-generation sequencing platforms now allow research and clinical geneticists to routinely perform single experiments that identify tens of thousands to millions of variant sites. Existing methods to annotate variant sites using information from publicly available databases via web browsers are too slow to be useful for the large sequencing datasets being routinely generated by geneticists. Because sequence annotation of variant sites is required before functional characterization can proceed, the lack of a high-throughput pipeline to efficiently annotate variant sites can act as a significant bottleneck in genetics research. Results SeqAnt (Sequence Annotator is an open source web service and software package that rapidly annotates DNA sequence variants and identifies recessive or compound heterozygous loci in human, mouse, fly, and worm genome sequencing experiments. Variants are characterized with respect to their functional type, frequency, and evolutionary conservation. Annotated variants can be viewed on a web browser, downloaded in a tab-delimited text file, or directly uploaded in a BED format to the UCSC genome browser. To demonstrate the speed of SeqAnt, we annotated a series of publicly available datasets that ranged in size from 37 to 3,439,107 variant sites. The total time to completely annotate these data completely ranged from 0.17 seconds to 28 minutes 49.8 seconds. Conclusion SeqAnt is an open source web service and software package that overcomes a critical bottleneck facing research and clinical geneticists using second-generation sequencing platforms. SeqAnt will prove especially useful for those investigators who lack dedicated bioinformatics personnel or infrastructure in their laboratories.

  9. A DNA 'barcode blitz': rapid digitization and sequencing of a natural history collection.

    Science.gov (United States)

    Hebert, Paul D N; Dewaard, Jeremy R; Zakharov, Evgeny V; Prosser, Sean W J; Sones, Jayme E; McKeown, Jaclyn T A; Mantle, Beth; La Salle, John

    2013-01-01

    DNA barcoding protocols require the linkage of each sequence record to a voucher specimen that has, whenever possible, been authoritatively identified. Natural history collections would seem an ideal resource for barcode library construction, but they have never seen large-scale analysis because of concerns linked to DNA degradation. The present study examines the strength of this barrier, carrying out a comprehensive analysis of moth and butterfly (Lepidoptera) species in the Australian National Insect Collection. Protocols were developed that enabled tissue samples, specimen data, and images to be assembled rapidly. Using these methods, a five-person team processed 41,650 specimens representing 12,699 species in 14 weeks. Subsequent molecular analysis took about six months, reflecting the need for multiple rounds of PCR as sequence recovery was impacted by age, body size, and collection protocols. Despite these variables and the fact that specimens averaged 30.4 years old, barcode records were obtained from 86% of the species. In fact, one or more barcode compliant sequences (>487 bp) were recovered from virtually all species represented by five or more individuals, even when the youngest was 50 years old. By assembling specimen images, distributional data, and DNA barcode sequences on a web-accessible informatics platform, this study has greatly advanced accessibility to information on thousands of species. Moreover, much of the specimen data became publically accessible within days of its acquisition, while most sequence results saw release within three months. As such, this study reveals the speed with which DNA barcode workflows can mobilize biodiversity data, often providing the first web-accessible information for a species. These results further suggest that existing collections can enable the rapid development of a comprehensive DNA barcode library for the most diverse compartment of terrestrial biodiversity - insects.

  10. Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria.

    Directory of Open Access Journals (Sweden)

    Teresa Nogueira

    Full Text Available Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.

  11. Identification of sequence motifs significantly associated with antisense activity

    Directory of Open Access Journals (Sweden)

    Peek Andrew S

    2007-06-01

    Full Text Available Abstract Background Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. Results We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. Conclusion The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic

  12. Field-based species identification in eukaryotes using real-time nanopore sequencing.

    OpenAIRE

    Papadopulos, Alexander; Devey, Dion; Helmstetter, Andrew; Parker, Joe

    2017-01-01

    Advances in DNA sequencing and informatics have revolutionised biology over the past four decades, but technological limitations have left many applications unexplored. Recently, portable, real-time, nanopore sequencing (RTnS) has become available. This offers opportunities to rapidly collect and analyse genomic data anywhere. However, the generation of datasets from large, complex genomes has been constrained to laboratories. The portability and long DNA sequences of RTnS offer great potenti...

  13. Investigation into spore coat properties for the rapid identification of endospores in marine sediments

    Science.gov (United States)

    Rattray, J. E.; Chakraborty, A.; Bernard, B. B.; Brooks, J.; Hubert, C. R.

    2017-12-01

    Understanding the sediment biogeography of dormant marine thermophilic bacterial endospores (thermospores) has the potential to assist locating and characterising working petroleum systems. The presence of thermospores in cold ocean environments suggests that distribution occurs via hydrocarbon seepage from thermally active reservoirs. Low abundance and endospore coat physiology mean nucleic acid based techniques have limited success for in situ detection of thermospores. Alternative rapid analytical methods are needed so we investigated using the Schaeffer-Fulton (malachite green and safranin) and DAPI (4',6-diamidino-2-phenylindole) staining techniques on thermospores from cultures and marine sediments. Sediment samples from 111 locations in the Eastern Gulf of Mexico (100 to 3300 m water depth; 6 to 600 km apart) were incubated at high temperature, followed by construction of 16S rRNA gene amplicon libraries (V3-V4 region; Illumina MiSeq) revealing enrichment of species-level thermospore OTUs. A sulfate reducing bacterium from site EGM080 was purified and classified based on its rRNA gene sequence as Desulfotomaculum geothermicum. Prior to thermospore staining the culture was kept in the death/ decline phase for 16 weeks to promote sporulation. Samples of D. geothermicum and the source marine sediment were fixed, stained then analysed using brightfield, phase contrast or fluorescence microscopy. Thermospores in pure culture were identified using phase contrast but were difficult to observe in the sediment sample due to particle aggregation. The Schaeffer-Fulton technique aided thermospore identification in a complex sediment sample matrix as thermospores were stained bright green, and also revealed that there were only spores and no (red stained) vegetative cells in the culture. Treatment with DAPI gave dull fluorescing cells but also provided insight into the behaviour of thermospores in sediment suspensions. Spores in the culture medium were free floating but

  14. Rapid detection and identification of Stachybotrys and Chaetomium species using tissue PCR analysis

    DEFF Research Database (Denmark)

    Lewinska, Anna Malgorzata; Peuhkuri, Ruut Hannele; Rode, Carsten

    2016-01-01

    level is essential for health risk assessment and building remediation. This study focuses on molecular identification of two common indoor fungal genera: Stachybotrys and Chaetomium. This study proposes two new DNA barcode candidates for Stachybotrys and Chaetomium: the gene encoding mitogen activated...... protein kinase (hogA) and the intergenic region between histone 3 and histone 4 (h3-h4) as well as it introduces a rapid - 3.5 h - protocol for direct Stachybotrys and Chaetomium species identification, which bypasses culture cultivation, DNA extraction and DNA sequencing....

  15. galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.

    Science.gov (United States)

    Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M

    2004-06-12

    The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se

  16. Identification of HIV Mutation as Diagnostic Biomarker through Next Generation Sequencing.

    Science.gov (United States)

    Shaw, Wen Hui; Lin, Qianqian; Muhammad, Zikry Zhiwei Bin Roslee; Lee, Jia Jun; Khong, Wei Xin; Ng, Oon Tek; Tan, Eng Lee; Li, Peng

    2016-07-01

    Current clinical detection of Human immunodeficiency virus 1 (HIV-1) is used to target viral genes and proteins. However, the immunoassay, such as viral culture or Polymerase Chain Reaction (PCR), lacks accuracy in the diagnosis, as these conventional assays rely on the stable genome and HIV-1 is a highly-mutated virus. Next generation sequencing (NGS) promises to be transformative for the practice of infectious disease, and the rapidly reducing cost and processing time mean that this will become a feasible technology in diagnostic and research laboratories in the near future. The technology offers the superior sensitivity to detect the pathogenic viruses, including unknown and unexpected strains. To leverage the NGS technology in order to improve current HIV-1 diagnosis and genotyping methods. Ten blood samples were collected from HIV-1 infected patients which were diagnosed by RT PCR at Singapore Communicable Disease Centre, Tan Tock Seng Hospital from October 2014 to March 2015. Viral RNAs were extracted from blood plasma and reversed into cDNA. The HIV-1 cDNA samples were cleaned up using a PCR purification kit and the sequencing library was prepared and identified through MiSeq. Two common mutations were observed in all ten samples. The common mutations were identified at genome locations 1908 and 2104 as missense and silent mutations respectively, conferring S37N and S3S found on aspartic protease and reverse transcriptase subunits. The common mutations identified in this study were not previously reported, therefore suggesting the potential for them to be used for identification of viral infection, disease transmission and drug resistance. This was especially the case for, missense mutation S37N which could cause an amino acid change in viral proteases thus reducing the binding affinity of some protease inhibitors. Thus, the unique common mutations identified in this study could be used as diagnostic biomarkers to indicate the origin of infection as being

  17. A dual PCR-based sequencing approach for the identification and discrimination of Echinococcus and Taenia taxa.

    Science.gov (United States)

    Boubaker, Ghalia; Marinova, Irina; Gori, Francesca; Hizem, Amani; Müller, Norbert; Casulli, Adriano; Jerez Puebla, Luis Enrique; Babba, Hamouda; Gottstein, Bruno; Spiliotis, Markus

    2016-08-01

    Reliable and rapid molecular tools for the genetic identification and differentiation of Echinococcus species and/or genotypes are crucial for studying spatial and temporal transmission dynamics. Here, we describe a novel dual PCR targeting regions in the small (rrnS) and large (rrnL) subunits of mitochondrial ribosomal RNA (rRNA) genes, which enables (i) the specific identification of species and genotypes of Echinococcus (rrnS + L-PCR) and/or (ii) the identification of a range of taeniid cestodes, including different species of Echinococcus, Taenia and some others (17 species of diphyllidean helminths). This dual PCR approach was highly sensitive, with an analytical detection limit of 1 pg for genomic DNA of Echinococcus. Using concatenated sequence data derived from the two gene markers (1225 bp), we identified five unique and geographically informative single nucleotide polymorphisms (SNPs) that allowed genotypes (G1 and G3) of Echinococcus granulosus sensu stricto to be distinguished, and 25 SNPs that allowed differentiation within Echinococcus canadensis (G6/7/8/10). In conclusion, we propose that this dual PCR-based sequencing approach can be used for molecular epidemiological studies of Echinococcus and other taeniid cestodes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rapid species specific identification and subtyping of Yersinia enterocolitica by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Stephan, Roger; Cernela, Nicole; Ziegler, Dominik; Pflüger, Valentin; Tonolla, Mauro; Ravasi, Damiana; Fredriksson-Ahomaa, Maria; Hächler, Herbert

    2011-11-01

    Yersinia enterocolitica are Gram-negative pathogens and known as important causes of foodborne infections. Rapid and reliable identification of strains of the species Y. enterocolitica within the genus Yersinia and the differentiation of the pathogenic from the non-pathogenic biotypes has become increasingly important. We evaluated here the application of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid species identification and subtyping of Y. enterocolitica. To this end, we developed a reference MS database library including 19 Y. enterocolitica (non-pathogenic biotype 1A and pathogenic biotypes 2 and 4) as well as 24 non-Y. enterocolitica strains, belonging to eleven different other Yersinia spp. The strains provided reproducible and unique mass spectra profiles covering a wide molecular mass range (2000 to 30,000 Da). Species-specific and biotype-specific biomarker protein mass patterns were determined for Y. enterocolitica. The defined biomarker mass patterns (SARAMIS SuperSpectrum™) were validated using 117 strains from various Y. enterocolitica bioserotypes in a blind-test. All strains were correctly identified and for all strains the mass spectrometry-based identification scheme yielded identical results compared to a characterization by a combination of biotyping and serotyping. Our study demonstrates that MALDI-TOF-MS is a reliable and powerful tool for the rapid identification of Y. enterocolitica strains to the species level and allows subtyping of strains to the biotype level. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid identification of fungal rhinosinusitis pathogens.

    Science.gov (United States)

    Huang, Yanfei; Wang, Jinglin; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Lu, Xinxin

    2017-03-01

    Filamentous fungi are among the most important pathogens, causing fungal rhinosinusitis (FRS). Current laboratory diagnosis of FRS pathogens mainly relies on phenotypic identification by culture and microscopic examination, which is time consuming and expertise dependent. Although matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS has been employed to identify various fungi, its efficacy in the identification of FRS fungi is less clear. A total of 153 FRS isolates obtained from patients were analysed at the Clinical Laboratory at the Beijing Tongren Hospital affiliated to the Capital Medical University, between January 2014 and December 2015. They were identified by traditional phenotypic methods and Bruker MALDI-TOF MS (Bruker, Biotyper version 3.1), respectively. Discrepancies between the two methods were further validated by sequencing. Among the 153 isolates, 151 had correct species identification using MALDI-TOF MS (Bruker, Biot 3.1, score ≥2.0 or 2.3). MALDI-TOF MS enabled identification of some very closely related species that were indistinguishable by conventional phenotypic methods, including 1/10 Aspergillus versicolor, 3/20 Aspergillus flavus, 2/30 Aspergillus fumigatus and 1/20 Aspergillus terreus, which were misidentified by conventional phenotypic methods as Aspergillus nidulans, Aspergillus oryzae, Aspergillus japonicus and Aspergillus nidulans, respectively. In addition, 2/2 Rhizopus oryzae and 1/1 Rhizopus stolonifer that were identified only to the genus level by the phenotypic method were correctly identified by MALDI-TOF MS. MALDI-TOF MS is a rapid and accurate technique, and could replace the conventional phenotypic method for routine identification of FRS fungi in clinical microbiology laboratories.

  20. [Evaluation of a rapid trehalase test for the identification of Candida glabrata].

    Science.gov (United States)

    Kirdar, Sevin; Gültekin, Berna; Evcil, Gonca; Ozkütük, Aydan; Sener, Asli Gamze; Aydin, Neriman

    2009-04-01

    Candida species which cause local infections, may also lead to fatal systemic infections. The increasing incidence of non-albicans Candida, especially fluconazole susceptible or resistant dose-dependent C. glabrata, increased the importance of rapid and accurate species level identification for Candida. Rapid and correct identification of C. glabrata is essential for the initiation of the appropriate antifungal therapy. This study was conducted to evaluate the performance of the rapid trehalase test in the diagnosis of C. glabrata isolates. A total of 173 Candida strains isolated from various clinical specimens and identified according to germ tube test, growth on cornmeal Tween 80 agar and the colony morphologies on Mast-CHROMagar Candida medium (Mast Diagnostics, UK), were included to the study. The identification of non-albicans Candida species were also confirmed by API 20CAUX (BioMerieux, France) system. Accordingly 86 (50%) of the isolates were identified as C. glabrata, 48 (28%) C. albicans, 17 (10%) C. krusei, 13 (8%) C. tropicalis, 5 (3%) C. parapsilosis, 3 (2%) C. kefyr and 1 (1%) Cutilis. In order to detect the presence of trehalase enzyme in Condida strains, all isolates were grown on Sabouraud dextrose agar containing 4% glucose and then one yeast colony was emulsified in 50 microl of citrate buffer containing 4% (wt/vol) trehalose for 3 h at 37 degrees C. Presence of glucose which emerged after the action of trehalase on trehalose, was detected by a commercial "urinary glucose detection dipstick" (Spinreacta, Spain). All C. glabrata strains yielded positive result by trehalase test. None C. glabrata isolates were found negative by trehalase test except for one strain of C. tropicalis. In this study, the trehalase test allowed identification of C. globrata with 100% sensitivity and 98.9% specificity. It was concluded that trehalase test is a rapid, cost-effective and simple test that can be used for the accurate identification of C. glabrata.

  1. TRDistiller: a rapid filter for enrichment of sequence datasets with proteins containing tandem repeats.

    Science.gov (United States)

    Richard, François D; Kajava, Andrey V

    2014-06-01

    The dramatic growth of sequencing data evokes an urgent need to improve bioinformatics tools for large-scale proteome analysis. Over the last two decades, the foremost efforts of computer scientists were devoted to proteins with aperiodic sequences having globular 3D structures. However, a large portion of proteins contain periodic sequences representing arrays of repeats that are directly adjacent to each other (so called tandem repeats or TRs). These proteins frequently fold into elongated fibrous structures carrying different fundamental functions. Algorithms specific to the analysis of these regions are urgently required since the conventional approaches developed for globular domains have had limited success when applied to the TR regions. The protein TRs are frequently not perfect, containing a number of mutations, and some of them cannot be easily identified. To detect such "hidden" repeats several algorithms have been developed. However, the most sensitive among them are time-consuming and, therefore, inappropriate for large scale proteome analysis. To speed up the TR detection we developed a rapid filter that is based on the comparison of composition and order of short strings in the adjacent sequence motifs. Tests show that our filter discards up to 22.5% of proteins which are known to be without TRs while keeping almost all (99.2%) TR-containing sequences. Thus, we are able to decrease the size of the initial sequence dataset enriching it with TR-containing proteins which allows a faster subsequent TR detection by other methods. The program is available upon request. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Rapid development of microsatellite markers for Callosobruchus chinensis using Illumina paired-end sequencing.

    Directory of Open Access Journals (Sweden)

    Can-Xing Duan

    Full Text Available BACKGROUND: The adzuki bean weevil, Callosobruchus chinensis L., is one of the most destructive pests of stored legume seeds such as mungbean, cowpea, and adzuki bean, which usually cause considerable loss in the quantity and quality of stored seeds during transportation and storage. However, a lack of genetic information of this pest results in a series of genetic questions remain largely unknown, including population genetic structure, kinship, biotype abundance, and so on. Co-dominant microsatellite markers offer a great resolving power to determine these events. Here, we report rapid microsatellite isolation from C. chinensis via high-throughput sequencing. PRINCIPAL FINDINGS: In this study, 94,560,852 quality-filtered and trimmed reads were obtained for the assembly of genome using Illumina paired-end sequencing technology. In total, the genome with total length of 497,124,785 bp, comprising 403,113 high quality contigs was generated with de novo assembly. More than 6800 SSR loci were detected and a suit of 6303 primer pair sequences were designed and 500 of them were randomly selected for validation. Of these, 196 pair of primers, i.e. 39.2%, produced reproducible amplicons that were polymorphic among 8 C. chinensis genotypes collected from different geographical regions. Twenty out of 196 polymorphic SSR markers were used to analyze the genetic diversity of 18 C. chinensis populations. The results showed the twenty SSR loci were highly polymorphic among these populations. CONCLUSIONS: This study presents a first report of genome sequencing and de novo assembly for C. chinensis and demonstrates the feasibility of generating a large scale of sequence information and SSR loci isolation by Illumina paired-end sequencing. Our results provide a valuable resource for C. chinensis research. These novel markers are valuable for future genetic mapping, trait association, genetic structure and kinship among C. chinensis.

  3. Rapid evolution of the env gene leader sequence in cats naturally infected with feline immunodeficiency virus

    Science.gov (United States)

    Hughes, Joseph; Biek, Roman; Litster, Annette; Willett, Brian J.; Hosie, Margaret J.

    2015-01-01

    Analysing the evolution of feline immunodeficiency virus (FIV) at the intra-host level is important in order to address whether the diversity and composition of viral quasispecies affect disease progression. We examined the intra-host diversity and the evolutionary rates of the entire env and structural fragments of the env sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV env showed very low levels of intra-host diversity. We estimated that env evolved at a rate of 1.16×10−3 substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3–V5 fragment of FIV env displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of env, rather than the V3–V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all env fragments, consistent with this region being under a strong selective pressure for genetic variation. Overall, FIV env displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximum evolutionary rate was observed in the leader sequence of env. Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared with human immunodeficiency virus might explain why many naturally infected cats do not progress rapidly to AIDS. PMID:25535323

  4. Optimizing the magnetization-prepared rapid gradient-echo (MP-RAGE sequence.

    Directory of Open Access Journals (Sweden)

    Jinghua Wang

    Full Text Available The three-dimension (3D magnetization-prepared rapid gradient-echo (MP-RAGE sequence is one of the most popular sequences for structural brain imaging in clinical and research settings. The sequence captures high tissue contrast and provides high spatial resolution with whole brain coverage in a short scan time. In this paper, we first computed the optimal k-space sampling by optimizing the contrast of simulated images acquired with the MP-RAGE sequence at 3.0 Tesla using computer simulations. Because the software of our scanner has only limited settings for k-space sampling, we then determined the optimal k-space sampling for settings that can be realized on our scanner. Subsequently we optimized several major imaging parameters to maximize normal brain tissue contrasts under the optimal k-space sampling. The optimal parameters are flip angle of 12°, effective inversion time within 900 to 1100 ms, and delay time of 0 ms. In vivo experiments showed that the quality of images acquired with our optimal protocol was significantly higher than that of images obtained using recommended protocols in prior publications. The optimization of k-spacing sampling and imaging parameters significantly improved the quality and detection sensitivity of brain images acquired with MP-RAGE.

  5. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae, a mammalian family that experienced rapid speciation

    Directory of Open Access Journals (Sweden)

    Ryder Oliver A

    2007-10-01

    Full Text Available Abstract Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other

  6. Rapid identification of Yersinia pestis and Brucella melitensis by chip-based continuous flow PCR

    Science.gov (United States)

    Dietzsch, Michael; Hlawatsch, Nadine; Melzer, Falk; Tomaso, Herbert; Gärtner, Claudia; Neubauer, Heinrich

    2012-06-01

    To combat the threat of biological agents like Yersinia pestis and Brucella melitensis in bioterroristic scenarios requires fast, easy-to-use and safe identification systems. In this study we describe a system for rapid amplification of specific genetic markers for the identification of Yersinia pestis and Brucella melitensis. Using chip based PCR and continuous flow technology we were able to amplify the targets simultaneously with a 2-step reaction profile within 20 minutes. The subsequent analysis of amplified fragments by standard gel electrophoresis requires another 45 minutes. We were able to detect both pathogens within 75 minutes being much faster than most other nucleic acid amplification technologies.

  7. [Molecular identification of astragali radix and its adulterants by ITS sequences].

    Science.gov (United States)

    Cui, Zhan-Hu; Li, Yue; Yuan, Qing-Jun; Zhou, Li-She; Li, Min-Hui

    2012-12-01

    To explore a new method for identification Astragali Radix from its adulterants by using ITS sequence. Thirteen samples of the different Astragali Radix materials and 6 samples of the adulterants of the roots of Hedysarum polybotrys, Medicago sativa and Althaea rosea were collected. ITS sequence was amplified by PCR and sequenced unidirectionally. The interspecific K-2-P distances of Astragali Radix and its adulterants were calculated, and NJ tree and UPGMA tree were constructed by MEGA 4. ITS sequences were obtained from 19 samples respectively, there were Astragali Radix 646-650 bp, H. polybotrys 664 bp, Medicago sativa 659 bp, Althaea rosea 728 bp, which were registered in the GenBank. Phylogeny trees reconstruction using NJ and UPGMA analysis based on ITS nucleotide sequences can effectively distinguish Astragali Radix from adulterants. ITS sequence can be used to identify Astragali Radix from its adulterants successfully and is an efficient molecular marker for authentication of Astragali Radix and its adulterants.

  8. Identification of Known and Novel Recurrent Viral Sequences in Data from Multiple Patients and Multiple Cancers

    DEFF Research Database (Denmark)

    Friis-Nielsen, Jens; Kjartansdóttir, Kristín Rós; Mollerup, Sarah

    2016-01-01

    non-template controls, and 24 test samples. Recurrent sequences were statistically associated to biological, methodological or technical features with the aim to identify novel pathogens or plausible contaminants that may associate to a particular kit or method. We provide examples of identified......Virus discovery from high throughput sequencing data often follows a bottom-up approach where taxonomic annotation takes place prior to association to disease. Albeit effective in some cases, the approach fails to detect novel pathogens and remote variants not present in reference databases. We...... have developed a species independent pipeline that utilises sequence clustering for the identification of nucleotide sequences that co-occur across multiple sequencing data instances. We applied the workflow to 686 sequencing libraries from 252 cancer samples of different cancer and tissue types, 32...

  9. Identification of innate immunodeficiencies by whole genome sequencing

    DEFF Research Database (Denmark)

    Mogensen, Trine; Christiansen, Mette; Veirum, Jens Erik

    2014-01-01

    encephalitis or other herpes simplex virus (HSV) disease manifestations. The goal is to identify host factors in innate immunity which may explain the hitherto unknown mechanism underlying differential susceptibility to HSV infections between individuals. Such knowledge may have clinical and therapeutical...... implications. Methods: As part of a pilot study we performed WES on 4 patients with herpes encephalitis or mucocutaneous manifestations of HSV infection. WES was performed with Illumina technology (Illumina HiSeq/MiSeq) and analyzed PolyPhen-2 (Polymorphism Phenotyping v2) PhyloP, and SIFT prediction software......, TBK1 and Unc93B) may contribute to the development of herpes encephalitis. Common to these genetic defects is that they lead to reduced antiviral interferon (IFN) responses. In this study whole exome sequencing (WES) was performed to identify mutations associated with susceptibility to herpes...

  10. Identification, variation and transcription of pneumococcal repeat sequences

    Science.gov (United States)

    2011-01-01

    Background Small interspersed repeats are commonly found in many bacterial chromosomes. Two families of repeats (BOX and RUP) have previously been identified in the genome of Streptococcus pneumoniae, a nasopharyngeal commensal and respiratory pathogen of humans. However, little is known about the role they play in pneumococcal genetics. Results Analysis of the genome of S. pneumoniae ATCC 700669 revealed the presence of a third repeat family, which we have named SPRITE. All three repeats are present at a reduced density in the genome of the closely related species S. mitis. However, they are almost entirely absent from all other streptococci, although a set of elements related to the pneumococcal BOX repeat was identified in the zoonotic pathogen S. suis. In conjunction with information regarding their distribution within the pneumococcal chromosome, this suggests that it is unlikely that these repeats are specialised sequences performing a particular role for the host, but rather that they constitute parasitic elements. However, comparing insertion sites between pneumococcal sequences indicates that they appear to transpose at a much lower rate than IS elements. Some large BOX elements in S. pneumoniae were found to encode open reading frames on both strands of the genome, whilst another was found to form a composite RNA structure with two T box riboswitches. In multiple cases, such BOX elements were demonstrated as being expressed using directional RNA-seq and RT-PCR. Conclusions BOX, RUP and SPRITE repeats appear to have proliferated extensively throughout the pneumococcal chromosome during the species' past, but novel insertions are currently occurring at a relatively slow rate. Through their extensive secondary structures, they seem likely to affect the expression of genes with which they are co-transcribed. Software for annotation of these repeats is freely available from ftp://ftp.sanger.ac.uk/pub/pathogens/strep_repeats/. PMID:21333003

  11. Reads2Type: a web application for rapid microbial taxonomy identification

    DEFF Research Database (Denmark)

    Saputra, Dhany; Rasmussen, Simon; Larsen, Mette Voldby

    2015-01-01

    genome of microbial isolates. Therefore we have developed Reads2Type, a web-based tool for taxonomy identification based on whole bacterial genome sequence data. Raw sequencing data provided by the user are mapped against a set of marker probes that are derived from currently available bacteria complete......, as the entire computational analysis is done on the computer of whom utilizes the web application. This also prevents data privacy issues to arise. The Reads2Type tool is available at http://www.cbs.dtu.dk/~dhany/reads2type.html ....

  12. Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris.

    Science.gov (United States)

    Kordalewska, Milena; Zhao, Yanan; Lockhart, Shawn R; Chowdhary, Anuradha; Berrio, Indira; Perlin, David S

    2017-08-01

    Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii , Candida haemulonii , and Candida lusitaniae Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. Copyright © 2017 Kordalewska et al.

  13. Performance of chromogenic media for Candida in rapid presumptive identification of Candida species from clinical materials

    OpenAIRE

    Pravin Charles, M. V.; Kali, Arunava; Joseph, Noyal Mariya

    2015-01-01

    Background: In perspective of the worldwide increase in a number of immunocompromised patients, the need for identification of Candida species has become a major concern. The development of chromogenic differential media, introduced recently, facilitate rapid speciation. However, it can be employed for routine mycology workup only after an exhaustive evaluation of its benefit and cost effectiveness. This study was undertaken to evaluate the benefit and cost effectiveness of chromogenic media ...

  14. Body fluid identification of blood, saliva and semen using second generation sequencing of micro-RNA

    DEFF Research Database (Denmark)

    Petersen, Christel H.; Hjort, Benjamin Benn; Tvedebrink, Torben

    2013-01-01

    We report a new second generation sequencing method for identification micro-RNA (miRNA) that can be used to identify body fluids and tissues. Principal component analysis of 10 miRNAs with high expression in 16 samples of blood, saliva and semen showed clear differences in the expression of mi...

  15. A rapid identification of four medicinal chrysanthemum varieties with near infrared spectroscopy.

    Science.gov (United States)

    Han, Bangxing; Yan, Hui; Chen, Cunwu; Yao, Houjun; Dai, Jun; Chen, Naifu

    2014-07-01

    For genuine medicinal material in Chinese herbs; the efficient, rapid, and precise identification is the focus and difficulty in the filed studying Chinese herbal medicines. Chrysanthemum morifolium as herbs has a long planting history in China, culturing high quality ones and different varieties. Different chrysanthemum varieties differ in quality, chemical composition, functions, and application. Therefore, chrysanthemum varieties in the market demands precise identification to provide reference for reasonable and correct application as genuine medicinal material. A total of 244 batches of chrysanthemum samples were randomly divided into calibration set (160 batches) and prediction set (84 batches). The near infrared diffuses reflectance spectra of chrysanthemum varieties were preprocessed by first order derivative (D1) and autoscaling and was built model with partial least squares (PLS). In this study of four chrysanthemum varieties identification, the accuracy rates in calibration sets of Boju, Chuju, Hangju, and Gongju are respectively 100, 100, 98.65, and 96.67%; while the accuracy rates in prediction sets are 100% except for 99.1% of Hangju. The research results demonstrate that the qualitative analysis can be conducted by machine learning combined with near infrared spectroscopy (NIR), which provides a new method for rapid and noninvasive identification of chrysanthemum varieties.

  16. MALDI-TOF mass spectrometry for the rapid identification of aetiological agents of sepsis

    Directory of Open Access Journals (Sweden)

    Roberto Degl’Innocenti

    2013-04-01

    Full Text Available Introduction: The MALDI-TOF has recently become part of the methods of microbiological investigation in many laboratories of bacteriology with advantages both practical and economical.The use of this technique for the rapid identification of the causative agents of sepsis is of strategic importance to the ability to provide the clinician with useful information for a prompt and rapid establishment of an empirical antimicrobial “targeted” therapy. Methods: It was tested a total of 343 positive blood culture bottles from 211 patients. The samples after collection were incubated in the BACTEC FX (Becton Dickinson, USA. From these bottles were taken a few milliliters of broth culture and transferred into a vacutainer tube containing gel. This was centrifuged, the supernatant was decanted, and finally recovered the bacterial suspension on the gel. With micro-organisms recovered in this way, after several washes with distilled water, was prepared a slide for microscopic examination with Gram stain, and a plate for mass spectrometry (MS-Vitek, bioMérieux, France.Then, the same samples were inoculated on solid agar media according to the protocol in use in our laboratory.The next day was checked the possible bacterial growth on solid media; we then proceeded to the identification of the colonies by Vitek MS and / or with the system Vitek2 (bioMérieux, France. Results: 258 (75.2% positive vials show concordant results between direct identification and identification after growth on agar. For 83 (24.2% positive bottles there has been full compliance with the microscopic examination but not with culture. In particular, two bottles (0.6% have given complete discordance between the direct identification and that after growth. Conclusions: The protocol we use for the direct identification of organisms responsible for sepsis, directly on positive bottles, seems to be a quick and inexpensive procedure, which in less than 60 minutes can give valuable

  17. Rapid identification of herbal compounds derived metabolites using zebrafish larvae as the biotransformation system.

    Science.gov (United States)

    Wang, Chen; Yin, Ying-Hao; Wei, Ying-Jie; Shi, Zi-Qi; Liu, Jian-Qun; Liu, Li-Fang; Xin, Gui-Zhong

    2017-09-15

    Metabolites derived from herbal compounds are becoming promising sources for discovering new drugs. However, the rapid identification of metabolites from biological matrixes is limited by massive endogenous interference and low abundance of metabolites. Thus, by using zebrafish larvae as the biotransformation system, we herein proposed and validated an integrated strategy for rapid identification of metabolites derived from herbal compounds. Two pivotal steps involved in this strategy are to differentiate metabolites from herbal compounds and match metabolites with their parent compounds. The differentiation step was achieved by cross orthogonal partial least-squares discriminant analysis. Automatic matching analysis was performed on R Project based on a self-developed program, of which the number of matched ionic clusters and its corresponding percentage between metabolite and parent compound were taken into account to assess their similarity. Using this strategy, 46 metabolites screened from incubation water samples of zebrafish treated with total Epimedium flavonoids (EFs) could be matched with their corresponding parent compounds, 37 of them were identified and validated by the known metabolic pathways and fragmentation patterns. Finally, 75% of the identified EFs metabolites were successfully detected in urine samples of rats treated with EFs. These experimental results indicate that the proposed strategy using zebrafish larvae as the biotransformation system will facilitate the rapid identification of metabolites derived from herbal compounds, which shows promising perspectives in providing additional resources for pharmaceutical developments from natural products. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The novel primers for mammal species identification-based mitochondrial cytochrome b sequence: implication for reserved wild animals in Thailand and endangered mammal species in Southeast Asia.

    Science.gov (United States)

    Muangkram, Yuttamol; Wajjwalku, Worawidh; Amano, Akira; Sukmak, Manakorn

    2018-01-01

    We presented the powerful techniques for species identification using the short amplicon of mitochondrial cytochrome b gene sequence. Two faecal samples and one single hair sample of the Asian tapir were tested using the new cytochrome b primers. The results showed a high sequence similarity with the mainland Asian tapir group. The comparative sequence analysis of the reserved wild mammals in Thailand and the other endangered mammal species from Southeast Asia comprehensibly verified the potential of our novel primers. The forward and reverse primers were 94.2 and 93.2%, respectively, by the average value of the sequence identity among 77 species sequences, and the overall mean distance was 35.9%. This development technique could provide rapid, simple, and reliable tools for species confirmation. Especially, it could recognize the problematic biological specimens contained less DNA material from illegal products and assist with wildlife crime investigation of threatened species and related forensic casework.

  19. [Factors of the rapid startup for nitrosation in sequencing batch reactor].

    Science.gov (United States)

    Li, Dong; Tao, Xiao-Xiao; Li, Zhan; Wang, Jun-An; Zhang, Jie

    2011-08-01

    The approach and factors for realizing the rapid startup of nitrosation were researched at the low level of dissolved oxygen (DO) in sequencing batch reactor (SBR). The main parameters of the reactor were controlled as follows: DO were 0.15-0.40 mg/L, pH values kept from 7.52 to 8.30, temperature maintained at 22.3-27.1 degrees C, and time of aeration was 8 hours. The purpose of rapid startup for nitrosation was achieved after 57 cycles (36 d) with the alternative influent of high and low ammonium wastewater (the mean values were 245.28 mg/L and 58.08 mg/L respectively) in a SBR, and the nitrosation rate was even 100%. Factors of accumulation of nitrite were investigated and the effects of DO and pH were analyzed during the startup for nitrosation. The results showed that it could improve the efficiency of nitrosation when DO concentration was increased appropriately. The activity of nitrite oxidizing bacteria (NOB) was recovered gradually when DO was higher than 0.72 mg/L. The key factor of controlling nitrosation reaction was the concentration of free ammonia (FA), while the final factor was the concentration of DO. pH was a desired controlling parameter to show the end of nitrification in a SBR cycle, while DO concentration did not indicate the finishing of SBR nitrification accurately because it increased rapidly before ammonia nitrogen was oxidized absolutely.

  20. [Identification of common medicinal snakes in medicated liquor of Guangdong by COI barcode sequence].

    Science.gov (United States)

    Liao, Jing; Chao, Zhi; Zhang, Liang

    2013-11-01

    To identify the common snakes in medicated liquor of Guangdong using COI barcode sequence,and to test the feasibility. The COI barcode sequences of collected medicinal snakes were amplified and sequenced. The sequences combined with the data from GenBank were analyzed for divergence and building a neighbor-joining(NJ) tree with MEGA 5.0. The genetic distance and NJ tree demonstrated that there were 241 variable sites in these species, and the average (A + T) content of 56.2% was higher than the average (G + C) content of 43.7%. The maximum interspecific genetic distance was 0.2568, and the minimum was 0. 1519. In the NJ tree,each species formed a monophyletic clade with bootstrap supports of 100%. DNA barcoding identification method based on the COI sequence is accurate and can be applied to identify the common medicinal snakes.

  1. A next generation semiconductor based sequencing approach for the identification of meat species in DNA mixtures.

    Directory of Open Access Journals (Sweden)

    Francesca Bertolini

    Full Text Available The identification of the species of origin of meat and meat products is an important issue to prevent and detect frauds that might have economic, ethical and health implications. In this paper we evaluated the potential of the next generation semiconductor based sequencing technology (Ion Torrent Personal Genome Machine for the identification of DNA from meat species (pig, horse, cattle, sheep, rabbit, chicken, turkey, pheasant, duck, goose and pigeon as well as from human and rat in DNA mixtures through the sequencing of PCR products obtained from different couples of universal primers that amplify 12S and 16S rRNA mitochondrial DNA genes. Six libraries were produced including PCR products obtained separately from 13 species or from DNA mixtures containing DNA from all species or only avian or only mammalian species at equimolar concentration or at 1:10 or 1:50 ratios for pig and horse DNA. Sequencing obtained a total of 33,294,511 called nucleotides of which 29,109,688 with Q20 (87.43% in a total of 215,944 reads. Different alignment algorithms were used to assign the species based on sequence data. Error rate calculated after confirmation of the obtained sequences by Sanger sequencing ranged from 0.0003 to 0.02 for the different species. Correlation about the number of reads per species between different libraries was high for mammalian species (0.97 and lower for avian species (0.70. PCR competition limited the efficiency of amplification and sequencing for avian species for some primer pairs. Detection of low level of pig and horse DNA was possible with reads obtained from different primer pairs. The sequencing of the products obtained from different universal PCR primers could be a useful strategy to overcome potential problems of amplification. Based on these results, the Ion Torrent technology can be applied for the identification of meat species in DNA mixtures.

  2. 16S rRNA gene sequencing in routine identification of anaerobic bacteria isolated from blood cultures

    DEFF Research Database (Denmark)

    Justesen, Ulrik Stenz; Skov, Marianne Nielsine; Knudsen, Elisa

    2010-01-01

    A comparison between conventional identification and 16S rRNA gene sequencing of anaerobic bacteria isolated from blood cultures in a routine setting was performed (n = 127). With sequencing, 89% were identified to the species level, versus 52% with conventional identification. The times...

  3. Identification of genes in anonymous DNA sequences. Annual performance report, February 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fields, C.A.

    1996-06-01

    The objective of this project is the development of practical software to automate the identification of genes in anonymous DNA sequences from the human, and other higher eukaryotic genomes. A software system for automated sequence analysis, gm (gene modeler) has been designed, implemented, tested, and distributed to several dozen laboratories worldwide. A significantly faster, more robust, and more flexible version of this software, gm 2.0 has now been completed, and is being tested by operational use to analyze human cosmid sequence data. A range of efforts to further understand the features of eukaryoyic gene sequences are also underway. This progress report also contains papers coming out of the project including the following: gm: a Tool for Exploratory Analysis of DNA Sequence Data; The Human THE-LTR(O) and MstII Interspersed Repeats are subfamilies of a single widely distruted highly variable repeat family; Information contents and dinucleotide compostions of plant intron sequences vary with evolutionary origin; Splicing signals in Drosophila: intron size, information content, and consensus sequences; Integration of automated sequence analysis into mapping and sequencing projects; Software for the C. elegans genome project.

  4. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  5. Direct sequencing for rapid detection of multidrug resistant Mycobacterium tuberculosis strains in Morocco.

    Science.gov (United States)

    Zakham, Fathiah; Chaoui, Imane; Echchaoui, Amina Hadbae; Chetioui, Fouad; Elmessaoudi, My Driss; Ennaji, My Mustapha; Abid, Mohammed; Mzibri, Mohammed El

    2013-01-01

    Tuberculosis (TB) is a major public health problem with high mortality and morbidity rates, especially in low-income countries. Disturbingly, the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) TB cases has worsened the situation, raising concerns of a future epidemic of virtually untreatable TB. Indeed, the rapid diagnosis of MDR TB is a critical issue for TB management. This study is an attempt to establish a rapid diagnosis of MDR TB by sequencing the target fragments of the rpoB gene which linked to resistance against rifampicin and the katG gene and inhA promoter region, which are associated with resistance to isoniazid. For this purpose, 133 sputum samples of TB patients from Morocco were enrolled in this study. One hundred samples were collected from new cases, and the remaining 33 were from previously treated patients (drug relapse or failure, chronic cases) and did not respond to anti-TB drugs after a sufficient duration of treatment. All samples were subjected to rpoB, katG and pinhA mutation analysis by polymerase chain reaction and DNA sequencing. Molecular analysis showed that seven strains were isoniazid-monoresistant and 17 were rifampicin-monoresistant. MDR TB strains were identified in nine cases (6.8%). Among them, eight were traditionally diagnosed as critical cases, comprising four chronic and four drug-relapse cases. The last strain was isolated from a new case. The most recorded mutation in the rpoB gene was the substitution TCG > TTG at codon 531 (Ser531 Leu), accounting for 46.15%. Significantly, the only mutation found in the katG gene was at codon 315 (AGC to ACC) with a Ser315Thr amino acid change. Only one sample harbored mutation in the inhA promoter region and was a point mutation at the -15p position (C > T). The polymerase chain reaction sequencing approach is an accurate and rapid method for detection of drug-resistant TB in clinical specimens, and could be of great interest in the management of TB in

  6. Toward Automating HIV Identification: Machine Learning for Rapid Identification of HIV-Related Social Media Data.

    Science.gov (United States)

    Young, Sean D; Yu, Wenchao; Wang, Wei

    2017-02-01

    "Social big data" from technologies such as social media, wearable devices, and online searches continue to grow and can be used as tools for HIV research. Although researchers can uncover patterns and insights associated with HIV trends and transmission, the review process is time consuming and resource intensive. Machine learning methods derived from computer science might be used to assist HIV domain experts by learning how to rapidly and accurately identify patterns associated with HIV from a large set of social data. Using an existing social media data set that was associated with HIV and coded by an HIV domain expert, we tested whether 4 commonly used machine learning methods could learn the patterns associated with HIV risk behavior. We used the 10-fold cross-validation method to examine the speed and accuracy of these models in applying that knowledge to detect HIV content in social media data. Logistic regression and random forest resulted in the highest accuracy in detecting HIV-related social data (85.3%), whereas the Ridge Regression Classifier resulted in the lowest accuracy. Logistic regression yielded the fastest processing time (16.98 seconds). Machine learning can enable social big data to become a new and important tool in HIV research, helping to create a new field of "digital HIV epidemiology." If a domain expert can identify patterns in social data associated with HIV risk or HIV transmission, machine learning models could quickly and accurately learn those associations and identify potential HIV patterns in large social data sets.

  7. A rapid screening with direct sequencing from blood samples for the diagnosis of Leigh syndrome

    Directory of Open Access Journals (Sweden)

    Hiroko Shimbo

    2014-01-01

    Full Text Available Large numbers of genes are responsible for Leigh syndrome (LS, making genetic confirmation of LS difficult. We screened our patients with LS using a limited set of 21 primers encompassing the frequently reported gene for the respiratory chain complexes I (ND1–ND6, and ND4L, IV(SURF1, and V(ATP6 and the pyruvate dehydrogenase E1α-subunit. Of 18 LS patients, we identified mutations in 11 patients, including 7 in mDNA (two with ATP6, 4 in nuclear (three with SURF1. Overall, we identified mutations in 61% of LS patients (11/18 individuals in this cohort. Sanger sequencing with our limited set of primers allowed us a rapid genetic confirmation of more than half of the LS patients and it appears to be efficient as a primary genetic screening in this cohort.

  8. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Murray, Patrick R

    2010-02-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of blood culture broth. Of the bacteria with a spectral score of > or = 1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test.

  9. Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences

    Directory of Open Access Journals (Sweden)

    Zhou Kaiya

    2011-10-01

    Full Text Available Abstract Background A diversity of hypotheses have been proposed based on both morphological and molecular data to reveal phylogenetic relationships within the order Cetacea (dolphins, porpoises, and whales, and great progress has been made in the past two decades. However, there is still some controversy concerning relationships among certain cetacean taxa such as river dolphins and delphinoid species, which needs to be further addressed with more markers in an effort to address unresolved portions of the phylogeny. Results An analysis of additional SINE insertions and SINE-flanking sequences supported the monophyly of the order Cetacea as well as Odontocete, Delphinoidea (Delphinidae + Phocoenidae + Mondontidae, and Delphinidae. A sister relationship between Delphinidae and Phocoenidae + Mondontidae was supported, and members of classical river dolphins and the genera Tursiops and Stenella were found to be paraphyletic. Estimates of divergence times revealed rapid divergences of basal Odontocete lineages in the Oligocene and Early Miocene, and a recent rapid diversification of Delphinidae in the Middle-Late Miocene and Pliocene within a narrow time frame. Conclusions Several novel SINEs were found to differentiate Delphinidae from the other two families (Monodontidae and Phocoenidae, whereas the sister grouping of the latter two families with exclusion of Delphinidae was further revealed using the SINE-flanking sequences. Interestingly, some anomalous PCR amplification patterns of SINE insertions were detected, which can be explained as the result of potential ancestral SINE polymorphisms and incomplete lineage sorting. Although a few loci were potentially anomalous, this study demonstrated that the SINE-based approach is a powerful tool in phylogenetic studies. Identifying additional SINE elements that resolve the relationships in the superfamily Delphinoidea and family Delphinidae will be important steps forward in completely resolving

  10. Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences.

    Science.gov (United States)

    Chen, Zhuo; Xu, Shixia; Zhou, Kaiya; Yang, Guang

    2011-10-27

    A diversity of hypotheses have been proposed based on both morphological and molecular data to reveal phylogenetic relationships within the order Cetacea (dolphins, porpoises, and whales), and great progress has been made in the past two decades. However, there is still some controversy concerning relationships among certain cetacean taxa such as river dolphins and delphinoid species, which needs to be further addressed with more markers in an effort to address unresolved portions of the phylogeny. An analysis of additional SINE insertions and SINE-flanking sequences supported the monophyly of the order Cetacea as well as Odontocete, Delphinoidea (Delphinidae + Phocoenidae + Mondontidae), and Delphinidae. A sister relationship between Delphinidae and Phocoenidae + Mondontidae was supported, and members of classical river dolphins and the genera Tursiops and Stenella were found to be paraphyletic. Estimates of divergence times revealed rapid divergences of basal Odontocete lineages in the Oligocene and Early Miocene, and a recent rapid diversification of Delphinidae in the Middle-Late Miocene and Pliocene within a narrow time frame. Several novel SINEs were found to differentiate Delphinidae from the other two families (Monodontidae and Phocoenidae), whereas the sister grouping of the latter two families with exclusion of Delphinidae was further revealed using the SINE-flanking sequences. Interestingly, some anomalous PCR amplification patterns of SINE insertions were detected, which can be explained as the result of potential ancestral SINE polymorphisms and incomplete lineage sorting. Although a few loci were potentially anomalous, this study demonstrated that the SINE-based approach is a powerful tool in phylogenetic studies. Identifying additional SINE elements that resolve the relationships in the superfamily Delphinoidea and family Delphinidae will be important steps forward in completely resolving cetacean phylogenetic relationships in the future.

  11. Rapid Identification of Staphylococcus aureus Directly from Blood Cultures by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes

    Science.gov (United States)

    Oliveira, Kenneth; Procop, Gary W.; Wilson, Deborah; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method with peptide nucleic acid (PNA) probes for identification of Staphylococcus aureus directly from positive blood culture bottles that contain gram-positive cocci in clusters (GPCC) is described. The test (the S. aureus PNA FISH assay) is based on a fluorescein-labeled PNA probe that targets a species-specific sequence of the 16S rRNA of S. aureus. Evaluations with 17 reference strains and 48 clinical isolates, including methicillin-resistant and methicillin-susceptible S. aureus species, coagulase-negative Staphylococcus species, and other clinically relevant and phylogenetically related bacteria and yeast species, showed that the assay had 100% sensitivity and 96% specificity. Clinical trials with 87 blood cultures positive for GPCC correctly identified 36 of 37 (97%) of the S. aureus-positive cultures identified by standard microbiological methods. The positive and negative predictive values were 100 and 98%, respectively. It is concluded that this rapid method (2.5 h) for identification of S. aureus directly from blood culture bottles that contain GPCC offers important information for optimal antibiotic therapy. PMID:11773123

  12. Multiplex-PCR As a Rapid and Sensitive Method for Identification of Meat Species in Halal-Meat Products.

    Science.gov (United States)

    Alikord, Mahsa; Keramat, Javad; Kadivar, Mahdi; Momtaz, Hassan; Eshtiaghi, Mohammad N; Homayouni-Rad, Aziz

    2017-01-01

    Species identification and authentication in meat products are important subjects for ensuring the health of consumers. The multiplex-PCR amplification and species- specific primer set were used for the identification of horse, donkey, pig and other ruminants in raw and processed meat products. Oligonucleotid primers were designed and patented for amplification of species-specific mitochondrial DNA sequences of each species and samples were prepared from binary meat mixtures. The results showed that meat species were accurately determined in all combinations by multiplex-PCR, and the sensitivity of this method was 0.001 ng, rendering this technique open to and suitable for use in industrial meat products. It is concluded that more fraud is seen in lower percentage industrial meat products than in higher percentage ones. There was also more fraud found in processed products than in raw ones. This rapid and useful test is recommended for quality control firms for applying more rigorous controls over industrial meat products, for the benefit of target consumers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Impact of Rocuronium and Succinylcholine on Sedation Initiation After Rapid Sequence Intubation.

    Science.gov (United States)

    Johnson, Eric G; Meier, Alex; Shirakbari, Alicia; Weant, Kyle; Baker Justice, Stephanie

    2015-07-01

    Rapid sequence intubation (RSI) involves a rapidly acting sedative plus a neuromuscular blocking agent (NMBA) to facilitate endotracheal intubation. Rocuronium and succinylcholine are NMBAs commonly used in RSI with drastically different durations of action. Evaluate whether patients receiving RSI with a longer-acting NMBA had a greater delay in sedation or analgesia than patients that received a short-acting NMBA. This was a retrospective review of patients presenting to the emergency department requiring endotracheal intubation. Exclusions included age rocuronium or succinylcholine. Secondary endpoints included hospital length of stay (HLOS), intensive care unit length of stay (ICU LOS), and impact of an emergency medicine pharmacist (EPh). A total 106 patients met inclusion criteria, 76 patients receiving rocuronium and 30 receiving succinylcholine. Mean time to sedation or analgesia was longer in the rocuronium group when compared to the succinylcholine group at 34 ± 36 min vs. 16 ± 21 min (p = 0.002). In the presence of an EPh, the mean time to sedation or analgesia was 20 ± 21 min, vs. 49 ± 45 min (p rocuronium in RSI had a significantly longer time to sedation or analgesia when compared to patients receiving succinylcholine. The presence of an EPh significantly decreased the time to administration of sedation or analgesia after RSI. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. PCR-RFLP on β-tubulin gene for rapid identification of the most clinically important species of Aspergillus.

    Science.gov (United States)

    Nasri, Tuba; Hedayati, Mohammad Taghi; Abastabar, Mahdi; Pasqualotto, Alessandro C; Armaki, Mojtaba Taghizadeh; Hoseinnejad, Akbar; Nabili, Mojtaba

    2015-10-01

    Aspergillus species are important agents of life-threatening infections in immunosuppressed patients. Proper speciation in the Aspergilli has been justified based on varied fungal virulence, clinical presentations, and antifungal resistance. Accurate identification of Aspergillus species usually relies on fungal DNA sequencing but this requires expensive equipment that is not available in most clinical laboratories. We developed and validated a discriminative low-cost PCR-based test to discriminate Aspergillus isolates at the species level. The Beta tubulin gene of various reference strains of Aspergillus species was amplified using the universal fungal primers Bt2a and Bt2b. The PCR products were subjected to digestion with a single restriction enzyme AlwI. All Aspergillus isolates were subjected to DNA sequencing for final species characterization. The PCR-RFLP test generated unique patterns for six clinically important Aspergillus species, including Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus terreus, Aspergillus clavatus and Aspergillus nidulans. The one-enzyme PCR-RFLP on Beta tubulin gene designed in this study is a low-cost tool for the reliable and rapid differentiation of the clinically important Aspergillus species. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    International Nuclear Information System (INIS)

    Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.; Prasad, Lakshman; Sullivan, John P.

    2012-01-01

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  16. Rapid experimental SAD phasing and hot-spot identification with halogenated fragments

    Directory of Open Access Journals (Sweden)

    Joseph D. Bauman

    2016-01-01

    Full Text Available Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a `magic bullet' that is capable of binding at many of the ligand `hot spots' found in HIV-1 reverse transcriptase (RT. The binding locations can be in pockets that are `hidden' in the unliganded crystal form, allowing rapid identification of these sites for in silico screening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structures of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K by single-wavelength anomalous dispersion (SAD from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals.

  17. Rapid screening and identification of ACE inhibitors in snake venoms using at-line nanofractionation LC-MS.

    Science.gov (United States)

    Mladic, Marija; de Waal, Tessa; Burggraaff, Lindsey; Slagboom, Julien; Somsen, Govert W; Niessen, Wilfried M A; Manjunatha Kini, R; Kool, Jeroen

    2017-10-01

    This study presents an analytical method for the screening of snake venoms for inhibitors of the angiotensin-converting enzyme (ACE) and a strategy for their rapid identification. The method is based on an at-line nanofractionation approach, which combines liquid chromatography (LC), mass spectrometry (MS), and pharmacology in one platform. After initial LC separation of a crude venom, a post-column flow split is introduced enabling parallel MS identification and high-resolution fractionation onto 384-well plates. The plates are subsequently freeze-dried and used in a fluorescence-based ACE activity assay to determine the ability of the nanofractions to inhibit ACE activity. Once the bioactive wells are identified, the parallel MS data reveals the masses corresponding to the activities found. Narrowing down of possible bioactive candidates is provided by comparison of bioactivity profiles after reversed-phase liquid chromatography (RPLC) and after hydrophilic interaction chromatography (HILIC) of a crude venom. Additional nanoLC-MS/MS analysis is performed on the content of the bioactive nanofractions to determine peptide sequences. The method described was optimized, evaluated, and successfully applied for screening of 30 snake venoms for the presence of ACE inhibitors. As a result, two new bioactive peptides were identified: pELWPRPHVPP in Crotalus viridis viridis venom with IC 50  = 1.1 μM and pEWPPWPPRPPIPP in Cerastes cerastes cerastes venom with IC 50  = 3.5 μM. The identified peptides possess a high sequence similarity to other bradykinin-potentiating peptides (BPPs), which are known ACE inhibitors found in snake venoms.

  18. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing

    Directory of Open Access Journals (Sweden)

    Cannon Charles H

    2011-07-01

    Full Text Available Abstract Background Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants. Results We sequenced transcriptomes of A. auriculiformis and A. mangium from non-normalized cDNA libraries synthesized from pooled young stem and inner bark tissues using paired-end libraries and a single lane of an Illumina GAII machine. De novo assembly produced a total of 42,217 and 35,759 contigs with an average length of 496 bp and 498 bp for A. auriculiformis and A. mangium respectively. The assemblies of A. auriculiformis and A. mangium had a total length of 21,022,649 bp and 17,838,260 bp, respectively, with the largest contig 15,262 bp long. We detected all ten monolignol biosynthetic genes using Blastx and further analysis revealed 18 lignin isoforms for each species. We also identified five contigs homologous to R2R3-MYB proteins in other plant species that are involved in transcriptional regulation of secondary cell wall formation and lignin deposition. We searched the contigs against public microRNA database and predicted the stem-loop structures of six highly conserved microRNA families (miR319, miR396, miR160, miR172, miR162 and miR168 and one legume-specific family (miR2086. Three microRNA target genes were predicted to be involved in wood formation and flavonoid biosynthesis. By using the assemblies as a reference, we discovered 16,648 and 9,335 high quality putative Single Nucleotide Polymorphisms (SNPs in the transcriptomes of A. auriculiformis and A. mangium

  19. Identification of TP53 as an Acute Lymphocytic Leukemia Susceptibility Gene Through Exome Sequencing

    Science.gov (United States)

    Powell, Bradford C.; Jiang, Lichun; Muzny, Donna M.; Treviño, Lisa R.; Dreyer, ZoAnn E.; Strong, Louise C.; Wheeler, David A.; Gibbs, Richard A.; Plon, Sharon E.

    2014-01-01

    Although acute lymphocytic leukemia (ALL) is the most common childhood cancer, genetic predisposition to ALL remains poorly understood. Whole-exome sequencing was performed in an extended kindred in which five individuals had been diagnosed with leukemia. Analysis revealed a nonsense variant of TP53 which has been previously reported in families with sarcomas and other typical Li Fraumeni syndrome-associated cancers but never in a familial leukemia kindred. This unexpected finding enabled identification of an appropriate sibling bone marrow donor and illustrates that exome sequencing will reveal atypical clinical presentations of even well-studied genes. PMID:23255406

  20. Can the rapid identification of mature spermatozoa during microdissection testicular sperm extraction guide operative planning?

    Science.gov (United States)

    Alrabeeah, K; Doucet, R; Boulet, E; Phillips, S; Al-Hathal, N; Bissonnette, F; Kadoch, I J; Zini, A

    2015-05-01

    The minimum sperm count and quality that must be identified during microdissection testicular sperm extraction (micro-TESE) to deem the procedure successful remains to be established. We conducted a retrospective study of 81 consecutive men with non-obstructive azoospermia who underwent a primary (first) micro-TESE between March 2007 and October 2013. Final assessment of sperm recovery [reported on the day of (intracytoplasmic sperm injection) ICSI] was recorded as (i) successful (available spermatozoa for ICSI) or (ii) unsuccessful (no spermatozoa for ICSI). The decision to perform a unilateral (with limited or complete microdissection) or bilateral micro-TESE was guided by the intra-operative identification of sperm recovery (≥5 motile or non-motile sperm) from the first testicle. Overall, sperm recovery was successful in 56% (45/81) of the men. A unilateral micro-TESE was performed in 47% (38/81) of the men (based on intra-operative identification of sperm) and in 100% (38/38) of these men, spermatozoa was found on final assessment. In 42% (16/38) of the unilateral cases, a limited microdissection was performed (owing to the rapid intra-operative identification of sperm). The remaining 43 men underwent a bilateral micro-TESE and 16% (7/43) of these men had sperm identified on final assessment. The cumulative ICSI pregnancy rates (per cycle started and per embryo transfer) were 47% (21/45) and 60% (21/35), respectively, with a mean (±SD) of 1.9 ± 1.0 embryos transferred. The data demonstrate that intra-operative assessment of sperm recovery can correctly identify those men that require a unilateral micro-TESE. Moreover, the rapid identification of sperm recovery can allow some men to undergo a limited unilateral micro-TESE and avoid the need for complete testicular microdissection. © 2015 American Society of Andrology and European Academy of Andrology.

  1. Rapid identification of the Asian gypsy moth and its related species based on mitochondrial DNA.

    Science.gov (United States)

    Wu, Ying; Du, Qiuyang; Qin, Haiwen; Shi, Juan; Wu, Zhiyi; Shao, Weidong

    2018-02-01

    The gypsy moth- Lymantria dispar (Linnaeus)-is a worldwide forest defoliator and is of two types: the European gypsy moth and the Asian gypsy moth. Because of multiple invasions of the Asian gypsy moth, the North American Plant Protection Organization officially approved Regional Standards for Phytosanitary Measures No. 33. Accordingly, special quarantine measures have been implemented for 30 special focused ports in the epidemic areas of the Asian gypsy moth, including China, which has imposed great inconvenience on export trade. The Asian gypsy moth and its related species (i.e., Lymantria monocha and Lymantria xylina ) intercepted at ports are usually at different life stages, making their identification difficult. Furthermore, Port quarantine requires speedy clearance. As such, it is difficult to identify the Asian gypsy moth and its related species only by their morphological characteristics in a speedy measure. Therefore, this study aimed to use molecular biology technology to rapidly identify the Asian gypsy moth and its related species based on the consistency of mitochondrial DNA in different life stages. We designed 10 pairs of specific primers from different fragments of the Asian gypsy moth and its related species, and their detection sensitivity met the need for rapid identification. In addition, we determined the optimal polymerase chain reaction amplification temperature of the 10 pairs of specific primers, including three pairs of specific primers for the Asian gypsy moth ( L. dispar asiatic ), four pairs of specific primers for the nun moth ( L. monocha ), and three pairs of specific primers for the casuarina moth ( L. xylina ). In conclusion, using our designed primers, direct rapid identification of the Asian gypsy moth and its related species is possible, and this advancement can help improve export trade in China.

  2. ITS-2 sequences-based identification of Trichogramma species in South America

    Directory of Open Access Journals (Sweden)

    R. P. Almeida

    Full Text Available Abstract ITS2 (Internal transcribed spacer 2 sequences have been used in systematic studies and proved to be useful in providing a reliable identification of Trichogramma species. DNAr sequences ranged in size from 379 to 632 bp. In eleven T. pretiosum lines Wolbachia-induced parthenogenesis was found for the first time. These thelytokous lines were collected in Peru (9, Colombia (1 and USA (1. A dichotomous key for species identification was built based on the size of the ITS2 PCR product and restriction analysis using three endonucleases (EcoRI, MseI and MaeI. This molecular technique was successfully used to distinguish among seventeen native/introduced Trichogramma species collected in South America.

  3. A rapid MALDI-TOF MS identification database at genospecies level for clinical and environmental Aeromonas strains.

    Directory of Open Access Journals (Sweden)

    Cinzia Benagli

    Full Text Available The genus Aeromonas has undergone a number of taxonomic and nomenclature revisions over the past 20 years, and new (subspecies and biogroups are continuously described. Standard identification methods such as biochemical characterization have deficiencies and do not allow clarification of the taxonomic position. This report describes the development of a matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS identification database for a rapid identification of clinical and environmental Aeromonas isolates.

  4. Evaluation of Ion Torrent sequencing technology for rapid clinical human leucocyte antigen typing.

    Science.gov (United States)

    Guerra, Sandra G; Chong, Winnie; Brown, Colin J; Navarrete, Cristina V

    2018-06-05

    The development of techniques to define the human leucocyte antigen (HLA) region has proven to be challenging due to its high level of polymorphism. Within a clinical laboratory, a technique for high-resolution HLA typing, which is rapid and cost effective is essential. NGS has provided a rapid, high-resolution HLA typing solution, which has reduced the number of HLA ambiguities seen with other typing methods. In this study, the One Lambda NXType NGS kit was tested on the Ion Torrent PGM platform. A total of 362 registry donors from four ethnic populations (Europeans, South Asians, Africans and Chinese) were NGS HLA typed across 9-loci (HLA-A, -B, -C, -DRB1,-DRB345 -DQB1 and -DPB1). Concordance rates of 91%-98% were obtained (for HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1) when compared to historical PCR-SSO HLA types, and the identification of uncommon alleles such as A*24:07:01 and C*04:82 were observed. A turnaround time of four days was achieved for typing 44 samples. However, some limitations were observed; primer locations did not allow all ambiguities to be resolved for HLA Class II where Exon I and IV amplification are needed (HLA-DRB1*04:07:01/04:92, HLA-DRB1*09:01:02/*09:21 and HLA-DRB1*12:01:01/*12:10). This study has demonstrated high-resolution typing by NGS can be achieved in an acceptable turnaround time for a clinical laboratory; however, the Ion Torrent workflow has some technical limitations that should be addressed. © 2018 John Wiley & Sons Ltd.

  5. The rapid identification of human influenza neuraminidase N1 and N2 subtypes by ELISA.

    Science.gov (United States)

    Barr, I G; McCaig, M; Durrant, C; Shaw, R

    2006-11-10

    An ELISA assay was developed to allow the rapid and accurate identification of human influenza A N1 and N2 neuraminidases. Initial testing using a fetuin pre-coating of wells correctly identified 81.7% of the neuraminidase type from a series of human A(H1N1), A(H1N2) and A(H3N2) viruses. This result could be improved to detect the neuraminidase subtype of almost all human influenza A viruses from a large panel of viruses isolated from 2000 to 2005, if the fetuin pre-coating was removed and the viruses were coated directly onto wells. This method is simple, rapid and can be used to screen large numbers of currently circulating human influenza A viruses for their neurraminidase subtype and is a good alternative to RT-PCR.

  6. Efficient identification of Y chromosome sequences in the human and Drosophila genomes

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G.

    2013-01-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes. PMID:23921660

  7. Efficient identification of Y chromosome sequences in the human and Drosophila genomes.

    Science.gov (United States)

    Carvalho, Antonio Bernardo; Clark, Andrew G

    2013-11-01

    Notwithstanding their biological importance, Y chromosomes remain poorly known in most species. A major obstacle to their study is the identification of Y chromosome sequences; due to its high content of repetitive DNA, in most genome projects, the Y chromosome sequence is fragmented into a large number of small, unmapped scaffolds. Identification of Y-linked genes among these fragments has yielded important insights about the origin and evolution of Y chromosomes, but the process is labor intensive, restricting studies to a small number of species. Apart from these fragmentary assemblies, in a few mammalian species, the euchromatic sequence of the Y is essentially complete, owing to painstaking BAC mapping and sequencing. Here we use female short-read sequencing and k-mer comparison to identify Y-linked sequences in two very different genomes, Drosophila virilis and human. Using this method, essentially all D. virilis scaffolds were unambiguously classified as Y-linked or not Y-linked. We found 800 new scaffolds (totaling 8.5 Mbp), and four new genes in the Y chromosome of D. virilis, including JYalpha, a gene involved in hybrid male sterility. Our results also strongly support the preponderance of gene gains over gene losses in the evolution of the Drosophila Y. In the intensively studied human genome, used here as a positive control, we recovered all previously known genes or gene families, plus a small amount (283 kb) of new, unfinished sequence. Hence, this method works in large and complex genomes and can be applied to any species with sex chromosomes.

  8. Simultaneous genomic identification and profiling of a single cell using semiconductor-based next generation sequencing

    Directory of Open Access Journals (Sweden)

    Manabu Watanabe

    2014-09-01

    Full Text Available Combining single-cell methods and next-generation sequencing should provide a powerful means to understand single-cell biology and obviate the effects of sample heterogeneity. Here we report a single-cell identification method and seamless cancer gene profiling using semiconductor-based massively parallel sequencing. A549 cells (adenocarcinomic human alveolar basal epithelial cell line were used as a model. Single-cell capture was performed using laser capture microdissection (LCM with an Arcturus® XT system, and a captured single cell and a bulk population of A549 cells (≈106 cells were subjected to whole genome amplification (WGA. For cell identification, a multiplex PCR method (AmpliSeq™ SNP HID panel was used to enrich 136 highly discriminatory SNPs with a genotype concordance probability of 1031–35. For cancer gene profiling, we used mutation profiling that was performed in parallel using a hotspot panel for 50 cancer-related genes. Sequencing was performed using a semiconductor-based bench top sequencer. The distribution of sequence reads for both HID and Cancer panel amplicons was consistent across these samples. For the bulk population of cells, the percentages of sequence covered at coverage of more than 100× were 99.04% for the HID panel and 98.83% for the Cancer panel, while for the single cell percentages of sequence covered at coverage of more than 100× were 55.93% for the HID panel and 65.96% for the Cancer panel. Partial amplification failure or randomly distributed non-amplified regions across samples from single cells during the WGA procedures or random allele drop out probably caused these differences. However, comparative analyses showed that this method successfully discriminated a single A549 cancer cell from a bulk population of A549 cells. Thus, our approach provides a powerful means to overcome tumor sample heterogeneity when searching for somatic mutations.

  9. Combination of cytochrome b heteroduplex-assay and sequencing for identification of triatomine blood meals.

    Science.gov (United States)

    Buitrago, Rosio; Depickère, Stéphanie; Bosseno, Marie-France; Patzi, Edda Siñani; Waleckx, Etienne; Salas, Renata; Aliaga, Claudia; Brenière, Simone Frédérique

    2012-01-01

    The identification of blood meals in vectors contributes greatly to the understanding of interactions between vectors, microorganisms and hosts. The aim of the current work was to complement the validation of cytochrome b (Cytb) heteroduplex assay (HDA) previously described, and to add the sequencing of the Cytb gene of some samples for the identification of blood meals in triatomines. Experimental feedings of reared triatomines helped to clarify the sensitivity of the HDA. Moreover, the sequencing coupled with the HDA, allowed the assessment of the technique's taxonomic level of discrimination. The primers used to produce DNA fragments of Cytb genes for HDA had a very high sensitivity for vertebrate DNAs, rather similar for mammals, birds and reptiles. However, the formation of heteroduplex depended on blood meal's quality rather than its quantity; a correlation was observed between blood meals' color and the positivity of HDA. HDA electrophoresis profiles were reproducible, and allowed the discrimination of blood origins at the species level. However, in some cases, intraspecific variability of Cytb gene generated different HDA profiles. The HDA based on comparison of electrophoresis profiles is a very useful tool for screening large samples to determine blood origins; the subsequent sequencing of PCR products of Cytb corresponding to different HDA profiles allowed the identification of species whatever the biotope in which the vectors were captured. Copyright © 2011. Published by Elsevier B.V.

  10. Identification of apple cultivars on the basis of simple sequence repeat markers.

    Science.gov (United States)

    Liu, G S; Zhang, Y G; Tao, R; Fang, J G; Dai, H Y

    2014-09-12

    DNA markers are useful tools that play an important role in plant cultivar identification. They are usually based on polymerase chain reaction (PCR) and include simple sequence repeats (SSRs), inter-simple sequence repeats, and random amplified polymorphic DNA. However, DNA markers were not used effectively in the complete identification of plant cultivars because of the lack of known DNA fingerprints. Recently, a novel approach called the cultivar identification diagram (CID) strategy was developed to facilitate the use of DNA markers for separate plant individuals. The CID was designed whereby a polymorphic maker was generated from each PCR that directly allowed for cultivar sample separation at each step. Therefore, it could be used to identify cultivars and varieties easily with fewer primers. In this study, 60 apple cultivars, including a few main cultivars in fields and varieties from descendants (Fuji x Telamon) were examined. Of the 20 pairs of SSR primers screened, 8 pairs gave reproducible, polymorphic DNA amplification patterns. The banding patterns obtained from these 8 primers were used to construct a CID map. Each cultivar or variety in this study was distinguished from the others completely, indicating that this method can be used for efficient cultivar identification. The result contributed to studies on germplasm resources and the seedling industry in fruit trees.

  11. Direct sequencing for rapid detection of multidrug resistant Mycobacterium tuberculosis strains in Morocco

    Directory of Open Access Journals (Sweden)

    Zakham F

    2013-11-01

    Full Text Available Fathiah Zakham,1,4 Imane Chaoui,1 Amina Hadbae Echchaoui,2 Fouad Chetioui,3 My Driss Elmessaoudi,3 My Mustapha Ennaji,4 Mohammed Abid,2 Mohammed El Mzibri11Unité de Biologie et Recherché Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires (CNESTEN, Rabat, 2Laboratoire de Génétique Mycobacterienne, Institut Pasteur, Tangier, 3Laboratoire de Tuberculose Institut Pasteur, Casablanca, 4Laboratoire de Microbiologie, Hygiène et Virologie, Faculté des Sciences et Techniques, Mohammedia, MoroccoBackground: Tuberculosis (TB is a major public health problem with high mortality and morbidity rates, especially in low-income countries. Disturbingly, the emergence of multidrug resistant (MDR and extensively drug resistant (XDR TB cases has worsened the situation, raising concerns of a future epidemic of virtually untreatable TB. Indeed, the rapid diagnosis of MDR TB is a critical issue for TB management. This study is an attempt to establish a rapid diagnosis of MDR TB by sequencing the target fragments of the rpoB gene which linked to resistance against rifampicin and the katG gene and inhA promoter region, which are associated with resistance to isoniazid.Methods: For this purpose, 133 sputum samples of TB patients from Morocco were enrolled in this study. One hundred samples were collected from new cases, and the remaining 33 were from previously treated patients (drug relapse or failure, chronic cases and did not respond to anti-TB drugs after a sufficient duration of treatment. All samples were subjected to rpoB, katG and pinhA mutation analysis by polymerase chain reaction and DNA sequencing.Results: Molecular analysis showed that seven strains were isoniazid-monoresistant and 17 were rifampicin-monoresistant. MDR TB strains were identified in nine cases (6.8%. Among them, eight were traditionally diagnosed as critical cases, comprising four chronic and four drug-relapse cases. The last strain was isolated from a

  12. Intubation conditions after rocuronium or succinylcholine for rapid sequence induction with alfentanil and propofol in the emergency patient

    DEFF Research Database (Denmark)

    Larsen, P B; Hansen, E G; Jacobsen, L S

    2005-01-01

    Background and objective: Previous studies mainly conducted on elective patients recommend doses of 0.9-1.2 mg kg[-1] rocuronium to obtain comparable intubation conditions with succinylcholine 1.0 mg kg[-1] after 60 s during a rapid-sequence induction. We decided to compare the overall intubating...... conditions of standard doses of rocuronium 0.6 mg kg[-1] and succinylcholine 1.0 mg kg[-1] during a strict rapid-sequence induction regimen including propofol and alfentanil. Methods: Male and female patients (ASA I-III) older than 17 yr scheduled for emergency abdominal or gynaecological surgery...... and with increased risk of pulmonary aspiration of gastric content were randomized to a rapid-sequence induction with succinylcholine 1.0 mg kg[-1] or rocuronium 0.6 mg kg[-1]. Patients with a predicted difficult airway were excluded. A senior anaesthesiologist 'blinded' for the randomization performed...

  13. DNA barcode and identification of the varieties and provenances of Taiwan's domestic and imported made teas using ribosomal internal transcribed spacer 2 sequences.

    Science.gov (United States)

    Lee, Shih-Chieh; Wang, Chia-Hsiang; Yen, Cheng-En; Chang, Chieh

    2017-04-01

    The major aim of made tea identification is to identify the variety and provenance of the tea plant. The present experiment used 113 tea plants [Camellia sinensis (L.) O. Kuntze] housed at the Tea Research and Extension Substation, from which 113 internal transcribed spacer 2 (ITS2) fragments, 104 trnL intron, and 98 trnL-trnF intergenic sequence region DNA sequences were successfully sequenced. The similarity of the ITS2 nucleotide sequences between tea plants housed at the Tea Research and Extension Substation was 0.379-0.994. In this polymerase chain reaction-amplified noncoding region, no varieties possessed identical sequences. Compared with the trnL intron and trnL-trnF intergenic sequence fragments of chloroplast cpDNA, the proportion of ITS2 nucleotide sequence variation was large and is more suitable for establishing a DNA barcode database to identify tea plant varieties. After establishing the database, 30 imported teas and 35 domestic made teas were used in this model system to explore the feasibility of using ITS2 sequences to identify the varieties and provenances of made teas. A phylogenetic tree was constructed using ITS2 sequences with the unweighted pair group method with arithmetic mean, which indicated that the same variety of tea plant is likely to be successfully categorized into one cluster, but contamination from other tea plants was also detected. This result provides molecular evidence that the similarity between important tea varieties in Taiwan remains high. We suggest a direct, wide collection of made tea and original samples of tea plants to establish an ITS2 sequence molecular barcode identification database to identify the varieties and provenances of tea plants. The DNA barcode comparison method can satisfy the need for a rapid, low-cost, frontline differentiation of the large amount of made teas from Taiwan and abroad, and can provide molecular evidence of their varieties and provenances. Copyright © 2016. Published by Elsevier B.V.

  14. Is the extraction by Whatman FTA filter matrix technology and sequencing of large ribosomal subunit D1-D2 region sufficient for identification of clinical fungi?

    Science.gov (United States)

    Kiraz, Nuri; Oz, Yasemin; Aslan, Huseyin; Erturan, Zayre; Ener, Beyza; Akdagli, Sevtap Arikan; Muslumanoglu, Hamza; Cetinkaya, Zafer

    2015-10-01

    Although conventional identification of pathogenic fungi is based on the combination of tests evaluating their morphological and biochemical characteristics, they can fail to identify the less common species or the differentiation of closely related species. In addition these tests are time consuming, labour-intensive and require experienced personnel. We evaluated the feasibility and sufficiency of DNA extraction by Whatman FTA filter matrix technology and DNA sequencing of D1-D2 region of the large ribosomal subunit gene for identification of clinical isolates of 21 yeast and 160 moulds in our clinical mycology laboratory. While the yeast isolates were identified at species level with 100% homology, 102 (63.75%) clinically important mould isolates were identified at species level, 56 (35%) isolates at genus level against fungal sequences existing in DNA databases and two (1.25%) isolates could not be identified. Consequently, Whatman FTA filter matrix technology was a useful method for extraction of fungal DNA; extremely rapid, practical and successful. Sequence analysis strategy of D1-D2 region of the large ribosomal subunit gene was found considerably sufficient in identification to genus level for the most clinical fungi. However, the identification to species level and especially discrimination of closely related species may require additional analysis. © 2015 Blackwell Verlag GmbH.

  15. Molecular identification based on ITS sequences for Kappaphycus and Eucheuma cultivated in China

    Science.gov (United States)

    Zhao, Sufen; He, Peimin

    2011-11-01

    The systematic classification of the Eucheumatoideae is difficult because of their variable morphology and interpretation of reproductive structures. Kappaphycus and Eucheuma specimens cultivated on the Hainan and Fujian coast of China were introduced from Vietnam, the Philippines and Indonesia. Combined with morphological characteristics, all Kappaphycus and Eucheuma cultivated strains were identified by internal transcribed spacer (ITS) sequences. The phylogenetic tree was constructed using neighbor-joining and maximum likelihood methods. The results indicate that different ITS sequence lengths occurred in the different genera and species. An obvious difference in morphology could be found in the protuberance shape between Kappaphycus and Eucheuma. The protuberance in Eucheuma was thorn-like and in Kappaphycus was wartlike or papillate. Their ITS sequence lengths differed significantly in nucleotide variation rates up to 58.55%-63.90%. All nucleotide variations occurred in the ITS1 and ITS2 regions except for five nucleotide transversions in the 5.8S rDNA region. In addition, the difference was at the branches among congeneric species. Kappaphycus sp. had branches with small buds, while K. alvarezii did not have such a feature. The nucleotide variation rates varied from 7.02% to 7.48% among species; within the same species of the clades it was K. alvarezii, Kappaphycus sp., and E. denticulatum. The results indicate that ITS sequence analysis was an effective way for identification of interspecies and intraspecies phylogenetic relationships and might provide a clue for molecular identification of algal Eucheumatoideae.

  16. Low-bandwidth and non-compute intensive remote identification of microbes from raw sequencing reads.

    Directory of Open Access Journals (Sweden)

    Laurent Gautier

    Full Text Available Cheap DNA sequencing may soon become routine not only for human genomes but also for practically anything requiring the identification of living organisms from their DNA: tracking of infectious agents, control of food products, bioreactors, or environmental samples. We propose a novel general approach to the analysis of sequencing data where a reference genome does not have to be specified. Using a distributed architecture we are able to query a remote server for hints about what the reference might be, transferring a relatively small amount of data. Our system consists of a server with known reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients: one running in a web browser, and one as a python script. Both are able to handle a large number of sequencing reads and from portable devices (the browser-based running on a tablet, perform its task within seconds, and consume an amount of bandwidth compatible with mobile broadband networks. Such client-server approaches could develop in the future, allowing a fully automated processing of sequencing data and routine instant quality check of sequencing runs from desktop sequencers. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data are available at http://bit.ly/1aURxkc.

  17. Low-Bandwidth and Non-Compute Intensive Remote Identification of Microbes from Raw Sequencing Reads

    Science.gov (United States)

    Gautier, Laurent; Lund, Ole

    2013-01-01

    Cheap DNA sequencing may soon become routine not only for human genomes but also for practically anything requiring the identification of living organisms from their DNA: tracking of infectious agents, control of food products, bioreactors, or environmental samples. We propose a novel general approach to the analysis of sequencing data where a reference genome does not have to be specified. Using a distributed architecture we are able to query a remote server for hints about what the reference might be, transferring a relatively small amount of data. Our system consists of a server with known reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients: one running in a web browser, and one as a python script. Both are able to handle a large number of sequencing reads and from portable devices (the browser-based running on a tablet), perform its task within seconds, and consume an amount of bandwidth compatible with mobile broadband networks. Such client-server approaches could develop in the future, allowing a fully automated processing of sequencing data and routine instant quality check of sequencing runs from desktop sequencers. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data are available at http://bit.ly/1aURxkc. PMID:24391826

  18. Simultaneous identification of long similar substrings in large sets of sequences

    Directory of Open Access Journals (Sweden)

    Wittig Burghardt

    2007-05-01

    Full Text Available Abstract Background Sequence comparison faces new challenges today, with many complete genomes and large libraries of transcripts known. Gene annotation pipelines match these sequences in order to identify genes and their alternative splice forms. However, the software currently available cannot simultaneously compare sets of sequences as large as necessary especially if errors must be considered. Results We therefore present a new algorithm for the identification of almost perfectly matching substrings in very large sets of sequences. Its implementation, called ClustDB, is considerably faster and can handle 16 times more data than VMATCH, the most memory efficient exact program known today. ClustDB simultaneously generates large sets of exactly matching substrings of a given minimum length as seeds for a novel method of match extension with errors. It generates alignments of maximum length with a considered maximum number of errors within each overlapping window of a given size. Such alignments are not optimal in the usual sense but faster to calculate and often more appropriate than traditional alignments for genomic sequence comparisons, EST and full-length cDNA matching, and genomic sequence assembly. The method is used to check the overlaps and to reveal possible assembly errors for 1377 Medicago truncatula BAC-size sequences published at http://www.medicago.org/genome/assembly_table.php?chr=1. Conclusion The program ClustDB proves that window alignment is an efficient way to find long sequence sections of homogenous alignment quality, as expected in case of random errors, and to detect systematic errors resulting from sequence contaminations. Such inserts are systematically overlooked in long alignments controlled by only tuning penalties for mismatches and gaps. ClustDB is freely available for academic use.

  19. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Nicholas W. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Shoji, Yutaka [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids 49503, MI (United States); Conrads, Kelly A.; Stroop, Kevin D. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); Hamilton, Chad A. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, 8901 Wisconsin Ave, MD, Bethesda, 20889 (United States); Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda 20814, MD (United States); Darcy, Kathleen M. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Maxwell, George L. [Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Falls Church, VA 22042 (United States); Risinger, John I. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids 49503, MI (United States); and others

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartite nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.

  20. DNA microarray-based solid-phase RT-PCR for rapid detection and identification of influenza virus type A and subtypes H5 and H7

    DEFF Research Database (Denmark)

    Yi, Sun; Dhumpa, Raghuram; Bang, Dang Duong

    2011-01-01

    of RNA extract in the liquid phase with sequence-specific nested PCR on the solid phase. A simple ultraviolet cross-linking method was used to immobilize the DNA probes over an unmodified glass surface, which makes solid-phase PCR a convenient possibility for AIV screening. The testing of 33 avian fecal....... In this article, a DNA microarray-based solid-phase polymerase chain reaction (PCR) approach has been developed for rapid detection of influenza virus type A and for simultaneous identification of pathogenic virus subtypes H5 and H7. This solid-phase RT-PCR method combined reverse-transcription amplification...

  1. Succinylcholine versus rocuronium for rapid sequence intubation in intensive care: a prospective, randomized controlled trial

    Science.gov (United States)

    2011-01-01

    Introduction Succinylcholine and rocuronium are widely used to facilitate rapid sequence induction (RSI) intubation in intensive care. Concerns relate to the side effects of succinylcholine and to slower onset and inferior intubation conditions associated with rocuronium. So far, succinylcholine and rocuronium have not been compared in an adequately powered randomized trial in intensive care. Accordingly, the aim of the present study was to compare the incidence of hypoxemia after rocuronium or succinylcholine in critically ill patients requiring an emergent RSI. Methods This was a prospective randomized controlled single-blind trial conducted from 2006 to 2010 at the University Hospital of Basel. Participants were 401 critically ill patients requiring emergent RSI. Patients were randomized to receive 1 mg/kg succinylcholine or 0.6 mg/kg rocuronium for neuromuscular blockade. The primary outcome was the incidence of oxygen desaturations defined as a decrease in oxygen saturation ≥ 5%, assessed by continuous pulse oxymetry, at any time between the start of the induction sequence and two minutes after the completion of the intubation. A severe oxygen desaturation was defined as a decrease in oxygen saturation ≥ 5% leading to a saturation value of ≤ 80%. Results There was no difference between succinylcholine and rocuronium regarding oxygen desaturations (succinylcholine 73/196; rocuronium 66/195; P = 0.67); severe oxygen desaturations (succinylcholine 20/196; rocuronium 20/195; P = 1.0); and extent of oxygen desaturations (succinylcholine -14 ± 12%; rocuronium -16 ± 13%; P = 0.77). The duration of the intubation sequence was shorter after succinycholine than after rocuronium (81 ± 38 sec versus 95 ± 48 sec; P = 0.002). Intubation conditions (succinylcholine 8.3 ± 0.8; rocuronium 8.2 ± 0.9; P = 0.7) and failed first intubation attempts (succinylcholine 32/200; rocuronium 36/201; P = 1.0) did not differ between the groups. Conclusions In critically ill

  2. Prioritized Identification of Attractive and Romantic Partner Faces in Rapid Serial Visual Presentation.

    Science.gov (United States)

    Nakamura, Koyo; Arai, Shihoko; Kawabata, Hideaki

    2017-11-01

    People are sensitive to facial attractiveness because it is an important biological and social signal. As such, our perceptual and attentional system seems biased toward attractive faces. We tested whether attractive faces capture attention and enhance memory access in an involuntary manner using a dual-task rapid serial visual presentation (dtRSVP) paradigm, wherein multiple faces were successively presented for 120 ms. In Experiment 1, participants (N = 26) were required to identify two female faces embedded in a stream of animal faces as distractors. The results revealed that identification of the second female target (T2) was better when it was attractive compared to neutral or unattractive. In Experiment 2, we investigated whether perceived attractiveness affects T2 identification (N = 27). To this end, we performed another dtRSVP task involving participants in a romantic partnership with the opposite sex, wherein T2 was their romantic partner's face. The results demonstrated that a romantic partner's face was correctly identified more often than was the face of a friend or unknown person. Furthermore, the greater the intensity of passionate love participants felt for their partner (as measured by the Passionate Love Scale), the more often they correctly identified their partner's face. Our experiments indicate that attractive and romantic partners' faces facilitate the identification of the faces in an involuntary manner.

  3. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  4. Fusion primer and nested integrated PCR (FPNI-PCR: a new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning

    Directory of Open Access Journals (Sweden)

    Wang Zhen

    2011-11-01

    Full Text Available Abstract Background The advent of genomics-based technologies has revolutionized many fields of biological enquiry. However, chromosome walking or flanking sequence cloning is still a necessary and important procedure to determining gene structure. Such methods are used to identify T-DNA insertion sites and so are especially relevant for organisms where large T-DNA insertion libraries have been created, such as rice and Arabidopsis. The currently available methods for flanking sequence cloning, including the popular TAIL-PCR technique, are relatively laborious and slow. Results Here, we report a simple and effective fusion primer and nested integrated PCR method (FPNI-PCR for the identification and cloning of unknown genomic regions flanked known sequences. In brief, a set of universal primers was designed that consisted of various 15-16 base arbitrary degenerate oligonucleotides. These arbitrary degenerate primers were fused to the 3' end of an adaptor oligonucleotide which provided a known sequence without degenerate nucleotides, thereby forming the fusion primers (FPs. These fusion primers are employed in the first step of an integrated nested PCR strategy which defines the overall FPNI-PCR protocol. In order to demonstrate the efficacy of this novel strategy, we have successfully used it to isolate multiple genomic sequences namely, 21 orthologs of genes in various species of Rosaceace, 4 MYB genes of Rosa rugosa, 3 promoters of transcription factors of Petunia hybrida, and 4 flanking sequences of T-DNA insertion sites in transgenic tobacco lines and 6 specific genes from sequenced genome of rice and Arabidopsis. Conclusions The successful amplification of target products through FPNI-PCR verified that this novel strategy is an effective, low cost and simple procedure. Furthermore, FPNI-PCR represents a more sensitive, rapid and accurate technique than the established TAIL-PCR and hiTAIL-PCR procedures.

  5. Rapid molecular diagnostics of severe primary immunodeficiency determined by using targeted next-generation sequencing.

    Science.gov (United States)

    Yu, Hui; Zhang, Victor Wei; Stray-Pedersen, Asbjørg; Hanson, Imelda Celine; Forbes, Lisa R; de la Morena, M Teresa; Chinn, Ivan K; Gorman, Elizabeth; Mendelsohn, Nancy J; Pozos, Tamara; Wiszniewski, Wojciech; Nicholas, Sarah K; Yates, Anne B; Moore, Lindsey E; Berge, Knut Erik; Sorte, Hanne; Bayer, Diana K; ALZahrani, Daifulah; Geha, Raif S; Feng, Yanming; Wang, Guoli; Orange, Jordan S; Lupski, James R; Wang, Jing; Wong, Lee-Jun

    2016-10-01

    Primary immunodeficiency diseases (PIDDs) are inherited disorders of the immune system. The most severe form, severe combined immunodeficiency (SCID), presents with profound deficiencies of T cells, B cells, or both at birth. If not treated promptly, affected patients usually do not live beyond infancy because of infections. Genetic heterogeneity of SCID frequently delays the diagnosis; a specific diagnosis is crucial for life-saving treatment and optimal management. We developed a next-generation sequencing (NGS)-based multigene-targeted panel for SCID and other severe PIDDs requiring rapid therapeutic actions in a clinical laboratory setting. The target gene capture/NGS assay provides an average read depth of approximately 1000×. The deep coverage facilitates simultaneous detection of single nucleotide variants and exonic copy number variants in one comprehensive assessment. Exons with insufficient coverage (diagnostic yield of severe primary immunodeficiency. Establishing a molecular diagnosis enables early immune reconstitution through prompt therapeutic intervention and guides management for improved long-term quality of life. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  6. Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin bath

    International Nuclear Information System (INIS)

    Alvarez, Gonzalo A.; Suter, Dieter; Ajoy, Ashok; Peng Xinhua

    2010-01-01

    Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use 13 C nuclear spins as qubits and an environment of 1 H nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 μs. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.

  7. Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering

    Directory of Open Access Journals (Sweden)

    Li Weizhong

    2008-04-01

    Full Text Available Abstract Background The identification and study of proteins from metagenomic datasets can shed light on the roles and interactions of the source organisms in their communities. However, metagenomic datasets are characterized by the presence of organisms with varying GC composition, codon usage biases etc., and consequently gene identification is challenging. The vast amount of sequence data also requires faster protein family classification tools. Results We present a computational improvement to a sequence clustering approach that we developed previously to identify and classify protein coding genes in large microbial metagenomic datasets. The clustering approach can be used to identify protein coding genes in prokaryotes, viruses, and intron-less eukaryotes. The computational improvement is based on an incremental clustering method that does not require the expensive all-against-all compute that was required by the original approach, while still preserving the remote homology detection capabilities. We present evaluations of the clustering approach in protein-coding gene identification and classification, and also present the results of updating the protein clusters from our previous work with recent genomic and metagenomic sequences. The clustering results are available via CAMERA, (http://camera.calit2.net. Conclusion The clustering paradigm is shown to be a very useful tool in the analysis of microbial metagenomic data. The incremental clustering method is shown to be much faster than the original approach in identifying genes, grouping sequences into existing protein families, and also identifying novel families that have multiple members in a metagenomic dataset. These clusters provide a basis for further studies of protein families.

  8. Rapid identification of closely related muscle foods by vibrational spectroscopy and machine learning.

    Science.gov (United States)

    Ellis, David I; Broadhurst, David; Clarke, Sarah J; Goodacre, Royston

    2005-12-01

    Muscle foods are an integral part of the human diet and during the last few decades consumption of poultry products in particular has increased significantly. It is important for consumers, retailers and food regulatory bodies that these products are of a consistently high quality, authentic, and have not been subjected to adulteration by any lower-grade material either by accident or for economic gain. A variety of methods have been developed for the identification and authentication of muscle foods. However, none of these are rapid or non-invasive, all are time-consuming and difficulties have been encountered in discriminating between the commercially important avian species. Whilst previous attempts have been made to discriminate between muscle foods using infrared spectroscopy, these have had limited success, in particular regarding the closely related poultry species, chicken and turkey. Moreover, this study includes novel data since no attempts have been made to discriminate between both the species and the distinct muscle groups within these species, and this is the first application of Raman spectroscopy to the study of muscle foods. Samples of pre-packed meat and poultry were acquired and FT-IR and Raman measurements taken directly from the meat surface. Qualitative interpretation of FT-IR and Raman spectra at the species and muscle group levels were possible using discriminant function analysis. Genetic algorithms were used to elucidate meaningful interpretation of FT-IR results in (bio)chemical terms and we show that specific wavenumbers, and therefore chemical species, were discriminatory for each type (species and muscle) of poultry sample. We believe that this approach would aid food regulatory bodies in the rapid identification of meat and poultry products and shows particular potential for rapid assessment of food adulteration.

  9. A software pipeline for processing and identification of fungal ITS sequences

    Directory of Open Access Journals (Sweden)

    Kristiansson Erik

    2009-01-01

    Full Text Available Abstract Background Fungi from environmental samples are typically identified to species level through DNA sequencing of the nuclear ribosomal internal transcribed spacer (ITS region for use in BLAST-based similarity searches in the International Nucleotide Sequence Databases. These searches are time-consuming and regularly require a significant amount of manual intervention and complementary analyses. We here present software – in the form of an identification pipeline for large sets of fungal ITS sequences – developed to automate the BLAST process and several additional analysis steps. The performance of the pipeline was evaluated on a dataset of 350 ITS sequences from fungi growing as epiphytes on building material. Results The pipeline was written in Perl and uses a local installation of NCBI-BLAST for the similarity searches of the query sequences. The variable subregion ITS2 of the ITS region is extracted from the sequences and used for additional searches of higher sensitivity. Multiple alignments of each query sequence and its closest matches are computed, and query sequences sharing at least 50% of their best matches are clustered to facilitate the evaluation of hypothetically conspecific groups. The pipeline proved to speed up the processing, as well as enhance the resolution, of the evaluation dataset considerably, and the fungi were found to belong chiefly to the Ascomycota, with Penicillium and Aspergillus as the two most common genera. The ITS2 was found to indicate a different taxonomic affiliation than did the complete ITS region for 10% of the query sequences, though this figure is likely to vary with the taxonomic scope of the query sequences. Conclusion The present software readily assigns large sets of fungal query sequences to their respective best matches in the international sequence databases and places them in a larger biological context. The output is highly structured to be easy to process, although it still needs

  10. Identification of a Bacteria Using Phylogenetic Relationships Revealed by MS/MS Sequencing of Tryptic Peptides Derived From Cellular Proteins

    National Research Council Canada - National Science Library

    Dworzanski, J. P; Wick, H; Snyder, A. P; Deshpande, S. V; Chen, R; Li, L

    2004-01-01

    .... In addition four hundred bacterial genome-sequencing projects are in progress. These achievements provide new possibilities for reliable identification of bacteria on a molecular level by retrieving their genomic information...

  11. Rapid identification of HPV 16 and 18 by multiplex nested PCR-immunochromatographic test.

    Science.gov (United States)

    Kuo, Yung-Bin; Li, Yi-Shuan; Chan, Err-Cheng

    2015-02-01

    Human papillomavirus (HPV) types 16 and 18 are known to be high-risk viruses that cause cervical cancer. An HPV rapid testing kit that could help physicians to make early and more informed decisions regarding patient care is needed urgently but not yet available. This study aimed to develop a multiplex nested polymerase chain reaction-immunochromatographic test (PCR-ICT) for the rapid identification of HPV 16 and 18. A multiplex nested PCR was constructed to amplify the HPV 16 and 18 genotype-specific L1 gene fragments and followed by ICT which coated with antibodies to identify rapidly the different PCR products. The type-specific gene regions of high-risk HPV 16 and 18 could be amplified successfully by multiplex nested PCR at molecular sizes of approximately 99 and 101bp, respectively. The capture antibodies raised specifically against the moleculars labeled on the PCR products could be detected simultaneously both HPV 16 and 18 in one strip. Under optimal conditions, this PCR-ICT assay had the capability to detect HPV in a sample with as low as 100 copies of HPV viral DNA. The PCR-ICT system has the advantage of direct and simultaneous detection of two high-risk HPV 16 and 18 DNA targets in one sample, which suggested a significant potential of this assay for clinical application. Copyright © 2014. Published by Elsevier B.V.

  12. ISVASE: identification of sequence variant associated with splicing event using RNA-seq data.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Yu, Jun; Hu, Songnian

    2017-06-28

    Exon recognition and splicing precisely and efficiently by spliceosome is the key to generate mature mRNAs. About one third or a half of disease-related mutations affect RNA splicing. Software PVAAS has been developed to identify variants associated with aberrant splicing by directly using RNA-seq data. However, it bases on the assumption that annotated splicing site is normal splicing, which is not true in fact. We develop the ISVASE, a tool for specifically identifying sequence variants associated with splicing events (SVASE) by using RNA-seq data. Comparing with PVAAS, our tool has several advantages, such as multi-pass stringent rule-dependent filters and statistical filters, only using split-reads, independent sequence variant identification in each part of splicing (junction), sequence variant detection for both of known and novel splicing event, additional exon-exon junction shift event detection if known splicing events provided, splicing signal evaluation, known DNA mutation and/or RNA editing data supported, higher precision and consistency, and short running time. Using a realistic RNA-seq dataset, we performed a case study to illustrate the functionality and effectiveness of our method. Moreover, the output of SVASEs can be used for downstream analysis such as splicing regulatory element study and sequence variant functional analysis. ISVASE is useful for researchers interested in sequence variants (DNA mutation and/or RNA editing) associated with splicing events. The package is freely available at https://sourceforge.net/projects/isvase/ .

  13. RISC RNA sequencing for context-specific identification of in vivo microRNA targets.

    Science.gov (United States)

    Matkovich, Scot J; Van Booven, Derek J; Eschenbacher, William H; Dorn, Gerald W

    2011-01-07

    MicroRNAs (miRs) are expanding our understanding of cardiac disease and have the potential to transform cardiovascular therapeutics. One miR can target hundreds of individual mRNAs, but existing methodologies are not sufficient to accurately and comprehensively identify these mRNA targets in vivo. To develop methods permitting identification of in vivo miR targets in an unbiased manner, using massively parallel sequencing of mouse cardiac transcriptomes in combination with sequencing of mRNA associated with mouse cardiac RNA-induced silencing complexes (RISCs). We optimized techniques for expression profiling small amounts of RNA without introducing amplification bias and applied this to anti-Argonaute 2 immunoprecipitated RISCs (RISC-Seq) from mouse hearts. By comparing RNA-sequencing results of cardiac RISC and transcriptome from the same individual hearts, we defined 1645 mRNAs consistently targeted to mouse cardiac RISCs. We used this approach in hearts overexpressing miRs from Myh6 promoter-driven precursors (programmed RISC-Seq) to identify 209 in vivo targets of miR-133a and 81 in vivo targets of miR-499. Consistent with the fact that miR-133a and miR-499 have widely differing "seed" sequences and belong to different miR families, only 6 targets were common to miR-133a- and miR-499-programmed hearts. RISC-sequencing is a highly sensitive method for general RISC profiling and individual miR target identification in biological context and is applicable to any tissue and any disease state.

  14. PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes.

    Science.gov (United States)

    Su, Fei; Ou, Hong-Yu; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2013-12-27

    With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.

  15. Accurate identification of RNA editing sites from primitive sequence with deep neural networks.

    Science.gov (United States)

    Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie

    2018-04-16

    RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.

  16. Pressure applied by the healthcare staff on a cricoids cartilage simulator during Sellick's maneuver in rapid sequence intubation

    NARCIS (Netherlands)

    J.A. Calvache (Jose Andrés); L.C.B. Sandoval (Luz); W.A. Vargas (William Andres)

    2013-01-01

    textabstractBackground: Sellick's maneuver or cricoid pressure is a strategy used to prevent bronchoaspiration during the rapid intubation sequence. Several studies have described that the force required for an adequate maneuver is of 2.5-3.5 kg. The purpose of this paper was to determine the force

  17. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    Science.gov (United States)

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  18. Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera

    Directory of Open Access Journals (Sweden)

    Yufu Qu

    2018-01-01

    Full Text Available In order to reconstruct three-dimensional (3D structures from an image sequence captured by unmanned aerial vehicles’ camera (UAVs and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth–map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable.

  19. Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera.

    Science.gov (United States)

    Qu, Yufu; Huang, Jianyu; Zhang, Xuan

    2018-01-14

    In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles' camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth-map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable.

  20. [Rocuronium and sugammadex in emergency medicine: requirements of a muscle relaxant for rapid sequence induction].

    Science.gov (United States)

    Luxen, J; Trentzsch, H; Urban, B

    2014-04-01

    The required characteristics of neuromuscular blockers for rapid sequence induction (RSI) are clearly defined: nearly immediate effectiveness and short duration of effect. These demands are not only necessary for ideal conditions of quick endotracheal intubation without mask-bag intermediate ventilation but are also essential to enable a quick return to sufficient spontaneous breathing in case of a cannot intubate cannot ventilate situation. Until recently only succinylcholine had these characteristics; however, a considerable number of dangerous side effects and contraindications had to be accepted. In 1996, rocuronium was introduced, which was capable of immediately establishing good intubation conditions similar to succinylcholine. However, the median duration of effect is 45-60 min and it therefore contains a risk if the patient cannot be ventilated and oxygenated. Therefore, rocuronium is considered a good alternative but not a complete substitute for succinylcholine. The introduction of sugammadex in 2008 for quick reversal of rocuronium changed matters. Comparative studies from the past 4 years dealing with rocuronium/sugammadex versus uccinylcholine in RSI showed that rocuronium and sugammadex combined enabled a significantly faster return to sufficient spontaneous ventilation in emergency situations and also proved that the use of rocuronium significantly reduced the degree of desaturation during the interval between injection and ventilation postintubation. rocuronium used in hospital is a very good substitute for succinylcholine as a neuromuscular blocker during RSI as long as sugammadex is at hand for reversal. It remains to be considered that in a situation with severe problems of the airway and breathing, which are the main preclinical indications for intubation, a forward strategy for ventilation of the patient is the only acceptable way in most cases and the return to spontaneous breathing is not an alternative. Therefore, the value of sugammadex

  1. An evaluation of the Oxoid Biochemical Identification System Campy rapid screening test for Campylobacteraceae and Helicobacter spp.

    Science.gov (United States)

    Hoosain, N; Lastovica, A J

    2009-06-01

    To evaluate the Oxoid Biochemical Identification System (OBIS) Campy test (ID0800M) against Campylobacter; Arcobacter; and other micro-organisms, with similar colonial morphology, for the detection of l-alanine aminopeptidase (l-ALA). The KOH and l-ALA (OBIS and Fluka) tests were carried out on every isolate. The procedures were followed as indicated in the OBIS and Fluka kit instructions. A total of 146 strains of 19 species of Campylobacter, seven strains of Arcobacter butzleri, four Arcobacter butzleri-like strains, 42 strains of 10 species of Helicobacter, 96 Gram-negative and 49 Gram-positive clinical isolates were tested. As expected, Campylobacter and Arcobacter strains were negative, while other Gram-negative bacteria were positive for the l-ALA test. An unexpected finding was that Helicobacter strains, although Gram-negative, were all negative for the l-ALA tests suggesting the absence of l-ALA within this genus. This is a novel finding. The absence of l-ALA was confirmed upon comparison with the available full genomic sequences of Helicobacter on the NCBI database. The OBIS Campy (ID0800M) test kit proved to be rapid and accurate for the presumptive characterization of Campylobacter and Arcobacter. A novel finding was that Helicobacter species also did not have the l-ALA enzyme. The OBIS kit will be useful in diagnostic laboratories for the presumptive diagnosis of Campylobacter, Arcobacter and Helicobacter strains.

  2. Identification of new biomarker of radiation exposure for establishing rapid, simplified biodosimetric method

    International Nuclear Information System (INIS)

    Iizuka, Daisuke; Kawai, Hidehiko; Kamiya, Kenji; Suzuki, Fumio; Izumi, Shunsuke

    2014-01-01

    Until now, counting chromosome aberration is the most accurate method for evaluating radiation doses. However, this method is time consuming and requires skills for evaluating chromosome aberrations. It could be difficult to apply this method to majority of people who are expected to be exposed to ionizing radiation. In this viewpoint, establishment of rapid, simplified biodosimetric methods for triage will be anticipated. Due to the development of mass spectrometry method and the identification of new molecules such as microRNA (miRNA), it is conceivable that new molecular biomarker of radiation exposure using some newly developed mass spectrometry. In this review article, the part of our results including the changes of protein (including the changes of glycosylation), peptide, metabolite, miRNA after radiation exposure will be shown. (author)

  3. Development of an improved rapid BACpro® protocol and a method for direct identification from blood-culture-positive bottles using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Yonezawa, Takatoshi; Watari, Tomohisa; Ashizawa, Kazuho; Hanada, Daisuke; Yanagiya, Takako; Watanabe, Naoki; Terada, Takashi; Tomoda, Yutaka; Fujii, Satoshi

    2018-05-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been incorporated into pathogenic bacterial identification methods and has improved their rapidity. Various methods have been reported to directly identify bacteria with MALDI-TOF MS by pretreating culture medium in blood culture bottles. Rapid BACpro® (Nittobo Medical Co., Ltd.) is a pretreatment kit for effective collection of bacteria with cationic copolymers. However, the Rapid BACpro® pretreatment kit is adapted only for MALDI Biotyper (Bruker Daltonics K.K.), and there has been a desire to expand its use to VITEK MS (VMS; bioMerieux SA). We improved the protocol and made it possible to analyze with VMS. The culture medium bacteria collection method was changed to a method with centrifugation after hemolysis using saponin; the cationic copolymer concentration was changed to 30% of the original concentration; the sequence with which reagents were added was changed; and a change was made to an ethanol/formic acid extraction method. The improved protocol enhanced the identification performance. When VMS was used, the identification rate was 100% with control samples. With clinical samples, the identification agreement rate with the cell smear method was 96.3%. The improved protocol is effective in blood culture rapid identification, being both simpler and having an improved identification performance compared with the original. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage.

    Science.gov (United States)

    Kwong, M. Y.; Harris, R. J.

    1994-01-01

    Under favorable conditions, Asp or Asn residues can undergo rearrangement to a succinimide (cyclic imide), which may also serve as an intermediate for deamidation and/or isoaspartate formation. Direct identification of such succinimides by peptide mapping is hampered by their lability at neutral and alkaline pH. We determined that incubation in 2 M hydroxylamine, 0.2 M Tris buffer, pH 9, for 2 h at 45 degrees C will specifically cleave on the C-terminal side of succinimides without cleavage at Asn-Gly bonds; yields are typically approximately 50%. N-terminal sequence analysis can then be used to identify an internal sequence generated by cleavage of the succinimide, hence identifying the succinimide site. PMID:8142891

  5. Identification Of Barley Grain Mycoflora By Next Generation Sequencing And Videometer Multispectral Imaging

    DEFF Research Database (Denmark)

    Jørgensen, Johannes Ravn; Carstensen, Jens Michael; Søren, Knudsen

    ) in the reflectance mode (5 Mpix per band, pixel size app. 45 μm x 45 μm). Spectral information over the surface of seeds may be combined with information about size, shape, and texture of the seeds. This information links detection of fungal infection with other seed characteristics known from general seed testing...... species in the genus produce mycotoxins responsible for serious quality deterioration. In malting barley, Fusarium also has a negative effect by causing gushing in beer. A number of barley seeds (app. 200) assumed to be infected by fungal from different origins and years of cultivation were tested by NGS...... sequencing the ITS (Internal Transcribed Spacer) region from total DNA. Approximately 2-4000 sequences were obtained from each seed and these were subsequently identified to species level in order to give an exact identification of fungal genera on each seed. The main fungal genera identified were Fusarium...

  6. An algorithm and program for finding sequence specific oligo-nucleotide probes for species identification

    Directory of Open Access Journals (Sweden)

    Tautz Diethard

    2002-03-01

    Full Text Available Abstract Background The identification of species or species groups with specific oligo-nucleotides as molecular signatures is becoming increasingly popular for bacterial samples. However, it shows also great promise for other small organisms that are taxonomically difficult to tract. Results We have devised here an algorithm that aims to find the optimal probes for any given set of sequences. The program requires only a crude alignment of these sequences as input and is optimized for performance to deal also with very large datasets. The algorithm is designed such that the position of mismatches in the probes influences the selection and makes provision of single nucleotide outloops. Program implementations are available for Linux and Windows.

  7. Rapid and Direct VHH and Target Identification by Staphylococcal Surface Display Libraries

    Directory of Open Access Journals (Sweden)

    Marco Cavallari

    2017-07-01

    Full Text Available Unbiased and simultaneous identification of a specific antibody and its target antigen has been difficult without prior knowledge of at least one interaction partner. Immunization with complex mixtures of antigens such as whole organisms and tissue extracts including tumoral ones evokes a highly diverse immune response. During such a response, antibodies are generated against a variety of epitopes in the mixture. Here, we propose a surface display design that is suited to simultaneously identify camelid single domain antibodies and their targets. Immune libraries of single-domain antigen recognition fragments from camelid heavy chain-only antibodies (VHH were attached to the peptidoglycan of Gram-positive Staphylococcus aureus employing its endogenous housekeeping sortase enzyme. The sortase transpeptidation reaction covalently attached the VHH to the bacterial peptidoglycan. The reversible nature of the reaction allowed the recovery of the VHH from the bacterial surface and the use of the VHH in downstream applications. These staphylococcal surface display libraries were used to rapidly identify VHH as well as their targets by immunoprecipitation (IP. Our novel bacterial surface display platform was stable under harsh screening conditions, allowed fast target identification, and readily permitted the recovery of the displayed VHH for downstream analysis.

  8. Rapid experimental SAD phasing and hot-spot identification with halogenated fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, Joseph D.; Harrison, Jerry Joe E. K.; Arnold, Eddy

    2016-01-01

    Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a `magic bullet' that is capable of binding at many of the ligand `hot spots' found in HIV-1 reverse transcriptase (RT). The binding locations can be in pockets that are `hidden' in the unliganded crystal form, allowing rapid identification of these sites forin silicoscreening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structures of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K) by single-wavelength anomalous dispersion (SAD) from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals.

  9. Performance of chromogenic media for Candida in rapid presumptive identification of Candida species from clinical materials.

    Science.gov (United States)

    Pravin Charles, M V; Kali, Arunava; Joseph, Noyal Mariya

    2015-06-01

    In perspective of the worldwide increase in a number of immunocompromised patients, the need for identification of Candida species has become a major concern. The development of chromogenic differential media, introduced recently, facilitate rapid speciation. However, it can be employed for routine mycology workup only after an exhaustive evaluation of its benefit and cost effectiveness. This study was undertaken to evaluate the benefit and cost effectiveness of chromogenic media for speciation of Candida clinical isolates. Sputum samples of 382 patients were screened for the presence of Candida spp. by Gram stain and culture on sabouraud dextrose agar. Candida species were identified using Gram stain morphology, germ tube formation, cornmeal agar with Tween-80, sugar fermentation tests and morphology on HiCrome Candida differential agar. All the Candida isolates were inoculated on HiCrome Candida agar (HiMedia, Mumbai, India). The sensitivity and specificity of HiCrome agar for identification of Candida albicans were 90% and 96.42%, respectively whereas sensitivity and specificity of carbohydrate fermentation test were 86.67% and 74.07%, respectively. Sensitivity and specificity values of HiCrome agar for detection of C. albicans, Candida parapsilosis and Candida glabrata were above 90%. We found HiCrome agar has high sensitivity and specificity comparable to that of the conventional method. In addition, use of this differential media could significantly cut down the turnaround time as well as cost of sample processing.

  10. Rapid paper disk test for identification of Helicobacter pylori in mixed cultures of gerbil gastric homogenates.

    Science.gov (United States)

    Castillo-Juarez, Israel; Rangel-Vega, Adrian; Romero, Irma

    2010-10-01

    A method denominated rapid paper disk test (RPDT) was developed to identify H. pylori colonies in complex cultures obtained from gerbil gastric homogenates. Identification is based on a characteristic reaction pattern (RP) for H. pylori colonies given by the combination of the urease-oxidase activities on a paper disk. Compared to the RPs obtained from gerbil's intestinal tract isolated bacteria, H. pylori RP is completely distinguishable, even from those of bacteria that share one or both activities as are Aerococcus urinae, Bacillus sphaericus, Bacillus brevis, Corynebacterium pseudogenitalium, and Staphylococcus simulans, as well as from those produced by collection strains Proteus vulgaris and Pseudomonas aeruginosa. This method allows the practical quantification of H. pylori colonies in highly contaminated plates. RPDT has the following advantages over other methodologies that use indicators in the medium: it employs two of the three routinely used H. pylori biochemical identification tests, the reagents do not interfere with bacterial viability, there are no restrictions in relation to the medium used, and it is a simple, fast, and low-cost method. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Rapid testing and identification of actuator using dSPACE real-time emulator

    Science.gov (United States)

    Xie, Daocheng; Wang, Zhongwei; Zeng, Qinghua

    2011-10-01

    To solve the problem of model identification of actuator in control system design of aerocraft, testing system based on dSPACE emulator is established, sending testing signal and receiving feedback voltage are realized using dSPACE interactive cards, communication between signal generating equipment and feedback voltage acquisition equipment is synchronized. This paper introduces the hardware architecture and key technologies of the simulation system. Constructing, downloading and calculating of the testing model is finished using dSPACE emulator, D/A transfer of testing signal is realized using DS2103 card, DS2002 card transfer the feedback voltage to digital value. Filtering module is added to the signal acquisition, for reduction of noise interference in the A/D channel. Precision of time and voltage is improved by setting acquisition period 1ms. The data gathered is recorded and displayed with Controldesk tools. The response of four actuators under different frequency are tested, frequency-domain analysis is done using least square method, the model of actuator is identified, simulation data fits well with real response of the actuator. The testing system created with dSPACE emulator satisfies the rapid testing and identification of actuator.

  12. An accurate and rapid continuous wavelet dynamic time warping algorithm for unbalanced global mapping in nanopore sequencing

    KAUST Repository

    Han, Renmin

    2017-12-24

    Long-reads, point-of-care, and PCR-free are the promises brought by nanopore sequencing. Among various steps in nanopore data analysis, the global mapping between the raw electrical current signal sequence and the expected signal sequence from the pore model serves as the key building block to base calling, reads mapping, variant identification, and methylation detection. However, the ultra-long reads of nanopore sequencing and an order of magnitude difference in the sampling speeds of the two sequences make the classical dynamic time warping (DTW) and its variants infeasible to solve the problem. Here, we propose a novel multi-level DTW algorithm, cwDTW, based on continuous wavelet transforms with different scales of the two signal sequences. Our algorithm starts from low-resolution wavelet transforms of the two sequences, such that the transformed sequences are short and have similar sampling rates. Then the peaks and nadirs of the transformed sequences are extracted to form feature sequences with similar lengths, which can be easily mapped by the original DTW. Our algorithm then recursively projects the warping path from a lower-resolution level to a higher-resolution one by building a context-dependent boundary and enabling a constrained search for the warping path in the latter. Comprehensive experiments on two real nanopore datasets on human and on Pandoraea pnomenusa, as well as two benchmark datasets from previous studies, demonstrate the efficiency and effectiveness of the proposed algorithm. In particular, cwDTW can almost always generate warping paths that are very close to the original DTW, which are remarkably more accurate than the state-of-the-art methods including FastDTW and PrunedDTW. Meanwhile, on the real nanopore datasets, cwDTW is about 440 times faster than FastDTW and 3000 times faster than the original DTW. Our program is available at https://github.com/realbigws/cwDTW.

  13. Clinical utilisation of a rapid low-pass whole genome sequencing technique for the diagnosis of aneuploidy in human embryos prior to implantation.

    Science.gov (United States)

    Wells, Dagan; Kaur, Kulvinder; Grifo, Jamie; Glassner, Michael; Taylor, Jenny C; Fragouli, Elpida; Munne, Santiago

    2014-08-01

    The majority of human embryos created using in vitro fertilisation (IVF) techniques are aneuploid. Comprehensive chromosome screening methods, applicable to single cells biopsied from preimplantation embryos, allow reliable identification and transfer of euploid embryos. Recently, randomised trials using such methods have indicated that aneuploidy screening improves IVF success rates. However, the high cost of testing has restricted the availability of this potentially beneficial strategy. This study aimed to harness next-generation sequencing (NGS) technology, with the intention of lowering the costs of preimplantation aneuploidy screening. Embryo biopsy, whole genome amplification and semiconductor sequencing. A rapid (cost only two-thirds that of the most widely used method for embryo aneuploidy detection. Validation involved blinded analysis of 54 cells from cell lines or biopsies from human embryos. Sensitivity and specificity were 100%. The method was applied clinically, assisting in the selection of euploid embryos in two IVF cycles, producing healthy children in both cases. The NGS approach was also able to reveal specified mutations in the nuclear or mitochondrial genomes in parallel with chromosome assessment. Interestingly, elevated mitochondrial DNA content was associated with aneuploidy (pcost diagnosis of aneuploidy in cells from human preimplantation embryos and is rapid enough to allow testing without embryo cryopreservation. The method described also has the potential to shed light on other aspects of embryo genetics of relevance to health and viability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.

    Science.gov (United States)

    Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-28

    Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.

  15. Rapid Identification of Seven Waterborne Exophiala Species by RCA DNA Padlock Probes.

    Science.gov (United States)

    Najafzadeh, M J; Vicente, V A; Feng, Peiying; Naseri, A; Sun, Jiufeng; Rezaei-Matehkolaei, A; de Hoog, G S

    2018-03-05

    The black yeast genus Exophiala includes numerous potential opportunistic species that potentially cause systematic and disseminated infections in immunocompetent individuals. Species causing systemic disease have ability to grow at 37-40 °C, while others consistently lack thermotolerance and are involved in diseases of cold-blooded, waterborne vertebrates and occasionally invertebrates. We explain a fast and sensitive assay for recognition and identification of waterborne Exophiala species without sequencing. The ITS rDNA region of seven Exophiala species (E. equina, E. salmonis, E. opportunistica, E. pisciphila, E. aquamarina, E. angulospora and E. castellanii) along with the close relative Veronaea botryosa was sequenced and aligned for the design of specific padlock probes for the detection of characteristic single-nucleotide polymorphisms. The assay demonstrated to successfully amplify DNA of target fungi, allowing detection at the species level. Amplification products were visualized on 1% agarose gels to confirm specificity of probe-template binding. Amounts of reagents were reduced to prevent the generation of false positive results. The simplicity, tenderness, robustness and low expenses provide padlock probe assay (RCA) a definite place as a very practical method among isothermal approaches for DNA diagnostics.

  16. Enrichment allows identification of diverse, rare elements in metagenomic resistome-virulome sequencing.

    Science.gov (United States)

    Noyes, Noelle R; Weinroth, Maggie E; Parker, Jennifer K; Dean, Chris J; Lakin, Steven M; Raymond, Robert A; Rovira, Pablo; Doster, Enrique; Abdo, Zaid; Martin, Jennifer N; Jones, Kenneth L; Ruiz, Jaime; Boucher, Christina A; Belk, Keith E; Morley, Paul S

    2017-10-17

    Shotgun metagenomic sequencing is increasingly utilized as a tool to evaluate ecological-level dynamics of antimicrobial resistance and virulence, in conjunction with microbiome analysis. Interest in use of this method for environmental surveillance of antimicrobial resistance and pathogenic microorganisms is also increasing. In published metagenomic datasets, the total of all resistance- and virulence-related sequences accounts for enrichment system that incorporates unique molecular indices to count DNA molecules and correct for enrichment bias. The use of the bait-capture and enrichment system significantly increased on-target sequencing of the resistome-virulome, enabling detection of an additional 1441 gene accessions and revealing a low-abundance portion of the resistome-virulome that was more diverse and compositionally different than that detected by more traditional metagenomic assays. The low-abundance portion of the resistome-virulome also contained resistance genes with public health importance, such as extended-spectrum betalactamases, that were not detected using traditional shotgun metagenomic sequencing. In addition, the use of the bait-capture and enrichment system enabled identification of rare resistance gene haplotypes that were used to discriminate between sample origins. These results demonstrate that the rare resistome-virulome contains valuable and unique information that can be utilized for both surveillance and population genetic investigations of resistance. Access to the rare resistome-virulome using the bait-capture and enrichment system validated in this study can greatly advance our understanding of microbiome-resistome dynamics.

  17. A systematic identification of Kolobok superfamily transposons in Trichomonas vaginalis and sequence analysis on related transposases

    Institute of Scientific and Technical Information of China (English)

    Qingshu Meng; Kaifu Chen; Lina Ma; Songnian Hu; Jun Yu

    2011-01-01

    Transposons are sequence elements widely distributed among genomes of all three kingdoms of life, providing genomic changes and playing significant roles in genome evolution. Trichomonas vaginalis is an excellent model system for transposon study since its genome ( ~ 160 Mb) has been sequenced and is composed of ~65% transposons and other repetitive elements. In this study, we primarily report the identification of Kolobok-type transposons (termed tvBac) in T. vaginalis and the results of transposase sequence analysis. We categorized 24 novel subfamilies of the Kolobok element, including one autonomous subfamily and 23 non-autonomous subfamilies. We also identified a novel H2CH motif in tvBac transposases based on multiple sequence alignment. In addition, we supposed that tvBac and Mutator transposons may have evolved independently from a common ancestor according to our phylogenetic analysis. Our results provide basic information for the understanding of the function and evolution of tvBac transposons in particular and other related transposon families in general.

  18. Rapid identification and source-tracking of Listeria monocytogenes using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Jadhav, Snehal; Gulati, Vandana; Fox, Edward M; Karpe, Avinash; Beale, David J; Sevior, Danielle; Bhave, Mrinal; Palombo, Enzo A

    2015-06-02

    Listeria monocytogenes is an important foodborne pathogen responsible for the sometimes fatal disease listeriosis. Public health concerns and stringent regulations associated with the presence of this pathogen in food and food processing environments underline the need for rapid and reliable detection and subtyping techniques. In the current study, the application of matrix assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF MS) as a single identification and source-tracking tool for a collection of L. monocytogenes isolates, obtained predominantly from dairy sources within Australia, was explored. The isolates were cultured on different growth media and analysed using MALDI-TOF MS at two incubation times (24 and 48 h). Whilst reliable genus-level identification was achieved from most media, identification at the species level was found to be dependent on culture conditions. Successful speciation was highest for isolates cultured on the chromogenic Agar Listeria Ottaviani Agosti agar (ALOA, 91% of isolates) and non-selective horse blood agar (HBA, 89%) for 24h. Chemometric statistical analysis of the MALDI-TOF MS data enabled source-tracking of L. monocytogenes isolates obtained from four different dairy sources. Strain-level discrimination was also observed to be influenced by culture conditions. In addition, t-test/analysis of variance (ANOVA) was used to identify potential biomarker peaks that differentiated the isolates according to their source of isolation. Source-tracking using MALDI-TOF MS was compared and correlated with the gold standard pulsed-field gel electrophoresis (PFGE) technique. The discriminatory index and the congruence between both techniques were compared using the Simpsons Diversity Index and adjusted Rand and Wallace coefficients. Overall, MALDI-TOF MS based source-tracking (using data obtained by culturing the isolates on HBA) and PFGE demonstrated good congruence with a Wallace coefficient of 0.71 and

  19. Rapid label-free identification of Klebsiella pneumoniae antibiotic resistant strains by the drop-coating deposition surface-enhanced Raman scattering method

    Science.gov (United States)

    Cheong, Youjin; Kim, Young Jin; Kang, Heeyoon; Choi, Samjin; Lee, Hee Joo

    2017-08-01

    Although many methodologies have been developed to identify unknown bacteria, bacterial identification in clinical microbiology remains a complex and time-consuming procedure. To address this problem, we developed a label-free method for rapidly identifying clinically relevant multilocus sequencing typing-verified quinolone-resistant Klebsiella pneumoniae strains. We also applied the method to identify three strains from colony samples, ATCC70063 (control), ST11 and ST15; these are the prevalent quinolone-resistant K. pneumoniae strains in East Asia. The colonies were identified using a drop-coating deposition surface-enhanced Raman scattering (DCD-SERS) procedure coupled with a multivariate statistical method. Our workflow exhibited an enhancement factor of 11.3 × 106 to Raman intensities, high reproducibility (relative standard deviation of 7.4%), and a sensitive limit of detection (100 pM rhodamine 6G), with a correlation coefficient of 0.98. All quinolone-resistant K. pneumoniae strains showed similar spectral Raman shifts (high correlations) regardless of bacterial type, as well as different Raman vibrational modes compared to Escherichia coli strains. Our proposed DCD-SERS procedure coupled with the multivariate statistics-based identification method achieved excellent performance in discriminating similar microbes from one another and also in subtyping of K. pneumoniae strains. Therefore, our label-free DCD-SERS procedure coupled with the computational decision supporting method is a potentially useful method for the rapid identification of clinically relevant K. pneumoniae strains.

  20. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    Science.gov (United States)

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  1. Rapid detection and identification of four major Schistosoma species by high-resolution melt (HRM) analysis.

    Science.gov (United States)

    Li, Juan; Zhao, Guang-Hui; Lin, RuiQing; Blair, David; Sugiyama, Hiromu; Zhu, Xing-Quan

    2015-11-01

    Schistosomiasis, caused by blood flukes belonging to several species of the genus Schistosoma, is a serious and widespread parasitic disease. Accurate and rapid differentiation of these etiological agents of animal and human schistosomiasis to species level can be difficult. We report a real-time PCR assay coupled with a high-resolution melt (HRM) assay targeting a portion of the nuclear 18S rDNA to detect, identify, and distinguish between four major blood fluke species (Schistosoma japonicum, Schistosoma mansoni, Schistosoma haematobium, and Schistosoma mekongi). Using this system, the Schistosoma spp. was accurately identified and could also be distinguished from all other trematode species with which they were compared. As little as 10(-5) ng genomic DNA from a Schistosoma sp. could be detected. This process is inexpensive, easy, and can be completed within 3 h. Examination of 21 representative Schistosoma samples from 15 geographical localities in seven endemic countries validated the value of the HRM detection assay and proved its reliability. The melting curves were characterized by peaks of 83.65 °C for S. japonicum and S. mekongi, 85.65 °C for S. mansoni, and 85.85 °C for S. haematobium. The present study developed a real-time PCR coupled with HRM analysis assay for detection and differential identification of S. mansoni, S. haematobium, S. japonicum, and S. mekongi. This method is rapid, sensitive, and inexpensive. It has important implications for epidemiological studies of Schistosoma.

  2. [Evaluation of Prolex for the rapid identification of streptococci isolated in medical microbiology].

    Science.gov (United States)

    Loubinoux, J; Mihaila-Amrouche, L; Bouvet, A

    2004-10-01

    The need to rapidly identify streptococci responsible for acute infectious diseases has led to the development of agglutination techniques that are able to identify streptococcal group antigens (A, B, C, D, F, and G) directly from primoculture colonies on blood agar. The Prolex agglutination tests (Pro-Lab Diagnostics, Richmond Hill, Ontario, Canada), distributed in France by i2a, have been used for the determination of group antigens of 166 isolates of streptococci and enterococci previously identified in the National Reference Center for Streptococci. The results obtained with the Prolex reagents have permitted to correctly identify all pyogenic beta-hemolytic streptococci (23 Streptococcus pyogenes, 21 Streptococcus agalactiae, 33 Streptococcus dysgalactiae subsp. equisimilis including 6 group C and 27 group G, and 5 Streptococcus porcinus including 4 group B). Four differences between unexpected agglutinations (A or F) and species identifications have been obtained. These differences were observed for four non-hemolytic isolates of Streptococcus mutans, Streptococcus gordonii, Streptococcus infantarius, and Streptococcus suis. The anti-D reagent has been of value as a marker for isolates of enterococci. Thus, these results confirm the abilities of these agglutination tests for the grouping of beta-hemolytic streptococci. Moreover, the use of Prolex has the advantage to be rapid because of the non-enzymatic but chemical extraction of streptococcal antigens.

  3. Targeted genotyping-by-sequencing permits cost-effective identification and discrimination of pasture grass species and cultivars.

    Science.gov (United States)

    Pembleton, Luke W; Drayton, Michelle C; Bain, Melissa; Baillie, Rebecca C; Inch, Courtney; Spangenberg, German C; Wang, Junping; Forster, John W; Cogan, Noel O I

    2016-05-01

    A targeted amplicon-based genotyping-by-sequencing approach has permitted cost-effective and accurate discrimination between ryegrass species (perennial, Italian and inter-species hybrid), and identification of cultivars based on bulked samples. Perennial ryegrass and Italian ryegrass are the most important temperate forage species for global agriculture, and are represented in the commercial pasture seed market by numerous cultivars each composed of multiple highly heterozygous individuals. Previous studies have identified difficulties in the use of morphophysiological criteria to discriminate between these two closely related taxa. Recently, a highly multiplexed single nucleotide polymorphism (SNP)-based genotyping assay has been developed that permits accurate differentiation between both species and cultivars of ryegrasses at the genetic level. This assay has since been further developed into an amplicon-based genotyping-by-sequencing (GBS) approach implemented on a second-generation sequencing platform, allowing accelerated throughput and ca. sixfold reduction in cost. Using the GBS approach, 63 cultivars of perennial, Italian and interspecific hybrid ryegrasses, as well as intergeneric Festulolium hybrids, were genotyped. The genetic relationships between cultivars were interpreted in terms of known breeding histories and indistinct species boundaries within the Lolium genus, as well as suitability of current cultivar registration methodologies. An example of applicability to quality assurance and control (QA/QC) of seed purity is also described. Rapid, low-cost genotypic assays provide new opportunities for breeders to more fully explore genetic diversity within breeding programs, allowing the combination of novel unique genetic backgrounds. Such tools also offer the potential to more accurately define cultivar identities, allowing protection of varieties in the commercial market and supporting processes of cultivar accreditation and quality assurance.

  4. Identification of Heterozygous Single- and Multi-exon Deletions in IL7R by Whole Exome Sequencing.

    OpenAIRE

    Engelhardt, Karin R; Xu, Yaobo; Grainger, Angela; Germani Batacchi, Mila G C; Swan, David J; Willet, Joseph D P; Abd Hamid, Intan J; Agyeman, Philipp; Barge, Dawn; Bibi, Shahnaz; Jenkins, Lucy; Flood, Terence J; Abinun, Mario; Slatter, Mary A; Gennery, Andrew R

    2017-01-01

    Purpose We aimed to achieve a retrospective molecular diagnosis by applying state-of-the-art genomic sequencing methods to past patients with T-B+NK+ severe combined immunodeficiency (SCID). We included identification of copy number variations (CNVs) by whole exome sequencing (WES) using the CNV calling method ExomeDepth to detect gene alterations for which routine Sanger sequencing analysis is not suitable, such as large heterozygous deletions. Methods Of a total of 12 undiagnosed patients w...

  5. [Automated RNA amplification for the rapid identification of Mycobacterium tuberculosis complex in respiratory specimens].

    Science.gov (United States)

    Drouillon, V; Houriez, F; Buze, M; Lagrange, P; Herrmann, J-L

    2006-01-01

    Rapid and sensitive detection of Mycobacterium tuberculosis complex (MTB) directly on clinical respiratory specimens is essential for a correct management of patients suspected of tuberculosis. For this purpose PCR-based kits are available to detect MTB in respiratory specimen but most of them need at least 4 hours to be completed. New methods, based on TRC method (TRC: Transcription Reverse transcription Concerted--TRCRapid M. Tuberculosis--Tosoh Bioscience, Tokyo, Japon) and dedicated monitor have been developed. A new kit (TRC Rapid M. tuberculosis and Real-time monitor TRCRapid-160, Tosoh Corporation, Japan) enabling one step amplification and real-time detection of MTB 16S rRNA by a combination of intercalative dye oxazole yellow-linked DNA probe and isothermal RNA amplification directly on respiratory specimens has been tested in our laboratory. 319 respiratory specimens were tested in this preliminary study and results were compared to smear and culture. Fourteen had a positive culture for MTB. Among theses samples, smear was positive in 11 cases (78.6%) and TRC process was positive in 8 cases (57.1%). Overall sensitivity of TRC compared to smear positive samples is 73%. Theses first results demonstrated that a rapid identification of MTB was possible (less than 2 processing hours for 14 specimens and about 1 hour for 1 specimen) in most cases of smear positive samples using ready to use reagents for real time detection of MTB rRNA in clinical samples. New pretreatment and extraction reagents kits to increase the stability of the sputum RNA and the extraction efficiency are now tested in our laboratory.

  6. Inversion recovery RARE: Clinical application of T2-weighted CSF-suppressed rapid sequence

    International Nuclear Information System (INIS)

    Goetz, G.F.; Hennig, J.; Ziyeh, S.

    1995-01-01

    Inversion-Recovery RARE is a strongly T 2 -weighted fast sequence in which the CSF appears dark. This sequence was used in more than 100 patients. Retrospective analysis of 80 patients with cerebrovascular and inflammatory disease was carried out. The IR-RARE sequence proved to be particularly suitable for identifying small lesions in the neighbourhood of the subarachnoid space. We illustrate the typical contrast provided by this sequence, and describe its characteristics, exemplifying the advantages it offers for the diagnosis of multiple sclerosis, cerebral microangiopathy and brain infarction. (orig.) [de

  7. Identification and characterization of earthquake clusters: a comparative analysis for selected sequences in Italy

    Science.gov (United States)

    Peresan, Antonella; Gentili, Stefania

    2017-04-01

    Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic

  8. Rapid detection, classification and accurate alignment of up to a million or more related protein sequences.

    Science.gov (United States)

    Neuwald, Andrew F

    2009-08-01

    The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. Supplementary data are available at Bioinformatics online.

  9. Identification of a Novel Recycling Sequence in the C-tail of FPR2/ALX Receptor

    Science.gov (United States)

    Thompson, Dawn; McArthur, Simon; Hislop, James N.; Flower, Roderick J.; Perretti, Mauro

    2014-01-01

    Formyl-peptide receptor type 2 (FPR2; also called ALX because it is the receptor for lipoxin A4) sustains a variety of biological responses relevant to the development and control of inflammation, yet the cellular regulation of this G-protein-coupled receptor remains unexplored. Here we report that, in response to peptide agonist activation, FPR2/ALX undergoes β-arrestin-mediated endocytosis followed by rapid recycling to the plasma membrane. We identify a transplantable recycling sequence that is both necessary and sufficient for efficient receptor recycling. Furthermore, removal of this C-terminal recycling sequence alters the endocytic fate of FPR2/ALX and evokes pro-apoptotic effects in response to agonist activation. This study demonstrates the importance of endocytic recycling in the anti-apoptotic properties of FPR2/ALX and identifies the molecular determinant required for modulation of this process fundamental for the control of inflammation. PMID:25326384

  10. Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing.

    Science.gov (United States)

    Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit

    2018-01-01

    Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.

  11. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    Directory of Open Access Journals (Sweden)

    Yang Huaan

    2012-07-01

    Full Text Available Abstract Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM, and are now replacing the markers previously developed by a traditional DNA

  12. Identification of Phosphorylation Consensus Sequences and Endogenous Neuronal Substrates of the Psychiatric Risk Kinase TNIK.

    Science.gov (United States)

    Wang, Qi; Amato, Stephen P; Rubitski, David M; Hayward, Matthew M; Kormos, Bethany L; Verhoest, Patrick R; Xu, Lan; Brandon, Nicholas J; Ehlers, Michael D

    2016-02-01

    Traf2- and Nck-interacting kinase (TNIK) is a serine/threonine kinase highly expressed in the brain and enriched in the postsynaptic density of glutamatergic synapses in the mammalian brain. Accumulating genetic evidence and functional data have implicated TNIK as a risk factor for psychiatric disorders. However, the endogenous substrates of TNIK in neurons are unknown. Here, we describe a novel selective small molecule inhibitor of the TNIK kinase family. Using this inhibitor, we report the identification of endogenous neuronal TNIK substrates by immunoprecipitation with a phosphomotif antibody followed by mass spectrometry. Phosphorylation consensus sequences were defined by phosphopeptide sequence analysis. Among the identified substrates were members of the delta-catenin family including p120-catenin, δ-catenin, and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), each of which is linked to psychiatric or neurologic disorders. Using p120-catenin as a representative substrate, we show TNIK-induced p120-catenin phosphorylation in cells requires intact kinase activity and phosphorylation of TNIK at T181 and T187 in the activation loop. Addition of the small molecule TNIK inhibitor or knocking down TNIK by two shRNAs reduced endogenous p120-catenin phosphorylation in cells. Together, using a TNIK inhibitor and phosphomotif antibody, we identify endogenous substrates of TNIK in neurons, define consensus sequences for TNIK, and suggest signaling pathways by which TNIK influences synaptic development and function linked to psychiatric and neurologic disorders. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Identification of Five Novel Variants in Chinese Oculocutaneous Albinism by Targeted Next-Generation Sequencing.

    Science.gov (United States)

    Qiu, Biyuan; Ma, Tao; Peng, Chunyan; Zheng, Xiaoqin; Yang, Jiyun

    2018-04-01

    The diagnosis of oculocutaneous albinism (OCA) is established using clinical signs and symptoms. OCA is, however, a highly genetically heterogeneous disease with mutations identified in at least nineteen unique genes, many of which produce overlapping phenotypic traits. Thus, differentiating genetic OCA subtypes for diagnoses and genetic counseling is challenging, based on clinical presentation alone, and would benefit from a comprehensive molecular diagnostic. To develop and validate a more comprehensive, targeted, next-generation-sequencing-based diagnostic for the identification of OCA-causing variants. The genomic DNA samples from 28 OCA probands were analyzed by targeted next-generation sequencing (NGS), and the candidate variants were confirmed through Sanger sequencing. We observed mutations in the TYR, OCA2, and SLC45A2 genes in 25/28 (89%) patients with OCA. We identified 38 pathogenic variants among these three genes, including 5 novel variants: c.1970G>T (p.Gly657Val), c.1669A>C (p.Thr557Pro), c.2339-2A>C, and c.1349C>G (p.Thr450Arg) in OCA2; c.459_470delTTTTGCTGCCGA (p.Ala155_Phe158del) in SLC45A2. Our findings expand the mutational spectrum of OCA in the Chinese population, and the assay we developed should be broadly useful as a molecular diagnostic, and as an aid for genetic counseling for OCA patients.

  14. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing

    Directory of Open Access Journals (Sweden)

    Muhammad Naveed

    2014-09-01

    Full Text Available In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ. Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.

  15. Rapid identification of fluorochrome modification sites in proteins by LC ESI-Q-TOF mass spectrometry.

    Science.gov (United States)

    Manikwar, Prakash; Zimmerman, Tahl; Blanco, Francisco J; Williams, Todd D; Siahaan, Teruna J

    2011-07-20

    Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the modified peptide. The results show that one to seven fluorescein molecules or one to four rhodamine molecules were attached to the lysine residue(s) of the I-domain protein. No modifications were found in the metal ion-dependent adhesion site (MIDAS), which is an important binding region of the I-domain.

  16. Systematic Internal Transcribed Spacer Sequence Analysis for Identification of Clinical Mold Isolates in Diagnostic Mycology: a 5-Year Study▿ †

    Science.gov (United States)

    Ciardo, Diana E.; Lucke, Katja; Imhof, Alex; Bloemberg, Guido V.; Böttger, Erik C.

    2010-01-01

    The implementation of internal transcribed spacer (ITS) sequencing for routine identification of molds in the diagnostic mycology laboratory was analyzed in a 5-year study. All mold isolates (n = 6,900) recovered in our laboratory from 2005 to 2009 were included in this study. According to a defined work flow, which in addition to troublesome phenotypic identification takes clinical relevance into account, 233 isolates were subjected to ITS sequence analysis. Sequencing resulted in successful identification for 78.6% of the analyzed isolates (57.1% at species level, 21.5% at genus level). In comparison, extended in-depth phenotypic characterization of the isolates subjected to sequencing achieved taxonomic assignment for 47.6% of these, with a mere 13.3% at species level. Optimization of DNA extraction further improved the efficacy of molecular identification. This study is the first of its kind to testify to the systematic implementation of sequence-based identification procedures in the routine workup of mold isolates in the diagnostic mycology laboratory. PMID:20573873

  17. Systematic internal transcribed spacer sequence analysis for identification of clinical mold isolates in diagnostic mycology: a 5-year study.

    Science.gov (United States)

    Ciardo, Diana E; Lucke, Katja; Imhof, Alex; Bloemberg, Guido V; Böttger, Erik C

    2010-08-01

    The implementation of internal transcribed spacer (ITS) sequencing for routine identification of molds in the diagnostic mycology laboratory was analyzed in a 5-year study. All mold isolates (n = 6,900) recovered in our laboratory from 2005 to 2009 were included in this study. According to a defined work flow, which in addition to troublesome phenotypic identification takes clinical relevance into account, 233 isolates were subjected to ITS sequence analysis. Sequencing resulted in successful identification for 78.6% of the analyzed isolates (57.1% at species level, 21.5% at genus level). In comparison, extended in-depth phenotypic characterization of the isolates subjected to sequencing achieved taxonomic assignment for 47.6% of these, with a mere 13.3% at species level. Optimization of DNA extraction further improved the efficacy of molecular identification. This study is the first of its kind to testify to the systematic implementation of sequence-based identification procedures in the routine workup of mold isolates in the diagnostic mycology laboratory.

  18. Rapid identification of bacteria and candida using pna-fish from blood and peritoneal fluid cultures: a retrospective clinical study

    Directory of Open Access Journals (Sweden)

    Harris Dana M

    2013-01-01

    Full Text Available Abstract Background Peptide nucleic acid fluorescent in situ hybridization (PNA-FISH is a rapid and established method for identification of Candida sp., Gram positive, and Gram negative bacteria from positive blood cultures. This study reports clinical experience in the evaluation of 103 positive blood cultures and 17 positive peritoneal fluid cultures from 120 patients using PNA-FISH. Our study provides evidence as to potential pharmaceutical cost savings based on rapid pathogen identification, in addition to the novel application of PNA-FISH to peritoneal fluid specimens. Methods Identification accuracy and elapsed time to identification of Gram positives, Gram negatives, and Candida sp., isolated from blood and peritoneal fluid cultures were assessed using PNA-FISH (AdvanDx, as compared to standard culture methods. Patient charts were reviewed to extrapolate potential pharmaceutical cost savings due to adjustment of antimicrobial or antifungal therapy, based on identification by PNA-FISH. Results In blood cultures, time to identification by standard culture methods for bacteria and Candida sp., averaged 83.6 hours (95% CI 56.7 to 110.5. Identification by PNA-FISH averaged 11.2 hours (95% CI 4.8 to 17.6. Overall PNA-FISH identification accuracy was 98.8% (83/84, 95% CI 93.5% to 99.9% as compared to culture. In peritoneal fluid, identification of bacteria by culture averaged 87.4 hours (95% CI −92.4 to 267.1. Identification by PNA-FISH averaged 16.4 hours (95% CI −57.3 to 90.0. Overall PNA-FISH identification accuracy was 100% (13/13, 95% CI 75.3% to 100%. For Candida sp., pharmaceutical cost savings based on PNA-FISH identification could be $377.74/day. For coagulase-negative staphylococcus (CoNS, discontinuation of vancomycin could result in savings of $20.00/day. Conclusions In this retrospective study, excellent accuracy of PNA-FISH in blood and peritoneal fluids with reduced time to identification was observed, as compared to

  19. Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD): exome sequencing of trios, monozygotic twins and tumours

    OpenAIRE

    Barclay, Sarah F.; Rand, Casey M.; Borch, Lauren A.; Nguyen, Lisa; Gray, Paul A.; Gibson, William T.; Wilson, Richard J. A.; Gordon, Paul M. K.; Aung, Zaw; Berry-Kravis, Elizabeth M.; Ize-Ludlow, Diego; Weese-Mayer, Debra E.; Bech-Hansen, N. Torben

    2015-01-01

    Background Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) is thought to be a genetic disease caused by de novo mutations, though causative mutations have yet to be identified. We searched for de novo coding mutations among a carefully-diagnosed and clinically homogeneous cohort of 35 ROHHAD patients. Methods We sequenced the exomes of seven ROHHAD trios, plus tumours from four of these patients and the unaffected monozygotic (MZ) twin ...

  20. Prehospital rapid sequence intubation improves functional outcome for patients with severe traumatic brain injury: a randomized controlled trial.

    Science.gov (United States)

    Bernard, Stephen A; Nguyen, Vina; Cameron, Peter; Masci, Kevin; Fitzgerald, Mark; Cooper, David J; Walker, Tony; Std, B Paramed; Myles, Paul; Murray, Lynne; David; Taylor; Smith, Karen; Patrick, Ian; Edington, John; Bacon, Andrew; Rosenfeld, Jeffrey V; Judson, Rodney

    2010-12-01

    To determine whether paramedic rapid sequence intubation in patients with severe traumatic brain injury (TBI) improves neurologic outcomes at 6 months compared with intubation in the hospital. Severe TBI is associated with a high rate of mortality and long-term morbidity. Comatose patients with TBI routinely undergo endo-tracheal intubation to protect the airway, prevent hypoxia, and control ventilation. In many places, paramedics perform intubation prior to hospital arrival. However, it is unknown whether this approach improves outcomes. In a prospective, randomized, controlled trial, we assigned adults with severe TBI in an urban setting to either prehospital rapid sequence intubation by paramedics or transport to a hospital emergency department for intubation by physicians. The primary outcome measure was the median extended Glasgow Outcome Scale (GOSe) score at 6 months. Secondary end-points were favorable versus unfavorable outcome at 6 months, length of intensive care and hospital stay, and survival to hospital discharge. A total of 312 patients with severe TBI were randomly assigned to paramedic rapid sequence intubation or hospital intubation. The success rate for paramedic intubation was 97%. At 6 months, the median GOSe score was 5 (interquartile range, 1-6) in patients intubated by paramedics compared with 3 (interquartile range, 1-6) in the patients intubated at hospital (P = 0.28).The proportion of patients with favorable outcome (GOSe, 5-8) was 80 of 157 patients (51%) in the paramedic intubation group compared with 56 of 142 patients (39%) in the hospital intubation group (risk ratio, 1.28; 95% confidence interval, 1.00-1.64; P = 0.046). There were no differences in intensive care or hospital length of stay, or in survival to hospital discharge. In adults with severe TBI, prehospital rapid sequence intubation by paramedics increases the rate of favorable neurologic outcome at 6 months compared with intubation in the hospital.

  1. Comparison of plastic single-use and metal reusable laryngoscope blades for orotracheal intubation during rapid sequence induction of anesthesia.

    Science.gov (United States)

    Amour, Julien; Marmion, Frédéric; Birenbaum, Aurélie; Nicolas-Robin, Armelle; Coriat, Pierre; Riou, Bruno; Langeron, Olivier

    2006-01-01

    Plastic single-use laryngoscope blades are inexpensive and carry a lower risk of infection compared with metal reusable blades, but their efficiency during rapid sequence induction remains a matter of debate. The authors therefore compared plastic and metal blades during rapid sequence induction in a prospective randomized trial. Two hundred eighty-four adult patients undergoing general anesthesia requiring rapid sequence induction were randomly assigned on a weekly basis to either plastic single-use or reusable metal blades (cluster randomization). After induction, a 60-s period was allowed to complete intubation. In the case of failed intubation, a second attempt was performed using metal blade. The primary endpoint of the study was the rate of failed intubations, and the secondary endpoint was the incidence of complications (oxygen desaturation, lung aspiration, and oropharynx trauma). Both groups were similar in their main characteristics, including risk factors for difficult intubation. On the first attempt, the rate of failed intubation was significantly increased in plastic blade group (17 vs. 3%; P < 0.01). In metal blade group, 50% of failed intubations were still difficult after the second attempt. In plastic blade group, all initial failed intubations were successfully intubated using metal blade, with an improvement in Cormack and Lehane grade. There was a significant increase in the complication rate in plastic group (15 vs. 6%; P < 0.05). In rapid sequence induction of anesthesia, the plastic laryngoscope blade is less efficient than a metal blade and thus should not be recommended for use in this clinical setting.

  2. DNA immunoprecipitation semiconductor sequencing (DIP-SC-seq) as a rapid method to generate genome wide epigenetic signatures

    OpenAIRE

    Thomson, John P.; Fawkes, Angie; Ottaviano, Raffaele; Hunter, Jennifer M.; Shukla, Ruchi; Mjoseng, Heidi K.; Clark, Richard; Coutts, Audrey; Murphy, Lee; Meehan, Richard R.

    2015-01-01

    Modification of DNA resulting in 5-methylcytosine (5 mC) or 5-hydroxymethylcytosine (5hmC) has been shown to influence the local chromatin environment and affect transcription. Although recent advances in next generation sequencing technology allow researchers to map epigenetic modifications across the genome, such experiments are often time-consuming and cost prohibitive. Here we present a rapid and cost effective method of generating genome wide DNA modification maps utilising commercially ...

  3. Improved method for rapid and accurate isolation and identification of Streptococcus mutans and Streptococcus sobrinus from human plaque samples.

    Science.gov (United States)

    Villhauer, Alissa L; Lynch, David J; Drake, David R

    2017-08-01

    Mutans streptococci (MS), specifically Streptococcus mutans (SM) and Streptococcus sobrinus (SS), are bacterial species frequently targeted for investigation due to their role in the etiology of dental caries. Differentiation of S. mutans and S. sobrinus is an essential part of exploring the role of these organisms in disease progression and the impact of the presence of either/both on a subject's caries experience. Of vital importance to the study of these organisms is an identification protocol that allows us to distinguish between the two species in an easy, accurate, and timely manner. While conducting a 5-year birth cohort study in a Northern Plains American Indian tribe, the need for a more rapid procedure for isolating and identifying high volumes of MS was recognized. We report here on the development of an accurate and rapid method for MS identification. Accuracy, ease of use, and material and time requirements for morphological differentiation on selective agar, biochemical tests, and various combinations of PCR primers were compared. The final protocol included preliminary identification based on colony morphology followed by PCR confirmation of species identification using primers targeting regions of the glucosyltransferase (gtf) genes of SM and SS. This method of isolation and identification was found to be highly accurate, more rapid than the previous methodology used, and easily learned. It resulted in more efficient use of both time and material resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs

    Directory of Open Access Journals (Sweden)

    Michael H. Kohn

    2008-01-01

    Full Text Available While it remains a matter of some debate, rapid sequence evolution of the coding sequences of duplicate genes is characteristic for early phases past duplication, but long established duplicates generally evolve under constraint, much like the rest of the coding genome. As for coding sequences, it may be possible to infer evolutionary rate, selection, and constraint via contrasts between duplicate gene divergence in the 5 prime regions and in the corresponding synonymous site divergence in the coding regions. Finding elevated rates for the 5 prime regions of duplicated genes, in addition to the coding regions, would enable statements regarding the early processes of duplicate gene evolution. Here, 1 kb of each of the 5 prime regulatory regions of Drosophila melanogaster duplicate gene pairs were mapped onto one another to isolate shared sequence blocks. Genetic distances within shared sequence blocks (d5’ were found to increase as a function of synonymous (dS, and to a lesser extend, amino-acid (dA site divergence between duplicates. The rate d5’/dS was found to rapidly decay from values > 1 in young duplicate pairs (dS 0.8. Such rapid rates of 5 prime evolution exceeding 1 (~neutral predominantly were found to occur in duplicate pairs with low amino-acid site divergence and that tended to be co-regulated when assayed on microarrays. Conceivably, functional redundancy and relaxation of selective constraint facilitates subsequent positive selection on the 5 prime regions of young duplicate genes. This might promote the evolution of new functions (neofunctionalization or division of labor among duplicate genes (subfunctionalization. In contrast, similar to the vast portion of the non-coding genome, the 5 prime regions of long-established gene duplicates appear to evolve under selective constraint, indicating that these long-established gene duplicates have assumed critical functions.

  5. Citrate synthase gene sequence: a new tool for phylogenetic analysis and identification of Ehrlichia.

    Science.gov (United States)

    Inokuma, H; Brouqui, P; Drancourt, M; Raoult, D

    2001-09-01

    The sequence of the citrate synthase gene (gltA) of 13 ehrlichial species (Ehrlichia chaffeensis, Ehrlichia canis, Ehrlichia muris, an Ehrlichia species recently detected from Ixodes ovatus, Cowdria ruminantium, Ehrlichia phagocytophila, Ehrlichia equi, the human granulocytic ehrlichiosis [HGE] agent, Anaplasma marginale, Anaplasma centrale, Ehrlichia sennetsu, Ehrlichia risticii, and Neorickettsia helminthoeca) have been determined by degenerate PCR and the Genome Walker method. The ehrlichial gltA genes are 1,197 bp (E. sennetsu and E. risticii) to 1,254 bp (A. marginale and A. centrale) long, and GC contents of the gene vary from 30.5% (Ehrlichia sp. detected from I. ovatus) to 51.0% (A. centrale). The percent identities of the gltA nucleotide sequences among ehrlichial species were 49.7% (E. risticii versus A. centrale) to 99.8% (HGE agent versus E. equi). The percent identities of deduced amino acid sequences were 44.4% (E. sennetsu versus E. muris) to 99.5% (HGE agent versus E. equi), whereas the homology range of 16S rRNA genes was 83.5% (E. risticii versus the Ehrlichia sp. detected from I. ovatus) to 99.9% (HGE agent, E. equi, and E. phagocytophila). The architecture of the phylogenetic trees constructed by gltA nucleotide sequences or amino acid sequences was similar to that derived from the 16S rRNA gene sequences but showed more-significant bootstrap values. Based upon the alignment analysis of the ehrlichial gltA sequences, two sets of primers were designed to amplify tick-borne Ehrlichia and Neorickettsia genogroup Ehrlichia (N. helminthoeca, E. sennetsu, and E. risticii), respectively. Tick-borne Ehrlichia species were specifically identified by restriction fragment length polymorphism (RFLP) patterns of AcsI and XhoI with the exception of E. muris and the very closely related ehrlichia derived from I. ovatus for which sequence analysis of the PCR product is needed. Similarly, Neorickettsia genogroup Ehrlichia species were specifically identified by

  6. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc; McNerney, Ruth; Preston, Mark D; Guerra-Assunç ã o, José Afonso; Warry, Andrew; Hill-Cawthorne, Grant A.; Mallard, Kim; Nair, Mridul; Miranda, Anabela; Alves, Adriana; Perdigã o, Joã o; Viveiros, Miguel; Portugal, Isabel; Hasan, Zahra; Hasan, Rumina; Glynn, Judith R; Martin, Nigel; Pain, Arnab; Clark, Taane G

    2015-01-01

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data

  7. The evidence of the rugoscopy effectiveness as a human identification method in patients submitted to rapid palatal expansion.

    Science.gov (United States)

    Barbieri, Ana A; Scoralick, Raquel A; Naressi, Suely C M; Moraes, Mari E L; Daruge, Eduardo; Daruge, Eduardo

    2013-01-01

    The objective of this study was to demonstrate the effectiveness of rugoscopy as a human identification method, even when the patient is submitted to rapid palatal expansion, which in theory would introduce doubt. With this intent, the Rugoscopic Identity was obtained for each subject using the classification formula proposed by Santos based on the intra-oral casts made before and after treatment from patients who were subjected to palatal expansion. The casts were labeled with the patients' initials and randomly arranged for studying. The palatine rugae kept the same patterns in every case studied. The technical error of the intra-evaluator measurement provided a confidence interval of 95%, making rugoscopy a reliable identification method for patients who were submitted to rapid palatal expansion, because even in the presence of intra-oral changes owing to the use of palatal expanders, the palatine rugae retained the biological and technical requirements for the human identification process. © 2012 American Academy of Forensic Sciences.

  8. Removing the bottleneck in whole genome sequencing of Mycobacterium tuberculosis for rapid drug resistance analysis: a call to action

    Directory of Open Access Journals (Sweden)

    Ruth McNerney

    2017-03-01

    Full Text Available Whole genome sequencing (WGS can provide a comprehensive analysis of Mycobacterium tuberculosis mutations that cause resistance to anti-tuberculosis drugs. With the deployment of bench-top sequencers and rapid analytical software, WGS is poised to become a useful tool to guide treatment. However, direct sequencing from clinical specimens to provide a full drug resistance profile remains a serious challenge. This article reviews current practices for extracting M. tuberculosis DNA and possible solutions for sampling sputum. Techniques under consideration include enzymatic digestion, physical disruption, chemical degradation, detergent solubilization, solvent extraction, ligand-coated magnetic beads, silica columns, and oligonucleotide pull-down baits. Selective amplification of genomic bacterial DNA in sputum prior to WGS may provide a solution, and differential lysis to reduce the levels of contaminating human DNA is also being explored. To remove this bottleneck and accelerate access to WGS for patients with suspected drug-resistant tuberculosis, it is suggested that a coordinated and collaborative approach be taken to more rapidly optimize, compare, and validate methodologies for sequencing from patient samples.

  9. Validation of Ion TorrentTM Inherited Disease Panel with the PGMTM Sequencing Platform for Rapid and Comprehensive Mutation Detection

    Directory of Open Access Journals (Sweden)

    Abeer E. Mustafa

    2018-05-01

    Full Text Available Quick and accurate molecular testing is necessary for the better management of many inherited diseases. Recent technological advances in various next generation sequencing (NGS platforms, such as target panel-based sequencing, has enabled comprehensive, quick, and precise interrogation of many genetic variations. As a result, these technologies have become a valuable tool for gene discovery and for clinical diagnostics. The AmpliSeq Inherited Disease Panel (IDP consists of 328 genes underlying more than 700 inherited diseases. Here, we aimed to assess the performance of the IDP as a sensitive and rapid comprehensive gene panel testing. A total of 88 patients with inherited diseases and causal mutations that were previously identified by Sanger sequencing were randomly selected for assessing the performance of the IDP. The IDP successfully detected 93.1% of the mutations in our validation cohort, achieving high overall gene coverage (98%. The sensitivity for detecting single nucleotide variants (SNVs and short Indels was 97.3% and 69.2%, respectively. IDP, when coupled with Ion Torrent Personal Genome Machine (PGM, delivers comprehensive and rapid sequencing for genes that are responsible for various inherited diseases. Our validation results suggest the suitability of this panel for use as a first-line screening test after applying the necessary clinical validation.

  10. IdentiCS – Identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence

    Directory of Open Access Journals (Sweden)

    Zeng An-Ping

    2004-08-01

    Full Text Available Abstract Background A necessary step for a genome level analysis of the cellular metabolism is the in silico reconstruction of the metabolic network from genome sequences. The available methods are mainly based on the annotation of genome sequences including two successive steps, the prediction of coding sequences (CDS and their function assignment. The annotation process takes time. The available methods often encounter difficulties when dealing with unfinished error-containing genomic sequence. Results In this work a fast method is proposed to use unannotated genome sequence for predicting CDSs and for an in silico reconstruction of metabolic networks. Instead of using predicted genes or CDSs to query public databases, entries from public DNA or protein databases are used as queries to search a local database of the unannotated genome sequence to predict CDSs. Functions are assigned to the predicted CDSs simultaneously. The well-annotated genome of Salmonella typhimurium LT2 is used as an example to demonstrate the applicability of the method. 97.7% of the CDSs in the original annotation are correctly identified. The use of SWISS-PROT-TrEMBL databases resulted in an identification of 98.9% of CDSs that have EC-numbers in the published annotation. Furthermore, two versions of sequences of the bacterium Klebsiella pneumoniae with different genome coverage (3.9 and 7.9 fold, respectively are examined. The results suggest that a 3.9-fold coverage of the bacterial genome could be sufficiently used for the in silico reconstruction of the metabolic network. Compared to other gene finding methods such as CRITICA our method is more suitable for exploiting sequences of low genome coverage. Based on the new method, a program called IdentiCS (Identification of Coding Sequences from Unfinished Genome Sequences is delivered that combines the identification of CDSs with the reconstruction, comparison and visualization of metabolic networks (free to download

  11. Rapid identification of dairy lactic acid bacteria by M13-generated, RAPD-PCR fingerprint databases.

    Science.gov (United States)

    Rossetti, Lia; Giraffa, Giorgio

    2005-11-01

    About a thousand lactic acid bacteria (LAB) isolated from dairy products, especially cheeses, were identified and typed by species-specific PCR and RAPD-PCR, respectively. RAPD-PCR profiles, which were obtained by using the M13 sequence as a primer, allowed us to implement a large database of different fingerprints, which were analysed by BioNumerics software. Cluster analysis of the combined RAPD-PCR fingerprinting profiles enabled us to implement a library, which is a collection of library units, which in turn is a selection of representative database entries. A library unit, in this case, can be considered to be a definable taxon. The strains belonged to 11 main RAPD-PCR fingerprinting library units identified as Lactobacillus casei/paracasei, Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus helveticus, Lactobacillus delbrueckii, Lactobacillus fermentum, Lactobacillus brevis, Enterococcus faecium, Enterococcus faecalis, Streptococcus thermophilus and Lactococcus lactis. The possibility to routinely identify newly typed, bacterial isolates by consulting the library of the software was valued. The proposed method could be suggested to refine previous strain identifications, eliminate redundancy and dispose of a technologically useful LAB strain collection. The same approach could also be applied to identify LAB strains isolated from other food ecosystems.

  12. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    Science.gov (United States)

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.

  13. Yeast identification by sequencing, biochemical kits, MALDI-TOF MS and rep-PCR DNA fingerprinting.

    Science.gov (United States)

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Chan, Jasper F W; Lau, Susanna K P; Kong, Fanrong; Xu, Yingchun; Woo, Patrick C Y

    2017-12-08

    No study has comprehensively evaluated the performance of 28S nrDNA and ITS sequencing, commercial biochemical test kits, MALDI-TOF MS platforms, and the emerging rep-PCR DNA fingerprinting technology using a cohort of yeast strains collected from a clinical microbiology laboratory. In this study, using 71 clinically important yeast isolates (excluding Candida albicans) collected from a single centre, we determined the concordance of 28S nrDNA and ITS sequencing and evaluated the performance of two commercial test kits, two MALDI-TOF MS platforms, and rep-PCR DNA fingerprinting. 28S nrDNA and ITS sequencing showed complete agreement on the identities of the 71 isolates. Using sequencing results as the standard, 78.9% and 71.8% isolates were correctly identified using the API 20C AUX and Vitek 2 YST ID Card systems, respectively; and 90.1% and 80.3% isolates were correctly identified using the Bruker and Vitek MALDI-TOF MS platforms, respectively. Of the 18 strains belonging to the Candida parapsilosis species complex tested by DiversiLab automated rep-PCR DNA fingerprinting, all were identified only as Candida parapsilosis with similarities ≥93.2%, indicating the misidentification of Candida metapsilosis and Candida orthopsilosis. However, hierarchical cluster analysis of the rep-PCR DNA fingerprints of these three species within this species complex formed three different discrete clusters, indicating that this technology can potentially differentiate the three species. To achieve higher accuracies of identification, the databases of commercial biochemical test kits, MALDI-TOF MS platforms, and DiversiLab automated rep-PCR DNA fingerprinting needs further enrichment, particularly for uncommonly encountered yeast species. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Guzman, Frank; Almerão, Mauricio P; Körbes, Ana P; Loss-Morais, Guilherme; Margis, Rogerio

    2012-01-01

    microRNAs or miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance, and there have been no previous studies concerning its gene expression and regulation. To date, no miRNAs have been reported in Myrtaceae species. Small RNA and RNA-seq libraries were constructed to identify miRNAs and pre-miRNAs in Eugenia uniflora. Solexa technology was used to perform high throughput sequencing of the library, and the data obtained were analyzed using bioinformatics tools. From 14,489,131 small RNA clean reads, we obtained 1,852,722 mature miRNA sequences representing 45 conserved families that have been identified in other plant species. Further analysis using contigs assembled from RNA-seq allowed the prediction of secondary structures of 25 known and 17 novel pre-miRNAs. The expression of twenty-seven identified miRNAs was also validated using RT-PCR assays. Potential targets were predicted for the most abundant mature miRNAs in the identified pre-miRNAs based on sequence homology. This study is the first large scale identification of miRNAs and their potential targets from a species of the Myrtaceae family without genomic sequence resources. Our study provides more information about the evolutionary conservation of the regulatory network of miRNAs in plants and highlights species-specific miRNAs.

  15. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing

    Directory of Open Access Journals (Sweden)

    Chen Shou-Yi

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max is limited, and global identification of the related miRNA targets has not been reported in previous research. Results In our study, a small RNA library and a degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. GO analysis indicated that many of the identified miRNA targets may function in soybean seed development. Additionally, a soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3 (AtSGS3 was detected as a target of the newly identified miRNA Soy_25, suggesting the presence of feedback control of miRNA biogenesis. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library and a degradome library. Our study provides more information about the regulatory network of miRNAs in soybean and advances our understanding of miRNA functions during seed development.

  16. Evaluation of Rapid Stain IDentification (RSID™ Reader System for Analysis and Documentation of RSID™ Tests

    Directory of Open Access Journals (Sweden)

    Pravatchai W. Boonlayangoor

    2013-08-01

    Full Text Available The ability to detect the presence of body fluids is a crucial first step in documenting and processing forensic evidence. The Rapid Stain IDentification (RSID™ tests for blood, saliva, semen and urine are lateral flow immunochromatographic strip tests specifically designed for forensic use. Like most lateral flow strips, the membrane components of the test are enclosed in a molded plastic cassette with a sample well and an observation window. No specialized equipment is required to use these tests or to score the results seen in the observation window; however, the utility of these tests can be enhanced if an electronic record of the test results can be obtained, preferably by a small hand-held device that could be used in the field under low light conditions. Such a device should also be able to “read” the lateral flow strips and accurately record the results of the test as either positive, i.e., the body fluid was detected, or negative, i.e., the body fluid was not detected. Here we describe the RSID™ Reader System—a ruggedized strip test reader unit that allows analysis and documentation of RSID™ lateral flow strip tests using pre-configured settings, and show that the RSID™ Reader can accurately and reproducibly report and record correct results from RSID™ blood, saliva, semen, and urine tests.

  17. Rapid identification of drug resistant Candida species causing recurrent vulvovaginal candidiasis.

    Science.gov (United States)

    Diba, Kambiz; Namaki, Atefeh; Ayatolahi, Haleh; Hanifian, Haleh

    2012-01-01

    Some yeast agents including Candida albicans, Candida tropicalis and Candida glabrata have a role in recurrent vulvovaginal candidiasis. We studied the frequency of both common and recurrent vulvovaginal candidiasis in symptomatic cases which were referred to Urmia Medical Sciences University related gynecology clinics using morphologic and molecular methods. The aim of this study was the identification of Candida species isolated from recurrent vulvovaginal candidiasis cases using a rapid and reliable molecular method. Vaginal swabs obtained from each case, were cultured on differential media including cornmeal agar and CHROM agar Candida. After 48 hours at 37℃, the cultures were studied for growth characteristics and color production respectively. All isolates were identified using the molecular method of PCR - restriction fragment length polymorphism. Among all clinical specimens, we detected 19 ( 16 % ) non fungal agents, 87 ( 82.1 % ) yeasts and 2 ( 1.9 % ) multiple infections. The yeast isolates identified morphologically included Candida albicans ( n = 62 ), Candida glabrata ( n = 9 ), Candida tropicalis ( n = 8 ), Candida parapsilosis ( n = 8 ) and Candida guilliermondii and Candida krusei ( n = 1 each ). We also obtained very similar results for Candida albicans, Candida glabrata and Candida tropicalis as the most common clinical isolates, by using PCR - Restriction Fragment Length Polymorphism. Use of two differential methods, morphologic and molecular, enabled us to identify most medically important Candida species which particularly cause recurrent vulvovaginal candidiasis.

  18. Method for rapid detection and identification of chaetomium and evaluation of resistance to peracetic acid.

    Science.gov (United States)

    Nakayama, Motokazu; Hosoya, Kouichi; Tomiyama, Daisuke; Tsugukuni, Takashi; Matsuzawa, Tetsuhiro; Imanishi, Yumi; Yaguchi, Takashi

    2013-06-01

    In the beverage industry, peracetic acid has been increasingly used as a disinfectant for the filling machinery and environment due to merits of leaving no residue, it is safe for humans, and its antiseptic effect against fungi and endospores of bacteria. Recently, Chaetomium globosum and Chaetomium funicola were reported resistant to peracetic acid; however, little is known concerning the detail of peracetic acid resistance. Therefore, we assessed the peracetic acid resistance of the species of Chaetomium and related genera under identical conditions and made a thorough observation of the microstructure of their ascospores by transmission electron microscopy. The results of analyses revealed that C. globosum and C. funicola showed the high resistance to peracetic acid (a 1-D antiseptic effect after 900 s and 3-D antiseptic effect after 900 s) and had thick cell walls of ascospores that can impede the action mechanism of peracetic acid. We also developed specific primers to detect the C. globosum clade and identify C. funicola by using PCR to amplify the β-tubulin gene. PCR with the primer sets designed for C. globosum (Chae 4F/4R) and C. funicola (Cfu 2F/2R) amplified PCR products specific for the C. globosum clade and C. funicola, respectively. PCR with these two primer sets did not detect other fungi involved in food spoilage and environmental contamination. This detection and identification method is rapid and simple, with extremely high specificity.

  19. Network Understanding of Herb Medicine via Rapid Identification of Ingredient-Target Interactions

    Science.gov (United States)

    Zhang, Hai-Ping; Pan, Jian-Bo; Zhang, Chi; Ji, Nan; Wang, Hao; Ji, Zhi-Liang

    2014-01-01

    Today, herb medicines have become the major source for discovery of novel agents in countermining diseases. However, many of them are largely under-explored in pharmacology due to the limitation of current experimental approaches. Therefore, we proposed a computational framework in this study for network understanding of herb pharmacology via rapid identification of putative ingredient-target interactions in human structural proteome level. A marketing anti-cancer herb medicine in China, Yadanzi (Brucea javanica), was chosen for mechanistic study. Total 7,119 ingredient-target interactions were identified for thirteen Yadanzi active ingredients. Among them, about 29.5% were estimated to have better binding affinity than their corresponding marketing drug-target interactions. Further Bioinformatics analyses suggest that simultaneous manipulation of multiple proteins in the MAPK signaling pathway and the phosphorylation process of anti-apoptosis may largely answer for Yadanzi against non-small cell lung cancers. In summary, our strategy provides an efficient however economic solution for systematic understanding of herbs' power.

  20. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries

    Directory of Open Access Journals (Sweden)

    Kudrna David

    2011-03-01

    Full Text Available Abstract Background Eucalyptus species are among the most planted hardwoods in the world because of their rapid growth, adaptability and valuable wood properties. The development and integration of genomic resources into breeding practice will be increasingly important in the decades to come. Bacterial artificial chromosome (BAC libraries are key genomic tools that enable positional cloning of important traits, synteny evaluation, and the development of genome framework physical maps for genetic linkage and genome sequencing. Results We describe the construction and characterization of two deep-coverage BAC libraries EG_Ba and EG_Bb obtained from nuclear DNA fragments of E. grandis (clone BRASUZ1 digested with HindIII and BstYI, respectively. Genome coverages of 17 and 15 haploid genome equivalents were estimated for EG_Ba and EG_Bb, respectively. Both libraries contained large inserts, with average sizes ranging from 135 Kb (Eg_Bb to 157 Kb (Eg_Ba, very low extra-nuclear genome contamination providing a probability of finding a single copy gene ≥ 99.99%. Libraries were screened for the presence of several genes of interest via hybridizations to high-density BAC filters followed by PCR validation. Five selected BAC clones were sequenced and assembled using the Roche GS FLX technology providing the whole sequence of the E. grandis chloroplast genome, and complete genomic sequences of important lignin biosynthesis genes. Conclusions The two E. grandis BAC libraries described in this study represent an important milestone for the advancement of Eucalyptus genomics and forest tree research. These BAC resources have a highly redundant genome coverage (> 15×, contain large average inserts and have a very low percentage of clones with organellar DNA or empty vectors. These publicly available BAC libraries are thus suitable for a broad range of applications in genetic and genomic research in Eucalyptus and possibly in related species of Myrtaceae

  1. Identification and complete sequencing of novel human transcripts through the use of mouse orthologs and testis cDNA sequences

    DEFF Research Database (Denmark)

    Ferreira, Elisa N; Pires, Lilian C; Parmigiani, Raphael B

    2004-01-01

    The correct identification of all human genes, and their derived transcripts, has not yet been achieved, and it remains one of the major aims of the worldwide genomics community. Computational programs suggest the existence of 30,000 to 40,000 human genes. However, definitive gene identification ...

  2. Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification

    Science.gov (United States)

    Faye, Laura L.; Machiela, Mitchell J.; Kraft, Peter; Bull, Shelley B.; Sun, Lei

    2013-01-01

    Next generation sequencing has dramatically increased our ability to localize disease-causing variants by providing base-pair level information at costs increasingly feasible for the large sample sizes required to detect complex-trait associations. Yet, identification of causal variants within an established region of association remains a challenge. Counter-intuitively, certain factors that increase power to detect an associated region can decrease power to localize the causal variant. First, combining GWAS with imputation or low coverage sequencing to achieve the large sample sizes required for high power can have the unintended effect of producing differential genotyping error among SNPs. This tends to bias the relative evidence for association toward better genotyped SNPs. Second, re-use of GWAS data for fine-mapping exploits previous findings to ensure genome-wide significance in GWAS-associated regions. However, using GWAS findings to inform fine-mapping analysis can bias evidence away from the causal SNP toward the tag SNP and SNPs in high LD with the tag. Together these factors can reduce power to localize the causal SNP by more than half. Other strategies commonly employed to increase power to detect association, namely increasing sample size and using higher density genotyping arrays, can, in certain common scenarios, actually exacerbate these effects and further decrease power to localize causal variants. We develop a re-ranking procedure that accounts for these adverse effects and substantially improves the accuracy of causal SNP identification, often doubling the probability that the causal SNP is top-ranked. Application to the NCI BPC3 aggressive prostate cancer GWAS with imputation meta-analysis identified a new top SNP at 2 of 3 associated loci and several additional possible causal SNPs at these loci that may have otherwise been overlooked. This method is simple to implement using R scripts provided on the author's website. PMID:23950724

  3. Identification of Escherichia coli and Shigella Species from Whole-Genome Sequences.

    Science.gov (United States)

    Chattaway, Marie A; Schaefer, Ulf; Tewolde, Rediat; Dallman, Timothy J; Jenkins, Claire

    2017-02-01

    Escherichia coli and Shigella species are closely related and genetically constitute the same species. Differentiating between these two pathogens and accurately identifying the four species of Shigella are therefore challenging. The organism-specific bioinformatics whole-genome sequencing (WGS) typing pipelines at Public Health England are dependent on the initial identification of the bacterial species by use of a kmer-based approach. Of the 1,982 Escherichia coli and Shigella sp. isolates analyzed in this study, 1,957 (98.4%) had concordant results by both traditional biochemistry and serology (TB&S) and the kmer identification (ID) derived from the WGS data. Of the 25 mismatches identified, 10 were enteroinvasive E. coli isolates that were misidentified as Shigella flexneri or S. boydii by the kmer ID, and 8 were S. flexneri isolates misidentified by TB&S as S. boydii due to nonfunctional S. flexneri O antigen biosynthesis genes. Analysis of the population structure based on multilocus sequence typing (MLST) data derived from the WGS data showed that the remaining discrepant results belonged to clonal complex 288 (CC288), comprising both S. boydii and S. dysenteriae strains. Mismatches between the TB&S and kmer ID results were explained by the close phylogenetic relationship between the two species and were resolved with reference to the MLST data. Shigella can be differentiated from E. coli and accurately identified to the species level by use of kmer comparisons and MLST. Analysis of the WGS data provided explanations for the discordant results between TB&S and WGS data, revealed the true phylogenetic relationships between different species of Shigella, and identified emerging pathoadapted lineages. © Crown copyright 2017.

  4. Identifications of Captive and Wild Tilapia Species Existing in Hawaii by Mitochondrial DNA Control Region Sequence

    Science.gov (United States)

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    Background The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. Methodology/Principal Findings In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. Conclusions/Significance This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species

  5. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.; Cao, Jun; Cheng, Jan-Fang; Clark, Richard M.; Fahlgren, Noah; Fawcett, Jeffrey A.; Grimwood, Jane; Gundlach, Heidrun; Haberer, Georg; Hollister, Jesse D.; Ossowski, Stephan; Ottilar, Robert P.; Salamov, Asaf A.; Schneeberger, Korbinian; Spannagl, Manuel; Wang, Xi; Yang, Liang; Nasrallah, Mikhail E.; Bergelson, Joy; Carrington, James C.; Gaut, Brandon S.; Schmutz, Jeremy; Mayer, Klaus F. X.; Van de Peer, Yves; Grigoriev, Igor V.; Nordborg, Magnus; Weigel, Detlef; Guo, Ya-Long

    2011-04-29

    In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspect centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.

  6. Rapid and Easy Protocol for Quantification of Next-Generation Sequencing Libraries.

    Science.gov (United States)

    Hawkins, Steve F C; Guest, Paul C

    2018-01-01

    The emergence of next-generation sequencing (NGS) over the last 10 years has increased the efficiency of DNA sequencing in terms of speed, ease, and price. However, the exact quantification of a NGS library is crucial in order to obtain good data on sequencing platforms developed by the current market leader Illumina. Different approaches for DNA quantification are available currently and the most commonly used are based on analysis of the physical properties of the DNA through spectrophotometric or fluorometric methods. Although these methods are technically simple, they do not allow exact quantification as can be achieved using a real-time quantitative PCR (qPCR) approach. A qPCR protocol for DNA quantification with applications in NGS library preparation studies is presented here. This can be applied in various fields of study such as medical disorders resulting from nutritional programming disturbances.

  7. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing.

    Science.gov (United States)

    Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M

    2013-12-01

    Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.

  8. System risk evolution analysis and risk critical event identification based on event sequence diagram

    International Nuclear Information System (INIS)

    Luo, Pengcheng; Hu, Yang

    2013-01-01

    During system operation, the environmental, operational and usage conditions are time-varying, which causes the fluctuations of the system state variables (SSVs). These fluctuations change the accidents’ probabilities and then result in the system risk evolution (SRE). This inherent relation makes it feasible to realize risk control by monitoring the SSVs in real time, herein, the quantitative analysis of SRE is essential. Besides, some events in the process of SRE are critical to system risk, because they act like the “demarcative points” of safety and accident, and this characteristic makes each of them a key point of risk control. Therefore, analysis of SRE and identification of risk critical events (RCEs) are remarkably meaningful to ensure the system to operate safely. In this context, an event sequence diagram (ESD) based method of SRE analysis and the related Monte Carlo solution are presented; RCE and risk sensitive variable (RSV) are defined, and the corresponding identification methods are also proposed. Finally, the proposed approaches are exemplified with an accident scenario of an aircraft getting into the icing region

  9. Identification of Alternative Splice Variants Using Unique Tryptic Peptide Sequences for Database Searches.

    Science.gov (United States)

    Tran, Trung T; Bollineni, Ravi C; Strozynski, Margarita; Koehler, Christian J; Thiede, Bernd

    2017-07-07

    Alternative splicing is a mechanism in eukaryotes by which different forms of mRNAs are generated from the same gene. Identification of alternative splice variants requires the identification of peptides specific for alternative splice forms. For this purpose, we generated a human database that contains only unique tryptic peptides specific for alternative splice forms from Swiss-Prot entries. Using this database allows an easy access to splice variant-specific peptide sequences that match to MS data. Furthermore, we combined this database without alternative splice variant-1-specific peptides with human Swiss-Prot. This combined database can be used as a general database for searching of LC-MS data. LC-MS data derived from in-solution digests of two different cell lines (LNCaP, HeLa) and phosphoproteomics studies were analyzed using these two databases. Several nonalternative splice variant-1-specific peptides were found in both cell lines, and some of them seemed to be cell-line-specific. Control and apoptotic phosphoproteomes from Jurkat T cells revealed several nonalternative splice variant-1-specific peptides, and some of them showed clear quantitative differences between the two states.

  10. Vitek 2 ANC card versus BBL Crystal Anaerobe and RapID ANA II for identification of clinical anaerobic bacteria.

    Science.gov (United States)

    Blairon, Laurent; Maza, Mengi L; Wybo, Ingrid; Piérard, Denis; Dediste, Anne; Vandenberg, Olivier

    2010-08-01

    The Vitek 2 Anaerobe and Corynebacterium Identification Card (ANC) was recently evaluated in a multicentre study. In the present work, this system was compared with the BBL Crystal Anaerobe and RapID ANA II panels. These kits were tested using 196 strains of anaerobes that had been previously identified by gas-liquid chromatography. Identification to the species or to the genus level was 75.0%, 81.1% and 70.9% for Crystal, RapID and Vitek, respectively. Vitek ANC failed to provide any identification in 20.4% of the strains, but it had fewer misidentifications than RapID. The confidence factors provided on the results report of each kit were not always correlated with a lower risk of major errors, with the exception of Vitek 2 in which a confidence factor higher than 0.86 excluded the risk of misidentification in more than 87% of isolates. The lower rate of identification by the Vitek and Crystal panels is mostly due the lower ability of these systems to identify the Clostridia. Overall, the three panels are comparable but need improvement to a better accuracy. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. Comparison of four methods for rapid identification of Staphylococcus aureus directly from BACTEC 9240 blood culture system

    Directory of Open Access Journals (Sweden)

    N S Ozen

    2011-01-01

    Full Text Available Purpose: Differentiation of Staphylococcus aureus (S. aureus from coagulase-negative staphylococci is very important in blood stream infections. Identification of S. aureus and coagulase-negative staphylococci (CoNS from blood cultures takes generally 18-24 h after positive signaling on continuously monitored automated blood culture system. In this study, we evaluated the performance of tube coagulase test (TCT, slide agglutination test (Dry Spot Staphytect Plus, conventional polymerase chain reaction (PCR and LightCycler Staphylococcus MGrade kit directly from blood culture bottles to achieve rapid identification of S. aureus by using the BACTEC 9240 blood culture system. Materials and Methods: A total of 129 BACTEC 9240 bottles growing gram-positive cocci suggesting Staphylococci were tested directly from blood culture broths (BCBs with TCT, Dry Spot Staphytect Plus, conventional PCR and LightCycler Staphylococcus MGrade kit for rapid identification of S. aureus. Results: The sensitivities of the tests were 99, 68, 99 and 100%, respectively. Conclusion: Our results suggested that 2 h TCT was found to be simple and inexpensive method for the rapid identification of S. aureus directly from positive blood cultures.

  12. Comparison of four methods for rapid identification of Staphylococcus aureus directly from BACTEC 9240 blood culture system.

    Science.gov (United States)

    Ozen, N S; Ogunc, D; Mutlu, D; Ongut, G; Baysan, B O; Gunseren, F

    2011-01-01

    Differentiation of Staphylococcus aureus (S. aureus) from coagulase-negative staphylococci is very important in blood stream infections. Identification of S. aureus and coagulase-negative staphylococci (CoNS) from blood cultures takes generally 18-24 h after positive signaling on continuously monitored automated blood culture system. In this study, we evaluated the performance of tube coagulase test (TCT), slide agglutination test (Dry Spot Staphytect Plus), conventional polymerase chain reaction (PCR) and LightCycler Staphylococcus MGrade kit directly from blood culture bottles to achieve rapid identification of S. aureus by using the BACTEC 9240 blood culture system. A total of 129 BACTEC 9240 bottles growing gram-positive cocci suggesting Staphylococci were tested directly from blood culture broths (BCBs) with TCT, Dry Spot Staphytect Plus, conventional PCR and LightCycler Staphylococcus MGrade kit for rapid identification of S. aureus. The sensitivities of the tests were 99, 68, 99 and 100%, respectively. Our results suggested that 2 h TCT was found to be simple and inexpensive method for the rapid identification of S. aureus directly from positive blood cultures.

  13. Identification by 16S rRNA Gene Sequencing of Lactobacillus salivarius Bacteremic Cholecystitis

    Science.gov (United States)

    Woo, Patrick C. Y.; Fung, Ami M. Y.; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2002-01-01

    An anaerobic, nonsporulating, gram-positive bacterium was isolated from blood and bile pus cultures of a 70-year-old man with bacteremic acute cholecystitis. The API 20A system showed that it was 70% Actinomyces naeslundii and 30% Bifidobacterium species, whereas the Vitek ANI system and the ATB ID32A Expression system showed that it was “unidentified.” The 16S rRNA gene of the strain was amplified and sequenced. There were 3 base differences between the nucleotide sequence of the isolate and that of Lactobacillus salivarius subsp. salivarius or L. salivarius subsp. salicinius, indicating that the isolate was a strain of L. salivarius. The patient responded to cholecystectomy and a 2-week course of antibiotic treatment. Identification of the organism in the present study was important because the duration of antibiotic therapy would have been entirely different depending on the organism. If the bacterium had been identified as Actinomyces, penicillin for 6 months would have been the regimen of choice. However, it was Lactobacillus, and a 2-week course of antibiotic was sufficient. PMID:11773128

  14. Identification of functional SNPs in the 5-prime flanking sequences of human genes

    Directory of Open Access Journals (Sweden)

    Lenhard Boris

    2005-02-01

    Full Text Available Abstract Background Over 4 million single nucleotide polymorphisms (SNPs are currently reported to exist within the human genome. Only a small fraction of these SNPs alter gene function or expression, and therefore might be associated with a cell phenotype. These functional SNPs are consequently important in understanding human health. Information related to functional SNPs in candidate disease genes is critical for cost effective genetic association studies, which attempt to understand the genetics of complex diseases like diabetes, Alzheimer's, etc. Robust methods for the identification of functional SNPs are therefore crucial. We report one such experimental approach. Results Sequence conserved between mouse and human genomes, within 5 kilobases of the 5-prime end of 176 GPCR genes, were screened for SNPs. Sequences flanking these SNPs were scored for transcription factor binding sites. Allelic pairs resulting in a significant score difference were predicted to influence the binding of transcription factors (TFs. Ten such SNPs were selected for mobility shift assays (EMSA, resulting in 7 of them exhibiting a reproducible shift. The full-length promoter regions with 4 of the 7 SNPs were cloned in a Luciferase based plasmid reporter system. Two out of the 4 SNPs exhibited differential promoter activity in several human cell lines. Conclusions We propose a method for effective selection of functional, regulatory SNPs that are located in evolutionary conserved 5-prime flanking regions (5'-FR regions of human genes and influence the activity of the transcriptional regulatory region. Some SNPs behave differently in different cell types.

  15. Rapid whole genome sequencing for the detection and characterization of microorganisms directly from clinical samples

    DEFF Research Database (Denmark)

    Hasman, Henrik; Saputra, Dhany; Sicheritz-Pontén, Thomas

    2014-01-01

    Whole genome sequencing (WGS) is becoming available as a routine tool for clinical microbiology. If applied directly on clinical samples this could further reduce diagnostic time and thereby improve control and treatment. A major bottle-neck is the availability of fast and reliable bioinformatics...

  16. Rapid Classification and Identification of Microcystis aeruginosa Strains Using MALDI-TOF MS and Polygenetic Analysis.

    Directory of Open Access Journals (Sweden)

    Li-Wei Sun

    Full Text Available Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS was used to establish a rapid, simple, and accurate method to differentiate among strains of Microcystis aeruginosa, one of the most prevalent types of bloom-forming cyanobacteria. M. aeruginosa NIES-843, for which a complete genome has been sequenced, was used to characterize ribosomal proteins as biomarkers and to optimize conditions for observing ribosomal proteins as major peaks in a given mass spectrum. Thirty-one of 52 ribosomal subunit proteins were detected and identified along the mass spectrum. Fifty-five strains of M. aeruginosa from different habitats were analyzed using MALDI-TOF MS; among these samples, different ribosomal protein types were observed. A polygenetic analysis was performed using an unweighted pair-group method with arithmetic means and different ribosomal protein types to classify the strains into five major clades. Two clades primarily contained toxic strains, and the other three clades contained exclusively non-toxic strains. This is the first study to differentiate cyanobacterial strains using MALDI-TOF MS.

  17. Rapid Classification and Identification of Microcystis aeruginosa Strains Using MALDI-TOF MS and Polygenetic Analysis.

    Science.gov (United States)

    Sun, Li-Wei; Jiang, Wen-Jing; Sato, Hiroaki; Kawachi, Masanobu; Lu, Xi-Wu

    2016-01-01

    Matrix-assisted laser desorption-ionization-time-of-flight mass spectrometry (MALDI-TOF MS) was used to establish a rapid, simple, and accurate method to differentiate among strains of Microcystis aeruginosa, one of the most prevalent types of bloom-forming cyanobacteria. M. aeruginosa NIES-843, for which a complete genome has been sequenced, was used to characterize ribosomal proteins as biomarkers and to optimize conditions for observing ribosomal proteins as major peaks in a given mass spectrum. Thirty-one of 52 ribosomal subunit proteins were detected and identified along the mass spectrum. Fifty-five strains of M. aeruginosa from different habitats were analyzed using MALDI-TOF MS; among these samples, different ribosomal protein types were observed. A polygenetic analysis was performed using an unweighted pair-group method with arithmetic means and different ribosomal protein types to classify the strains into five major clades. Two clades primarily contained toxic strains, and the other three clades contained exclusively non-toxic strains. This is the first study to differentiate cyanobacterial strains using MALDI-TOF MS.

  18. Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification.

    Science.gov (United States)

    Schmedes, Sarah E; Woerner, August E; Novroski, Nicole M M; Wendt, Frank R; King, Jonathan L; Stephens, Kathryn M; Budowle, Bruce

    2018-01-01

    The human skin microbiome is comprised of diverse communities of bacterial, eukaryotic, and viral taxa and contributes millions of additional genes to the repertoire of human genes, affecting human metabolism and immune response. Numerous genetic and environmental factors influence the microbiome composition and as such contribute to individual-specific microbial signatures which may be exploited for forensic applications. Previous studies have demonstrated the potential to associate skin microbial profiles collected from touched items to their individual owner, mainly using unsupervised methods from samples collected over short time intervals. Those studies utilize either targeted 16S rRNA or shotgun metagenomic sequencing to characterize skin microbiomes; however, these approaches have limited species and strain resolution and susceptibility to stochastic effects, respectively. Clade-specific markers from the skin microbiome, using supervised learning, can predict individual identity using skin microbiomes from their respective donors with high accuracy. In this study the hidSkinPlex is presented, a novel targeted sequencing method using skin microbiome markers developed for human identification. The hidSkinPlex (comprised of 286 bacterial (and phage) family-, genus-, species-, and subspecies-level markers), initially was evaluated on three bacterial control samples represented in the panel (i.e., Propionibacterium acnes, Propionibacterium granulosum, and Rothia dentocariosa) to assess the performance of the multiplex. The hidSkinPlex was further evaluated for prediction purposes. The hidSkinPlex markers were used to attribute skin microbiomes collected from eight individuals from three body sites (i.e., foot (Fb), hand (Hp) and manubrium (Mb)) to their host donor. Supervised learning, specifically regularized multinomial logistic regression and 1-nearest-neighbor classification were used to classify skin microbiomes to their hosts with up to 92% (Fb), 96% (Mb

  19. Reliable and reproducible method for rapid identification of Nocardia species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Toyokawa, Masahiro; Kimura, Keigo; Nishi, Isao; Sunada, Atsuko; Ueda, Akiko; Sakata, Tomomi; Asari, Seishi

    2013-01-01

    Recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been challenged for the identification of Nocardia species. However, the standard ethanol-formic acid extraction alone is insufficient in allowing the membrane proteins of Nocardia species to be ionized by the matrix. We therefore aimed to establish our new extraction method for the MALDI-TOF MS-based identification of Nocardia species isolates. Our modified extraction procedure is through dissociation in 0.5% Tween-20 followed by bacterial heat-inactivation, mechanical breaking of the cell wall by acid-washed glass beads and protein extraction with formic acid and acetonitrile. As reference methods for species identification, full-length 16S rRNA gene sequencing and some phenotypical tests were used. In a first step, we made our own Nocardia database by analyzing 13 strains (13 different species including N. elegans, N. otitidiscaviarum, N. asiatica, N. abscessus, N. brasiliensis, N. thailandica, N. farcinica, N. nova, N. mikamii, N. cyriacigeorgica, N. asteroids, Nocardiopsis alba, and Micromonospora sp.) and registered to the MALDI BioTyper database. Then we established our database. The analysis of 12 challenge strains using the our database gave a 100% correct identification, including 8 strains identified to the species level and 4 strains to the genus level (N. elegans, N. nova, N. farcinica, Micromonospora sp.) according to the manufacture's log score specifications. In the estimation of reproducibility of our method intended for 4 strains, both within-run and between-run reproducibility were excellent. These data indicates that our method for rapid identification of Nocardia species is with reliability, reproducibility and cost effective.

  20. Identification of Laying-Related SNP Markers in Geese Using RAD Sequencing.

    Directory of Open Access Journals (Sweden)

    ShiGang Yu

    Full Text Available Laying performance is an important economical trait of goose production. As laying performance is of low heritability, it is of significance to develop a marker-assisted selection (MAS strategy for this trait. Definition of sequence variation related to the target trait is a prerequisite of quantitating MAS, but little is presently known about the goose genome, which greatly hinders the identification of genetic markers for the laying traits of geese. Recently developed restriction site-associated DNA (RAD sequencing is a possible approach for discerning large-scale single nucleotide polymorphism (SNP and reducing the complexity of a genome without having reference genomic information available. In the present study, we developed a pooled RAD sequencing strategy for detecting geese laying-related SNP. Two DNA pools were constructed, each consisting of equal amounts of genomic DNA from 10 individuals with either high estimated breeding value (HEBV or low estimated breeding value (LEBV. A total of 139,013 SNP were obtained from 42,291,356 sequences, of which 18,771,943 were for LEBV and 23,519,413 were for HEBV cohorts. Fifty-five SNP which had different allelic frequencies in the two DNA pools were further validated by individual-based AS-PCR genotyping in the LEBV and HEBV cohorts. Ten out of 55 SNP exhibited distinct allele distributions in these two cohorts. These 10 SNP were further genotyped in a goose population of 492 geese to verify the association with egg numbers. The result showed that 8 of 10 SNP were associated with egg numbers. Additionally, liner regression analysis revealed that SNP Record-111407, 106975 and 112359 were involved in a multiplegene network affecting laying performance. We used IPCR to extend the unknown regions flanking the candidate RAD tags. The obtained sequences were subjected to BLAST to retrieve the orthologous genes in either ducks or chickens. Five novel genes were cloned for geese which harbored the

  1. Unraveling the rapid radiation of crested newts, Triturus cristatus superspecies, using complete mitogenomic sequences

    NARCIS (Netherlands)

    Wielstra, B.M.; Arntzen, J.W.

    2011-01-01

    Background - The rapid radiation of crested newts (Triturus cristatus superspecies) comprises four morphotypes: 1) the T. karelinii group, 2) T. carnifex - T. macedonicus, 3) T. cristatus and 4) T. dobrogicus. These vary in body build and the number of rib-bearing pre-sacral vertebrae (NRBV). The

  2. Clinical identification of bacteria in human chronic wound infections: culturing vs. 16S ribosomal DNA sequencing

    Directory of Open Access Journals (Sweden)

    Rhoads Daniel D

    2012-11-01

    Full Text Available Abstract Background Chronic wounds affect millions of people and cost billions of dollars in the United States each year. These wounds harbor polymicrobial biofilm communities, which can be difficult to elucidate using culturing methods. Clinical molecular microbiological methods are increasingly being employed to investigate the microbiota of chronic infections, including wounds, as part of standard patient care. However, molecular testing is more sensitive than culturing, which results in markedly different results being reported to clinicians. This study compares the results of aerobic culturing and molecular testing (culture-free 16S ribosomal DNA sequencing, and it examines the relative abundance score that is generated by the molecular test and the usefulness of the relative abundance score in predicting the likelihood that the same organism would be detected by culture. Methods Parallel samples from 51 chronic wounds were studied using aerobic culturing and 16S DNA sequencing for the identification of bacteria. Results One hundred forty-five (145 unique genera were identified using molecular methods, and 68 of these genera were aerotolerant. Fourteen (14 unique genera were identified using aerobic culture methods. One-third (31/92 of the cultures were determined to be Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis with higher relative abundance scores were more likely to be detected by culture as demonstrated with regression modeling. Conclusion Discordance between molecular and culture testing is often observed. However, culture-free 16S ribosomal DNA sequencing and its relative abundance score can provide clinicians with insight into which bacteria are most abundant in a sample and which are most likely to be detected by culture.

  3. Rapid identification of Pterocarpus santalinus and Dalbergia louvelii by FTIR and 2D correlation IR spectroscopy

    Science.gov (United States)

    Zhang, Fang-Da; Xu, Chang-Hua; Li, Ming-Yu; Huang, An-Min; Sun, Su-Qin

    2014-07-01

    Since Pterocarpus santalinus and Dalbergia louvelii, which are of precious Rosewood, are very similar in their appearance and anatomy characteristics, cheaper Hongmu D. louvelii is often illegally used to impersonate valuable P. santalinus, especially in Chinese furniture manufacture. In order to develop a rapid and effective method for easy confused wood furniture differentiation, we applied tri-step identification method, i.e., conventional infrared spectroscopy (FT-IR), second derivative infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2DCOS-IR) spectroscopy to investigate P. santalinus and D. louvelii furniture. According to FT-IR and SD-IR spectra, it has been found two unconditional stable difference at 848 cm-1 and 700 cm-1 and relative stable differences at 1735 cm-1, 1623 cm-1, 1614 cm-1, 1602 cm-1, 1509 cm-1, 1456 cm-1, 1200 cm-1, 1158 cm-1, 1055 cm-1, 1034 cm-1 and 895 cm-1 between D. louvelii and P. santalinus IR spectra. The stable discrepancy indicates that the category of extractives is different between the two species. Besides, the relative stable differences imply that the content of holocellulose in P. santalinus is more than that of D. louvelii, whereas the quantity of extractives in D. louvelii is higher. Furthermore, evident differences have been observed in their 2DCOS-IR spectra of 1550-1415 cm-1 and 1325-1030 cm-1. P. santalinus has two strong auto-peaks at 1459 cm-1 and 1467 cm-1, three mid-strong auto-peaks at 1518 cm-1, 1089 cm-1 and 1100 cm-1 and five weak auto-peaks at 1432 cm-1, 1437 cm-1, 1046 cm-1, 1056 cm-1 and 1307 cm-1 while D. louvelii has four strong auto-peaks at 1465 cm-1, 1523 cm-1, 1084 cm-1 and 1100 cm-1, four mid-strong auto-peaks at 1430 cm-1, 1499 cm-1, 1505 cm-1 and 1056 cm-1 and two auto-peaks at 1540 cm-1 and 1284 cm-1. This study has proved that FT-IR integrated with 2DCOS-IR could be applicable for precious wood furniture authentication in a direct, rapid and holistic manner.

  4. Rapid profiling of the antigen regions recognized by serum antibodies using massively parallel sequencing of antigen-specific libraries.

    KAUST Repository

    Domina, Maria; Lanza Cariccio, Veronica; Benfatto, Salvatore; D'Aliberti, Deborah; Venza, Mario; Borgogni, Erica; Castellino, Flora; Biondo, Carmelo; D'Andrea, Daniel; Grassi, Luigi; Tramontano, Anna; Teti, Giuseppe; Felici, Franco; Beninati, Concetta

    2014-01-01

    There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER) provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.

  5. Rapid profiling of the antigen regions recognized by serum antibodies using massively parallel sequencing of antigen-specific libraries.

    Directory of Open Access Journals (Sweden)

    Maria Domina

    Full Text Available There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.

  6. Rapid profiling of the antigen regions recognized by serum antibodies using massively parallel sequencing of antigen-specific libraries.

    KAUST Repository

    Domina, Maria

    2014-12-04

    There is a need for techniques capable of identifying the antigenic epitopes targeted by polyclonal antibody responses during deliberate or natural immunization. Although successful, traditional phage library screening is laborious and can map only some of the epitopes. To accelerate and improve epitope identification, we have employed massive sequencing of phage-displayed antigen-specific libraries using the Illumina MiSeq platform. This enabled us to precisely identify the regions of a model antigen, the meningococcal NadA virulence factor, targeted by serum antibodies in vaccinated individuals and to rank hundreds of antigenic fragments according to their immunoreactivity. We found that next generation sequencing can significantly empower the analysis of antigen-specific libraries by allowing simultaneous processing of dozens of library/serum combinations in less than two days, including the time required for antibody-mediated library selection. Moreover, compared with traditional plaque picking, the new technology (named Phage-based Representation OF Immuno-Ligand Epitope Repertoire or PROFILER) provides superior resolution in epitope identification. PROFILER seems ideally suited to streamline and guide rational antigen design, adjuvant selection, and quality control of newly produced vaccines. Furthermore, this method is also susceptible to find important applications in other fields covered by traditional quantitative serology.

  7. Software for rapid time dependent ChIP-sequencing analysis (TDCA).

    Science.gov (United States)

    Myschyshyn, Mike; Farren-Dai, Marco; Chuang, Tien-Jui; Vocadlo, David

    2017-11-25

    Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and associated methods are widely used to define the genome wide distribution of chromatin associated proteins, post-translational epigenetic marks, and modifications found on DNA bases. An area of emerging interest is to study time dependent changes in the distribution of such proteins and marks by using serial ChIP-seq experiments performed in a time resolved manner. Despite such time resolved studies becoming increasingly common, software to facilitate analysis of such data in a robust automated manner is limited. We have designed software called Time-Dependent ChIP-Sequencing Analyser (TDCA), which is the first program to automate analysis of time-dependent ChIP-seq data by fitting to sigmoidal curves. We provide users with guidance for experimental design of TDCA for modeling of time course (TC) ChIP-seq data using two simulated data sets. Furthermore, we demonstrate that this fitting strategy is widely applicable by showing that automated analysis of three previously published TC data sets accurately recapitulates key findings reported in these studies. Using each of these data sets, we highlight how biologically relevant findings can be readily obtained by exploiting TDCA to yield intuitive parameters that describe behavior at either a single locus or sets of loci. TDCA enables customizable analysis of user input aligned DNA sequencing data, coupled with graphical outputs in the form of publication-ready figures that describe behavior at either individual loci or sets of loci sharing common traits defined by the user. TDCA accepts sequencing data as standard binary alignment map (BAM) files and loci of interest in browser extensible data (BED) file format. TDCA accurately models the number of sequencing reads, or coverage, at loci from TC ChIP-seq studies or conceptually related TC sequencing experiments. TC experiments are reduced to intuitive parametric values that facilitate biologically

  8. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    Science.gov (United States)

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  9. Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2010-05-01

    Full Text Available Abstract Background Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires de novo peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete Plasmopara halstedii, we first evaluated the performance of three different de novo peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i. Results The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set. All three de novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of P. halstedii. We found ten de novo sequenced peptides that showed homology to a Phytophthora infestans protein, a closely related organism of P. halstedii. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase. Conclusions Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different de novo peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in P. halstedii.

  10. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens.

    Directory of Open Access Journals (Sweden)

    Jeslin J L Tan

    Full Text Available Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens.

  11. Rapid in silico cloning of genes using expressed sequence tags (ESTs).

    Science.gov (United States)

    Gill, R W; Sanseau, P

    2000-01-01

    Expressed sequence tags (ESTs) are short single-pass DNA sequences obtained from either end of cDNA clones. These ESTs are derived from a vast number of cDNA libraries obtained from different species. Human ESTs are the bulk of the data and have been widely used to identify new members of gene families, as markers on the human chromosomes, to discover polymorphism sites and to compare expression patterns in different tissues or pathologies states. Information strategies have been devised to query EST databases. Since most of the analysis is performed with a computer, the term "in silico" strategy has been coined. In this chapter we will review the current status of EST databases, the pros and cons of EST-type data and describe possible strategies to retrieve meaningful information.

  12. Rapid high resolution genotyping of Francisella tularensis by whole genome sequence comparison of annotated genes ("MLST+".

    Directory of Open Access Journals (Sweden)

    Markus H Antwerpen

    Full Text Available The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current typing methods have reached their limit of discrimination for classifying closely related subpopulations within the subspecies F. tularensis ssp. holarctica. We introduce a new gene-by-gene approach, MLST+, based on whole genome data of 15 sequenced F. tularensis ssp. holarctica strains and apply this approach to investigate an epidemic of lethal tularemia among non-human primates in two animal facilities in Germany. Due to the high resolution of MLST+ we are able to demonstrate that three independent clones of this highly infectious pathogen were responsible for these spatially and temporally restricted outbreaks.

  13. Managing the wastewater microbiome: Rapid microbial surveillance using Nanopore DNA sequencing

    DEFF Research Database (Denmark)

    Andersen, Martin Hjorth; Kirkegaard, Rasmus Hansen; Albertsen, Mads

    and lead to process breakdown, leading to increased operational costs and potential environmental hazards[1,2]. With current methods, it is often impossible to predict a system crash before it is too late. Monitoring the microbial community for critical changes is tedious, as the process from sample...... to results generally take several days and requires expert knowledge as well as expensive lab facilities. A faster workflow is therefore necessary to ensure a more efficient wastewater management in the future. Experimental design Protocols were developed with focus on portability, ease-of-use and equipment...... (Oxford Nanopore Technologies, UK). The amplicon libraries were sequenced on a MinION (Oxford Nanopore Technologies, UK) and data for the first 10 minutes of sequencing was base-called on a local laptop, mapped to the MiDAS database using minimap2 and analysed in the R environment using the R package...

  14. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification

    OpenAIRE

    Yi Wang; Yan Wang; Ai-Jing Ma; Dong-Xun Li; Li-Juan Luo; Dong-Xin Liu; Dong Jin; Kai Liu; Chang-Yun Ye

    2015-01-01

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61?65??C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primer...

  15. Rapid gene isolation in barley and wheat by mutant chromosome sequencing

    Czech Academy of Sciences Publication Activity Database

    Sanchez-Martin, J.; Steuernagel, B.; Ghosh, S.; Herren, G.; Hurni, S.; Adamski, N.; Vrána, Jan; Kubaláková, Marie; Krattinger, S.G.; Wicker, T.; Doležel, Jaroslav; Keller, B.; Wulff, B. B. H.

    2016-01-01

    Roč. 17, OCT 31 (2016), č. článku 221. ISSN 1465-6906 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : induced mutations * mitotic chromosomes * confers resistance * exome capture * genome * identification * evolution * pathogens * hordeum * MutChromSeq * Gene cloning * Mutational genomics * Chromosome flow sorting * Triticeae * Wheat * Barley Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.313, year: 2015

  16. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    Science.gov (United States)

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  17. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    Science.gov (United States)

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast

  18. Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources

    International Nuclear Information System (INIS)

    Nelson, D.L.; Ledbetter, S.A.; Corbo, L.; Victoria, M.F.; Ramirez-Solis, R.; Webster, T.D.; Ledbetter, D.H.; Caskey, C.T.

    1989-01-01

    Current efforts to map the human genome are focused on individual chromosomes or smaller regions and frequently rely on the use of somatic cell hybrids. The authors report the application of the polymerase chain reaction to direct amplification of human DNA from hybrid cells containing regions of the human genome in rodent cell backgrounds using primers directed to the human Alu repeat element. They demonstrate Alu-directed amplification of a fragment of the human HPRT gene from both hybrid cell and cloned DNA and identify through sequence analysis the Alu repeats involved in this amplification. They also demonstrate the application of this technique to identify the chromosomal locations of large fragments of the human X chromosome cloned in a yeast artificial chromosome and the general applicability of the method to the preparation of DNA probes from cloned human sequences. The technique allows rapid gene mapping and provides a simple method for the isolation and analysis of specific chromosomal regions

  19. Rapid Development of Microsatellite Markers for Plantago ovata Forsk.: Using Next Generation Sequencing and Their Cross-Species Transferability

    Directory of Open Access Journals (Sweden)

    Ranbir Singh Fougat

    2014-06-01

    Full Text Available Isabgol (Plantago ovata Forsk. is an important medicinal plant having high pharmacological activity in its seed husk, which is substantially used in the food, beverages and packaging industries. Nevertheless, isabgol lags behind in research, particularly for genomic resources, like molecular markers, genetic maps, etc. Presently, molecular markers can be easily developed through next generation sequencing technologies, more efficiently, cost effectively and in less time than ever before. This study was framed keeping in view the need to develop molecular markers for this economically important crop by employing a microsatellite enrichment protocol using a next generation sequencing platform (ion torrent PGM™ to obtain simple sequence repeats (SSRs for Plantago ovata for the very first time. A total of 3447 contigs were assembled, which contained 249 SSRs. Thirty seven loci were randomly selected for primer development; of which, 30 loci were successfully amplified. The developed microsatellite markers showed the amplification of the expected size and cross-amplification in another six species of Plantago. The SSR markers were unable to show polymorphism within P. ovata, suggesting that low variability exists within genotypes of P. ovata. This study suggests that PGM™ sequencing is a rapid and cost-effective tool for developing SSR markers for non-model species, and the markers so-observed could be useful in the molecular breeding of P. ovata.

  20. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels

    NARCIS (Netherlands)

    Deelen, Patrick; Zhernakova, Daria V.; de Haan, Mark; van der Sijde, Marijke; Bonder, Marc Jan; Karjalainen, Juha; van der Velde, K. Joeri; Abbott, Kristin M.; Fu, Jingyuan; Wijmenga, Cisca; Sinke, Richard J.; Swertz, Morris A.; Franke, Lude

    2015-01-01

    Background: RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq

  1. Identification of morphological and molecular Aspergillus species isolated from patients based on beta-tubulin gene sequencing

    Directory of Open Access Journals (Sweden)

    Mahnaz Kheirkhah

    2017-06-01

    Full Text Available Background: Aspergillus species are opportunistic pathogens among immunocompromised patients. In terms of pathogenesis and mycotoxin production, they are in great value. The aim of the this study was to evaluate of beta-tubulin gene for identification of clinical Aspergillus species by PCR-sequencing method compared to morphological features of clinical isolates (such as conidial shape in direct microscopic examination, colony shape in culture, and physiological tests. Materials and Methods: In this study, 465 patients referred to the Shefa laboratory of Isfahan were evaluated. Morphological and molecular identification of clinical samples were performed using culture on sabouraud agar, malt extract agar, czapekdox agar, direct microscopy, and PCR-sequencing of beta tubulin gene, respectively. Sequences were analyzed in comparison with gene bank data. Results: Thirty nine out of 465 suspected cases (8.4% had aspergillosis. The most prevalent species were Aspergillus flavus (56.4%, A. oryzae (20.5%, and A. fumigatus (10.2%, respectively. Fifty nine percent of patients were females and 49% were males. Conclusion: In comparison with phenotypic tests, sequencing of beta-tubulin gene for identification of Aspergillus species is at great value. Replacement of molecular techniques with conventional tests is recommended for precise identification of microorganism for better management of infection.

  2. Use of whole exome sequencing for the identification of Ito-based arrhythmia mechanism and therapy.

    Science.gov (United States)

    Sturm, Amy C; Kline, Crystal F; Glynn, Patric; Johnson, Benjamin L; Curran, Jerry; Kilic, Ahmet; Higgins, Robert S D; Binkley, Philip F; Janssen, Paul M L; Weiss, Raul; Raman, Subha V; Fowler, Steven J; Priori, Silvia G; Hund, Thomas J; Carnes, Cynthia A; Mohler, Peter J

    2015-05-26

    Identified genetic variants are insufficient to explain all cases of inherited arrhythmia. We tested whether the integration of whole exome sequencing with well-established clinical, translational, and basic science platforms could provide rapid and novel insight into human arrhythmia pathophysiology and disease treatment. We report a proband with recurrent ventricular fibrillation, resistant to standard therapeutic interventions. Using whole-exome sequencing, we identified a variant in a previously unidentified exon of the dipeptidyl aminopeptidase-like protein-6 (DPP6) gene. This variant is the first identified coding mutation in DPP6 and augments cardiac repolarizing current (Ito) causing pathological changes in Ito and action potential morphology. We designed a therapeutic regimen incorporating dalfampridine to target Ito. Dalfampridine, approved for multiple sclerosis, normalized the ECG and reduced arrhythmia burden in the proband by >90-fold. This was combined with cilostazol to accelerate the heart rate to minimize the reverse-rate dependence of augmented Ito. We describe a novel arrhythmia mechanism and therapeutic approach to ameliorate the disease. Specifically, we identify the first coding variant of DPP6 in human ventricular fibrillation. These findings illustrate the power of genetic approaches for the elucidation and treatment of disease when carefully integrated with clinical and basic/translational research teams. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. Genotyping and Molecular Identification of Date Palm Cultivars Using Inter-Simple Sequence Repeat (ISSR) Markers.

    Science.gov (United States)

    Ayesh, Basim M

    2017-01-01

    Molecular markers are credible for the discrimination of genotypes and estimation of the extent of genetic diversity and relatedness in a set of genotypes. Inter-simple sequence repeat (ISSR) markers rapidly reveal high polymorphic fingerprints and have been used frequently to determine the genetic diversity among date palm cultivars. This chapter describes the application of ISSR markers for genotyping of date palm cultivars. The application involves extraction of genomic DNA from the target cultivars with reliable quality and quantity. Subsequently the extracted DNA serves as a template for amplification of genomic regions flanked by inverted simple sequence repeats using a single primer. The similarity of each pair of samples is measured by calculating the number of mono- and polymorphic bands revealed by gel electrophoresis. Matrices constructed for similarity and genetic distance are used to build a phylogenetic tree and cluster analysis, to determine the molecular relatedness of cultivars. The protocol describes 3 out of 9 tested primers consistently amplified 31 loci in 6 date palm cultivars, with 28 polymorphic loci.

  4. Identification of a Degradation Signal Sequence within Substrates of the Mitochondrial i-AAA Protease.

    Science.gov (United States)

    Rampello, Anthony J; Glynn, Steven E

    2017-03-24

    The i-AAA protease is a component of the mitochondrial quality control machinery that regulates respiration, mitochondrial dynamics, and protein import. The protease is required to select specific substrates for degradation from among the diverse complement of proteins present in mitochondria, yet the rules that govern this selection are unclear. Here, we reconstruct the yeast i-AAA protease, Yme1p, to examine the in vitro degradation of two intermembrane space chaperone subunits, Tim9 and Tim10. Yme1p degrades Tim10 more rapidly than Tim9 despite high sequence and structural similarity, and loss of Tim10 is accelerated by the disruption of conserved disulfide bonds within the substrate. An unstructured N-terminal region of Tim10 is necessary and sufficient to target the substrate to the protease through recognition of a short phenylalanine-rich motif, and the presence of similar motifs in other small Tim proteins predicts robust degradation by the protease. Together, these results identify the first specific degron sequence within a native i-AAA protease substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs.

    Science.gov (United States)

    Christoforides, Alexis; Carpten, John D; Weiss, Glen J; Demeure, Michael J; Von Hoff, Daniel D; Craig, David W

    2013-05-04

    The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.

  6. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies.

    Science.gov (United States)

    Gimode, Davis; Odeny, Damaris A; de Villiers, Etienne P; Wanyonyi, Solomon; Dida, Mathews M; Mneney, Emmarold E; Muchugi, Alice; Machuka, Jesse; de Villiers, Santie M

    2016-01-01

    Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS) technologies to develop both Simple Sequence Repeat (SSR) and Single Nucleotide Polymorphism (SNP) markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC) was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included in the regional

  7. Identification of SNP and SSR Markers in Finger Millet Using Next Generation Sequencing Technologies.

    Directory of Open Access Journals (Sweden)

    Davis Gimode

    Full Text Available Finger millet is an important cereal crop in eastern Africa and southern India with excellent grain storage quality and unique ability to thrive in extreme environmental conditions. Since negligible attention has been paid to improving this crop to date, the current study used Next Generation Sequencing (NGS technologies to develop both Simple Sequence Repeat (SSR and Single Nucleotide Polymorphism (SNP markers. Genomic DNA from cultivated finger millet genotypes KNE755 and KNE796 was sequenced using both Roche 454 and Illumina technologies. Non-organelle sequencing reads were assembled into 207 Mbp representing approximately 13% of the finger millet genome. We identified 10,327 SSRs and 23,285 non-homeologous SNPs and tested 101 of each for polymorphism across a diverse set of wild and cultivated finger millet germplasm. For the 49 polymorphic SSRs, the mean polymorphism information content (PIC was 0.42, ranging from 0.16 to 0.77. We also validated 92 SNP markers, 80 of which were polymorphic with a mean PIC of 0.29 across 30 wild and 59 cultivated accessions. Seventy-six of the 80 SNPs were polymorphic across 30 wild germplasm with a mean PIC of 0.30 while only 22 of the SNP markers showed polymorphism among the 59 cultivated accessions with an average PIC value of 0.15. Genetic diversity analysis using the polymorphic SNP markers revealed two major clusters; one of wild and another of cultivated accessions. Detailed STRUCTURE analysis confirmed this grouping pattern and further revealed 2 sub-populations within wild E. coracana subsp. africana. Both STRUCTURE and genetic diversity analysis assisted with the correct identification of the new germplasm collections. These polymorphic SSR and SNP markers are a significant addition to the existing 82 published SSRs, especially with regard to the previously reported low polymorphism levels in finger millet. Our results also reveal an unexploited finger millet genetic resource that can be included

  8. Identification of similar regions of protein structures using integrated sequence and structure analysis tools

    Directory of Open Access Journals (Sweden)

    Heiland Randy

    2006-03-01

    Full Text Available Abstract Background Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site http://www.sblest.org/ and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. Results Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. Conclusion With structural genomics initiatives determining structures with little, if any, functional characterization

  9. 3' end labelling of RNA with /sup 32/P suitable for rapid gel sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Winter, G; Brownlee, G G [Medical Research Council, Cambridge (UK)

    1978-09-01

    A new general method of labelling the 2', 3'-diol end of RNA with /sup 32/P has been devised suitable for gel sequencing. Poly(A) polymerase (E.coli) is incubated with the RNA and limiting amounts of ..cap alpha..-/sup 32/P-ATP. The mono-addition product is then cleaved with periodate and ..beta..-eliminated with aniline, leaving the RNA terminally labelled with 3'/sup 32/P-phosphate. When applied to a model compound, tRNAsup(Phe) from E. coli, over 28 residues could be read from the 3' end.

  10. The use of newly developed real-time PCR for the rapid identification of bacteria in culture-negative osteomyelitis.

    Science.gov (United States)

    Kobayashi, Naomi; Bauer, Thomas W; Sakai, Hiroshige; Togawa, Daisuke; Lieberman, Isador H; Fujishiro, Takaaki; Procop, Gary W

    2006-12-01

    We report a case of a culture-negative osteomyelitis in which our newly developed real-time polymerase chain reaction (PCR) could differentiate Staphylococcus aureus from Staphylococcus epidermidis. This is the first report that described the application of this novel assay to an orthopedics clinical sample. This assay may be useful for other clinical culture-negative cases in a combination with a broad-spectrum assay as a rapid microorganism identification method.

  11. Integrating network, sequence and functional features using machine learning approaches towards identification of novel Alzheimer genes.

    Science.gov (United States)

    Jamal, Salma; Goyal, Sukriti; Shanker, Asheesh; Grover, Abhinav

    2016-10-18

    Alzheimer's disease (AD) is a complex progressive neurodegenerative disorder commonly characterized by short term memory loss. Presently no effective therapeutic treatments exist that can completely cure this disease. The cause of Alzheimer's is still unclear, however one of the other major factors involved in AD pathogenesis are the genetic factors and around 70 % risk of the disease is assumed to be due to the large number of genes involved. Although genetic association studies have revealed a number of potential AD susceptibility genes, there still exists a need for identification of unidentified AD-associated genes and therapeutic targets to have better understanding of the disease-causing mechanisms of Alzheimer's towards development of effective AD therapeutics. In the present study, we have used machine learning approach to identify candidate AD associated genes by integrating topological properties of the genes from the protein-protein interaction networks, sequence features and functional annotations. We also used molecular docking approach and screened already known anti-Alzheimer drugs against the novel predicted probable targets of AD and observed that an investigational drug, AL-108, had high affinity for majority of the possible therapeutic targets. Furthermore, we performed molecular dynamics simulations and MM/GBSA calculations on the docked complexes to validate our preliminary findings. To the best of our knowledge, this is the first comprehensive study of its kind for identification of putative Alzheimer-associated genes using machine learning approaches and we propose that such computational studies can improve our understanding on the core etiology of AD which could lead to the development of effective anti-Alzheimer drugs.

  12. DNA Sequence-Mediated, Evolutionarily Rapid Redistribution of Meiotic Recombination Hotspots

    Science.gov (United States)

    Wahls, Wayne P.; Davidson, Mari K.

    2011-01-01

    Hotspots regulate the position and frequency of Spo11 (Rec12)-initiated meiotic recombination, but paradoxically they are suicidal and are somehow resurrected elsewhere in the genome. After the DNA sequence-dependent activation of hotspots was discovered in fission yeast, nearly two decades elapsed before the key realizations that (A) DNA site-dependent regulation is broadly conserved and (B) individual eukaryotes have multiple different DNA sequence motifs that activate hotspots. From our perspective, such findings provide a conceptually straightforward solution to the hotspot paradox and can explain other, seemingly complex features of meiotic recombination. We describe how a small number of single-base-pair substitutions can generate hotspots de novo and dramatically alter their distribution in the genome. This model also shows how equilibrium rate kinetics could maintain the presence of hotspots over evolutionary timescales, without strong selective pressures invoked previously, and explains why hotspots localize preferentially to intergenic regions and introns. The model is robust enough to account for all hotspots of humans and chimpanzees repositioned since their divergence from the latest common ancestor. PMID:22084420

  13. Establishment of a simple and rapid identification method for Listeria spp. by using high-resolution melting analysis, and its application in food industry.

    Science.gov (United States)

    Ohshima, Chihiro; Takahashi, Hajime; Phraephaisarn, Chirapiphat; Vesaratchavest, Mongkol; Keeratipibul, Suwimon; Kuda, Takashi; Kimura, Bon

    2014-01-01

    Listeria monocytogenes is the causative bacteria of listeriosis, which has a higher mortality rate than that of other causes of food poisoning. Listeria spp., of which L. monocytogenes is a member, have been isolated from food and manufacturing environments. Several methods have been published for identifying Listeria spp.; however, many of the methods cannot identify newly categorized Listeria spp. Additionally, they are often not suitable for the food industry, owing to their complexity, cost, or time consumption. Recently, high-resolution melting analysis (HRMA), which exploits DNA-sequence differences, has received attention as a simple and quick genomic typing method. In the present study, a new method for the simple, rapid, and low-cost identification of Listeria spp. has been presented using the genes rarA and ldh as targets for HRMA. DNA sequences of 9 Listeria species were first compared, and polymorphisms were identified for each species for primer design. Species specificity of each HRM curve pattern was estimated using type strains of all the species. Among the 9 species, 7 were identified by HRMA using rarA gene, including 3 new species. The remaining 2 species were identified by HRMA of ldh gene. The newly developed HRMA method was then used to assess Listeria isolates from the food industry, and the method efficiency was compared to that of identification by 16S rDNA sequence analysis. The 2 methods were in coherence for 92.6% of the samples, demonstrating the high accuracy of HRMA. The time required for identifying Listeria spp. was substantially low, and the process was considerably simplified, providing a useful and precise method for processing multiple samples per day. Our newly developed method for identifying Listeria spp. is highly valuable; its use is not limited to the food industry, and it can be used for the isolates from the natural environment.

  14. Hubble Tarantula Treasury Project - VI. Identification of Pre-Main-Sequence Stars using Machine Learning techniques

    Science.gov (United States)

    Ksoll, Victor F.; Gouliermis, Dimitrios A.; Klessen, Ralf S.; Grebel, Eva K.; Sabbi, Elena; Anderson, Jay; Lennon, Daniel J.; Cignoni, Michele; de Marchi, Guido; Smith, Linda J.; Tosi, Monica; van der Marel, Roeland P.

    2018-05-01

    The Hubble Tarantula Treasury Project (HTTP) has provided an unprecedented photometric coverage of the entire star-burst region of 30 Doradus down to the half Solar mass limit. We use the deep stellar catalogue of HTTP to identify all the pre-main-sequence (PMS) stars of the region, i.e., stars that have not started their lives on the main-sequence yet. The photometric distinction of these stars from the more evolved populations is not a trivial task due to several factors that alter their colour-magnitude diagram positions. The identification of PMS stars requires, thus, sophisticated statistical methods. We employ Machine Learning Classification techniques on the HTTP survey of more than 800,000 sources to identify the PMS stellar content of the observed field. Our methodology consists of 1) carefully selecting the most probable low-mass PMS stellar population of the star-forming cluster NGC2070, 2) using this sample to train classification algorithms to build a predictive model for PMS stars, and 3) applying this model in order to identify the most probable PMS content across the entire Tarantula Nebula. We employ Decision Tree, Random Forest and Support Vector Machine classifiers to categorise the stars as PMS and Non-PMS. The Random Forest and Support Vector Machine provided the most accurate models, predicting about 20,000 sources with a candidateship probability higher than 50 percent, and almost 10,000 PMS candidates with a probability higher than 95 percent. This is the richest and most accurate photometric catalogue of extragalactic PMS candidates across the extent of a whole star-forming complex.

  15. Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD): exome sequencing of trios, monozygotic twins and tumours.

    Science.gov (United States)

    Barclay, Sarah F; Rand, Casey M; Borch, Lauren A; Nguyen, Lisa; Gray, Paul A; Gibson, William T; Wilson, Richard J A; Gordon, Paul M K; Aung, Zaw; Berry-Kravis, Elizabeth M; Ize-Ludlow, Diego; Weese-Mayer, Debra E; Bech-Hansen, N Torben

    2015-08-25

    Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) is thought to be a genetic disease caused by de novo mutations, though causative mutations have yet to be identified. We searched for de novo coding mutations among a carefully-diagnosed and clinically homogeneous cohort of 35 ROHHAD patients. We sequenced the exomes of seven ROHHAD trios, plus tumours from four of these patients and the unaffected monozygotic (MZ) twin of one (discovery cohort), to identify constitutional and somatic de novo sequence variants. We further analyzed this exome data to search for candidate genes under autosomal dominant and recessive models, and to identify structural variations. Candidate genes were tested by exome or Sanger sequencing in a replication cohort of 28 ROHHAD singletons. The analysis of the trio-based exomes found 13 de novo variants. However, no two patients had de novo variants in the same gene, and additional patient exomes and mutation analysis in the replication cohort did not provide strong genetic evidence to implicate any of these sequence variants in ROHHAD. Somatic comparisons revealed no coding differences between any blood and tumour samples, or between the two discordant MZ twins. Neither autosomal dominant nor recessive analysis yielded candidate genes for ROHHAD, and we did not identify any potentially causative structural variations. Clinical exome sequencing is highly unlikely to be a useful diagnostic test in patients with true ROHHAD. As ROHHAD has a high risk for fatality if not properly managed, it remains imperative to expand the search for non-exomic genetic risk factors, as well as to investigate other possible mechanisms of disease. In so doing, we will be able to confirm objectively the ROHHAD diagnosis and to contribute to our understanding of obesity, respiratory control, hypothalamic function, and autonomic regulation.

  16. Genetic Diversity Assessment and Identification of New Sour Cherry Genotypes Using Intersimple Sequence Repeat Markers

    Directory of Open Access Journals (Sweden)

    Roghayeh Najafzadeh

    2014-01-01

    Full Text Available Iran is one of the chief origins of subgenus Cerasus germplasm. In this study, the genetic variation of new Iranian sour cherries (which had such superior growth characteristics and fruit quality as to be considered for the introduction of new cultivars was investigated and identified using 23 intersimple sequence repeat (ISSR markers. Results indicated a high level of polymorphism of the genotypes based on these markers. According to these results, primers tested in this study specially ISSR-4, ISSR-6, ISSR-13, ISSR-14, ISSR-16, and ISSR-19 produced good and various levels of amplifications which can be effectively used in genetic studies of the sour cherry. The genetic similarity among genotypes showed a high diversity among the genotypes. Cluster analysis separated improved cultivars from promising Iranian genotypes, and the PCoA supported the cluster analysis results. Since the Iranian genotypes were superior to the improved cultivars and were separated from them in most groups, these genotypes can be considered as distinct genotypes for further evaluations in the framework of breeding programs and new cultivar identification in cherries. Results also confirmed that ISSR is a reliable DNA marker that can be used for exact genetic studies and in sour cherry breeding programs.

  17. Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification.

    Directory of Open Access Journals (Sweden)

    Cheng-Hsien Wu

    Full Text Available The regulation of gene transcription is fundamental to the existence of complex multicellular organisms such as humans. Although it is widely recognized that much of gene regulation is controlled by gene-specific protein-DNA interactions, there presently exists little in the way of tools to identify proteins that interact with the genome at locations of interest. We have developed a novel strategy to address this problem, which we refer to as GENECAPP, for Global ExoNuclease-based Enrichment of Chromatin-Associated Proteins for Proteomics. In this approach, formaldehyde cross-linking is employed to covalently link DNA to its associated proteins; subsequent fragmentation of the DNA, followed by exonuclease digestion, produces a single-stranded region of the DNA that enables sequence-specific hybridization capture of the protein-DNA complex on a solid support. Mass spectrometric (MS analysis of the captured proteins is then used for their identification and/or quantification. We show here the development and optimization of GENECAPP for an in vitro model system, comprised of the murine insulin-like growth factor-binding protein 1 (IGFBP1 promoter region and FoxO1, a member of the forkhead rhabdomyosarcoma (FoxO subfamily of transcription factors, which binds specifically to the IGFBP1 promoter. This novel strategy provides a powerful tool for studies of protein-DNA and protein-protein interactions.

  18. Identification of metal ion binding sites based on amino acid sequences.

    Science.gov (United States)

    Cao, Xiaoyong; Hu, Xiuzhen; Zhang, Xiaojin; Gao, Sujuan; Ding, Changjiang; Feng, Yonge; Bao, Weihua

    2017-01-01

    The identification of metal ion binding sites is important for protein function annotation and the design of new drug molecules. This study presents an effective method of analyzing and identifying the binding residues of metal ions based solely on sequence information. Ten metal ions were extracted from the BioLip database: Zn2+, Cu2+, Fe2+, Fe3+, Ca2+, Mg2+, Mn2+, Na+, K+ and Co2+. The analysis showed that Zn2+, Cu2+, Fe2+, Fe3+, and Co2+ were sensitive to the conservation of amino acids at binding sites, and promising results can be achieved using the Position Weight Scoring Matrix algorithm, with an accuracy of over 79.9% and a Matthews correlation coefficient of over 0.6. The binding sites of other metals can also be accurately identified using the Support Vector Machine algorithm with multifeature parameters as input. In addition, we found that Ca2+ was insensitive to hydrophobicity and hydrophilicity information and Mn2+ was insensitive to polarization charge information. An online server was constructed based on the framework of the proposed method and is freely available at http://60.31.198.140:8081/metal/HomePage/HomePage.html.

  19. IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS

    Science.gov (United States)

    Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...

  20. The significance of gtf genes in caries expression: a rapid identification of Streptococcus mutans from dental plaque of child patients.

    Science.gov (United States)

    Mishra, Apurva; Pandey, Ramesh K; Manickam, Natesan

    2015-01-01

    Rapid phylogenetic and functional gene (gtfB) identification of S. mutans from the dental plaque derived from children. Dental plaque collected from fifteen patients of age group 7-12 underwent centrifugation followed by genomic DNA extraction for S. mutans. Genomic DNA was processed with S. mutans specific primers in suitable PCR condtions for phylogenetic and functional gene (gtfB) identification. The yield and results were confirmed by agarose gel electrophoresis. 1% agarose gel electrophoresis depicts the positive PCR amplification at 1,485 bp when compared with standard 1 kbp indicating the presence of S. mutans in the test sample. Another PCR reaction was set using gtfB primers specific for S. mutans for functional gene identification. 1.2% agarose gel electrophoresis was done and a positive amplication was observed at 192 bp when compared to 100 bp standards. With the advancement in molecular biology techniques, PCR based identification and quantification of the bacterial load can be done within hours using species-specific primers and DNA probes. Thus, this technique may reduce the laboratory time spend in conventional culture methods, reduces the possibility of colony identification errors and is more sensitive to culture techniques.

  1. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry.

    Science.gov (United States)

    Babrak, Lmar; McGarvey, Jeffery A; Stanker, Larry H; Hnasko, Robert

    2017-10-01

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibodies (rAb). This determination can be achieved by sequence analysis of immunoglobulin (Ig) transcripts obtained from a monoclonal antibody (MAb) producing hybridoma and subsequent expression of a rAb. However the polyploidy nature of a hybridoma cell often results in the added expression of aberrant immunoglobulin-like transcripts or even production of anomalous antibodies which can confound production of rAb. An incorrect VR sequence will result in a non-functional rAb and de novo assembly of Ig primary structure without a sequence map is challenging. To address these problems, we have developed a methodology which combines: 1) selective PCR amplification of VR from both the heavy and light chain IgG from hybridoma, 2) molecular cloning and DNA sequence analysis and 3) tandem mass spectrometry (MS/MS) on enzyme digests obtained from the purified IgG. Peptide analysis proceeds by evaluating coverage of the predicted primary protein sequence provided by the initial DNA maps for the VR. This methodology serves to both identify and verify the primary structure of the MAb VR for production as rAb. Published by Elsevier Ltd.

  2. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    Science.gov (United States)

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  3. Functional MRI of the pharynx in obstructive sleep apnea (OSA) with rapid 2-D flash sequences

    International Nuclear Information System (INIS)

    Jaeger, L.; Guenther, E.; Gauger, J.; Nitz, W.; Kastenbauer, E.; Reiser, M.

    1996-01-01

    Functional imaging of the pharynx used to be the domain of cineradiography, CT and ultrafast CT. The development of modern MRI techniques led to new access to functional disorders of the pharynx. The aim of this study was to implement a new MRI technique to examine oropharyngeal obstructive mechanisms in patients with obstructive sleep apnea (OSA). Sixteen patients suffering from OSA and 6 healthy volunteers were examined on a 1.5 T whole-body imager ('Vision', Siemens, Erlangen Medical Engineering, Germany) using a circular polarized head coil. Imaging was performed with 2D flash sequences in midsagittal and axial planes. Patients and volunteers were asked to breathe normally through the nose and to simulate snoring and the Mueller maneuver during magnetic resonance imaging (MRI). Prior to MRI, all patients underwent an ear, nose and throat (ENT) examination, functional fiberoptic nasopharyngoscopy and polysomnography. A temporal resolution of 6 images/s and an in-plane resolution of 2.67x1.8 mm were achieved. The mobility of the tongue, soft palate and pharyngeal surface could be clearly delineated. The MRI findings correlated well with the clinical examinations. We propose ultrafast MRI as a reliable and non-invasive method of evaluating pharyngeal obstruction and their levels. (orig.) [de

  4. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification.

    Science.gov (United States)

    Wang, Yi; Wang, Yan; Ma, Ai-Jing; Li, Dong-Xun; Luo, Li-Juan; Liu, Dong-Xin; Jin, Dong; Liu, Kai; Ye, Chang-Yun

    2015-07-08

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61-65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primers annealed to the template strands without a denaturing step to initiate the synthesis. For the subsequent isothermal amplification step, a series of primer binding and extension events yielded several single-stranded DNAs and single-stranded single stem-loop DNA structures. Then, these DNA products enabled the strand-displacement reaction to enter into the exponential amplification. Three mainstream methods, including colorimetric indicators, agarose gel electrophoresis and real-time turbidity, were selected for monitoring the MCDA reaction. Moreover, the practical application of the MCDA assay was successfully evaluated by detecting the target pathogen nucleic acid in pork samples, which offered advantages on quick results, modest equipment requirements, easiness in operation, and high specificity and sensitivity. Here we expounded the basic MCDA mechanism and also provided details on an alternative (Single-MCDA assay, S-MCDA) to MCDA technique.

  5. Rapid Identification of Emerging Human-Pathogenic Sporothrix Species with Rolling Circle Amplification

    NARCIS (Netherlands)

    Rodrigues, Anderson M; Najafzadeh, Mohammad J; de Hoog, G Sybren; de Camargo, Zoilo P

    2015-01-01

    Sporothrix infections are emerging as an important human and animal threat among otherwise healthy patients, especially in Brazil and China. Correct identification of sporotrichosis agents is beneficial for epidemiological surveillance, enabling implementation of adequate public-health policies and

  6. Exploring MALDI-TOF MS approach for a rapid identification of Mycobacterium avium ssp. paratuberculosis field isolates.

    Science.gov (United States)

    Ricchi, M; Mazzarelli, A; Piscini, A; Di Caro, A; Cannas, A; Leo, S; Russo, S; Arrigoni, N

    2017-03-01

    The aim of the study was to explore the suitability of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for a rapid and correct identification of Mycobacterium avium ssp. paratuberculosis (MAP) field isolates. MALDI-TOF MS approach is becoming one of the most popular tests for the identification of intact bacterial cells which has been shown to be fast and reliable. For this purpose, 36 MAP field isolates were analysed through MALDI-TOF MS and the spectra compared with two different databases: one provided by the vendor of the system employed (Biotyper ver. 3·0; Bruker Daltonics) and a homemade database containing spectra from both tuberculous and nontuberculous Mycobacteria. Moreover, principal component analysis procedure was employed to confirm the ability of MALDI-TOF MS to discriminate between very closely related subspecies. Our results suggest MAP can be differentiated from other Mycobacterium species, both when the species are very close (M. intracellulare) and when belonging to different subspecies (M. avium ssp. avium and M. avium ssp. silvaticum). The procedure applied is fast, easy to perform, and achieves an earlier accurate species identification of MAP and nontuberculous Mycobacteria in comparison to other procedures. The gold standard test for the diagnosis of paratuberculosis is still isolation of MAP by cultural methods, but additional assays, such as qPCR and subculturing for determination of mycobactin dependency are required to confirm its identification. We have provided here evidence pertaining to the usefulness of MALDI-TOF MS approach for a rapid identification of this mycobacterium among other members of M. avium complex. © 2016 The Society for Applied Microbiology.

  7. Utility of rpoB Gene Sequencing for Identification of Nontuberculous Mycobacteria in the Netherlands

    NARCIS (Netherlands)

    Zwaan, R. de; Ingen, J. van; Soolingen, D. van

    2014-01-01

    In the Netherlands, clinical isolation of nontuberculous mycobacteria (NTM) has increased over the past decade. Proper identification of isolates is important, as NTM species differ strongly in clinical relevance. Most of the currently applied identification methods cannot distinguish between all

  8. Clinical laboratory evaluation of the Auto-Microbic system for rapid identification of Enterobacteriaceae.

    OpenAIRE

    Hasyn, J J; Cundy, K R; Dietz, C C; Wong, W

    1981-01-01

    The capability of the Auto-Microbic system (Vitek Systems, Inc., Hazelwood, Mo.) has been expanded to identify members of the family Enterobacteriaceae with the use of a sealed, disposable accessory card (the Enterobacteriaceae Biochemical Card) containing 26 biochemical tests. To judge the accuracy of the AutoMicrobic system's identification in a hospital laboratory, 933 Enterobacteriaceae isolates were studied. The AutoMicrobic system provided the correct identification for 905 of the isola...

  9. Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples.

    Science.gov (United States)

    Zboromyrska, Y; Rubio, E; Alejo, I; Vergara, A; Mons, A; Campo, I; Bosch, J; Marco, F; Vila, J

    2016-06-01

    The current gold standard method for the diagnosis of urinary tract infections (UTI) is urine culture that requires 18-48 h for the identification of the causative microorganisms and an additional 24 h until the results of antimicrobial susceptibility testing (AST) are available. The aim of this study was to shorten the time of urine sample processing by a combination of flow cytometry for screening and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for bacterial identification followed by AST directly from urine. The study was divided into two parts. During the first part, 675 urine samples were processed by a flow cytometry device and a cut-off value of bacterial count was determined to select samples for direct identification by MALDI-TOF-MS at ≥5 × 10(6) bacteria/mL. During the second part, 163 of 1029 processed samples reached the cut-off value. The sample preparation protocol for direct identification included two centrifugation and two washing steps. Direct AST was performed by the disc diffusion method if a reliable direct identification was obtained. Direct MALDI-TOF-MS identification was performed in 140 urine samples; 125 of the samples were positive by urine culture, 12 were contaminated and 3 were negative. Reliable direct identification was obtained in 108 (86.4%) of the 125 positive samples. AST was performed in 102 identified samples, and the results were fully concordant with the routine method among 83 monomicrobial infections. In conclusion, the turnaround time of the protocol described to diagnose UTI was about 1 h for microbial identification and 18-24 h for AST. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  10. NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids.

    Science.gov (United States)

    Duchardt-Ferner, Elke; Wöhnert, Jens

    2017-10-01

    Hydrogen bonds involving the backbone phosphate groups occur with high frequency in functional RNA molecules. They are often found in well-characterized tertiary structural motifs presenting powerful probes for the rapid identification of these motifs for structure elucidation purposes. We have shown recently that stable hydrogen bonds to the phosphate backbone can in principle be detected by relatively simple NMR-experiments, providing the identity of both the donor hydrogen and the acceptor phosphorous within the same experiment (Duchardt-Ferner et al., Angew Chem Int Ed Engl 50:7927-7930, 2011). However, for imino and hydroxyl hydrogen bond donor groups rapidly exchanging with the solvent as well as amino groups broadened by conformational exchange experimental sensitivity is severely hampered by extensive line broadening. Here, we present improved methods for the rapid identification of hydrogen bonds to phosphate groups in nucleic acids by NMR. The introduction of the SOFAST technique into 1 H, 31 P-correlation experiments as well as a BEST-HNP experiment exploiting 3h J N,P rather than 2h J H,P coupling constants enables the rapid and sensitive identification of these hydrogen bonds in RNA. The experiments are applicable for larger RNAs (up to ~ 100-nt), for donor groups influenced by conformational exchange processes such as amino groups and for hydrogen bonds with rather labile hydrogens such as 2'-OH groups as well as for moderate sample concentrations. Interestingly, the size of the through-hydrogen bond scalar coupling constants depends not only on the type of the donor group but also on the structural context. The largest coupling constants were measured for hydrogen bonds involving the imino groups of protonated cytosine nucleotides as donors.

  11. The simultaneous use of several pseudo-random binary sequences in the identification of linear multivariable dynamic systems

    International Nuclear Information System (INIS)

    Cummins, J.D.

    1965-02-01

    With several white noise sources the various transmission paths of a linear multivariable system may be determined simultaneously. This memorandum considers the restrictions on pseudo-random two state sequences to effect simultaneous identification of several transmission paths and the consequential rejection of cross-coupled signals in linear multivariable systems. The conditions for simultaneous identification are established by an example, which shows that the integration time required is large i.e. tends to infinity, as it does when white noise sources are used. (author)

  12. Implementation of Whole Genome Sequencing (WGS for Identification and Characterization of Shiga Toxin-Producing Escherichia coli (STEC in the United States

    Directory of Open Access Journals (Sweden)

    Rebecca L Lindsey

    2016-05-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC is an important foodborne pathogen capable of causing severe disease in humans. Rapid and accurate identification and characterization techniques are essential during outbreak investigations. Current methods for characterization of STEC are expensive and time-consuming. With the advent of rapid and cheap whole genome sequencing (WGS benchtop sequencers, the potential exists to replace traditional workflows with WGS. The aim of this study was to validate tools to do reference identification and characterization from WGS for STEC in a single workflow within an easy to use commercially available software platform. Publically available serotype, virulence, and antimicrobial resistance databases were downloaded from the Center for Genomic Epidemiology (CGE (www.genomicepidemiology.org and integrated into a genotyping plug-in with in silico PCR tools to confirm some of the virulence genes detected from WGS data. Additionally, down sampling experiments on the WGS sequence data were performed to determine a threshold for sequence coverage needed to accurately predict serotype and virulence genes using the established workflow. The serotype database was tested on a total of 228 genomes and correctly predicted from WGS for 96.1% of O serogroups and 96.5% of H serogroups identified by conventional testing techniques. A total of 59 genomes were evaluated to determine the threshold of coverage to detect the different WGS targets, 40 were evaluated for serotype and virulence gene detection and 19 for the stx gene subtypes. For serotype, 95% of the O and 100% of the H serogroups were detected at > 40x and ≥ 30x coverage, respectively. For virulence targets and stx gene subtypes, nearly all genes were detected at > 40x, though some targets were 100% detectable from genomes with coverage ≥20x. The resistance detection tool was 97% concordant with phenotypic testing results. With isolates sequenced to > 40x

  13. Implementation of Whole Genome Sequencing (WGS) for Identification and Characterization of Shiga Toxin-Producing Escherichia coli (STEC) in the United States

    Science.gov (United States)

    Lindsey, Rebecca L.; Pouseele, Hannes; Chen, Jessica C.; Strockbine, Nancy A.; Carleton, Heather A.

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen capable of causing severe disease in humans. Rapid and accurate identification and characterization techniques are essential during outbreak investigations. Current methods for characterization of STEC are expensive and time-consuming. With the advent of rapid and cheap whole genome sequencing (WGS) benchtop sequencers, the potential exists to replace traditional workflows with WGS. The aim of this study was to validate tools to do reference identification and characterization from WGS for STEC in a single workflow within an easy to use commercially available software platform. Publically available serotype, virulence, and antimicrobial resistance databases were downloaded from the Center for Genomic Epidemiology (CGE) (www.genomicepidemiology.org) and integrated into a genotyping plug-in with in silico PCR tools to confirm some of the virulence genes detected from WGS data. Additionally, down sampling experiments on the WGS sequence data were performed to determine a threshold for sequence coverage needed to accurately predict serotype and virulence genes using the established workflow. The serotype database was tested on a total of 228 genomes and correctly predicted from WGS for 96.1% of O serogroups and 96.5% of H serogroups identified by conventional testing techniques. A total of 59 genomes were evaluated to determine the threshold of coverage to detect the different WGS targets, 40 were evaluated for serotype and virulence gene detection and 19 for the stx gene subtypes. For serotype, 95% of the O and 100% of the H serogroups were detected at > 40x and ≥ 30x coverage, respectively. For virulence targets and stx gene subtypes, nearly all genes were detected at > 40x, though some targets were 100% detectable from genomes with coverage ≥20x. The resistance detection tool was 97% concordant with phenotypic testing results. With isolates sequenced to > 40x coverage, the different

  14. Advantages and Limitations of Ribosomal RNA PCR and DNA Sequencing for Identification of Bacteria in Cardiac Valves of Danish Patients

    DEFF Research Database (Denmark)

    Kemp, Michael; Bangsborg, Jette; Kjerulf, Anne

    2013-01-01

    of direct molecular identification should also address weaknesses, their relevance in the given setting, and possible improvements. In this study cardiac valves from 56 Danish patients referred for surgery for infective endocarditis were analysed by microscopy and culture as well as by PCR targeting part...... of the bacterial 16S rRNA gene followed by DNA sequencing of the PCR product. PCR and DNA sequencing identified significant bacteria in 49 samples from 43 patients, including five out of 13 culture-negative cases. No rare, exotic, or intracellular bacteria were identified. There was a general agreement between...... bacterial identity obtained by ribosomal PCR and DNA sequencing from the valves and bacterial isolates from blood culture. However, DNA sequencing of the 16S rRNA gene did not discriminate well among non-haemolytic streptococci, especially within the Streptococcus mitis group. Ribosomal PCR with subsequent...

  15. Identification of maca (Lepidium meyenii Walp.) and its adulterants by a DNA-barcoding approach based on the ITS sequence.

    Science.gov (United States)

    Chen, Jin-Jin; Zhao, Qing-Sheng; Liu, Yi-Lan; Zha, Sheng-Hua; Zhao, Bing

    2015-09-01

    Maca (Lepidium meyenii) is an herbaceous plant that grows in high plateaus and has been used as both food and folk medicine for centuries because of its benefits to human health. In the present study, ITS (internal transcribed spacer) sequences of forty-three maca samples, collected from different regions or vendors, were amplified and analyzed. The ITS sequences of nineteen potential adulterants of maca were also collected and analyzed. The results indicated that the ITS sequence of maca was consistent in all samples and unique when compared with its adulterants. Therefore, this DNA-barcoding approach based on the ITS sequence can be used for the molecular identification of maca and its adulterants. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. Identification of the bovine Arachnomelia mutation by massively parallel sequencing implicates sulfite oxidase (SUOX in bone development.

    Directory of Open Access Journals (Sweden)

    Cord Drögemüller

    2010-08-01

    Full Text Available Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development.

  17. Identification of the Bovine Arachnomelia Mutation by Massively Parallel Sequencing Implicates Sulfite Oxidase (SUOX) in Bone Development

    Science.gov (United States)

    Drögemüller, Cord; Tetens, Jens; Sigurdsson, Snaevar; Gentile, Arcangelo; Testoni, Stefania; Lindblad-Toh, Kerstin; Leeb, Tosso

    2010-01-01

    Arachnomelia is a monogenic recessive defect of skeletal development in cattle. The causative mutation was previously mapped to a ∼7 Mb interval on chromosome 5. Here we show that array-based sequence capture and massively parallel sequencing technology, combined with the typical family structure in livestock populations, facilitates the identification of the causative mutation. We re-sequenced the entire critical interval in a healthy partially inbred cow carrying one copy of the critical chromosome segment in its ancestral state and one copy of the same segment with the arachnomelia mutation, and we detected a single heterozygous position. The genetic makeup of several partially inbred cattle provides extremely strong support for the causality of this mutation. The mutation represents a single base insertion leading to a premature stop codon in the coding sequence of the SUOX gene and is perfectly associated with the arachnomelia phenotype. Our findings suggest an important role for sulfite oxidase in bone development. PMID:20865119

  18. Rapid qualitative urinary tract infection pathogen identification by SeptiFast real-time PCR.

    Directory of Open Access Journals (Sweden)

    Lutz E Lehmann

    2011-02-01

    Full Text Available Urinary tract infections (UTI are frequent in outpatients. Fast pathogen identification is mandatory for shortening the time of discomfort and preventing serious complications. Urine culture needs up to 48 hours until pathogen identification. Consequently, the initial antibiotic regimen is empirical.To evaluate the feasibility of qualitative urine pathogen identification by a commercially available real-time PCR blood pathogen test (SeptiFast® and to compare the results with dipslide and microbiological culture.Pilot study with prospectively collected urine samples.University hospital.82 prospectively collected urine samples from 81 patients with suspected UTI were included. Dipslide urine culture was followed by microbiological pathogen identification in dipslide positive samples. In parallel, qualitative DNA based pathogen identification (SeptiFast® was performed in all samples.61 samples were SeptiFast® positive, whereas 67 samples were dipslide culture positive. The inter-methodological concordance of positive and negative findings in the gram+, gram- and fungi sector was 371/410 (90%, 477/492 (97% and 238/246 (97%, respectively. Sensitivity and specificity of the SeptiFast® test for the detection of an infection was 0.82 and 0.60, respectively. SeptiFast® pathogen identifications were available at least 43 hours prior to culture results.The SeptiFast® platform identified bacterial DNA in urine specimens considerably faster compared to conventional culture. For UTI diagnosis sensitivity and specificity is limited by its present qualitative setup which does not allow pathogen quantification. Future quantitative assays may hold promise for PCR based UTI pathogen identification as a supplementation of conventional culture methods.

  19. Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning

    Science.gov (United States)

    2013-01-01

    Background Plastids are an important component of plant cells, being the site of manufacture and storage of chemical compounds used by the cell, and contain pigments such as those used in photosynthesis, starch synthesis/storage, cell color etc. They are essential organelles of the plant cell, also present in algae. Recent advances in genomic technology and sequencing efforts is generating a huge amount of DNA sequence data every day. The predicted proteome of these genomes needs annotation at a faster pace. In view of this, one such annotation need is to develop an automated system that can distinguish between plastid and non-plastid proteins accurately, and further classify plastid-types based on their functionality. We compared the amino acid compositions of plastid proteins with those of non-plastid ones and found significant differences, which were used as a basis to develop various feature-based prediction models using similarity-search and machine learning. Results In this study, we developed separate Support Vector Machine (SVM) trained classifiers for characterizing the plastids in two steps: first distinguishing the plastid vs. non-plastid proteins, and then classifying the identified plastids into their various types based on their function (chloroplast, chromoplast, etioplast, and amyloplast). Five diverse protein features: amino acid composition, dipeptide composition, the pseudo amino acid composition, Nterminal-Center-Cterminal composition and the protein physicochemical properties are used to develop SVM models. Overall, the dipeptide composition-based module shows the best performance with an accuracy of 86.80% and Matthews Correlation Coefficient (MCC) of 0.74 in phase-I and 78.60% with a MCC of 0.44 in phase-II. On independent test data, this model also performs better with an overall accuracy of 76.58% and 74.97% in phase-I and phase-II, respectively. The similarity-based PSI-BLAST module shows very low performance with about 50% prediction

  20. Molecular Identification of Necrophagous Muscidae and Sarcophagidae Fly Species Collected in Korea by Mitochondrial Cytochrome c Oxidase Subunit I Nucleotide Sequences

    Directory of Open Access Journals (Sweden)

    Yu-Hoon Kim

    2014-01-01

    Full Text Available Identification of insect species is an important task in forensic entomology. For more convenient species identification, the nucleotide sequences of cytochrome c oxidase subunit I (COI gene have been widely utilized. We analyzed full-length COI nucleotide sequences of 10 Muscidae and 6 Sarcophagidae fly species collected in Korea. After DNA extraction from collected flies, PCR amplification and automatic sequencing of the whole COI sequence were performed. Obtained sequences were analyzed for a phylogenetic tree and a distance matrix. Our data showed very low intraspecific sequence distances and species-level monophylies. However, sequence comparison with previously reported sequences revealed a few inconsistencies or paraphylies requiring further investigation. To the best of our knowledge, this study is the first report of COI nucleotide sequences from Hydrotaea occulta, Muscina angustifrons, Muscina pascuorum, Ophyra leucostoma, Sarcophaga haemorrhoidalis, Sarcophaga harpax, and Phaonia aureola.

  1. Rapid screening of guar gum using portable Raman spectral identification methods.

    Science.gov (United States)

    Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D

    2016-01-25

    Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.

  2. On-site identification of meat species in processed foods by a rapid real-time polymerase chain reaction system.

    Science.gov (United States)

    Furutani, Shunsuke; Hagihara, Yoshihisa; Nagai, Hidenori

    2017-09-01

    Correct labeling of foods is critical for consumers who wish to avoid a specific meat species for religious or cultural reasons. Therefore, gene-based point-of-care food analysis by real-time Polymerase Chain Reaction (PCR) is expected to contribute to the quality control in the food industry. In this study, we perform rapid identification of meat species by our portable rapid real-time PCR system, following a very simple DNA extraction method. Applying these techniques, we correctly identified beef, pork, chicken, rabbit, horse, and mutton in processed foods in 20min. Our system was sensitive enough to detect the interfusion of about 0.1% chicken egg-derived DNA in a processed food sample. Our rapid real-time PCR system is expected to contribute to the quality control in food industries because it can be applied for the identification of meat species, and future applications can expand its functionality to the detection of genetically modified organisms or mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Association of apneic oxygenation with decreased desaturation rates during rapid sequence intubation by a Chinese emergency medicine service.

    Science.gov (United States)

    Mao, Yong; Qin, Zong-He

    2015-01-01

    Rapid and safe airway management has always been of paramount importance in successful management of critically ill and injured patients in the emergency department. The achievement rate of emergency medicine inhabitants in airway management improved enhanced essentially subsequent to finishing anaesthesiology turn. There was a slightly higher rate of quick sequence intubation in the postapneic oxygenation groups (preapneic oxygenation 6.4%; postapneic oxygenation 9.1%). The majority of patients intubated in both groups were men (preapneic oxygenation 72.3%; postapneic oxygenation 63.5%). A higher percentage of patients in the preapneic oxygenation group had a Cormack-Lehane grade III or worse view (23.2% versus 11.8%). Anaesthesiology turns should be considered as an essential component of emergency medicine training programs. A collateral curriculum of this nature should also focus on the acquisition of skills in airway management.

  4. A sequence identification measurement model to investigate the implicit learning of metrical temporal patterns.

    Directory of Open Access Journals (Sweden)

    Benjamin G Schultz

    Full Text Available Implicit learning (IL occurs unconsciously and without intention. Perceptual fluency is the ease of processing elicited by previous exposure to a stimulus. It has been assumed that perceptual fluency is associated with IL. However, the role of perceptual fluency following IL has not been investigated in temporal pattern learning. Two experiments by Schultz, Stevens, Keller, and Tillmann demonstrated the IL of auditory temporal patterns using a serial reaction-time task and a generation task based on the process dissociation procedure. The generation task demonstrated that learning was implicit in both experiments via motor fluency, that is, the inability to suppress learned information. With the aim to disentangle conscious and unconscious processes, we analyze unreported recognition data associated with the Schultz et al. experiments using the sequence identification measurement model. The model assumes that perceptual fluency reflects unconscious processes and IL. For Experiment 1, the model indicated that conscious and unconscious processes contributed to recognition of temporal patterns, but that unconscious processes had a greater influence on recognition than conscious processes. In the model implementation of Experiment 2, there was equal contribution of conscious and unconscious processes in the recognition of temporal patterns. As Schultz et al. demonstrated IL in both experiments using a generation task, and the conditions reported here in Experiments 1 and 2 were identical, two explanations are offered for the discrepancy in model and behavioral results based on the two tasks: 1 perceptual fluency may not be necessary to infer IL, or 2 conscious control over implicitly learned information may vary as a function of perceptual fluency and motor fluency.

  5. Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis.

    Science.gov (United States)

    Monavar Feshani, Aboozar; Mohammadi, Saeed; Frazier, Taylor P; Abbasi, Abbas; Abedini, Raha; Karimi Farsad, Laleh; Ehya, Farveh; Salekdeh, Ghasem Hosseini; Mardi, Mohsen

    2012-02-10

    MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Messenger RNA biomarker signatures for forensic body fluid identification revealed by targeted RNA sequencing.

    Science.gov (United States)

    Hanson, E; Ingold, S; Haas, C; Ballantyne, J

    2018-05-01

    The recovery of a DNA profile from the perpetrator or victim in criminal investigations can provide valuable 'source level' information for investigators. However, a DNA profile does not reveal the circumstances by which biological material was transferred. Some contextual information can be obtained by a determination of the tissue or fluid source of origin of the biological material as it is potentially indicative of some behavioral activity on behalf of the individual that resulted in its transfer from the body. Here, we sought to improve upon established RNA based methods for body fluid identification by developing a targeted multiplexed next generation mRNA sequencing assay comprising a panel of approximately equal sized gene amplicons. The multiplexed biomarker panel includes several highly specific gene targets with the necessary specificity to definitively identify most forensically relevant biological fluids and tissues (blood, semen, saliva, vaginal secretions, menstrual blood and skin). In developing the biomarker panel we evaluated 66 gene targets, with a progressive iteration of testing target combinations that exhibited optimal sensitivity and specificity using a training set of forensically relevant body fluid samples. The current assay comprises 33 targets: 6 blood, 6 semen, 6 saliva, 4 vaginal secretions, 5 menstrual blood and 6 skin markers. We demonstrate the sensitivity and specificity of the assay and the ability to identify body fluids in single source and admixed stains. A 16 sample blind test was carried out by one lab with samples provided by the other participating lab. The blinded lab correctly identified the body fluids present in 15 of the samples with the major component identified in the 16th. Various classification methods are being investigated to permit inference of the body fluid/tissue in dried physiological stains. These include the percentage of reads in a sample that are due to each of the 6 tissues/body fluids tested and

  7. Identification of Putative Coffee Rust Mycoparasites via Single-Molecule DNA Sequencing of Infected Pustules.

    Science.gov (United States)

    James, Timothy Y; Marino, John A; Perfecto, Ivette; Vandermeer, John

    2016-01-15

    The interaction of crop pests with their natural enemies is a fundament to their control. Natural enemies of fungal pathogens of crops are poorly known relative to those of insect pests, despite the diversity of fungal pathogens and their economic importance. Currently, many regions across Latin America are experiencing unprecedented epidemics of coffee rust (Hemileia vastatrix). Identification of natural enemies of coffee rust could aid in developing management strategies or in pinpointing species that could be used for biocontrol. In the present study, we characterized fungal communities associated with coffee rust lesions by single-molecule DNA sequencing of fungal rRNA gene bar codes from leaf discs (≈28 mm(2)) containing rust lesions and control discs with no rust lesions. The leaf disc communities were hyperdiverse in terms of fungi, with up to 69 operational taxonomic units (putative species) per control disc, and the diversity was only slightly reduced in rust-infected discs, with up to 63 putative species. However, geography had a greater influence on the fungal community than whether the disc was infected by coffee rust. Through comparisons between control and rust-infected leaf discs, as well as taxonomic criteria, we identified 15 putative mycoparasitic fungi. These fungi are concentrated in the fungal family Cordycipitaceae and the order Tremellales. These data emphasize the complexity of diverse fungi of unknown ecological function within a leaf that might influence plant disease epidemics or lead to the development of species for biocontrol of fungal disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species.

    Science.gov (United States)

    Kim, Young Jin; Kim, Si Hyun; Park, Hyun-Jung; Park, Hae-Geun; Park, Dongchul; Song, Sae Am; Lee, Hee Joo; Yong, Dongeun; Choi, Jun Yong; Kook, Joong-Ki; Kim, Hye Ran; Shin, Jeong Hwan

    2016-08-01

    All 50 Clostridium difficile strains were definitely identified by Vitek2 system, Rapid ID 32A system, and MALDI-TOF. For 18 non-difficile Clostridium strains, the identification results were correct in 0, 2, and 17 strains by Vitek2, Rapid ID 32A, and MALDI-TOF, respectively. MALDI-TOF could be used as the primary tool for identification of Clostridium species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate.

    OpenAIRE

    Barnini, S; Ghelardi, Emilia; Brucculeri, V; Morici, Paola; Lupetti, Antonella

    2015-01-01

    Background Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identif...

  10. Comparison of Enzymatic Method Rapid Yeast Plus System with RFLP-PCR for Identification of Isolated Yeast from Vulvovaginal Candidiasis.

    Science.gov (United States)

    Hossein, Moallaei; Mirhendi, Seied Hossein; Brandão, João; Mirdashti, Reza; Rosado, Laura

    2011-09-01

    To compare two identification methods, i.e., restriction fragment length polymorphism (RFLP)-PCR analysis and enzymatic method Rapid TM Yeast Plus System to identify different species causing vulvovaginal candidiasis (VVC). Vaginal discharges of women who had attended the gynecology outpatient clinic of Mobini Hospital in Sabzevar, Iran were collected using cotton swabs and were cultured on Sabouraud dextrose agar. Isolated yeasts were identified by germ-tube testing and Rapid TM Yeast Plus System (Remel USA). For molecular identification, the isolated DNA was amplified with ITS1 and ITS4 universal primers and PCR products digested with the enzyme HpaІІ followed by agarose gel electrophoresis. Epidemiological and clinical features of women with respect to identified species were also evaluated. Out of 231 subjects enrolled, 62 VVC cases were detected. The isolated species were identified as follows: Candida albicans, 24 (38.7%), C. glabrata, 15 (24.2%), C. kefyr, 13 (21.0%) C. krusei, 9 (14.5%), and Saccharomyces cerevisiae, 1 (1.6%) by RFLP-PCR method; whereas findings by Rapid TM Yeast Plus System were C. albicans, 24 (38.7%), C. glabrata, 5 (8%), C. kefyr, 11 (17.7%) C. krusei, 2 (3.2%), S. cerevisiae, 9 (14.5%), and C. tropicalis, 6 (9.6%) as well as other nonpathogenic yeasts, 4 (6.9%). Statistical comparison showed that there is no significant difference in identification of C. albicans by the two methods; although, in this study, it was not true about other species of yeasts. A correlation between clinical and laboratory findings is important as it enables us to administer an appropriate treatment on time.

  11. Rapid Characterization of Insulin Modifications and Sequence Variations by Proteinase K Digestion and UHPLC-ESI-MS

    Science.gov (United States)

    Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu

    2018-01-01

    Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.

  12. Rapid Characterization of Insulin Modifications and Sequence Variations by Proteinase K Digestion and UHPLC-ESI-MS

    Science.gov (United States)

    Yang, Rong-Sheng; Tang, Weijuan; Sheng, Huaming; Meng, Fanyu

    2018-05-01

    Discovery of novel insulin analogs as therapeutics has remained an active area of research. Compared with native human insulin, insulin analog molecules normally incorporate either covalent modifications or amino acid sequence variations. From the drug discovery and development perspective, methods for efficient and detailed characterization of these primary structural changes are very important. In this report, we demonstrate that proteinase K digestion coupled with UPLC-ESI-MS analysis provides a simple and rapid approach to characterize the modifications and sequence variations of insulin molecules. A commercially available proteinase K digestion kit was used to process recombinant human insulin (RHI), insulin glargine, and fluorescein isothiocynate-labeled recombinant human insulin (FITC-RHI) samples. The LC-MS data clearly showed that RHI and insulin glargine samples can be differentiated, and the FITC modifications in all three amine sites of the RHI molecule are well characterized. The end-to-end experiment and data interpretation was achieved within 60 min. This approach is fast and simple, and can be easily implemented in early drug discovery laboratories to facilitate research on more advanced insulin therapeutics. [Figure not available: see fulltext.

  13. Rapid identification of genes controlling virulence and immunity in malaria parasites

    KAUST Repository

    Abkallo, Hussein M.; Martinelli, Axel; Inoue, Megumi; Ramaprasad, Abhinay; Xangsayarath, Phonepadith; Gitaka, Jesse; Tang, Jianxia; Yahata, Kazuhide; Zoungrana, Augustin; Mitaka, Hayato; Acharjee, Arita; Datta, Partha P.; Hunt, Paul; Carter, Richard; Kaneko, Osamu; Mustonen, Ville; Illingworth, Christopher J. R.; Pain, Arnab; Culleton, Richard

    2017-01-01

    Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic

  14. Large-scale Identification of Expressed Sequence Tags (ESTs from Nicotianatabacum by Normalized cDNA Library Sequencing

    Directory of Open Access Journals (Sweden)

    Alvarez S Perez

    2014-12-01

    Full Text Available An expressed sequence tags (EST resource for tobacco plants (Nicotianatabacum was established using high-throughput sequencing of randomly selected clones from one cDNA library representing a range of plant organs (leaf, stem, root and root base. Over 5000 ESTs were generated from the 3’ ends of 8000 clones, analyzed by BLAST searches and categorized functionally. All annotated ESTs were classified into 18 functional categories, unique transcripts involved in energy were the largest group accounting for 831 (32.32% of the annotated ESTs. After excluding 2450 non-significant tentative unique transcripts (TUTs, 100 unique sequences (1.67% of total TUTs were identified from the N. tabacum database. In the array result two genes strongly related to the tobacco mosaic virus (TMV were obtained, one basic form of pathogenesis-related protein 1 precursor (TBT012G08 and ubiquitin (TBT087G01. Both of them were found in the variety Hongda, some other important genes were classified into two groups, one of these implicated in plant development like those genes related to a photosynthetic process (chlorophyll a-b binding protein, photosystem I, ferredoxin I and III, ATP synthase and a further group including genes related to plant stress response (ubiquitin, ubiquitin-like protein SMT3, glycine-rich RNA binding protein, histones and methallothionein. The interesting finding in this study is that two of these genes have never been reported before in N. tabacum (ubiquitin-like protein SMT3 and methallothionein. The array results were confirmed using quantitative PCR.

  15. Electron microscopy of rapid identification of animal viruses in hematoxylin-eosin sections.

    Science.gov (United States)

    Bhatnagar, R; Johnson, G R; Christian, R G

    1977-01-01

    Routine hematoxylin-eosin stained, paraffin sections were processed for electron microscopy, using a rapid method for localization of animal viruses. Formalin fixation was effective in preserving DNA as well as RNA viruses, however cellular fine structural details and organelles were not well preserved. The procedure is useful for morphological recognition of viral groups and as a rapid diagnostic aid for identifying viral disease. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:72592

  16. Genome Sequencing and Mapping Reveal Loss of Heterozygosity as a Mechanism for Rapid Adaptation in the Vegetable Pathogen Phytophthora capsici

    Energy Technology Data Exchange (ETDEWEB)

    Lamour, Kurt H.; Mudge, Joann; Gobena, Daniel; Hurtado-Gonzales, Oscar P.; Schmutz, Jeremy; Kuo, Alan; Miller, Neil A.; Rice, Brandon J.; Raffaele, Sylvain; Cano, Liliana M.; Bharti, Arvind K.; Donahoo, Ryan S.; Finely, Sabra; Huitema, Edgar; Hulvey, Jon; Platt, Darren; Salamov, Asaf; Savidor, Alon; Sharma, Rahul; Stam, Remco; Sotrey, Dylan; Thines, Marco; Win, Joe; Haas, Brian J.; Dinwiddie, Darrell L.; Jenkins, Jerry; Knight, James R.; Affourtit, Jason P.; Han, Cliff S.; Chertkov, Olga; Lindquist, Erika A.; Detter, Chris; Grigoriev, Igor V.; Kamoun, Sophien; Kingsmore, Stephen F.

    2012-02-07

    The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts. In addition, P. capsici can remain dormant for years as sexually recombined oospores, making it difficult to produce crops at infested sites, and allowing outcrossing populations to maintain significant genetic variation. Genome sequencing, development of a high-density genetic map, and integrative genomic or genetic characterization of P. capsici field isolates and intercross progeny revealed significant mitotic loss of heterozygosity (LOH) in diverse isolates. LOH was detected in clonally propagated field isolates and sexual progeny, cumulatively affecting >30percent of the genome. LOH altered genotypes for more than 11,000 single-nucleotide variant sites and showed a strong association with changes in mating type and pathogenicity. Overall, it appears that LOH may provide a rapid mechanism for fixing alleles and may be an important component of adaptability for P. capsici.

  17. Rapid and accurate identification of isolates of Candida species by melting peak and melting curve analysis of the internally transcribed spacer region 2 fragment (ITS2-MCA)

    NARCIS (Netherlands)

    Decat, E.; van Mechelen, E.; Saerens, B.; Vermeulen, S.J.T.; Boekhout, T.; de Blaiser, S.; Vaneechoutte, M.; Deschaght, P.

    2013-01-01

    Rapid identification of clinically important yeasts can facilitate the initiation of anti-fungal therapy, since susceptibility is largely species-dependent. We evaluated melting peak and melting curve analysis of the internally transcribed spacer region 2 fragment (ITS2-MCA) as an identification

  18. Rapid identification of clinical members of Fusarium fujikuroi complex using MALDI-TOF MS

    NARCIS (Netherlands)

    Al-Hatmi, Abdullah Ms; Normand, Anne-Cécile; van Diepeningen, Anne D; Hendrickx, Marijke; de Hoog, G Sybren; Piarroux, Renaud

    2015-01-01

    AIM: To develop the matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) method for identification of Fusarium species within Fusarium fujikuroi complex for use in clinical microbiology laboratories. MATERIALS & METHODS: A total of 24 reference and 60 clinical and

  19. Identification of the Related Substances in Ampicillin Capsule by Rapid Resolution Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available Rapid Resolution Liquid Chromatography coupled with Electrospray Ionization Tandem Mass Spectrometry (RRLC-ESI-MSn was used to separate and identify related substances in ampicillin capsule. The fragmentation behaviors of related substances were used to identify their chemical structures. Finally, a total of 13 related substances in ampicillin capsule were identified, including four identified components for the first time and three groups of isomers on the basis of the exact mass, fragmentation behaviors, retention time, and chemical structures in the literature. This study avoided time-consuming and complex chemosynthesis of related substances of ampicillin and the results could be useful for the quality control of ampicillin capsule to guarantee its safety in clinic. In the meantime, it provided a good example for the rapid identification of chemical structures of related substances of drugs.

  20. Rapid identification and simultaneous analysis of multiple constituents from Rheum tanguticum Maxim. ex Balf. by UPLC/Q-TOF-MS.

    Science.gov (United States)

    Gao, Liang-Liang; Guo, Tao; Xu, Xu-Dong; Yang, Jun-Shan

    2017-07-01

    Rhubarb contains biologically active compounds such as anthraquinones, anthrones, stilbenes and tannins. A rapid and efficient UPLC/Q-TOF-MS/MS method was developed and applied towards identifying the constituents of Rheum tanguticum Maxim. ex Balf. for the first time. Chemical constituents were separated and investigated by UPLC/Q-TOF-MS/MS in the negative ion mode. The ESI-MS 2 fragmentation pathways of four types of compounds were interpreted, providing a very useful guidance for the characterisation of different types of compounds. Based on the exact mass information, fragmentation characteristic and LC retention time of 7 reference standards, 30 constituents were tentatively identified from the methanol extract of R. tanguticum. Among them, seven compounds were described for the first time from R. tanguticum and two from the genus Rheum were described for the first time. The analytical tool used here is valuable for the rapid separation and identification of multiple and minor constituents in methanol extracts of R. tanguticum.

  1. Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian Tree Species.

    Science.gov (United States)

    Lang, Carla; Costa, Flávia Regina Capellotto; Camargo, José Luís Campana; Durgante, Flávia Machado; Vicentini, Alberto

    2015-01-01

    Precise identification of plant species requires a high level of knowledge by taxonomists and presence of reproductive material. This represents a major limitation for those working with seedlings and juveniles, which differ morphologically from adults and do not bear reproductive structures. Near-infrared spectroscopy (FT-NIR) has previously been shown to be effective in species discrimination of adult plants, so if young and adults have a similar spectral signature, discriminant functions based on FT-NIR spectra of adults can be used to identify leaves from young plants. We tested this with a sample of 419 plants in 13 Amazonian species from the genera Protium and Crepidospermum (Burseraceae). We obtained 12 spectral readings per plant, from adaxial and abaxial surfaces of dried leaves, and compared the rate of correct predictions of species with discriminant functions for different combinations of readings. We showed that the best models for predicting species in early developmental stages are those containing spectral data from both young and adult plants (98% correct predictions of external samples), but even using only adult spectra it is still possible to attain good levels of identification of young. We obtained an average of 75% correct identifications of young plants by discriminant equations based only on adults, when the most informative wavelengths were selected. Most species were accurately predicted (75-100% correct identifications), and only three had poor predictions (27-60%). These results were obtained despite the fact that spectra of young individuals were distinct from those of adults when species were analyzed individually. We concluded that FT-NIR has a high potential in the identification of species even at different ontogenetic stages, and that young plants can be identified based on spectra of adults with reasonable confidence.

  2. Low-Bandwidth and Non-Compute Intensive Remote Identification of Microbes from Raw Sequencing Reads

    DEFF Research Database (Denmark)

    Gautier, Laurent; Lund, Ole

    2013-01-01

    , allowing a fully automated processing of sequencing data and routine instant quality check of sequencing runs from desktop sequencers. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data are available at http://bit.ly/1aURxkc....

  3. Identification of Staphylococcus species and subspecies with the MicroScan Pos ID and Rapid Pos ID panel systems.

    Science.gov (United States)

    Kloos, W E; George, C G

    1991-01-01

    The accuracies of the MicroScan Pos ID and Rapid Pos ID panel systems (Baxter Diagnostic Inc., MicroScan Division, West Sacramento, Calif.) were compared with each other and with the accuracies of conventional methods for the identification of 25 Staphylococcus species and 4 subspecies. Conventional methods included those used in the original descriptions of species and subspecies and DNA-DNA hybridization. The Pos ID panel uses a battery of 18 tests, and the Rapid Pos ID panel uses a battery of 42 tests for the identification of Staphylococcus species. The Pos ID panel has modified conventional and chromogenic tests that can be read after 15 to 48 h of incubation; the Rapid Pos ID panel has tests that use fluorogenic substrates or fluorometric indicators, and test results can be read after 2 h of incubation in the autoSCAN-W/A. Results indicated that both MicroScan systems had a high degree of congruence (greater than or equal to 90%) with conventional methods for the species S. capitis, S. aureus, S. auricularis, S. saprophyticus, S. cohnii, S. arlettae, S. carnosus, S. lentus, and S. sciuri and, in particular, the subspecies S. capitis subsp. capitis and S. cohnii subsp. cohnii. The Rapid Pos ID panel system also had greater than or equal to 90% congruence with conventional methods for S. epidermidis, S. caprae, S. warneri subsp. 2, S. xylosus, S. kloosii, and S. caseolyticus. For both MicroScan systems, congruence with conventional methods was 80 to 90% for S. haemolyticus subsp. 1, S. equorum, S. intermedius, and S. hyicus; and in addition, with the Rapid Pos ID panel system congruence was 80 to 89% for S. capitis subsp. ureolyticus, S. warneri subsp. 1, S. hominis, S. cohnii subsp. urealyticum, and S. simulans. The MicroScan systems identified a lower percentage (50 to 75%) of strains of S. lugdunensis, S. gallinarum, S. schleiferi, and S. chromogenes, although the addition of specific tests to the systems might increase the accuracy of identification

  4. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis.

    Science.gov (United States)

    Hanson, Erin K; Ballantyne, Jack

    2013-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive

  5. cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activity

    International Nuclear Information System (INIS)

    Taira, M.; Yoshida, T.; Miyagawa, K.; Sakamoto, H.; Terada, M.; Sugimura, T.

    1987-01-01

    The hst gene was originally identified as a transforming gene in DNAs from human stomach cancers and from a noncancerous portion of stomach mucosa by DNA-mediated transfection assay using NIH3T3 cells. cDNA clones of hst were isolated from the cDNA library constructed from poly(A) + RNA of a secondary transformant induced by the DNA from a stomach cancer. The sequence analysis of the hst cDNA revealed the presence of two open reading frames. When this cDNA was inserted into an expression vector containing the simian virus 40 promoter, it efficiently induced the transformation of NIH3T3 cells upon transfection. It was found that one of the reading frames, which coded for 206 amino acids, was responsible for the transforming activity

  6. Identification of QTLs for 14 Agronomically Important Traits in Setaria italica Based on SNPs Generated from High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Kai Zhang

    2017-05-01

    Full Text Available Foxtail millet (Setaria italica is an important crop possessing C4 photosynthesis capability. The S. italica genome was de novo sequenced in 2012, but the sequence lacked high-density genetic maps with agronomic and yield trait linkages. In the present study, we resequenced a foxtail millet population of 439 recombinant inbred lines (RILs and developed high-resolution bin map and high-density SNP markers, which could provide an effective approach for gene identification. A total of 59 QTL for 14 agronomic traits in plants grown under long- and short-day photoperiods were identified. The phenotypic variation explained ranged from 4.9 to 43.94%. In addition, we suggested that there may be segregation distortion on chromosome 6 that is significantly distorted toward Zhang gu. The newly identified QTL will provide a platform for sequence-based research on the S. italica genome, and for molecular marker-assisted breeding.

  7. Identification of QTLs for 14 Agronomically Important Traits in Setaria italica Based on SNPs Generated from High-Throughput Sequencing.

    Science.gov (United States)

    Zhang, Kai; Fan, Guangyu; Zhang, Xinxin; Zhao, Fang; Wei, Wei; Du, Guohua; Feng, Xiaolei; Wang, Xiaoming; Wang, Feng; Song, Guoliang; Zou, Hongfeng; Zhang, Xiaolei; Li, Shuangdong; Ni, Xuemei; Zhang, Gengyun; Zhao, Zhihai

    2017-05-05

    Foxtail millet ( Setaria italica ) is an important crop possessing C4 photosynthesis capability. The S. italica genome was de novo sequenced in 2012, but the sequence lacked high-density genetic maps with agronomic and yield trait linkages. In the present study, we resequenced a foxtail millet population of 439 recombinant inbred lines (RILs) and developed high-resolution bin map and high-density SNP markers, which could provide an effective approach for gene identification. A total of 59 QTL for 14 agronomic traits in plants grown under long- and short-day photoperiods were identified. The phenotypic variation explained ranged from 4.9 to 43.94%. In addition, we suggested that there may be segregation distortion on chromosome 6 that is significantly distorted toward Zhang gu. The newly identified QTL will provide a platform for sequence-based research on the S. italica genome, and for molecular marker-assisted breeding. Copyright © 2017 Zhang et al.

  8. The First Molecular Identification of an Olive Collection Applying Standard Simple Sequence Repeats and Novel Expressed Sequence Tag Markers.

    Science.gov (United States)

    Mousavi, Soraya; Mariotti, Roberto; Regni, Luca; Nasini, Luigi; Bufacchi, Marina; Pandolfi, Saverio; Baldoni, Luciana; Proietti, Primo

    2017-01-01

    Germplasm collections of tree crop species represent fundamental tools for conservation of diversity and key steps for its characterization and evaluation. For the olive tree, several collections were created all over the world, but only few of them have been fully characterized and molecularly identified. The olive collection of Perugia University (UNIPG), established in the years' 60, represents one of the first attempts to gather and safeguard olive diversity, keeping together cultivars from different countries. In the present study, a set of 370 olive trees previously uncharacterized was screened with 10 standard simple sequence repeats (SSRs) and nine new EST-SSR markers, to correctly and thoroughly identify all genotypes, verify their representativeness of the entire cultivated olive variation, and validate the effectiveness of new markers in comparison to standard genotyping tools. The SSR analysis revealed the presence of 59 genotypes, corresponding to 72 well known cultivars, 13 of them resulting exclusively present in this collection. The new EST-SSRs have shown values of diversity parameters quite similar to those of best standard SSRs. When compared to hundreds of Mediterranean cultivars, the UNIPG olive accessions were splitted into the three main populations (East, Center and West Mediterranean), confirming that the collection has a good representativeness of the entire olive variability. Furthermore, Bayesian analysis, performed on the 59 genotypes of the collection by the use of both sets of markers, have demonstrated their splitting into four clusters, with a well balanced membership obtained by EST respect to standard SSRs. The new OLEST ( Olea expressed sequence tags) SSR markers resulted as effective as the best standard markers. The information obtained from this study represents a high valuable tool for ex situ conservation and management of olive genetic resources, useful to build a common database from worldwide olive cultivar collections

  9. Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast psbA-trnH intergenic region.

    Science.gov (United States)

    Yao, Hui; Song, Jing-Yuan; Ma, Xin-Ye; Liu, Chang; Li, Ying; Xu, Hong-Xi; Han, Jian-Ping; Duan, Li-Sheng; Chen, Shi-Lin

    2009-05-01

    DNA barcoding is a novel technology that uses a standard DNA sequence to facilitate species identification. Although a consensus has not been reached regarding which DNA sequences can be used as the best plant barcodes, the psbA-trnH spacer region has been tested extensively in recent years. In this study, we hypothesize that the psbA-trnH spacer regions are also effective barcodes for Dendrobium species. We have sequenced the chloroplast psbA-trnH intergenic spacers of 17 Dendrobium species to test this hypothesis. The sequences were found to be significantly different from those of other species, with percentages of variation ranging from 0.3 % to 2.3 % and an average of 1.2 %. In contrast, the intraspecific variation among the Dendrobium species studied ranged from 0 % to 0.1 %. The sequence difference between the psbA-trnH sequences of 17 Dendrobium species and one Bulbophyllum odoratissimum ranged from 2.0 % to 3.1 %, with an average of 2.5 %. Our results support the notion that the psbA-trnH intergenic spacer region could be used as a barcode to distinguish various Dendrobium species and to differentiate Dendrobium species from other adulterating species. Copyright Georg Thieme Verlag KG Stuttgart. New York.

  10. BpWrapper: BioPerl-based sequence and tree utilities for rapid prototyping of bioinformatics pipelines.

    Science.gov (United States)

    Hernández, Yözen; Bernstein, Rocky; Pagan, Pedro; Vargas, Levy; McCaig, William; Ramrattan, Girish; Akther, Saymon; Larracuente, Amanda; Di, Lia; Vieira, Filipe G; Qiu, Wei-Gang

    2018-03-02

    manipulation of sequences, alignments, and phylogenetic trees, unavailable in existing utilities (e.g., EMBOSS, Newick Utilities, and FAST), are provided. Bioinformaticians should find BpWrapper useful for rapid prototyping of workflows on the command-line without creating custom scripts for comparative genomics and other bioinformatics applications.

  11. Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust.

    Directory of Open Access Journals (Sweden)

    Dario Cantu

    Full Text Available BACKGROUND: The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS has radically improved sequencing speed and efficiency with a great reduction in costs compared to traditional sequencing technologies. We used Illumina sequencing to rapidly access the genomic sequence of the highly virulent PST race 130 (PST-130. METHODOLOGY/PRINCIPAL FINDINGS: We obtained nearly 80 million high quality paired-end reads (>50x coverage that were assembled into 29,178 contigs (64.8 Mb, which provide an estimated coverage of at least 88% of the PST genes and are available through GenBank. Extensive micro-synteny with the Puccinia graminis f. sp. tritici (PGTG genome and high sequence similarity with annotated PGTG genes support the quality of the PST-130 contigs. We characterized the transposable elements present in the PST-130 contigs and using an ab initio gene prediction program we identified and tentatively annotated 22,815 putative coding sequences. We provide examples on the use of comparative approaches to improve gene annotation for both PST and PGTG and to identify candidate effectors. Finally, the assembled contigs provided an inventory of PST repetitive elements, which were annotated and deposited in Repbase. CONCLUSIONS/SIGNIFICANCE: The assembly of the PST-130 genome and the predicted proteins provide useful resources to rapidly identify and clone PST genes and their regulatory regions. Although the automatic gene prediction has limitations, we show that a comparative genomics approach using multiple rust species can greatly improve the quality of gene annotation in these species. The PST-130 sequence will also be useful for comparative studies within PST as more races are sequenced. This study illustrates the power of NGS for

  12. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing

    NARCIS (Netherlands)

    Timal, Sharita; Hoischen, Alexander; Lehle, Ludwig; Adamowicz, Maciej; Huijben, Karin; Sykut-Cegielska, Jolanta; Paprocka, Justyna; Jamroz, Ewa; van Spronsen, Francjan J.; Koerner, Christian; Gilissen, Christian; Rodenburg, Richard J.; Eidhof, Ilse; Van den Heuvel, Lambert; Thiel, Christian; Wevers, Ron A.; Morava, Eva; Veltman, Joris; Lefeber, Dirk J.

    2012-01-01

    Congenital disorders of glycosylation type I (CDG-I) form a growing group of recessive neurometabolic diseases. Identification of disease genes is compromised by the enormous heterogeneity in clinical symptoms and the large number of potential genes involved. Until now, gene identification included

  13. Complete Deletion of the Fucose Operon in Haemophilus influenzae Is Associated with a Cluster in Multilocus Sequence Analysis-Based Phylogenetic Group II Related to Haemophilus haemolyticus: Implications for Identification and Typing.

    Science.gov (United States)

    de Gier, Camilla; Kirkham, Lea-Ann S; Nørskov-Lauritsen, Niels

    2015-12-01

    Nonhemolytic variants of Haemophilus haemolyticus are difficult to differentiate from Haemophilus influenzae despite a wide difference in pathogenic potential. A previous investigation characterized a challenging set of 60 clinical strains using multiple PCRs for marker genes and described strains that could not be unequivocally identified as either species. We have analyzed the same set of strains by multilocus sequence analysis (MLSA) and near-full-length 16S rRNA gene sequencing. MLSA unambiguously allocated all study strains to either of the two species, while identification by 16S rRNA sequence was inconclusive for three strains. Notably, the two methods yielded conflicting identifications for two strains. Most of the "fuzzy species" strains were identified as H. influenzae that had undergone complete deletion of the fucose operon. Such strains, which are untypeable by the H. influenzae multilocus sequence type (MLST) scheme, have sporadically been reported and predominantly belong to a single branch of H. influenzae MLSA phylogenetic group II. We also found evidence of interspecies recombination between H. influenzae and H. haemolyticus within the 16S rRNA genes. Establishing an accurate method for rapid and inexpensive identification of H. influenzae is important for disease surveillance and treatment. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis.

    Science.gov (United States)

    Sönksen, Ute Wolff; Christensen, Jens Jørgen; Nielsen, Lisbeth; Hesselbjerg, Annemarie; Hansen, Dennis Schrøder; Bruun, Brita

    2010-12-31

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification results: 48 of 75 database strains were correctly identified, 11 strains gave `low discrimination´, seven strains were unidentified, and nine strains were misidentified. Identification of 25 non-database strains resulted in 14 strains incorrectly identified as belonging to species in the database. Partial 16S rRNA gene sequence analysis results: For 76 strains phenotypic and sequencing identifications were identical, for 23 strains the sequencing identifications were either probable or possible, and for one strain only the genus was confirmed. Thus, the Vitek 2 NH system identifies most of the commonly occurring species included in the database. Some strains of rarely occurring species and strains of non-database species closely related to database species cause problems. Partial 16S rRNA gene sequence analysis performs well, but does not always suffice, additional phenotypical characterization being useful for final identification.

  15. Electromigration techniques - rapid methods for the detection and identification of urinary tract pathogens

    Czech Academy of Sciences Publication Activity Database

    Růžička, F.; Holá, V.; Horká, Marie

    2004-01-01

    Roč. 10, Suppl. 3 (2004), s. 621-622 ISSN 1198-743X. [14th ECCMID. European Congress of Clinical Microbiology and Infectious Diseases /14./. Praha, 01.05.2004-04.05.2004] R&D Projects: GA AV ČR IAA4031302 Institutional research plan: CEZ:AV0Z4031919 Keywords : electromigration techniques * identification * pathogens Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.361, year: 2004

  16. Development of loop-mediated isothermal amplification (LAMP assay for rapid and sensitive identification of ostrich meat.

    Directory of Open Access Journals (Sweden)

    Amir Abdulmawjood

    Full Text Available Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes.

  17. Rapid identification and quantitative analysis of chemical constituents of Gentiana veitchiorum by UHPLC-PDA-QTOF-MS

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available ABSTRACT Gentiana veitchiorum Hemsl., Gentianaceae, a traditional Tibetan medicine, was used for the treatment of liver jaundice with damp-heat pathogen, as well as for headache and chronic pharyngitis. A rapid ultra-performance liquid chromatography, photodiode array detector, quadrupole time-of-flight mass spectrometry method was developed for the fast and accurate identification and quantification of the chemical constituents of G. veitchiorum. In fact, eighteen compounds were detected and identified on the basis of their mass spectra, fragment characteristics and comparison with published data. Especially, the MS fragmentation pathways of iridoid glycosides and flavone C-glycosides were illustrated. Five compounds among them were quantified by UHPLC-PDA, including swertiamarin, gentiopicroside, sweroside, isoorientin, and isovitexin. The proposed method was then validated based on the analyses of linearity, accuracy, precision, and recovery. The overall recoveries for the five analytes ranged from 96.54% to 100.81%, with RSD from 1.05% to 1.82%. In addition, ten batches of G. veitchiorum from different areas were also analyzed. The developed method was rapid and reliable for both identification and quantification of the chemical constituents of G. veitchiorum, especially for simultaneous qualitative and quantitative analysis of iridoid glycosides and flavone C-glycosides.

  18. Ion torrent personal genome machine sequencing for genomic typing of Neisseria meningitidis for rapid determination of multiple layers of typing information.

    Science.gov (United States)

    Vogel, Ulrich; Szczepanowski, Rafael; Claus, Heike; Jünemann, Sebastian; Prior, Karola; Harmsen, Dag

    2012-06-01

    Neisseria meningitidis causes invasive meningococcal disease in infants, toddlers, and adolescents worldwide. DNA sequence-based typing, including multilocus sequence typing, analysis of genetic determinants of antibiotic resistance, and sequence typing of vaccine antigens, has become the standard for molecular epidemiology of the organism. However, PCR of multiple targets and consecutive Sanger sequencing provide logistic constraints to reference laboratories. Taking advantage of the recent development of benchtop next-generation sequencers (NGSs) and of BIGSdb, a database accommodating and analyzing genome sequence data, we therefore explored the feasibility and accuracy of Ion Torrent Personal Genome Machine (PGM) sequencing for genomic typing of meningococci. Three strains from a previous meningococcus serogroup B community outbreak were selected to compare conventional typing results with data generated by semiconductor chip-based sequencing. In addition, sequencing of the meningococcal type strain MC58 provided information about the general performance of the technology. The PGM technology generated sequence information for all target genes addressed. The results were 100% concordant with conventional typing results, with no further editing being necessary. In addition, the amount of typing information, i.e., nucleotides and target genes analyzed, could be substantially increased by the combined use of genome sequencing and BIGSdb compared to conventional methods. In the near future, affordable and fast benchtop NGS machines like the PGM might enable reference laboratories to switch to genomic typing on a routine basis. This will reduce workloads and rapidly provide information for laboratory surveillance, outbreak investigation, assessment of vaccine preventability, and antibiotic resistance gene monitoring.

  19. Rapid identification of salmonella serotypes with stereo and hyperspectral microscope imaging Methods

    Science.gov (United States)

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  20. Identification and Mapping of Simple Sequence Repeat Markers from Common Bean (Phaseolus vulgaris L. Bacterial Artificial Chromosome End Sequences for Genome Characterization and Genetic–Physical Map Integration

    Directory of Open Access Journals (Sweden)

    Juana M. Córdoba

    2010-11-01

    Full Text Available Microsatellite markers or simple sequence repeat (SSR loci are useful for diversity characterization and genetic–physical mapping. Different in silico microsatellite search methods have been developed for mining bacterial artificial chromosome (BAC end sequences for SSRs. The overall goal of this study was genome characterization based on SSRs in 89,017 BAC end sequences (BESs from the G19833 common bean ( L. library. Another objective was to identify new SSR taking into account three tandem motif identification programs (Automated Microsatellite Marker Development [AMMD], Tandem Repeats Finder [TRF], and SSRLocator [SSRL]. Among the microsatellite search engines, SSRL identified the highest number of SSRs; however, when primer design was attempted, the number dropped due to poor primer design regions. Automated Microsatellite Marker Development software identified many SSRs with valuable AT/TA or AG/TC motifs, while TRF found fewer SSRs and produced no primers. A subgroup of 323 AT-rich, di-, and trinucleotide SSRs were selected from the AMMD results and used in a parental survey with DOR364 and G19833, of which 75 could be mapped in the corresponding population; these represented 4052 BAC clones. Together with 92 previously mapped BES- and 114 non-BES-derived markers, a total of 280 SSRs were included in the polymerase chain reaction (PCR-based map, integrating a total of 8232 BAC clones in 162 contigs from the physical map.

  1. Rapid and Accurate Identification by Real-Time PCR of Biotoxin-Producing Dinoflagellates from the Family Gymnodiniaceae

    Directory of Open Access Journals (Sweden)

    Kirsty F. Smith

    2014-03-01

    Full Text Available The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR assays targeting the large subunit ribosomal RNA (LSU rRNA gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  2. Rapid and accurate identification by real-time PCR of biotoxin-producing dinoflagellates from the family gymnodiniaceae.

    Science.gov (United States)

    Smith, Kirsty F; de Salas, Miguel; Adamson, Janet; Rhodes, Lesley L

    2014-03-07

    The identification of toxin-producing dinoflagellates for monitoring programmes and bio-compound discovery requires considerable taxonomic expertise. It can also be difficult to morphologically differentiate toxic and non-toxic species or strains. Various molecular methods have been used for dinoflagellate identification and detection, and this study describes the development of eight real-time polymerase chain reaction (PCR) assays targeting the large subunit ribosomal RNA (LSU rRNA) gene of species from the genera Gymnodinium, Karenia, Karlodinium, and Takayama. Assays proved to be highly specific and sensitive, and the assay for G. catenatum was further developed for quantification in response to a bloom in Manukau Harbour, New Zealand. The assay estimated cell densities from environmental samples as low as 0.07 cells per PCR reaction, which equated to three cells per litre. This assay not only enabled conclusive species identification but also detected the presence of cells below the limit of detection for light microscopy. This study demonstrates the usefulness of real-time PCR as a sensitive and rapid molecular technique for the detection and quantification of micro-algae from environmental samples.

  3. Rapid identification of moulds and arthroconidial yeasts from positive blood cultures by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    de Almeida, João N; Sztajnbok, Jaques; da Silva, Afonso Rafael; Vieira, Vinicius Adriano; Galastri, Anne Layze; Bissoli, Leandro; Litvinov, Nadia; Del Negro, Gilda Maria Barbaro; Motta, Adriana Lopes; Rossi, Flávia; Benard, Gil

    2016-11-01

    Moulds and arthroconidial yeasts are potential life-threatening agents of fungemia in immunocompromised patients. Fast and accurate identification (ID) of these pathogens hastens initiation of targeted antifungal therapy, thereby improving the patients' prognosis. We describe a new strategy that enabled the identification of moulds and arthroconidial yeasts directly from positive blood cultures by MALDI-TOF mass spectrometry (MS). Positive blood cultures (BCs) with Gram staining showing hyphae and/or arthroconidia were prospectively selected and submitted to an in-house protein extraction protocol. Mass spectra were obtained by Vitek MS™ system, and identifications were carried out with in the research use only (RUO) mode with an extended database (SARAMIS™ [v.4.12] plus in-house database). Fusarium solani, Fusarium verticillioides, Exophiala dermatitidis, Saprochaete clavata, and Trichosporon asahii had correct species ID by MALDI-TOF MS analysis of positive BCs. All cases were related to critically ill patients with high mortality fungemia and direct ID from positive BCs was helpful for rapid administration of targeted antifungal therapy. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Automatic and rapid identification of glycopeptides by nano-UPLC-LTQ-FT-MS and proteomic search engine.

    Science.gov (United States)

    Giménez, Estela; Gay, Marina; Vilaseca, Marta

    2017-01-30

    Here we demonstrate the potential of nano-UPLC-LTQ-FT-MS and the Byonic™ proteomic search engine for the separation, detection, and identification of N- and O-glycopeptide glycoforms in standard glycoproteins. The use of a BEH C18 nanoACQUITY column allowed the separation of the glycopeptides present in the glycoprotein digest and a baseline-resolution of the glycoforms of the same glycopeptide on the basis of the number of sialic acids. Moreover, we evaluated several acquisition strategies in order to improve the detection and characterization of glycopeptide glycoforms with the maximum number of identification percentages. The proposed strategy is simple to set up with the technology platforms commonly used in proteomic labs. The method allows the straightforward and rapid obtention of a general glycosylated map of a given protein, including glycosites and their corresponding glycosylated structures. The MS strategy selected in this work, based on a gas phase fractionation approach, led to 136 unique peptides from four standard proteins, which represented 78% of the total number of peptides identified. Moreover, the method does not require an extra glycopeptide enrichment step, thus preventing the bias that this step could cause towards certain glycopeptide species. Data are available via ProteomeXchange with identifier PXD003578. We propose a simple and high-throughput glycoproteomics-based methodology that allows the separation of glycopeptide glycoforms on the basis of the number of sialic acids, and their automatic and rapid identification without prior knowledge of protein glycosites or type and structure of the glycans. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Phylogenetic diversity of insecticolous fusaria inferred from multilocus DNA sequence data and their molecular identification via FUSARIUM-ID and Fusarium MLST

    NARCIS (Netherlands)

    O'Donnell, K.; Humber, R.A.; Geiser, D.M.; Kang, S.; Robert, V.; Park, B.; Crous, P.W.; Johnston, P.; Aoki, T.; Rooney, A.P.; Rehner, S.A.

    2012-01-01

    We constructed several multilocus DNA sequence datasets to assess the phylogenetic diversity of insecticolous fusaria, especially focusing on those housed at the Agricultural Research Service Collection of Entomopathogenic Fungi (ARSEF), and to aid molecular identifications of unknowns via the

  6. Identification and Whole Genome Sequencing of the First Case of Kosakonia radicincitans Causing a Human Bloodstream Infection

    OpenAIRE

    Bhatti, Micah D.; Kalia, Awdhesh; Sahasrabhojane, Pranoti; Kim, Jiwoong; Greenberg, David E.; Shelburne, Samuel A.

    2017-01-01

    The taxonomy of Enterobacter species is rapidly changing. Herein we report a bloodstream infection isolate originally identified as Enterobacter cloacae by Vitek2 methodology that we found to be Kosakonia radicincitans using genetic means. Comparative whole genome sequencing of our isolate and other published Kosakonia genomes revealed these organisms lack the AmpC β-lactamase present on the chromosome of Enterobacter sp. A fimbriae operon primarily found in Escherichia coli O157:H7 isolates ...

  7. A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences

    Science.gov (United States)

    Shortis, Mark R.; Ravanbakskh, Mehdi; Shaifat, Faisal; Harvey, Euan S.; Mian, Ajmal; Seager, James W.; Culverhouse, Philip F.; Cline, Danelle E.; Edgington, Duane R.

    2013-04-01

    Underwater stereo-video measurement systems are used widely for counting and measuring fish in aquaculture, fisheries and conservation management. To determine population counts, spatial or temporal frequencies, and age or weight distributions, snout to fork length measurements are captured from the video sequences, most commonly using a point and click process by a human operator. Current research aims to automate the measurement and counting task in order to improve the efficiency of the process and expand the use of stereo-video systems within marine science. A fully automated process will require the detection and identification of candidates for measurement, followed by the snout to fork length measurement, as well as the counting and tracking of fish. This paper presents a review of the techniques used for the detection, identification, measurement, counting and tracking of fish in underwater stereo-video image sequences, including consideration of the changing body shape. The review will analyse the most commonly used approaches, leading to an evaluation of the techniques most likely to be a general solution to the complete process of detection, identification, measurement, counting and tracking.

  8. A simple, rapid and inexpensive screening method for the identification of Pythium insidiosum.

    Science.gov (United States)

    Tondolo, Juliana Simoni Moraes; Loreto, Erico Silva; Denardi, Laura Bedin; Mario, Débora Alves Nunes; Alves, Sydney Hartz; Santurio, Janio Morais

    2013-04-01

    Growth of Pythium insidiosum mycelia around minocycline disks (30μg) did not occur within 7days of incubation at 35°C when the isolates were grown on Sabouraud, corn meal, Muller-Hinton or RPMI agar. This technique offers a simple and rapid method for the differentiation of P. insidiosum from true filamentous fungi. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Direct Analysis in Real-time Mass Spectrometry for Rapid Identification of Traditional Chinese Medicines with Coumarins as Primary Characteristics.

    Science.gov (United States)

    Chen, Zhiyong; Yang, Yuanyuan; Tao, Hongxun; Liao, Liping; Li, Ye; Zhang, Zijia

    2017-05-01

    The increasing popularity of traditional Chinese medicines (TCMs) necessitates rapid and reliable methods for controlling their quality. Direct analysis in real-time mass spectrometry (DART-MS) represents a novel approach to analysing TCMs. To develop a quick and reliable method of identifying TCMs with coumarins as primary characteristics. DART-MS coupled with ion trap mass spectrometry was employed to rapidly identify TCMs with coumarins as primary characteristics and to explore the ionisation mechanisms of simple coumarins, furocoumarins and pyranocoumarins in detail. With minimal sample pretreatment, mass spectra of Fraxini Cortex, Angelicae Pubescentis Radix, Peucedani Radix and Psoraleae Fructus samples were obtained within seconds. The operating parameters of the DART ion source (e.g. grid electrode voltage and ionisation gas temperature) were carefully investigated to obtain high-quality mass spectra. The mass spectra of samples and DART-MS/MS spectra of marker compounds were used to identify sample materials. Successful authentication was achieved by analysing the same materials of different origins. Some simple coumarins, furocoumarins and pyranocoumarins can be directly detected by DART-MS as marker compounds. Our results demonstrated that DART-MS can provide a rapid and reliable method for the identification of TCMs containing different configurations of coumarins; the method may also be applicable to other plants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours

    DEFF Research Database (Denmark)

    Yamada, Takuji; Waller, Alison S.; Raes, Jeroen

    2012-01-01

    Despite the current wealth of sequencing data, one-third of all biochemically characterized metabolic enzymes lack a corresponding gene or protein sequence, and as such can be considered orphan enzymes. They represent a major gap between our molecular and biochemical knowledge, and consequently a...... Systems Biology 8: 581; published online 8 May 2012; doi:10.1038/msb.2012.13...

  11. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences.

    Directory of Open Access Journals (Sweden)

    Josephine A Reinhardt

    Full Text Available How non-coding DNA gives rise to new protein-coding genes (de novo genes is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs, while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important.

  12. Identification of rat genes by TWINSCAN gene prediction, RT-PCR, and direct sequencing

    DEFF Research Database (Denmark)

    Wu, Jia Qian; Shteynberg, David; Arumugam, Manimozhiyan

    2004-01-01

    an alternative approach: reverse transcription-polymerase chain reaction (RT-PCR) and direct sequencing based on dual-genome de novo predictions from TWINSCAN. We tested 444 TWINSCAN-predicted rat genes that showed significant homology to known human genes implicated in disease but that were partially...... in the single-intron experiment. Spliced sequences were amplified in 46 cases (34%). We conclude that this procedure for elucidating gene structures with native cDNA sequences is cost-effective and will become even more so as it is further optimized.......The publication of a draft sequence of a third mammalian genome--that of the rat--suggests a need to rethink genome annotation. New mammalian sequences will not receive the kind of labor-intensive annotation efforts that are currently being devoted to human. In this paper, we demonstrate...

  13. Enhanced arbovirus surveillance with deep sequencing: Identification of novel rhabdoviruses and bunyaviruses in Australian mosquitoes.

    Science.gov (United States)

    Coffey, Lark L; Page, Brady L; Greninger, Alexander L; Herring, Belinda L; Russell, Richard C; Doggett, Stephen L; Haniotis, John; Wang, Chunlin; Deng, Xutao; Delwart, Eric L

    2014-01-05

    Viral metagenomics characterizes known and identifies unknown viruses based on sequence similarities to any previously sequenced viral genomes. A metagenomics approach was used to identify virus sequences in Australian mosquitoes causing cytopathic effects in inoculated mammalian cell cultures. Sequence comparisons revealed strains of Liao Ning virus (Reovirus, Seadornavirus), previously detected only in China, livestock-infecting Stretch Lagoon virus (Reovirus, Orbivirus), two novel dimarhabdoviruses, named Beaumont and North Creek viruses, and two novel orthobunyaviruses, named Murrumbidgee and Salt Ash viruses. The novel virus proteomes diverged by ≥ 50% relative to their closest previously genetically characterized viral relatives. Deep sequencing also generated genomes of Warrego and Wallal viruses, orbiviruses linked to kangaroo blindness, whose genomes had not been fully characterized. This study highlights viral metagenomics in concert with traditional arbovirus surveillance to characterize known and new arboviruses in field-collected mosquitoes. Follow-up epidemiological studies are required to determine whether the novel viruses infect humans. © 2013 Elsevier Inc. All rights reserved.

  14. Simultaneous identification of DNA and RNA viruses present in pig faeces using process-controlled deep sequencing.

    Directory of Open Access Journals (Sweden)

    Jana Sachsenröder

    Full Text Available BACKGROUND: Animal faeces comprise a community of many different microorganisms including bacteria and viruses. Only scarce information is available about the diversity of viruses present in the faeces of pigs. Here we describe a protocol, which was optimized for the purification of the total fraction of viral particles from pig faeces. The genomes of the purified DNA and RNA viruses were simultaneously amplified by PCR and subjected to deep sequencing followed by bioinformatic analyses. The efficiency of the method was monitored using a process control consisting of three bacteriophages (T4, M13 and MS2 with different morphology and genome types. Defined amounts of the bacteriophages were added to the sample and their abundance was assessed by quantitative PCR during the preparation procedure. RESULTS: The procedure was applied to a pooled faecal sample of five pigs. From this sample, 69,613 sequence reads were generated. All of the added bacteriophages were identified by sequence analysis of the reads. In total, 7.7% of the reads showed significant sequence identities with published viral sequences. They mainly originated from bacteriophages (73.9% and mammalian viruses (23.9%; 0.8% of the sequences showed identities to plant viruses. The most abundant detected porcine viruses were kobuvirus, rotavirus C, astrovirus, enterovirus B, sapovirus and picobirnavirus. In addition, sequences with identities to the chimpanzee stool-associated circular ssDNA virus were identified. Whole genome analysis indicates that this virus, tentatively designated as pig stool-associated circular ssDNA virus (PigSCV, represents a novel pig virus. CONCLUSION: The established protocol enables the simultaneous detection of DNA and RNA viruses in pig faeces including the identification of so far unknown viruses. It may be applied in studies investigating aetiology, epidemiology and ecology of diseases. The implemented process control serves as quality control, ensures

  15. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Science.gov (United States)

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  16. Rapid allopolyploid radiation of moonwort ferns (Botrychium; Ophioglossaceae) revealed by PacBio sequencing of homologous and homeologous nuclear regions.

    Science.gov (United States)

    Dauphin, Benjamin; Grant, Jason R; Farrar, Donald R; Rothfels, Carl J

    2018-03-01

    Polyploidy is a major speciation process in vascular plants, and is postulated to be particularly important in shaping the diversity of extant ferns. However, limitations in the availability of bi-parental markers for ferns have greatly limited phylogenetic investigation of polyploidy in this group. With a large number of allopolyploid species, the genus Botrychium is a classic example in ferns where recurrent polyploidy is postulated to have driven frequent speciation events. Here, we use PacBio sequencing and the PURC bioinformatics pipeline to capture all homeologous or allelic copies of four long (∼1 kb) low-copy nuclear regions from a sample of 45 specimens (25 diploids and 20 polyploids) representing 37 Botrychium taxa, and three outgroups. This sample includes most currently recognized Botrychium species in Europe and North America, and the majority of our specimens were genotyped with co-dominant nuclear allozymes to ensure species identification. We analyzed the sequence data using maximum likelihood (ML) and Bayesian inference (BI) concatenated-data ("gene tree") approaches to explore the relationships among Botrychium species. Finally, we estimated divergence times among Botrychium lineages and inferred the multi-labeled polyploid species tree showing the origins of the polyploid taxa, and their relationships to each other and to their diploid progenitors. We found strong support for the monophyly of the major lineages within Botrychium and identified most of the parental donors of the polyploids; these results largely corroborate earlier morphological and allozyme-based investigations. Each polyploid had at least two distinct homeologs, indicating that all sampled polyploids are likely allopolyploids (rather than autopolyploids). Our divergence-time analyses revealed that these allopolyploid lineages originated recently-within the last two million years-and thus that the genus has undergone a recent radiation, correlated with multiple independent

  17. Rapid identification and classification of bacteria by 16S rDNA restriction fragment melting curve analyses (RFMCA).

    Science.gov (United States)

    Rudi, Knut; Kleiberg, Gro H; Heiberg, Ragnhild; Rosnes, Jan T

    2007-08-01

    The aim of this work was to evaluate restriction fragment melting curve analyses (RFMCA) as a novel approach for rapid classification of bacteria during food production. RFMCA was evaluated for bacteria isolated from sous vide food products, and raw materials used for sous vide production. We identified four major bacterial groups in the material analysed (cluster I-Streptococcus, cluster II-Carnobacterium/Bacillus, cluster III-Staphylococcus and cluster IV-Actinomycetales). The accuracy of RFMCA was evaluated by comparison with 16S rDNA sequencing. The strains satisfying the RFMCA quality filtering criteria (73%, n=57), with both 16S rDNA sequence information and RFMCA data (n=45) gave identical group assignments with the two methods. RFMCA enabled rapid and accurate classification of bacteria that is database compatible. Potential application of RFMCA in the food or pharmaceutical industry will include development of classification models for the bacteria expected in a given product, and then to build an RFMCA database as a part of the product quality control.

  18. Identification of pollutant sources in a rapidly developing urban river catchment in China

    Science.gov (United States)

    Huang, Jingshui; Yin, Hailong; Jomma, Seifeddine; Rode, Michael; Zhou, Qi

    2016-04-01

    Rapid economic development and urbanization worldwide cause serious ecological and environmental problems. A typical region that is in transition and requires systemic research for effective intervention is the rapidly developing city of Hefei in central P. R. China. In order to investigate the sources of pollutants over a one-year period in Nanfei River catchment that drains the city of Hefei, discharges were measured and water samples were taken and measured along the 14km river section at 10 sites for 4 times from 2013 to 2014. Overflow concentrations of combined sewer and separate storm drains were also measured by selecting 15 rain events in 4 typical drainage systems. Loads and budgets of water and different pollutant sources i.e., wastewater treatment plant (WWTP) effluent, urban drainage overflow, unknown wastewater were calculated. The water balance demonstrated that >70% of the discharge originated from WWTP effluent. Lack of clean upstream inflow thereby is threatening ecological safety and water quality. Furthermore, mass fluxes calculations revealed that >40% of the COD (Chemical Oxygen Demand) loads were from urban drainage overflow because of a large amount of discharge of untreated wastewater in pumping stations during rain events. WWTP effluent was the predominant source of the total nitrogen loads (>60%) and ammonia loads (>45%). However, the total phosphorous loads from three different sources are similar (˜1/3). Thus, our research provided a basis for appropriate and prior mitigation strategies (state-of-art of WWTP upgrade, sewer systems modification, storm water regulation and storage capacity improvement, etc.) for different precedence-controlled pollutants with the limited infrastructure investments in these rapidly developing urban regions.

  19. Rapid detection and identification of pathogenic mycobacteria by combining radiometric and nucleic acid probe methods

    International Nuclear Information System (INIS)

    Ellner, P.D.; Kiehn, T.E.; Cammarata, R.; Hosmer, M.

    1988-01-01

    The combination of radiometric methodology (BACTEC 12B) and probe technology for recovery and identification of mycobacteria was studied in two large hospital laboratories. The sediment from vials with positive growth indices was tested with DNA probes specific for Mycobacterium tuberculosis, Mycobacterium avium, and Mycobacterium intracellulare. The sensitivity of the radiometric method and the specificity of the probes resulted in a marked reduction in the time to the final report. Biochemical testing could be eliminated on isolates giving a positive reaction with one of the probes. Some 176 isolates of M. tuberculosis, 110 of M. avium, and 5 of M. intracellulare were recovered. Two-thirds of these isolates were detected and identified within 2 weeks of inoculation and the remainder was detected by 4 weeks, a reduction of 5 to 7 weeks to the final report

  20. A PCR-based strategy for simple and rapid identification of rough presumptive Salmonella isolates

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Baggesen, Dorte Lau; Porting, P.H.

    1999-01-01

    The purpose of the present study was to investigate the application of ready-to-go Salmonella PCR tests, based on dry chemistry, for final identification of rough presumptive Salmonella isolates. The results were compared with two different biotyping methods performed at two different laboratories......, which did not result in any DNA band. A total of 32 out of the 36 rough presumptive isolates were positive in the PCR. All but one isolate were also identified as Salmonella by the two biochemical methods. All 80 Salmonella strains were also tested in the two multiplex serogroup tests based on PCR beads....... The sensitivity of the BAX Salmonella PCR test was assessed by testing a total of 80 Salmonella isolates, covering most serogroups, which correctly identified all the Salmonella strains by resulting in one 800-bp band in the sample tubes. The specificity of the PCR was assessed using 20 non-Salmonella strains...

  1. Structural identification of short/middle span bridges by rapid impact testing: theory and verification

    International Nuclear Information System (INIS)

    Zhang, Jian; Wu, Z S; Zhang, Q Q; Guo, S L; Xu, D W

    2015-01-01

    A structural strain flexibility identification method by processing the multiple-reference impact testing data is proposed. First, a kind of novel long-gauge fiber optic sensor is developed for structural macro-strain monitoring. Second, the multiple-reference impact testing technology is employed, during which both the impacting force and structural strain responses are measured. The impact testing technology has unique merit because it is able to extract exact structural frequency response functions (FRFs), while other test methods, for instance ambient tests, can only output the FRFs with scaled magnitudes. Most importantly, the originality of the article is that a method of identifying the structural strain flexibility characteristic from the impact test data has been proposed, which is useful for structural static strain prediction and capacity evaluation. Examples of a six meter simple supported beam and a multiple-span continuous beam bridge have successfully verified the effectiveness of the proposed method. (paper)

  2. Structural identification of short/middle span bridges by rapid impact testing: theory and verification

    Science.gov (United States)

    Zhang, Jian; Zhang, Q. Q.; Guo, S. L.; Xu, D. W.; Wu, Z. S.

    2015-06-01

    A structural strain flexibility identification method by processing the multiple-reference impact testing data is proposed. First, a kind of novel long-gauge fiber optic sensor is developed for structural macro-strain monitoring. Second, the multiple-reference impact testing technology is employed, during which both the impacting force and structural strain responses are measured. The impact testing technology has unique merit because it is able to extract exact structural frequency response functions (FRFs), while other test methods, for instance ambient tests, can only output the FRFs with scaled magnitudes. Most importantly, the originality of the article is that a method of identifying the structural strain flexibility characteristic from the impact test data has been proposed, which is useful for structural static strain prediction and capacity evaluation. Examples of a six meter simple supported beam and a multiple-span continuous beam bridge have successfully verified the effectiveness of the proposed method.

  3. Extraction and identification of cyclobutanones from irradiated cheese employing a rapid direct solvent extraction method.

    Science.gov (United States)

    Tewfik, Ihab

    2008-01-01

    2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.

  4. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production

    Science.gov (United States)

    Bailey, Andy M.; Alberti, Fabrizio; Kilaru, Sreedhar; Collins, Catherine M.; de Mattos-Shipley, Kate; Hartley, Amanda J.; Hayes, Patrick; Griffin, Alison; Lazarus, Colin M.; Cox, Russell J.; Willis, Christine L.; O'Dwyer, Karen; Spence, David W.; Foster, Gary D.

    2016-05-01

    Semi-synthetic derivatives of the tricyclic diterpene antibiotic pleuromutilin from the basidiomycete Clitopilus passeckerianus are important in combatting bacterial infections in human and veterinary medicine. These compounds belong to the only new class of antibiotics for human applications, with novel mode of action and lack of cross-resistance, representing a class with great potential. Basidiomycete fungi, being dikaryotic, are not generally amenable to strain improvement. We report identification of the seven-gene pleuromutilin gene cluster and verify that using various targeted approaches aimed at increasing antibiotic production in C. passeckerianus, no improvement in yield was achieved. The seven-gene pleuromutilin cluster was reconstructed within Aspergillus oryzae giving production of pleuromutilin in an ascomycete, with a significant increase (2106%) in production. This is the first gene cluster from a basidiomycete to be successfully expressed in an ascomycete, and paves the way for the exploitation of a metabolically rich but traditionally overlooked group of fungi.

  5. Rapid identification of bacterial resistance to Ciprofloxacin using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Kastanos, Evdokia; Hadjigeorgiou, Katerina; Pitris, Costas

    2014-02-01

    Due to its effectiveness and broad coverage, Ciprofloxacin is the fifth most prescribed antibiotic in the US. As current methods of infection diagnosis and antibiotic sensitivity testing (i.e. an antibiogram) are very time consuming, physicians prescribe ciprofloxacin before obtaining antibiogram results. In order to avoid increasing resistance to the antibiotic, a method was developed to provide both a rapid diagnosis and the sensitivity to the antibiotic. Using Surface Enhanced Raman Spectroscopy, an antibiogram was obtained after exposing the bacteria to Ciprofloxacin for just two hours. Spectral analysis revealed clear separation between sensitive and resistant bacteria and could also offer some inside into the mechanisms of resistance.

  6. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration

    Science.gov (United States)

    2013-01-01

    Background Salamanders are unique among vertebrates in their ability to completely regenerate amputated limbs through the mediation of blastema cells located at the stump ends. This regeneration is nerve-dependent because blastema formation and regeneration does not occur after limb denervation. To obtain the genomic information of blastema tissues, de novo transcriptomes from both blastema tissues and denervated stump ends of Ambystoma mexicanum (axolotls) 14 days post-amputation were sequenced and compared using Solexa DNA sequencing. Results The sequencing done for this study produced 40,688,892 reads that were assembled into 307,345 transcribed sequences. The N50 of transcribed sequence length was 562 bases. A similarity search with known proteins identified 39,200 different genes to be expressed during limb regeneration with a cut-off E-value exceeding 10-5. We annotated assembled sequences by using gene descriptions, gene ontology, and clusters of orthologous group terms. Targeted searches using these annotations showed that the majority of the genes were in the categories of essential metabolic pathways, transcription factors and conserved signaling pathways, and novel candidate genes for regenerative processes. We discovered and confirmed numerous sequences of the candidate genes by using quantitative polymerase chain reaction and in situ hybridization. Conclusion The results of this study demonstrate that de novo transcriptome sequencing allows gene expression analysis in a species lacking genome information and provides the most comprehensive mRNA sequence resources for axolotls. The characterization of the axolotl transcriptome can help elucidate the molecular mechanisms underlying blastema formation during limb regeneration. PMID:23815514

  7. Identification of human microRNA-like sequences embedded within the protein-encoding genes of the human immunodeficiency virus.

    Directory of Open Access Journals (Sweden)

    Bryan Holland

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are highly conserved, short (18-22 nts, non-coding RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3'UTRs of mRNAs. While numerous cellular microRNAs have been associated with the progression of various diseases including cancer, miRNAs associated with retroviruses have not been well characterized. Herein we report identification of microRNA-like sequences in coding regions of several HIV-1 genomes. RESULTS: Based on our earlier proteomics and bioinformatics studies, we have identified 8 cellular miRNAs that are predicted to bind to the mRNAs of multiple proteins that are dysregulated during HIV-infection of CD4+ T-cells in vitro. In silico analysis of the full length and mature sequences of these 8 miRNAs and comparisons with all the genomic and subgenomic sequences of HIV-1 strains in global databases revealed that the first 18/18 sequences of the mature hsa-miR-195 sequence (including the short seed sequence, matched perfectly (100%, or with one nucleotide mismatch, within the envelope (env genes of five HIV-1 genomes from Africa. In addition, we have identified 4 other miRNA-like sequences (hsa-miR-30d, hsa-miR-30e, hsa-miR-374a and hsa-miR-424 within the env and the gag-pol encoding regions of several HIV-1 strains, albeit with reduced homology. Mapping of the miRNA-homologues of env within HIV-1 genomes localized these sequence to the functionally significant variable regions of the env glycoprotein gp120 designated V1, V2, V4 and V5. CONCLUSIONS: We conclude that microRNA-like sequences are embedded within the protein-encoding regions of several HIV-1 genomes. Given that the V1 to V5 regions of HIV-1 envelopes contain specific, well-characterized domains that are critical for immune responses, virus neutralization and disease progression, we propose that the newly discovered miRNA-like sequences within the HIV-1 genomes may have evolved to self-regulate survival of the

  8. Rapid and specific identification of Brucella abortus using the loop-mediated isothermal amplification (LAMP) assay.

    Science.gov (United States)

    Kang, Sung-Il; Her, Moon; Kim, Ji-Yeon; Lee, Jin Ju; Lee, Kichan; Sung, So-Ra; Jung, Suk Chan

    2015-06-01

    A rapid and accurate diagnosis of brucellosis is required to reduce and prevent the spread of disease among animals and the risk of transfer to humans. In this study, a Brucella abortus-specific (Ba) LAMP assay was developed, that had six primers designed from the BruAb2_0168 region of chromosome I. The specificity of this LAMP assay was confirmed with Brucella reference strains, B. abortus vaccine strains, B. abortus isolates and phylogenetically or serologically related strains. The detection limit of target DNA was up to 20 fg/μl within 60 min. The sensitivity of the new LAMP assay was equal to or slightly higher than other PCR based assays. Moreover, this Ba-LAMP assay could specifically amplify all B. abortus biovars compared to previous PCR assays. To our knowledge, this is the first report of specific detection of B. abortus using a LAMP assay. The Ba-LAMP assay can offer a rapid, sensitive and accurate diagnosis of bovine brucellosis in the field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Rapid identification of illegal synthetic adulterants in herbal anti-diabetic medicines using near infrared spectroscopy

    Science.gov (United States)

    Feng, Yanchun; Lei, Deqing; Hu, Changqin

    We created a rapid detection procedure for identifying herbal medicines illegally adulterated with synthetic drugs using near infrared spectroscopy. This procedure includes a reverse correlation coefficient method (RCCM) and comparison of characteristic peaks. Moreover, we made improvements to the RCCM based on new strategies for threshold settings. Any tested herbal medicine must meet two criteria to be identified with our procedure as adulterated. First, the correlation coefficient between the tested sample and the reference must be greater than the RCCM threshold. Next, the NIR spectrum of the tested sample must contain the same characteristic peaks as the reference. In this study, four pure synthetic anti-diabetic drugs (i.e., metformin, gliclazide, glibenclamide and glimepiride), 174 batches of laboratory samples and 127 batches of herbal anti-diabetic medicines were used to construct and validate the procedure. The accuracy of this procedure was greater than 80%. Our data suggest that this protocol is a rapid screening tool to identify synthetic drug adulterants in herbal medicines on the market.

  10. Proteotyping for the rapid identification of influenza virus and other biopathogens.

    Science.gov (United States)

    Downard, Kevin M

    2013-11-21

    The influenza virus is one of the most deadly infectious agents known to man and has been responsible for the deaths of some hundred million lives throughout human history. The need to rapidly and reliably survey circulating virus strains down to the molecular level is ever present. This tutorial describes the development and application of a new proteotyping approach that harnesses the power of high resolution of mass spectrometry to characterise the influenza virus, and by extension other bacterial and viral pathogens. The approach is shown to be able to type, subtype, and determine the lineage of human influenza virus strains through the detection of one or more signature peptide ions in the mass spectrum of whole virus digests. Pandemic strains can be similarly distinguished from seasonal ones, and new computer algorithms have been written to allow reassorted strains that pose the greatest pandemic risk to be rapidly identified from such datasets. The broader application of the approach is further demonstrated here for the parainfluenza virus, a virus which can be life threatening to children and presents similar clinical symptoms to influenza.

  11. Identification of antigen-specific human monoclonal antibodies using high-throughput sequencing of the antibody repertoire.

    Science.gov (United States)

    Liu, Ju; Li, Ruihua; Liu, Kun; Li, Liangliang; Zai, Xiaodong; Chi, Xiangyang; Fu, Ling; Xu, Junjie; Chen, Wei

    2016-04-22

    High-throughput sequencing of the antibody repertoire provides a large number of antibody variable region sequences that can be used to generate human monoclonal antibodies. However, current screening methods for identifying antigen-specific antibodies are inefficient. In the present study, we developed an antibody clone screening strategy based on clone dynamics and relative frequency, and used it to identify antigen-specific human monoclonal antibodies. Enzyme-linked immunosorbent assay showed that at least 52% of putative positive immunoglobulin heavy chains composed antigen-specific antibodies. Combining information on dynamics and relative frequency improved identification of positive clones and elimination of negative clones. and increase the credibility of putative positive clones. Therefore the screening strategy could simplify the subsequent experimental screening and may facilitate the generation of antigen-specific antibodies. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Identification of two novel pathogenic compound heterozygous MYO7A mutations in Usher syndrome by whole exome sequencing.

    Science.gov (United States)

    Jia, Ying; Li, Xiaoge; Yang, Dong; Xu, Yi; Guo, Ying; Li, Xin

    2018-01-01

    The current study aims to identify the pathogenic sites in a core pedigree of Usher syndrome (USH). A core pedigree of USH was analyzed by whole exome sequencing (WES). Mutations were verified by polymerase chain reaction (PCR) amplification and Sanger sequencing. Two pathogenic variations (c.849+2T>C and c.5994G>A) in MYO7A were successfully identified and individually separated from parents. One variant (c.849+2T>C) was nonsense mutation, causing the protein terminated in advance, and the other one (c.5994G>A) located near the boundary of exon could cause aberrant splicing. This study provides a meaningful exploration for identification of clinical core genetic pedigrees. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Next-Gen Sequencing-Based Mapping and Identification of Ethyl Methanesulfonate-Induced Mutations in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Xue-Cheng; Millet, Yves; Ausubel, Frederick M; Borowsky, Mark

    2014-10-01

    Forward genetic analysis using ethyl methanesulfonate (EMS) mutagenesis has proven to be a powerful tool in biological research, but identification and cloning of causal mutations by conventional genetic mapping approaches is a painstaking process. Recent advances in next-gen sequencing have greatly invigorated the process of identifying EMS-induced mutations corresponding to a specific phenotype in model genetic hosts, including the plant Arabidopsis thaliana and the nematode Caenorhabditis elegans. Next-gen sequencing of bulked F2 mutant recombinants produces a wealth of high-resolution genetic data, provides enhanced delimitation of the genomic location of mutations, and greatly reduces hands-on time while maintaining high accuracy and reproducibility. In this unit, a detailed procedure to simultaneously map and identify EMS mutations in Arabidopsis is described. Copyright © 2014 John Wiley & Sons, Inc.

  14. Identification of a novel LMF1 nonsense mutation responsible for severe hypertriglyceridemia by targeted next-generation sequencing.

    Science.gov (United States)

    Cefalù, Angelo B; Spina, Rossella; Noto, Davide; Ingrassia, Valeria; Valenti, Vincenza; Giammanco, Antonina; Fayer, Francesca; Misiano, Gabriella; Cocorullo, Gianfranco; Scrimali, Chiara; Palesano, Ornella; Altieri, Grazia I; Ganci, Antonina; Barbagallo, Carlo M; Averna, Maurizio R

    Severe hypertriglyceridemia (HTG) may result from mutations in genes affecting the intravascular lipolysis of triglyceride (TG)-rich lipoproteins. The aim of this study was to develop a targeted next-generation sequencing panel for the molecular diagnosis of disorders characterized by severe HTG. We developed a targeted customized panel for next-generation sequencing Ion Torrent Personal Genome Machine to capture the coding exons and intron/exon boundaries of 18 genes affecting the main pathways of TG synthesis and metabolism. We sequenced 11 samples of patients with severe HTG (TG>885 mg/dL-10 mmol/L): 4 positive controls in whom pathogenic mutations had previously been identified by Sanger sequencing and 7 patients in whom the molecular defect was still unknown. The customized panel was accurate, and it allowed to confirm genetic variants previously identified in all positive controls with primary severe HTG. Only 1 patient of 7 with HTG was found to be carrier of a homozygous pathogenic mutation of the third novel mutation of LMF1 gene (c.1380C>G-p.Y460X). The clinical and molecular familial cascade screening allowed the identification of 2 additional affected siblings and 7 heterozygous carriers of the mutation. We showed that our targeted resequencing approach for genetic diagnosis of severe HTG appears to be accurate, less time consuming, and more economical compared with traditional Sanger resequencing. The identification of pathogenic mutations in candidate genes remains challenging and clinical resequencing should mainly intended for patients with strong clinical criteria for monogenic severe HTG. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  15. The use of permanganate as a sequencing reagent for identification of 5-methylcytosine residues in DNA.

    OpenAIRE

    Fritzsche, E; Hayatsu, H; Igloi, G L; Iida, S; Kössel, H

    1987-01-01

    The use of permanganate as a reagent for DNA sequencing by chemical degradation has been studied with respect to its specificity for 5-methylcytosine residues. At weakly acidic pH and room temperature, 0.2 mM potassium permanganate reacts preferentially with thymine, 5-methylcytosine, and to a lesser extent with purine residues, while cytosine remains essentially intact. Permanganate oxidation is, therefore, a suitable DNA sequencing reaction for positive discrimination between 5-methylcytosi...

  16. Development of an efficient retrotransposon-based fingerprinting method for rapid pea variety identification.

    Science.gov (United States)

    Smýkal, Petr

    2006-01-01

    Fast and efficient DNA fingerprinting of crop cultivars and individuals is frequently used in both theoretical population genetics and in practical breeding. Numerous DNA marker technologies exist and the ratio of speed, cost and accuracy are of importance. Therefore even in species where highly accurate and polymorphic marker systems are available, such as microsatellite SSR (simple sequence repeats), also alternative methods may be of interest. Thanks to their high abundance and ubiquity, temporary mobile retrotransposable elements come into recent focus. Their properties, such as genome wide distribution and well-defined origin of individual insertions by descent, predetermine them for use as molecular markers. In this study, several Ty3-gypsy type retrotransposons have been developed and adopted for the inter-retrotransposon amplified polymorphism (IRAP) method, which is suitable for fast and efficient pea cultivar fingerprinting. The method can easily distinguish even between genetically closely related pea cultivars and provide high polymorphic information content (PIC) in a single PCR analysis.

  17. Sequencing of the Chlamydophila psittaci ompA Gene Reveals a New Genotype, E/B, and the Need for a Rapid Discriminatory Genotyping Method

    Science.gov (United States)

    Geens, Tom; Desplanques, Ann; Van Loock, Marnix; Bönner, Brigitte M.; Kaleta, Erhard F.; Magnino, Simone; Andersen, Arthur A.; Everett, Karin D. E.; Vanrompay, Daisy

    2005-01-01

    Twenty-one avian Chlamydophila psittaci isolates from different European countries were characterized using ompA restriction fragment length polymorphism, ompA sequencing, and major outer membrane protein serotyping. Results reveal the presence of a new genotype, E/B, in several European countries and stress the need for a discriminatory rapid genotyping method. PMID:15872282

  18. A machine learning approach for the identification of odorant binding proteins from sequence-derived properties

    Directory of Open Access Journals (Sweden)

    Suganthan PN

    2007-09-01

    Full Text Available Abstract Background Odorant binding proteins (OBPs are believed to shuttle odorants from the environment to the underlying odorant receptors, for which they could potentially serve as odorant presenters. Although several sequence based search methods have been exploited for protein family prediction, less effort has been devoted to the prediction of OBPs from sequence data and this area is more challenging due to poor sequence identity between these proteins. Results In this paper, we propose a new algorithm that uses Regularized Least Squares Classifier (RLSC in conjunction with multiple physicochemical properties of amino acids to predict odorant-binding proteins. The algorithm was applied to the dataset derived from Pfam and GenDiS database and we obtained overall prediction accuracy of 97.7% (94.5% and 98.4% for positive and negative classes respectively. Conclusion Our study suggests that RLSC is potentially useful for predicting the odorant binding proteins from sequence-derived properties irrespective of sequence similarity. Our method predicts 92.8% of 56 odorant binding proteins non-homologous to any protein in the swissprot database and 97.1% of the 414 independent dataset proteins, suggesting the usefulness of RLSC method for facilitating the prediction of odorant binding proteins from sequence information.

  19. Rapid authentication and identification of different types of A. roxburghii by Tri-step FT-IR spectroscopy

    Science.gov (United States)

    Chen, Ying; Huang, Jinfang; Yeap, Zhao Qin; Zhang, Xue; Wu, Shuisheng; Ng, Chiew Hoong; Yam, Mun Fei

    2018-06-01

    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.

  20. [Rapid Identification of Epicarpium Citri Grandis via Infrared Spectroscopy and Fluorescence Spectrum Imaging Technology Combined with Neural Network].

    Science.gov (United States)

    Pan, Sha-sha; Huang, Fu-rong; Xiao, Chi; Xian, Rui-yi; Ma, Zhi-guo

    2015-10-01

    To explore rapid reliable methods for detection of Epicarpium citri grandis (ECG), the experiment using Fourier Transform Attenuated Total Reflection Infrared Spectroscopy (FTIR/ATR) and Fluorescence Spectrum Imaging Technology combined with Multilayer Perceptron (MLP) Neural Network pattern recognition, for the identification of ECG, and the two methods are compared. Infrared spectra and fluorescence spectral images of 118 samples, 81 ECG and 37 other kinds of ECG, are collected. According to the differences in tspectrum, the spectra data in the 550-1 800 cm(-1) wavenumber range and 400-720 nm wavelength are regarded as the study objects of discriminant analysis. Then principal component analysis (PCA) is applied to reduce the dimension of spectroscopic data of ECG and MLP Neural Network is used in combination to classify them. During the experiment were compared the effects of different methods of data preprocessing on the model: multiplicative scatter correction (MSC), standard normal variable correction (SNV), first-order derivative(FD), second-order derivative(SD) and Savitzky-Golay (SG). The results showed that: after the infrared spectra data via the Savitzky-Golay (SG) pretreatment through the MLP Neural Network with the hidden layer function as sigmoid, we can get the best discrimination of ECG, the correct percent of training set and testing set are both 100%. Using fluorescence spectral imaging technology, corrected by the multiple scattering (MSC) results in the pretreatment is the most ideal. After data preprocessing, the three layers of the MLP Neural Network of the hidden layer function as sigmoid function can get 100% correct percent of training set and 96.7% correct percent of testing set. It was shown that the FTIR/ATR and fluorescent spectral imaging technology combined with MLP Neural Network can be used for the identification study of ECG and has the advantages of rapid, reliable effect.

  1. Comparative analysis of function and interaction of transcription factors in nematodes: Extensive conservation of orthology coupled to rapid sequence evolution

    Directory of Open Access Journals (Sweden)

    Singh Rama S

    2008-08-01

    Full Text Available Abstract Background Much of the morphological diversity in eukaryotes results from differential regulation of gene expression in which transcription factors (TFs play a central role. The nematode Caenorhabditis elegans is an established model organism for the study of the roles of TFs in controlling the spatiotemporal pattern of gene expression. Using the fully sequenced genomes of three Caenorhabditid nematode species as well as genome information from additional more distantly related organisms (fruit fly, mouse, and human we sought to identify orthologous TFs and characterized their patterns of evolution. Results We identified 988 TF genes in C. elegans, and inferred corresponding sets in C. briggsae and C. remanei, containing 995 and 1093 TF genes, respectively. Analysis of the three gene sets revealed 652 3-way reciprocal 'best hit' orthologs (nematode TF set, approximately half of which are zinc finger (ZF-C2H2 and ZF-C4/NHR types and HOX family members. Examination of the TF genes in C. elegans and C. briggsae identified the presence of significant tandem clustering on chromosome V, the majority of which belong to ZF-C4/NHR family. We also found evidence for lineage-specific duplications and rapid evolution of many of the TF genes in the two species. A search of the TFs conserved among nematodes in Drosophila melanogaster, Mus musculus and Homo sapiens revealed 150 reciprocal orthologs, many of which are associated with important biological processes and human diseases. Finally, a comparison of the sequence, gene interactions and function indicates that nematode TFs conserved across phyla exhibit significantly more interactions and are enriched in genes with annotated mutant phenotypes compared to those that lack orthologs in other species. Conclusion Our study represents the first comprehensive genome-wide analysis of TFs across three nematode species and other organisms. The findings indicate substantial conservation of transcription

  2. Genome-wide sequencing for the identification of rearrangements associated with Tourette syndrome and obsessive-compulsive disorder

    Directory of Open Access Journals (Sweden)

    Hooper Sean D

    2012-12-01

    Full Text Available Abstract Background Tourette Syndrome (TS is a neuropsychiatric disorder in children characterized by motor and verbal tics. Although several genes have been suggested in the etiology of TS, the genetic mechanisms remain poorly understood. Methods Using cytogenetics and FISH analysis, we identified an apparently balanced t(6,22(q16.2;p13 in a male patient with TS and obsessive-compulsive disorder (OCD. In order to map the breakpoints and to identify additional submicroscopic rearrangements, we performed whole genome mate-pair sequencing and CGH-array analysis on DNA from the proband. Results Sequence and CGH array analysis revealed a 400 kb deletion located 1.3 Mb telomeric of the chromosome 6q breakpoint, which has not been reported in controls. The deletion affects three genes (GPR63, NDUFA4 and KLHL32 and overlaps a region previously found deleted in a girl with autistic features and speech delay. The proband’s mother, also a carrier of the translocation, was diagnosed with OCD and shares the deletion. We also describe a further potentially related rearrangement which, while unmapped in Homo sapiens, was consistent with the chimpanzee genome. Conclusions We conclude that genome-wide sequencing at relatively low resolution can be used for the identification of submicroscopic rearrangements. We also show that large rearrangements may escape detection using standard analysis of whole genome sequencing data. Our findings further provide a candidate region for TS and OCD on chromosome 6q16.

  3. Molecular Identification of Isolated Fungi from Unopened Containers of Greek Yogurt by DNA Sequencing of Internal Transcribed Spacer Region

    Directory of Open Access Journals (Sweden)

    Irshad M. Sulaiman

    2014-06-01

    Full Text Available In our previous study, we described the development of an internal transcribed spacer (ITS1 sequencing method, and used this protocol in species-identification of isolated fungi collected from the manufacturing areas of a compounding company known to have caused the multistate fungal meningitis outbreak in the United States. In this follow-up study, we have analyzed the unopened vials of Greek yogurt from the recalled batch to determine the possible cause of microbial contamination in the product. A total of 15 unopened vials of Greek yogurt belonging to the recalled batch were examined for the detection of fungi in these samples known to cause foodborne illness following conventional microbiological protocols. Fungi were isolated from all of the 15 Greek yogurt samples analyzed. The isolated fungi were genetically typed by DNA sequencing of PCR-amplified ITS1 region of rRNA gene. Analysis of data confirmed all of the isolated fungal isolates from the Greek yogurt to be Rhizomucor variabilis. The generated ITS1 sequences matched 100% with the published sequences available in GenBank. In addition, these yogurt samples were also tested for the presence of five types of bacteria (Salmonella, Listeria, Staphylococcus, Bacillus and Escherichia coli causing foodborne disease in humans, and found negative for all of them.

  4. A Universal Method for Species Identification of Mammals Utilizing Next Generation Sequencing for the Analysis of DNA Mixtures

    Science.gov (United States)

    Tillmar, Andreas O.; Dell'Amico, Barbara; Welander, Jenny; Holmlund, Gunilla

    2013-01-01

    Species identification can be interesting in a wide range of areas, for example, in forensic applications, food monitoring and in archeology. The vast majority of existing DNA typing methods developed for species determination, mainly focuses on a single species source. There are, however, many instances where all species from mixed sources need to be determined, even when the species in minority constitutes less than 1 % of the sample. The introduction of next generation sequencing opens new possibilities for such challenging samples. In this study we present a universal deep sequencing method using 454 GS Junior sequencing of a target on the mitochondrial gene 16S rRNA. The method was designed through phylogenetic analyses of DNA reference sequences from more than 300 mammal species. Experiments were performed on artificial species-species mixture samples in order to verify the method’s robustness and its ability to detect all species within a mixture. The method was also tested on samples from authentic forensic casework. The results showed to be promising, discriminating over 99.9 % of mammal species and the ability to detect multiple donors within a mixture and also to detect minor components as low as 1 % of a mixed sample. PMID:24358309

  5. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    Science.gov (United States)

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Whole exome sequencing followed by expanded familial validation by Sanger sequencing. We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  6. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Ramesh Reddy

    Full Text Available Usher syndrome (USH is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II.Whole exome sequencing followed by expanded familial validation by Sanger sequencing.We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98.Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  7. Molecular Genetics of the Usher Syndrome in Lebanon: Identification of 11 Novel Protein Truncating Mutations by Whole Exome Sequencing