WorldWideScience

Sample records for rapid hydrothermal synthesis

  1. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Wenqian [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Chen, Zhi, E-mail: zchen0@gmail.com [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Zhu, Yuxiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Tianjin Key Laboratory of Marine Resources and Chemistry, Tianjin University of Science and Technology, Tianjin (China); Qin, Laishun, E-mail: qinlaishun@yeah.net [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China); Wang, Jiangying; Huang, Yuexiang [College of Materials Science and Engineering, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education District, Hangzhou 310018, Zhejiang Province (China)

    2016-06-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO{sub 3} could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO{sub 3} by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  2. Rapid synthesis of single-phase bismuth ferrite by microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Cao, Wenqian; Chen, Zhi; Gao, Tong; Zhou, Dantong; Leng, Xiaonan; Niu, Feng; Zhu, Yuxiang; Qin, Laishun; Wang, Jiangying; Huang, Yuexiang

    2016-01-01

    This paper describes on the fast synthesis of bismuth ferrite by the simple microwave-assisted hydrothermal method. The phase transformation and the preferred growth facets during the synthetic process have been investigated by X-ray diffraction. Bismuth ferrite can be quickly prepared by microwave hydrothermal method by simply controlling the reaction time, which is further confirmed by Fourier Transform infrared spectroscopy and magnetic measurement. - Graphical abstract: Single-phase BiFeO_3 could be realized at a shortest reaction time of 65 min. The reaction time has strong influences on the phase transformation and the preferred growth facets. - Highlights: • Rapid synthesis (65 min) of BiFeO_3 by microwave-assisted hydrothermal method. • Reaction time has influence on the purity and preferred growth facets. • FTIR and magnetic measurement further confirm the pure phase.

  3. Rapid synthesis of nitrogen doped titania with mixed crystal lattice via microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Zhang Peilin; Liu Bin; Yin Shu; Wang Yuhua; Petrykin, Valery; Kakihana, Masato; Sato, Tsugio

    2009-01-01

    A microwave-assisted hydrothermal method was employed to synthesize nitrogen doped titania nanoparticles. Due to the high heating efficiency of microwave, rapid synthesis could be achieved in comparison with the conventional oven. Mixed crystal lattice was found existing in the obtained product, and the phase transformation behaviour under calcination was studied by XRD measurement together with Raman spectroscopy in details. The obtained nitrogen doped titania showed high specific surface area, about 300 m 2 g -1 . Photocatalytic activity in destructing NO x gas by the prepared sample exceeded that of commercial titania (P 25) or nitrogen doped titania synthesized by conventional hydrothermal method, under both visible-light and ultraviolet-light irradiation.

  4. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    OpenAIRE

    Dunne, Peter W.; Starkey, Christopher L.; Gimeno-Fabra, Miquel; Lester, Edward

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe₍₁₋ᵪ₎S and Bi₂S₃, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth d...

  5. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials

    Science.gov (United States)

    Dunne, Peter W.; Starkey, Chris L.; Gimeno-Fabra, Miquel; Lester, Edward H.

    2014-01-01

    Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control.Continuous flow hydrothermal synthesis offers a cheap, green and highly scalable route for the preparation of inorganic nanomaterials which has predominantly been applied to metal oxide based materials. In this work we report the first continuous flow hydrothermal synthesis of metal sulphide nanomaterials. A wide range of binary metal sulphides, ZnS, CdS, PbS, CuS, Fe(1-x)S and Bi2S3, have been synthesised. By varying the reaction conditions two different mechanisms may be invoked; a growth dominated route which permits the formation of nanostructured sulphide materials, and a nucleation driven process which produces nanoparticles with temperature dependent size control. This offers a new and industrially viable route to a wide range of metal sulphide nanoparticles with facile size and shape control. Electronic supplementary information (ESI) available: Experimental details, refinement procedure, fluorescence spectra of ZnS samples. See DOI: 10.1039/c3nr05749f

  6. Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization

    Science.gov (United States)

    Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh

    2017-08-01

    Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.

  7. Hydrothermal synthesis of electrode materials pyrochlore tungsten trioxide film

    Science.gov (United States)

    Guo, Jingdong; Li, Yingjeng James; Stanley Whittingham, M.

    Hydrothermal synthesis methods have been successfully used to prepare new transition-metal oxides for cathodes in electrochemical devices such as lithium batteries and electrochromic windows. The tungsten oxides were the first studied, but the method has been extended to the oxides of molybdenum, vanadium and manganese. Sodium tungsten oxide films with the pyrochlore structure have been prepared on gold/alumina and indium-doped tin oxide substrates. These films reversibly and rapidly intercalate lithium and hydrogen ions.

  8. Hydrothermal synthesis, characterization and luminescent ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 4. Hydrothermal synthesis, characterization and luminescent properties of lanthanide-doped NaLaF 4 nanoparticles. JIGMET LADOL HEENA KHAJURIA SONIKA KHAJURIA ... Keywords. Citric acid; X-ray diffraction; down-conversion emission; energy transfer.

  9. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    International Nuclear Information System (INIS)

    Pachmayr, Ursula Elisabeth

    2017-01-01

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe_1_-_xS_x was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li_0_._8Fe_0_._2)OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li_0_._8Fe_0_._2)OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe_4 tetrahedra were found via this synthesis method. The iron selenides A_2Fe_4Se_6 (A = K, Rb, Cs) consist of double chains of [Fe_2Se_3]"1"-, whereas a new compound Na_6(H_2O)_1_8Fe_4Se_8 exhibits [Fe_4Se_8]"6"- 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard to iron-chalcogenide based superconductors this synthesis strategy is encouraging. It seems probable

  10. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pachmayr, Ursula Elisabeth

    2017-04-06

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe{sub 1-x}S{sub x} was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li{sub 0.8}Fe{sub 0.2})OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li{sub 0.8}Fe{sub 0.2})OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe{sub 4} tetrahedra were found via this synthesis method. The iron selenides A{sub 2}Fe{sub 4}Se{sub 6} (A = K, Rb, Cs) consist of double chains of [Fe{sub 2}Se{sub 3}]{sup 1-}, whereas a new compound Na{sub 6}(H{sub 2}O){sub 18}Fe{sub 4}Se{sub 8} exhibits [Fe{sub 4}Se{sub 8}]{sup 6-} 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard

  11. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.

    Science.gov (United States)

    McCollom, T M; Ritter, G; Simoneit, B R

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  12. Microwave-assisted hydrothermal synthesis of lead zirconate fine powders

    Directory of Open Access Journals (Sweden)

    Apinpus Rujiwatra

    2011-01-01

    Full Text Available A rapid synthesis of lead zirconate fine powders by microwave-assisted hydrothermal technique is reported. The influences of type of lead precursor, concentration of potassium hydroxide mineraliser, applied microwave power and irradiation time are described. The synthesised powders were characterised by powder X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopic microanalysis and light scattering technique. The merits of the microwave application in reducing reaction time and improving particle mono-dispersion and size uniformity as well as the drawbacks, viz. low purity of the desired phase and increasing demand of mineraliser, are discussed in relation to conventional heating method.

  13. Hydrothermal synthesis of sodium titanate nanotubes; Hydrotermalna synteza nanorurok titanatu sodneho

    Energy Technology Data Exchange (ETDEWEB)

    Miskoci, M.; Jesenak, K. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra anorganickej chemie, 84215 Bratislava (Slovakia); Caplovicova, M. [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra loziskovej geologie, 84215 Bratislava (Slovakia)

    2013-04-16

    From suspension of nanoparticles TiO{sub 2} in concentrated water solution of NaOH were prepared by hydrothermal synthesis sodium titanates particles with different shapes. Influence of synthesis duration under temperature 180 grad C on the change of particles shapes was observed. The result of experiment showed that one day synthesis resulted to obtained product with high content of nanotubes, but the extension of this period led to the transformation of product's shape into stripes. From the results of experiment follows that as a precursor for TiO{sub 2} nanotubes preparation may be used only products of hydrothermal synthesis, which duration of pressure synthesis was not longer than 24 hours. (authors)

  14. Facile template-free hydrothermal synthesis and microstrain ...

    Indian Academy of Sciences (India)

    Administrator

    2009), solar cells (Yuan et al 2011), transparent elec- trodes (Kim et al ... increasing the peak width, intensity and shifting the 2θ peak position. ... Facile template-free hydrothermal synthesis and microstrain measurement of ZnO nanorods. 399.

  15. hydrothermal synthesis and characterisation of amine-templated

    African Journals Online (AJOL)

    PROF EKWUEME

    showed that the complexes were insoluble in water, ethanol, DMF and DMSO. KEYWORDS: Hydrothermal synthesis, metal phosphates, p-aminobenzoic acid, ethylacetoacetate, ethylammonium-. 4-aminobenzoate. INTRODUCTION. One of the major areas of materials science is the development of solid state materials with ...

  16. Some peculiarities of zirconium tungstate synthesis by thermal decomposition of hydrothermal precursors

    International Nuclear Information System (INIS)

    Gubanov, Alexander I.; Dedova, Elena S.; Plyusnin, Pavel E.; Filatov, Eugeny Y.; Kardash, Tatyana Y.; Korenev, Sergey V.; Kulkov, Sergey N.

    2014-01-01

    Highlights: • Synthesis of ZrW 2 O 8 using hydrothermal method. • On hydrothermal synthesis optimal conc. of HCl in the reaction mixture is 2.3 M. • Thermal decomposition of ZrW 2 O 7 ((OH) 1.5 ,Cl 0.5 )·2H 2 O begins are 200 °S. • Amorphous intermediate crystallizes into cubic single-phase ZrW 2 O 8 above 550 °S. • ZrW 2 O 8 destructed at temperatures above 700 °S. - Abstract: This article discusses some peculiarities of the synthesis of ZrW 2 O 8 (1) using thermal decomposition of the precursor ZrW 2 O 7 ((OH) 1.5 ,Cl 0.5 )·2H 2 O (2) prepared by hydrothermal method. On hydrothermal synthesis of 2 the optimal concentration of hydrochloric acid in the reaction mixture is about 2.3 M. TG approach to determine the chemical composition of the precursor was suggested. It has been found that the precursor for the synthesis of zirconium tungstate has chemical formula 2. Thermal decomposition of the precursor 2 begins at 200 °S and affords an amorphous intermediate, which crystallizes as a cubic phase 1 above 550 °S with an exoeffect. The temperature of the beginning of the transition from amorphous to the crystalline state is 350 ± 25 °S

  17. Hydrothermal synthesis and characterisation of amine-templated ...

    African Journals Online (AJOL)

    Hydrothermal synthesis and characterisation of amine-templated metal phosphate framework. ... The complexes were thermally stable up to 3000C, after which the organic components starts decomposing. The solubility test in a wide spectrum of solvents (at room temperature) showed that the complexes were insoluble in ...

  18. Versatile hydrothermal synthesis of one-dimensional composite structures

    Science.gov (United States)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  19. Some peculiarities of zirconium tungstate synthesis by thermal decomposition of hydrothermal precursors

    Energy Technology Data Exchange (ETDEWEB)

    Gubanov, Alexander I., E-mail: gubanov@niic.nsc.su [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Dedova, Elena S. [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, pr. Akademicheskii 2/4, 634021 Tomsk (Russian Federation); Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk (Russian Federation); Plyusnin, Pavel E.; Filatov, Eugeny Y. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Kardash, Tatyana Y. [Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 5, 630090 Novosibirsk (Russian Federation); Korenev, Sergey V. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Prospekt 3, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Kulkov, Sergey N. [Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, pr. Akademicheskii 2/4, 634021 Tomsk (Russian Federation); Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk (Russian Federation)

    2014-12-10

    Highlights: • Synthesis of ZrW{sub 2}O{sub 8} using hydrothermal method. • On hydrothermal synthesis optimal conc. of HCl in the reaction mixture is 2.3 M. • Thermal decomposition of ZrW{sub 2}O{sub 7}((OH){sub 1.5},Cl{sub 0.5})·2H{sub 2}O begins are 200 °S. • Amorphous intermediate crystallizes into cubic single-phase ZrW{sub 2}O{sub 8} above 550 °S. • ZrW{sub 2}O{sub 8} destructed at temperatures above 700 °S. - Abstract: This article discusses some peculiarities of the synthesis of ZrW{sub 2}O{sub 8} (1) using thermal decomposition of the precursor ZrW{sub 2}O{sub 7}((OH){sub 1.5},Cl{sub 0.5})·2H{sub 2}O (2) prepared by hydrothermal method. On hydrothermal synthesis of 2 the optimal concentration of hydrochloric acid in the reaction mixture is about 2.3 M. TG approach to determine the chemical composition of the precursor was suggested. It has been found that the precursor for the synthesis of zirconium tungstate has chemical formula 2. Thermal decomposition of the precursor 2 begins at 200 °S and affords an amorphous intermediate, which crystallizes as a cubic phase 1 above 550 °S with an exoeffect. The temperature of the beginning of the transition from amorphous to the crystalline state is 350 ± 25 °S.

  20. Rapid Synthesis and Formation Mechanism of Core-Shell-Structured La-Doped SrTiO3 with a Nb-Doped Shell

    Directory of Open Access Journals (Sweden)

    Nam-Hee Park

    2015-07-01

    Full Text Available To provide a convenient and practical synthesis process for metal ion doping on the surface of nanoparticles in an assembled nanostructure, core-shell-structured La-doped SrTiO3 nanocubes with a Nb-doped surface layer were synthesized via a rapid synthesis combining a rapid sol-precipitation and hydrothermal process. The La-doped SrTiO3 nanocubes were formed at room temperature by a rapid dissolution of NaOH pellets during the rapid sol-precipitation process, and the Nb-doped surface (shell along with Nb-rich edges formed on the core nanocubes via the hydrothermal process. The formation mechanism of the core-shell-structured nanocubes and their shape evolution as a function of the Nb doping level were investigated. The synthesized core-shell-structured nanocubes could be arranged face-to-face on a SiO2/Si substrate by a slow evaporation process, and this nanostructured 10 μm thick thin film showed a smooth surface.

  1. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    Science.gov (United States)

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  2. Hydrothermal synthesis of a new ethylenediammonium intercalated ...

    Indian Academy of Sciences (India)

    Unknown

    Vanadyl phosphate; hydrothermal synthesis; intercalation; single crystal ... presence of 'en'.7–15 In all these solids en molecules occur in suitable ... all the cases, the mixture was transferred to a 45 ml Teflon lined Parr acid digestion .... position cannot be fully occupied at the same time as it will lead to a P-P distance of.

  3. A shortcut hydrothermal strategy for the synthesis of zinc nanowires

    International Nuclear Information System (INIS)

    Hu Jianqiang; Chen Zhiwu; Xie Jingsi; Yu Ying

    2008-01-01

    Synthesis of metal nanowires has opened many new possibilities for designing ideal building blocks for future nanodevices. In this work, zinc nanowires with lengths of micrometre magnitude were synthesized in high yield by a shortcut hydrothermal strategy. The synthesis involves a template-free, non-seed and catalyst-free solution-phase process to high-quality zinc nanowires, which is low-cost and proceeds at relatively short time. In this process, zinc nanowires were prepared through the reduction of zinc acetate with absolute ethanol in the presence of silver nitrate under hydrothermal atmosphere. The strategy suggests that silver ion plays a vital role in the synthesis of zinc nanowires, without which the substituted product is zinc oxide nanowires. X-ray diffraction and energy-dispersive x-ray spectroscopy measurements confirm the final formation of zinc nanowires and component transformation from zinc oxide nanowires in the introduction of silver ion. We believe that with the efficient synthesis, longer zinc nanowires can be fabricated and may find potential applications for superconductors and nanodevices. (fast track communication)

  4. Microwave-hydrothermal synthesis of barium strontium titanate nanoparticles

    International Nuclear Information System (INIS)

    Simoes, A.Z.; Moura, F.; Onofre, T.B.; Ramirez, M.A.; Varela, J.A.; Longo, E.

    2010-01-01

    Research highlights: → Barium strontium titanate nanoparticles were obtained by the Hydrothemal microwave technique (HTMW) → This is a genuine technique to obtain nanoparticles at low temperature and short times → Barium strontium titanate free of carbonates with tetragonal structure was grown at 130 o C. - Abstract: Hydrothermal-microwave method (HTMW) was used to synthesize crystalline barium strontium titanate (Ba 0.8 Sr 0.2 TiO 3 ) nanoparticles (BST) in the temperature range of 100-130 o C. The crystallization of BST with tetragonal structure was reached at all the synthesis temperatures along with the formation of BaCO 3 as a minor impurity at lower syntheses temperatures. Typical FT-IR spectra for tetragonal (BST) nanoparticles presented well defined bands, indicating a substantial short-range order in the system. TG-DTA analyses confirmed the presence of lattice OH- groups, commonly found in materials obtained by HTMW process. FE/SEM revealed that lower syntheses temperatures led to a morphology that consisted of uniform grains while higher syntheses temperature consisted of big grains isolated and embedded in a matrix of small grains. TEM has shown BST nanoparticles with diameters between 40 and 80 nm. These results show that the HTMW synthesis route is rapid, cost effective, and could serve as an alternative to obtain BST nanoparticles.

  5. Hydrothermal synthesis, off-axis electron holography and magnetic properties of Fe3O4 nanoparticles

    DEFF Research Database (Denmark)

    Almeida, Trevor P.; Muxworthy, Adrian R.; Williams, Wyn

    2014-01-01

    The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (<50 nm) from mixed FeCl3 / FeCl2 precursor solution at pH ~ 12 has been confirmed using complementary characterisation techniques of transmission electron microscopy and X-ray diffractometry. Off-axis electron holography allowed for visuali......The hydrothermal synthesis of Fe3O4 nanoparticles (NPs) (holography allowed...

  6. Sonochemical and hydrothermal synthesis of PbTe nanostructures with the aid of a novel capping agent

    International Nuclear Information System (INIS)

    Fard-Fini, Shahla Ahmadian; Salavati-Niasari, Masoud; Mohandes, Fatemeh

    2013-01-01

    Graphical abstract: - Highlights: • PbTe nanostructures were prepared with the aid of Schiff-base compound. • Sonochemical and hydrothermal methods were employed to fabricate PbTe nanostrucrues. • The effect of preparation parameters on the morphology of PbTe was investigated. - Abstract: In this work, a new Schiff-base compound derived from 1,8-diamino-3,6-dioxaoctane and 2-hydroxy-1-naphthaldehyde marked as (2-HyNa)-(DaDo) was synthesized, characterized, and then used as capping agent for the preparation of PbTe nanostructures. To fabricate PbTe nanostructures, two different synthesis methods; hydrothermal and sonochemical routes, were applied. To further investigate, the effect of preparation parameters like reaction time and temperature in hydrothermal synthesis and sonication time in the presence of ultrasound irradiation on the morphology and purity of the final products was tested. The products were analyzed with the aid of SEM, TEM, XRD, FT-IR, and EDS. Based on the obtained results, it was found that pure cubic phased PbTe nanostructures have been obtained by hydrothermal and sonochemical approaches. Besides, SEM images showed that cubic-like and rod-like PbTe nanostructures have been formed by hydrothermal and sonochemical methods, respectively. Sonochemical synthesis of PbTe nanostructures was favorable, because the synthesis time of sonochemical method was shorter than that of hydrothermal method

  7. Hydrothermal synthesis of titania powders and their photocatalyc properties

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Murafa, Nataliya; Houšková, Vendula

    2008-01-01

    Roč. 52, č. 4 (2008), s. 278-290 ISSN 0862-5468 R&D Projects: GA ČR GA203/08/0334 Institutional research plan: CEZ:AV0Z40320502 Keywords : anatase * rutile * hydrothermal synthesis Subject RIV: CA - Inorganic Chemistry Impact factor: 0.644, year: 2008

  8. Microwave-Assisted Hydrothermal Synthesis of Cellulose/Hydroxyapatite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Lian-Hua Fu

    2016-09-01

    Full Text Available In this paper, we report a facile, rapid, and green strategy for the synthesis of cellulose/hydroxyapatite (HA nanocomposites using an inorganic phosphorus source (sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O, or organic phosphorus sources (adenosine 5′-triphosphate disodium salt (ATP, creatine phosphate disodium salt tetrahydrate (CP, or D-fructose 1,6-bisphosphate trisodium salt octahydrate (FBP through the microwave-assisted hydrothermal method. The effects of the phosphorus sources, heating time, and heating temperature on the phase, size, and morphology of the products were systematically investigated. The experimental results revealed that the phosphate sources played a critical role on the phase, size, and morphology of the minerals in the nanocomposites. For example, the pure HA was obtained by using NaH2PO4·2H2O as phosphorus source, while all the ATP, CP, and FBP led to the byproduct, calcite. The HA nanostructures with various morphologies (including nanorods, pseudo-cubic, pseudo-spherical, and nano-spherical particles were obtained by varying the phosphorus sources or adjusting the reaction parameters. In addition, this strategy is surfactant-free, avoiding the post-treatment procedure and cost for the surfactant removal from the product. We believe that this work can be a guidance for the green synthesis of cellulose/HA nanocomposites in the future.

  9. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Jiang, Yong; Lu, Mengna; Ling, Xuetao; Jiao, Zheng; Chen, Lingli; Chen, Lu; Hu, Pengfei; Zhao, Bing

    2015-01-01

    Highlights: • 3D porous GA/S nanocrystals are prepared by a one-step hydrothermal method. • The structure is affected by hydrothermal temperature and liquid sulfur’s viscosity. • The hybrid delivers a capacity of 716.2 mA h g −1 after 50 cycles at 100 mA g −1 . • The nanosized S, strong adsorbability and intimate contact of GNS are main factors. - Abstract: Lithium–sulfur (Li–S) batteries are receiving significant attention as a new energy source because of its high theoretical capacity and specific energy. However, the low sulfur loading and large particles (usually in submicron dimension) in the cathode greatly offset its advantage in high energy density and lead to the instability of the cathode and rapid capacity decay. Herein, we introduce a one-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals to suppress the rapid fading of sulfur electrode. It is found that the hydrothermal temperature and viscosity of liquid sulfur have significant effects on particle size and loading mass of sulfur nanocrystals, graphitization degree of graphene and chemical bonding between sulfur and oxygen-containing groups of graphene. The hybrid could deliver a specific capacity of 716.2 mA h g −1 after 50 cycles at a current density of 100 mA g −1 and reversible capacity of 517.9 mA h g −1 at 1 A g −1 . The performance we demonstrate herein suggests that Li–S battery may provide an opportunity for development of rechargeable battery systems

  10. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  11. Hydrothermal Synthesis of Analcime from Kutingkeng Formation Mudstone

    Science.gov (United States)

    Hsiao, Yin-Hsiu; Chen, Kuan-Ting; Ray, Dah-Tong

    2015-04-01

    In southwest of Taiwan, the foothill located in Tainan-Kaohsiung city is the exposed area of Pliocene strata to early Pleistocene strata. The strata are about a depth of five thousand, named as Kutigkeng Formation. The outcrop of Kutigkeng Formation is typical badlands, specifically called 'Moon World.' It is commonly known as no important economic applications of agricultural land. The mineral compositions of Kutingkeng Formation are quartz, clay minerals and feldspar. The clay minerals consist of illite, clinochlore and swelling clays. To study how the phase and morphology of analcime formed by hydrothermal synthesis were affected, analcime was synthesized from the mudstone of Kutinkeng Formation with microwave hydrothermal reaction was investigated. The parameters of the experiment were the reaction temperature, the concentration of mineralizer, solids/liquid ratio and time. The sodium silicate (Na2SiO3) were used as mineralizer. The results showed that the analcime could be synthesized by hydrothermal reaction above 180° from Kutinkeng Formation mudstone samples. At the highest temperature (240°) of this study, the high purity analcime could be produced. When the concentration of Na2SiO3=3~6M, analcime could be synthesized at 240°. The best solids/liquid ratio was approximate 1 to 5. The hydrothermal reaction almost was completed after 4 hours.

  12. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram.

    Science.gov (United States)

    Weng, Xiaole; Cockcroft, Jeremy K; Hyett, Geoffrey; Vickers, Martin; Boldrin, Paul; Tang, Chiu C; Thompson, Stephen P; Parker, Julia E; Knowles, Jonathan C; Rehman, Ihtesham; Parkin, Ivan; Evans, Julian R G; Darr, Jawwad A

    2009-01-01

    A novel High-Throughput Continuous Hydrothermal (HiTCH) flow synthesis reactor was used to make directly and rapidly a 66-sample nanoparticle library (entire phase diagram) of nanocrystalline Ce(x)Zr(y)Y(z)O(2-delta) in less than 12 h. High resolution PXRD data were obtained for the entire heat-treated library (at 1000 degrees C/1 h) in less than a day using the new robotic beamline I11, located at Diamond Light Source (DLS). This allowed Rietveld-quality powder X-ray diffraction (PXRD) data collection of the entire 66-sample library in <1 day. Consequently, the authors rapidly mapped out phase behavior and sintering behaviors for the entire library. Out of the entire 66-sample heat-treated library, the PXRD data suggests that 43 possess the fluorite structure, of which 30 (out of 36) are ternary compositions. The speed, quantity and quality of data obtained by our new approach, offers an exciting new development which will allow structure-property relationships to be accessed for nanoceramics in much shorter time periods.

  13. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong; Lu, Mengna; Ling, Xuetao; Jiao, Zheng; Chen, Lingli; Chen, Lu [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China); Hu, Pengfei [Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444 (China); Zhao, Bing, E-mail: bzhao@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444 (China)

    2015-10-05

    Highlights: • 3D porous GA/S nanocrystals are prepared by a one-step hydrothermal method. • The structure is affected by hydrothermal temperature and liquid sulfur’s viscosity. • The hybrid delivers a capacity of 716.2 mA h g{sup −1} after 50 cycles at 100 mA g{sup −1}. • The nanosized S, strong adsorbability and intimate contact of GNS are main factors. - Abstract: Lithium–sulfur (Li–S) batteries are receiving significant attention as a new energy source because of its high theoretical capacity and specific energy. However, the low sulfur loading and large particles (usually in submicron dimension) in the cathode greatly offset its advantage in high energy density and lead to the instability of the cathode and rapid capacity decay. Herein, we introduce a one-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals to suppress the rapid fading of sulfur electrode. It is found that the hydrothermal temperature and viscosity of liquid sulfur have significant effects on particle size and loading mass of sulfur nanocrystals, graphitization degree of graphene and chemical bonding between sulfur and oxygen-containing groups of graphene. The hybrid could deliver a specific capacity of 716.2 mA h g{sup −1} after 50 cycles at a current density of 100 mA g{sup −1} and reversible capacity of 517.9 mA h g{sup −1} at 1 A g{sup −1}. The performance we demonstrate herein suggests that Li–S battery may provide an opportunity for development of rechargeable battery systems.

  14. Synthesis and characterization of nanosized ceria powders by microwave-hydrothermal method

    International Nuclear Information System (INIS)

    Bonamartini Corradi, A.; Bondioli, F.; Ferrari, A.M.; Manfredini, T.

    2006-01-01

    Nanocrystalline ceria powders (CeO 2 ) have been prepared by adding NaOH to a cerium ammonium nitrate aqueous solution under microwave-hydrothermal conditions. In particular the effect of the synthesis conditions (time, pressure and concentration of both the precursor and the precipitant agent solutions) on the physical properties of the crystals have been evaluated. Microwave-hydrothermal treatment of 5 min at 13.4 atm allows to obtain almost crystallized powders (amorphous phase 4%) as underlined by Rietveld-reference intensity ratio (RIR) results

  15. Polymer-Assisted Hydrothermal Synthesis of Hierarchically Arranged Hydroxyapatite Nanoceramic

    Directory of Open Access Journals (Sweden)

    A. Joseph Nathanael

    2013-01-01

    Full Text Available Flower-like hydroxyapatite (HA nanostructures were synthesized by a polymer-assisted hydrothermal method. The thickness of the petals/plates decreased from 200 nm to 40 nm as the polymer concentration increased. The thickness also decreased as the hydrothermal treatment time increased from 6 to 12 hr. The HRTEM and SAED patterns suggest that the floral-like HA nanostructures are single crystalline in nature. Structural analysis based on XRD and Raman experiments implied that the produced nanostructure is a pure form of HA without any other impurities. The possible formation mechanism was discussed for the formation of flower-like HA nanostructures during polymer-assisted hydrothermal synthesis. Finally, in vitro cellular analysis revealed that the hierarchically arranged HA nanoceramic had improved cell viability relative to other structures. The cells were actively proliferated over these nanostructures due to lower cytotoxicity. Overall, the size and the crystallinity of the nanostructures played a role in improving the cell proliferation.

  16. Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing

    DEFF Research Database (Denmark)

    Rosa, Massimo; Gooden, P. N.; Butterworth, S.

    2017-01-01

    Water dispersions of nanometric yttria stabilized zirconia (YSZ) particles synthesized by Continuous Hydrothermal Synthesis are transferred into nano-inks for thin film deposition. YSZ nanoparticles are synthesized in supercritical conditions resulting in highly dispersed crystals of 10 nm in size...

  17. Hydrothermal synthesis and physicochemical properties of ruthenium(0) nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dikhtiarenko, A., E-mail: dikhtiarenkoalla@uniovi.es [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Khainakov, S.A.; Garcia, J.R.; Gimeno, J. [Departamento de Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Pedro, I. de; Fernandez, J. Rodriguez [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Ruthenium nanoparticles were synthesized by hydrothermal technique. Black-Right-Pointing-Pointer The average size of the nanoparticles are depend on the reducing agent used. Black-Right-Pointing-Pointer The magnetic response seems to be dominated by a paramagnetic contribution characteristic of the band electronic magnetism of the ruthenium(0) nanoparticles. - Abstract: The synthesis of ruthenium nanoparticles in hydrothermal conditions using mild reducing agents (succinic acid, ascorbic acid and sodium citrate) is reported. The shape of the nanoparticles depends on the type of the reducing agent, while the size is more influenced by the pH of the medium. The magnetic response seems to be dominated by a paramagnetic contribution characteristic of the band electronic magnetism of the nanoparticles.

  18. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis

    Science.gov (United States)

    Liu, F.; Chen, S.; Lin, Q.; Wang, X. D.; Cao, J. X.

    2018-01-01

    The xonotlite crystals were synthesized via the hydrothermal synthesis manner from CaO and SiO2 as the raw materials with their Si/Ca molar ratio of 1.0. Comparative dynamics analysis on xonotlite spherical particles synthesized via hydrothermal synthesis process was explored in this paper. The accuracy of the dynamic equation of xonotlite spherical particles was verified by two methods, one was comparing the production rate of the xonotlite products calculated by the dynamic equation with the experimental values, and the other was comparing the apparent activation energies calculated by the dynamic equation with that calculated by the Kondo model. The results indicated that the production rates of the xonotlite spherical particles calculated by the dynamic equation were in good agreement with the experimental values and the apparent activation energy of the xonotlite spherical particles calculated by dynamic equation (84 kJ·mol-1) was close to that calculated by Kondo model (77 kJ·mol-1), verifying the high accuracy of the dynamic equation.

  19. Hydrothermal synthesis and characterization of zirconia based catalysts

    Science.gov (United States)

    Caillot, T.; Salama, Z.; Chanut, N.; Cadete Santos Aires, F. J.; Bennici, S.; Auroux, A.

    2013-07-01

    In this work, three equimolar mixed oxides ZrO2/CeO2, ZrO2/TiO2, ZrO2/La2O3 and a reference ZrO2 have been synthesized by hydrothermal method. The structural and surface properties of these materials have been fully characterized by X-ray diffraction, transmission electron microscopy, surface area measurement, chemical analysis, XPS, infrared spectroscopy after adsorption of pyridine and adsorption microcalorimetry of NH3 and SO2 probe molecules. All investigated mixed oxides are amphoteric and possess redox centers on their surface. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid-base properties than classical coprecipitation method. Both Lewis and Brønsted acid sites are present on the surface of the mixed oxides. Compared to the other samples, the ZrO2/TiO2 material appears to be the best candidate for further application in acid-base catalysis.

  20. Hydrothermal synthesis of magnetite particles with uncommon crystal facets

    Directory of Open Access Journals (Sweden)

    Junki Sato

    2014-09-01

    Full Text Available Hydrothermal synthesis of Fe3O4 (magnetite particles was carried out using organic compounds as morphology control agents to obtain magnetite crystals with uncommon facets. It was established that the morphology of Fe3O4 crystals obtained by hydrothermal treatment of an aqueous solution containing Fe2+ and organic compounds depended on the organic compound used. The shape of the Fe3O4 particles obtained when no additives were used was quasi-octahedral. In contrast, the addition of picolinic acid, citric acid or pyridine resulted in the formation of polyhedral crystals, indicating the presence of not only {1 1 1}, {1 0 0} and {1 1 0} facets but also high-index facets including at least {3 1 1} and {3 3 1}. When citric acid was used as an additive, octahedral crystals with {1 1 1} facets also appeared, and their size decreased as the amount of citric acid was increased. Thus, control of Fe3O4 particle morphology was achieved by a simple hydrothermal treatment using additives.

  1. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  2. Structural archetypes in nickel(II) hybrid vanadates. Towards a directed hydrothermal synthesis

    International Nuclear Information System (INIS)

    Luis, R. Fernandez de; Urtiaga, M.K.; Mesa, J.L.; Rojo, T.; Arriortua, M.I.

    2009-01-01

    In the present work, we relate the modifications of the initial synthesis parameters (pH value, stoichiometry and concentration) with the different structural archetypes obtained in the {Ni/Bpy/VO} and {Ni/Bpe/VO} systems (4,4'-bipyridine (Bpy), 1,2-di(4-pyridyl) ethylene (Bpe)). The vanadium coordination is partially controlled by the hydrothermal synthesis conditions, and the final crystal structures depend on the synergetic interaction between the metal-organic subnets and the vanadium oxide subunits.

  3. Room temperature growth of ZnO nanorods by hydrothermal synthesis

    Science.gov (United States)

    Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo

    2018-05-01

    The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.

  4. Hydrothermal synthesis of hydroxyapatite nanorods using pyridoxal-5′-phosphate as a phosphorus source

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin-Yu; Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn; Lu, Bing-Qiang; Chen, Feng; Qi, Chao; Zhao, Jing; Wu, Jin

    2014-07-01

    Graphical abstract: Hydroxyapatite nanorods are synthesized using biocompatible biomolecule pyridoxal-5′-phosphate as a new organic phosphorus source by the hydrothermal method. - Highlights: • Hydrothermal synthesis of hydroxyapatite nanorods is reported. • Biocompatible pyridoxal-5′-phosphate is used as an organic phosphorus source. • This method is simple, surfactant-free and environmentally friendly. - Abstract: Hydroxyapatite nanorods are synthesized by the hydrothermal method using biocompatible biomolecule pyridoxal-5′-phosphate (PLP) as a new organic phosphorus source. In this method, PLP biomolecules are hydrolyzed to produce phosphate ions under hydrothermal conditions, and these phosphate ions react with pre-existing calcium ions to form hydroxyapatite nanorods. The effects of experimental conditions including hydrothermal temperature and time on the morphology and crystal phase of the products are investigated. This method is simple, surfactant-free and environmentally friendly. The products are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric (TG) analysis.

  5. A rapid hydrothermal synthesis of rutile SnO2 nanowires

    International Nuclear Information System (INIS)

    Lupan, O.; Chow, L.; Chai, G.; Schulte, A.; Park, S.; Heinrich, H.

    2009-01-01

    Tin oxide (SnO 2 ) nanowires with rutile structure have been synthesized by a facile hydrothermal method at 98 deg. C. The morphologies and structural properties of the as-grown nanowires/nanoneedles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction, X-ray diffraction and Raman spectroscopy. The SEM images reveal tetragonal nanowires of about 10-100 μm in length and 50-100 nm in radius. The Raman scattering peaks indicate a typical rutile phase of the SnO 2 . The effects of molar ratio of SnCl 4 to NH 4 OH on the growth mechanism are discussed

  6. Synthesis and colloidal properties of anisotropic hydrothermal barium titanate

    Science.gov (United States)

    Yosenick, Timothy James

    2005-11-01

    Nanoparticles of high dielectric constant materials, especially BaTiO3, are required to achieve decreased layer thickness in multilayer ceramic capacitors (MLCCs). Tabular metal nanoparticles can produce thin metal layers with low surface roughness via electrophoretic deposition (EPD). To achieve similar results with dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. The goal of this study was to investigate the deposition of thin BaTiO3 layers using a colloidal process. The synthesis, interfacial chemistry and colloidal properties of hydrothermal BaTiO3 a model particle system, was investigated. After characterization of the material system particulates were deposited to form thin layers using EPD. In the current study, the synthesis of BaTiO3 has been investigated using a hydrothermal route. TEM and AFM analyses show that the synthesized particles are single crystal with a majority of the particle having a zone axis and {111} large face. The particles have a median thickness of 5.8 +/- 3.1 nm and face diameter of 27.1 +/- 12.3 nm. Particle growth was likely controlled by the formation of {111} twins and the synthesis pH which stabilizes the {111} face during growth. With limited growth in the direction, the particles developed a plate-like morphology. Physical property characterization shows the powder was suitable for further processing with high purity, low hydrothermal defect concentration, and controlled stoichiometry. TEM observations of thermally treated powders indicate that the particles begin to loose the plate-like morphology by 900 °C. The aqueous passivation, dispersion, and doping of nanoscale BaTiO 3 powders was investigated. Passivation BaTiO3 was achieved through the addition of oxalic acid. The oxalic acid selectively adsorbs onto the particle surface and forms a chemically stable 2-3 nm layer of barium oxalate. The negative surface charge of the oxalate effectively passivated the BaTiO3 providing a surface

  7. Synthesis and characterization of nanosized MnZn ferrites via a modified hydrothermal method

    Science.gov (United States)

    Li, Mingling; Liu, Xiansong; Xu, Taotao; Nie, Yu; Li, Honglin; Zhang, Cong

    2017-10-01

    Nanosized MnZn ferrite particles, with narrow size distribution, regular morphology and high saturation magnetization have been synthesized via a modified hydrothermal method. This modified hydrothermal method involves a chemical co-precipitation of hydroxides under a vacuum condition using potassium hydroxide as precipitating agent, followed by a separate hydrothermal process. The microstructure and magnetic properties of the synthesized nanoparticles were investigated by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM). The effects of different synthesis conditions (excess ratio of precipitating agent and hydrothermal reaction time) on the microstructure and magnetic properties of the as-synthesized nanoparticles were discussed. The magnetic measurements indicated that the obtained samples were superparamagnetic in nature at room temperature. Moreover, the MnZn ferrite nanoparticles with excellent magnetic performance could be synthesized at 180 °C for a short reaction time (3 h).

  8. Facile Low Temperature Hydrothermal Synthesis of BaTiO3 Nanoparticles Studied by In Situ X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Ola G. Grendal

    2018-06-01

    Full Text Available Ferroelectric materials are crucial for today’s technological society and nanostructured ferroelectric materials are important for the downscaling of devices. Controlled and reproducible synthesis of these materials are, therefore, of immense importance. Hydrothermal synthesis is a well-established synthesis route, with a large parameter space for optimization, but a better understanding of nucleation and growth mechanisms is needed for full utilization and control. Here we use in situ X-ray diffraction to follow the nucleation and growth of BaTiO3 formed by hydrothermal synthesis using two different titanium precursors, an amorphous titania precipitate slurry and a Ti-citric acid complex solution. Sequential Rietveld refinement was used to extract the time dependency of lattice parameters, crystallite size, strain, and atomic displacement parameters. Phase pure BaTiO3 nanoparticles, 10–15 nm in size, were successfully synthesized at different temperatures (100, 125, and 150 °C from both precursors after reaction times, ranging from a few seconds to several hours. The two precursors resulted in phase pure BaTiO3 with similar final crystallite size. Finally, two different growth mechanisms were revealed, where the effect of surfactants present during hydrothermal synthesis is discussed as one of the key parameters.

  9. Microwave hydrothermal synthesis and characterization of PZT 52/48 powders

    International Nuclear Information System (INIS)

    Teixeira, G.F.; Gasparotto, G.; Santos, N.A.; Zaghete, M.A.; Varela, J.A.; Longo, E.

    2009-01-01

    Full text: Lead Zirconate Titanate (PZT) is a ceramic witch has great interest because of their ferroelectric, piezoelectric, and other electrical properties. In this work Pb(ZrxTi1-x)O3 powders were synthesized by microwave hydrothermal synthesis (M-H) at 180°C without excess lead content. This method allows obtaining particles whit nanometer size, good stoichiometric controls, high purity and crystalline degree at low temperatures and short times of synthesis. Powders were synthesized with molar concentration of 0.15 mol.L -1 during different times: 30 min, 2, 4, 6 and 8 h. After that the powders were characterized by X-ray diffraction (XRD), Field Emission Gun (FEG) and photoluminescence (PL). Through analysis it is observed that the crystalline phase of PZT is obtained from 2 hours of synthesis and this same time also presents more intense PL emission. (author)

  10. Structural archetypes in nickel(II) hybrid vanadates. Towards a directed hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luis, R. Fernandez de; Urtiaga, M.K. [Dpto. Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Mesa, J.L.; Rojo, T. [Dpto. Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Arriortua, M.I. [Dpto. Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/UPV/EHU, Apdo. 644, 48080 Bilbao (Spain)], E-mail: maribel.arriortua@ehu.es

    2009-07-01

    In the present work, we relate the modifications of the initial synthesis parameters (pH value, stoichiometry and concentration) with the different structural archetypes obtained in the {l_brace}Ni/Bpy/VO{r_brace} and {l_brace}Ni/Bpe/VO{r_brace} systems (4,4'-bipyridine (Bpy), 1,2-di(4-pyridyl) ethylene (Bpe)). The vanadium coordination is partially controlled by the hydrothermal synthesis conditions, and the final crystal structures depend on the synergetic interaction between the metal-organic subnets and the vanadium oxide subunits.

  11. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    Science.gov (United States)

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  12. Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates

    Science.gov (United States)

    Barge, Laura M.; Doloboff, Ivria J.; Russell, Michael J.; VanderVelde, David; White, Lauren M.; Stucky, Galen D.; Baum, Marc M.; Zeytounian, John; Kidd, Richard; Kanik, Isik

    2014-03-01

    Cells use three main ways of generating energy currency to drive metabolism: (i) conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by the proton motive force through the rotor-stator ATP synthase; (ii) the synthesis of inorganic phosphate˜phosphate bonds via proton (or sodium) pyrophosphate synthase; or (iii) substrate-level phosphorylation through the direct donation from an active phosphoryl donor. A mechanism to produce a pyrophosphate bond as “energy currency” in prebiotic systems is one of the most important considerations for origin of life research. Baltscheffsky (1996) suggests that inorganic pyrophosphate (PO74-; PPi) may have preceded ATP/ADP as an energy storage molecule in earliest life, produced by an H+ pyrophosphatase. Here we test the hypothesis that PPi could be synthesized in inorganic precipitates simulating hydrothermal chimney structures transected by thermal and/or ionic gradients. Appreciable yields of PPi were obtained via substrate phosphorylation by acetyl phosphate within the iron sulfide/silicate precipitates at temperatures expected for an alkaline hydrothermal system. The formation of PPi only occurred in the solid phase, i.e. when both Pi and the phosphoryl donor were precipitated with Fe-sulfides or Fe-silicates. The amount of Ac-Pi incorporated into the precipitate was a significant factor in the amount of PPi that could form, and phosphate species were more effectively incorporated into the precipitate at higher temperatures (⩾50 to >85 °C). Thus, we expect that the hydrothermal precipitate would be more enriched in phosphate (and especially, Ac-Pi) near the inner margins of a hydrothermal mound where PPi formation would be at a maximum. Iron sulfide and iron silicate precipitates effectively stabilized Ac-Pi and PPi against hydrolysis (relative to hydrolysis in aqueous solution). Thus it is plausible that PPi could accumulate as an energy currency up to useful concentrations for early life in a

  13. Production of Yttria-doped zirconia by hydrothermal synthesis: thermodynamical analysis

    International Nuclear Information System (INIS)

    Nascimento Dias, A.J. do; Ogasawara, T.

    1993-01-01

    After a short review of the literature on Hydrothermal Synthesis of Zirconia, the computation and construction of the Standard Hydrogen Scale Potential versus pH diagrams have been performed starting from data supplied by Thermodynamic Tables. Diagrams have been developed for several temperatures (in the range 298.15 K up to 573.15 K) and for activities of the Y and Zr in the aqueous solution ranging from 0,0001 M up to 1 M. The resultant diagrams have been analyzed and interpreted. The results gotten from the study give good elucidation of the phenomena taking place in the hydrothermal treatment of the Zirconia Powders inside an autoclave at temperatures between 473.15 K and 573.15 K. The conditions for crystallization of the doped zirconia at temperatures lower than 573.15 K are better visualized. (author)

  14. Oleic-acid-coated CoFe2O4 nanoparticles synthesized by co-precipitation and hydrothermal synthesis

    International Nuclear Information System (INIS)

    Gyergyek, Sašo; Drofenik, Miha; Makovec, Darko

    2012-01-01

    Highlights: ► Synthesis of oleic-acid-coated CoFe 2 O 4 nanoparticles from an aqueous solution. ► During the co-precipitation of Co 2+ /Fe 3+ single-phase spinel forms. ► During the co-precipitation of Co 2+ /Fe 2+ , feroxyhyte forms in addition to spinel. ► Oleic acid increases the spinel formation temperature and limits particle growth. ► Colloidal suspensions of ferrimagnetic CoFe 2 O 4 were prepared. - Abstract: Oleic-acid-coated CoFe 2 O 4 nanoparticles were synthesized by co-precipitation and hydrothermal synthesis. The coprecipitation of the nanoparticles was achieved by the rapid addition of a strong base to an aqueous solution of cations in the presence of the oleic acid surfactant, or without this additive. The nanoparticles were also synthesized by a hydrothermal treatment of suspensions of the precipitates, coprecipitated at room temperature in the presence of the oleic acid, or without it. The influence of the synthesis conditions, such as the valence state of the iron cation in the starting aqueous solution, the temperature of the treatment and the presence of oleic acid, on the particles size was systematically studied. X-ray powder diffractometry (XRD) and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS) revealed that, although spinel forms at room temperature, a substantial amount of Co was incorporated within the secondary, feroxyhyte-like phase when the iron cation was in the 2+ state. In contrast, when iron was in the 3+ state, the spinel forms at elevated temperatures of approximately 60 °C. The presence of the oleic acid further increased the formation temperature for the stoichiometric spinel. Moreover, the oleic acid impeded the particles’ growth and enabled the preparation of colloidal suspensions of the nanoparticles in non-polar organic solvents. The nanoparticles’ size was successfully controlled by the temperature of the synthesis in the region where superparamagnetism

  15. Simulation for scale-up of a confined jet mixer for continuous hydrothermal flow synthesis of nanomaterials

    OpenAIRE

    Ma, CY; Liu, JJ; Zhang, Y; Wang, XZ

    2015-01-01

    Reactor performance of confined jet mixers for continuous hydrothermal flow synthesis of nanomaterials is investigated for the purpose of scale-up from laboratory scale to pilot-plant scale. Computational fluid dynamics (CFD) models were applied to simulate hydrothermal fluid flow, mixing and heat transfer behaviours in the reactors at different volumetric scale-up ratios (up to 26 times). The distributions of flow and heat transfer variables were obtained using ANSYS Fluent with the tracer c...

  16. Hydrothermal synthesis of a layered-type W-Ti-O mixed metal oxide and its solid acid activity

    NARCIS (Netherlands)

    Murayama, T.; Nakajima, K.; Hirata, J.; Omata, K.; Hensen, E.J.M.; Ueda, W.

    2017-01-01

    A layered-type W–Ti–O mixed oxide was synthesized by hydrothermal synthesis from an aqueous solution of ammonium metatungstate and titanium sulfate. To avoid the formation of titania, oxalic acid was used as a reductant. Optimized synthesis led to rod-like particles comprised of MO6 (M = W, Ti)

  17. Advantage of low-temperature hydrothermal synthesis to grow stoichiometric crednerite crystals

    Science.gov (United States)

    Poienar, Maria; Martin, Christine; Lebedev, Oleg I.; Maignan, Antoine

    2018-06-01

    This work reports a new approach for the growth of stoichiometric crednerite CuMnO2 crystals. The hydrothermal reaction, starting from soluble metal sulphates as precursors, is assisted by ethylene glycol and the formation of crednerite is found to depend strongly on pH and temperature. This method allows obtaining small hexagonal platelets with the larger dimension about 1.0-1.5 μm and with a composition characterized by a Cu/Mn ratio of 1. Thus, these crystals differ from the needle-like millimetric ones obtained by the flux technique for which the composition departs from the expected one and is close to Cu1.04Mn0.96. This monitoring of the cationic composition in crednerite, using hydrothermal synthesis, is important as the Cu/Mn ratio controls the low temperature antiferromagnetic ground-state.

  18. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Muhammad Faizan Shareef

    2017-10-01

    Full Text Available This paper presents the effect of a synthesis method for cobalt catalyst supported on hydrotalcite material for Fischer-Tropsch synthesis. The hydrotalcite supported cobalt (HT-Co catalysts were synthesized by co-precipitation and hydrothermal method. The prepared catalysts were characterized by using various techniques like BET (Brunauer–Emmett–Teller, SEM (Scanning Electron Microscopy, TGA (Thermal Gravimetric Analysis, XRD (X-ray diffraction spectroscopy, and FTIR (Fourier Transform Infrared Spectroscopy. Fixed bed micro reactor was used to test the catalytic activity of prepared catalysts. The catalytic testing results demonstrated the performance of hydrotalcite based cobalt catalyst in Fischer-Tropsch synthesis with high selectivity for liquid products. The effect of synthesis method on the activity and selectivity of catalyst was also discussed. Copyright © 2017 BCREC Group. All rights reserved Received: 3rd November 2016; Revised: 26th February 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Sharif, M.S., Arslan, M., Iqbal, N., Ahmad, N., Noor, T. (2017. Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3: 357-363 (doi:10.9767/bcrec.12.3.762.357-363

  19. Microwave-assisted hydrothermal synthesis of CePO4 nanostructures: Correlation between the structural and optical properties

    International Nuclear Information System (INIS)

    Palma-Ramírez, D.; Domínguez-Crespo, M.A.; Torres-Huerta, A.M.; Dorantes-Rosales, H.; Ramírez-Meneses, E.; Rodríguez, E.

    2015-01-01

    Highlights: • An enhancement in the hydrothermal synthesis for obtaining of CePO 4 is presented. • Microwave energy can replace the energy by convection for obtaining CePO 4 . • CePO 4 demonstrates to be an option to increase the optical properties of polymers. • Adjusting the pH, the sintering process is not necessary to obtain the desire phase. • CePO 4 morphologies undergo evolution from nanorods to semispherical nanoparticles. - Abstract: In this work, the microwave-assisted hydrothermal method is proposed as an alternative to the synthesis of cerium phosphate (CePO 4 ) nanostructures to evaluate the influence of different synthesis parameters on both the structural and optical properties. In order to reach this goal, two different sets of experiments were designed, varying the reaction temperature (130 and 180 °C), synthesis time (15 and 30 min) and sintering temperature (400 and 600 °C), maintaining a constant pH = 3. Thereafter, two experimental conditions were selected to assess changes in the properties of CePO 4 nanopowders with pH (1, 5, 9 and 11). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Diffuse reflectance properties of CePO 4 with different microstructures were studied. The results demonstrated that by using the microwave-assisted hydrothermal method, the shape, size and structural phase of CePO 4 can be modulated by using relatively low synthesis temperatures and short reaction times, and depending on pH, a sintering process is not needed to obtain either a desired phase or size. Under the selected experimental conditions, the materials underwent an evolution from nanorods to semispherical nanoparticles, accompanied by a phase transition from hexagonal to monoclinic

  20. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    Energy Technology Data Exchange (ETDEWEB)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of); Shakiba, Atefeh [Department of Material Science and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Vahdati-Khaki, Jalil; Zebarjad, Seyed Mojtaba [Department of Metallurgical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad (FUM) Campus, Azadi Sq., Mashhad, Khorasan Razavi (Iran, Islamic Republic of)

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reaction temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.

  1. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  2. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    International Nuclear Information System (INIS)

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  3. Characterization structural and morphology ZSM-5 zeolite by hydrothermal synthesis

    International Nuclear Information System (INIS)

    Silva, V.J.; Crispim, A.C.; Queiroz, M.B.; Laborde, H.M.; Rodrigues, M.G.F.; Menezes, R.R.

    2009-01-01

    Solid acids are catalytic materials commonly used in the chemical industry. Among these zeolites are the most important business processes including water treatment, gas separation, and cracking long hydrocarbon chains to produce high octane gasoline. Its synthesis, characterization and applications have been widely studied. The objective this study was to synthesize the ZSM-5 zeolite for future use in separation processes and catalysis. The zeolite ZSM-5 was prepared by hydrothermal synthesis at 170°C, using silica, deionized water and the director of structures (TPABr - tetrapropylammonium bromide). The materials were characterized by X ray diffraction (XRD), scanning electron microscopy (SEM) and semiquantitative chemical analysis by X ray fluorescence (XRF). According to the XRD was possible to observe the formation of ZSM-5 zeolite, with peaks intense and well defined. The SEM showed the formation of individual particles, clean, rounded shapes. (author)

  4. Microwave-Hydrothermal Synthesis and Characterization of High-Purity Nb Doped BaTiO3 Nanocrystals

    Directory of Open Access Journals (Sweden)

    A. Khanfekr

    2014-01-01

    Full Text Available The synthesis of Nb doped BaTiO3 has been investigated under Microwave-Hydrothermal (MH conditions in the temperature of 150°C for only 2 h using C16H36O4Ti, BaH2O2.8H2O and NbCl5 as Ba, Ti and  Nb sources, respectively.  Typical experiments performed on MH processing have not yet reported for Nb doped BaTiO3.  In the MH process, the formation of high purity nano tetragonal Nb-BaTiO3 was strongly enhanced. New hydrothermal method was used instead of the previous solid state reaction for the BaTiO3±Nb2O3 system. The new method uses high pressure to create nano dimension particles in a lower time and temperature. In case of the phase evolution studies, the XRD pattern measurements and Raman spectroscopy were performed. TEM and FE-SEM images were taken for the detailed analysis of the particle size, surface and morphology.  Synthesis of Nb doped BaTiO3 with the Microwave-hydrothermal provides an advantage of fast crystallization and reduced crystal size when compared to existing methods.

  5. Structural study of the controlled hydrothermal synthesis of LiMn2O4 and LixMnyO2

    DEFF Research Database (Denmark)

    Christiansen, Troels Lindahl; Jensen, Kirsten Marie Ørnsbjerg; Shen, Yanbin

    , a layered structure, which can also be described as a defective spinel structure. Here, we show that both LiMn2O4 and LixMnyO2 nanoparticles can be synthesized from a simple, low-temperature hydrothermal synthesis. By tuning a single synthesis parameter (Li-concentration) each of the 2 structures...

  6. Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.

    2017-12-01

    Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.

  7. Microwave-assisted hydrothermal synthesis of CePO{sub 4} nanostructures: Correlation between the structural and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Palma-Ramírez, D. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Domínguez-Crespo, M.A., E-mail: mdominguezc@ipn.mx [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Torres-Huerta, A.M. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico); Dorantes-Rosales, H. [Instituto Politécnico Nacional, ESIQIE, Departamento de Metalurgia, C.P. 07300 México D.F. (Mexico); Ramírez-Meneses, E. [Universidad Iberoamericana, Departamento de Ingeniería y Ciencias Químicas, Prolongación Paseo de la Reforma 880, Lomas de Santa Fe, C.P. 01219 México D.F. (Mexico); Rodríguez, E. [Instituto Politécnico Nacional, CICATA-Unidad Altamira, Km 14.5, Carretera Tampico-Puerto Industrial Altamira, C.P. 89600 Altamira, Tamps (Mexico)

    2015-09-15

    Highlights: • An enhancement in the hydrothermal synthesis for obtaining of CePO{sub 4} is presented. • Microwave energy can replace the energy by convection for obtaining CePO{sub 4}. • CePO{sub 4} demonstrates to be an option to increase the optical properties of polymers. • Adjusting the pH, the sintering process is not necessary to obtain the desire phase. • CePO{sub 4} morphologies undergo evolution from nanorods to semispherical nanoparticles. - Abstract: In this work, the microwave-assisted hydrothermal method is proposed as an alternative to the synthesis of cerium phosphate (CePO{sub 4}) nanostructures to evaluate the influence of different synthesis parameters on both the structural and optical properties. In order to reach this goal, two different sets of experiments were designed, varying the reaction temperature (130 and 180 °C), synthesis time (15 and 30 min) and sintering temperature (400 and 600 °C), maintaining a constant pH = 3. Thereafter, two experimental conditions were selected to assess changes in the properties of CePO{sub 4} nanopowders with pH (1, 5, 9 and 11). The crystal structure and morphology of the nanostructures were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), respectively. Diffuse reflectance properties of CePO{sub 4} with different microstructures were studied. The results demonstrated that by using the microwave-assisted hydrothermal method, the shape, size and structural phase of CePO{sub 4} can be modulated by using relatively low synthesis temperatures and short reaction times, and depending on pH, a sintering process is not needed to obtain either a desired phase or size. Under the selected experimental conditions, the materials underwent an evolution from nanorods to semispherical nanoparticles, accompanied by a phase transition from hexagonal to monoclinic.

  8. Continuous Hydrothermal Flow Synthesis of LaCrO3 in Supercritical Water and Its Application in Dual-Phase Oxygen Transport Membranes

    DEFF Research Database (Denmark)

    Xu, Yu; Pirou, Stéven; Zielke, Philipp

    2018-01-01

    The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation of this p......The continuous production of LaCrO3 particles (average edge size 639 nm, cube-shaped) by continuous hydrothermal flow synthesis using supercritical water is reported for the first time. By varying the reaction conditions, it was possible to suggest a reaction mechanism for the formation...

  9. Ruthenium(V) oxides from low-temperature hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hiley, Craig I.; Walton, Richard I. [Department of Chemistry, University of Warwick, Coventry (United Kingdom); Lees, Martin R. [Department of Physics, University of Warwick, Coventry (United Kingdom); Fisher, Janet M.; Thompsett, David [Johnson Matthey Technology Centre, Reading (United Kingdom); Agrestini, Stefano [Max-Planck Institut, CPfS, Dresden (Germany); Smith, Ronald I. [ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot (United Kingdom)

    2014-04-22

    Low-temperature (200 C) hydrothermal synthesis of the ruthenium oxides Ca{sub 1.5}Ru{sub 2}O{sub 7}, SrRu{sub 2}O{sub 6}, and Ba{sub 2}Ru{sub 3}O{sub 9}(OH) is reported. Ca{sub 1.5}Ru{sub 2}O{sub 7} is a defective pyrochlore containing Ru{sup V/VI}; SrRu{sub 2}O{sub 6} is a layered Ru{sup V} oxide with a PbSb{sub 2}O{sub 6} structure, whilst Ba{sub 2}Ru{sub 3}O{sub 9}(OH) has a previously unreported structure type with orthorhombic symmetry solved from synchrotron X-ray and neutron powder diffraction. SrRu{sub 2}O{sub 6} exhibits unusually high-temperature magnetic order, with antiferromagnetism persisting to at least 500 K, and refinement using room temperature neutron powder diffraction data provides the magnetic structure. All three ruthenates are metastable and readily collapse to mixtures of other oxides upon heating in air at temperatures around 300-500 C, suggesting they would be difficult, if not impossible, to isolate under conventional high-temperature solid-state synthesis conditions. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  11. Hydrothermal synthesis of highly water-dispersible anatase nanocrystals from transparent aqueous sols of titanate colloids

    International Nuclear Information System (INIS)

    Ban, Takayuki; Tanaka, Yusuke; Ohya, Yutaka

    2011-01-01

    Transparent colloidal aqueous solutions of anatase nanocrystals were hydrothermally synthesized from aqueous transparent sols with tetramethylammonium titanate colloids, the surfaces of which were modified with citric acid, by structural conversion of the titanate to anatase. This modification hindered coalescence of the titanate colloids during the hydrothermal synthesis. Although the amount of citric acid adsorbed on the colloids was reduced during hydrothermal treatment, a small amount of citric acid was adsorbed on the resulting anatase nanocrystals. Moreover, the use of the titanate colloids as a precursor was compared with the use of a citrato Ti complex, tetramethylammonium citratotitanate. The hydrothermal treatment of the transparent aqueous solutions of the Ti complex yielded opaque solutions with large anatase colloids, suggesting that the titanate colloids were useful for preparing transparent anatase colloidal solutions. Because the shape and size of resulting colloids may be dependent on the size and shape of starting colloids, the use of titanate colloids as a precursor may make it easy to control size and shape of anatase colloids.

  12. Hydrothermal synthesis and sol-gel methods for CdS particle production in different morphologies and their use in wastewater applications

    OpenAIRE

    Tuncer, Cansel

    2018-01-01

    In this study, CdSnanoparticles were synthesized in different sizes and morphologies using twodifferent methods. First, the synthesis of both cauliflower-type CdS microspheresand CdS nanoflower-type microstructures by hydrothermal synthesis was carriedout in a steel reactors with teflon chamber. While polyethylene glycol andthioacetamide were used in the synthesis of cauliflower-type CdS microspheres,thiourea was used as a sulfur source in the synthesis of nanoflower CdS microstructures.Spher...

  13. Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials

    DEFF Research Database (Denmark)

    Zielke, Philipp; Xu, Yu; Simonsen, Søren Bredmose

    2016-01-01

    Computational fluid dynamics simulations were employed to evaluate several mixer geometries for a novel two-stage continuous hydrothermal flow synthesis reactor. The addition of a second stage holds the promise of allowing the synthesis of functionalized nano-materials as for example core-shell...... or decorated particles. Based on the simulation results, a reactor system employing a confined jet mixer in the first and a counter-flow mixer in the second stage was designed and built. The two-stage functionality and synthesis capacity is shown on the example of single- and two-stage syntheses of pure...... and mixed-phase NiO and YSZ particles....

  14. Al-doped SnO2 nanocrystals from hydrothermal systems

    International Nuclear Information System (INIS)

    Jin Haiying; Xu Yaohua; Pang Guangsheng; Dong Wenjun; Wan Qiang; Sun Yan; Feng Shouhua

    2004-01-01

    Nanoparticles of Al-doped SnO 2 have been hydrothermally synthesized. The influences of the hydrothermal reaction time, the molar ratio of Sn/Al as well as the pH value of the solution have been studied. During the hydrothermal synthesis, the particle's core is rich in Sn and the surface is rich in Al. The Al-rich surface prevents the particles from further growing up either in the hydrothermal condition or during the calcination at 600 deg. C for a short period of time. The optimal hydrothermal synthesis condition of the nanoparticles is pH 5, Sn/Al=4:1 and 12 h at 160 deg. C. The products have been studied by XRD, TEM and 27 Al solid-state NMR

  15. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Moura, Ana P. de [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Freire, Poliana G. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Silva, Luis F. da; Longo, Elson [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Munoz, Rodrigo A.A. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Lima, Renata C., E-mail: rclima@iqufu.ufu.br [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil)

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  16. Microwave radiation hydrothermal synthesis and characterization of micro- and mesoporous composite molecular sieve Y/SBA-15

    Directory of Open Access Journals (Sweden)

    Wenyuan Wu

    2017-05-01

    Full Text Available A microwave radiation hydrothermal method to control synthesis of micro- and mesoporous Y/SBA-15 composite molecular sieves was reported. The synthesized SBA-15 and Y/SBA-15 were characterized by scanning electron microscopy (SEM and N2 adsorption–desorption. The three kinds of different concentrations of hydrochloric acid (0.75 M, 2 M and 3.25 M were used to investigate the effect on Y/SBA-15. The analysis results of the composite products indicated that the optimization synthesis condition employed zeolite type Y and TEOS as silicon sources under 0.75 M hydrochloric acid by the microwave radiation hydrothermal synthesis method. The N2 adsorption–desorption test results of micro–mesoporous composite molecular sieve type Y/SBA-15 in mesoporous extent indicated that SBET is 355.529 m2/g, D‾BET is 4.050 nm, and mesoporous aperture focuses on the distribution region of 5.3 nm. It was found that the received composite product has an appropriate proportion of smaller size, larger size pore structure and the thicker pore wall. In addition, its internal channels have a high degree of order and smooth flow in long-range channels.

  17. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    Energy Technology Data Exchange (ETDEWEB)

    Attallah, Olivia A., E-mail: olivia.adly@hu.edu.eg [Center of Nanotechnology, Nile University, 12677 Giza (Egypt); Pharmaceutical Chemistry Department, Heliopolis University, 11777 El Salam, Cairo (Egypt); Girgis, E. [Solid State Physics Department, National Research Center, 12622 Dokki, Giza (Egypt); Advanced Materials and Nanotechnology Lab, CEAS, National Research Center, 12622 Dokki, Giza (Egypt); Abdel-Mottaleb, Mohamed M.S.A. [Center of Nanotechnology, Nile University, 12677 Giza (Egypt)

    2016-02-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  18. Synthesis of non-aggregated nicotinic acid coated magnetite nanorods via hydrothermal technique

    International Nuclear Information System (INIS)

    Attallah, Olivia A.; Girgis, E.; Abdel-Mottaleb, Mohamed M.S.A.

    2016-01-01

    Non-aggregated magnetite nanorods with average diameters of 20–30 nm and lengths of up to 350 nm were synthesized via in situ, template free hydrothermal technique. These nanorods capped with different concentrations (1, 1.5, 2 and 2.5 g) of nicotinic acid (vitamin B3); possessed good magnetic properties and easy dispersion in aqueous solutions. Our new synthesis technique maintained the uniform shape of the nanorods even with increasing the coating material concentration. The effect of nicotinic acid on the shape, particle size, chemical structure and magnetic properties of the prepared nanorods was evaluated using different characterization methods. The length of nanorods increased from 270 nm to 350 nm in nicotinic acid coated nanorods. Goethite and magnetite phases with different ratios were the dominant phases in the coated samples while a pure magnetite phase was observed in the uncoated one. Nicotinic acid coated magnetic nanorods showed a significant decrease in saturation magnetization than uncoated samples (55 emu/g) reaching 4 emu/g in 2.5 g nicotinic acid coated sample. The novel synthesis technique proved its potentiality to prepare coated metal oxides with one dimensional nanostructure which can function effectively in different biological applications. - Highlights: • We synthesize nicotinic acid coated magnetite nanorods via hydrothermal technique • Effect of nicotinic acid concentration on the nanorods properties was significant • Nanorods maintained uniform shape with increased concentration of nicotinic acid • Alterations occurred in particle size, mineral phases and magnetics of coated samples.

  19. Selective oxidation of propylene to acrolein by hydrothermally synthesized bismuth molybdates

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2014-01-01

    Hydrothermal synthesis has been used as a soft chemical method to prepare bismuth molybdate catalysts for the selective oxidation of propylene to acrolein. All obtained samples displayed a plate-like morphology, but their individual aspect ratios varied with the hydrothermal synthesis conditions...... of nitric acid during hydrothermal synthesis enhanced both propylene conversion and acrolein yield, possibly due to a change in morphology. Formation of β-Bi2Mo2O9 was not observed under the applied conditions. In general, the catalytic performance of all samples decreased notably after calcination at 550...

  20. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires

    Directory of Open Access Journals (Sweden)

    Magnus Willander

    2013-09-01

    Full Text Available Cetyltrimethyl ammonium bromide cationic (CTAB surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD, scanning electron microscopy (SEM and high resolution transmission electron microscopy (HRTEM techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS. This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  1. Hydrothermal Synthesis of Nanoclusters of ZnS Comprised on Nanowires.

    Science.gov (United States)

    Ibupoto, Zafar Hussain; Khun, Kimleang; Liu, Xianjie; Willander, Magnus

    2013-09-09

    Cetyltrimethyl ammonium bromide cationic (CTAB) surfactant was used as template for the synthesis of nanoclusters of ZnS composed of nanowires, by hydrothermal method. The structural and morphological studies were performed by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) techniques. The synthesized ZnS nanoclusters are composed of nanowires and high yield on the substrate was observed. The ZnS nanocrystalline consists of hexagonal phase and polycrystalline in nature. The chemical composition of ZnS nanoclusters composed of nanowires was studied by X-ray photo electron microscopy (XPS). This investigation has shown that the ZnS nanoclusters are composed of Zn and S atoms.

  2. Gram-scale synthesis of highly crystalline, 0-D and 1-D SnO2 nanostructures through surfactant-free hydrothermal process

    International Nuclear Information System (INIS)

    Pal, Umapada; Pal, Mou; Sánchez Zeferino, Raul

    2012-01-01

    We report the synthesis of highly crystalline SnO 2 nanoparticle and nanorod structures with average diameters well within quantum confinement limit (3.5−6.4 nm), through surfactant-free hydrothermal synthesis. The size and shape of the nanostructures could be controlled by controlling the pH (4.5–13.0) of the reaction mixture and the temperature of hydrothermal treatment. Probable mechanisms for the variation of particle size and growth of one-dimensional structures are presented considering the size-dependent crystal solubility at lower pH values of the reaction solution and Ostwald ripening of the quasi-spherical nanoparticles at higher pH values, respectively. Variation of optical band gap energy and hence the effects of quantum confinement in the nanostructures have been studied.

  3. Bismuth molybdate catalysts prepared by mild hydrothermal synthesis: Influence of pH on the selective oxidation of propylene

    DEFF Research Database (Denmark)

    Schuh, Kirsten; Kleist, Wolfgang; Høj, Martin

    2015-01-01

    A series of bismuth molybdate catalysts with relatively high surface area was prepared via mild hydrothermal synthesis. Variation of the pH value and Bi/Mo ratio during the synthesis allowed tuning of the crystalline Bi-Mo oxide phases, as determined by X-ray diffraction (XRD) and Raman...... spectroscopy. The pH value during synthesis had a strong influence on the catalytic performance. Synthesis using a Bi/Mo ratio of 1/1 at pH ≥ 6 resulted in γ-Bi2MoO6, which exhibited a better catalytic performance than phase mixtures obtained at lower pH values. However, a significantly lower catalytic...

  4. Hydrothermal Synthesis of Disulfide-Containing Uranyl Compounds. In Situ Ligand Synthesis versus Direct Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Rowland, Clare E. [George Washington Univ., Washington, DC (United States); Belai, Nebebech [George Washington Univ., Washington, DC (United States); Knope, Karah E. [George Washington Univ., Washington, DC (United States); Cahill, Christopher L. [George Washington Univ., Washington, DC (United States)

    2010-01-29

    Three disulfide-containing uranyl compounds, [UO2(C7H4O2S)3]·H2O (1), [UO2(C7H4O2S)2(C7H5O2S)] (2), and [UO2(C7H4O2S)4] (3) have been hydrothermally synthesized. Both in situ disulfide bond formation from 3- and 4-mercaptobenzoic acid (C7H5O2S, MBA) to yield 3,3'- and 4,4'-dithiobisbenzoic acid (C14H8O4S2, DTBA) and direct assembly with the presynthesized dimeric ligands have been explored. While the starting materials 4-MBA and 4,4'-DTBA both yield 2 via in situ ligand synthesis and direct assembly, respectively, we observe the formation of 1 from the starting material 3-MBA via in situ ligand synthesis and of 3 from the direct assembly of the uranyl cation with 3,3'-DTBA. Concurrently with the synthesis of 1 and 2, we have observed the in situ formation of the crystalline dimeric organic species, 3,3'-DTBA, [(C7H5O2S)2] (4) and 4,4'-DTBA, [(C7H5O2S)2] (5). Herein we report the synthesis and crystallographic characterization of 1-5, as well as observations regarding the utility of product formation via direct assembly and in situ ligand synthesis.

  5. Properties of ceria doped with gadolinia via microwave-assisted hydrothermal synthesis

    International Nuclear Information System (INIS)

    Carregosa, J.D.C.; Oliveira, R.M.P.B.; Macedo, D.A.; Nascimento, R.M.

    2016-01-01

    The solid solution of CeO_2 doped with Gd"3"+ (CGO) is a promising candidate for electrolyte in Solid Oxide Full Cells (SOFCs) operating in intermediate and low temperatures. The reduction of the working temperature of these energy conversion devices is the great technological challenge to its marketing. In this work, nanocrystalline powders of Ce_1_-_xGd_xO_2_-_x_/_2 with x=0, x=0.1 e x=0.2 were obtained via microwave-hydrothermal synthesis at low temperature and times of synthesis (10 and 20 min at 120° C). The powders were analyzed by TG-DTA, DRX and dilatometry. The results showed characteristic peaks of the cubic fluorite-type structure, referring to the cerium oxide (CeO_2), without the presence of secondary peaks. It was also observed that the samples processed at levels of 10 and 20 minutes showed distinct behaviors in contrast to the concentrations of Gd"3"+. (author)

  6. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

    International Nuclear Information System (INIS)

    Liang, Xianqing; Zhong, Jun; Shi, Yalin; Guo, Jin; Huang, Guolong; Hong, Caihao; Zhao, Yidong

    2015-01-01

    Highlights: • A novel approach to synthesis of N-doped few-layer graphene has been developed. • The high doping levels of N in products are achieved. • XPS and XANES results reveal a thermal transformation of N bonding configurations. • The developed method is cost-effective and eco-friendly. - Abstract: Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22 at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications

  7. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  8. Hydrothermal synthesis, characterization and up/down-conversion luminescence of barium rare earth fluoride nanocrystals

    International Nuclear Information System (INIS)

    Jia, Li-Ping; Zhang, Qiang; Yan, Bing

    2014-01-01

    Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: • Mixed hydrothermal system H 2 O–OA (EDA)–O-A(LO-A) is used for synthesis. • Barium rare earth fluoride nanocrystals are synthesized comprehensively. • Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H 2 O–OA (EDA)–O-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF 5 (RE = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba 2 REF 7 (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 °C, 6 h) is lower than those of them using OA (220 °C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd 3+ , Eu 3+ , Tb 3+ ) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba 2 LaF 7 :Yb, Tm(Er), Ba 2 REF 7 :Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed

  9. Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review.

    Science.gov (United States)

    Holm, Nils G; Andersson, Eva

    2005-08-01

    The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of

  10. High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO2 using ionic liquid as a template

    International Nuclear Information System (INIS)

    Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

    2011-01-01

    Mesoporous silicas and Fe-SiO 2 with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 o C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 o C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 o C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO 2 has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 o C for 12 d or steam-treated at 600 o C for 6 h. -- Graphical abstract: Worm-like mesoporous silica and Fe-SiO 2 with high hydrothermal stability have been synthesized using ionic liquid 1-hexadecane-3-methylimidazolium bromide as a template under the assistance of NaF at high temperature. Display Omitted Research highlights: → Increasing aging temperature improved the hydrothermal stability of materials. →Addition of NaF enhanced the polymerization degree of silicates. → Mesoporous SiO 2 and Fe-SiO 2 obtained have remarkable hydrothermal stability.

  11. Hydrothermal synthesis of carbonyl iron-carbon nanocomposite: Characterization and electromagnetic performance

    Directory of Open Access Journals (Sweden)

    Hakimeh Pourabdollahi

    Full Text Available In this research, the electromagnetic absorption properties of the carbonyl iron-carbon (CI/C nanocomposite prepared via hydrothermal reaction using glucose as carbon precursor was studied in the range of 8.2–12.4 GHz. In hydrothermal reaction, glucose solution containing CI particles, placed in autoclave for 4 h under 453 K. Using surface coating technology is a method that prevents Cl oxidation and improves CI electromagnetic absorption. The structure, morphology and magnetic performances of the prepared nanocomposites were characterized by X-ray diffraction (XRD, energy dispersive spectrometry (EDS, transmission electron microscopy (TEM and vibrating sample magnetometer (VSM. The electromagnetic properties including complex permittivity (εr, the permeability (µr, dielectric loss, magnetic loss, reflection loss, and attenuation constant were investigated using a vector network analyzer. For The CI/C nanocomposite, the bandwidth of −10 dB and −20 dB were obtained in the frequency range of 9.8–12.4 and 11.0–11.8 GHz, respectively. As well as, the reflection loss was −46.69 dB at the matching frequency of 11.5 GHz, when the matching thickness was 1.3 mm. While for CI particles the reflection loss for 4.4 mm thickness was −16.86 dB at the matching frequency of 12.3 GHz. The results indicate that the existence layer of carbon on carbonyl iron enhance the electromagnetic absorbing properties. Therefore, this nanocomposite can be suitable for in the radar absorbing coatings. Keywords: Hydrothermal synthesis, Carbonyl iron-carbon nanocomposite, Microwave absorption, Reflection loss

  12. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    Science.gov (United States)

    Ma, Ming-Guo

    2012-01-01

    Hierarchically nanosized hydroxyapatite (HA) with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours. Objective The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA) with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks. Methods A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Results HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did not decrease with the increasing concentration of hierarchically nanostructured HA added. Conclusion A novel, simple and reliable hydrothermal route had been developed for the synthesis of

  13. Morphology-controlled hydrothermal synthesis of MnCO3 hierarchical superstructures with Schiff base as stabilizer

    International Nuclear Information System (INIS)

    Hu, He; Xu, Jie-yan; Yang, Hong; Liang, Jie; Yang, Shiping; Wu, Huixia

    2011-01-01

    Graphical abstract: MnCO3 microcrystals with hierarchical superstructures were synthesized by using the CO2 in atmosphere as carbonate ions source and Schiff base as shape guiding-agent in water/ethanol system under hydrothermal condition. Highlights: → The most interesting in this work is the use of the greenhouse gases CO 2 in atmosphere as carbonate ions source to precipitate with Mn 2+ for producing MnCO 3 crystals. → This work is the first report related to the small organic molecule Schiff base as shape guiding-agent to produce different MnCO 3 hierarchical superstructures. → We are controllable synthesis of the MnCO 3 hierarchical superstructures such as chrysanthemum, straw-bundle, dumbbell and sphere-like microcrystals. → The as-prepared MnCO 3 could be used precursor to fabricate the Mn 2 O 3 hierarchical superstructures after thermal decomposition at high temperature. -- Abstract: MnCO 3 with hierarchical superstructures such as chrysanthemum, straw-bundle, dumbbell and sphere-like were synthesized in water/ethanol system under environment-friendly hydrothermal condition. In the synthesis process, the CO 2 in atmosphere was used as the source of carbonate ions and Schiff base was used as shape guiding-agent. The different superstructures of MnCO 3 could be obtained by controlling the hydrothermal temperature, the molar ratio of manganous ions to the Schiff base, or the volume ratio of water to ethanol. A tentative growth mechanism for the generation of MnCO 3 superstructures was proposed based on the rod-dumbbell-sphere model. Furthermore, the MnCO 3 as precursor could be further successfully transferred to Mn 2 O 3 microstructure after heating in the atmosphere at 500 o C, and the morphology of the Mn 2 O 3 was directly determined by that of the MnCO 3 precursor.

  14. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    International Nuclear Information System (INIS)

    Volanti, D.P.; Keyson, D.; Cavalcante, L.S.; Simoes, A.Z.; Joya, M.R.; Longo, E.; Varela, J.A.; Pizani, P.S.; Souza, A.G.

    2008-01-01

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained

  15. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave

    Energy Technology Data Exchange (ETDEWEB)

    Volanti, D.P. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Keyson, D. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil); Cavalcante, L.S. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Departamento de Quimica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil)], E-mail: laeciosc@bol.com.br; Simoes, A.Z. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Joya, M.R. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Longo, E.; Varela, J.A. [Laboratorio Interdisciplinar em Ceramica, Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, SP (Brazil); Pizani, P.S. [Departamento de Fisica, Universidade Federal de Sao Carlos, P.O. Box 676, 13565-905 Sao Carlos, SP (Brazil); Souza, A.G. [Laboratorio de Ensino de Ciencias e Laboratorio de Combustiveis e Materiais, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa, PB (Brazil)

    2008-07-14

    The synthesis and characterization of CuO flower-nanostructure processed in domestic hydrothermal microwave oven was presented. Phase analysis was carried out using X-ray diffraction (XRD) and micro-Raman scattering (MRS) and the results confirmed the CuO flower-nanostructure as a single-phase. The field-emission scanning electron microscopy (FEG-SEM) was used to estimate the average spheres diameter while transmission electron microscope (TEM) to observe the thorn of the flower-nanostructures. The mechanism of CuO flower-nanostructures formation is proposed and explained.

  16. Sb{sub 2}Te{sub 3} nanobelts and nanosheets: Hydrothermal synthesis, morphology evolution and thermoelectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Guo-Hui [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Ying-Jie, E-mail: y.j.zhu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Cheng, Guo-Feng; Ruan, Yin-Jie [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-02-15

    Graphical abstract: Sb{sub 2}Te{sub 3} nanobelts and nanosheets were synthesized by a hydrothermal method, and the morphology evolution from Sb{sub 2}Te{sub 3} nanobelts to nanosheets with the prolonging hydrothermal time was observed. Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesis of Sb{sub 2}Te{sub 3} nanobelts and nanosheets is demonstrated. Black-Right-Pointing-Pointer The morphology of Sb{sub 2}Te{sub 3} can be adjusted by varying hydrothermal time. Black-Right-Pointing-Pointer The morphology evolution of Sb{sub 2}Te{sub 3} from nanobelts to nanosheets is observed. Black-Right-Pointing-Pointer High Seebeck coefficients (S) of Sb{sub 2}Te{sub 3} nanobelts and nanosheets are attained. - Abstract: Sb{sub 2}Te{sub 3} nanobelts and nanosheets were synthesized by a hydrothermal method using SbCl{sub 3} and TeO{sub 2} as the antimony and tellurium source, hydrazine hydrate as a reducing reagent, polyvinyl alcohol as a surfactant and water as the solvent. The effects of experimental parameters on the product were investigated. The experiments indicated that the elemental Te formed during the reaction, acting as a reactive and self-sacrificial template for the formation of Sb{sub 2}Te{sub 3} nanobelts. The morphology evolution from Sb{sub 2}Te{sub 3} nanobelts to nanosheets with the prolonging hydrothermal time was observed. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The thermoelectric properties of the tablet samples of Sb{sub 2}Te{sub 3} nanostructured powders with different morphologies prepared by a room-temperature pressurized method were investigated.

  17. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    International Nuclear Information System (INIS)

    Patil, V.B.; Adhyapak, P.V.; Suryavanshi, S.S.; Mulla, I.S.

    2014-01-01

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO 3 was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO 3 , however, on addition of oxalic acid a single phase hexagonal WO 3 with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO 3 bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm −1 ) for 72 h of heating at 170 °C

  18. Oxalic acid induced hydrothermal synthesis of single crystalline tungsten oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Patil, V.B. [School of Physical Sciences, Solapur University, Solapur 413255 (India); Adhyapak, P.V. [Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India); Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com [School of Physical Sciences, Solapur University, Solapur 413255 (India); Mulla, I.S., E-mail: ismulla2001@gmail.com [Emeritus Scientist (CSIR), Centre for Materials for Electronic Technology (C-MET), Pune 411008 (India)

    2014-03-25

    Highlights: • We report synthesis of 1D tungsten oxide using a hydrothermal route at 170 °C. • Oxalic acid plays an important role in the formation of 1D nanostructure. • Monoclinic transforms to hexagonal phase with increment in reaction duration. -- Abstract: One-dimensional single-crystalline tungsten oxide nanorods have been synthesized by the hydrothermal technique. The controlled morphology of tungsten oxide was obtained by using sodium tungstate and oxalic acid as an organic inducer. The reaction was carried out at 170 °C for 24, 48 and 72 h. The obtained tungsten oxides were investigated by using XRD, SEM and HRTEM techniques. In order to understand the role of organic inducer on the shape, size and phase formation of WO{sub 3} was prepared with and without organic inducer. On heating of sodium tungstate without organic inducer for 72 h at 170 °C in the hydrothermal unit we obtain nanoparticles of monoclinic WO{sub 3}, however, on addition of oxalic acid a single phase hexagonal WO{sub 3} with distinct nanorods was formed. On addition of oxalic acid a systematic emergence of nanorod-like morphology was obtained with incrementing reaction times from 24 h to 48 h. The 72 h reaction generates self-assembled 20–30 nm diameter and 4–5 μm long h-WO{sub 3} bundles of nanorods. The XRD studies show hexagonal structure of tungsten oxide, while SAED reveals its single crystalline nature. The photoluminescence (PL) emission spectrum shows a characteristic blue emission peak at 3 eV (410 nm). Raman spectra provide the evidence of hexagonal structure with stretching vibrations (830 cm{sup −1}) for 72 h of heating at 170 °C.

  19. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ferreira, Nildemar A.M.; Rumbao, Ana Carolina S. Coutinho; Lazar, Dolores R.R.; Ussui, Valter

    2009-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150°C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  20. Zinc stannate nanostructures: hydrothermal synthesis

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Dutta, Joydeep

    2011-01-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature. (topical review)

  1. Hydrothermal synthesis of nanostructured titania

    International Nuclear Information System (INIS)

    Yoshito, W.K.; Ferreira, N.A.M.; Lazar, D.R.R.; Ussui, V.; Rumbao, A.C.S.

    2011-01-01

    Titania ceramics have many applications due to its surface properties and, recently, its nanostructured compounds, prepared by hydrothermal treatments, have been described to improve these properties. In this work, commercial titanium dioxide was treated with 10% sodium hydroxide solution in a pressurized reactor at 150 deg C for 24 hours under vigorous stirring and then washed following two different procedures. The first one consisted of washing with water and ethanol and the second with water and hydrochloric acid solution (1%). Resulting powders were characterized by X-ray diffraction, N 2 gas adsorption and field emission gun scanning and transmission electronic microscopy. Results showed that from an original starting material with mainly rutile phase, both anatase and H 2 Ti 3 O 7 phase could be identified after the hydrothermal treatment. Surface area of powders presented a notable increase of one order of magnitude and micrographs showed a rearrangement on the microstructure of powders. (author)

  2. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian, E-mail: sjli000616@scu.edu.cn; Jin, Yongdong, E-mail: jinyongdong@scu.edu.cn

    2014-04-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g{sup −1} under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed.

  3. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    International Nuclear Information System (INIS)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian; Jin, Yongdong

    2014-01-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g −1 under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed

  4. Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Zhenzi, E-mail: zzjing@tongji.edu.cn [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian [Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Jin, Fangming [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2017-05-15

    Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6–5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite. - Highlights: •Pure pollucite barely exists in nature due to coexistence of Cs and Na. •Pollucite, analcime and their solid solutions could be hydrothermally synthesized. •Most formed solid solutions were found to have similar properties to pollucite. •Even coexistence in nature, pollucite favors to form due to site preference for Cs over Na.

  5. Hydroxyapatite hierarchically nanostructured porous hollow microspheres: rapid, sustainable microwave-hydrothermal synthesis by using creatine phosphate as an organic phosphorus source and application in drug delivery and protein adsorption.

    Science.gov (United States)

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2013-04-22

    Hierarchically nanostructured porous hollow microspheres of hydroxyapatite (HAP) are a promising biomaterial, owing to their excellent biocompatibility and porous hollow structure. Traditionally, synthetic hydroxyapatite is prepared by using an inorganic phosphorus source. Herein, we report a new strategy for the rapid, sustainable synthesis of HAP hierarchically nanostructured porous hollow microspheres by using creatine phosphate disodium salt as an organic phosphorus source in aqueous solution through a microwave-assisted hydrothermal method. The as-obtained products are characterized by powder X-ray diffraction (XRD), Fourier-transform IR (FTIR) spectroscopy, SEM, TEM, Brunauer-Emmett-Teller (BET) nitrogen sorptometry, dynamic light scattering (DLS), and thermogravimetric analysis (TGA). SEM and TEM micrographs show that HAP hierarchically nanostructured porous hollow microspheres consist of HAP nanosheets or nanorods as the building blocks and DLS measurements show that the diameters of HAP hollow microspheres are within the range 0.8-1.5 μm. The specific surface area and average pore size of the HAP porous hollow microspheres are 87.3 m(2) g(-1) and 20.6 nm, respectively. The important role of creatine phosphate disodium salt and the influence of the experimental conditions on the products were systematically investigated. This method is facile, rapid, surfactant-free and environmentally friendly. The as-prepared HAP porous hollow microspheres show a relatively high drug-loading capacity and protein-adsorption ability, as well as sustained drug and protein release, by using ibuprofen as a model drug and hemoglobin (Hb) as a model protein, respectively. These experiments indicate that the as-prepared HAP porous hollow microspheres are promising for applications in biomedical fields, such as drug delivery and protein adsorption. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    Science.gov (United States)

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  7. Hydrothermal synthesis of polyethylenimine-protected high luminescent Pt-nanoclusters and their application to the detection of nitroimidazoles

    International Nuclear Information System (INIS)

    Xu, Na; Li, Hong-Wei; Wu, Yuqing

    2017-01-01

    A novel one-step hydrothermal synthesis of highly fluorescent platinum nanoclusters protected by polyethylenimine (Pt-NCs@PEI) is described. The products are characterized well by UV–vis absorption, fluorescence spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) imaging. The Pt-NCs@PEI possess high quantum yield at 28%, which is the relatively high one among the reported Pt-NCs; especially, the synthesis is in one-step and the reaction time is much shorter (<1 h) than the related methods. In addition, the Pt-NCs@PEI have large Stocks-shift (∼150 nm), high tolerability to the extreme pH and high ionic strengths, and excellent photo-stability under UV–vis irradiation, lay the foundation for the practical bio-applications. Finally, the obtained Pt-NCs@PEI are used to determine trace amount of metronidazole (MTZ) in buffer solution in showing a linear response over a concentration range of 0.25–300 μM and a low detection limit of 0.1 μM. Furthermore, the related investigation on response mechanism will be helpful to design and synthesize new metal nanoclusters as fluorescent probe to detect the trace amount of harmful medicine residuum as nitroimidazoles in human body. - Highlights: • This paper provides the first hydrothermal synthesis of platinum nanoclusters. • The prepared polyethylenimine-protected platinum nanoclusters possess high quantum yield of 28%. • A new method to detect trace amount of metronidazole in urine is proposed.

  8. Hydrothermal synthesis of polyethylenimine-protected high luminescent Pt-nanoclusters and their application to the detection of nitroimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Na [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (China); College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022 (China); Li, Hong-Wei, E-mail: lihongwei@jlu.edu.cn [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (China); Wu, Yuqing, E-mail: yqwu@jlu.edu.cn [State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2017-03-15

    A novel one-step hydrothermal synthesis of highly fluorescent platinum nanoclusters protected by polyethylenimine (Pt-NCs@PEI) is described. The products are characterized well by UV–vis absorption, fluorescence spectra, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) imaging. The Pt-NCs@PEI possess high quantum yield at 28%, which is the relatively high one among the reported Pt-NCs; especially, the synthesis is in one-step and the reaction time is much shorter (<1 h) than the related methods. In addition, the Pt-NCs@PEI have large Stocks-shift (∼150 nm), high tolerability to the extreme pH and high ionic strengths, and excellent photo-stability under UV–vis irradiation, lay the foundation for the practical bio-applications. Finally, the obtained Pt-NCs@PEI are used to determine trace amount of metronidazole (MTZ) in buffer solution in showing a linear response over a concentration range of 0.25–300 μM and a low detection limit of 0.1 μM. Furthermore, the related investigation on response mechanism will be helpful to design and synthesize new metal nanoclusters as fluorescent probe to detect the trace amount of harmful medicine residuum as nitroimidazoles in human body. - Highlights: • This paper provides the first hydrothermal synthesis of platinum nanoclusters. • The prepared polyethylenimine-protected platinum nanoclusters possess high quantum yield of 28%. • A new method to detect trace amount of metronidazole in urine is proposed.

  9. Hierarchically nanostructured hydroxyapatite: hydrothermal synthesis, morphology control, growth mechanism, and biological activity

    Directory of Open Access Journals (Sweden)

    Ma MG

    2012-04-01

    Full Text Available Ming-Guo MaInstitute of Biomass Chemistry and Technology, College of Materials Science and Technology, Beijing Forestry University, Beijing, People's Republic of ChinaAbstract: Hierarchically nanosized hydroxyapatite (HA with flower-like structure assembled from nanosheets consisting of nanorod building blocks was successfully synthesized by using CaCl2, NaH2PO4, and potassium sodium tartrate via a hydrothermal method at 200°C for 24 hours. The effects of heating time and heating temperature on the products were investigated. As a chelating ligand and template molecule, the potassium sodium tartrate plays a key role in the formation of hierarchically nanostructured HA. On the basis of experimental results, a possible mechanism based on soft-template and self-assembly was proposed for the formation and growth of the hierarchically nanostructured HA. Cytotoxicity experiments indicated that the hierarchically nanostructured HA had good biocompatibility. It was shown by in-vitro experiments that mesenchymal stem cells could attach to the hierarchically nanostructured HA after being cultured for 48 hours.Objective: The purpose of this study was to develop facile and effective methods for the synthesis of novel hydroxyapatite (HA with hierarchical nanostructures assembled from independent and discrete nanobuilding blocks.Methods: A simple hydrothermal approach was applied to synthesize HA by using CaCl2, NaH2PO4, and potassium sodium tartrate at 200°C for 24 hours. The cell cytotoxicity of the hierarchically nanostructured HA was tested by MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay.Results: HA displayed the flower-like structure assembled from nanosheets consisting of nanorod building blocks. The potassium sodium tartrate was used as a chelating ligand, inducing the formation and self-assembly of HA nanorods. The heating time and heating temperature influenced the aggregation and morphology of HA. The cell viability did

  10. Flexible composite via rapid titania coating by microwave-assisted ...

    Indian Academy of Sciences (India)

    2017-06-09

    Jun 9, 2017 ... carbon fibre via microwave-assisted hydrothermal synthesis (MHS) ... Nanoparticles; titanium dioxide; microwave-assisted hydrothermal synthesis; carbon fibre. ..... study, the carbon fibre absorbs microwave radiation and con-.

  11. BIOGENIC VS. ABIOGENIC ISOTOPE SIGNATURES OF REDUCED CARBON COMPOUNDS: A LESSON FROM HYDROTHERMAL SYNTHESIS EXPERIMENTS

    International Nuclear Information System (INIS)

    Horita, J.

    2001-01-01

    With growing interest in and demonstrated cases of inorganic hydrothermal synthesis of reduced or organic carbon compounds from CO and CO(sub 2), it becomes crucial to establish geochemical criteria to distinguish reduced/organic carbon compounds of abiogenic origin from those of biogenic origin with overwhelming abundances on the surface and in subsurface of the Earth. Chemical and isotopic compositions, particularly(sup 13)C/(sup 12)C ratios, of reduced/organic carbon compounds have been widely utilized for deducing the origins and formation pathways of these compounds. An example is isotopic and C(sub 1)/(C(sub 2)+C(sub 3)) ratios of natural gases, which have been used to distinguish bacterial, thermogenic, and possible abiogenic origins. Another example is that ancient graphitic carbon with(delta)(sup 13)C values c-25per thousand has been considered of biogenic origin. Although these criteria could be largely valid, growing data including those from our hydrothermal experiments suggest that a great caution must be exercised

  12. Hydrothermal Growth of Polyscale Crystals

    Science.gov (United States)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  13. Template-directed synthesis of MS (M=Cd, Zn) hollow microsphere via hydrothermal method

    Science.gov (United States)

    Wang, Shi-Ming; Wang, Qiong-Sheng; Wan, Qing-Li

    2008-05-01

    CdS, ZnS hollow microspheres were prepared with chitosan as the synthesis template at 140 and 150 °C, respectively, by hydrothermal method. The resultant products were characterized by X-ray diffraction (XRD) measurements in order to determine the crystalline phase of the products. The structural and morphological features of the nanoparticles were investigated by transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflection spectroscopy (DRS). The experimental results indicated that all the nanoparticles aggregated into hollow microspheres and chitosan as a template played an important role in the formation of hollow microspheres. In addition, an intermediate complex structure-controlling possible reaction mechanism was proposed in this paper.

  14. Continuous Hydrothermal Flow Synthesis of Functional Oxide Nanomaterials Used in Energy Conversion Devices

    DEFF Research Database (Denmark)

    Xu, Yu

    Continuous hydrothermal flow synthesis (CHFS) was used to prepare functional oxide nanoparticles. Materials synthesized include NiO, Y-doped ZrO2, Gd-doped CeO2, LaCrO3 and Ni-substituted CoFe2O4. These types of oxides can be applied in several energy conversion devices, e.g. as active materials...... as materials are continuously produced, and the technology can be scaled-up to an industrial-relevant production capacity. The thesis starts with investigating the most appropriate mixer design for a novel two-stage reactor by computational fluid dynamics modelling. On basis of the modelling results, a two......, dense continuous layers (

  15. Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route

    International Nuclear Information System (INIS)

    Tang, Zhe; Liang, Jilei; Li, Xuehui; Li, Jingfeng; Guo, Hailing; Liu, Yunqi; Liu, Chenguang

    2013-01-01

    A simple and novel synthesis process, one-step ionic liquid-assisted hydrothermal synthesis route, has been developed in the work to synthesize Bohemithe (γ-AlOOH) with flower-like structure. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscope (SEM). Ionic liquid [Omim] + Cl − , as a template, plays an important role in the morphology and pore structure of the products due to its strong interactions with reaction particles. With the increase in the dosage of ionic liquid [Omim] + Cl − , the morphology of the γ-AlOOH was changed from initial bundles of nanosheets (without ionic liquid) into final well-developed monodispersed 3D flower-like architectures ([Omim] + Cl − =72 mmol). The pore structure was also altered gradually from initial disordered slit-like pore into final relatively ordered ink-bottle pore. Furthermore, the proposed formation mechanism and other influencing factors such as reaction temperature and urea on formation and morphology of the γ-AlOOH have also been investigated. - Graphical abstract: The flower-like γ-AlOOH architectures composed by nanosheets with narrow size distribution (1.6–2.2 μm) and uniform pore size (6.92 nm) have been synthesized via a one-step ionic liquid-assisted hydrothermal route. - Highlights: • The γ-AlOOH microflowers were synthesized via an ionic liquid-assisted hydrothermal route. • Ionic liquid plays an important role on the morphology and porous structure of the products. • Ionic liquid can be easily removed from the products and reused in recycling experiments. • A “aggregation–recrystallization–Ostwald Ripening“formation mechanism may occur

  16. Hydrothermal Synthesis and Mechanism of Unusual Zigzag Ag2Te and Ag2Te/C Core-Shell Nanostructures

    Directory of Open Access Journals (Sweden)

    Saima Manzoor

    2014-01-01

    Full Text Available A single step surfactant-assisted hydrothermal route has been developed for the synthesis of zigzag silver telluride nanowires with diameter of 50–60 nm and length of several tens of micrometers. Silver nitrate (AgNO3 and sodium tellurite (Na2TeO3, are the precursors and polyvinylpyrrolidone (PVP is used as surfactant in the presence of the reducing agent, that is, hydrazine hydrate (N2H4·H2O. In addition to the zigzag nanowires a facile hydrothermal reduction-carbonization route is proposed for the preparation of uniform core-shell Ag2Te/C nanowires. In case of Ag2Te/C synthesis process the same precursors are employed for Ag and Te along with the ethylene glycol used as reducing agent and glucose as the carbonizing agent. Morphological and compositional properties of the prepared products are analyzed with the help of scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The detailed formation mechanism of the zigzag morphology and reduction-carbonization growth mechanism for core-shell nanowires are illustrated on the bases of experimental results.

  17. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  18. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    Science.gov (United States)

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  19. Hydrothermal synthesis and characterization of novel vanadium oxides and their application as cathodes in lithium secondary batteries

    Science.gov (United States)

    Chirayil, Thomas George

    Novel layered or tunneled vanadium oxides are sought as a substitute for the expensive Lisb{x}CoOsb2 cathode material in lithium rechargeable batteries. The hydrothermal synthesis approach was taken in search of new vanadium oxides in the presence of a structure directing cation, TMA. A systematic study was done on the hydrothermal synthesis of the Vsb{2}Osb{5}-TMAOH-LiOH system. It was determined from this study that the pH of the reaction mixture was very critical in the formation of many compounds. Acetic acid utilized to adjust the pH of the reaction mixture in the presence of TMA behaved as a buffer and maintained a constant pH during the reaction. Hydrothermal synthesis conducted between pH 10 and 2 resulted in the formation of 7 compounds. At the highest pH, a well known compound Lisb3VOsb4, was formed. Between pH 5.2-9, a layered compound, TMAVsb3Osb7 resulted. The thermal treatment of TMAVsb3Osb7 under oxygen lead to an oxidized phase, TMAVsb3Osb8, which increased its lithium capacity significantly. Between pH 5-6, a cluster compound, TMAsb8lbrack Vsb{22}Osb{54}(CHsb3COO)rbrack{*}4Hsb2O with the acetate ion trapped inside the caged Vsb{22}Osb{54} cluster, and a layered vanadium oxide, Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O was obtained. The Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O compound was dehydrated to form Lisb{x}Vsb{2-delta}Osb{4-delta} and the lithium was removed electrochemically to form a new type of "VOsb2". Several alkylamines, DMSO and an additional water molecule were intercalated to swell the layers of Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O. Lowering the pH between 3.0-3.5, resulted in layered compound, TMAVsb4Osb{10}, with TMA residing between the layers. Layered compounds, TMAVsb8Osb{20} and TMAsb{0.17}Hsp+sb{0.1}Vsb2Osb5, were obtained at very acidic conditions. The hydrothermally grown TMAsb{0.17}Hsp+sb{0.1}Vsb2Osb5 is similar to the xerogel Vsb2Osb5 intercalated with TMA synthesized by the sol-gel process. Several trends were observed

  20. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system

    KAUST Repository

    Pan, Yichang; Liu, Yunyang; Zeng, Gaofeng; Zhao, Lan; Lai, Zhiping

    2011-01-01

    We report here the first example of ZIF materials synthesized in aqueous solution. The synthesis was performed at room temperature and typically took several minutes compared to hours and days in non-aqueous conditions. The obtained product were ZIF-8 nanocrystals having size of ∼85 nm and showed excellent thermal, hydrothermal and solvothermal stabilities. © 2011 The Royal Society of Chemistry.

  1. Hydrothermal synthesis of thiol-capped CdTe nanoparticles and their optical properties.

    Science.gov (United States)

    Bu, Hang-Beom; Kikunaga, Hayato; Shimura, Kunio; Takahasi, Kohji; Taniguchi, Taichi; Kim, DaeGwi

    2013-02-28

    Water soluble nanoparticles (NPs) with a high emission property were synthesized via hydrothermal routes. In this report, we chose thiol ligand N-acetyl-L-cysteine as the ideal stabilizer and have successfully employed it to synthesize readily size-controllable CdTe NPs in a reaction of only one step. Hydrothermal synthesis of CdTe NPs has been carried out in neutral or basic conditions so far. We found out that the pH value of precursor solutions plays an important role in the uniformity of the particle size. Actually, high quality CdTe NPs were synthesized under mild acidic conditions of pH 5. The resultant NPs indicated good visible light-emitting properties and stability. Further, the experimental results showed that the reaction temperature influenced significantly the growth rate and the maximum size of the NPs. The CdTe NPs with a high photoluminescence quantum yield (the highest value: 57%) and narrower half width at half maximum (the narrowest value: 33 nm) were attained in very short time, within 40 minutes, reaching diameters of 2.3 to 4.3 nm. The PL intensity was increased with an increase in the reaction time, reflecting the suppression of nonradiative recombination processes. Furthermore, the formation of CdTe/CdS core-shell structures was discussed from the viewpoint of PL dynamics and X-ray diffraction studies.

  2. SiC-dopped MCM-41 materials with enhanced thermal and hydrothermal stabilities

    International Nuclear Information System (INIS)

    Wang, Yingyong; Jin, Guoqiang; Tong, Xili; Guo, Xiangyun

    2011-01-01

    Graphical abstract: Novel SiC-dopped MCM-41 materials were synthesized by adding silicon carbide suspension in the molecular sieve precursor solvent followed by in situ hydrothermal synthesis. The dopped materials have a wormhole-like mesoporous structure and exhibit enhanced thermal and hydrothermal stabilities. Highlights: → SiC-dopped MCM-41 was synthesized by in situ hydrothermal synthesis of molecular sieve precursor combined with SiC. → The dopped MCM-41 materials show a wormhole-like mesoporous structure. → The thermal stability of the dopped materials have an increment of almost 100 o C compared with the pure MCM-41. → The hydrothermal stability of the dopped materials is also better than that of the pure MCM-41. -- Abstract: SiC-dopped MCM-41 mesoporous materials were synthesized by the in situ hydrothermal synthesis, in which a small amount of SiC was added in the precursor solvent of molecular sieve before the hydrothermal treatment. The materials were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, N 2 physical adsorption and thermogravimetric analysis, respectively. The results show that the thermal and hydrothermal stabilities of MCM-41 materials can be improved obviously by incorporating a small amount of SiC. The structure collapse temperature of SiC-dopped MCM-41 materials is 100 o C higher than that of pure MCM-41 according to the differential scanning calorimetry analysis. Hydrothermal treatment experiments also show that the pure MCM-41 will losses it's ordered mesoporous structure in boiling water for 24 h while the SiC-dopped MCM-41 materials still keep partial porous structure.

  3. One-step rapid synthesis of ultrafine γ-Ga2O3 nanocrystals by microwave hydrothermal method in ammonium hydroxide medium

    Science.gov (United States)

    Cui, Lu; Wang, Hong; Xin, Baifu; Mao, Guijie

    2017-10-01

    Ultrafine nanocrystals of γ-gallium oxide (γ-Ga2O3) were rapidly synthesized via microwave hydrothermal method at 140 °C, in which Ga(NO3)3 was used as the gallium source and urea was the precipitant. The samples were characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), nitrogen physisorption and photoluminescence spectroscopy (PL). The crystallite size of ultrafine spinel γ-Ga2O3 was in the range from 4 to 5 nm and the optical bandgap was 4.61 eV. To improve the crystallinity, the ultrafine γ-Ga2O3 nanocrystals were calcined at 300-700 °C further. The ultrafine γ-Ga2O3 calcined at 500 °C (calcined-γ-Ga2O3) still remained the metastable γ-phase with relatively high crystallinity and the crystallite size around 5-7 nm. Photocatalytic performances of the synthesized samples were also evaluated by the degradation of rhodamine B (RhB). Results revealed that the ultrafine γ-Ga2O3 and the calcined-γ-Ga2O3 samples exhibited high photocatalytic efficiencies of 68.2 and 90.7%, respectively.

  4. Biomolecule-assisted hydrothermal synthesis of silver bismuth sulfide with nanostructures

    International Nuclear Information System (INIS)

    Kaowphong, Sulawan

    2012-01-01

    Silver bismuth sulfide (AgBiS 2 ) nanostructures were successfully prepared via a simple biomolecule-assisted hydrothermal synthesis at 200 °C for 12–72 h. Silver nitrate, bismuth nitrate and L-cysteine were used as starting materials. Here, the biomolecule, L-cysteine, was served as the sulfide source and a complexing agent. The products, characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were cubic AgBiS 2 nanoparticles with a diameter range of about 20–75 nm. It was found that their crystallinity and particle size increased with increasing reaction time. The energy dispersive X-ray spectroscopy (EDX) and inductively coupled plasma optical emission spectrophotometry (ICP-OES) analyses were used to confirm the stoichiometry of AgBiS 2 . The optical band gap of the AgBiS 2 nanoparticles, calculated from UV–vis spectra, was 3.0 eV which indicated a strong blue shift because of the quantum confinement effect. A possible formation mechanism of the AgBiS 2 nanoparticles was also discussed. - Graphical abstract: The optical band gap of the as-prepared AgBiS 2 nanoparticles displays a strong blue shift comparing to the 2.46 eV of bulk AgBiS 2 caused by the quantum confinement effects. Highlights: ► A simple biomolecule-assisted hydrothermal method is developed to prepare AgBiS 2 . ► L-Cysteine is served as the sulfide source and a complexing agent. ► Increase in band gap of the AgBiS 2 nanoparticles attributes to the quantum confinement effects.

  5. Rapid hydrothermal route to synthesize cubic-phase gadolinium ...

    Indian Academy of Sciences (India)

    Administrator

    The elongated nanoscale systems, as produced via a hydrothermal process .... by adding several drops of 5 M NaOH solution under vigorous ... at an accelerating voltage of 200 kV. ..... remarkable distribution of nanoscale rods, with aspect ...

  6. Hydrothermal synthesis of two photoluminescent nitrogen-doped graphene quantum dots emitted green and khaki luminescence

    International Nuclear Information System (INIS)

    Zhu, Xiaohua; Zuo, Xiaoxi; Hu, Ruiping; Xiao, Xin; Liang, Yong; Nan, Junmin

    2014-01-01

    A simple and effective chemical synthesis of the photoluminescent nitrogen-doped graphene quantum dots (N-GQDs) biomaterial is reported. Using the hydrothermal treatment of graphene oxide (GO) in the presence of hydrogen peroxide (H 2 O 2 ) and ammonia, the N-GQDs are synthesized through H 2 O 2 exfoliating the GO into nanocrystals with lateral dimensions and ammonia passivating the generated active surface. Then, after a dialytic separation, two water-soluble N-GQDs with average size of about 2.1 nm/6.2 nm, which emit green/khaki luminescence and exhibit excitation dependent/independent photoluminescence (PL) behaviors, are obtained. In addition, it is also demonstrated that these two N-GQDs are stable over a broad pH range and have the upconversion PL property, showing this approach provides a simple and effective method to synthesize the functional N-GQDs. - Highlights: • Nitrogen-doped graphene quantum dots (N-GQDs) are prepared by hydrothermal routine. • Two N-GQDs with different size distribution emit green/khaki photoluminescence. • Two N-GQDs exhibit excitation-dependent/independent photoluminescence behaviors

  7. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes

    International Nuclear Information System (INIS)

    Kashinath, L.; Namratha, K.; Byrappa, K.

    2015-01-01

    Graphical abstract: - Highlights: • Synthesis of hybrid ZnO–GO nanocomposite via microwave assisted facile hydrothermal method. • The in situ flower like ZnO nano particles are densely decorated and anchored on the surfaces of graphene oxide sheets. • They exhibited high adsorption measurement, increase in surface area and meso/micro porous in nature. • The structure and morphology plays a vital role in enhancing the photo response activities of degradation of dyes. - Abstract: Microwave assisted hydrothermal process of synthesis of ZnO–GO nanocomposite by using ZnCl 2 and NaOH as precursors is being reported first time. In this investigation, a novel route to study on synthesis, interaction, kinetics and mechanism of hybrid zinc oxide–graphene oxide (ZnO–GO) nanocomposite using microwave assisted facile hydrothermal method has been reported. The results shows that the ZnO–GO nanocomposite exhibits an enhancement and acts as stable photo-response degradation performance of Brilliant Yellow under the UV light radiation better than pure GO and ZnO nanoparticles. The microwave exposure played a vital role in the synthesis process, it facilitates with well define crystalline structure, porosity and fine morphology of ZnO/GO nanocomposite. Different molar concentrations of ZnO precursors doped to GO sheets were been synthesized, characterized and their photodegradation performances were investigated. The optical studies by UV–vis and Photo Luminescence shows an increase in band gap of nanocomposite, which added an advantage in photodegradation performance. The in situ flower like ZnO nano particles are were densely decorated and anchored on the surfaces of graphene oxide sheets which aids in the enhancement of the surface area, adsorption, mass transfer of dyes and evolution of oxygen species. The nanocomposite having high surface area and micro/mesoporous in nature. This structure and morphology supports significantly in increasing photo catalytic

  8. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO4) nanoparticles and its application in photocatalytic degradation of direct blue dye

    International Nuclear Information System (INIS)

    Mohamed, R.M.; Harraz, F.A.; Mkhalid, I.A.

    2012-01-01

    Graphical abstract: XRD patterns of YVO 4 nanopowders prepared at different hydrothermal times; where Y 1 = 4 h, Y 2 = 8 h, Y 3 = 12 h and Y 4 = 24 h. Highlights: ► Size control of Yttrium Orthovanadate. ► Hydrothermal synthesis. ► Removal of direct blue dye. - Abstract: Sized-controlled YVO 4 nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer–Emmett–Teller (BET)), and ultraviolet–visible spectroscopy (UV–vis) measurements. The results showed that the size of as-synthesized YVO 4 nanoparticles was in the range of 11–40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO 4 nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO 4 photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO 4 nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  9. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    International Nuclear Information System (INIS)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A.

    2013-01-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na 2 SiO 3 ) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO 2 molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO 2 molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  10. Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Prieur, Daniel

    2010-01-01

    A thermophilic anaerobic bacterium was isolated from a sublacustrine hydrothermal vent site in Lake Tanganyika (East Africa) with recorded fluid temperatures of 66–103 °C and pH values of 7.7–8.9. The bacterium (strain TR10) was rod-shaped, about 1 by 5 μm in size, and readily formed distal...... and peptone. The optimum temperature for growth was 60 °C, while minimum and maximum temperatures were 40 and 75 °C. The pH response was alkalitolerant with optimum pH at 7.4 and 8.5 depending on the growth medium. The distinct feature of rapid proliferation and endospore formation may allow the novel...

  11. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    Science.gov (United States)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  12. Synthesis of ZrO2 nanoparticles by hydrothermal treatment

    International Nuclear Information System (INIS)

    Machmudah, Siti; Widiyastuti, W.; Prastuti, Okky Putri; Nurtono, Tantular; Winardi, Sugeng; Wahyudiono,; Kanda, Hideki; Goto, Motonobu

    2014-01-01

    Zirconium oxide (zirconia, ZrO 2 ) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl 4 precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 – 200°C with precursor concentration of 0.1 – 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal

  13. Easy and fast preparation of TiO{sub 2} - based nanostructures using microwave assisted hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bregadiolli, Bruna Andressa, E-mail: brunabregadiolli@fc.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil); Fernandes, Silvia Leticia; Graeff, Carlos Frederico de Oliveira [Universidade Estadual Paulista de Mesquita Filho (UNESP), Araraquara, SP (Brazil)

    2017-07-15

    TiO{sub 2} derivatives with distinct morphologies have been successfully obtained by microwave assisted hydrothermal synthesis in acidic and alkaline medium using mild conditions. Titanium tetraisopropoxide (TTIP) was used as precursor in different environmental conditions under low temperatures, inferior to 150 °C, and short synthesis times, from 2 to 60 min. X ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N{sub 2} adsorption at 77 K (BET) were used to characterize the microstructural properties of the oxides. In the acidic synthesis the reaction time and temperature are not accompanied by significant changes in the structure of the material. However, in the basic conditions, the concentration of Na{sup +} ions strongly influences the particle morphology and growth. The morphology of the nanoparticles shows irregular spheres in acidic conditions, while in alkaline medium, needle like structures are formed as well as aggregated nanotube-like structures synthesized in only 30 min. Besides the difference in the morphology and structure, in both systems, high surface area was obtained. (author)

  14. Hydrothermal synthesis of magnetic reduced graphene oxide sheets

    International Nuclear Information System (INIS)

    Shen, Jianfeng; Shi, Min; Ma, Hongwei; Yan, Bo; Li, Na; Ye, Mingxin

    2011-01-01

    Graphical abstract: An environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite with a one-step hydrothermal method was demonstrated. The reducing process was accompanied by generation of magnetic nanoparticles. Highlights: → A one-step hydrothermal method for preparation of MN-CCG was demonstrated. → Glucose was used as the 'green' reducing agent. → The reducing process was accompanied by generation of magnetic nanoparticles. → The prepared MN-CCG is highly water suspendable and sensitive to magnetic field. -- Abstract: We demonstrated an environmental friendly and efficient route for preparation of magnetic reduced graphene oxide composite (MN-CCG). Glucose was used as the reducing agent in this one-step hydrothermal method. The reducing process was accompanied by generation of magnetic nanoparticles. The structure and composition of the nanocomposite was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and transmission electron microscopy. It was found that the prepared MN-CCG is highly water suspendable and sensitive to magnetic field.

  15. Hydrothermal synthesis of meso porous silica MCM-41 using commercial sodium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Melendez O, H. I.; Mercado S, A.; Garcia C, L. A.; Castruita, G.; Perera M, Y A., E-mail: ivan_melendez380@hotmail.com [Centro de Investigacion en Quimica Aplicada, Bldv. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Coahuila (Mexico)

    2013-08-01

    In this work, ordered meso porous silica MCM-41 was prepared by hydrothermal synthesis using industrial-grade sodium silicate (Na{sub 2}SiO{sub 3}) as silica source, hexadecyltrimethyl-ammonium bromide (CTAB) as template agent and ethyl acetate as ph regulator. The influence of CTAB/SiO{sub 2} molar ratio, reaction time, aging temperature, and co-surfactant type on the structural and morphological properties of the obtained silica was studied. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption isotherms. Ordered meso porous MCM-41 silica was obtained at 80 C by using a range of CTAB/SiO{sub 2} molar ratio from 0.35 to 0.71 and reaction times up to 72 h and isopropanol (i-Pr OH) as co-surfactant. (Author)

  16. An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures.

    Science.gov (United States)

    Chen, Hongjun; Wang, Yuling; Dong, Shaojun

    2007-12-10

    In this article, we demonstrate an effective hydrothermal route for the synthesis of multiple PDDA-protected (PDDA = poly(diallyl dimethylammonium) chloride) noble-metal (including silver, platinum, palladium, and gold) nanostructures in the absence of any seeds and surfactants, in which PDDA, an ordinary and water-soluble polyelectrolyte, acts as both a reducing and a stabilizing agent. Under optimal experimental conditions, Ag nanocubes, Pt and Pd nanopolyhedrons, and Au nanoplates can be obtained, which were characterized by transmission electron microscopy , scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. More importantly, the nanostructures synthesized show potential applications in surface-enhanced Raman scattering and electrocatalysis, in which Ag nanocubes and Pt nanopolyhedrons were chosen as the examples, respectively.

  17. Natural cotton as precursor for the refractory boron carbide—a hydrothermal synthesis and characterization

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Raj, Vimal; Ambadas, G.; Sankararaman, S.

    2018-01-01

    Boron carbide (B4C) is an excellent covalent carbide that finds applications in industries and nuclear power plants. The present synthesis methods of boron carbide are expensive and involve the use of toxic chemicals that adversely affect environment. In the present work, we report for the first time the use of the hydrothermal method for converting the cellulose from cotton as the carbon precursor for B4C. The carbon precursor is converted into functionalized porous carbonaceous material by hydrothermal treatment followed by sodium borohydride. It is further treated with boric acid to make it a B4C precursor. The precursor is characterized by UV-visible diffuse reflectance, Raman, Fourier transform infrared, photoluminescent and energy dispersive spectroscopy. The morphology and structure analysis is carried out using field emission scanning electron microscopy and x-ray diffraction techniques. The results of structural and optical characterization of the sample synthesized are compared with the commercial B4C. The thermal stability of the sample is studied by thermogravimetric analysis. The sample annealed at 700 °C is found to be B4C devoid of amorphous carbon with a yield of 44.7%. The analysis reveals the formation of boron carbide from the sample.

  18. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows.

    Science.gov (United States)

    Li, Ming; Magdassi, Shlomo; Gao, Yanfeng; Long, Yi

    2017-09-01

    Vanadium dioxide (VO 2 ) is a widely studied inorganic phase change material, which has a reversible phase transition from semiconducting monoclinic to metallic rutile phase at a critical temperature of τ c ≈ 68 °C. The abrupt decrease of infrared transmittance in the metallic phase makes VO 2 a potential candidate for thermochromic energy efficient windows to cut down building energy consumption. However, there are three long-standing issues that hindered its application in energy efficient windows: high τ c , low luminous transmittance (T lum ), and undesirable solar modulation ability (ΔT sol ). Many approaches, including nano-thermochromism, porous films, biomimetic surface reconstruction, gridded structures, antireflective overcoatings, etc, have been proposed to tackle these issues. The first approach-nano-thermochromism-which is to integrate VO 2 nanoparticles in a transparent matrix, outperforms the rest; while the thermochromic performance is determined by particle size, stoichiometry, and crystallinity. A hydrothermal method is the most common method to fabricate high-quality VO 2 nanoparticles, and has its own advantages of large-scale synthesis and precise phase control of VO 2 . This Review focuses on hydrothermal synthesis, physical properties of VO 2 polymorphs, and their transformation to thermochromic VO 2 (M), and discusses the advantages, challenges, and prospects of VO 2 (M) in energy-efficient smart windows application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”

    Directory of Open Access Journals (Sweden)

    J.-P. Duda

    2018-03-01

    Full Text Available Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic. In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia. Catalytic hydropyrolysis (HyPy of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤  n-C18 is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer–Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis.

  20. Hydrothermal synthesis, structure and characterization of new ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Hydrothermal; crystal structure; solid electrolyte; iron (III) pyrophosphate. 1. Introduction ... tion, structure and electrical conductivity and the higher values of ..... type cavity structure. Acknowledgements. The authors would like to express their thanks to DST,. New Delhi, for financial assistance under the projects.

  1. Hydrothermal synthesis of size-controllable Yttrium Orthovanadate (YVO{sub 4}) nanoparticles and its application in photocatalytic degradation of direct blue dye

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, R.M., E-mail: redama123@yahoo.com [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Harraz, F.A. [Advanced Materials Department, Central Metallurgical R and D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421 (Egypt); Mkhalid, I.A. [Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2012-08-15

    Graphical abstract: XRD patterns of YVO{sub 4} nanopowders prepared at different hydrothermal times; where Y{sub 1} = 4 h, Y{sub 2} = 8 h, Y{sub 3} = 12 h and Y{sub 4} = 24 h. Highlights: Black-Right-Pointing-Pointer Size control of Yttrium Orthovanadate. Black-Right-Pointing-Pointer Hydrothermal synthesis. Black-Right-Pointing-Pointer Removal of direct blue dye. - Abstract: Sized-controlled YVO{sub 4} nanoparticles have been synthesized by a simple hydrothermal method by changing hydrothermal time from 4 to 24 h. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (Brunauer-Emmett-Teller (BET)), and ultraviolet-visible spectroscopy (UV-vis) measurements. The results showed that the size of as-synthesized YVO{sub 4} nanoparticles was in the range of 11-40 nm and was extremely dependent on the hydrothermal time. Photocatalytic measurement showed that the YVO{sub 4} nanoparticles with particle size of about 11 nm (prepared by 4 h hydrothermal time) possess superior photocatalytic properties in the decolorization of direct blue dye. Due to simple preparation, high photocatalytic oxidation of direct blue dye and low cost, the YVO{sub 4} photocatalyst is a potential candidate for pollutants removal and will find wide application in the coming future in photocatalytic oxidation processes. The overall kinetics of photodegradation of direct blue dye using YVO{sub 4} nanopowders photocatalyst was found to be of first order. The photocatalyst could be easily removed from the reaction mixture and its recyclability with no loss of activity was possible for six times. The catalytic performance was found to decrease by 5% after run number six.

  2. Hydrothermal-synthesized NiO nanowall array for lithium ion batteries

    International Nuclear Information System (INIS)

    Yan, Xiaoyan; Tong, Xili; Wang, Jian; Gong, Changwei; Zhang, Mingang; Liang, Liping

    2013-01-01

    Graphical abstract: Freestanding NiO nanowall array is prepared via a hydrothermal synthesis method and shows noticeable Li battery performance with good cycle life and high capacity. Highlights: ► NiO nanowall array is prepared by a hydrothermal synthesis method. ► NiO nanowall array with high capacity as anode material for Li ion battery. ► Nanowall array structure is favorable for fast ion/electron transfer. -- Abstract: We report a self-supported NiO nanowall array prepared by a facile hydrothermal synthesis method. The microstructure and morphology of the sample are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The hydrothermal-synthesized NiO nanowalls with thicknesses of ∼20 nm arrange vertically to the substrate forming a net-like nanowall array structure. As anode material for lithium ion batteries, the NiO nanowall array exhibits better electrochemical performances with higher coulombic efficiency and better cycling performance as compared to the dense NiO film. The NiO nanowall array shows an initial coulombic efficiency of 76%, as well as good cycling stability with a capacity of 567 mAh g −1 at 0.3 A g −1 after 50 cycles, higher than those of the dense polycrystalline NiO film (361 mAh g −1 ). The superior electrochemical performance is mainly due to the unique nanowall array structure with shorter diffusion length for mass and charge transport

  3. Synthesis of ZrO{sub 2} nanoparticles by hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Machmudah, Siti, E-mail: machmudah@chem-eng.its.ac.id; Widiyastuti, W., E-mail: machmudah@chem-eng.its.ac.id; Prastuti, Okky Putri, E-mail: machmudah@chem-eng.its.ac.id; Nurtono, Tantular, E-mail: machmudah@chem-eng.its.ac.id; Winardi, Sugeng, E-mail: machmudah@chem-eng.its.ac.id [Chemical Engineering Department, Sepuluh Nopember Institute of Technology, Surabaya 60111 (Indonesia); Wahyudiono,; Kanda, Hideki; Goto, Motonobu [Department of Chemical Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2014-02-24

    Zirconium oxide (zirconia, ZrO{sub 2}) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl{sub 4} precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 – 200°C with precursor concentration of 0.1 – 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal.

  4. Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA

    Science.gov (United States)

    Butova, V. V.; Budnyk, A. P.; Bulanova, E. A.; Lamberti, C.; Soldatov, A. V.

    2017-07-01

    In this paper we present, for the first time, a simple hydrothermal recipe for the synthesis of ZIF-8 Metal-Organic Framework (MOF) with a large specific surface area (1340 m2/g by BET). An important feature of the method is that the product forms in aqueous medium under standard hydrothermal conditions without DMF and great excess of linker with the use of TEA as structure directing agent. The ZIF-8 crystal phase of the product was confirmed by XRD; this technique has been also exploited to check the crystallinity and to follow the changes in the MOF structure induced by heating. TGA and temperature dependent XRD testify the high thermal stability of the material (470 °C in N2 and at 400 °C in air). The IR spectral profile of the material provides a complete picture of vibrations assigned to the linker and the metal center. The systematic investigation of the products obtained by increasing the TEA amount in the reacting medium from 0 to 25.5 mol equivalent Zn2+, allowed us to understand its role and to find 2.6 mol equivalent Zn2+ as the minimum amount needed to obtain a single phase ZIF-8 material with the high standard reported above. The stability of the material under severe basic conditions makes it a promising candidate in heterogeneous catalysis. The material has shown high capacity in I2 uptake, making it interesting also for selective molecular adsorption.

  5. Abiotic condensation synthesis of glyceride lipids and wax esters under simulated hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ( composite function)C to 300 ( composite function)C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ( composite function)C and 250 ( composite function)C, and were detectable and thus stable under hydrothermal conditions to temperatures acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ( composite function)C and 250 ( composite function)C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  6. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-01-01

    Graphical abstract: Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH) 2 nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH) 2 nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH) 2 ) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH) 2 nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes

  7. Hydrothermal assisted synthesis of iron oxide-based magnetic silica spheres and their performance in magnetophoretic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Caparros, C., E-mail: ccaparros@fisica.uminho.pt [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Benelmekki, M.; Martins, P.M. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Xuriguera, E. [Facultat de Quimica, Universitat de Barcelona, 08028 Barcelona (Spain); Silva, C.J.R. [Departamento de Quimica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Martinez, Ll.M. [Sepmag Technologies, Parc Tecnologic del Valles, 08290 Barcelona (Spain); Lanceros-Mendez, S. [Centro de Fisica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2012-08-15

    Porous Magnetic Silica (PMS) spheres of about 400 nm diameter were synthesised by one-pot process using the classical Stber method combined with hydrothermal treatment. Maghemite nanoparticles ({gamma}-Fe{sub 2}O{sub 3}) were used as fillers and cetyltrimethylammonium bromide (CTAB) was used as templating agent. The application of the hydrothermal process (120 Degree-Sign C during 48 h) before the calcination leads to the formation of homogeneous and narrow size distribution PMS spheres. X-ray diffraction patterns (XRD), Infrared measurements (FTIR) and Transmission Electron microscopy (TEM) methods were used to determine the composition and morphology of the obtained PMS spheres. The results show a homogeneous distribution of the {gamma}-Fe{sub 2}O{sub 3} nanoparticles in the silica matrix with a 'hollow-like' morphology. Magnetophoresis measurements at 60 T m{sup -1} show a total separation time of the PMS spheres suspension of about 16 min. By using this synthesis method, the limitation of the formation of silica spheres without incorporation of magnetic nanoparticles is overcome. These achievements make this procedure interesting for industrial up scaling. The obtained PMS spheres were evaluated as adsorbents for Ni{sup 2+} in aqueous solution. Their adsorption capacity was compared with the adsorption capacity of magnetic silica spheres obtained without hydrothermal treatment before calcination process. PMS spheres show an increase of the adsorption capacity of about 15% of the initial dissolution of Ni{sup 2+} without the need to functionalize the silica surface. Highlights: Black-Right-Pointing-Pointer Homogeneous and controlled size porous magnetic silica spheres were obtained. Black-Right-Pointing-Pointer Magnetophoretic removing of Ni{sup 2+} processes was successfully preformed at HLGMF. Black-Right-Pointing-Pointer PMS show higher Ni{sup 2+} removing capacity than spheres without hydrothermal treatment. Black-Right-Pointing-Pointer PMS can be

  8. Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

    International Nuclear Information System (INIS)

    Xiao, Anguo; Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-01

    Highlights: • NiO mesoporous nanowall arrays are prepared via hydrothermal method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • NiO mesoporous nanowall arrays show good supercapacitor performance. - Abstract: Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g −1 at 2 A g −1 and impressive high-rate capability with a specific capacitance of 338 F g −1 at 40 A g −1 . In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g −1 , a high capacitance of 660 F g −1 is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties

  9. Synthesis and characterization of silica mesoporous material produced by hydrothermal continues pH adjusting path way

    Directory of Open Access Journals (Sweden)

    A. Salemi Golezani

    2016-08-01

    Full Text Available Mesoporous silica molecular sieves MCM-41 were synthesized under hydrothermal conditions. For this purpose, a solution with a molar coefficient of water, cetyltri-methyl ammonium bromide surfactants as template and sodium silicate as the source of SiO2 are used. Phase formation, morphology and gas absorption properties were investigated by XRD and BET analysis, respectively. The results showed that silica mesoporous material has been successfully synthesized. A favorable special surface and porosity volume together with regular arrangement of nano metric-hexagonal porosities were obtained from this synthesis. Thickness of the wall and average diameter of the pores are 0.8 nm and 4 nm, respectively.

  10. The effects of synthesis parameters on the formation of PbI2 particles under DTAB-assisted hydrothermal process

    International Nuclear Information System (INIS)

    Zhu Gangqiang; Hojamberdiev, Mirabbos; Liu Peng; Peng Jianhong; Zhou Jianping; Bian Xiaobin; Huang Xijin

    2011-01-01

    Highlights: ► Submicron- and micron-sized PbI 2 particles were hydrothermally synthesized. ► Structural transformation form belt-like to rod- and microtube-like was observed. ► Phase-pure PbI 2 particles could be hydrothermally obtained at pH 2 particles. ► The optical band gap energy of PbI 2 was slightly affected by morphology. - Abstract: Submicron- and micron-sized lead iodide (PbI 2 ) particles with well-controlled morphologies were successfully fabricated via a low-temperature hydrothermal process assisted by dodecyltrimethylammonium bromide (DTAB) as cationic surfactant. The as-synthesized powders were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectroscopy. The effects of synthesis parameters (temperature, time, pH, and surfactant amount) were systematically investigated. The obtained results showed that the submicron structure was belt-like at 100–120 °C, transformed to rod-like by increasing temperature to 140 °C and it became a microtube-like at 160–200 °C. By changing the pH of the synthesizing solution, it was found that a pure PbI 2 phase could be obtained below 7. With the addition of increasing amount of surfactant, microparticles were converted to microrods → submicron belts → microtubes. The time-dependent experimental results revealed that the dissolution–recrystallization and dissolution–recrystallization–self-oriented-attachment were considered to be the possible mechanisms for the formation of the belt- and tube-like PbI 2 submicron- and micron-sized particles, respectively. The optical properties of the PbI 2 particles synthesized at 100–200 °C for 8 h under hydrothermal conditions were also studied.

  11. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    Science.gov (United States)

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  12. Hydrothermal synthesis of nanostructured Y2O3 and (Y0.75Gd0.25)2O3 based phosphors

    Science.gov (United States)

    Mančić, Lidija; Lojpur, Vesna; Marinković, Bojan A.; Dramićanin, Miroslav D.; Milošević, Olivera

    2013-08-01

    Examples of (Y2O3-Gd2O3):Eu3+ and Y2O3:(Yb3+/Er3+) rare earth oxide-based phosphors are presented to highlight the controlled synthesis of 1D and 2D nanostructures through simple hydrothermal method. Conversion of the starting nitrates mixture into carbonate hydrate phase is performed with the help of ammonium hydrogen carbonate solution during hydrothermal treatment at 200 °C/3 h. Morphological architectures of rare earth oxides obtained after subsequent powders thermal treatment at 600 and 1100 °C for 3 and 12 h and their correlation with the optical characteristics are discussed based on X-ray powder diffractometry, field emission scanning electron microscopy, infrared spectroscopy and photoluminescence measurements. Strong red and green emission followed by the superior decay times are attributed to the high powders purity and homogeneous dopants distribution over the host lattice matrix.

  13. Synthesis of mesoporous cerium-zirconium mixed oxides by hydrothermal templating method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Mesoporous cerium-zirconium mixed oxides were prepared by hydrothermal method using cetyl trimethyl ammonium bromide (CTAB) as template.The effects of amount of template,pH value of solution and hydrothermal temperature on mesostructure of samples were systematically investigated.The final products were characterized by XRD,TEM,FT-IR,and BET.The results indicate that all the cerium-zirconium mixed oxides present a meso-structure.At molar ratio of n(CTAB)/n((Ce)+(Zr))=0.15,pH value of 9,and hydrothermal temperature of 120 ℃,the samples obtained possess a specific surface area of 207.9 m2/g with pore diameter of 3.70 nm and pore volume of 0.19 cm3/g.

  14. Microwave-assisted hydrothermal synthesis of biocompatible silver sulfide nanoworms

    Science.gov (United States)

    Xing, Ruimin; Liu, Shanhu; Tian, Shufang

    2011-10-01

    In this study, silver sulfide nanoworms were prepared via a rapid microwave-assisted hydrothermal method by reacting silver nitrate and thioacetamide in the aqueous solution of the Bovine Serum Albumin (BSA) protein. The morphology, composition, and crystallinity of the nanoworms were characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), X-ray energy dispersive spectroscopy (EDS), and Fourier transform infrared (FTIR) spectroscopy. The results show that the nanoworms were assembled by multiple adjacent Ag2S nanoparticles and stabilized by a layer of BSA attached to their surface. The nanoworms have the sizes of about 50 nm in diameter and hundreds of nanometers in length. The analyses of high-resolution TEM and their correlative Fast Fourier Transform (FFT) indicate that the adjacent Ag2S nanoparticles grow by misoriented attachment at the connective interfaces to form the nanoworm structure. In vitro assays on the human cervical cancer cell line HeLa show that the nanoworms exhibit good biocompatibility due to the presence of BSA coating. This combination of features makes the nanoworms attractive and promising building blocks for advanced materials and devices.

  15. A Comparative Characterization of the HPA-MCM-48 Type Catalysts Produced by the Direct Hydrothermal and Room Temperature Synthesis Methods

    International Nuclear Information System (INIS)

    Gucbilmez, Y.; Calis, I.; Yargic, A. S.

    2012-01-01

    MCM-48 type support materials synthesized by the direct hydrothermal synthesis (HTS) and room temperature synthesis (RTS) methods were incorporated with tungstophosphoric acid (TPA) in the range of 10-40 wt% by using a wet impregnation technique in methanol solutions. Resulting HPA-MCM-48 catalysts were characterized by the XRD, Nitrogen Physisorption, SEM, TEM, EDS, and FT-IR methods in order to determine the effects of different initial synthesis conditions on the catalyst properties. RTS samples were found to have better crystalline structures, higher BET surface areas, and higher BJH pore volumes than HTS samples. They also had slightly higher TPA incorporation, except for the 40 wt% samples, as evidenced by the EDS results. Keggin ion structure was preserved, for both methods, even at the highest acid loading of 40 wt%. It was concluded that the simpler and more economical RTS method was more successful than the HTS method for hetero poly acid incorporation into MCM-48 type materials

  16. Synthesis and luminescence properties of (Zn,Cd)S:Ag nanocrystals by hydrothermal method

    International Nuclear Information System (INIS)

    Luo Xixian; Cao Wanghe; Zhou Lixin

    2007-01-01

    ZnS:Ag and (Zn,Cd)S:Ag nanoparticles with particle sizes of about 50 and 150 nm have been prepared by hydrothermal method. The effects of hydrothermal process on the physical and luminescence characteristics are investigated. The photoluminescence intensities of hydrothermal treatment ZnS:Ag samples are 10 times higher than that of non-treated samples after annealing at 800 deg. C

  17. Microstructure and magnetic properties of MFe2O4 (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Science.gov (United States)

    Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping

    2015-05-01

    Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  18. Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method

    Science.gov (United States)

    Liu, Shiyuan; Wang, Lijun; Chou, Kuochih

    2018-03-01

    Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.

  19. Hydrothermal synthesis and white light emission of cubic ZrO2:Eu3+ nanocrystals

    International Nuclear Information System (INIS)

    Meetei, Sanoujam Dhiren; Singh, Shougaijam Dorendrajit

    2014-01-01

    Highlights: • White light emitting cubic ZrO 2 :Eu 3+ nanocrystal is synthesized by hydrothermal technique. • Eu 3+ is used to stabilize crystalline phase and to get red counterpart of the white light. • Defect emission and Eu 3+ emission combined to give white light. • The white light emitted from this nanocrystal resembles vertical daylight of the Sun. • Lifetime corresponding to red counterpart of the sample is far longer than conventional white light emitters. -- Abstract: Production of white light has been a promising area of luminescence studies. In this work, white light emitting nanocrystals of cubic zirconia doped with Eu 3+ are synthesized by hydrothermal technique. The dopant Eu 3+ is used to stabilize crystalline phase to cubic and at the same time to get red counterpart of the white light. The synthesis procedure is simple and precursor required no further annealing for crystallization. X-ray diffraction patterns show the crystalline phase of ZrO 2 :Eu 3+ to be cubic and it is confirmed by Fourier Transform Infrared spectroscopy. From transmission electron microscopy images, size of the crystals is found to be ∼5 nm. Photoluminescence emission spectrum of the sample, on monitoring excitation at O 2− –Eu 3+ charge transfer state shows broad peak due to O 2− of the zirconia and that of Eu 3+ emission. Commission Internationale de l’éclairage co-ordinate of this nanocrystal (0.32, 0.34) is closed to that of the ideal white light (0.33, 0.33). Correlated color temperature of the white light (5894 K) is within the range of vertical daylight. Lifetime (1.32 ms) corresponding to 5 D 0 energy level of the Eu 3+ is found to be far longer than conventional red counterparts of white light emitters. It suggests that the ZrO 2 :Eu 3+ nanocrystals synthesized by hydrothermal technique may find applications in simulating the vertical daylight of the Sun

  20. One-step hydrothermal synthesis and electrochemical performance of sodium-manganese-iron phosphate as cathode material for Li-ion batteries

    Science.gov (United States)

    Karegeya, Claude; Mahmoud, Abdelfattah; Vertruyen, Bénédicte; Hatert, Frédéric; Hermann, Raphaël P.; Cloots, Rudi; Boschini, Frédéric

    2017-09-01

    The sodium-manganese-iron phosphate Na2Mn1.5Fe1.5(PO4)3 (NMFP) with alluaudite structure was obtained by a one-step hydrothermal synthesis route. The physical properties and structure of this material were obtained through XRD and Mössbauer analyses. X-ray diffraction Rietveld refinements confirm a cationic distribution of Na+ and presence of vacancies in A(2)', Na+ and small amounts of Mn2+ in A(1), Mn2+ in M(1), 0.5 Mn2+ and Fe cations (Mn2+,Fe2+ and Fe3+) in M(2), leading to the structural formula Na2Mn(Mn0.5Fe1.5)(PO4)3. The particles morphology was investigated by SEM. Several reactions with different hydrothermal reaction times were attempted to design a suitable synthesis protocol of NMFP compound. The time of reaction was varied from 6 to 48 h at 220 °C. The pure phase of NMFP particles was firstly obtained when the hydrothermal reaction of NMFP precursors mixture was maintained at 220 °C for 6 h. When the reaction time was increased from 6 to 12, 24 and 48 h, the dandelion structure was destroyed in favor of NMFP micro-rods. The combination of NMFP (NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H) structure refinement and Mössbauer characterizations shows that the increase of the reaction time leads to the progressive increment of Fe(III) and the decrease of the crystal size. The electrochemical tests indicated that NMFP is a 3 V sodium intercalating cathode. The comparison of the discharge capacity evolution of studied NMFP electrode materials at C/5 current density shows different capacities of 48, 40, 34 and 34 mA h g-1 for NMFP-6H, NMFP-12H, NMFP-24H and NMFP-48H respectively. Interestingly, all samples show excellent capacity retention of about 99% during 50 cycles.

  1. Hydrothermal synthesis for fabrication and reprocessing of MOX nuclear fuel

    International Nuclear Information System (INIS)

    Ohta, Suguru; Yamamura, Tomoo; Shirasaki, Kenji; Satoh, Isamu; Shikama, Tatsuo

    2011-01-01

    To improve the nuclear proliferation resistance and to minimize use of chemicals, a new reprocessing and fabrication process of 'mixed oxide' (MOX) fuel was proposed and studied by using simulated spent fuel solutions. The process is consisting of the two steps, i.e. the removal of fission product (FP) from dissolved spent fuel by using carbonate solutions (Step-1), and hydrothermal synthesis of uranium dioxides (Step-2). In Step-1, rare earth (the precipitation ratio: 90%) and alkaline earth (10-50% for Sr) as FP were removed based on their low solubility of hydroxides and carbonate salts, with uranium kept dissolved for the certain carbonate solutions of weak base (Type 2) or mixtures of relatively strong base and weak base (Type 3). In Step-2, the features of uranium dioxides UO 2+x particles, i.e. stoichiometry (x=0.05-0.2), size (0.2-3 μm) and shape (cubic, spherical, rectangular parallelpiped, etc.), were controlled, and the cesium was removed down to 40 ppm by an addition of organic additives. The decontamination factors (DF) for cesium exceeds 10 5 , whereas the total DF of all the simulated FP were as low as the order of 10 which requires future studies for removal of alkaline earth, Re and Tc etc. (author)

  2. Hydrothermal synthesis and crystal structure of CsFe23(HPO4)2(PO4)(H2O)

    International Nuclear Information System (INIS)

    Anisimova, N.Yu.; Ilyukhin, A.B.; Chudinova, N.N.; Serafin, M.

    2001-01-01

    The double acid iron-cesium orthophosphate CsFe 2 3 (HPO 4 ) 2 (PO 4 )(H 2 O) was prepared by hydrothermal synthesis (from the Fe 2 O 3 , Cs 2 CO 3 and H 3 PO 4 mixture at 290 Deg C during 1 h following by cooling to 25 Deg C). Its crystal structure (a = 5.021(3), b = 15.80(1), c = 13.646(8), β 94.49(4) Deg, sp. gr. P2 1 /n, Z = 4) was analyzed by X-ray diffraction. The structure is formed by the orthophosphate tetrahedrons and the FeO 6 octahedrons, the water molecule is coordinated by the iron atom [ru

  3. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    Science.gov (United States)

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  4. Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.

    Science.gov (United States)

    Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen

    2015-12-01

    In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).

  5. Piezoelectric Materials Synthesized by the Hydrothermal Method and Their Applications

    Directory of Open Access Journals (Sweden)

    Takeshi Morita

    2010-12-01

    Full Text Available Synthesis by the hydrothermal method has various advantages, including low reaction temperature, three-dimensional substrate availability, and automatic polarization alignment during the process. In this review, powder synthesis, the fabrication of piezoelectric thin films, and their applications are introduced. A polycrystalline lead zirconate titanate (PZT thin film was applied to a micro ultrasonic motor, and an epitaxial lead titanate (PbTiO3 thin film was estimated as a ferroelectric data storage medium. Ferroelectric and piezoelectric properties were successfully obtained for epitaxial PbTiO3 films. As lead-free piezoelectric powders, KNbO3 and NaNbO3 powders were synthesized by the hydrothermal method and sintered together to form (K,NaNbO3 ceramics, from which reasonable piezoelectric performance was achieved.

  6. Obtaining zeolite Y synthesized by hydrothermal treatment assisted by microwave

    International Nuclear Information System (INIS)

    Simoes, A.N.; Simoes, V.N.; Neiva, L.S.; Rodrigues, M.G.F.; Gama, L.; Oliveira, J. B.L.

    2011-01-01

    n search of new catalysts several man-made structures have been developed. The use of zeolites in catalysis is applied due to its ability to associate activity, selectivity and stability, the main conditions to have an effective catalyst. Thus, studies have been done on the hydrothermal synthesis of zeolites by microwave assisted, since the use of microwave radiation offers several advantages over conventional heating. In this context, this work aims to synthesis and characterization of zeolite Y via hydrothermal treatment in a microwave oven. The sample obtained was characterized by XRD, BET and SEM. XRD results showed the formation of zeolite Y in just 60 minutes. The sample showed high value of surface area, the latter being of 476.2 m² / g. The particles are agglomerated, but with a narrow distribution of size. (author)

  7. Hydrothermal synthesis of a photovoltaic material based on CuIn0.5Ga0.5Se2

    Science.gov (United States)

    Castellanos Báez, Y. T.; Fuquen Peña, D. A.; Gómez-Cuaspud, J. A.; Vera-López, E.; Pineda-Triana, Y.

    2017-12-01

    The present work report, the synthesis and characterization of the CuIn0.5Ga0.5Se2 system (abbreviated CIGS), by the implementation of a hydrothermal route, in order to obtain a solid with appropriate properties in terms of surface, morphological and texture properties for potential applications in the design of photovoltaic cells. The synthesis was carried out using the corresponding stoichiometric quantities (Cu:In:Ga:Se 1:0.5:0.5:2), which were mixed in a Teflon vessel under stirring conditions. The homogeneous solution was treated in a steel autoclave at 300°C for 72 hours at the end of which the resulting material was characterized by X-Ray Diffraction (XRD) and Rietveld refinement. The results of the structural characterization allowed to confirm the obtaining of a chalcopyrite type structure, with a I-42 d (122) structure and cell parameters a=0.570, b=0.570, c=1.140nm, α=90, β=90, γ=90° oriented along (1 0 4) facet, detecting the presence of a secondary phases, related with CuInSe and CuIn metallic selenides, derived from synthesis process. The structural refinement allowing to validate the obtaining of a nanometric crystalline material (10-20nm) for potential applications in field of photovoltaic technology.

  8. Direct Energy Supply to the Reaction Mixture during Microwave-Assisted Hydrothermal and Combustion Synthesis of Inorganic Materials

    Directory of Open Access Journals (Sweden)

    Roberto Rosa

    2014-05-01

    Full Text Available The use of microwaves to perform inorganic synthesis allows the direct transfer of electromagnetic energy inside the reaction mixture, independently of the temperature manifested therein. The conversion of microwave (MW radiation into heat is useful in overcoming the activation energy barriers associated with chemical transformations, but the use of microwaves can be further extended to higher temperatures, thus creating unusual high-energy environments. In devising synthetic methodologies to engineered nanomaterials, hydrothermal synthesis and solution combustion synthesis can be used as reference systems to illustrate effects related to microwave irradiation. In the first case, energy is transferred to the entire reaction volume, causing a homogeneous temperature rise within a closed vessel in a few minutes, hence assuring uniform crystal growth at the nanometer scale. In the second case, strong exothermic combustion syntheses can benefit from the application of microwaves to convey energy to the reaction not only during the ignition step, but also while it is occurring and even after its completion. In both approaches, however, the direct interaction of microwaves with the reaction mixture can lead to practically gradient-less heating profiles, on the basis of which the main observed characteristics and properties of the aforementioned reactions and products can be explained.

  9. Hydrothermal synthesis of hydroxyapatite nanoparticles decorated with silver nanoparticles for application in biomaterials

    International Nuclear Information System (INIS)

    Assis, Jordanna Fernandes; Arantes, Tatiane Moraes; Cristovan, F.H.; Tada, Dayane Batista

    2016-01-01

    Full text: The hydroxyapatite nanoparticles (HA) have research attention because are material that exhibit biocompatibility with bone mineral phase of human body is great interest in the scientific community. Synthetic hydroxyapatite nanoparticles have excellent biocompatibility and bioactivity, due biocompatibility and osteo inducibility [1-3]. The hydroxyapatite nanoparticles were synthesized by hydrothermal processing and were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD and Raman spectra showed crystalline hydroxyapatite colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated hydroxyapatite surface. TEM images showed HA nanoparticles presented a well defined nanorod shapes and narrow size distributions with dimensions (width and length) around of 5 nm and 50 nm decorated with silver nanoparticles of spherical shape about 20 nm in diameter The results showed that crystalline hydroxyapatite colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. These nanoparticles The cell viability of the HA and HA/Ag was analyzed by reduction of the tetrazolium salt (MTT test). Embryonic mouse fibroblast cells were grown in the presence of nanoparticles for a total period of 96 hours. Analyses were made in 24h, 48h, 72h and 96h. The suspensions at the end of each period were analyzed in spectrophotometer. The 24h experiments were the most conclusive, with the silver presence in the HA, there is an increased in cellular proliferation. The results demonstrated that the HA/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  10. Hydrothermal synthesis of hydroxyapatite nanoparticles decorated with silver nanoparticles for application in biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Jordanna Fernandes; Arantes, Tatiane Moraes, E-mail: fernandes.jordanna9@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil); Cristovan, F.H.; Tada, Dayane Batista [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The hydroxyapatite nanoparticles (HA) have research attention because are material that exhibit biocompatibility with bone mineral phase of human body is great interest in the scientific community. Synthetic hydroxyapatite nanoparticles have excellent biocompatibility and bioactivity, due biocompatibility and osteo inducibility [1-3]. The hydroxyapatite nanoparticles were synthesized by hydrothermal processing and were characterized by X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy (TEM). The XRD and Raman spectra showed crystalline hydroxyapatite colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated hydroxyapatite surface. TEM images showed HA nanoparticles presented a well defined nanorod shapes and narrow size distributions with dimensions (width and length) around of 5 nm and 50 nm decorated with silver nanoparticles of spherical shape about 20 nm in diameter The results showed that crystalline hydroxyapatite colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. These nanoparticles The cell viability of the HA and HA/Ag was analyzed by reduction of the tetrazolium salt (MTT test). Embryonic mouse fibroblast cells were grown in the presence of nanoparticles for a total period of 96 hours. Analyses were made in 24h, 48h, 72h and 96h. The suspensions at the end of each period were analyzed in spectrophotometer. The 24h experiments were the most conclusive, with the silver presence in the HA, there is an increased in cellular proliferation. The results demonstrated that the HA/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  11. Rapid, facile synthesis of conjugated polymer zwitterions in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Page, Zachariah A. [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Liu, Feng [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Russell, Thomas P. [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA; Emrick, Todd [Polymer Science & Engineering Department; Conte Center for Polymer Research; University of Massachusetts; Amherst, USA

    2014-01-01

    Ionic liquids (ILs) were utilized for the rapid air-stable Suzuki polymerization of polar zwitterionic thiophene monomers, precluding the need for volatile organic solvents, phosphine ligands and phase transfer catalysts typically used in conjugated polymer synthesis.

  12. Hydrothermal synthesis for new multifunctional materials: A few examples of phosphates and phosphonate-based hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Rueff, Jean-Michel, E-mail: jean-michel.rueff@ensicaen.fr [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 bd du Maréchal Juin, F-14050 Caen Cedex (France); Poienar, Maria [National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str Nr. 1, 300224 Timisoara (Romania); Guesdon, Anne; Martin, Christine; Maignan, Antoine [Laboratoire CRISMAT, CNRS UMR 6508, ENSICAEN, 6 bd du Maréchal Juin, F-14050 Caen Cedex (France); Jaffrès, Paul-Alain [Université de Brest, Université Européenne de Bretagne, CNRS UMR 6521, CEMCA, SFR 148 ScInBios, 6 Avenue Victor Le Gorgeu, 29238 Brest (France)

    2016-04-15

    Novel physical or chemical properties are expected in a great variety of materials, in connection with the dimensionality of their structures and/or with their nanostructures, hierarchical superstructures etc. In the search of new advanced materials, the hydrothermal technique plays a crucial role, mimicking the nature able to produce fractal, hyperbranched, urchin-like or snow flake structures. In this short review including new results, this will be illustrated by examples selected in two types of materials, phosphates and phosphonates, prepared by this method. The importance of the synthesis parameters will be highlighted for a magnetic iron based phosphates and for hybrids containing phosphonates organic building units crystallizing in different structural types. - Graphical abstract: Phosphate dendrite like and phosphonate platelet crystals.

  13. Facile hydrothermal synthesis of CeO 2 nanopebbles

    Indian Academy of Sciences (India)

    Cerium oxide (CeO2) nanopebbles have been synthesized using a facile hydrothermal method. X-ray diffraction pattern (XRD) and transmission electron microscopy analyses confirm the presence of CeO2 nanopebbles. XRD shows the formation of cubic fluorite CeO2 and the average particle size estimated from the ...

  14. Microstructure and magnetic properties of MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei, E-mail: wangwei@mail.buct.edu.cn; Ding, Zui; Zhao, Xiruo [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029 (China); Wu, Sizhu [State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Li, Feng [State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Yue, Ming [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022 (China); Liu, J. Ping [Department of Physics, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2015-05-07

    Three kinds of spinel ferrite nanocrystals, MFe{sub 2}O{sub 4} (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH{sub 4}) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (M{sub s}). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.

  15. Rapid Hydrothermal Synthesis of Zinc Oxide Nanowires by Annealing Methods on Seed Layers

    Directory of Open Access Journals (Sweden)

    Jang Bo Shim

    2011-01-01

    Full Text Available Well-aligned zinc oxide (ZnO nanowire arrays were successfully synthesized on a glass substrate using the rapid microwave heating process. The ZnO seed layers were produced by spinning the precursor solutions onto the substrate. Among coatings, the ZnO seed layers were annealed at 100°C for 5 minutes to ensure particle adhesion to the glass surface in air, nitrogen, and vacuum atmospheres. The annealing treatment of the ZnO seed layer was most important for achieving the high quality of ZnO nanowire arrays as ZnO seed nanoparticles of larger than 30 nm in diameter evolve into ZnO nanowire arrays. Transmission electron microscopy analysis revealed a single-crystalline lattice of the ZnO nanowires. Because of their low power (140 W, low operating temperatures (90°C, easy fabrication (variable microwave sintering system, and low cost (90% cost reduction compared with gas condensation methods, high quality ZnO nanowires created with the rapid microwave heating process show great promise for use in flexible solar cells and flexible display devices.

  16. Seawater bicarbonate removal during hydrothermal circulation

    Science.gov (United States)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  17. Hydrothermal synthesis of 1D TiO2 nanostructures for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Tacchini, I.; Ansón-Casaos, A.; Yu, Youhai; Martínez, M.T.; Lira-Cantu, M.

    2012-01-01

    Highlights: ► Hydrothermal synthesis allows the preparation of different 1D TiO 2 nanostructures easily. ► Nanotubular morphology demonstrates the highest photovoltaic efficiencies in dye sensitized cells (DSCs). ► Morphology at the nanoscale level is as decisive for DSC efficiency as it is TiO 2 crystal structure and surface area. - Abstract: Mono-dimensional titanium oxide nanostructures (multi-walled nanotubes and nanorods) were synthesized by the hydrothermal method and applied to the construction of dye sensitized solar cells (DSCs). First, nanotubes (TiNTs) and nanotubes loaded with titanium oxide nanoparticles (TiNT/NPs) were synthesized with specific surface areas of 253 m 2 /g and 304 m 2 /g, respectively. After that, thermal treatment of the nanotubes at 500 °C resulted in their transformation into the corresponding anatase nanorods (TiNT-Δ and TiNT/NPs-Δ samples). X-ray diffraction and Raman spectroscopy data indicated that titanium oxide in the pristine TiNT and TiNT/NP samples was converted into anatase phase TiO 2 during the heating. Additionally, specific surface areas and water adsorption capacities decreased after the heat treatment due to the sample agglomeration and the collapse of the inner nanotube channels. DSCs were fabricated with the nanotube TiNT and TiNT/NP samples and with the anatase nanorod TiNT-Δ and TiNT/NPs-Δ samples as well. The highest power conversion efficiency of η = 3.12% was obtained for the TiNT sample, despite its lower specific surface compared with the corresponding nanoparticle-loaded sample (TiNT/NP).

  18. One-pot hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid

    International Nuclear Information System (INIS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    A novel and facile approach for one-pot synthesis of spinel cobalt ferrite (CoFe 2 O 4 ) nanoparticles (NPs) is presented here. The synthesis involves homogeneous chemical precipitation followed by hydrothermal heating, using tributylamine (TBA) as a hydroxylating agent. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized CoFe 2 O 4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). TEM image showed formation of spherical particles of sizes 2–30 nm. These NPs were used as magnetically recoverable catalyst in oxidation of alcohols to their corresponding aldehydes by periodic acid. This oxidative procedure is found to be highly efficient affording products in very high yield and selectivity. The easy magnetic separation of the catalyst and efficient reusability are key features of this methodology. - Highlights: • Hydrothermal synthesis of CoFe 2 O 4 NPs with (C 4 H 9 ) 3 N as hydroxylating agent. • The TEM images showed the particles to be spherical in shape with sizes 2–30 nm. • CoFe 2 O 4 was used as recyclable catalyst for oxidation of alcohols by periodic acid.

  19. Enhanced performance of LiFePO4 through hydrothermal synthesis coupled with carbon coating and cupric ion doping

    International Nuclear Information System (INIS)

    Pei Bo; Wang Qiang; Zhang Weixin; Yang Zeheng; Chen Min

    2011-01-01

    Highlights: → Hydrothermal reaction has been adopted to synthesize LiFePO 4 with a narrow size distribution. → LiFePO 4 was modified with carbon coating and cupric cation (Cu 2+ ) doping simultaneously. → Electrochemical properties of LiFePO 4 were improved by carbon coating and cupric cation doping. - Abstract: A hydrothermal reaction has been adopted to synthesize pure LiFePO 4 first, which was then modified with carbon coating and cupric ion (Cu 2+ ) doping simultaneously through a post-heat treatment. X-ray diffraction patterns, transmission electron microscopy and scanning electron microscopy images along with energy dispersive spectroscopy mappings have verified the homogeneous existence of coated carbon and doped Cu 2+ in LiFePO 4 particles with phospho-olivine structure and an average size of 400 nm. The electrochemical performances of the material have been studied by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge measurements. The carbon-coated and Cu 2+ -doped LiFePO 4 sample (LFCu5/C) exhibited an enhanced electronic conductivity of 2.05 x 10 -3 S cm -1 , a specific discharge capacity of 158 mAh g -1 at 50 mA g -1 , a capacity retention of 96.4% after 50 cycles, a decreased charge transfer resistance of 79.4 Ω and superior electrode reaction reversibility. The present synthesis route is promising in making the hydrothermal method more practical for preparation of the LiFePO 4 material and enhancement of electrochemical properties.

  20. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    International Nuclear Information System (INIS)

    Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting

    2017-01-01

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles (~90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  1. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haiqiang; Qi, Weihong, E-mail: qiwh216@csu.edu.cn; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting [Central South University, School of Materials Science and Engineering (China)

    2017-05-15

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles (~90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  2. Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    International Nuclear Information System (INIS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    Graphical abstract: - Highlights: • Hydrothermal synthesis of NiFe 2 O 4 NPs with (C 4 H 9 ) 3 N as hydroxylating agent. • PEG 4000 was used as surfactant to control sizes of NPs. • The TEM images revealed the material to be spherical in shape with sizes 2–10 nm. • NiFe 2 O 4 was used as recyclable catalyst for oxidation of alcohols by periodic acid. - Abstract: A novel and facile approach for synthesis of spinel nickel ferrites (NiFe 2 O 4 ) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe 2 O 4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption–desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe 2 O 4 and TEM image showed spherical particles of sizes 2–10 nm. These NiFe 2 O 4 NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  3. Hydrothermal synthesis of h-MoO3 microrods and their gas sensing properties to ethanol

    International Nuclear Information System (INIS)

    Liu, Yueli; Yang, Shuang; Lu, Yu; Podval’naya, Natal’ya V.; Chen, Wen; Zakharova, Galina S.

    2015-01-01

    Highlights: • A simple hydrothermal acid-free method for the synthesis of h-MoO 3 microrods with the hexagonal cross-section is reported. • The h-MoO 3 phase is transformed to α-MoO 3 at 439 °C. • The h-MoO 3 microrods were employed to fabricate gas sensors to detect ethanol. • Sensor showed highest response with a sensitivity of 8.24–500 ppm C 2 H 5 OH at operating temperature of 332 °C. - Abstract: Hexagonal molybdenum trioxide (h-MoO 3 ) microrods were successfully synthesized via a novel and facile hydrothermal route from peroxomolybdate solution with the presence of NH 4 Cl as the mineralizer. A variety of the techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry combined with the thermal gravimetric analysis (DSC–TG) were used to characterize the product. The gas sensing test indicates that h-MoO 3 microrods have a good response to 5–500 ppm ethanol in the range of 273–380 °C, and the optimum operating temperature is 332 °C with a high sensitivity of 8.24 to 500 ppm ethanol. Moreover, it also has a good selectivity toward ethanol gas if compared with other gases, such as ammonia, methanol and toluene. The sensing mechanism of h-MoO 3 microrods to ethanol was also discussed.

  4. Hydrothermal Synthesis of Nanostructured Manganese Oxide as Cathodic Catalyst in a Microbial Fuel Cell Fed with Leachate

    Science.gov (United States)

    Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen

    2014-01-01

    Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2 was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment. PMID:24723824

  5. High-throughput continuous hydrothermal flow synthesis of Zn-Ce oxides: unprecedented solubility of Zn in the nanoparticle fluorite lattice.

    Science.gov (United States)

    Kellici, Suela; Gong, Kenan; Lin, Tian; Brown, Sonal; Clark, Robin J H; Vickers, Martin; Cockcroft, Jeremy K; Middelkoop, Vesna; Barnes, Paul; Perkins, James M; Tighe, Christopher J; Darr, Jawwad A

    2010-09-28

    High-throughput continuous hydrothermal flow synthesis has been used as a rapid and efficient synthetic route to produce a range of crystalline nanopowders in the Ce-Zn oxide binary system. High-resolution powder X-ray diffraction data were obtained for both as-prepared and heat-treated (850 degrees C for 10 h in air) samples using the new robotic beamline I11, located at Diamond Light Source. The influence of the sample composition on the crystal structure and on the optical and physical properties was studied. All the nanomaterials were characterized using Raman spectroscopy, UV-visible spectrophotometry, Brunauer-Emmett-Teller surface area and elemental analysis (via energy-dispersive X-ray spectroscopy). Initially, for 'as-prepared' Ce(1-x)Zn(x)O(y), a phase-pure cerium oxide (fluorite) structure was obtained for nominal values of x=0.1 and 0.2. Biphasic mixtures were obtained for nominal values of x in the range of 0.3-0.9 (inclusive). High-resolution transmission electron microscopy images revealed that the phase-pure nano-CeO(2) (x=0) consisted of ca 3.7 nm well-defined nanoparticles. The nanomaterials produced herein generally had high surface areas (greater than 150 m(2) g(-1)) and possessed combinations of particle properties (e.g. bandgap, crystallinity, size, etc.) that were unobtainable or difficult to achieve by other more conventional synthetic methods.

  6. Morphology-control of VO2 (B) nanostructures in hydrothermal synthesis and their field emission properties

    International Nuclear Information System (INIS)

    Yin Haihong; Yu Ke; Zhang Zhengli; Zhu Ziqiang

    2011-01-01

    VO 2 (B) nanostructures were synthesized via a facile hydrothermal process using V 2 O 5 as source material and oxalic acid as reductant. Three nanostructures of nanorods, nanocarambolas and nanobundles were found existing in the products, and a continuous changing of morphology was found in the synthesis process, during which the proportion of these three types of nanostructures can be adjusted by altering the concentrations of oxalic acid. The microstructures were evaluated using X-ray diffraction and scanning and transmission electron microscopies, respectively. FE properties measurement of these three types of nanostructures showed that the nanobundles have the best field emission performance with a turn-on field of ∼1.4 V/μm and a threshold field of ∼5.38 V/μm. These characteristics make VO 2 (B) nanostructures a competitive cathode material in field emission devices.

  7. Effect of hydrothermal process for inorganic alumina sol on crystal structure of alumina gel

    Directory of Open Access Journals (Sweden)

    K. Yamamura

    2016-09-01

    Full Text Available This paper reports the effect of a hydrothermal process for alumina sol on the crystal structure of alumina gel derived from hydrothermally treated alumina sol to help push forward the development of low temperature synthesis of α-Al2O3. White precipitate of aluminum hydroxide was prepared with a homogeneous precipitation method using aluminum nitrate and urea in aqueous solution. The obtained aluminum hydroxide precipitate was peptized by using acetic acid at room temperature, which resulted in the production of a transparent alumina sol. The alumina sol was treated with a hydrothermal process and transformed into an alumina gel film by drying at room temperature. Crystallization of the alumina gel to α-Al2O3 with 900 °C annealing was dominant for a hydrothermal temperature of 100 °C and a hydrothermal time of 60 min, as production of diaspore-like species was promoted with the hydrothermal temperature and time. Excess treatments with hydrothermal processes at higher hydrothermal temperature for longer hydrothermal time prevented the alumina gel from being crystallized to α-Al2O3 because the excess hydrothermal treatments promoted production of boehmite.

  8. Hydrothermal route to VO2 (B) nanorods: controlled synthesis and characterization

    Science.gov (United States)

    Song, Shaokun; Huang, Qiwei; Zhu, Wanting

    2017-10-01

    One-dimensional vanadium dioxides have attracted intensive attention owing to their distinctive structure and novel applications in catalysis, high energy lithium-ion batteries, chemical sensors/actuators and electrochemical devices etc. In this paper, large-scale VO2 (B) nanorods have been successfully synthesized via a versatile and environment friendly hydrothermal strategy using V2O5 as vanadium source and carbohydrates/alcohols as reductant. The obtained samples are characterized by XRD, FT-IR, TEM, and XPS techniques to investigate the effects of chemical parameters such as reductants, temperature, and time of synthesis on the structure and morphology of products. Results show that pure B phase VO2 with homogeneous nanorod-like morphology can be prepared easily at 180 °C for 3 days with glycerol as reluctant. Typically, the nanorod-like products are 0.5-1 μm long and 50 nm width. Furthermore, it is also confirmed that the products are consisted of VO2, corresponding to the B phase. More importantly, this novel approach is efficient, free of any harmful solvents and surfactants. Therefore, this efficient, green, and cost-saving route will have great potential in the large-scale fabrication of 1D VO2 (B) nanorods from the economic and environmental point of view.

  9. Controllable hydrothermal synthesis of Ni/H-BEA with a hierarchical core-shell structure and highly enhanced biomass hydrodeoxygenation performance.

    Science.gov (United States)

    Ma, Bing; Cui, Huimei; Wang, Darui; Wu, Peng; Zhao, Chen

    2017-05-11

    Ni based catalysts are wildly used in catalytic industrial processes due to their low costs and high activities. The design of highly hierarchical core-shell structured Ni/HBEA is achieved using a sustainable, simple, and easy-tunable hydrothermal synthesis approach using combined NH 4 Cl and NH 3 ·H 2 O as a co-precipitation agent at 120 °C. Starting from a single-crystalline hierarchical H + -exchanged beta polymorph zeolite (HBEA), the adjustment of the precipitate conditions shows that mixed NH 4 Cl and NH 3 ·H 2 O precipitates with proper concentrations are vital in the hydrothermal synthesis for preserving a good crystalline morphology of HBEA and generating abundant highly-dispersed Ni nanoparticles (loading: 41 wt%, 5.9 ± 0.7 nm) encapsulated onto/into the support. NH 4 Cl solution without an alkali is unable to generate abundant Ni nanoparticles from Ni salts under the hydrothermal conditions, whereas NH 3 ·H 2 O seriously damages the pore structure. After studying the in situ changes in infrared, X-ray diffractometry, temperature-programmed reduction, and scanning electron microscopy measurements, as well as variations in the filtrate pH, Si/Al ratios, and solid sample Ni loading, a two-step dissolution-recrystallization process is proposed. The process consists of Si dissolution and no change in elemental Al, and after the dissolved Si(iv) concentrations have promoted Ni phyllosilicate nanosheet solubility, further growth of multilayered Ni phyllosilicate nanosheets commences. The precursor Ni phyllosilicate is changeable between Ni 3 Si 2 O 5 (OH) 4 and Ni 3 Si 4 O 10 (OH) 2 , because of competition in kinetically-favored and thermodynamically-controlled species caused by different basic agents. The superior catalytic performance is demonstrated in the metal/acid catalyzed biomass derived bulky stearic acid hydrodeoxygenation with 90% octadecane selectivity and a promising rate of 54 g g -1 h -1 , which highly excels the reported rates catalyzed by

  10. Rapid microwave hydrothermal synthesis of ZnGa2O4 with high photocatalytic activity toward aromatic compounds in air and dyes in liquid water

    International Nuclear Information System (INIS)

    Sun Meng; Li Danzhen; Zhang Wenjuan; Chen Zhixin; Huang Hanjie; Li Wenjuan; He Yunhui; Fu Xianzhi

    2012-01-01

    ZnGa 2 O 4 was synthesized from Ga(NO 3 ) 3 and ZnCl 2 via a rapid and facile microwave-assisted hydrothermal method. The photocatalytic properties of the as-prepared ZnGa 2 O 4 were evaluated by the degradation of pollutants in air and aqueous solution under ultraviolet (UV) light illumination. The results demonstrated that ZnGa 2 O 4 had exhibited efficient photocatalytic activities higher than that of commercial P25 (Degussa Co.) in the degradation of benzene, toluene, and ethylbenzene, respectively. In the liquid phase degradation of dyes (methyl orange, Rhodamine B, and methylene blue), ZnGa 2 O 4 has also exhibited remarkable activities higher than that of P25. After 32 min of UV light irradiation, the decomposition ratio of methyl orange (10 ppm, 150 mL) over ZnGa 2 O 4 (0.06 g) was up to 99%. The TOC tests revealed that the mineralization ratio of MO (10 ppm, 150 mL) was 88.1% after 90 min of reaction. A possible mechanism of the photocatalysis over ZnGa 2 O 4 was also proposed. - Graphical abstract: In the degradation of RhB under UV light irradiation, ZnGa 2 O 4 had exhibited efficient photo-activity, and after only 24 min of irradiation the decomposition ratio was up to 99.8%. Highlights: ► A rapid and facile M–H method to synthesize ZnGa 2 O 4 photocatalyst. ► The photocatalyst exhibits high activity toward benzene and dyes. ► The catalyst possesses more surface hydroxyl sites than TiO 2 (P25). ► Deep oxidation of different aromatic compounds and dyes over catalyst.

  11. Rapid synthesis of flexible conductive polymer nanocomposite films

    International Nuclear Information System (INIS)

    Blattmann, C O; Sotiriou, G A; Pratsinis, S E

    2015-01-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5  × 10 4 S cm −1 ), even during repetitive bending. (paper)

  12. Hydrothermal synthesis spherical TiO2 and its photo-degradation property on salicylic acid

    International Nuclear Information System (INIS)

    Guo Wenlu; Liu Xiaolin; Huo Pengwei; Gao Xun; Wu Di; Lu Ziyang; Yan Yongsheng

    2012-01-01

    Anatase TiO 2 spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO 2 consisted of well-defined spheres with size of 3-5 μm. The photocatalytic activity of spherical TiO 2 was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO 2 which was processed at 150 °C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg -1 of the salicylic acid onto TiO 2 (temperature: 150, time: 48 h).

  13. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  14. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods

    Science.gov (United States)

    Reddy, L. Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-09-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  15. Hydrothermal Synthesis and Photocatalytic Property of β-Ga2O3 Nanorods.

    Science.gov (United States)

    Reddy, L Sivananda; Ko, Yeong Hwan; Yu, Jae Su

    2015-12-01

    Gallium oxide (Ga2O3) nanorods were facilely prepared by a simple hydrothermal synthesis, and their morphology and photocatalytic property were studied. The gallium oxide hydroxide (GaOOH) nanorods were formed in aqueous growth solution containing gallium nitrate and ammonium hydroxide at 95 °C of growth temperature. Through the calcination treatment at 500 and 1000 °C for 3 h, the GaOOH nanorods were converted into single crystalline α-Ga2O3 and β-Ga2O3 phases. From X-ray diffraction analysis, it could be confirmed that a high crystalline quality of β-Ga2O3 nanorods was achieved by calcinating at 1000 °C. The thermal behavior of the Ga2O3 nanorods was also investigated by differential thermal analysis, and their vibrational bands were identified by Fourier transform infrared spectroscopy. In order to examine the photocatalytic activity of samples, the photodegradation of Rhodamine B solution was observed under UV light irradiation. As a result, the α-Ga2O3 and β-Ga2O3 nanorods exhibited high photodegeneration efficiencies of 62 and 79 %, respectively, for 180 min of UV irradiation time.

  16. Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate.

    Science.gov (United States)

    Vani, R; Girija, E K; Elayaraja, K; Prakash Parthiban, S; Kesavamoorthy, R; Narayana Kalkura, S

    2009-12-01

    A novel, porous triphasic calcium phosphate composed of nonresorbable hydroxyapatite (HAp) and resorbable tricalcium phosphate (alpha- and beta-TCP) has been synthesized hydrothermally at a relatively low temperature. The calcium phosphate precursor for hydrothermal treatment was prepared by gel method in the presence of ascorbic acid. XRD, FT-IR, Raman analyses confirmed the presence of HAp/TCP. The surface area and average pore size of the samples were found to be 28 m2/g and 20 nm, respectively. The samples were found to be bioactive in simulated body fluid (SBF).

  17. Self-assembly of hollow MoS{sub 2} microflakes by one-pot hydrothermal synthesis for efficient electrocatalytic hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aishi; Cui, Renjie; He, Yanna; Wang, Qi [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Zhang, Jian, E-mail: iamjzhang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Yang, Jianping [School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Li, Xing’ao, E-mail: lxahbmy@126.com [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China)

    2017-07-31

    Highlights: • A new hollow MoS{sub 2} microflakes are prepared by hydrothermal synthesis firstly. • SEM and TEM study show the structural nature of hollow microflakes in depth. • The unique hollow structures have large surface area owing to the cavity. • The hollow microflakes show better HER performance than their solid counterparts. - Abstract: Molybdenum disulfide (MoS{sub 2}) has emerged as a promising non-precious metal catalyst for hydrogen evolution reaction (HER) in recent years. Some strategies including nanotechnology as well as atom doping have been employed in the preparing of electrocatalysts for high-activity and stability. To the best of our knowledge, hollow MoS{sub 2} microflakes assembled from ultrathin nanosheets have not been prepared previously. In this work, a simple, facile and environmentally friendly hydrothermal synthesis was utilized for the fabrication of hollow MoS{sub 2} microflakes for the first time. The unique hollow structures have fascinating properties, such as the large surface and low density. The morphology and structure of MoS{sub 2} microflakes were confirmed by XRD, SEM, TEM and Raman. The composition of these materials was identified by the X-ray photoelectron spectroscopy. Notably, the as-prepared hollow MoS{sub 2} microflakes showed better electrocatalytic activity than other samples. The hollow flake-like structure can not only increase the active edge sites owing to the large specific surface area, but also enhance the electron transport to improve the electrocatalytic activity. Benefiting from these factors, the hollow MoS{sub 2} microflakes exhibited electrocatalytic activity and excellent stability with a low overpotential about 85 mV and a Tafel slope of 59 mV per decade.

  18. Synthesis of nickel oxide - zirconia composites by coprecipitation route followed by hydrothermal treatment

    International Nuclear Information System (INIS)

    Yoshito, Walter Kenji; Ussui, Valter; Lazar, Dolores Ribeiro Ricci; Paschoal, Jose Octavio Armani

    2009-01-01

    Nickel oxide-yttria stabilized zirconia (NiO-YSZ) for use as solid oxide fuel cell anode were synthesized by coprecipitation to obtain amorphous zirconia and crystallized β-nickel gels of the corresponding metal hydroxides. Hydrothermal treatment at 200°C and 220 psi from 2 up to 16 hours, under stirring, was performed to produce nanocrystalline powder. The as-synthesized powders were uniaxially pressed and sintered in air. Powders were characterized by X-ray diffraction, laser scattering, scanning and transmission electron microscopy (SEM/TEM), gas adsorption technique (BET) and TGDTA thermal analysis. Ceramic samples were characterized by dilatometric analysis and density measurements by Archimedes method. The characteristics of hydrothermally synthesized powders and compacts were compared to those produced without temperature and pressure application. Crystalline powders were obtained after hydrothermal process, excluding the calcination step from this route. The specific surface area of powders decreases with increasing time of hydrothermal treatment while the agglomerate mean size is not affected by this parameter. (author)

  19. Microwave-Assisted Hydrothermal Rapid Synthesis of Calcium Phosphates: Structural Control and Application in Protein Adsorption.

    Science.gov (United States)

    Cai, Zhu-Yun; Peng, Fan; Zi, Yun-Peng; Chen, Feng; Qian, Qi-Rong

    2015-07-31

    Synthetic calcium phosphate (CaP)-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP) nanostructure was prepared under weak acidic conditions (pH 5), while the HAP nanorod was prepared under neutral (pH 7) and weak alkali (pH 9) condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb) as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption.

  20. Microwave-Assisted Hydrothermal Rapid Synthesis of Calcium Phosphates: Structural Control and Application in Protein Adsorption

    Directory of Open Access Journals (Sweden)

    Zhu-Yun Cai

    2015-07-01

    Full Text Available Synthetic calcium phosphate (CaP-based materials have attracted much attention in the biomedical field. In this study, we have investigated the effect of pH values on CaP nanostructures prepared using a microwave-assisted hydrothermal method. The hierarchical nanosheet-assembled hydroxyapatite (HAP nanostructure was prepared under weak acidic conditions (pH 5, while the HAP nanorod was prepared under neutral (pH 7 and weak alkali (pH 9 condition. However, when the pH value increases to 11, a mixed product of HAP nanorod and tri-calcium phosphate nanoparticle was obtained. The results indicated that the pH value of the initial reaction solution played an important role in the phase and structure of the CaP. Furthermore, the protein adsorption and release performance of the as-prepared CaP nanostructures were investigated by using hemoglobin (Hb as a model protein. The sample that was prepared at pH = 11 and consisted of mixed morphologies of nanorods and nanoprisms showed a higher Hb protein adsorption capacity than the sample prepared at pH 5, which could be explained by its smaller size and dispersed structure. The results revealed the relatively high protein adsorption capacity of the as-prepared CaP nanostructures, which show promise for applications in various biomedical fields such as drug delivery and protein adsorption.

  1. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    International Nuclear Information System (INIS)

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu; Amghouz, Zakariae; Khainakov, Sergei A.; Alfonso, Belén F.; Blanco, Jesús A.; García, José R.; García-Granda, Santiago

    2015-01-01

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C 4 N 2 H 12 ) 1.5 (Co 0.6 Zn 0.4 ) 2 (HPO 4 ) 2 (PO 4 )·H 2 O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2 1 /c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C 4 N 2 H 12 )Co 0.3 Zn 0.7 (HPO 4 ) 2 ·H 2 O (1D), was also isolated and the crystal structure was determined (monoclinic P2 1 /c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C 4 N 2 H 12 ) 1.5 (Co 0.6 Zn 0.4 ) 2 (HPO 4 ) 2 (PO 4 )·H 2 O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C 4 N 2 H 12 )Co 0.3 Zn 0.7 (HPO 4 ) 2 ·H 2 O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal structure of 1D metastable phase was also determined. • Thermal behavior of 2D compound is strongly dependent on the selected heating rate. • Magnetic

  2. Effects of buffer layer annealing temperature on the structural and optical properties of hydrothermal grown ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.Q.; Kim, C.R.; Lee, J.Y.; Heo, J.H.; Shin, C.M. [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, H., E-mail: hhryu@inje.ac.kr [Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Chang, J.H. [Major of Nano Semiconductor, Korea Maritime University, 1 Dongsam-dong, Yeongdo-Ku, Busan 606-791 (Korea, Republic of); Lee, H.C. [Department of Mechatronics Engineering, Korea Maritime University, 1 Dongsam-dong, Yeongdo-Ku, Busan 606-791 (Korea, Republic of); Son, C.S. [Department of Electronic Materials Engineering, Silla University, Gwaebeop-dong, Sasang-gu, Busan 617-736 (Korea, Republic of); Lee, W.J. [Department of Nano Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of); Jung, W.G. [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Tan, S.T. [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); Zhao, J.L. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Sun, X.W. [Institute of Microelectronics, 11 Science Park Road, Science Park II, Singapore 117685 (Singapore); School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2009-02-01

    ZnO was deposited on bare Si(1 0 0), as-deposited, and annealed ZnO/Si(1 0 0) substrates by hydrothermal synthesis. The effects of a ZnO buffer layer and its thermal annealing on the properties of the ZnO deposited by hydrothermal synthesis were studied. The grain size and root mean square (RMS) roughness values of the ZnO buffer layer increased after thermal annealing of the buffer layer. The effect of buffer layer annealing temperature on the structural and optical properties was investigated by photoluminescence, X-ray diffraction, atomic force microscopy, and scanning electron microscopy. Hydrothermal grown ZnO deposited on ZnO/Si(1 0 0) annealed at 750 deg. C with the concentration of 0.3 M exhibits the best structural and optical properties.

  3. Hydrothermal synthesis of cathode materials

    Science.gov (United States)

    Chen, Jiajun; Wang, Shijun; Whittingham, M. Stanley

    A number of cathodes are being considered for the next generation of lithium ion batteries to replace the expensive LiCoO 2 presently used. Besides the layered oxides, such as LiNi yMn yCo 1-2 yO 2, a leading candidate is lithium iron phosphate with the olivine structure. Although this material is inherently low cost, a manufacturing process that produces electrochemically active LiFePO 4 at a low cost is also required. Hydrothermal reactions are one such possibility. A number of pure phosphates have been prepared using this technique, including LiFePO 4, LiMnPO 4 and LiCoPO 4; this method has also successfully produced mixed metal phosphates, such as LiFe 0.33Mn 0.33Co 0.33PO 4. Ascorbic acid was found to be better than hydrazine or sugar at preventing the formation of ferric ions in aqueous media. When conductive carbons are added to the reaction medium excellent electrochemical behavior is observed.

  4. A facile hydrothermal synthesis, characterization and magnetic properties of mesoporous CoFe{sub 2}O{sub 4} nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M. Penchal, E-mail: reddy@nimte.ac.cn [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Zhou, X.B.; Du, S.; Huang, Q. [Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences (CAS), Ningbo 315201, Zhejiang, RP China (China)

    2015-08-15

    Mesoporous CoFe{sub 2}O{sub 4} nanospheres with an average size of 180 nm were fabricated via a facile hydrothermal process using ethylene glycol as solvent and sodium acetate (NaAc) as electrostatic stabilizer. In this method, ethylene glycol plays a vital role in the formation of cobalt nanoospheres as a solvent and reducing agent. The structure and morphology of the prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nanospheres exhibited ferromagnetic properties with high saturation magnetization value of about 60.19 emu/g at room temperature. The BET surface area of the nanospheres was determined using the nitrogen absorption method. The porous CoFe{sub 2}O{sub 4} nanospheres displayed good magnetic properties, which may provide a very promising candidate for their applications in target drug delivery. - Highlights: • CoFe{sub 2}O{sub 4} nanospheres were prepared by hydrothermal synthesis for the first time. • Average grain size was found to be 180 nm. • Its structural, morphological, magnetic behavior was studied. • TEM observations confirmed the spherical morphology of the mesoporous ferrites.

  5. One-pot hydrothermal synthesis and characterization of CoFe{sub 2}O{sub 4} nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar, E-mail: ssd_iitg@hotmail.com

    2016-09-15

    A novel and facile approach for one-pot synthesis of spinel cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles (NPs) is presented here. The synthesis involves homogeneous chemical precipitation followed by hydrothermal heating, using tributylamine (TBA) as a hydroxylating agent. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized CoFe{sub 2}O{sub 4} NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). TEM image showed formation of spherical particles of sizes 2–30 nm. These NPs were used as magnetically recoverable catalyst in oxidation of alcohols to their corresponding aldehydes by periodic acid. This oxidative procedure is found to be highly efficient affording products in very high yield and selectivity. The easy magnetic separation of the catalyst and efficient reusability are key features of this methodology. - Highlights: • Hydrothermal synthesis of CoFe{sub 2}O{sub 4} NPs with (C{sub 4}H{sub 9}){sub 3}N as hydroxylating agent. • The TEM images showed the particles to be spherical in shape with sizes 2–30 nm. • CoFe{sub 2}O{sub 4} was used as recyclable catalyst for oxidation of alcohols by periodic acid.

  6. Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization

    International Nuclear Information System (INIS)

    Huang Xingkang; Lv Dongping; Yue Hongjun; Attia, Adel; Yang Yong

    2008-01-01

    α- and β-MnO 2 were controllably synthesized by hydrothermally treating amorphous MnO 2 obtained via a reaction between Mn 2+ and MnO 4 - , and cationic effects on the hydrothermal crystallization of MnO 2 were investigated systematically. The crystallization is believed to proceed by a dissolution-recrystallization mechanism; i.e. amorphous MnO 2 dissolves first under hydrothermal conditions, then condenses to recrystallize, and the polymorphs formed are significantly affected by added cations such as K + , NH 4 + and H + in the hydrothermal systems. The experimental results showed that K + /NH 4 + were in competition with H + to form polymorphs of α- and β-MnO 2 , i.e., higher relative K + /NH 4 + concentration favoured α-MnO 2 , while higher relative H + concentration favoured β-MnO 2

  7. Two-Step Hydrothermal Synthesis of Bifunctional Hematite-Silver Heterodimer Nanoparticles for Potential Antibacterial and Anticancer Applications

    Science.gov (United States)

    Trang, Vu Thi; Tam, Le Thi; Phan, Vu Ngoc; Van Quy, Nguyen; Huy, Tran Quang; Le, Anh-Tuan

    2017-06-01

    In recent years, the development of composite nanostructures containing noble metal and magnetic nanocrystals has attracted much interest because they offer a promising avenue for multifunctional applications in nanomedicine and pharmacotherapy. In this work, we present a facile two-step hydrothermal approach for the synthesis of bifunctional heterodimer nanoparticles (HDNPs) composed of hematite nanocubes (α-Fe2O3 NCs) and silver nanoparticles (Ag-NPs). The formation and magnetic property of α-Fe2O3-Ag HDNPs was analyzed by transmission electron microscopy, x-ray diffraction and vibrating sample magnetometer. Interestingly, the hydrothermal-synthesized α-Fe2O3-Ag HDNPs were found to display significant antibacterial activity against three types of infectious bacteria. The cytotoxicity of α-Fe2O3-Ag nanocomposite against lung cancer A549 cell line was investigated and compared with that of pure α-Fe2O3 NCs and Ag-NPs. The obtained results reveal that the α-Fe2O3-Ag nanocomposite exhibited higher anticancer performance than that of pure Ag-NPs, whereas pure α-Fe2O3 NCs were not cytotoxic to the tested cells. The inhibitory concentration (IC50) of the α-Fe2O3-Ag nanocomposite was found at 20.94 μg/mL. With the aforementioned properties, α-Fe2O3-Ag HDNPs showed a high potential as a multifunctional material for advanced biomedicine and nanotherapy applications.

  8. Template-assisted hydrothermally synthesized iron-titanium binary oxides and their application as catalysts for ethyl acetate oxidation

    Czech Academy of Sciences Publication Activity Database

    Tsoncheva, T.; Ivanova, R.; Dimitrov, M.; Paneva, D.; Kovacheva, D.; Henych, Jiří; Vomáčka, Petr; Kormunda, M.; Velinov, N.; Mitov, I.; Štengl, Václav

    2016-01-01

    Roč. 528, NOV (2016), s. 24-35 ISSN 0926-860X R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Effect of Fe/Ti ratio and temperature of hydrothermal treatment * Hydrothermal synthesis * Iron-titanium binary oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 4.339, year: 2016

  9. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions

    Directory of Open Access Journals (Sweden)

    Sonal S. Birla

    2013-01-01

    Full Text Available Synthesis of silver nanoparticles (SNPs by fungi is emerging as an important branch of nanotechnology due to its ecofriendly, safe, and cost-effective nature. In order to increase the yield of biosynthesized SNPs of desired shape and size, it is necessary to control the cultural and physical parameters during the synthesis. We report optimum synthesis of SNPs on malt extract glucose yeast extract peptone (MGYP medium at pH 9–11, 40–60°C, and 190.7 Lux and in sun light. The salt concentrations, volume of filtrate and biomass quantity were found to be directly proportional to the yield. The optimized conditions for the stable and rapid synthesis will help in large scale synthesis of monodispersed SNPs. The main aim of the present study was to optimize different media, temperature, pH, light intensity, salt concentration, volume of filtrate, and biomass quantity for the synthesis of SNPs by Fusarium oxysporum.

  10. Flow method for rapid production of Batio3 nanoparticles in supercritical water

    International Nuclear Information System (INIS)

    Atashfaraz, M.; Shariati-Niassar, M.; Ohara, Satoshi; Takami, S.; Umetsu, M.; Naka, T.; Adschiri, T.

    2006-01-01

    Fine BaTiO 3 nanoparticles were obtained by hydrothermal synthesis under supercritical conditions with batch and flow type experimental methods. Mixture of barium hydroxide and titanium oxide starting solution was treated in the supercritical wafer at 400 d eg C and 30 MPa. The size of nanoparticles synthesized in the flow type experiment was smaller than that in the batch type. Rapid heating in a flow, reactor is effective to synthesize smaller size and narrower particle size distribution for the BaTiO 3 , nanoparticles. The mechanism for this result was discussed based on the solubility of titanium oxide

  11. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2012-02-01

    Full Text Available Upconversion is an optical process that involves the conversion of lower-energy photons into higher-energy photons. It has been extensively studied since mid-1960s and widely applied in optical devices. Over the past decade, high-quality rare earth-doped upconversion nanoparticles have been successfully synthesized with the rapid development of nanotechnology and are becoming more prominent in biological sciences. The synthesis methods are usually phase-based processes, such as thermal decomposition, hydrothermal reaction, and ionic liquids-based synthesis. The main difference between upconversion nanoparticles and other nanomaterials is that they can emit visible light under near infrared irradiation. The near infrared irradiation leads to low autofluorescence, less scattering and absorption, and deep penetration in biological samples. In this review, the synthesis of upconversion nanoparticles and the mechanisms of upconversion process will be discussed, followed by their applications in different areas, especially in the biological field for biosensing.

  12. Hydrothermal synthesis, characterization, and magneticproperties of cobalt chromite nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Zákutná, Dominika; Repko, A.; Matulková, I.; Nižňanský, Daniel; Ardu, A.; Cannas, C.; Mantlíková, Alice; Vejpravová, Jana

    2014-01-01

    Roč. 16, č. 2 (2014), 1-14 ISSN 1388-0764 R&D Projects: GA ČR GAP108/10/1250 Institutional support: RVO:68378271 ; RVO:61388980 Keywords : cobalt chromite * hydrothermal method * nanoparticles * size effect * multiferroic materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.184, year: 2014

  13. Controlled synthesis of MoO3 microcrystals by subsequent calcination of hydrothermally grown pyrazine–MoO3 nanorod hybrids and their photodecomposition properties

    International Nuclear Information System (INIS)

    Rajagopal, S.; Nataraj, D.; Khyzhun, O.Y.; Djaoued, Yahia; Robichaud, Jacques; Kim, Chang-Koo

    2013-01-01

    We present our results on successful synthesis of pyrazine–MoO 3 nanorod hybrids by using pyrazine and MoO 3 nanorods. On the first stage, MoO 3 nanorods were grown hydrothermally and, on the second stage, their mixture with pyrazine was again involved in a hydrothermal reaction to produce organic–inorganic hybrids. To understand the growth mechanism of the hybrids we varied time and temperature of the hydrothermal process. Intercalation of pyrazine was confirmed through X-ray diffraction analysis, X-ray photoelectron spectroscopy, X-ray emission spectroscopy, scanning electron microscopy methods. Upon calcinations, pyrazine was deintercalated, i.e. removed from the MoO 3 hybrid system, and the MoO 3 nanorods were found to bind together resulting in formation of MoO 3 microslabs with increased surface area. Photodecomposition performance of the MoO 3 nanorods, pyrazine–MoO 3 hybrids and MoO 3 microcrystals was studied against Procion Red MX-5B textile dye. A high photodecomposition performance was found to decrease when going from MoO 3 nanorods to MoO 3 microcrystal and, further, to pyrazine–MoO 3 hybrids. - Graphical abstract: Display Omitted - Highlights: • High aspect ratio MoO 3 nanorods were prepared through a new hydrothermal method. • Hybrids of pyrazine–MoO 3 were formed by intercalating pyrazine into MoO 3 nanorods. • Intercalation of pyrazine was confirmed in X-ray spectroscopic analysis. • After calcinations, MoO 3 crystal was retained by binding MoO 3 nanorods together. • High photodegradation performance was noticed from MoO 3 nanorods

  14. Hydrothermal processing of inorganic components of Hanford tank sludge

    International Nuclear Information System (INIS)

    Oldenborg, R.; Buelow, S.J.; Dyer, R.B.; Anderson, G.; Dell'Orco, P.C.; Funk, K.; Wilmanns, E.; Knutsen, K.

    1994-09-01

    Hydrothermal Processing (HTP) is an attractive approach for the treatment of Hanford tank sludge. Hydrothermal Processing refers to a waste treatment technique in which an aqueous waste stream is fed through a chemical reactor at elevated temperatures and pressures to effect desired chemical transformations and separations. Transformations such as organic and nitrate destruction and sludge reformulation have been demonstrated at pilot scale using simulants of Hanford tank wastes. At sufficiently high temperatures and pressures organics and nitrates are destroyed in seconds, producing primarily simple products such as CO 3 2- , H 2 O, N 2 , N 2 O and OH - , and sludges are reduced in volume and reformulated as rapid settling oxides amenable to downstream separation, or in some cases reformulated as soluble products. This report describes the hydrothermal dissolution of chromium and chromium oxide; the hydrothermal oxidation of chromium with nitrate; hydrothermal dissolution of aluminum-bearing sludges; the solubility of aluminum compounds in caustic hydrothermal media; experimental techniques for the study of solubility and phase behavior; optical cell studies of basic aluminate solution solubilities; and high temperature, low density salt solubility in the packed-bed flow apparatus

  15. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun; Lee, Kunwoo; Murthy, Niren; Pisano, Albert P

    2014-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  16. All-in-one nanowire-decorated multifunctional membrane for rapid cell lysis and direct DNA isolation.

    KAUST Repository

    So, Hongyun

    2014-11-24

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour.

  17. Fe3O4 nanocubes assembled on RGO nanosheets: Ultrasound induced in-situ and eco-friendly synthesis, characterization and their excellent catalytic performance for the production of liquid fuel in Fischer-tropsch synthesis.

    Science.gov (United States)

    Abbas, Mohamed; Zhang, Juan; Lin, Ke; Chen, Jiangang

    2018-04-01

    In this study, Fe 3 O 4 nanocubes (NCs) decorated on RGO nanosheets (NSs) structures were successfully synthesized through an innovative and environmentally-friendly rapid sonochemical method. More importantly, iron(II) sulfate heptahydrate and GO were employed as precursors and water as reaction medium, meanwhile, NaOH within the generated free radicals from the high intensity ultrasound were sufficient as reducing and base agent in our clean synthesis. Moreover, the hydrothermal method as a conventional approach was employed to synthesize the same catalysts for the comparison with the ultrasonocation technique. The as-synthesized Fe 3 O 4 and RGO/Fe 3 O 4 NSs catalysts were exposed to industrially relevant Fischer-tropsch synthesis (FTS) conditions at various reaction temperatures (250-290 °C), and they subjected to fully characterization before and after FTS reaction using XRD, TEM, HRTEM, EDS mapping, XPS, FTIR, BET, H 2 -TPR, H 2 -TPD and CO-TPD to understand the structure-performance relationships. Notably, the catalysts produced using the sonochemical method had a better CO conversion rate [Fe 3 O 4 (80%), RGO/Fe 3 O 4 (82%)] than the hydrothermally synthesized catalysts. However, compared to the naked-Fe 3 O 4 catalysts, the sonochemically and hydrothermally synthesized RGO-supported Fe 3 O 4 catalysts had higher long chain hydrocarbon (C5+) selectivity values (72% and 67%) and C 2 -C 4 olefin/paraffin selectivity ratio (3.2 and 2) and low CH4 selectivity values (6% and 8.5%), respectively. This can be attributed to their high surface area, the degree of reducibility, and content of Hägg iron carbide (χ-Fe 5 C 2 ) as the most active phase of the FTS reaction. Proposed reaction mechanisms for the sonochemical and hydrothermal reaction synthesis of Fe 3 O 4 and RGO/Fe 3 O 4 nanoparticles are discussed. In conclusion, our developed surfactantless-sonochemical method holds promise for the eco-friendly synthesis of highly efficient catalysts materials for

  18. Preparation of ultrasmall porous carbon nanospheres by reverse microemulsion-hydrothermal method

    Science.gov (United States)

    Wang, Jiasheng; Zhao, Yahong; Wang, Wan-Hui; Bao, Ming

    Porous carbon nanospheres (CNSs) have wide applications. A big challenge in materials science is synthesis of discrete ultrasmall porous carbon nanospheres. Herein, we report a facile reverse microemulsion-hydrothermal method to prepare discrete porous CNSs. The obtained CNSs possess an average diameter of 20nm and pores of 0.7nm and 3.4nm. Our work has provided a convenient method for the controllable synthesis of ultrasmall porous CNSs with potential applications.

  19. Selective synthesis of vitamin K3 over mesoporous NbSBA-15 catalysts synthesized by an efficient hydrothermal method.

    Science.gov (United States)

    Selvaraj, M; Park, D-W; Kim, I; Kawi, S; Ha, C S

    2012-08-28

    Well hexagonally ordered NbSBA-15 catalysts synthesized by an efficient hydrothermal method were used, for the first time, for the selective synthesis of vitamin K(3) by liquid-phase oxidation of 2-methyl-1-naphthol (2MN1-OH) under various reaction conditions. The recyclable NbSBA-15 catalysts were also reused to find their catalytic activities. To investigate the leaching of non-framework niobium species on the surface of silica networks, the results of original and recyclable NbSBA-15 catalysts were correlated and compared. To find an optimum condition for the selective synthesis of vitamin K(3), the washed NbSBA-15(2.2pH) was extensively used in this reaction with various reaction parameters such as temperature, time and ratios of reactant (2M1N-OH to H(2)O(2)), and the obtained results were also demonstrated. Additionally, the liquid-phase oxidation of 2M1N-OH was carried out with different solvents to find the best solvent with a good catalytic activity. Based on the all catalytic studies, the vitamin K(3) selectivity (97.3%) is higher in NbSBA-15(2.2pH) than that of other NbSBA-15 catalysts, and the NbSBA-15(2.2pH) is found to be a highly active and eco-friendly heterogeneous catalyst for the selective synthesis of vitamin K(3).

  20. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires

    International Nuclear Information System (INIS)

    Tian Jinghua; Hu Jie; Li Sisi; Zhang Fan; Liu Jun; Shi Jian; Li Xin; Chen Yong; Tian Zhongqun

    2011-01-01

    Seedless hydrothermal synthesis has been improved by introducing an adequate content of ammonia into the nutrient solution, allowing the fabrication of dense and ultralong ZnO nanowire arrays over large areas on a substrate. The presence of ammonia in the nutrient solution facilitates the high density nucleation of ZnO on the substrate which is critical for the nanowire growth. In order to achieve an optimal growth, the growth conditions have been studied systematically as a function of ammonia content, growth temperature and incubation time. The effect of polyethyleneimine (PEI) has also been studied but shown to be of no benefit to the nucleation of ZnO. Ultradense and ultralong ZnO nanowires could be obtained under optimal growth conditions, showing no fused structure at the foot of the nanowire arrays. Due to different reaction kinetics, four growth regimes could be attributed, including the first fast growth, equilibrium phase, second fast growth and final erosion. Combining this simple method with optical lithography, ZnO nanowires could be grown selectively on patterned areas. In addition, the as-grown ZnO nanowires could be used for the fabrication of a piezoelectric nanogenerator. Compared to the device of ZnO nanowires made by other methods, a more than twice voltage output has been obtained, thereby proving an improved performance of our growth method.

  1. Controlled synthesis of graphene sheets with tunable sizes by hydrothermal cutting

    International Nuclear Information System (INIS)

    Ma Chen; Chen Zhongxin; Fang Ming; Lu Hongbin

    2012-01-01

    We report a hydrothermal method that directly reduces graphene oxide (GO) into graphene nanosheets (GNs) with different sizes. In the presence of NaOH and hydrazine, the hydrothermal reaction at 80 °C resulted in the formation of GNs with a lateral size of ∼1 μm but the size of GNs decreased to ∼300 and ∼100 nm upon increasing the reaction temperature to 150 and 200 °C, respectively. The morphology of the resulting GNs was observed by atomic force microscopy and transmission electron microscopy. The thickness of GNs is basically <3 nm, indicates the GNs stack together in a few-layer manner. XRD, XPS, FTIR, and Raman spectroscopy were used to characterize the structural changes before and after reduction. The results suggested that the defect stability in GO and reduced GNs could be responsible for the temperature dependence of the size of reduced GNs.Graphical AbstractA hydrothermal method is proposed to simultaneously reduce and cut graphene oxide into graphene sheets with different sizes in a controlled manner, in which the reaction temperature as a critical parameter is used to control the size of resulting graphene sheets.

  2. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  3. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    Science.gov (United States)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  4. Size effect in barium titanate powders synthesized by different hydrothermal methods

    International Nuclear Information System (INIS)

    Sun Weian

    2006-01-01

    The size effect in barium titanate (BaTiO 3 ) was investigated both experimentally and theoretically. Tetragonal BaTiO 3 powders with average sizes from 80 to 420 nm were directly prepared by different hydrothermal methods. The tetragonality of the hydrothermal BaTiO 3 decreased with decreasing particle size, which exhibited a dependence on the synthesis method. A phenomenological model for the size effect was proposed to interpret the experimental observations. The influence of the defects, mainly the lattice hydroxyl, on the size effect was investigated to understand the correlation between the size effect and synthesis condition. The permittivities of BaTiO 3 powder at different particle sizes were calculated, which predicted a maximum permittivity of over 16 000 around the room-temperature critical size of ∼70 nm. The prediction was in good accordance with the experimental data reported recently

  5. Polyvinylpyrrolidone (PVP)-assisted hydrothermal synthesis of luminescent YVO4:Eu3+ microspheres

    International Nuclear Information System (INIS)

    Wang Juan; Xu Yunhua; Hojamberdiev, Mirabbos; Wang Mingqiong; Zhu Gangqiang

    2010-01-01

    Spherical YVO 4 :Eu 3+ microstructures were hydrothermally synthesized by the reaction of NH 4 VO 3 , Y 2 O 3 , and Eu 2 O 3 at 180 deg. C for 24 h with the assistance of polyvinylpyrrolidone (PVP) as a surfactant. The resulting products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and photoluminescence (PL) spectroscopy. The experimental results showed that ball-like YVO 4 :Eu 3+ microspheres with a diameter of about 4-5 μm, corresponding to the SEM observations, formed at 180 deg. C for 24 h using 0.2 g PVP with the molecular weight of 20,000 g mol -1 . The amount of PVP and the reaction time of hydrothermal processing were found to play a key role in the formation of YVO 4 :Eu 3+ microspheres. It has been observed that the relative luminescence intensities of the as-synthesized samples increased with increasing hydrothermal reaction times due mainly to the increase of crystallinity.

  6. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.

    1995-06-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  7. Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications

    Science.gov (United States)

    Ahmed, Sultan; Rafat, M.

    2018-01-01

    In this study, PEDOT/rGO composite has been successfully synthesized using hydrothermal method. Precursor solution of EDOT monomer was mixed with a predetermined solution of graphene oxide (GO). The resultant mixture was then hydrothermally treated. Surface morphology, crystal structure vibrational response and thermal stability have been studied using standard characterization techniques: field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and thermo-gravimetric analysis. The observed results confirm that the required composite of PEDOT/rGO has indeed been synthesized. Electrochemical properties of the synthesized product were studied in 6 M KOH aqueous solution, using characterization techniques such as: cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge measurements. The results show a high value of specific capacitance (102.8 F g-1) at 10 mV s-1, indicating that the composite can be profitably used for energy storage devices.

  8. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB

    Energy Technology Data Exchange (ETDEWEB)

    Sobhani, Azam [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2011-07-01

    Nano-sized nickel selenide powders have been successfully synthesized via an improved hydrothermal route based on the reaction between NiCl{sub 2}.6H{sub 2}O, SeCl{sub 4} and hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) in water, in present of cetyltrimethyl ammonium bromide (CTAB) as surfactant, at various conditions. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray energy dispersive spectroscopy analysis. Effects of temperature, reaction time and reductant agent on the morphology, the particle sizes and the phase of the final products have been investigated. It was found that the phase and morphology of the products could be greatly influenced by these parameters. The synthesis procedure is simple and uses less toxic reagents than the previously reported methods. Photoluminescence (PL) was used to study the optical properties of NiSe samples.

  9. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    International Nuclear Information System (INIS)

    Seetha, M.; Meena, P.; Mangalaraj, D.; Masuda, Yoshitake; Senthil, K.

    2012-01-01

    Highlights: ► For the first time HMT is used in the preparation of indium oxide. ► HMT itself acts as base for the precursor and results in cubic indium hydroxide. ► Modified hydrothermal route used for the preparation of cubic indium oxide crystals. ► As a new approach a composite film synthesized with prepared indium oxide. ► Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  10. Rapid synthesis of polyprenylated acylphloroglucinol analogs via dearomative conjunctive allylic annulation.

    Science.gov (United States)

    Grenning, Alexander J; Boyce, Jonathan H; Porco, John A

    2014-08-20

    Polyprenylated acylphloroglucinols (PPAPs) are structurally complex natural products with promising biological activities. Herein, we present a biosynthesis-inspired, diversity-oriented synthesis approach for rapid construction of PPAP analogs via double decarboxylative allylation (DcA) of acylphloroglucinol scaffolds to access allyl-desoxyhumulones followed by dearomative conjunctive allylic alkylation (DCAA).

  11. Size-controlled synthesis of NiFe{sub 2}O{sub 4} nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar, E-mail: ssd_iitg@hotmail.com

    2016-05-01

    Graphical abstract: - Highlights: • Hydrothermal synthesis of NiFe{sub 2}O{sub 4} NPs with (C{sub 4}H{sub 9}){sub 3}N as hydroxylating agent. • PEG 4000 was used as surfactant to control sizes of NPs. • The TEM images revealed the material to be spherical in shape with sizes 2–10 nm. • NiFe{sub 2}O{sub 4} was used as recyclable catalyst for oxidation of alcohols by periodic acid. - Abstract: A novel and facile approach for synthesis of spinel nickel ferrites (NiFe{sub 2}O{sub 4}) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe{sub 2}O{sub 4} NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption–desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe{sub 2}O{sub 4} and TEM image showed spherical particles of sizes 2–10 nm. These NiFe{sub 2}O{sub 4} NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  12. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    Energy Technology Data Exchange (ETDEWEB)

    Torre-Fernández, Laura; Khainakova, Olena A. [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); Espina, Aránzazu [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Amghouz, Zakariae, E-mail: amghouz.uo@uniovi.es [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Khainakov, Sergei A. [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); Alfonso, Belén F.; Blanco, Jesús A. [Departamento de Física, Universidad de Oviedo, 33007 Oviedo (Spain); García, José R.; García-Granda, Santiago [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain)

    2015-05-15

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal

  13. Hydrothermal synthesis of CdWO 4 nanorods and their ...

    African Journals Online (AJOL)

    CdWO4 nanorods with wolframite structure were synthesized in the presence of the surfactant SDBS by a hydrothermal method, and characterized by a variety of techniques. The obtained products are CdWO4 nanorods with length of 0.8–2.5 μm and width of 50–250 nm. The surfactant SDBS plays a key role in the ...

  14. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    International Nuclear Information System (INIS)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-01-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA) 2− and (NH 4 ) 2 HPO 4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method

  15. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, Katarzyna, E-mail: Katarzyna.Suchanek@ifj.edu.pl [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Bartkowiak, Amanda [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Gdowik, Agnieszka [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Perzanowski, Marcin [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland); Kąc, Sławomir [Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewica 30, 30-059 Krakow (Poland); Szaraniec, Barbara [Department of Biomaterials, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow (Poland); Suchanek, Mateusz [Department of Chemistry and Physics, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow (Poland); Marszałek, Marta [The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego Street 152, 31-342 Krakow (Poland)

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA){sup 2−} and (NH{sub 4}){sub 2}HPO{sub 4} solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. - Highlights: • Bioactivation of titanium substrate by chemical and heat treatments • Precipitation of hydroxyapatite on modified titanium plates • Hydrothermal crystallization of hydroxyapatite by chelate decomposition method.

  16. Influence of Hydrothermal Treatment on Physicochemical Properties and Drug Release of Anti-Inflammatory Drugs of Intercalated Layered Double Hydroxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zi Gu

    2014-05-01

    Full Text Available The synthesis method of layered double hydroxides (LDHs determines nanoparticles’ performance in biomedical applications. In this study, hydrothermal treatment as an important synthesis technique has been examined for its influence on the physicochemical properties and the drug release rate from drug-containing LDHs. We synthesised MgAl–LDHs intercalated with non-steroidal anti-inflammatory drugs (i.e., naproxen, diclofenac and ibuprofen using a co-precipitation method with or without hydrothermal treatment (150 °C, 4 h. After being hydrothermally treated, LDH–drug crystallites increased in particle size and crystallinity, but did not change in the interlayer anion orientation, gallery height and chemical composition. The drug release patterns of all studied LDH–drug hybrids were biphasic and sustained. LDHs loaded with diclofenac had a quicker drug release rate compared with those with naproxen and ibuprofen, and the drug release from the hydrothermally-treated LDH–drug was slower than the freshly precipitated LDH–drug. These results suggest that the drug release of LDH–drugs is influenced by the crystallite size of LDHs, which can be controlled by hydrothermal treatment, as well as by the drug molecular physicochemical properties.

  17. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Selvaraj

    2015-11-01

    Full Text Available Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3 nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C employing barium dichloride (BaCl2 and titanium tetrachloride (TiCl4 as precursors and sodium hydroxide (NaOH as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula. SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  18. Urea controlled hydrothermal synthesis of ammonium aluminum carbonate hydroxide rods

    Science.gov (United States)

    Wang, Fang; Zhu, Jianfeng; Liu, Hui

    2018-03-01

    In this study, ammonium aluminum carbonate hydroxide (AACH) rods were controllably prepared using the hydrothermal method by manipulating the amount of urea in the reaction system. The experimental results showed that AACH in rod shape was able to be gradually transformed from γ-AlOOH in cluster shape during the molar ratios of urea to Al in the reactants were ranged from 8 to 10, and the yield of AACH has increased accordingly. When the molar ratio of urea to Al reaches 11, pure AACH rods with a diameter of 500 nm and a length of 10 μm approximately was able to be produced. Due to the slow decomposition of urea during the hydrothermal reaction, the nucleation and growth of AACH crystal proceed step by step. Therefore, the crystal can fully grow on each crystal plane and eventually produce a highly crystalline rod-shaped product. The role of urea in controlling the morphology and yield of AACH was also discussed in this paper systematically.

  19. Mg-doped VO2 nanoparticles: hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature.

    Science.gov (United States)

    Zhou, Jiadong; Gao, Yanfeng; Liu, Xinling; Chen, Zhang; Dai, Lei; Cao, Chuanxiang; Luo, Hongjie; Kanahira, Minoru; Sun, Chao; Yan, Liuming

    2013-05-28

    This paper reports the successful preparation of Mg-doped VO2 nanoparticles via hydrothermal synthesis. The metal-insulator transition temperature (T(c)) decreased by approximately 2 K per at% Mg. The Tc decreased to 54 °C with 7.0 at% dopant. The composite foils made from Mg-doped VO2 particles displayed excellent visible transmittance (up to 54.2%) and solar modulation ability (up to 10.6%). In addition, the absorption edge blue-shifted from 490 nm to 440 nm at a Mg content of 3.8 at%, representing a widened optical band gap from 2.0 eV for pure VO2 to 2.4 eV at 3.8 at% doping. As a result, the colour of the Mg-doped films was modified to increase their brightness and lighten the yellow colour over that of the undoped-VO2 film. A first principle calculation was conducted to understand how dopants affect the optical, Mott phase transition and structural properties of VO2.

  20. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    Science.gov (United States)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  1. Controlled synthesis of La1−xSrxCrO3 nanoparticles by hydrothermal method with nonionic surfactant and their ORR activity in alkaline medium

    International Nuclear Information System (INIS)

    Choi, Bo Hyun; Park, Shin-Ae; Park, Bong Kyu; Chun, Ho Hwan; Kim, Yong-Tae

    2013-01-01

    Graphical abstract: We demonstrate that Sr-doped LaCrO 3 nanoparticles were successfully prepared by the hydrothermal synthesis method using the nonionic surfactant Triton X-100 and the applicability of La 1−x Sr x CrO 3 to oxygen reduction reaction (ORR) electrocatalysis in an alkaline medium. Compared with the nanoparticles synthesized by the coprecipitation method, they showed enhanced ORR activity. - Highlights: • Sr-doped LaCrO 3 nanoparticles were successfully prepared by the hydrothermal method using the nonionic surfactant. • Homogeneously shaped and sized Sr-doped LaCrO 3 nanoparticles were readily obtained. • Compared with the nanoparticles synthesized by the coprecipitation method, they showed an enhanced ORR activity. • The main origin was revealed to be the decreased particle size due to the nonionic surfactant. - Abstract: Sr-doped LaCrO 3 nanoparticles were prepared by the hydrothermal method with the nonionic surfactant Triton X-100 followed by heat treatment at 1000 °C for 10 h. The obtained perovskite nanoparticles had smaller particle size (about 100 nm) and more uniform size distribution than those synthesized by the conventional coprecipitation method. On the other hand, it was identified with the material simulation that the electronic structure change by Sr doping was negligible, because the initially unfilled e g -band was not affected by the p-type doping. Finally, the perovskite nanoparticles synthesized by hydrothermal method showed much higher ORR activity by over 200% at 0.8 V vs. RHE than those by coprecipitation method

  2. Hydrothermal Processes

    Science.gov (United States)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  3. Hydrothermal synthesis spherical TiO{sub 2} and its photo-degradation property on salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Guo Wenlu, E-mail: liu287856624@163.com [School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003 (China); Liu Xiaolin [School of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang 212003 (China); Huo Pengwei; Gao Xun; Wu Di; Lu Ziyang; Yan Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-07-01

    Anatase TiO{sub 2} spheres have been prepared using hydrothermal synthesis. The prepared spheres were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). The TiO{sub 2} consisted of well-defined spheres with size of 3-5 {mu}m. The photocatalytic activity of spherical TiO{sub 2} was determined by degradation of salicylic acid under visible light irradiation. It was revealed that the degradation rate of the spherical TiO{sub 2} which was processed at 150 Degree-Sign C for 48 h could reach 81.758%. And the kinetics of photocatalytic degradation obeyed first-order kinetic, which the rate constant value was 0.01716 S{sup -1} of the salicylic acid onto TiO{sub 2} (temperature: 150, time: 48 h). The kinetics of adsorption followed the pseudo-second-order model and the rate constant was 1.2695 g mg{sup -1} of the salicylic acid onto TiO{sub 2} (temperature: 150, time: 48 h).

  4. Hydrothermal synthesis, crystal structures, and enantioselective adsorption property of bis(L-histidinato)nickel(II) monohydrate

    Science.gov (United States)

    Ramos, Christian Paul L.; Conato, Marlon T.

    2018-05-01

    Despite the numerous researches in metal-organic frameworks (MOFs), there are only few reports on biologically important amino acids, histidine in particular, on its use as bridging ligand in the construction of open-framework architectures. In this work, hydrothermal synthesis was used to prepare a compound based on Ni2+ and histidine. The coordination assembly of imidazole side chain of histidine with divalent nickel ions in aqueous condition yielded purple prismatic solids. Single crystal X-ray diffraction (XRD) analysis of the product revealed structure for Ni(C6H8N3O2)2 • H2O that has a monoclinic (C2) structure with lattice parameters, a = 29.41, b = 8.27, c = 6.31 Å, β = 90.01 ˚. Circular dichroism - optical rotatory dispersion (CD-ORD), Powder X-ray diffraction (PXRD) and Fourier transform - infrared spectroscopy (FT-IR) analyses are conducted to further characterize the crystals. Enantioselective adsorption analysis using racemic mixture of 2-butanol confirmed bis(L-histidinato)nickel(II) monohydrate MOF crystal's enantioselective property preferentially favoring the adsorption of (S)-2-butanol isomer.

  5. MZnFe{sub 2}O{sub 4} (M = Ni, Mn) cubic superparamagnetic nanoparticles obtained by hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Freire, R. M. [Universidade Federal do Ceara-UFC, Grupo de Quimica de Materiais Avancados (GQMAT)- Departamento de Quimica Analitica e Fisico-Quimica (Brazil); Ribeiro, T. S.; Vasconcelos, I. F. [Universidade Federal do Ceara, Departamento de Engenharia Metalurgica e de Materiais (Brazil); Denardin, J. C. [Universidad de Santiago de Chile, USACH, Departamento de Fisica (Chile); Barros, E. B. [Universidade Federal do Ceara-UFC, Departamento de Fisica (Brazil); Mele, Giuseppe [Universita del Salento, Dipartimento di Ingegneria dell' Innovazione (Italy); Carbone, L. [IPCF-CNR, UOS Pisa (Italy); Mazzetto, S. E.; Fechine, P. B. A., E-mail: fechine@ufc.br [Universidade Federal do Ceara-UFC, Grupo de Quimica de Materiais Avancados (GQMAT)- Departamento de Quimica Analitica e Fisico-Quimica (Brazil)

    2013-05-15

    MZnFe{sub 2}O{sub 4} (M = Ni or Mn) cubic nanoparticles have been prepared by hydrothermal synthesis in mild conditions and short time without any procedure of calcinations. The structural and magnetic properties of the mixed ferrites were investigated by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Moessbauer spectroscopy, vibrating sample magnetometer, and Transmission electron microscopy (TEM). X-ray analysis showed peaks characteristics of the spinel phase. The average diameter of the nanoparticles observed by TEM measurements was approximately between 4 and 10 nm. Spectroscopy study of the spinel structure was performed based on Group Theory. The predicted bands were observed in FTIR and Raman spectrum. The magnetic parameters and Moessbauer spectroscopy were measured at room temperature and superparamagnetic behavior was observed for mixed ferrites. This kind of nanoparticles can be used as precursor in drug delivery systems, magnetic hyperthermia, ferrofluids, or magnetic imaging contrast agents.

  6. Hydrothermal synthesis and characteristic photoluminescence of Er-doped SnO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Pham Van; Hieu, Le Trung; Nga, La Quynh [International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam); Dung, Nguyen Duc [Advanced Institute of Science and Technology, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam); Ha, Ngo Ngoc [International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam); Khiem, Tran Ngoc, E-mail: khiem@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1, Dai Co Viet, Hanoi (Viet Nam)

    2016-11-15

    We report the characteristic photoluminescence (PL) spectra of erbium ion (Er{sup 3+})-doped tin dioxide (SnO{sub 2})nanoparticles. The materials were prepared via hydrothermal method at 180 °C with in 20 h by using various Er{sup 3+} ion concentrations ranging from 0.0 to 1.0 at%. After the synthesis, the materials were characterized through X-ray diffraction and high-resolution transmission electron microscopy. Crystallite SnO{sub 2} and its average particle diameter of approximately 5 nm did not change with Er{sup 3+} ion dopant concentration. Photoluminescence spectra showed the characteristic light emission from the Er{sup 3+} ions. The PL excitation spectra referred to an efficient energy transfer to Er{sup 3+} ions in the presence of SnO{sub 2}nanoparticles. The most intense Er-related emission of SnO{sub 2}:Er{sup 3+} nanoparticles in near infrared region was found in samples containing an Er{sup 3+} ion concentration of 0.25 at%. Although the absorption bandgaps of the materials were identified at approximately 3.8 eV, we found that efficient excitation comes with low excitation energy band edge. Excitation is possibly involved in shallow defects in SnO{sub 2} nanoparticles.

  7. Hydrothermal synthesis of zeolite T from kaolin using two different structure-directing agents

    Science.gov (United States)

    Arshad, Sazmal E.; Lutfor Rahman, M.; Sarkar, Shaheen M.; Yusslee, Eddy F.; Patuwan, Siti Z.

    2018-01-01

    Zeolite T was synthesized from the molar chemical composition of 1SiO2:0.04Al2O3:0.26Na2O:0.09K2O:14H2O in the form of a homogenous milky solution in the presence of the two different structure-directing agents TMAOH and TEAOH respectively. Modification of the composition of silica was undertaken using metakaolin from calcined kaolin at 750 °C for 4 h, while the molar composition of each different SDA was variated from 0.05, 0.10, 0.15, 0.20 and 0.25. The homogenous mixture was left at room temperature for 24 h before undergoing hydrothermal synthesis at 100 °C for 168 h. The synthesized samples were filtered and aged at 120 °C for 2 h and each sample was calcined at high temperatures (545 °C for TMAOH and 520 °C for TEAOH) for template removal before characterization using XRD and SEM. Crystallization of the zeolite T in its major form only took place at a molar ratio of 0.10 of TMAOH, while TEAOH showed the species evolution of zeolite T into zeolite L and W for other molar ratios.

  8. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors

    Energy Technology Data Exchange (ETDEWEB)

    Seetha, M., E-mail: seetha.phy@gmail.com [Department of Physics, SRM University, Kattankulathur, Kancheepuram Dt 603 203 (India); Meena, P. [Department of Physics, PSGR Krishnammal College for Women, Coimbatore 641 046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore (India); Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641 014 (India); Masuda, Yoshitake [National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Senthil, K. [School of Advanced Materials Science and Engineering, Sungkyunkwan University (Suwon Campus), Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer For the first time HMT is used in the preparation of indium oxide. Black-Right-Pointing-Pointer HMT itself acts as base for the precursor and results in cubic indium hydroxide. Black-Right-Pointing-Pointer Modified hydrothermal route used for the preparation of cubic indium oxide crystals. Black-Right-Pointing-Pointer As a new approach a composite film synthesized with prepared indium oxide. Black-Right-Pointing-Pointer Film showed good response to ethanol vapours with quick response and recovery times. - Abstract: Indium oxide cubic crystals were prepared by using hexamethylenetetramine and indium chloride without the addition of any structure directing agents. The chemical route followed in the present work was a modified hydrothermal synthesis. The average crystallite size of the prepared cubes was found to be 40 nm. A blue emission at 418 nm was observed at room temperature when the sample was excited with a 380 nm Xenon lamp. This emission due to oxygen vacancies made the material suitable for gas sensing applications. The synthesized material was made as a composite film with polyvinyl alcohol which was more flexible than the films prepared on glass substrates. This flexible film was used as a sensing element and tested with ethanol vapours at room temperature. The film showed fast response as well as recovery to ethanol vapours with a sensor response of about 1.4 for 100 ppm of the gas.

  9. Nonionic emulsion-mediated synthesis of zeolite beta

    Indian Academy of Sciences (India)

    Zeolite beta synthesis was first carried out in a newly developed emulsion system containing nonionic polyoxyethylated alkylphenol surfactant, which showed interesting non-conventional features. Compared to the conventional hydrothermal synthesis of zeolite beta, the reported nonionic emulsion system showed a faster ...

  10. Rapid Vortex Fluidics: Continuous Flow Synthesis of Amides and Local Anesthetic Lidocaine.

    Science.gov (United States)

    Britton, Joshua; Chalker, Justin M; Raston, Colin L

    2015-07-20

    Thin film flow chemistry using a vortex fluidic device (VFD) is effective in the scalable acylation of amines under shear, with the yields of the amides dramatically enhanced relative to traditional batch techniques. The optimized monophasic flow conditions are effective in ≤80 seconds at room temperature, enabling access to structurally diverse amides, functionalized amino acids and substituted ureas on multigram scales. Amide synthesis under flow was also extended to a total synthesis of local anesthetic lidocaine, with sequential reactions carried out in two serially linked VFD units. The synthesis could also be executed in a single VFD, in which the tandem reactions involve reagent delivery at different positions along the rapidly rotating tube with in situ solvent replacement, as a molecular assembly line process. This further highlights the versatility of the VFD in organic synthesis, as does the finding of a remarkably efficient debenzylation of p-methoxybenzyl amines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hydrothermal formation and characterization of magnesium oxysulfate whiskers

    International Nuclear Information System (INIS)

    Xiang, L.; Liu, F.; Li, J.; Jin, Y.

    2004-01-01

    Magnesium oxysulfate (5Mg(OH) 2 ·MgSO 4 ·3H 2 O) whiskers with a diameter of 0.2-1.0 μm and a length of 20-50 μm were synthesized via the hydrothermal treatment of the slurry formed by mixing the MgSO 4 and NaOH solutions at room temperature. The composition, morphology, structure and thermal behavior of the hydrothermal products were examined with X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA) and chemical analysis. The experimental results indicated that the process parameters, such as the concentration of the reactant, the dispersion of the Mg(OH) 2 slurry and the temperature in hydrothermal treatment should be controlled carefully to synthesis 5Mg(OH) 2 ·MgSO 4 ·3H 2 O whiskers and to avoid the formation of the sectorial or granular impurities. 5Mg(OH) 2 ·MgSO 4 ·3H 2 O whiskers were decomposed gradually and converted finally to MgO particles after being heated in air at temperature up to 1050 deg. C. Granular products formed if the heating temperature was above 320 deg. C

  12. Stable isotopic and mineralogical studies of hydrothermal alteration at Arima Spa, Southwest Japan

    International Nuclear Information System (INIS)

    Masuda, Harue; Osaka City Univ.; Sakai, Hitoshi; Chiba, Hitoshi; Matsuhisa, Yukihiro; Nakamura, Takeshi

    1986-01-01

    The waters of Arima Spa, Southwest Japan, have high salinity (Cl = 54 g/kg) and high isotopic ratios (deltaD = -32, and delta 18 O = +10 per mille), and issue from shallow wells drilled into altered rhyolitic pyroclastic rocks of Cretaceous age. Alteration of the host rocks occurred in two stages. The earlier regional alteration stage is characterized by the presence of 2M- and 1M-type muscovite, albite, chlorite, calcite and epidote, whereas muscovite and Fe-chlorite formation at the expense of partly albitized plagioclase and altered biotite or hornblende occurred in the following hydrothermal stage. Pyrite, sphalerite, galena and siderite are present in the central part of the hydrothermal alteration zone. Oxygen and hydrogen isotopic ratios of secondary muscovite show that regional alteration proceeded under the meteoric circulation, and that the hydrothermal fluid for the second stage had chemical and stable isotopic characteristics of non-meteoric origin similar to the present-day Arima brine. The oxygen and to a lesser extent the hydrogen isotopic ratios of the muscovite rapidly decrease with increasing distance from the central zone of hydrothermal alteration. The isotopic variation is best interpreted as reflecting rapidly decreasing fluid/rock ratios with increasing distance of fluid penetration from the narrow hydrothermal alteration zone into the surrounding area. The results are discussed. (author)

  13. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    Science.gov (United States)

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  14. Hydrothermal synthesis of ZnSe:Cu quantum dots and their luminescent mechanism study by first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Qingshuang; Bai, Yijia; Han, Lin; Deng, Xiaolong [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School, Chinese Academy of Sciences, Beijing 10049 (China); Wu, Xiaojie [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Wang, Zhongchang [WPI Research Center, Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Liu, Xiaojuan, E-mail: lxjuan@ciac.jl.cn [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng, Jian, E-mail: jmeng@ciac.jl.cn [State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2013-11-15

    An one-pot synthesis of aqueous ZnSe:Cu nanocrystals (NCs) is realized in aqueous solution by a facile yet efficient hydrothermal technique. The dopant emission spectrum of the NCs is tunable, spanning a wide range from 438 to 543 nm. Room-temperature quantum yield for the NCs prepared at the optimal conditions reaches as high as 20% without any post-treatment. The ZnSe:Cu NCs prepared in a neutral aqueous solution (pH=8) are remarkably stable and exhibit comparatively high photoluminescent quantum yield (PL QY) as high as 17%. First-principles pseudopotential calculations using plane-wave basis functions have been performed. The formation energies of copper ions occupied in the interstitial octahedron and substitutional tetrahedral Zn{sup 2+} sites have been calculated. The occupation of copper ions in the interstitial octahedral site is found to be more thermodynamics-facilitated by −0.98 eV. The density of state analysis indicates that the Cu-related emission is primary dominated by the substitutional tetrahedral Cu ions, and the large dopant related emission width of ZnSe:Cu NCs originated from the corresponding Cu 3d impurity band. Highlights: • One-pot synthesis of aqueous ZnSe:Cu nanocrystals with tunable emission and high QY%. • ZnSe:Cu NCs exhibit high QY% at neutral pH suitable for biological application. • The microscopic mechanism underlying Cu-related emission has been provided.

  15. Synthesis of uniform-sized zeolite from windshield waste

    International Nuclear Information System (INIS)

    Kim, Jae-Chan; Choi, Mingu; Song, Hee Jo; Park, Jung Eun; Yoon, Jin-Ho; Park, Kyung-Soo; Lee, Chan Gi; Kim, Dong-Wan

    2015-01-01

    We demonstrate the synthesis of A-type zeolite from mechanically milled windshield waste via acid treatment and a low-temperature hydrothermal method. As-received windshield cullet was crushed to a fine powder and impurities were removed by HNO 3 treatment. The resulting glass powder was used as the source material for the hydrothermal synthesis of A-type zeolite. Crystal structure, morphology, and elemental composition changes of the windshield waste were evaluated at each step of the process through scanning electron microscopy, X-ray diffraction, X-ray fluorescence spectrometry, etc. After a high-energy milling process, the glass had an average particle size of 520 nm; after acid treatment, its composition was over 94% silica. Zeolite was successfully synthesized in the A-type phase with a uniform cubic shape. - Highlights: • Environmental-friendly recycling of windshield waste for high valuable product of zeolite. • Synthesis of zeolite form windshield waste via a low-temperature hydrothermal process. • High-energy milling effect on the uniform cubic shape and high-purity A-type zeolite.

  16. n-Type Conductivity of Cu2O Thin Film Prepared in Basic Aqueous Solution Under Hydrothermal Conditions

    Science.gov (United States)

    Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela

    2018-03-01

    We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.

  17. Argentine hydrothermal panorama

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    An attempt is made to give a realistic review of Argentine thermal waters. The topics discussed are the characteristics of the hydrothermal resources, classification according to their mineral content, hydrothermal flora and fauna, uses of hydrothermal resources, hydrothermal regions of Argentina, and meteorology and climate. A tabulation is presented of the principal thermal waters. (JSR)

  18. Sol-gel/hydrothermal synthesis of mixed metal oxide of Titanium and ...

    African Journals Online (AJOL)

    Mixed metal oxides of titanium and zinc nanocomposites were prepared through sol-gel method under hydrothermal condition using titanium oxy-(1, 2 - pentadione) and zinc acetate without hazardous additives. The resulting composites were characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope ...

  19. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors

    Science.gov (United States)

    Xia, Hui; Wang, Yu; Lin, Jianyi; Lu, Li

    2012-01-01

    MnO2/carbon nanotube [CNT] nanocomposites with a CNT core/porous MnO2 sheath hierarchy architecture are synthesized by a simple hydrothermal treatment. X-ray diffraction and Raman spectroscopy analyses reveal that birnessite-type MnO2 is produced through the hydrothermal synthesis. Morphological characterization reveals that three-dimensional hierarchy architecture is built with a highly porous layer consisting of interconnected MnO2 nanoflakes uniformly coated on the CNT surface. The nanocomposite with a composition of 72 wt.% (K0.2MnO2·0.33 H2O)/28 wt.% CNT has a large specific surface area of 237.8 m2/g. Electrochemical properties of the CNT, the pure MnO2, and the MnO2/CNT nanocomposite electrodes are investigated by cyclic voltammetry and electrochemical impedance spectroscopy measurements. The MnO2/CNT nanocomposite electrode exhibits much larger specific capacitance compared with both the CNT electrode and the pure MnO2 electrode and significantly improves rate capability compared to the pure MnO2 electrode. The superior supercapacitive performance of the MnO2/CNT nancomposite electrode is due to its high specific surface area and unique hierarchy architecture which facilitate fast electron and ion transport.

  20. Mechano-hydrothermal preparation of Li-Al-OH layered double hydroxides

    Science.gov (United States)

    Zhang, Fengrong; Hou, Wanguo

    2018-05-01

    A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5-5.0) in the starting materials. An increase in the Tht (20-80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.

  1. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    Science.gov (United States)

    Rashad, M. M.; Rayan, D. A.; El-Barawy, K.

    2010-01-01

    Nanocrystallite Mn doped Zn1-XS (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200oC for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn2+ ions up to 0.2.

  2. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Rashad, M M; Rayan, D A; El-Barawy, K

    2010-01-01

    Nanocrystallite Mn doped Zn 1-X S (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn 2+ ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200 o C for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn 2+ ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn 2+ ions up to 0.2.

  3. Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.

    Science.gov (United States)

    Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan

    2015-04-14

    Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.

  4. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Directory of Open Access Journals (Sweden)

    Yao Zhang

    Full Text Available To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4 concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  5. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Science.gov (United States)

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  6. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    Science.gov (United States)

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Synthesis and Characterization of Si Oxide Coated Nano Ceria by Hydrolysis, and Hydrothermal Treatment at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kong M.

    2017-06-01

    Full Text Available The purpose of this work was to the application of Si oxide coatings. This study deals with the preparation of ceria (CeO2 nanoparticles coating with SiO2 by water glass and hydrolysis reaction. First, the low temperature hydro-reactions were carried out at 30~100°C. Second, Silicon oxide-coated Nano compounds were obtained by the catalyzing synthesis. CeO2 Nano-powders have been successfully synthesized by means of the hydrothermal method, in a low temperature range of 100~200°C. In order to investigate the structure and morphology of the Nano-powders, scanning electron microscopy (SEM and X-ray diffraction (XRD were employed. The XRD results revealed the amorphous nature of silica nanoparticles. To analyze the quantity and properties of the compounds coated with Si oxide, transmission electron microscopy (TEM in conjunction with electron dispersive spectroscopy was used. Finally, it is suggested that the simple growth process is more favorable mechanism than the solution/aggregation process.

  8. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    Science.gov (United States)

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Rapid sensing of melamine in milk by interference green synthesis of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Varun, S.; Kiruba Daniel, S.C.G.; Gorthi, Sai Siva, E-mail: saisiva.gorthi@iap.iisc.ernet.in

    2017-05-01

    A highly sensitive, selective, and rapid interference green synthesis based determination of potential milk adulterant melamine has been reported here. Melamine is a nitrogenous compound added to milk for mimicking proteins, consumption of which leads to kidney stones and renal failures. Melamine interacts with ascorbic acid (AA) through strong hydrogen-bonding interactions, thus resulting in an interference/interruption in the formation of silver (Ag) nanoparticles which was confirmed by UV–Vis spectroscopy and Transmission Electron Microscopy (TEM). The corresponding benchmark validations for melamine spiked milk samples were performed using High Performance Liquid Chromatography (HPLC). This interference in the formation of Ag nanoparticles resulted in color change that varies with concentration of melamine, thereby enabling in-situ rapid sensing of melamine from milk to a lower limit of 0.1 ppm with a linear correlation coefficient of 0.9908. - Highlights: • Rapid detection of milk adulterant melamine based on interference green synthesis. • Green chemical ascorbic acid used as the reducing agent for interference sensing. • Enabling in-situ sensing of melamine from milk with a limit of detection of 0.1 ppm. • Presence of analyte inhibits the nanoparticle formation.

  10. Influence of bases on hydrothermal synthesis of titanate nanostructures

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2009-03-01

    Full Text Available a hydrothermal process. 14 In this study we report on the effect of base concentration, temperature and base type on the formation of nanotubes which form bundles. New information about the mechanism of the formation of the tubes is provided.... It appeared as though longer tubes were initially formed and then broke into shorter pieces with different sizes. The tube fracture is believed to be due to tube instability in base concentration. This clearly shows that depending on the experimental...

  11. Microwave Assisted Rapid and Green Synthesis of Silver Nanoparticles Using a Pigment Produced by Streptomyces coelicolor klmp33

    OpenAIRE

    Manikprabhu, Deene; Lingappa, K.

    2013-01-01

    Traditional synthesis of silver nanoparticles using chemical methods produces toxic substances. In contrast biological synthesis is regarded as a safe and nontoxic process but the major drawback of biological synthesis is, this process is slow. In the present investigation, we developed a rapid and green synthesis of silver nanoparticles employing a pigment produced by Streptomyces coelicolor klmp33 in just 90?s. The silver nanoparticles were characterized by UV-visible spectroscopy, transmis...

  12. Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+xAlxTi2-x(PO4)3 solid electrolytes

    International Nuclear Information System (INIS)

    Kim, Kwang Man; Shin, Dong Ok; Lee, Young-Gi

    2015-01-01

    Li 1+x Al x Ti 2-x (PO 4 ) 3 (LATP) solid electrolytes are prepared by hydrothermal reaction as an effective method to yield moderate ionic conductivity adoptable in actual lithium-ion batteries. Particularly examined in this study are the effects of the synthesis conditions, such as Al dopant concentration (x), hydrothermal reaction time, and calcination and sintering temperatures, on the ionic conductivity of the synthesized LATP. Through repeated synthesis and characterizations of the LATPs by variation of the values of condition variables, the optimum condition for the best LATP with adequate ionic conductivity applicable to actual lithium batteries are determined to be x = 0.3 or 0.4, a hydrothermal reaction time of 12 h, and calcination and sintering temperatures of 600 °C and 900 °C, respectively

  13. Hydrothermal synthesis and magnetic properties of Mn doped ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, M M; Rayan, D A; El-Barawy, K [Central Metallurgical Research and Development Institute PO Box: 87 Helwan, Cairo (Egypt)

    2010-01-01

    Nanocrystallite Mn doped Zn{sub 1-X}S (X = 0 to 0.4) powders have been synthesized through a hydrothermal route. The effect of the hydrothermal temperature and Mn{sup 2+} ions substitution on the crystal structure, crystallite size, microstructure and magnetic properties were investigated using (XRD), (SEM) and (VSM). The results revealed that wurtzite zinc sulfide phase was formed using thiourea as a sulfur source at temperature 150- 200{sup o}C for 24 h. The crystallite size was (7.9-15.1 nm) was obtained at the same conditions. The doping of Mn{sup 2+} ions decreased the crystallite size of the formed ZnS wurtzite phase was in the range between 7.9 and 3.8 nm. SEM micrographs showed that the produced ZnS and Mn doped ZnS particles were appeared as spherical shape. The magnetic properties were improved by substitution of Mn{sup 2+} ions up to 0.2.

  14. Synthesis of zinc oxide by microwave hydrothermal method for application to transesterification of soybean oil (biodiesel)

    International Nuclear Information System (INIS)

    Quirino, Max Rocha; Oliveira, Mateus José C.; Keyson, Davy; Lucena, Guilherme Leocárdio; Oliveira, João Bosco L.; Gama, Lucianna

    2017-01-01

    ZnO nanostructures were synthesized by microwave hydrothermal treatment using two different mineralization agents (NaOH and NH 4 OH), and were evaluated as catalysts for biodiesel synthesis. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. The XRD patterns indicated the formation of the hexagonal wurtzite phase in both samples. SEM analysis showed completely different morphologies based on the mineralization agent employed. The ZnO nanostructures synthesized with NaOH (ZONa5 and ZONa5P) presented plate-like agglomerates, resulting in a quasi-spherical morphology, whereas the materials synthesized with NH 4 OH (ZONH5 and ZONH5P) presented a flower-like morphology. The ZONa5P sample showed an activity of 77.82% for the catalytic conversion of soybean oil into biodiesel by transesterification using methanol. - Highlights: • ZnO was synthesized by MH method in only 5 min. • The powders morphology is completely influenced by mineralization agent. • ZONa5P showed activity of 77.82% for the conversion of soybean oil into biodiesel.

  15. A facile single injection Hydrothermal method for the synthesis of thiol capped CdTe Quantum dots as light harvesters

    Energy Technology Data Exchange (ETDEWEB)

    Jai Kumar, B.; Sumanth Kumar, D.; Mahesh, H.M., E-mail: hm_mahesh@rediffmail.com

    2016-10-15

    A facile, Single Injection Hydrothermal (SIH) method has been developed to synthesize high quality 3-Mercaptopropionic Acid (MPA) stabilized aqueous CdTe QDs, entirely in ambient environment. The synthesis protocol eliminates the use of inert atmosphere for reducing elemental Tellurium powder to Te precursor avoiding the oxidation of Te powder. The XRD result revealed that the synthesized QDs are in cubic zincblende type crystalline structure, without signature of Te oxidation. FTIR spectra have confirmed the attachment of short chained organic compound MPA to the surface of QDs by covalent bond. The Quantum confinement effect was clearly evident by shift in Longitudinal Optic (LO) peak of Raman spectra and absorption peak wavelength with respect to bulk CdTe materials. The optical direct band gap energy of CdTe QDs is between 3.63 eV to 1.96 eV and QDs size below 6 nm, confirm the QDs are well under strong Quantum confinement regime. Also, photoluminescence spectra depict a stable and high luminescence emission from green to dark red color. All these results corroborate that the synthesis of CdTe QDs procedure is very advantageous and present a simple, economical and easily up scalable method for large scale production.

  16. Synthesis of Co3O4 nanocubes by hydrothermal route and their ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... Monodispersed Co3O4 nanocubes were prepared by a simple hydrothermal route with ... X-ray spectrometry, scanning electron microscopy and transmission electron ... spectrometry (EDS) of the product were obtained using.

  17. A Novel Dual-Stage Hydrothermal Flow Reactor

    DEFF Research Database (Denmark)

    Hellstern, Henrik Christian; Becker, Jacob; Hald, Peter

    2015-01-01

    The dual-stage reactor is a novel continuous flow reactor with two reactors connected in series. It is designed for hydrothermal flow synthesis of nanocomposites, in which a single particle consists of multiple materials. The secondary material may protect the core nanoparticle from oxidation....... The dual-stage reactor combines the ability to produce advanced materials with an upscaled capacity in excess of 10 g/hour (dry mass). TiO2 was synthesized in the primary reactor and reproduced previous results. The dual-stage capability was succesfully demonstrated with a series of nanocomposites incl. Ti...

  18. Synthesis of Titanium Dioxide nanoparticles via sucrose ester micelle-mediated hydrothermal processing route

    International Nuclear Information System (INIS)

    Anwar, N.S.; Kassim, A.; Lim, H.N.; Zakarya, S.A.; Huang, N.M.

    2010-01-01

    Titanium dioxide nanoparticles were synthesized via low-temperature sucrose ester micelle-mediated hydrothermal processing route using titanium isopropoxide as the precursor. X-ray diffractometer revealed that the samples possessed a mixed crystalline phases consisting of anatase and brookite in which anatase was the main phase. Upon increasing the hydrothermal reaction temperature, the degree of crystallinity of the nanoparticles improved and their morphology transformed from bundles of needles to rods and to spheres. Photo catalytic behaviour of the as-synthesized nanoparticles was investigated by photodegradation of methylene blue solution in an ultraviolet A irradiating photo reactor. The as-synthesized nanoparticles exhibited higher photo catalytic performance as compared to the commercial counterpart. (author)

  19. Hydrothermal synthesis, characterization, and thermal properties of alumino silicate azide sodalite, Na8[AlSiO4]6(N3)2

    Science.gov (United States)

    Borhade, A. V.; Wakchaure, S. G.; Dholi, A. G.; Kshirsagar, T. A.

    2017-07-01

    First time we report the synthesis, structural characterization and thermal behavior of an unusual N3 - containing alumino-silicate sodalite mineral. Azide sodalite, Na8[AlSiO4]6(N3)2 has been synthesized under hydrothermal conditions at 433 K in steel lined Teflon autoclave. The structural and microstructural properties of azide sodalite mineral was characterized by various methods including FT-IR, XRD, SEM, TGA, and MAS NMR. Crystal structure have been refined by Rietveld method in P\\bar 43n space group, indicating that the N3 - sodalite has cubic in lattice. High temperature study was carried out to see the effect of thermal expansion on cell dimension ( a o) of azide sodalite. Thermal behavior of sodalite was also assessed by thermogravimetric method.

  20. Application of cultural algorithm to generation scheduling of hydrothermal systems

    International Nuclear Information System (INIS)

    Yuan Xiaohui; Yuan Yanbin

    2006-01-01

    The daily generation scheduling of hydrothermal power systems plays an important role in the operation of electric power systems for economics and security, which is a large scale dynamic non-linear constrained optimization problem. It is difficult to solve using traditional optimization methods. This paper proposes a new cultural algorithm to solve the optimal daily generation scheduling of hydrothermal power systems. The approach takes the water transport delay time between connected reservoirs into consideration and can conveniently deal with the complicated hydraulic coupling simultaneously. An example is used to verify the correctness and effectiveness of the proposed cultural algorithm, comparing with both the Lagrange method and the genetic algorithm method. The simulation results demonstrate that the proposed algorithm has rapid convergence speed and higher solution precision. Thus, an effective method is provided to solve the optimal daily generation scheduling of hydrothermal systems

  1. The origin of methanethiol in midocean ridge hydrothermal fluids.

    Science.gov (United States)

    Reeves, Eoghan P; McDermott, Jill M; Seewald, Jeffrey S

    2014-04-15

    Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10(-8) M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10(-6) M) along with NH4(+) and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.

  2. Hydrothermal Synthesis of Pt-, Fe-, and Zn-doped SnO2 Nanospheres and Carbon Monoxide Sensing Properties

    Directory of Open Access Journals (Sweden)

    Weigen Chen

    2013-01-01

    Full Text Available Pure and M-doped (M = Pt, Fe, and Zn SnO2 nanospheres were successfully synthesized via a simple and facile hydrothermal method and characterized by X-ray powder diffraction, field-emission scanning electron microscopy, and energy dispersive spectroscopy. Chemical gas sensors were fabricated based on the as-synthesized nanostructures, and carbon monoxide sensing properties were systematically measured. Compared to pure, Fe-, and Zn-doped SnO2 nanospheres, the Pt-doped SnO2 nanospheres sensor exhibits higher sensitivity, lower operating temperature, more rapid response and recovery, better stability, and excellent selectivity. In addition, a theoretical study based on the first principles calculation was conducted. All results demonstrate the potential of Pt dopant for improving the gas sensing properties of SnO2-based sensors to carbon monoxide.

  3. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    Science.gov (United States)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  4. Organic titanates: a model for activating rapid room-temperature synthesis of shape-controlled CsPbBr3 nanocrystals and their derivatives.

    Science.gov (United States)

    Fang, Shaofan; Li, Guangshe; Li, Huixia; Lu, Yantong; Li, Liping

    2018-04-12

    The application of lead halide perovskite nanocrystals is challenged by the lack of strategies in rapid room-temperature synthesis with controlled morphologies. Here, we report on an initial study of adopting organic titanates as a model activator that promotes rapid room-temperature synthesis of shape-controlled, highly luminescent CsPbBr3 nanocrystals and their derivatives.

  5. Properties of ceria doped with gadolinia via microwave-assisted hydrothermal synthesis; Propriedades de ceria dopada com gadolinia via sintese hidrotermal assistida por micro-ondas

    Energy Technology Data Exchange (ETDEWEB)

    Carregosa, J.D.C.; Oliveira, R.M.P.B. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Macedo, D.A. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Nascimento, R.M., E-mail: jdcovello@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    The solid solution of CeO{sub 2} doped with Gd{sup 3+} (CGO) is a promising candidate for electrolyte in Solid Oxide Full Cells (SOFCs) operating in intermediate and low temperatures. The reduction of the working temperature of these energy conversion devices is the great technological challenge to its marketing. In this work, nanocrystalline powders of Ce{sub 1-x}Gd{sub x}O{sub 2-x/2} with x=0, x=0.1 e x=0.2 were obtained via microwave-hydrothermal synthesis at low temperature and times of synthesis (10 and 20 min at 120° C). The powders were analyzed by TG-DTA, DRX and dilatometry. The results showed characteristic peaks of the cubic fluorite-type structure, referring to the cerium oxide (CeO{sub 2}), without the presence of secondary peaks. It was also observed that the samples processed at levels of 10 and 20 minutes showed distinct behaviors in contrast to the concentrations of Gd{sup 3+}. (author)

  6. Factors influencing formation of highly dispersed BaTiO3 nanospheres with uniform sizes in static hydrothermal synthesis

    International Nuclear Information System (INIS)

    Gao, Jiabing; Shi, Haiyue; Dong, Huina; Zhang, Rui; Chen, Deliang

    2015-01-01

    Highly dispersed BaTiO 3 nanospheres with uniform sizes have important applications in micro/nanoscale functional devices. To achieve well-dispersed spherical BaTiO 3 nanocrystals, we carried out as reported in this paper the systematic investigation on the factors that influence the formation of BaTiO 3 nanospheres by the static hydrothermal process, including the NaOH concentrations [NaOH], molar Ba/Ti ratios (R Ba/Ti ), hydrothermal temperatures, and durations, with an emphasis on understanding the related mechanisms. Barium nitrate and TiO 2 sols derived from tetrabutyl titanate were used as the starting materials. The as-synthesized BaTiO 3 samples were characterized by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, thermogravimetry, differential thermal analysis, and FT-IR spectra. The highly dispersed BaTiO 3 nanospheres (76 ± 13 nm) were achieved under the optimum hydrothermal conditions at 200 °C for 10 h: [NaOH] = 2.0 mol L −1 and R Ba/Ti  = 1.5. Higher NaOH concentrations, higher Ba/Ti ratios, higher hydrothermal temperatures, and longer hydrothermal durations are favorable in forming BaTiO 3 nanospheres with larger fractions of tetragonal phase and higher yields; but too long hydrothermal durations resulted in abnormal growth and reduced the uniformity in particle sizes. The possible formation mechanisms for BaTiO 3 nanocrystals under the static hydrothermal conditions were investigated

  7. Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells

    Science.gov (United States)

    Hong, Soonwook; Lee, Dohaeng; Yang, Hwichul; Kim, Young-Beom

    2018-06-01

    We report a novel synthesis technique of gadolinia-doped ceria (GDC) nano-rod (NRs) via direct hydrothermal process to enhance performance of low temperature solid oxide fuel cell by increasing active reaction area and ionic conductivity at interface between cathode and electrolyte. The cerium nitrate hexahydrate, gadolinium nitrate hexahydrate and urea were used to synthesis GDC NRs for growth on diverse substrate. The directly grown GDC NRs on substrate had a width from 819 to 490 nm and height about 2200 nm with a varied urea concentration. Under the optimized urea concentration of 40 mMol, we confirmed that GDC NRs able to fully cover the substrate by enlarging active reaction area. To maximize ionic conductivity of GDC NRs, we synthesis varied GDC NRs with different ratio of gadolinium and cerium precursor. Electrochemical analysis revealed a significant enhanced performance of fuel cells applying synthesized GDC NRs with a ratio of 2:8 gadolinium and cerium precursor by reducing polarization resistance, which was chiefly attributed to the enlarged active reaction area and enhanced ionic conductivity of GDC NRs. This method of direct hydrothermal growth of GDC NRs enhancing fuel cell performance was considered to apply other types of catalyzing application using nano-structure such as gas sensing and electrolysis fields.

  8. Rapid synthesis of Ti-MCM-41 by microwave-assisted hydrothermal method towards photocatalytic degradation of oxytetracycline.

    Science.gov (United States)

    Chen, Hanlin; Peng, Yen-Ping; Chen, Ku-Fan; Lai, Chia-Hsiang; Lin, Yung-Chang

    2016-06-01

    This study employed microwave-assisted hydrothermal method to synthesize Ti-MCM-41, which are mesoporous materials with a high surface area and excellent photocatalytic ability. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) were employed. The XRD findings showed that Ti-MCM-41 exhibited a peak at 2θ of 2.2°, which was attributed to the hexagonal MCM-41 structure. The BET (Brunauer-Emmett-Teller) results agreed with the TEM findings that Ti-MCM-41 has a pore size of about 3-5nm and a high surface area of 883m(2)/g. FTIR results illustrated the existence of Si-O-Si and Si-O-Ti bonds in Ti-MCM-41. The appearance of Ti 2p peaks in the XPS results confirmed the FTIR findings that the Ti was successfully doped into the MCM-41 structure. Zeta (ζ)-potential results indicated that the iso-electric point (IEP) of Ti-MCM-41 was at about pH3.02. In this study, the photocatalytic degradation of oxytetracycline (OTC) at different pH was investigated under Hg lamp irradiation (wavelength 365nm). The rate constant (K'obs) for OTC degradation was 0.012min(-1) at pH3. Furthermore, TOC (total organic carbon) and high resolution LC-MS (liquid chromatography-mass spectrometry) analyses were conducted to elucidate the possible intermediate products and degradation pathway for OTC. The TOC removal efficiency of OTC degradation was 87.0%, 74.4% and 50.9% at pH3, 7 and 10, respectively. LC-MS analysis results showed that the degradation products from OTC resulted from the removal of functional groups from the OTC ring. Copyright © 2016. Published by Elsevier B.V.

  9. Hydro-Thermal Fatigue Resistance Measurements on Polymer Interfaces

    Science.gov (United States)

    Gurumurthy, Charan K.; Kramer, Edward J.; Hui, Chung-Yuen

    1998-03-01

    We have developed a new technique based on a fiber optic displacement sensor for rapid determination of hydro-thermal fatigue crack growth rate per cycle (da/dN) of an epoxy/polyimide interface used in flip chip attach microelectronic assembly. The sample is prepared as a trilayered cantilever beam by capillary flow of the epoxy underfill over a polyimide coated metallic beam. During hydro-thermal cycling the crack growth along the interface (from the free end) changes the displacement of this end of the beam and we measure the free end displacement at the lowest temperature in each hydro-thermal cycle. The change in beam displacement is then converted into crack growth rate (da/dN). da/dN depends on the maximum change in the strain energy release rate of the crack and the phase angle in each cycle. The relation between da/dN and maximum strain energy release rate characterizes the fatigue crack growth resistance of the interface. We have developed and used a simple model anhydride cured and a commercially available PMDA/ODA passivation for this study.

  10. Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol

    International Nuclear Information System (INIS)

    Yang Lixia; Zhu Yingjie; Tong Hua; Liang Zhenhua; Li Liang; Zhang Ling

    2007-01-01

    Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH 3 COO) 2 .4H 2 O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 deg. C for different time. The phase and morphology of the obtained products can be controlled by adjusting the experimental parameters, including the hydrothermal time and the volume ratio of water to EG or ethanol. The possible reaction mechanism and growth of the nanosheets and nanoflowers are discussed based on the experimental results. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 deg. C. The products were characterized by using various methods including X-ray diffraction (XRD), fourier transform infrared (FTIR), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), field emission scanning electron microscopy (FESEM). The electrochemical property of β-Ni(OH) 2 nanosheets was investigated through the cyclic voltammogram (CV) measurement. - Graphical abstract: Nickel hydroxide nanosheets and flowers have been hydrothermally synthesized using Ni(CH 3 COO) 2 .4H 2 O in mixed solvents of ethylene glycol (EG) or ethanol and deionized water at 200 deg. C for different reaction time. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets in air at 400 deg. C

  11. Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods

    International Nuclear Information System (INIS)

    Gao, Bin; Fan, Huiqing; Zhang, Xiaojun; Song, Lixun

    2012-01-01

    Highlights: ► ZnWO 4 nanorods with uniform diameter are successfully prepared through a template-free hydrothermal method. ► The crystallinity of the products is influenced by the pH value of initial precursor suspension. ► Photocatalytic activity of the ZnWO 4 nanorods for degradation of methylene blue is evaluated. ► The ZnWO 4 nanorods exhibit good stability of photocatalytic activity. - Abstract: ZnWO 4 nanorods are successfully synthesized by a template-free hydrothermal method, and are characterized in detail by X-ray diffractometer (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). The results show that the ZnWO 4 nanorods with wolframite structure are well-crystallized single crystallites. The crystallinity of the products is influenced by the pH value of initial precursor suspension. The width and length of the synthesized samples increase with hydrothermal reaction temperature. The photocatalytic efficiency of the ZnWO 4 nanorods for degradation of methylene blue (MB) in aqueous solution under UV light irradiation declines greatly with increasing crystallinity. The ZnWO 4 nanorods prepared at pH of 4 have the best activity in photo-degradation of MB. After six recycles, photocatalytic activity loss of the catalyst is not obvious.

  12. Photocatalytic properties of TiO{sub 2} prepared by coprecipitation and by hydrothermal synthesis and study of the effect of doping Gd{sup 3+}; Fotokatalyticke vlastnosti TiO{sub 2} pripraveneho koprecipitaciou a hydrotermalnou syntezou a studium vplyvu dopovania Gd{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Sipos, M [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra anorganickej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    In this paper we described a synthesis of TiO{sub 2} nanopowders by coprecipitation and by hydrothermal method. We examined the effect of sample preparation procedure, of annealing temperature and doping by Gd{sup 3+} ions on the photocatalytic properties of TiO{sub 2}. We did not observe a correlation between primary micro-crystallites largeness and their photocatalytic activity. Sulfation and samples doping by G{sup d}3{sup +} ions enhances their photodegradation properties. Effect of doping is significantly larger at hydrothermally prepared samples. (authors)

  13. Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres

    Directory of Open Access Journals (Sweden)

    Yanqing Tang

    2016-11-01

    Full Text Available Starting from Ni-Co-Mn carbonate nanoparticles prepared by microreaction technology, uniform spherical particles of Ni1/3Co1/3Mn1/3CO3 with a size of 3–4 μm were obtained by a controllable hydrothermal conversion with the addition of (NH42CO3. Based on characterizations on the evolution of morphology and composition with hydrothermal treatment time, we clarified the mechanism of this novel method as a dissolution-recrystallization process, as well as the effects of (NH42CO3 concentration on the morphology and composition of particles. By changing concentrations and the ratio of the starting materials for nano-precipitation preparation, we achieved monotonic regulation on the size of the spherical particles, and the synthesis of Ni0.4Co0.2Mn0.4CO3 and Ni0.5Co0.2Mn0.3CO3, respectively. In addition, the spherical particles with a core-shell structure were preliminarily verified to be available by introducing nano-precipitates with different compositions in the hydrothermal treatment in sequence.

  14. Hydrothermal synthesis of 3D hierarchical flower-like MoSe{sub 2} microspheres and their adsorption performances for methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hua, E-mail: tanghua@mail.ujs.edu.cn; Huang, Hong; Wang, Xiaoshuai; Wu, Kongqiang; Tang, Guogang; Li, Changsheng

    2016-08-30

    Highlights: • 3D hierarchical flower-like MoSe{sub 2} microspheres have been fabricated via a hydrothermal method. • A possible evolution process of 3D hierarchical flower-like MoSe{sub 2} microspheres was discussed. • Flower-like MoSe{sub 2} microspheres exhibit excellent adsorption properties for dye methyl orange removal from aqueous solution. - Abstract: In this paper, we report a facile and versatile modified hydrothermal method for synthesis of three-dimensional (3D) hierarchical flower-like MoSe{sub 2} microspheres using selenium powders and sodium molybdate as raw materials. The as-prepared MoSe{sub 2} was investigated for application as an adsorbent for the removal of dye contaminants from water. Power X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscope (XPS) and N{sub 2} adsorption-desorption analysis were carried out to study the microstructure of the as-synthesized product. A possible growth mechanism of MoSe{sub 2} flower-like microspheres was preliminarily proposed on the basis of observation of a time-dependent morphology evolution process. Moreover, the MoSe{sub 2} sample exhibited good adsorption properties, with maximum adsorption capacity of 36.91 mg/g for methyl orange. The adsorption process of methyl orange on 3D hierarchical flower-like MoSe{sub 2} microspheres was systematically investigated, which was found to obey the pseudo-second-order rate equation and Langmuir adsorption model.

  15. Vanadium dioxide nanobelts: Hydrothermal synthesis and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zakharova, G.S., E-mail: volkov@ihim.uran.ru [Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences, Pervomaiskaya ul. 91, Yekaterinburg 620041 (Russian Federation); Hellmann, I. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW) Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Volkov, V.L. [Institute of Solid State Chemistry, Ural Division, Russian Academy of Sciences, Pervomaiskaya ul. 91, Yekaterinburg 620041 (Russian Federation); Taeschner, Ch.; Bachmatiuk, A.; Leonhardt, A.; Klingeler, R.; Buechner, B. [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung (IFW) Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany)

    2010-09-15

    VO{sub 2} (B) nanobelts were prepared by a hydrothermal method at 180 {sup o}C using V{sub 2}O{sub 5}.nH{sub 2}O sol and H{sub 2}C{sub 2}O{sub 4}.2H{sub 2}O as starting agents. The obtained nanobelts have diameters ranging from 50 to 100 nm in width, 20-30 nm in thickness with lengths up to 1.5 {mu}m. Measurements of the static magnetic susceptibility provide evidence for two phase transitions at T{sub 1} = 225 K and T{sub 2} = 290 K, respectively. Below T{sub 1}, the data suggest the presence quasi-free as well as of strongly antiferromagnetic correlated spins associated to V{sup 4+}-ions.

  16. Mild Hydrothermal Synthesis of Ni–Cu Nanoparticles

    Directory of Open Access Journals (Sweden)

    G. H. Mohamed Saeed

    2010-01-01

    Full Text Available Magnetic Ni-rich Ni–Cu nanoparticles with Ni : Cu mass ratio (S of 2.0 and 2.6 were prepared using a mixture of polyoxyethylene (10 isooctylphenyl ether (Triton X-100 and sodium dodecyl sulfate (SDS in a mild hydrothermal condition at 95ºC. X-ray diffractometry (XRD showed that the nanoparticles prepared at S=2.0 possessed Ni–Cu alloy characteristic whereas the characteristic was absent at S=2.6. The XRD data was enhanced by Fourier transform infrared spectroscopy (FTIR which exhibited metal-metal (Ni–Cu band at 455 cm−1. Based on transmission electron microscopy (TEM, the average particle sizes for the nanoparticles prepared at S=2.0 and 2.6 were in the range of 19–23 nm. The as-prepared nanoparticles exhibited paramagnetic behaviour measured using a vibrating sample magnetometer (VSM and the specific saturation magnetization decreased at the higher concentration of Ni.

  17. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations.

    Science.gov (United States)

    Hillman, Febrian; Brito, Jordan; Jeong, Hae-Kwon

    2018-02-14

    The relatively slow and complex fabrication processes of polycrystalline metal-organic framework (MOF) membranes often times restrict their way to commercialization, despite their potential for molecular separation applications. Herein, we report a rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework (ZIF) membranes consisting of 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker) linkers, termed ZIF-7-8 membranes. The fast-volumetric microwave heating in conjunction with a unique counter diffusion of metal and linker solutions enabled unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes in ∼90 s, the fastest MOF membrane preparation up to date. Furthermore, we were able to tune the molecular sieving properties of the ZIF-7-8 membranes by varying the benzimidazole-to-2-methylimidazole (bIm-to-mIm) linker ratio in the hybrid frameworks. The tuning of their molecular sieving properties led to the systematic change in the permeance and selectivity of various small gases. The unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for the commercial gas separation applications of ZIF membranes.

  18. Rapid and large-scale synthesis of Co3O4 octahedron particles with very high catalytic activity, good supercapacitance and unique magnetic property

    CSIR Research Space (South Africa)

    Chowdhury, M

    2015-12-01

    Full Text Available Scarcity of rapid and large scale synthesis of functional materials, hinders the progress from laboratory scale to commercial applications. In this study, we report a rapid and large scale synthesis of Co(Sub3)O(sub4) octahedron micron size (1.3 µm...

  19. Synthesis and characterization on titanium dioxide prepared by precipitation and hydrothermal treatment

    International Nuclear Information System (INIS)

    Santos, Andre V.P. dos; Yoshito, Walter K.; Lazar, Dolores R.R.; Ussui, Valter

    2012-01-01

    Surface properties of titanium dioxide (titania) are outstanding among ceramic materials and enables uses as catalysts, photoelectrochemical devices, solar cells and others. In many of these applications, it is necessary to keep the anatase phase, that is stable only in low temperatures (<400 deg C). In the present work, the influence of hydrothermal treatment on physical characteristics and crystal structure of titania powders synthesized by precipitation was investigated. Characterizations of obtained powders were carried out by X-ray diffraction, surface area analysis by N2 gas sorption (BET) and microstructure of powders and ceramics were analyzed by scanning electron microscopy. As prepared powders were formed as cylindrical pellets by uniaxial pressing and sintered at 1500 deg C for 01 hour. Results showed that anatase phase without formation of rutile phase can be formed in hydrothermally treated samples . Rutile phase is predominant in calcined and/or sintered samples (author)

  20. Rapid formation of nanocrystalline HfO2 powders from amorphous hafnium hydroxide under ultrasonically assisted hydrothermal treatment

    International Nuclear Information System (INIS)

    Meskin, Pavel E.; Sharikov, Felix Yu.; Ivanov, Vladimir K.; Churagulov, Bulat R.; Tretyakov, Yury D.

    2007-01-01

    Peculiarities of hafnium hydroxide hydrothermal decomposition were studied by in situ heat flux calorimetry for the first time. It was shown that this process occurs in one exothermal stage (ΔH = -17.95 kJ mol -1 ) at 180-250 deg. C resulting in complete crystallization of amorphous phase with formation of pure monoclinic HfO 2 . It was found that the rate of m-HfO 2 formation can be significantly increased by combining hydrothermal treatment with simultaneous ultrasonic activation

  1. Rapid synthesis of silver nanoparticles from Polylthia longifolia leaves

    Directory of Open Access Journals (Sweden)

    Tollamadugu Nagavenkata

    2012-10-01

    Full Text Available Objective: Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this research article we present a simple and eco-friendly biosynthesis of silver nanoparticles using P. longifolia leaf extract as reducing agent. Methods: Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM was performed. Results: TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions: P. longifolia demonstrated strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0. Biological methods are a good competent for the chemical procedures, which are enviro- friendly and convenient.

  2. Synthesis of boehmite by hydrothermal treatment used as inorganic binder for alumina powder

    International Nuclear Information System (INIS)

    Lima, M.B.; Tercini, M.B.; Yoshimura, H.N.

    2012-01-01

    Presently, due to the concerns with the environment, it has been developed studies to replace the organic binder by an inorganic binder for forming of ceramic powders, in order to avoiding the generation of polluting gases during sintering (firing). A potential alternative is the use of boehmite, produced by hydrothermal treatment on the surfaces of the alumina powder, previously ground in a ball mill using zirconia milling media to produce hydrated phases on alumina powder which are converted to boehmite. In the treated alumina powders, it was observed the formation of boehmite phase by X-ray diffraction analysis and Fourier transformed infrared (FTIR) spectroscopy, demonstrating the efficiency of boehmite formation during the hydrothermal treatment at 150°C for 3 hours.(author)

  3. An improved synthesis of pentacene: rapid access to a benchmark organic semiconductor.

    Science.gov (United States)

    Pramanik, Chandrani; Miller, Glen P

    2012-04-20

    Pentacene is an organic semiconductor used in a variety of thin-film organic electronic devices. Although at least six separate syntheses of pentacene are known (two from dihydropentacenes, two from 6,13-pentacenedione and two from 6,13-dihydro-6,13-dihydroxypentacene), none is ideal and several utilize elevated temperatures that may facilitate the oxidation of pentacene as it is produced. Here, we present a fast (-2 min of reaction time), simple, high-yielding (≥ 90%), low temperature synthesis of pentacene from readily available 6,13-dihydro-6,13-dihydroxypentacene. Further, we discuss the mechanism of this highly efficient reaction. With this improved synthesis, researchers gain rapid, affordable access to high purity pentacene in excellent yield and without the need for a time consuming sublimation.

  4. In-situ hydrothermal synthesis of three-dimensional MnO2-CNT nanocomposites and their electrochemical properties

    International Nuclear Information System (INIS)

    Teng, Fei; Santhanagopalan, Sunand; Wang, Ying; Meng, Dennis Desheng

    2010-01-01

    Three-dimensional (3-D) MnO 2 -carbon nanotube (CNT) nanocomposites were prepared by a simple one-pot hydrothermal method. An electrode was then prepared with these nanocomposites. For comparative investigation, MnO 2 microspheres were also hydrothermally prepared without adding CNTs. The as-synthesized MnO 2 microspheres were then mechanically mixed with CNTs to prepare a subsequent electrode. The samples were characterized by electron microscopy, X-ray diffraction, and electrochemical methods. It has been revealed that a 3-D conductive network of CNTs was formed with microspheres of MnO 2 nanorods interwoven with and connected by CNTs. As a result, the hydrothermally mixed MnO 2 -CNT electrode showed a higher specific capacitance than the mechanically mixed electrode. It has therefore been concluded that the hydrothermal mixing method yields a more homogeneous product that is better suited to take full advantages of both the high capacitance of MnO 2 and the high electrical conductivity of CNTs. The 3-D MnO 2 -CNT nanocomposites reported herein have provided a promising electrode material for supercapacitors and other electrochemical energy storage/conversion devices.

  5. Controlled synthesis of La{sub 1−x}Sr{sub x}CrO{sub 3} nanoparticles by hydrothermal method with nonionic surfactant and their ORR activity in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bo Hyun; Park, Shin-Ae [Energy System Major, School of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Park, Bong Kyu [GIFT Center, Pusan National University, Busan, 609-735 (Korea, Republic of); Chun, Ho Hwan, E-mail: chunahh@pusan.ac.kr [Global Core Research Center for Ships and Offshore Plants(GCRC-SOP), Pusan National University, Busan, 609-735 (Korea, Republic of); Kim, Yong-Tae, E-mail: yongtae@pusan.ac.kr [Energy System Major, School of Mechanical Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2013-10-15

    Graphical abstract: We demonstrate that Sr-doped LaCrO{sub 3} nanoparticles were successfully prepared by the hydrothermal synthesis method using the nonionic surfactant Triton X-100 and the applicability of La{sub 1−x}Sr{sub x}CrO{sub 3} to oxygen reduction reaction (ORR) electrocatalysis in an alkaline medium. Compared with the nanoparticles synthesized by the coprecipitation method, they showed enhanced ORR activity. - Highlights: • Sr-doped LaCrO{sub 3} nanoparticles were successfully prepared by the hydrothermal method using the nonionic surfactant. • Homogeneously shaped and sized Sr-doped LaCrO{sub 3} nanoparticles were readily obtained. • Compared with the nanoparticles synthesized by the coprecipitation method, they showed an enhanced ORR activity. • The main origin was revealed to be the decreased particle size due to the nonionic surfactant. - Abstract: Sr-doped LaCrO{sub 3} nanoparticles were prepared by the hydrothermal method with the nonionic surfactant Triton X-100 followed by heat treatment at 1000 °C for 10 h. The obtained perovskite nanoparticles had smaller particle size (about 100 nm) and more uniform size distribution than those synthesized by the conventional coprecipitation method. On the other hand, it was identified with the material simulation that the electronic structure change by Sr doping was negligible, because the initially unfilled e{sub g}-band was not affected by the p-type doping. Finally, the perovskite nanoparticles synthesized by hydrothermal method showed much higher ORR activity by over 200% at 0.8 V vs. RHE than those by coprecipitation method.

  6. Synthesis of zinc oxide by microwave hydrothermal method for application to transesterification of soybean oil (biodiesel)

    Energy Technology Data Exchange (ETDEWEB)

    Quirino, Max Rocha [LABQUIM/Universidade Federal da Paraíba, Campus III, 58200-000, Bananeiras, PB (Brazil); Oliveira, Mateus José C. [DEMA/Universidade Federal de Campina Grande, Campina Grande, Campus I, 58429-900, Campina Grande, PB (Brazil); Keyson, Davy [DME/Universidade Federal da Paraíba, Campus – I, 58051-900, João Pessoa, PB (Brazil); Lucena, Guilherme Leocárdio, E-mail: guilhermelucena@cchsa.ufpb.br [LABQUIM/Universidade Federal da Paraíba, Campus III, 58200-000, Bananeiras, PB (Brazil); Oliveira, João Bosco L. [Universidade Federal do Rio Grande do Norte, Campus I, 59078-970, Natal, RN (Brazil); Gama, Lucianna [DEMA/Universidade Federal de Campina Grande, Campina Grande, Campus I, 58429-900, Campina Grande, PB (Brazil)

    2017-01-01

    ZnO nanostructures were synthesized by microwave hydrothermal treatment using two different mineralization agents (NaOH and NH{sub 4}OH), and were evaluated as catalysts for biodiesel synthesis. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. The XRD patterns indicated the formation of the hexagonal wurtzite phase in both samples. SEM analysis showed completely different morphologies based on the mineralization agent employed. The ZnO nanostructures synthesized with NaOH (ZONa5 and ZONa5P) presented plate-like agglomerates, resulting in a quasi-spherical morphology, whereas the materials synthesized with NH{sub 4}OH (ZONH5 and ZONH5P) presented a flower-like morphology. The ZONa5P sample showed an activity of 77.82% for the catalytic conversion of soybean oil into biodiesel by transesterification using methanol. - Highlights: • ZnO was synthesized by MH method in only 5 min. • The powders morphology is completely influenced by mineralization agent. • ZONa5P showed activity of 77.82% for the conversion of soybean oil into biodiesel.

  7. Effect of hydrothermal treatment on catalytic activity of amorphous mesoporous Cr2O3–ZrO2 nanomaterials for ethanol oxidation

    International Nuclear Information System (INIS)

    Mahmoud, Hala R.

    2015-01-01

    Mesoporous 0.25Cr 2 O 3 –0.75ZrO 2 binary oxide catalysts (CZ-H) with high specific surface areas were successfully synthesized by hydrothermal treatment. The effect of synthesis conditions, such as hydrothermal temperature and time of CZ-H nanomaterials were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy dispersive spectroscopic (EDS), UV–vis diffuse reflectance spectroscopy (DRS) and N 2 adsorption–desorption measurements (BET). The XRD analysis indicated the formation of amorphous materials of binary oxides. The results showed that hydrothermal temperature and time of CZ-H nanomaterials had great influence on the average particle diameter and surface area. Under the optimum synthesis conditions, the best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213), presented spherical structure with smallest average particle diameter found to be 1.5 nm and possessed highest surface area of 526.6 m 2 /g. Optical studies by UV–vis spectroscopy for the different CZ-H nanomaterials exhibit slightly blue shift from 3.20 to 3.33 eV due to quantum confined exciton absorption. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid–base properties than conventional co-precipitation method. Compared to the other nanomaterials, the CZ-H213 catalyst appears to be the best candidate for further application in acid–base catalysis and reusability. - Graphical abstract: Display Omitted - Highlights: • Mesoporous 25%Cr 2 O 3 –75%ZrO 2 catalysts (CZ-H) were prepared by hydrothermal method. • The hydrothermal temperature and time modified the properties of CZ-H nanomaterials. • The best CZ-H nanomaterial synthesized at 210 °C for 3 h (i.e., CZ-H213). • A CZ-H213 nanomaterial had the highest S BET and smallest average particle diameter. • A mesoporous CZ-H213 used as a reusable active catalyst in the ethanol conversion

  8. Hydrothermal synthesis of Ni_2P nanoparticle and its hydrodesulfurization of dibenzothiophene

    International Nuclear Information System (INIS)

    Zhao, Qi; Han, Yang; Huang, Xiang; Dai, Jinhui; Tian, Jintao; Zhu, Zhibin; Yue, Li

    2017-01-01

    Nanosized nickel phosphide (Ni_2P) has been synthesized via hydrothermal reaction with environmental-friendly red phosphorus and nickel chloride. The reaction mechanism has been studied by measurement techniques of IC, XRD ,TEM, EDS, and XPS. The results showed that the particle sizes of as-prepared Ni_2P are in nanoscale ranging from 10 to 30 nm. In hydrothermal reaction, red phosphorus reacts with water to its oxyacids, especially its hypophosphorous acid (or hypophosphite) which can reduce nickel chloride to nickel, and then metallic nickel will penetrate into the rest of red phosphorus to generate nano-Ni_2P. Furthermore, the catalytic performance of as-synthesized Ni_2P for the hydrodesulfurization of dibenzothiophene has been tested. It has been shown that the HDS reaction process over Ni_2P catalyst agrees well with the pseudo-first order kinetic equation, and the HDS conversion can reach up to 43.83% in 5 h with a stable increasing catalytic activity during the whole examination process.

  9. Surfactant-assisted hydrothermal synthesis of CdS nanotips: optical and magnetic properties

    International Nuclear Information System (INIS)

    Mondal, Biswajit; Saha, Shyamal Kumar

    2012-01-01

    CdS nanotips with size 5–8 nm are synthesized by hydrothermal process using polyacrylamide (PAM) as surfactant. The shape of nanocrystals (NCs) changes from particles to nanorods or nanotips depending upon the amount of PAM used. Optical properties of the CdS NCs vary with hydrothermal temperature (T H ) due to formation of “S” vacancies. The Rietveld refinement of XRD data shows that “S” site occupancy decreases with increase in T H and amount of PAM indicating the formation of “S” vacancies. Size-dependent magnetic properties in these NCs indicate that the micron-size rods are diamagnetic in nature while the microrods ended with sharp tips show ferromagnetism even at room temperature. The origin of this ferromagnetism in nanotips is explained by the variation in density of “S” defects at the nanotips as well as in the nanorods. These ferromagnetic nanotips grown in the rods as side growth have potential applications in magnetic force microscopes.

  10. Hydrothermal synthesis and characterization of a binuclear complex and a coordination

    Directory of Open Access Journals (Sweden)

    Reza Mohamadinasab

    2010-06-01

    Full Text Available Two new copper complexes [(bipy(pydcCu(μ-OCO-pydcCu(bipy(H2O].3.5H¬2O (1 and {[(μ2-C2O4(2,2'-bipyCu].2H2O}n (2 (pydcH2 = pyridine-2,6-dicarboxylilic acid, bipy = 2,2'-bipyridine have been hydrothermally synthesized. Both complexes were characterized by IR spectroscopy, elemental analysis and single crystal X-ray diffraction studies. Complex 1 consists of two independent neutral molecules. In every moiety, metal ion center is in a distorted octahedral geometry. Coordination polymer (2 has been prepared from the reaction of bis-(cyclohexanone-oxal-dihydrazone,2,2'-bipyridine and Cu(NO32 in basic solution and under hydrothermal condition. The results showed that the bis-(cyclohexanone-oxal-dihydrazone was converted to oxalate ion under heating and basic pH. Each metal ion center in 2 is in a distorted octahedral geometry and is coordinated by four oxygen atoms of two bridged oxalate ions and two nitrogen atoms of 2,2'-bipyridine molecules. In the crystal structure of 2, some H-bonds and π-π interaction cause formation of a 3D network.

  11. Hydrothermal preparation of hydrophobic and hydrophilic nanoparticles of iron oxide and a modification with CM-dextran

    Czech Academy of Sciences Publication Activity Database

    Repko, A.; Nižňanský, D.; Matulková, Irena; Kalbáč, Martin; Vejpravová, Jana

    2013-01-01

    Roč. 15, č. 7 (2013), s. 1-9 ISSN 1388-0764 Institutional support: RVO:68378271 ; RVO:61388955 Keywords : superparamagnetism * magnetite * carboxymethyl dextran * hydrothermal synthesis * nanocrystals Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.278, year: 2013

  12. Hydrothermal synthesis and characterization of sea urchin-like nickel and cobalt selenides nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China) and School of Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083 (China)]. E-mail: liuxh@mail.csu.edu.cn; Zhang Ning [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yi Ran [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Qiu Guanzhou [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yan Aiguo [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Wu Hongyi [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Meng Dapeng [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Tang, Motang [School of Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2007-05-25

    Sea urchin-like nanorod-based nickel and cobalt selenides nanocrystals have been selective synthesized via a hydrothermal reduction route in which hydrated nickel chloride and hydrated cobalt chloride were employed to supply Ni and Co source and aqueous hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) was used as reducing agent. The composition, morphology, and structure of final products could be easily controlled by adjusting the molar ratios of reactants and process parameters such as hydrothermal time. The morphology and phase structure of the final products have been investigated by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The probable formation mechanism of the sea urchin-like nanorod-based nickel and cobalt selenides nanocrystals was discussed on the basis of the experimental results.

  13. Nonionic emulsion-mediated synthesis of zeolite beta

    Indian Academy of Sciences (India)

    Administrator

    , 18 Fuxue ... alkylation, disproportionation and other organic synthesis processes at present (Camblor et al 1996). Usually, zeolite beta is synthesized by hydrothermal method at ... However, microemulsion has not yet been applied to syn-.

  14. Hydrothermal synthesis and electrochemical properties of nano-sized Co-Sn alloy anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    He Jianchao; Zhao Hailei; Wang Jing; Wang Jie; Chen Jingbo

    2010-01-01

    Research highlights: → Nano-sized Co-Sn alloys were synthesized by hydrothermal route. → Li 2 O and CoSn can buffer the large volume change associated with lithiation of Sn. → A two-step reaction mechanism of CoSn 2 alloy during cycling was confirmed. - Abstract: Nano-sized Co-Sn alloys with a certain amount of Sn oxides used as potential anode materials for lithium ion batteries were synthesized by hydrothermal route. The effects of hydrothermal conditions and post annealing on the phase compositions and the electrochemical properties of synthesized powders were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) with energy dispersive spectra (EDS) analysis and galvanostatic cycling tests. Prolonging the dwelling time at the same hydrothermal temperature can increase the content of Sn oxides, which will lead to a high initial irreversible capacity loss but a better cycling stability owing to the buffer effect of irreversible product Li 2 O. Heat-treatment can increase the crystallinity and cause the presence of a certain amount of inert CoSn component, which both have positive impact on the cycling stability of Co-Sn electrode. By comparison with the lithiation/delithiation processes of metal Sn, a two-step mechanism of CoSn 2 alloy during cycling was confirmed.

  15. An Improved Synthesis of Pentacene: Rapid Access to a Benchmark Organic Semiconductor

    Directory of Open Access Journals (Sweden)

    Glen P. Miller

    2012-04-01

    Full Text Available Pentacene is an organic semiconductor used in a variety of thin-film organic electronic devices. Although at least six separate syntheses of pentacene are known (two from dihydropentacenes, two from 6,13-pentacenedione and two from 6,13-dihydro-6,13-dihydroxypentacene, none is ideal and several utilize elevated temperatures that may facilitate the oxidation of pentacene as it is produced. Here, we present a fast (~2 min of reaction time, simple, high-yielding (≥90%, low temperature synthesis of pentacene from readily available 6,13-dihydro-6,13-dihydroxypentacene. Further, we discuss the mechanism of this highly efficient reaction. With this improved synthesis, researchers gain rapid, affordable access to high purity pentacene in excellent yield and without the need for a time consuming sublimation.

  16. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences

    Science.gov (United States)

    Baker, Edward T.; German, Christopher R.; Elderfield, Henry

    Seafloor hydrothermal circulation is the principal agent of energy and mass exchange between the ocean and the earth's crust. Discharging fluids cool hot rock, construct mineral deposits, nurture biological communities, alter deep-sea mixing and circulation patterns, and profoundly influence ocean chemistry and biology. Although the active discharge orifices themselves cover only a minuscule percentage of the ridge-axis seafloor, the investigation and quantification of their effects is enhanced as a consequence of the mixing process that forms hydrothermal plumes. Hydrothermal fluids discharged from vents are rapidly diluted with ambient seawater by factors of 104-105 [Lupton et al., 1985]. During dilution, the mixture rises tens to hundreds of meters to a level of neutral buoyancy, eventually spreading laterally as a distinct hydrographic and chemical layer with a spatial scale of tens to thousands of kilometers [e.g., Lupton and Craig, 1981; Baker and Massoth, 1987; Speer and Rona, 1989].

  17. A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring.

    Science.gov (United States)

    Wan, Lei; Megarity, Clare F; Siritanaratkul, Bhavin; Armstrong, Fraser A

    2018-01-23

    A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP + and NADPH with a Pt electrode catalysing 2H + /H 2 interconversion. This Communication demonstrates its performance and characteristics using the reductive amination of 2-oxoglutarate as a test system.

  18. Synthesis of potassium sodium niobate nanostructures by hydrothermal combining with the sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xianghe; Wang, Wen, E-mail: wangwen@hit.edu.cn; Ke, Hua; Rao, Jiancun; Zhou, Yu

    2016-10-15

    Graphical abstract: We prepared novel metastable perovskite K{sub 0.52}Na{sub 0.48}NbO{sub 3} microstructures with a morphotropic phase boundary (MPB) between rhombohedral and tetragonal via hydrothermal method with SDS surfactant-assist. - Highlights: • KNbO{sub 3}-type orthorhombic K{sub 1−x}Na{sub x}NbO{sub 3} nanowires were prepared by hydrothermal method. • Metastable K{sub 0.52}Na{sub 0.48}NbO{sub 3} microfingers have a morphotropic phase boundary. • Sodium dodecyl sulfate could improve the crystallinity of K{sub 0.52}Na{sub 0.48}NbO{sub 3} powders. • The Curie temperature of rhombohedral-tetragonal KNN was 555 °C. - Abstract: In this paper the K{sub 1−x}Na{sub x}NbO{sub 3}(KNN) nanostructures were synthesized by hydrothermal method using KNN gel powders as precursors. KNbO{sub 3}-type orthorhombic KNN nanowires and perovskite KNN microfingers with a morphotropic phase boundary (MPB) between rhombohedral and tetragonal characterized by X-ray diffraction and Raman spectroscopy were obtained at 190 °C and 220 °C, respectively. KNbO{sub 3}-type orthorhombic KNN nanowires had rectangular shape and the growth direction of these nanowires was [0 0 1]. The rhombohedral-tetragonal KNN microfingers were metastable, and changed the rhombohedral-tetragonal phase into the orthorhombic phase via thermal treatment at 600 °C then cooled down to room temperature. Sodium dodecyl sulfate (SDS) as surfactant was added to the hydrothermal reaction. It was found that SDS could improve the crystallinity of the rhombohedral-tetragonal K{sub 0.52}Na{sub 0.48}NbO{sub 3} and reduce the impurity effectively. The tetragonal-cubic phase transition temperature (Tc) of the rhombohedral-tetragonal powders appeared at 555 °C.

  19. Accelerated Removal of Fe-Antisite Defects while Nanosizing Hydrothermal LiFePO4 with Ca(2).

    Science.gov (United States)

    Paolella, Andrea; Turner, Stuart; Bertoni, Giovanni; Hovington, Pierre; Flacau, Roxana; Boyer, Chad; Feng, Zimin; Colombo, Massimo; Marras, Sergio; Prato, Mirko; Manna, Liberato; Guerfi, Abdelbast; Demopoulos, George P; Armand, Michel; Zaghib, Karim

    2016-04-13

    Based on neutron powder diffraction (NPD) and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), we show that calcium ions help eliminate the Fe-antisite defects by controlling the nucleation and evolution of the LiFePO4 particles during their hydrothermal synthesis. This Ca-regulated formation of LiFePO4 particles has an overwhelming impact on the removal of their iron antisite defects during the subsequent carbon-coating step since (i) almost all the Fe-antisite defects aggregate at the surface of the LiFePO4 crystal when the crystals are small enough and (ii) the concomitant increase of the surface area, which further exposes the Fe-antisite defects. Our results not only justify a low-cost, efficient and reliable hydrothermal synthesis method for LiFePO4 but also provide a promising alternative viewpoint on the mechanism controlling the nanosizing of LiFePO4, which leads to improved electrochemical performances.

  20. Nonionic surfactant-assisted hydrothermal synthesis of YVO4:Eu3+ powders in a wide pH range and their luminescent properties

    International Nuclear Information System (INIS)

    Wang Juan; Hojamberdiev, Mirabbos; Xu Yunhua; Peng Jianhong

    2011-01-01

    YVO 4 :Eu 3+ powders with different morphologies were fabricated by a simple hydrothermal method at 180 deg. C for 24 h in a wide pH range with the assistance of polyvinylpyrrolidone (PVP) as a nonionic surfactant. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The obtained results showed that the pH value of synthesis solution played a key role in the formation of final products with different morphologies, such as, microspheres, irregular microspheres with grain-like nanoparticles, stone-like structures with regular short nanorods, and smooth rhombohedrons. The PL measurements revealed that the emission intensity of the samples was first decreased, and then increased with increasing the pH value due mainly to the increase in crystallinity and decrease in surface defects.

  1. Synthesis and characterization of boehmites obtained from gibbsite in presence of different environments

    Energy Technology Data Exchange (ETDEWEB)

    Denigres Filho, Ricardo Wilson Nastari; Rocha, Gisele de Araujo; Vieira-Coelho, Antonio Carlos, E-mail: acvcoelh@usp.br [Universidade de Sao Paulo (LPSS/EP/USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Materias-Primas Particuladas; Montes, Celia Regina [Centro de Energia Nuclear na Agricultura (NUPEGEL/CENA/USP), Piracicaba, SP (Brazil). Nucleo de Pesquisas Geoquimicas e Geofisicas da Listosfera

    2016-05-15

    In this study, results related to boehmite synthesis by hydrothermal processes starting from a Bayer commercial gibbsite are reported. The processes have been conducted from aqueous suspensions with initial acidic or alkaline pH, without or with acetate ion, at 160 deg C for 72h to 168h. The final materials were characterized by X-ray diffraction (XRD), thermal methods (DTA and TGA) and scanning electron microscopy (SEM). The influence of the synthesis conditions on the morphology of the boehmite crystals obtained from the gibbsite at different hydrothermal processes are discussed. (author)

  2. Hydrothermal synthesis and characterizations of Ti substituted Mn-ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Mostafa, Nasser Y., E-mail: nmost69@yahoo.com [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Hessien, M.M. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Advanced materials Division-Central metallurgical R and D Institute (CMRDI), P.O. Box 87 Helwan, Cairo (Egypt); Shaltout, Abdallah A. [Faculty of Science, Taif University, P.O. Box 888 Al-Haweiah, Taif (Saudi Arabia); Spectroscopy Department, Physics Division, National Research Center, El Behooth Str., 12622 Dokki, Cairo (Egypt)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal synthesized of well-crystallized Ti-substituted MnFe{sub 2}O{sub 4} nanoparticles at 180 Degree-Sign C without any calcination step. The chemical composition was represented by Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} with x having values 0.0, 0.1, 0.2, 0.3 and 0.4. Black-Right-Pointing-Pointer The change in lattice parameter and saturation magnetization with increasing Ti-substitution was investigated and explained. Black-Right-Pointing-Pointer The change in microstructure due to Ti{sup 4+} ions substitutions was investigated using TEM analysis. - Abstarct: A series of well-crystallized Mn{sub 1-2x}Ti{sub x}Fe{sub 2}O{sub 4} nanoparticles with x values of 0.0, 0.1, 0.2, 0.3 and 0.4 have been synthesized by hydrothermal route at 180 Degree-Sign C in the presence of NaOH as mineralizer. The obtained ferrite samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The XRD analysis showed that pure single phases of cubic ferrites were obtained with x up to 0.2. However, samples with x > 0.2 showed traces of unreacted anatase. The increase in Ti-substitution up to x = 0.2 leads to an increase in the lattice parameter of the prepared ferrites. On the other hand, the increase in Ti-substitution over x = 0.2 leads to a decrease in the lattice parameter. The average crystallite size was in the range of 39-57 nm, where it is increased by increasing the Ti-substitution up to x = 0.3, then decreased for x = 0.4. According to VSM results, the saturation magnetization increased with Ti ion substitution of x = 0.1 and decreased for x > 0.1.

  3. Synthesis of high luminescent carbon nanoparticles

    Science.gov (United States)

    Gvozdyuk, Alina A.; Petrova, Polina S.; Goryacheva, Irina Y.; Sukhorukov, Gleb B.

    2017-03-01

    In this article we report an effective and simple method for synthesis of high luminescent carbon nanodots (CDs). In our work as a carbon source sodium dextran sulfate (DS) was used because it is harmless, its analogs are used in medicine as antithrombotic compounds and blood substitutes after hemorrhage. was used as a substrate We investigated the influence of temperature parameters of hydrothermal synthesis on the photoluminescence (PL) intensity and position of emission maxima. We discovered that the PL intensity can be tuned by changing of synthesis temperature and CD concentration.

  4. Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf

    Science.gov (United States)

    Philip, Daizy

    2010-11-01

    This paper reports the rapid biological synthesis of spherical gold nanoparticles at room temperature using fresh/dry leaf extract of Mangifera indica. This is a simple, cost-effective, stable for long time and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au nanoparticles of size ˜20 nm and 17 nm. The nanoparticles were obtained within 2 min of addition of the extract to the solution of HAuCl 4·3H 2O and the colloid is found to be stable for more than 5 months. Smaller and more uniformly distributed particles could be obtained with dried leaf extract. The nanoparticles obtained are characterized by UV-vis, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Crystalline nature of the nanoparticles in the fcc structure is confirmed by the peaks in the XRD pattern corresponding to (1 1 1), (2 0 0), (2 2 0), (3 1 1) and (2 2 2) planes, bright circular spots in the selected area electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. The possible biomolecules responsible for efficient stabilization are suggested by studying the FTIR spectrum of the sample. This environmentally benign method provides much faster synthesis and colloidal stability comparable to those of chemical reduction.

  5. Rapid Synthesis and Characterization of Nano sodalite Synthesized using Rice Husk Ash

    International Nuclear Information System (INIS)

    Siti Haslina Ahmad Rusmili; Zainab Ramli

    2012-01-01

    Rice husk ash (RHA) which contains more than 90 percent silica is proven to be an active silica source in zeolite synthesis. In this study, nano sodalite has been successfully synthesized hydrothermally at 60 degree Celsius using RHA as silica source in alkaline medium at various crystallization times. Commercial fumed silica was used as comparison for the silica source. Analysis by XRD has shown that pure nano sodalite was formed in 3 hours and stable up to more than 24 hours when using RHA as silica source. On the other hand, fumed silica produced pure nano sodalite only at 4 hours while a mixture of zeolites was observed outside this time range. FESEM shows a worm-like morphology of nano sodalite in the size range of 50-100 nm while FTIR shows the formation of aluminosilicates bonds. Analysis on the dissolved silica in the gel reaction mixture demonstrates the decreasing mass of silica after prolong time of crystallization which indicates the consumption of the dissolved silica in crystal growth of nano sodalite. This study shows that RHA is a better silica source in stabilizing the nano sodalite phase in oxide gel reaction mixture as compared to fumed silica. (author)

  6. Hydrothermal synthesis and enhanced photocatalytic activity of mixed-phase TiO2 powders with controllable anatase/rutile ratio

    Science.gov (United States)

    Wang, Qi; Qiao, Zhi; Jiang, Peng; Kuang, Jianlei; Liu, Wenxiu; Cao, Wenbin

    2018-03-01

    In this study, mixed-phase TiO2 powders were novelly synthesized via a facile and mild hydrothermal method without any post-heat treatment. TiOSO4 and peroxide titanic acid (PTA) were used as inorganic titanium sources, while no special solvent or additive were introduced. The XRD and TEM results showed the mixed-phase TiO2 powders were composed of anatase and rutile phases, and the PTA sol played an important role on forming the rutile nucleus. The proportion of rutile in the mixed-phase TiO2 could be easily controlled in the range of 0%-70.5% by changing the amount of PTA sol used in the synthesis process. The UV-Visible absorption spectra indicated the prepared mixed-phase TiO2 showed enhanced visible light absorption with the increase of rutile ratio. The photodegradation experiments revealed the mixed-phase TiO2 exhibited the best photocatalytic activity at the rutile ratio of 41.5%, while a higher or lower rutile ratio both resulted in the decrease of photocatalytic activity.

  7. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava ( Psidium guajava) leaf extract

    Science.gov (United States)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-05-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava ( Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  8. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Raghunandan, Deshpande [H.K.E.S' s College of Pharmacy (India); Mahesh, Bedre D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Basavaraja, S. [Jawaharlal Nehru Centre for Advanced Scientific Research, Veeco-India Nanotechnology Laboratory (India); Balaji, S. D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Manjunath, S. Y. [Sri Krupa, Institute of Pharmaceutical Science (India); Venkataraman, A., E-mail: raman_chem@rediffmail.com [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India)

    2011-05-15

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 {+-} 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  9. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    International Nuclear Information System (INIS)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-01-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV–vis (UV–vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  10. In-situ hydrothermal synthesis of three-dimensional MnO{sub 2}-CNT nanocomposites and their electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Fei; Santhanagopalan, Sunand [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States); Wang, Ying [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Meng, Dennis Desheng, E-mail: dmeng@mtu.ed [Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States)

    2010-06-11

    Three-dimensional (3-D) MnO{sub 2}-carbon nanotube (CNT) nanocomposites were prepared by a simple one-pot hydrothermal method. An electrode was then prepared with these nanocomposites. For comparative investigation, MnO{sub 2} microspheres were also hydrothermally prepared without adding CNTs. The as-synthesized MnO{sub 2} microspheres were then mechanically mixed with CNTs to prepare a subsequent electrode. The samples were characterized by electron microscopy, X-ray diffraction, and electrochemical methods. It has been revealed that a 3-D conductive network of CNTs was formed with microspheres of MnO{sub 2} nanorods interwoven with and connected by CNTs. As a result, the hydrothermally mixed MnO{sub 2}-CNT electrode showed a higher specific capacitance than the mechanically mixed electrode. It has therefore been concluded that the hydrothermal mixing method yields a more homogeneous product that is better suited to take full advantages of both the high capacitance of MnO{sub 2} and the high electrical conductivity of CNTs. The 3-D MnO{sub 2}-CNT nanocomposites reported herein have provided a promising electrode material for supercapacitors and other electrochemical energy storage/conversion devices.

  11. Rapid, labile, and protein synthesis-independent short-term memory in conditioned taste aversion.

    Science.gov (United States)

    Houpt, T A; Berlin, R

    1999-01-01

    Short-term memory is a rapid, labile, and protein-synthesis-independent phase of memory. The existence of short-term memory in conditioned taste aversion (CTA) learning has not been demonstrated formally. To determine the earliest time at which a CTA is expressed, we measured intraoral intake of sucrose at 15 min, 1 hr, 6 hr, or 48 h after contingent pairing of an intraoral infusion of 5% sucrose (6.6 ml over 6 min) and toxic lithium chloride injection (76 mg/kg). Rats were implanted with intraoral catheters to allow presentation of taste solutions at arbitrary times. Intraoral intake was measured under conditions of long-delay, single-trial learning typical of CTA. Rats decreased intraoral intake of sucrose at 15 min after contingent pairing of sucrose and LiCl, but not after noncontingent LiCl or sucrose. Thus CTA learning can be expressed rapidly. To determine if short-term CTA memory is labile and decays in the absence of long-term memory, we measured intraoral intake of sucrose after pairing sucrose with low doses of LiCl. Rats received an intraoral infusion of 5% sucrose (6 ml/6 min); 30 min later LiCl was injected at three different doses (19, 38, or 76 mg/kg). A second intraoral infusion of sucrose was administered 15 min, 1 hr, 3 hr, 4.5 hr, 6 hr, or 48 hr later. The formation of long-term CTA memory was dependent on the dose of LiCl paired with sucrose during acquisition. Low doses of LiCl induced a CTA that decayed within 6 hr after pairing. Central administration of the protein synthesis inhibitor cycloheximide prior to LiCl injection blocked long-term CTA expression at 6 and 48 hr, but not short-term CTA expression at 1 hr. Thus, short-term memory for CTA learning exists that is acquired rapidly and independent of protein synthesis, but labile in the absence of long-term memory formation.

  12. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  13. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    International Nuclear Information System (INIS)

    Wang Ling; Hao Yanjing; Zhao Yan; Lai Qiongyu; Xu Xiaoyun

    2010-01-01

    NiO microspheres were successfully obtained by calcining the Ni(OH) 2 precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  14. Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Idris, Nurul Hayati; Rahman, Md Mokhlesur; Chou, Shu-Lei; Wang Jiazhao; Wexler, David; Liu, Hua-Kun

    2011-01-01

    Highlights: ► NiS has been synthesized by a rapid, one-pot, hydrothermal microwave autoclave method. ► The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in terms of high reversible capacity (320 mAh g −1 at 0.1C up to 100 cycles). ► At high rates, the sample operated at a good fraction of its capacity. - Abstract: To reduce the reaction time, electrical energy consumption, and cost, binary α-NiS–β-NiS has been synthesized by a rapid, one-pot, hydrothermal autoclave microwave method within 15 min at temperatures of 160–180 °C. The microstructure and morphology of the α-NiS–β-NiS products were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). At 140 °C, pure hexagonal NiAs-type α-NiS phase was identified from the XRD patterns. With increasing reaction temperature (160–180 °C), the XRD evidence indicates that an increasing fraction of rhombohedral millerite-like β-NiS is formed as a secondary phase. The α-NiS–β-NiS sample synthesized at 160 °C yielded good electrochemical performance in term of high reversible capacity (320 mAh g −1 at 0.1C up to 100 cycles). Even at high rates, the sample operated at a good fraction of its capacity. The likely contributing factor to the superior electrochemical performance of the α-NiS–β-NiS sample could be related to the improved morphology. TEM imaging confirmed that needle-like protrusions connect the clusters of α-NiS particles, and the individual protrusions indicated a very high surface area including folded sheet morphology, which helps to dissipate the surface accumulation of Li + ions and facilitate rapid mobility. These factors help to enhance the amount of lithium intercalated within the material.

  15. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method

    International Nuclear Information System (INIS)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Sun, Rongjin; Shapter, Joseph G.; Yin, Ting; Cui, Daxiang

    2015-01-01

    Rechargeable lithium ion batteries (LIBs) are currently the dominant power source for all sorts of electronic devices due to their low cost and high energy density. The cycling stability of LIBs is significantly compromised due to the broad satellite peak for many anode materials. Herein, we develop a facile hydrothermal process for preparing rare-earth (Er, Tm) ions doped three-dimensional (3D) transition metal oxides/carbon hybrid nanocomposites, namely CNTs-GO-Fe 3 O 4 , CNTs-GO-Fe 3 O 4 -Er and CNTs-GO-Fe 3 O 4 -Tm. The GO sheets and CNTs are interlinked by ultrafine Fe 3 O 4 nanoparticles forming three-dimensional (3D) architectures. When evaluated as anode materials for LIBs, the CNTs-GO-Fe 3 O 4 hybrid composites have a bigger broad satellite peak. As for the CNTs-GO-Fe 3 O 4 -Er and CNTs-GO-Fe 3 O 4 -Tm hybrid composites, the broad satellite peak can be completely eliminated. When the current density changes from 5 C back to 0.1 C, the capacity of CNTs-GO-Fe 3 O 4 -Tm hybrid composites can recover to 1023.9 mAhg −1 , indicating an acceptable rate capability. EIS tests show that the charge transfer resistance does not change significantly after 500 cycles, demonstrating that the cycling stability of CNTs-GO-Fe 3 O 4 -Tm hybrid composites are superior to CNTs-GO-Fe 3 O 4 and CNTs-GO-Fe 3 O 4 -Er hybrid structures. - Graphical abstract: One-pot hydrothermal method for synthesis of rare-earth ions doped CNTs-GO-Fe 3 O 4 hybrid structures as anode materials of LIBs have been reported. - Highlights: • We report the synthesis of rare-earth ions doped CNTs-GO-Fe 3 O 4 hybrid structures. • The hybrid structures can improve the cycling stability of lithium storage. • As for anode materials, the broad satellite peak can be completely eliminated. • When the rate return back to 0.1 C, the capacity can recover to 1023.9 mAhg −1 . • After 500 cycles, the hybrid structures still exhibited excellent cycling stability

  16. A study of oleic acid-based hydrothermal preparation of CoFe.sub.2./sub.O.sub.4./sub. nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Repko, A.; Nižňanský, D.; Poltierová Vejpravová, Jana

    2011-01-01

    Roč. 13, č. 10 (2011), s. 5021-5031 ISSN 1388-0764 Institutional research plan: CEZ:AV0Z10100520 Keywords : cobalt ferrite * hydrothermal synthesis * magnetic particles * sperparamagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.287, year: 2011

  17. Hydrothermal synthesis of core–shell TiO_2 to enhance the photocatalytic hydrogen evolution

    International Nuclear Information System (INIS)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-01-01

    Graphical abstract: Core–shell TiO_2 with interior cavity was synthesized by a hydrothermal approach to enhance the photocatalytic performance. - Highlights: • Core–shell TiO_2 with interior cavity can be synthesized by hydrothermal approach. • Multiple reflection of incident light in cavity can increase the absorption. • Rutile can optimize the bandgap and delay the charge recombination. - Abstract: A hydrothermal approach was designed to synthesize core–shell TiO_2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core–shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV–vis absorption proves core–shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core–shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  18. Hydrothermal synthesis of Fe-doped TiO2 nanostructure photocatalyst

    International Nuclear Information System (INIS)

    Nguyen, Van Nghia; Nguyen, Ngoc Khoa Truong; Nguyen, Phi Hung

    2011-01-01

    Fe-doped TiO 2 catalyst was prepared by the hydrothermal method. The resulting nanopowders were characterized by x-ray diffraction, transmission electron microscopy and Raman and UV-visible spectroscopies. The photocatalytic activity of the Fe-doped TiO 2 was tested by decomposition of methylene orange with a concentration of 10 mg l −1 in aqueous solution. The obtained results showed that methylene orange was significantly degraded after irradiation for 90 min under a halogen lamp and sunlight. The doping effect on the photocatalytic activity of the iron-doped catalyst samples are discussed

  19. Influence of bases on hydrothermal synthesis of titanate nanostructures

    Science.gov (United States)

    Sikhwivhilu, Lucky M.; Sinha Ray, Suprakas; Coville, Neil J.

    2009-03-01

    A hydrothermal treatment of titanium dioxide (TiO2) with various bases (i.e., LiOH, NaOH, KOH, and NH4OH) was used to prepare materials with unique morphologies, relatively small crystallite sizes, and large specific surface areas. The experimental results show that the formation of TiO2 is largely dependent on the type, strength and concentration of a base. The effect of the nature of the base used and the concentration of the base on the formation of nanostructures were investigated using X-ray diffraction, Raman spectroscopy, transmission and scanning electron microscopy, as well as surface area measurements. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) were both used to transform the morphology of starting TiO2 material.

  20. Hydrothermal synthesis and upconversion luminescent properties of YVO4:Yb3+,Er3+ nanoparticles

    International Nuclear Information System (INIS)

    Liang, Yanjie; Chui, Pengfei; Sun, Xiaoning; Zhao, Yan; Cheng, Fuming; Sun, Kangning

    2013-01-01

    Graphical abstract: YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The PL intensity of the sample increases with the increase of annealing temperature and excitation power. Under the excitation of a 980 nm diode laser, the samples show bright green luminescence. Highlights: ► YVO 4 :Yb 3+ ,Er 3+ nanoparticles were prepared by a hydrothermal approach. ► Bright green luminescence is observed under the excitation of a 980 nm laser diode. ► The PL intensity increases with the increase of annealing temperature. ► Energy transfer properties between Yb 3+ ion and Er 3+ ion were analyzed. -- Abstract: In this paper, YVO 4 :Yb 3+ ,Er 3+ nanoparticles have been successfully prepared via a facile hydrothermal technique in the presence of citric acid as a complexing agent followed by a subsequent heat treatment process. The nanostructures, morphologies and upconversion luminescent properties of the as-prepared YVO 4 :Yb 3+ ,Er 3+ upconverting nanoparticles were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescent (PL) spectra. XRD results indicate that all the diffraction peaks of samples can be well indexed to the tetragonal phase of YVO 4 . TEM images demonstrate that the samples synthesized hydrothermally consist of granular-like nanoparticles ranging in size from about 30 to 50 nm. After being calcined at 500–800 °C for 2 h, the grain sizes of nanoparticles increase slightly. Additionally, the as-prepared nanoparticles show bright green luminescence corresponding to the 2 H 11/2 → 4 I 15/2 and 4 S 3/2 → 4 I 15/2 transitions of Er 3+ ions under the excitation of a 980 nm diode laser, which might find potential applications in fields such as phosphor powders, infrared detection and display devices

  1. Controllable synthesis of (NH4)Fe2(PO4)2(OH)·2H2O using two-step route: Ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment.

    Science.gov (United States)

    Dong, Bin; Li, Guang; Yang, Xiaogang; Chen, Luming; Chen, George Z

    2018-04-01

    (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O samples with different morphology are successfully synthesized via two-step synthesis route - ultrasonic-intensified impinging stream pre-treatment followed by hydrothermal treatment (UIHT) method. The effects of the adoption of ultrasonic-intensified impinging stream pre-treatment, reagent concentration (C), pH value of solution and hydrothermal reaction time (T) on the physical and chemical properties of the synthesised (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O composites and FePO 4 particles were systematically investigated. Nano-seeds were firstly synthesized using the ultrasonic-intensified T-mixer and these nano-seeds were then transferred into a hydrothermal reactor, heated at 170 °C for 4 h. The obtained samples were characterized by utilising XRD, BET, TG-DTA, SEM, TEM, Mastersizer 3000 and FTIR, respectively. The experimental results have indicated that the particle size and morphology of the obtained samples are remarkably affected by the use of ultrasonic-intensified impinging stream pre-treatment, hydrothermal reaction time, reagent concentration, and pH value of solution. When such (NH 4 )Fe 2 (PO 4 ) 2 (OH)·2H 2 O precursor samples were transformed to FePO 4 products after sintering at 650 °C for 10 h, the SEM images have clearly shown that both the precursor and the final product still retain their monodispersed spherical microstructures with similar particle size of about 3 μm when the samples are synthesised at the optimised condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Facile one-step hydrothermal synthesis and luminescence properties of Eu{sup 3+}-doped NaGd(WO{sub 4}){sub 2} nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zehan; Cai, Peiqing; Chen, Cuili; Pu, Xipeng; Kim, Sun Il, E-mail: sikim@pknu.ac.kr; Jin Seo, Hyo, E-mail: hjseo@pknu.ac.kr

    2017-06-01

    Eu{sup 3+}-doped NaGd(WO{sub 4}){sub 2} nanophosphors were synthesized via a facile one-step hydrothermal method without any surfactants or a further heat treatment. X-ray powder diffraction (XRD), scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), the photoluminescence (PL) excitation and emission spectra, and decay curves were used to characterize NaGd(WO{sub 4}){sub 2}:Eu{sup 3+} phosphors. The results show that the Eu{sup 3+}-concentration has little influence on the structure and morphology of the as-synthesized samples. However, pH value plays a vital role on the structure and morphology of NaGd(WO{sub 4}){sub 2}. The well-crystallized sheet-like NaGd(WO{sub 4}){sub 2} phosphors can be obtained only at pH = 5–7. On the basis of the time-dependent synthesis, a possible growth mechanism of sheet-like architectures is proposed. The luminescence properties of NaGd{sub 1-x}Eu{sub x}(WO{sub 4}){sub 2} (0 ≤ x ≤ 1) are investigated. It is found that the charge transfer band of Eu{sup 3+} shifts to lower energy and broadens with increasing the Eu{sup 3+}-concentration. - Highlights: • NaGd(WO{sub 4}){sub 2}:Eu{sup 3+} nanosheets were synthesized by facile one-step hydrothermal method. • Luminescence properties of NaGd(WO{sub 4}){sub 2}:Eu{sup 3+} phosphor were firstly reported. • The CT band of Eu{sup 3+} depends strongly on Eu{sup 3+}-concentrations.

  3. Coprecipitation-assisted hydrothermal synthesis of PLZT hollow nanospheres

    International Nuclear Information System (INIS)

    Zhu, Renqiang; Zhu, Kongjun; Qiu, Jinhao; Bai, Lin; Ji, Hongli

    2010-01-01

    Lanthanum-modified lead zirconate titanate Pb 1-x La x (Zr 1-y Ti y )O 3 (PLZT) hollow nanospheres have been successfully prepared via a template-free hydrothermal method using the well-mixed coprecipitated precursors and the KOH mineralizer. The structure, composition, and morphology of the PLZT hollow nanospheres were characterized by XRD (X-ray diffraction), ICP (inductive coupled plasma emission spectrometer), FTIR (Fourier transform infrared spectra), TG/DTA (thermogravimetric analysis and differential thermal analysis), TEM (transmission electron microscopy) and SEAD (selected area diffraction). The results show that the composition and the morphology control of the PLZT products are determined by the KOH concentration. The PLZT hollow nanospheres with uniform size of about 4 nm were synthesized in the presence of 5 M KOH. The crystalline nanoparticles can be prepared at dilute KOH, in contrast to the amorphous powders prepared at concentrated KOH. Formation mechanisms of the PLZT hollow nanospheres are also discussed.

  4. Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.F., E-mail: guilmina@hotmail.com [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Gasparotto, G. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Paris, E.C. [Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Instrumentacao, Rua XV de novembro, 1452, Centro, 13.569-970 Sao Carlos, SP (Brazil); Zaghete, M.A.; Longo, E.; Varela, J.A. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil)

    2012-01-15

    Lead Titanate Zirconate (PZT) perovskite powders were synthesized by microwave hydrothermal method (M-H) at 180 {sup o}C for different time periods (2, 4, 8 and 12 h) with the presence of aqueous polyvinyl alcohol (PVA) solution 0.36 g L{sup -1}. The X-Ray diffraction (XRD), SE-FEG as well as the measurements of photoluminescence (PL) emission were used for monitoring the formation of a perovskite phase with random polycrystalline distortion in the structure. Emission spectra with fixed excitation wavelength of 350 nm showed higher value for the powder obtained after undergoing 8 h of treatment. A theoretical model derived from previous calculations allows us to discuss the origin of photoluminescence emission in the powders, which can be further related to the local disorder in the network of both ZrO{sub 6} and TiO{sub 6} octahedral, and dodecahedral PbO{sub 12}. The new morphology initially observed from the PZT perovskite crystal growth bearing the shape of fine plates is found to be directly related to photoluminescence emission with energy lower than that present in the PZT with cube-like morphology that emits in 560 nm. - Highlights: > This work details the efficiency of microwave hydrothermal synthesis in obtaining PZT powders. > PVA is used as a crystallization agent of PZT particles. > PZT particles presented photoluminescent (PL) behavior. > There aren't previous reports of photoluminescent PZT obtained by microwave hydrothermal synthesis. > Photoluminescence is one more interesting property for technological applications this material.

  5. Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles

    International Nuclear Information System (INIS)

    Tian, Li; Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong; Lin, Jun

    2013-01-01

    Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF 4 to hexagonal NaYF 4 and to hexagonal Y(OH) 2.02 F 0.98 owing to ion exchange. - Highlights: • Novel Y(OH) 2.02 F 0.98 nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH) 2.02 F 0.98 . The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation

  6. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    Science.gov (United States)

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  7. Microwave assisted hydrothermal synthesis of Ag/AgCl/WO3 photocatalyst and its photocatalytic activity under simulated solar light

    International Nuclear Information System (INIS)

    Adhikari, Rajesh; Gyawali, Gobinda; Sekino, Tohru; Wohn Lee, Soo

    2013-01-01

    Simulated solar light responsive Ag/AgCl/WO 3 composite photocatalyst was synthesized by microwave assisted hydrothermal process. The synthesized powders were characterized by X-Ray Diffraction (XRD) spectroscopy, X-Ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Diffuse Reflectance Spectroscopy (UV–Vis DRS), and BET surface area analyzer to investigate the crystal structure, morphology, chemical composition, optical properties and surface area of the composite photocatalyst. This photocatalyst exhibited higher photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation. Dye degradation efficiency of composite photocatalyst was found to be increased significantly as compared to that of the commercial WO 3 nanopowder. Increase in photocatalytic activity of the photocatalyst was explained on the basis of surface plasmon resonance (SPR) effect caused by the silver nanoparticles present in the composite photocatalyst. Highlights: ► Successful synthesis of Ag/AgCl/WO 3 nanocomposite. ► Photocatalytic experiment was performed under simulated solar light. ► Nanocomposite photocatalyst was very active as compared to WO 3 commercial powder. ► SPR effect due to Ag nanoparticles enhanced the photocatalytic activity.

  8. A microporous potassium vanadyl phosphate analogue of mahnertite. Hydrothermal synthesis and crystal structure

    International Nuclear Information System (INIS)

    Yakubovich, Olga V.; Russian Academy of Science, Moscow; Steele, Ian M.; Kiriukhina, Galina V.; Dimitrova, Olga V.

    2015-01-01

    The novel phase K 2.5 Cu 5 Cl(PO 4 ) 4 (OH) 0.5 (VO 2 ).H 2 O was prepared by hydrothermal synthesis at 553 K. Its crystal structure was determined using low-temperature (100 K) single-crystal synchrotron diffraction data and refined against F 2 to R = 0.035. The compound crystallizes in the tetragonal space group I4/mmm, with unit-cell parameters a =9.8120(8), c = 19.954(1) Aa, V = 1921.1(2) Aa 3 , and Z = 4. Both symmetrically independent Cu 2+ sites show elongated square-pyramidal coordination. The V 5+ ions reside in strongly distorted five-vertex VO 5 polyhedra with 50% occupancy. The structure is based on a 3D anionic framework built from Cu- and V-centered five-vertex polyhedra and PO 4 tetrahedra. Channels in the [100] and [010] directions accommodate large K atoms and H 2 O molecules. The compound is a new structural representative of the topology shown by the lavendulan group of copper arsenate and phosphate minerals. Their tetragonal or pseudotetragonal crystal structures are characterized by two types of 2D slabs alternating along one axis of their unit cells. One slab, described by the formula [Cu 4 X(TO 4 ) 4 ] 8 (where X = Cl, O and T = As, P), is common to all phases, whereas the slab content of the other set differs among the group members. We suggest interpreting this family of compounds in terms of the modular concept and also consider the synthetic phase Ba(VO)Cu 4 (PO 4 ) 4 as a simplest member of this polysomatic series.

  9. Synthesis of high saturation magnetic iron oxide nanomaterials via low temperature hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Bhavani, P.; Rajababu, C.H. [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India); Arif, M.D. [Environmental Magnetism Laboratory, Indian Institute of Geomagnetism (IIG), Navi Mumbai 410218, Mumbai (India); Reddy, I. Venkata Subba [Department of Physics, Gitam University, Hyderabad Campus, Rudraram, Medak 502329 (India); Reddy, N. Ramamanohar, E-mail: manoharphd@gmail.com [Department of Materials Science & Nanotechnology, Yogivemana University, Vemanapuram 516003, Kadapa (India)

    2017-03-15

    Iron oxide nanoparticles (IONPs) were synthesized through a simple low temperature hydrothermal approach to obtain with high saturation magnetization properties. Two series of iron precursors (sulfates and chlorides) were used in synthesis process by varying the reaction temperature at a constant pH. The X-ray diffraction pattern indicates the inverse spinel structure of the synthesized IONPs. The Field emission scanning electron microscopy and high resolution transmission electron microscopy studies revealed that the particles prepared using iron sulfate were consisting a mixer of spherical (16–40 nm) and rod (diameter ~20–25 nm, length <100 nm) morphologies that synthesized at 130 °C, while the IONPs synthesized by iron chlorides are found to be well distributed spherical shapes with size range 5–20 nm. On other hand, the IONPs synthesized at reaction temperature of 190 °C has spherical (16–46 nm) morphology in both series. The band gap values of IONPs were calculated from the obtained optical absorption spectra of the samples. The IONPs synthesized using iron sulfate at temperature of 130 °C exhibited high saturation magnetization (M{sub S}) of 103.017 emu/g and low remanant magnetization (M{sub r}) of 0.22 emu/g with coercivity (H{sub c}) of 70.9 Oe{sub ,} which may be attributed to the smaller magnetic domains (d{sub m}) and dead magnetic layer thickness (t). - Highlights: • Comparison of iron oxide materials prepared with Fe{sup +2}/Fe{sup +3} sulfates and chlorides at different temperatures. • We prepared super-paramagnetic and soft ferromagnetic magnetite nanoparticles. • We report higher saturation magnetization with lower coercivity.

  10. Niobium (V) doped bioceramics: evaluation of the hydrothermal route modified with citric acid and urea to obtain modified hydroxyapatite

    International Nuclear Information System (INIS)

    Simomukay, E.; Souza, E.C.F. de; Antunes, S.R.M.; Borges, C.P.F.; Michel, M.D.; Antunes, A.C.

    2016-01-01

    Synthetic hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ; HA) has become a widely used ceramic material for bone reconstruction due to its biocompatibility with the bone tissue. This biocompatibility as well as other physical and chemical properties of the hydroxyapatite can be modified by the addition of different ions to its structure. Niobium (V) ion has not been commonly used in the hydroxyapatite synthesis. The objective of this study was to evaluate the use of hydrothermal route in the niobium (V) doped hydroxyapatite synthesis. The route used the niobium ammonium oxalate (NH 4 H 2 [NbO(C 2 O 4 ) 3 ].3H 2 O) complex as a niobium (V) ion precursor. The addition of citric acid and urea in the hydrothermal route is used for the control of synthesis pH and precipitation rate. Pure sample and sample added with 5.3 ppm of niobium (V) ion were prepared. The coexistence of other phases besides the hydroxyapatite was not observed in any of the samples through the use of X-ray diffraction and infrared spectroscopy (FTIR) techniques. The FTIR technique revealed the presence of hydroxyapatite characteristic functional groups. The scanning electron microscopy analysis showed the formation of agglomerates composed of round particles, confirmed by the transmission electron microscopy technique. The X-ray fluorescence spectroscopic analysis detected the presence of niobium in the doped sample. The results showed that niobium (V) doped hydroxyapatite can be synthesized by means of hydrothermal route, which may be considered as huge potential for future application in bioceramics. (author)

  11. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  12. Rapid synthesis of graft copolymers from natural cellulose fibers.

    Science.gov (United States)

    Thakur, Vijay Kumar; Thakur, Manju Kumari; Gupta, Raju Kumar

    2013-10-15

    Cellulose is the most abundant natural polysaccharide polymer, which is used as such or its derivatives in a number of advanced applications, such as in paper, packaging, biosorption, and biomedical. In present communication, in an effort to develop a proficient way to rapidly synthesize poly(methyl acrylate)-graft-cellulose (PMA-g-cellulose) copolymers, rapid graft copolymerization synthesis was carried out under microwave conditions using ferrous ammonium sulfate-potassium per sulfate (FAS-KPS) as redox initiator. Different reaction parameters such as microwave radiation power, ratio of monomer, solvent and initiator concentrations were optimized to get the highest percentage of grafting. Grafting percentage was found to increase with increase in microwave power up to 70%, and maximum 36.73% grafting was obtained after optimization of all parameters. Fourier transforms infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA/DTA/DTG) analysis were used to confirm the graft copolymerization of poly(methyl acrylate) (PMA) onto the mercerized cellulose. The grafted cellulosic polymers were subsequently subjected to the evaluation of different physico-chemical properties in order to access their application in everyday life, in a direction toward green environment. The grafted copolymers demonstrated increased chemical resistance, and higher thermal stability. Published by Elsevier Ltd.

  13. EDTA-assisted hydrothermal synthesis, characterization and photoluminescent properties of Mn{sup 2+}-doped ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Viswanath, R. [Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451 (India); Bhojya Naik, H.S., E-mail: hsb_naik@rediffmail.com [Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451 (India); Yashavanth Kumar, G.S.; Prashanth Kumar, P.N.; Arun Kumar, G. [Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577 451 (India); Praveen, R. [Department of Technical Education, Automobile Technology Branch HMS Polytechnic (Government Aided), Tumkur-572102 (India)

    2014-09-15

    linked with suitable biomolecules. - Highlights: • Hydrothermal synthesis of EDTA-assisted ZnS:Mn{sup 2+} nanoparticles with 3–4 nm. • Well-defined quantum confinement effect Eg (NPs) = 4.59 eV > Eg (bulk) = 3.64 eV. • Investigation of fixed blue region with the red shift in yellow–orange region. • Origin of the additional luminescence observed.

  14. Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Amghouz, Z., E-mail: amghouz.uo@uniovi.es [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Garcia, J.R.; Garcia-Granda, S. [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Clearfield, A. [Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Rodriguez Fernandez, J.; Pedro, I. de [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Report of the complete series of lanthanide 1,4-phenylbis(phosphonate). Black-Right-Pointing-Pointer Synthesis under conventional hydrothermal synthesis or microwave-assisted hydrothermal synthesis. Black-Right-Pointing-Pointer Cation size is the key factor for the structural and particles size variations. Black-Right-Pointing-Pointer Thermal behaviour is characterized by unusual very high thermal stability. - Abstract: Series of novel organic-inorganic hybrids materials based on trivalent lanthanides (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and 1,4-phenylbis(phosphonate) obtained under hydrothermal conditions either by oven heat or microwave irradiation. The anhydrous compounds containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho, are isostructural. However, the compounds based on Y, Er, Tm, Yb, and Lu are hydrated and their structures have not yet been solved. The series of compounds are characterized by PXRD, TEM, SEM-EDX and thermal analyses (TG-MS and DSC). TEM study show a variable particles size with a minimum mean-particle size of ca. 30 nm. These compounds exhibit unusual very high thermal stability. The size of particles and the thermal stability are depending on lanthanide(III) cation features. All the investigated materials show paramagnetic behaviour. The magnetic susceptibility data follow a Curie-Weiss laws with paramagnetic effective moments in good agreement with those expected for Ln{sup 3+} free ions.

  15. Sodium-dodecyl-sulphate-assisted synthesis of Ni nanoparticles ...

    Indian Academy of Sciences (India)

    2017-11-20

    Nov 20, 2017 ... the SDS concentration, while at high concentration (mole ratio of SDS:Ni(acac)2 = 4:1), the small ... Over the last decades, synthesis of magnetic metallic ... pared nickel nanoparticles (3.7 nm) via hydrothermal method.

  16. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Stojanović, Zoran S.; Ignjatović, Nenad [Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade (Serbia); Wu, Victoria [Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Žunič, Vojka [Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Veselinović, Ljiljana [Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade (Serbia); Škapin, Srečo [Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Miljković, Miroslav [Laboratory for Electron Microscopy, Faculty of Medicine University of Niš, Dr. Zoran Đinđić Boulevard 81, 18 000 Niš (Serbia); Uskoković, Vuk [Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908 (United States); and others

    2016-11-01

    Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm{sup 2}. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P6{sub 3/m} space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the

  17. Hydrothermal synthesis of CdS nanoparticle/functionalized graphene sheet nanocomposites for visible-light photocatalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Yan, Shancheng; Wang, Bojun; Shi, Yi; Yang, Fan; Hu, Dong; Xu, Xin; Wu, Jiansheng

    2013-01-01

    CdS nanoparticle/functionalized graphene sheet (CdS NP/FGS) nanocomposites were successfully prepared in a one-step hydrothermal synthesis route. The samples were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and Raman spectroscopy. In addition, the photocatalytic performance of CdS NP/FGS composites and pure CdS in the degradation of methyl orange (MO) was examined using visible light. Results show that the addition of FGS can enhance the photocatalytic performance of CdS NP/FGS composites with a maximum degradation efficiency of 98.1% under visible light irradiation as compared with pure CdS (60.1%). This finding can be attributed to three reasons. First is the strong redox ability of CdS in the nanocomposite with smaller crystal size. Second is the increase in specific surface area for more adsorbed MO. Third is the reduction in electron–hole pair recombination with the introduction of FGS. Based on their high photocatalytic activity, the CdS NP/FGS composites can be expected to be a practical visible light photocatalyst.

  18. Hydrothermal synthesis of CdS nanoparticle/functionalized graphene sheet nanocomposites for visible-light photocatalytic degradation of methyl orange

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shancheng, E-mail: yansc@njupt.edu.cn [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wang, Bojun [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Shi, Yi [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yang, Fan; Hu, Dong; Xu, Xin; Wu, Jiansheng [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China)

    2013-11-15

    CdS nanoparticle/functionalized graphene sheet (CdS NP/FGS) nanocomposites were successfully prepared in a one-step hydrothermal synthesis route. The samples were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and Raman spectroscopy. In addition, the photocatalytic performance of CdS NP/FGS composites and pure CdS in the degradation of methyl orange (MO) was examined using visible light. Results show that the addition of FGS can enhance the photocatalytic performance of CdS NP/FGS composites with a maximum degradation efficiency of 98.1% under visible light irradiation as compared with pure CdS (60.1%). This finding can be attributed to three reasons. First is the strong redox ability of CdS in the nanocomposite with smaller crystal size. Second is the increase in specific surface area for more adsorbed MO. Third is the reduction in electron–hole pair recombination with the introduction of FGS. Based on their high photocatalytic activity, the CdS NP/FGS composites can be expected to be a practical visible light photocatalyst.

  19. Hydrothermal synthesis of silico-manganese nanohybrid for Cu(II) adsorption from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qiufeng, E-mail: zhuqiufeng@th.btbu.edu.cn; Wang, Liting; An, Zehuan; Ye, Hong; Feng, Xudong

    2016-05-15

    Highlights: • A novel silico-manganese nanohybrid adsorbent (SMNA) was synthesized by a hydrothermal method. • The adsorption capacities of the SMNA for Cu(II) are lower pH dependency. • As-adsorbents are very efficient at low metal concentration and substantial amounts of Cu(II) can be removed from aqueous solution. - Abstract: A novel silico-manganese nanohybrid adsorbent (SMNA) was synthesized by a facile hydrothermal method, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR) and zeta potential measurement. The adsorption of Cu(II) ions from aqueous solution on the SMNA was investigated with variations in contact time, pH and initial Cu(II) concentration. The results showed that hydrothermal method would generate nanowire/nanorod incomplete crystallite (δ-MnO{sub 2}) adsorbent. The adsorption of Cu(II) onto SMNA increased sharply within 25 min and reached equilibrium gradually. The maximum adsorption capacities of SMNA for Cu(II) were ∼40–88 mg g{sup −1}, which was lower than δ-MnO{sub 2} (92.42 mg g{sup −1}) but had a lower pH dependency. As compared with δ-MnO{sub 2}, higher adsorption capacities of SMNA (7.5–15 wt% of silica doping amount) for Cu(II) could be observed when pH of the aqueous solution was low (<4). The pseudo-second-order model was the best choice to describe the adsorption behavior of Cu(II) onto SMNA, suggesting that the removal of Cu(II) by the as-prepared adsorbents was dominated by migration of Cu(II). The possibility of Cu(II) recovery was also investigated and it revealed that SMNA was a promising recyclable adsorbent for removal of heavy metal ions in water and wastewater treatment.

  20. Hydrothermal synthesis of Ni{sub 2}P nanoparticle and its hydrodesulfurization of dibenzothiophene

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qi; Han, Yang; Huang, Xiang, E-mail: materials@ouc.edu.cn; Dai, Jinhui; Tian, Jintao; Zhu, Zhibin; Yue, Li [Ocean University of China, Institute of Materials Science and Engineering (China)

    2017-04-15

    Nanosized nickel phosphide (Ni{sub 2}P) has been synthesized via hydrothermal reaction with environmental-friendly red phosphorus and nickel chloride. The reaction mechanism has been studied by measurement techniques of IC, XRD ,TEM, EDS, and XPS. The results showed that the particle sizes of as-prepared Ni{sub 2}P are in nanoscale ranging from 10 to 30 nm. In hydrothermal reaction, red phosphorus reacts with water to its oxyacids, especially its hypophosphorous acid (or hypophosphite) which can reduce nickel chloride to nickel, and then metallic nickel will penetrate into the rest of red phosphorus to generate nano-Ni{sub 2}P. Furthermore, the catalytic performance of as-synthesized Ni{sub 2}P for the hydrodesulfurization of dibenzothiophene has been tested. It has been shown that the HDS reaction process over Ni{sub 2}P catalyst agrees well with the pseudo-first order kinetic equation, and the HDS conversion can reach up to 43.83% in 5 h with a stable increasing catalytic activity during the whole examination process.

  1. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    Science.gov (United States)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  2. Facile Hydrothermal Synthesis of Tellurium Nanostructures for Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Panahi-Kalamuei

    2014-10-01

    Full Text Available Tellurium (Te nanostructures have been successfully synthesized via a simple hydrothermal methodfrom the reaction of a TeCl4 aqueous solution with thioglycolic acid (TGA as a reductant. TGA can be easily oxidized to the corresponding disulfide [SCH2CO2H]2, which in turn can reduce TeCl4 to Te. The obtained Te was characterized by XRD, SEM, EDS, and DRS. The effect of reducing agent on morphology and size of the products were also studied. Additionally, Te thin film was deposited on the FTO-TiO2 by Dr- blading then employed to solar cell application and measured open circuit voltage (Voc, short circuit current (Isc, and fill factor (FF were determined as well. The studies showed that particle morphology and sizes play crucial role on solar cell efficiencies.

  3. One-step synthesis of single phase micro-sized BaFe12O19 hexaplates via a modified hydrothermal approach

    International Nuclear Information System (INIS)

    Cao, Liangliang; Zeng, Yanwei; Ding, Chuan; Li, Rongjie; Li, Chuanming; Zhang, Chengzhe

    2016-01-01

    Single phase BaFe 12 O 19 ferrite identified by X-ray diffraction and Raman spectroscopy has been successfully synthesized using Fe(NO 3 ) 3 ·9H 2 O and Ba(NO 3 ) 2 as starting materials and NaOH as a precipitant via a modified one-step hydrothermal approach which involves the elimination of carbonate radicals from reaction system based on the stoichiometric ratio of [Ba 2+ ]/[Fe 3+ ]. Hydrothermal products under various synthetic conditions were studied, including different addition amounts of Ba(NO 3 ) 2 in the modified operation, reaction temperatures and times, and hydroxyl concentrations. The BaFe 12 O 19 particles featuring an excellent hexagonal plates shape can be hydrothermally synthesized with the aid of polyethylene glycol. It has been found that the presence of α-Fe 2 O 3 in a traditional hydrothermal process is motivated by the deviation from the desired [Ba 2+ ]/[Fe 3+ ] ratio caused by the negligent precipitation of Ba 2+ ions to BaCO 3 . An investigation on the preferred hydrothermal product through thermodynamic calculation shows that the reduction in Gibbs free energy for the exclusive formation of BaFe 12 O 19 with 1 mol of Fe 3+ ions at 220 °C is approximately 32 kJ higher than that for the complete transformation to α-Fe 2 O 3 with an equal consumption quantity of Fe 3+ ions. - Highlights: • Pure BaFe 12 O 19 was hydrothermally synthesized based on the stoichiometric ratio. • A modified operation was employed to eliminate self-invited carbonate ions. • BaFe 12 O 19 particles feature an excellent micro-sized hexaplates shape. • BaFe 12 O 19 was thermodynamically confirmed to be preferred result instead of α-Fe 2 O 3 .

  4. Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.

    Science.gov (United States)

    Dunn, Stuart S; Beckford Vera, Denis R; Benhabbour, S Rahima; Parrott, Matthew C

    2017-02-15

    Accessing the phase inversion temperature by microwave heating may enable the rapid synthesis of small lipid nanoparticles. Nanoparticle formulations consisted of surfactants Brij 78 and Vitamin E TPGS, and trilaurin, trimyristin, or miglyol 812 as nanoparticle lipid cores. Each formulation was placed in water and heated by microwave irradiation at temperatures ranging from 65°C to 245°C. We observed a phase inversion temperature (PIT) for these formulations based on a dramatic decrease in particle Z-average diameters. Subsequently, nanoparticles were manufactured above and below the PIT and studied for (a) stability toward dilution, (b) stability over time, (c) fabrication as a function of reaction time, and (d) transmittance of lipid nanoparticle dispersions. Lipid-based nanoparticles with distinct sizes down to 20-30nm and low polydispersity could be attained by a simple, one-pot microwave synthesis. This was carried out by accessing the phase inversion temperature using microwave heating. Nanoparticles could be synthesized in just one minute and select compositions demonstrated high stability. The notable stability of these particles may be explained by the combination of van der Waals interactions and steric repulsion. 20-30nm nanoparticles were found to be optically transparent. Published by Elsevier Inc.

  5. Synthesis and characterization of Zn3Ta2O8 nanomaterials by hydrothermal method

    International Nuclear Information System (INIS)

    Bîrdeanu, M.; Bîrdeanu, A.-V.; Gruia, A.S.; Fagadar-Cosma, E.; Avram, C.N.

    2013-01-01

    Graphical abstract: The results of an experimental program that was focused on obtaining the Zn 3 Ta 2 O 8 nanocrystalline synthesized by hydrothermal method using tantalum (V) oxide and zinc nitrate, the results of the nanomaterial’s structure characterization and the optical spectral properties of such nanomaterials that were thoroughly investigated. Also, the experimental results are compared with ab initio calculations of electronic properties of Zn 3 Ta 2 O 8 . Highlights: •Zn 3 Ta 2 O 8 nanomaterials were synthesized by hydrothermal method and characterized. •The obtained nanomaterials has excellent phosphor, optical and morphological properties. •The material can be used in designing high performance optoelectronical devices. -- Abstract: Zn 3 Ta 2 O 8 has been synthesized by hydrothermal method using tantalum (V) oxide and zinc nitrate. The crystal structure and microstructure, phase composition and the absorption of Zn 3 Ta 2 O 8 nanomaterials were characterized by X-ray diffraction, FT/IR measurements, UV–VIS measurements, PL measurements, SEM and AFM techniques and BET analysis. XRD results show the single phase of Zn 3 Ta 2 O 8 and the average particle size that is 52 nm. This narrow nanometer size was also confirmed by AFM measurements. BET analysis revealed that the nanomaterials are mesoporous. The PL spectra show the blue luminescence of Ta 2 Zn 3 O 8 . Besides, in the present work we report ab initio calculations regarding electronic properties of Zn 3 Ta 2 O 8 ; the theoretical results are compared with the experimental ones

  6. A rapid room temperature chemical route for the synthesis of graphene: metal-mediated reduction of graphene oxide.

    Science.gov (United States)

    Dey, Ramendra Sundar; Hajra, Saumen; Sahu, Ranjan K; Raj, C Retna; Panigrahi, M K

    2012-02-07

    A rapid and facile route for the synthesis of reduced graphene oxide sheets (rGOs) at room temperature by the chemical reduction of graphene oxide using Zn/acid in aqueous solution is demonstrated. This journal is © The Royal Society of Chemistry 2012

  7. Simple hydrothermal synthesis and sintering of Na0.5Bi0.5TiO3 nanowires

    International Nuclear Information System (INIS)

    Jiang Xiangping; Lin Mei; Tu Na; Chen Chao; Zhou Shulan; Zhan Hongquan

    2011-01-01

    Highlights: → Single-crystalline NBT nanowires were synthesized using a simple hydrothermal route. → Reaction time can significantly influence the growth behavior of powders. → 1D growth mechanism of NBT corresponds to the dissolution-recrystallization mechanism. → NBT ceramics derived from nanowires showed typical characteristics of relax or ferroelectrics. - Abstract: Single-crystalline Na 0.5 Bi 0.5 TiO 3 (NBT) nanowires, with diameters of 100 nm and lengths of about 4 μm, were synthesized by using a simple hydrothermal method. Phase composition, morphology and microstructure of the as-prepared powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The effects of reaction temperature and reaction time on precipitation of the NBT nanowires were investigated. It was found that reaction time significantly influenced the growth behavior of the powders in the hydrothermal system. Based on the experimental results, the one-dimensional (1D) growth mechanism of the NBT was governed by a dissolution-recrystallization mechanism. NBT ceramics derived from the nanowires showed typical characteristics of relaxor ferroelectrics, with diffuseness exponent γ of as high as 1.73.

  8. Facile hydrothermal synthesis of alpha manganese sesquioxide (α-Mn2O3) nanodumb-bells: Structural, magnetic, optical and photocatalytic properties

    International Nuclear Information System (INIS)

    Gnanam, S.; Rajendran, V.

    2013-01-01

    Highlights: ► α-Mn 2 O 3 nanoparticles sizes of 35–42 nm have been prepared by hydrothermal process. ► Shapes of α-Mn 2 O 3 : Dumb-bell, Cauliflower, spherical with rod, spherical with wires. ► The strong UV emission can be attributed to high purity and perfect crystallinity. ► Photocatalytic activity of α–Mn 2 O 3 was studied by degradation of Remazol red B dye. - Abstract: Nanometer scale cubic bixbyite α-Mn 2 O 3 has been synthesized by a facile hydrothermal method, at a temperature of 450 °C in the presence of various surfactants. The X-ray diffraction (XRD) analysis shows that the average crystallite size of the sample is ∼35–42 nm. The shapes of the α-Mn 2 O 3 nanoparticles include: Dumb-bell-like (anionic surfactant), Cauliflower-like (nonionic surfactant), spherical with rods (cationic surfactant) and spherical with wires (surface modifier). The shapes of α-Mn 2 O 3 nanoparticles depend on the type of surfactant used in the synthesis. The magnetic property of the anionic surfactant assisted sample was primarily studied, using the vibrating sample magnetometer (VSM). The optical absorption spectra confirmed the effectiveness of the selected capping agents, as the anionic capped α-Mn 2 O 3 colloids absorbed at shorter wavelength than the other agents, indicating a much smaller crystallite size. The property of strong UV emissions may be attributed to the high purity and perfect crystallinity of the as-prepared α-Mn 2 O 3 . The surfactants-assisted catalyst was tested for its photocatalytic activity towards the photodegradation of the harmful organic dye Remazol Red B, using a multilamp photo reactor. Possible formation mechanisms have also been proposed for the as-synthesized anionic surfactant assisted samples.

  9. Reduction of nitrate and nitrite salts under hydrothermal conditions

    International Nuclear Information System (INIS)

    Foy, B.R.; Dell'Orco, P.C.; Wilmanns, E.; McInroy, R.; Ely, J.; Robinson, J.M.; Buelow, S.J.

    1994-01-01

    The feasibility of reducing nitrate/nitrite salts under hydrothermal conditions for the treatment of aqueous mixed wastes stored in the underground tanks at the Department of Energy site at Hanford, Washington was studied. The reduction of nitrate and nitrite salts by reaction with EDTA using a tank waste simulant was examined at temperatures between 623K and 800K and pressures between 0.6 and 1.2 kbar. Continuous flow reactors were used to determine kinetics and products of reactions. All reactions were studied under pressures high enough to produce single phase conditions. The reactions are rapid, go to completion in less than a minute, and produce simple products, such as carbonate, nitrogen, and nitrous oxide gases. The experimental results demonstrate the ability of chemical reactions under hydrothermal conditions to reduce the nitrate and nitrite salts and destroy organic compounds in the waste mixtures

  10. Study of the influence of the silica source on the synthesis of the zeolite precursor MCM-22

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Santos, E.R.F. dos; Leite, R.C.N.; Rodrigues, M.G.F.

    2012-01-01

    Zeolite MCM-22 precursors were synthesized under hydrothermal conditions in systems with hexamethyleneimine HMI as bulking agent (driver). Synthesis parameter, such as sources of silica (aerosil® and quartz) was modified to investigate the effects on the morphology and crystallization in precursor MCM-22 zeolite. The products were characterized by X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDX) and Scanning Electron Microscopy (SEM). According to, the X-ray diffraction showed the same characteristic peaks of zeolite MCM-22. It was found that the parameter in this work of synthesis, silica source, affects the hydrothermal synthesis of zeolite MCM-22 precursor. This can be evidenced by the different morphologies found using the different sources of silica. (author)

  11. Hydrothermal Synthesis and Characterization of 3R Polytypes of Mg-Al Layered Double Hydroxides

    NARCIS (Netherlands)

    Budhysutanto, W.N.

    2010-01-01

    Layered Double Hydroxides (LDH) is a unique group of clays that have an anionic exchange capability. This research explored the hydrothermal method as an alternative method to synthesize Mg-Al LDH. It is a simple and more environmentally friendly compared to the conventional method of

  12. Synthesis and photocatalytic activity of carbon spheres loaded Cu2O/Cu composites

    International Nuclear Information System (INIS)

    Li, Yinhui; Zhao, Mengyao; Zhang, Na; Li, Ruijuan; Chen, Jianxin

    2015-01-01

    Highlights: • Carbon spheres loaded Cu 2 O/Cu composites are obtained by hydrothermal process. • Cu 2 O/Cu nanocrystals grow on the surface of carbon spheres. • The composites with core–shell structure show highly photo-catalytic activity. • The composites can degrade methyl orange under simulated solar light irradiation. • The composites can be used to treat dye wastewater or organic pollutants. - Abstract: In this work, using amylose as carbon source and cupric acetate as copper source, carbon spheres loaded Cu 2 O/Cu composites were obtained by hydrothermal synthesis. The effects of the molar ratios between glucose and Cu(II), and hydrothermal time on the morphology and sizes of the composites were investigated. The result of photocatalytic experiments demonstrated that the composites could degrade methyl orange in aqueous solution under simulated solar light irradiation. The highest degradation rate was achieved to 93.83% when the composites were prepared by hydrothermal synthesis at 180 °C for 16 h and the molar ratio between glucose and Cu(II) was 10/1. The composites, as new and promising materials, can be used to treat dye wastewater or other organic pollutants

  13. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau

    Science.gov (United States)

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.

    2017-11-20

    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  14. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  15. A microporous potassium vanadyl phosphate analogue of mahnertite. Hydrothermal synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Yakubovich, Olga V. [M.V. Lomonosov Moscow State Univ. (Russian Federation). Dept. of Crystallography; Russian Academy of Science, Moscow (Russian Federation). Inst. of Geology of Deposits, Petrography, Mineralogy and Geochemistry; Steele, Ian M. [Notre Dame Univ., IN (United States). Notre Dame Integrated Imaging Facility; Kiriukhina, Galina V.; Dimitrova, Olga V. [M.V. Lomonosov Moscow State Univ. (Russian Federation). Dept. of Crystallography

    2015-09-01

    The novel phase K{sub 2.5}Cu{sub 5}Cl(PO{sub 4}){sub 4}(OH){sub 0.5}(VO{sub 2}).H{sub 2}O was prepared by hydrothermal synthesis at 553 K. Its crystal structure was determined using low-temperature (100 K) single-crystal synchrotron diffraction data and refined against F{sup 2} to R = 0.035. The compound crystallizes in the tetragonal space group I4/mmm, with unit-cell parameters a =9.8120(8), c = 19.954(1) Aa, V = 1921.1(2) Aa{sup 3}, and Z = 4. Both symmetrically independent Cu{sup 2+} sites show elongated square-pyramidal coordination. The V{sup 5+} ions reside in strongly distorted five-vertex VO{sub 5} polyhedra with 50% occupancy. The structure is based on a 3D anionic framework built from Cu- and V-centered five-vertex polyhedra and PO{sub 4} tetrahedra. Channels in the [100] and [010] directions accommodate large K atoms and H{sub 2}O molecules. The compound is a new structural representative of the topology shown by the lavendulan group of copper arsenate and phosphate minerals. Their tetragonal or pseudotetragonal crystal structures are characterized by two types of 2D slabs alternating along one axis of their unit cells. One slab, described by the formula [Cu{sub 4}X(TO{sub 4}){sub 4}]{sub 8} (where X = Cl, O and T = As, P), is common to all phases, whereas the slab content of the other set differs among the group members. We suggest interpreting this family of compounds in terms of the modular concept and also consider the synthetic phase Ba(VO)Cu{sub 4}(PO{sub 4}){sub 4} as a simplest member of this polysomatic series.

  16. Facile hydrothermal synthesis of CeO2 nanopebbles

    Indian Academy of Sciences (India)

    Administrator

    However, to the best of our knowledge the reports on the synthesis of CeO2 ... The base pressure of the XAS chamber was in the range of 10–8 Pa. A Shimadzu ... scopy was investigated to confirm the crystalline quality of CeO2 nanopebbles.

  17. Biomolecule-mediated hydrothermal synthesis of polyoxoniobate-CdS nanohybrids with enhanced photocatalytic performance for hydrogen production and RhB degradation.

    Science.gov (United States)

    Liu, Meiying; Chen, Hong; Zhao, Hongmei; He, Yunfei; Li, Yunhe; Wang, Ran; Zhang, Lancui; You, Wansheng

    2017-07-25

    Using a biomolecule of l-cystine as the sulfur source and coordinating agent, polyoxoniobate-CdS nanohybrids were successfully synthesized under mild hydrothermal conditions. The adsorption of ammonium group (-NH 2 ) in l-cystine molecular structure on the surface of CdS renders the amine-anchored CdS positively charged, which readily combines with the negatively charged polyoxoniobate clusters in terms of the electrostatic interaction. The as-obtained polyoxoniobate-CdS nanohybrids exhibit much superior activity for H 2 evolution and RhB degradation under visible light as compared to the unhybridized CdS and polyoxoniobate. After co-loading Nb 6 and NiS as cocatalyst, the H 2 -evolution activity of the nanohybrids is further increased up to 39 times as high as that of naked CdS, which can be attributed to an enhanced electron-transfer by adopting polyoxoniobate as electron-acceptor to retard the electron-hole recombination. The work may open an avenue for the green synthesis of cost-effective POMs-CdS nanohybrid photocatalysts for solar energy applications.

  18. Towards identifying nurse educator competencies required for simulation-based learning: A systemised rapid review and synthesis

    DEFF Research Database (Denmark)

    Bøje, Rikke Buus; Topping, Annie; Rekola, Leena

    2015-01-01

    Objectives: This paper presents the results of a systemised rapid reviewand synthesis of the literature undertaken to identify competencies required by nurse educators to facilitate simulation-based learning (SBL). Design: An international collaboration undertook a protocol-based search, retrieva...... further development as a model for educators delivering SBL as part of nursing curricula....

  19. Resource recovery of WC-Co cermet using hydrothermal oxidation technique

    International Nuclear Information System (INIS)

    Gao Ningfeng; Inagaki, F.; Sasai, R.; Itoh, H.; Watari, K.

    2005-01-01

    WC-Co cermet is widely used in industrial applications such as cutting tools, dies, wear parts and so on. It is of great importance to establish the recycling process for the precious metal resources contained in WC-Co cermet, because all these metals used in Japan are imported. In this paper we reported a hydrothermal oxidation technique using nitric acid for the reclamation of WC and Co. The WC-Co cermet specimens with various WC particle sizes and Co contents were hydrothermally treated in HNO 3 aqueous solutions at temperatures of 110-200 C for durations of 6-240 h. The Co was preferentially leached out into the acidic solution, while the WC was oxidized to insoluble WO 3 hydrate which was subsequently separated by filtration. The hydrothermal treatment parameters such as solvent concentrations, treatment temperatures, holding time were optimized in respect to different kinds of WC-Co cermets. A hydrothermal oxidation treatment in 3M HNO 3 aqueous solution at 150 C for 24 h was capable of fully disintegrating the cermet chip composed of coarse WC grains of 1-5 μm in size with 20 wt% of Co as binder. While the more oxidation resistant specimen composed of fine WC grains of 0.5-1.0 μm in size with 13 wt% of Co, was completely disintegrated by a treatment in 7 M HNO 3 aqueous solution at 170 C for 24 h. The filtered solid residues were composed of fine WO 3 .0.33H 2 O powder and a small amount of WO 3 . The recovered WO 3 .0.33H 2 O powder can be easily returned to the industrial process for the synthesis of WC powder so that the overall recycling cost can be possibly lowered. (orig.)

  20. Green and Rapid Synthesis of Anticancerous Silver Nanoparticles by Saccharomyces boulardii and Insight into Mechanism of Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Abhishek Kaler

    2013-01-01

    Full Text Available Rapidly developing field of nanobiotechnology dealing with metallic nanoparticle (MNP synthesis is primarily lacking control over size, shape, dispersity, yield, and reaction time. Present work describes an ecofriendly method for the synthesis of silver nanoparticles (AgNPs by cell free extract (CFE of Saccharomyces boulardii. Parameters such as culture age (stationary phase growth, cell mass concentration (400 mg/mL, temperature (35°C, and reaction time (4 h, have been optimized to exercise a control over the yield of nanoparticles and their properties. Nanoparticle (NP formation was confirmed by UV-Vis spectroscopy, elemental composition by EDX (energy dispersive X-rays analysis, and size and shape by transmission electron microscopy. Synthesized nanoparticles had the size range of 3–10 nm with high negative zeta potential (−31 mV indicating excellent stability. Role of proteins/peptides in NP formation and their stability were also elucidated. Finally, anticancer activity of silver nanoparticles as compared to silver ions was determined on breast cancer cell lines.

  1. Hydrothermal synthesis and polymorphism of RbPr(MoO4)2

    International Nuclear Information System (INIS)

    Protasova, V.I.; Kharchenko, L.Yu.; Klevtsov, P.V.

    1977-01-01

    Hydrothermal method has been successfully used to obtain crystals of rubidium-rare-earth molibdates of RbLn(MoO 4 ) 2 composition (Ln is a rare earth element). In Rb 2 MoO 4 solutions at 575-600degC the RbPr(MoO 4 ) 2 crystals were obtained in a modification new for Rb-Ln-molibdates, i.e. isostructural to triclinic α-KEu(MoO 4 ) 2 , and in a structural modification of laminated rhombic KY(MoO 4 ) 2 type. Polymorphism of RbPr(MoO 4 ) 2 has been studied, four crystalline modifications found and their complex interchanges investigated

  2. Hydrothermal synthesis of lindgrenite with a hollow and prickly sphere-like architecture

    International Nuclear Information System (INIS)

    Xu Jiasheng; Xue Dongfeng

    2007-01-01

    Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a simple and mild hydrothermal route in the absence of any external inorganic additives or organic structure-directing templates. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous small crystal strips that are aligned perpendicularly to the spherical surface. Two factors are important for the formation of hollow and prickly architecture in the present process. One is the general phenomenon of Ostwald ripening in solution, which can be responsible for the hollow structure; the other is that lindgrenite crystals have a rhombic growth habit, which plays an important role in the formation of prickly surface. Furthermore, Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a simple thermal treatment of the as-prepared lindgrenite in air atmosphere. - Graphical abstract: Lindgrenite [Cu 3 (OH) 2 (MoO 4 ) 2 ] with a hollow and prickly sphere-like architecture has been synthesized via a hydrothermal route. The hierarchical lindgrenite particles are hollow and prickly spheres, which are comprised of numerous crystal strips that are aligned perpendicularly to the spherical surface. Cu 3 Mo 2 O 9 with the similar size and morphology can be easily obtained by a thermal treatment of the as-prepared lindgrenite

  3. Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M=W, Mo; RE=Eu, Tb) submicro-phosphors

    International Nuclear Information System (INIS)

    Lei Fang; Yan Bing

    2008-01-01

    Submicrometer crystalline CaMO 4 :RE 3+ (M=W, Mo; RE=Eu, Tb) phosphors with a sheelite structure have been synthesized via the hydrothermal process, which were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray-excited luminescence (XEL), UV-vis diffuse reflectance spectra (UV-vis DRS) and scanning electron microscopy (SEM), respectively. The XRD patterns show that both CaWO 4 and CaMoO 4 have the same structure with space group I41/a. The SEM images indicate that the optimal hydrothermal temperature is 120 deg. C for the particles that aggregate with the increase of temperature. The bands ranging from 380 to 510 nm in the XEL spectra of CaWO 4 :Eu 3+ can be attributed to the charge transfer state from the excited 2p orbits of O 2- to the empty orbits of the central W 6+ of the tungstate groups. The comparison between photoluminescent lifetimes and quantum efficiencies of the two phosphors was also investigated in detail. - Graphical abstract: Submicro-crystalline Eu 3+ -activated tungstate CaWO 4 :RE 3+ phosphors with a sheelite structure have been synthesized via the hydrothermal process; the morphology was determined from the hydrothermal temperature. Scanning electron microscopy (SEM) images show that CaWO 4 :Eu 3+ exhibits spherical particles, which can be controlled by the reaction parameters

  4. Synthesis of cobalt ferrite with enhanced magnetostriction properties by the sol−gel−hydrothermal route using spent Li-ion battery

    International Nuclear Information System (INIS)

    Yao, Lu; Xi, Yuebin; Xi, Guoxi; Feng, Yong

    2016-01-01

    The combination of a sol–gel method and a hydrothermal method was successfully used for synthesizing the nano-crystalline cobalt ferrite powders with a spinel structure using spent Li-ion batteries as the raw materials. The phase composition, microstructure, magnetic properties and magnetostriction coefficient of cobalt ferrite were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), magnetometer and magnetostrictive measurement instrument. The microstructure of the products exhibited hedgehog-like microspheres with particle size of approximately 5 μm. The different crystalline sizes and the microstructure of cobalt ferrites precursor were controlled by varying the hydrothermal time, which significantly affected the super-exchange and the deflection direction of the magnetic domain, and led to the change of the magnetic properties of sintered cylindrical samples. The saturation magnetization and maximum magnetostriction coefficient were 81.7 emu/g and −158.5 ppm, respectively, which was larger than that of products prepared by the sol-gel sintered method alone. - Graphical abstract: The magnetostriction of cobalt ferrites with a spinel structure was successfully prepared using the sol–gel–hydrothermal route using spent Li-ion batteries. On the basis of the aforementioned SEM observation, the formation of a hedgehog-like microsphere structure might involve two important steps: Ostwald ripening and self-assembly. - Highlights: • The cobalt ferrites were prepared by the sol–gel–hydrothermal route. • The cobalt ferrites show hedgehog-like microsphere particles in shape. • The microspheres size increased with increasing hydrothermal time. • The magnetostriction properties of the cobalt ferrite were enhanced.

  5. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yao [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy Sciences, Beijing 100049 (China); Zhang Xiong [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhang Dacheng [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Graduate University of Chinese Academy Sciences, Beijing 100049 (China); Ma Yanwei, E-mail: ywma@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-01-15

    Highlights: > Graphite oxide instead of graphene as precursor has been used to synthesize reduced graphene oxide/ruthenium oxide composites by a hydrothermal treatment. > Using NaOH solution to adjust pH of GO colloids leads to homogeneous ruthenium oxide deposited on reduced graphene oxide sheets. > A maximum capacitance of 471 F g{sup -1} is obtained at 0.5 A g{sup -1} for the composites when loading 40% of RuO{sub 2} and its life retention reaches 92% after 3000 cycles. - Abstract: Ruthenium oxide nanodots have been deposited on reduced graphene oxide (RGO) sheets homogeneously by hydrothermal and annealing methods. Adding NaOH solution in GO colloids prevents the restack and agglomeration of GO sheets when mixed with ruthenium chloride solution. Local crystallization of RuO{sub 2} in the composites is revealed by X-ray diffraction and transmission electron microscopy. The element mapping image demonstrates the uniform distribution of Ru on RGO sheets. Unlike the pure crystalline RuO{sub 2} exhibiting poor electrochemical performance, the composites present superior capacitive properties. The hydrothermal time is optimized and a maximum of 471 F g{sup -1} is measured in the composites at 0.5 A g{sup -1} when loaded with 45 wt% of RuO{sub 2}. After 3000 cycles, its specific capacitance remains 92% of the maximum capacitance. Our results suggest potential application of the reduced graphene oxide/ruthenium oxide composites to supercapacitors.

  6. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors

    International Nuclear Information System (INIS)

    Chen Yao; Zhang Xiong; Zhang Dacheng; Ma Yanwei

    2012-01-01

    Highlights: → Graphite oxide instead of graphene as precursor has been used to synthesize reduced graphene oxide/ruthenium oxide composites by a hydrothermal treatment. → Using NaOH solution to adjust pH of GO colloids leads to homogeneous ruthenium oxide deposited on reduced graphene oxide sheets. → A maximum capacitance of 471 F g -1 is obtained at 0.5 A g -1 for the composites when loading 40% of RuO 2 and its life retention reaches 92% after 3000 cycles. - Abstract: Ruthenium oxide nanodots have been deposited on reduced graphene oxide (RGO) sheets homogeneously by hydrothermal and annealing methods. Adding NaOH solution in GO colloids prevents the restack and agglomeration of GO sheets when mixed with ruthenium chloride solution. Local crystallization of RuO 2 in the composites is revealed by X-ray diffraction and transmission electron microscopy. The element mapping image demonstrates the uniform distribution of Ru on RGO sheets. Unlike the pure crystalline RuO 2 exhibiting poor electrochemical performance, the composites present superior capacitive properties. The hydrothermal time is optimized and a maximum of 471 F g -1 is measured in the composites at 0.5 A g -1 when loaded with 45 wt% of RuO 2 . After 3000 cycles, its specific capacitance remains 92% of the maximum capacitance. Our results suggest potential application of the reduced graphene oxide/ruthenium oxide composites to supercapacitors.

  7. Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method

    International Nuclear Information System (INIS)

    Razak, K.A.; Asadov, A.; Yoo, J.; Haemmerle, E.; Gao, W.

    2008-01-01

    The preparation procedure, structural and dielectric properties of hydrothermally derived Ba x Sr 1-x TiO 3 (BST) were studied. BST with initial Ba compositions of 75, 80, 85 and 90 mol.% were prepared by a high temperature hydrothermal synthesis. The obtained powders were pressed into pellet, cold isostatically pressed and sintered at 1200 deg. C for 3 hours. The phase compositions and lattice parameters of the as prepared powders and sintered samples were analysed using X-ray diffractometry. A fitting software was used to analyse the XRD spectra to separate different phases. It was found that BST powder produced by the high temperature hydrothermal possessed a two-phase structure. This structure became more homogeneous during sintering due to interdiffusion but a small amount of minor phase can still be traced. Samples underwent an abnormal grain growth, whereby some grains grow faster than the other due to the presence of two-phase structure. The grain size increased with increasing Ba amount. Dielectric constant and polarisation increased with increasing Ba content but it was also affected by the electronic state and grain size of the compositions

  8. The ethylene glycol template assisted hydrothermal synthesis of Co3O4 nanowires; structural characterization and their application as glucose non-enzymatic sensor

    International Nuclear Information System (INIS)

    Khun, K.; Ibupoto, Z.H.; Liu, X.; Beni, V.; Willander, M.

    2015-01-01

    Highlights: • Ethylene glycol assisted Co 3 O 4 nanowires were synthesized by hydrothermal method. • The grown Co 3 O 4 nanowires were used for sensitive non-enzymatic glucose sensor. • The proposed glucose sensor shows a wide linear range with fast response. • The Co 3 O 4 modified electrode is a highly specific enzyme-less glucose sensor. - Abstract: In the work reported herein the ethylene glycol template assisted hydrothermal synthesis, onto Au substrate, of thin and highly dense cobalt oxide (Co 3 O 4 ) nanowires and their characterization and their application for non-enzymatic glucose sensing are reported. The structure and composition of Co 3 O 4 nanowires have been fully characterized using scanning electron microscopy, X-ray diffraction, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The synthesized Co 3 O 4 nanowires resulted to have high purity and showed diameter of approximately 10 nm. The prepared Co 3 O 4 nanowires coated gold electrodes were applied to the non-enzymatic detection of glucose. The developed sensor showed high sensitivity (4.58 × 10 1 μA mM −1 cm −2 ), a wide linear range of concentration (1.00 × 10 −4 –1.2 × 10 1 mM) and a detection limit of 2.65 × 10 −5 mM. The developed glucose sensor has also shown to be very stable and selective over interferents such as uric acid and ascorbic acid. Furthermore, the proposed fabrication process was shown to be highly reproducible response (over nine electrodes)

  9. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles.

    Science.gov (United States)

    Kshetri, Yuwaraj K; Regmi, Chhabilal; Kim, Hak-Soo; Lee, Soo Wohn; Kim, Tae-Ho

    2018-05-18

    Yb 3+ and Er 3+ doped YVO 4 (Yb 3+ /Er 3+ :YVO 4 ) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb 3+ /Er 3+ :YVO 4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2 H 11/2 , 4 S 3/2 to 4 I 15/2 and 4 F 9/2 to 4 I 15/2 transitions of Er 3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb 3+ . The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  10. Shape-controlled synthesis and properties of manganese sulfide microcrystals via a biomolecule-assisted hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jinghui; Yu Runnan; Zhu Jianyu; Yi Ran; Qiu Guanzhou [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); He Yuehui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu Xiaohe, E-mail: liuxh@mail.csu.edu.cn [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2009-06-15

    An effective biomolecule-assisted synthetic route has been successfully developed to prepare {gamma}-manganese sulfide (MnS) microtubes under hydrothermal conditions. In the synthetic system, soluble hydrated manganese chloride was employed to supply Mn source and L-cysteine was used as precipitator and complexing reagent. Sea urchin-like {gamma}-MnS and octahedron-like {alpha}-MnS microcrystals could also be selectively obtained by adjusting the process parameters such as hydrothermal temperature and reaction time. The phase structures, morphologies and properties of the as-prepared products were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and photoluminescence spectra (PL). The photoluminescence studies exhibited the correlations between the morphology, size, and shape structure of MnS microcrystals and its optical properties. The formation mechanisms of manganese sulfide microcrystals were discussed based on the experimental results.

  11. Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles

    Science.gov (United States)

    Kshetri, Yuwaraj K.; Regmi, Chhabilal; Kim, Hak-Soo; Wohn Lee, Soo; Kim, Tae-Ho

    2018-05-01

    Yb3+ and Er3+ doped YVO4 (Yb3+/Er3+:YVO4) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb3+/Er3+:YVO4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2H11/2, 4S3/2 to 4I15/2 and 4F9/2 to 4I15/2 transitions of Er3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb3+. The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.

  12. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    Science.gov (United States)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids

  13. Solidification of ion-exchange resins by hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Kaneko, M.

    1993-01-01

    The solidification reaction which easily occurs while continuously keeping the mixture of cation and anion exchange resins compressed under hydrothermal conditions has been demonstrated. Dehydration was considered to occur between sulphonic acid (-SO 3 H) from the cation exchange resin and quaternary ammonium [-CH 2 -N(CH 3 ) 3 OH] from anion-exchange resin-on terminal groups. The cation-and anion-exchange resins were mixed in a 1:1 weight ratio, put in a hot-pressing autoclave and compressed between pistons from the top and bottom at 600 kg cm -2 pressure. The material was continuously compressed during hydrothermal treatment at 200 kg cm -2 by a hydraulic jack and heated to a desired temperature with an induction heater. This system could be used for rapid temperature increasing up to 30 o c min -1 . The pressure and temperature were kept constant for 10 min. The autoclave was cooled to room temperature after the hydrothermal treatment. After the specimen was taken out, the ion-exchange radical reactions were estimated and the product structures were examined. The cation- and anion-exchange resin mixture was solidified. The resultant solidified body at a 300 o C reaction condition for 10 min had a 1.0 g cm -3 density and 700 kg cm -2 compressive strength, and the weight loss did not change in distilled water for 2 weeks. On the other hand, a solidification reaction did not occur at below 250 o C when only the cation or anion was solidified, but they were decomposed. These results suggest that a mixture of cation- and anion-exchange resins causes a solidification reaction under hydrothermal hot-pressing conditions at 300 o C. (author)

  14. Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au-Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens.

    Science.gov (United States)

    Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii

    2016-01-01

    The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.

  15. Radiogeochemical features of hydrothermal metasomatic formations

    International Nuclear Information System (INIS)

    Plyushchev, E.V.; Ryabova, L.A.; Shatov, V.V.

    1978-01-01

    Considered are the most general peculiarities of uranium and thorium distributions in hydrothermal-metasomatic formations of three levels of substance formation: 1) in hydrothermal minerals; 2) in natural associations of these minerals (in the altered rocks, metasomatites, ores, etc.); 3) ordened series of zonally and in stage conjugated hydrothermal-metasomatic formations. Statistically stable recurrence of natural combinations of hydrothermal-metasomatic formations points out conjugation of their formation in the directed evolution in the general hydrothermal process. Series of metasomatic formations, the initial members of which are potassium metasomatites, mostly result in accumulation up to industrial concentrations of radioactive elements in final members of these formations. Development of midlow-temperature propylitic alterations in highly radiative rocks causes the same accumulation

  16. Study of the influence in crystallization period in MCM-22 zeolite synthesis

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Santos, E.R.F.; Rodrigues, M.G.F.

    2011-01-01

    The synthesis of MCM-22 is accomplished by hydrothermal treatment and long periods needed for crystallization, with the gradual growth of crystals of 10-14 days. MCM-22 catalyst is studied intensively as promising, with high thermal stability. As part of a line of research focused on the development of zeolite with lowest cost, this study aimed to examine the effect in decreasing the period of crystallization in the synthesis of zeolite MCM-22. The materials were characterized by X-ray diffraction (XRD) spectroscopy, X-ray Energy Dispersive (EDX) and Fourier transform infrared spectroscopy and Fourier transform (FT-IR). By XRD it was observed that the hydrothermal treatment used in the synthesis was effective during periods of crystallization and EDX was observed that the samples have a high percentage of silica and low alumina content, which gives them a high ratio SiO 2 /Al 2 O 3 characteristic of the MWW structure. (author)

  17. One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide (LDH) Nanohybrids

    Institute of Scientific and Technical Information of China (English)

    Sunil P Lonkar; Jean-Marie Raquez; Philippe Dubois

    2015-01-01

    A facile and rapid method to synthesize graphene/layered double hydroxide (LDH) nanohybrids by a micro-wave technique is demonstrated. The synthesis procedure involves hydrothermal crystallization of Zn–Al LDH at the same time in situ reduction of graphene oxide (GO) to graphene. The microstructure, composition, and morphology of the resulting graphene/LDH nanohybrids were characterized. The results confirmed the formation of nanohybrids and the reduction of graphene oxide. The growth mechanism of LDH and in situ reduction of GO were discussed. The LDH sheet growth was found to prevent the scrolling of graphene layers in resulting hybrids. The electrochemical properties exhibit superior performance for graphene/Zn–Al LDH hybrids over pristine graphene. The present approach may open a strategy in hybridizing graphene with multimetallic nano-oxides and hydroxides using microwave method.

  18. One-Pot Microwave-Assisted Synthesis of Graphene/Layered Double Hydroxide(LDH) Nanohybrids

    Institute of Scientific and Technical Information of China (English)

    Sunil P.Lonkar; Jean-Marie Raquez; Philippe Dubois

    2015-01-01

    A facile and rapid method to synthesize graphene/layered double hydroxide(LDH)nanohybrids by a microwave technique is demonstrated.The synthesis procedure involves hydrothermal crystallization of Zn–Al LDH at the same time in situ reduction of graphene oxide(GO)to graphene.The microstructure,composition,and morphology of the resulting graphene/LDH nanohybrids were characterized.The results confirmed the formation of nanohybrids and the reduction of graphene oxide.The growth mechanism of LDH and in situ reduction of GO were discussed.The LDH sheet growth was found to prevent the scrolling of graphene layers in resulting hybrids.The electrochemical properties exhibit superior performance for graphene/Zn–Al LDH hybrids over pristine graphene.The present approach may open a strategy in hybridizing graphene with multimetallic nano-oxides and hydroxides using microwave method.

  19. Two-directional synthesis as a tool for diversity-oriented synthesis: Synthesis of alkaloid scaffolds

    Directory of Open Access Journals (Sweden)

    Kieron M. G. O’Connell

    2012-06-01

    Full Text Available Two-directional synthesis represents an ideal strategy for the rapid elaboration of simple starting materials and their subsequent transformation into complex molecular architectures. As such, it is becoming recognised as an enabling technology for diversity-oriented synthesis. Herein, we provide a thorough account of our work combining two-directional synthesis with diversity-oriented synthesis, with particular reference to the synthesis of polycyclic alkaloid scaffolds.

  20. Solution-phase synthesis of nanomaterials at low temperature

    Science.gov (United States)

    Zhu, Yongchun; Qian, Yitai

    2009-01-01

    This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.

  1. Synthesis of Amino Acid Precursors with Organic Solids in Planetesimals with Liquid Water

    Science.gov (United States)

    Kebukawa, Y.; Chan, Q. H. S.; Misawa, S.; Matsukuma, J.; Tachibana, S.; Kobayashi, K.; Zolensky, M. E.

    2017-07-01

    We demonstrated synthesis of a complex suite of amino acids simultaneously with IOM via hydrothermal experiments starting from formaldehyde, glycolaldehyde and ammonia, simulating the aqueous processing in the planetesimals.

  2. Rapid Formation of 1D Titanate Nanotubes Using Alkaline Hydrothermal Treatment and Its Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2015-01-01

    Full Text Available One-dimensional (1D titanate nanotubes (TNT were successfully synthesized using alkaline hydrothermal treatment of commercial TiO2 nanopowders in a Teflon lined stainless steel autoclave at 150°C. The minimum time required for the formation of the titanate nanotubes was 9 h significantly. After the hydrothermal processing, the layered titanate was washed with acid and water in order to control the amount of Na+ ions remaining in the sample solutions. In this study, the effect of different reaction durations in a range of 3 h to 24 h on the formation of nanotubes was carried out. As the reaction duration is extended, the changes in structure from particle to tubular shapes of alkaline treated TiO2 were obtained via scanning electron microscope (SEM. Also, the significant impact on the phase transformation and crystal structure of TNT was characterized through XRD and Raman analysis. Indeed, the photocatalytic activity of TNT was investigated through the degradation of methyl orange aqueous solution under the ultraviolet light irradiation. As a result, TNT with reaction duration at 6 h has a better photocatalytic performance than other samples which was correlated to the higher crystallinity of the samples as shown in XRD patterns.

  3. Na{sub 2}EDTA-assisted hydrothermal synthesis and electrochemical performance of LiFePO{sub 4} powders with rod-like and block-like morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan, E-mail: juanwang168@gmail.com [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zheng, Siqi; Yan, Hao; Zhang, Haipeng [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Hojamberdiev, Mirabbos [Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama, Kanagawa 226-8503 (Japan); Ren, Bing; Xu, Yunhua [Shaanxi Key Laboratory of Nanomaterials and Nanotechnology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2015-06-15

    Nano and micro-sized LiFePO{sub 4} were synthesized by disodium ethylenediamine tetraacetate (Na{sub 2}EDTA) – assisted hydrothermal synthesis method with the pH of synthesizing solution in the range from 2 to 8. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and electrochemical performance experiments. The obtained results showed that the pH of synthesizing solution played a key role in the formation of the final products with different morphologies, including rod-like and block-like structures and so on. The formation mechanism and the influence of Na{sub 2}EDTA on the morphology of LiFePO{sub 4} micro- and nanocrystals were investigated as a function of pH value. The results of electrochemical performance measurement revealed that the charge/discharge cycling characteristics of the samples were varied by tailoring their morphologies. Particularly, the block-like LiFePO{sub 4} particles with the average size of 200–600 nm present the highest initial discharge capacity of 141 mAh/g at 0.1C rate, and cycling stability of this sample is optimal among all the obtained products owing to its good diffusion properties. It also exhibits an excellent rate capability with high discharge capacities of more than 93.2 mAh/g at 5C after 80 cycles. The present study offers a simple way to synthesize and design high performance cathode materials for lithium-ion batteries by the methods of morphology control without carbon coating or doping with supervalent cations. - Highlights: • Nano and micro-sized LiFePO{sub 4} were synthesized by a hydrothermal synthesis method. • Effect of the pH of synthesizing solution on the formation of LiFePO{sub 4} was studied. • The block-like LiFePO{sub 4} particles present the highest initial discharge capacity. • The rate capability of the block-like LiFePO{sub 4} is more than 93.2 m

  4. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature.

    Science.gov (United States)

    López Zavala, Miguel Ángel; Lozano Morales, Samuel Alejandro; Ávila-Santos, Manuel

    2017-11-01

    Effect of hydrothermal treatment, acid washing and annealing temperature on the structure and morphology of TiO 2 nanotubes during the formation process was assessed. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy analysis were conducted to describe the formation and characterization of the structure and morphology of nanotubes. Hydrothermal treatment of TiO 2 precursor nanoparticles and acid washing are fundamental to form and define the nanotubes structure. Hydrothermal treatment causes a change in the crystallinity of the precursor nanoparticles from anatase phase to a monoclinic phase, which characterizes the TiO 2 nanosheets structure. The acid washing promotes the formation of high purity nanotubes due to Na + is exchanged from the titanate structure to the hydrochloric acid (HCl) solution. The annealing temperature affects the dimensions, structure and the morphology of the nanotubes. Annealing temperatures in the range of 400 °C and 600 °C are optimum to maintain a highly stable tubular morphology of nanotubes. Additionally, nanotubes conserve the physicochemical properties of the precursor Degussa P25 nanoparticles. Temperatures greater than 600 °C alter the morphology of nanotubes from tubular to an irregular structure of nanoparticles, which are bigger than those of the precursor material, i.e., the crystallinity turn from anatase phase to rutile phase inducing the collapse of the nanotubes.

  5. Hydrothermal Synthesis of MoO2 and Supported MoO2 Cata-lysts for Oxidative Desulfurization of Dibenzothiophene

    Institute of Scientific and Technical Information of China (English)

    Wang Danhong; Zhang Jianyong; Liu Ni; Zhao Xin; Zhang Minghui

    2014-01-01

    A novel method for obtaining spherical MoO2 nanoparticles and SiO2-Al2O3 supported MoO2 by hydrothermal reduction of Mo (VI) species was studied. The obtained MoO2 catalysts show very high catalytic activity in the oxidative desulfurization (ODS) process. The effect of hydrothermal temperature and crystallization temperature on ODS activity was investigated. The ODS activity of supported MoO2 catalysts with various MoO2 contents were also investigated. The mecha-nism for formation of MoO2 involving oxalic acid was proposed.

  6. Hydrothermal Synthesis and Electrochemical Performance of Manganese Oxide (Na-OMS-2) Nanorods.

    Science.gov (United States)

    Zhang, Qing; Xu, Shan; Zheng, Hao; Luo, Zhaohui; Liu, Kang; Wang, Wei; Li, Guohua; Wang, Shiquan; Liu, Jianwen; Feng, Chuanqi

    2017-02-01

    Sodium octahedral molecular sieve nanorods (Na-OMS-2) were prepared through a facile hydrothermal method. The effects of reaction temperature and duration on particle sizes of the products were investigated. The electrochemical performance of samples was studied by constant current charge–discharge tests as cathode material for Li-ion batteries (LIBs). The initial discharge capacity of Na-OMS-2 is 123.4 mAh g−1 and the capacity retention was 123.9 mAh g−1 after 100 cycles. The result demonstrates that Na-OMS-2 cathode material behaves a good cycling stability.

  7. Rapid synthesis of gold and silver nanoparticles using tryptone as a reducing and capping agent

    Science.gov (United States)

    Mehta, Sourabh M.; Sequeira, Marilyn P.; Muthurajana, Harries; D'Souza, Jacinta S.

    2018-02-01

    Due to its eco-friendliness, recent times have seen an immense interest in the green synthesis of metallic nanoparticles. We present here, a protocol for the rapid and cheap synthesis of Au and Ag nanoparticles (NPs) using 1 mg/ml tryptone (trypsinized casein) as a reducing and capping agent. These nanoparticles are spherical, 10 nm in diameter and relatively monodispersed. The atoms of these NPs are arranged in face-centered cubic fashion. Further, when tested for their cytotoxic property against HeLa and VERO cell lines, gold nanoparticles were more lethal than silver nanoparticles, with a more or less similar trend observed against both Gram-positive and Gram-negative bacteria. On the other hand, the NPs were least cytotoxic against a unicellular alga, Chlamydomonas reinhardtii implying their eco-friendly property.

  8. Asymmetric synthesis of cyclo-archaeol and ß-glucosyl cyclo-archaeol

    NARCIS (Netherlands)

    Ferrer, C.; Fodran, P.; Barroso, S.; Gibson, R.; Hopmans, E.C.; Sinninghe Damsté, J.S.; Schouten, S.; Minnaard, A.J.

    2013-01-01

    An efficient asymmetric synthesis of cyclo-archaeol and beta-glucosyl cyclo-archaeol is presented employing catalytic asymmetric conjugate addition and catalytic epoxide ring opening as the key steps. Their occurrence in deep sea hydrothermal vents has been confirmed by chromatographic comparison

  9. Facile and rapid synthesis of nickel nanowires and their magnetic properties

    International Nuclear Information System (INIS)

    Tang Shaochun; Zheng Zhou; Vongehr, Sascha; Meng Xiangkang

    2011-01-01

    The present work reports a facile and rapid microwave-assisted route to synthesize nickel nanowires with a necklace-like morphology and lengths up to several hundreds of microns. The wires consist of many crystallites with an average size of 25 ± 2 nm. The synthesis does not use templates or magnetic fields and needs only 6 min, which is more than 480 times faster than that needed for Ni wires prepared at 180 °C using conventional heating. Nickel nanostructures with various morphologies including spheres, chains and irregular particles with porous surfaces can also be obtained by adjusting reaction parameters. Polyvinylpyrrolidone (PVP) is found to be vital for the formation of the one-dimensional chains and a high concentration of PVP smoothes their surfaces to result in the appearance of wires. This rapid one-pot procedure combines the formation of nanoparticles, their oriented assembly into chains, and the subsequent shaping of wires. The Ni nanostructures show variable magnetic properties. The prepared nickel wires have a high mechanical stability and exhibit much higher coercivity than bulk nickel, Ni nanoparticles and their aggregations, which promise potential applications in micromechanical sensors, memory devices and other fields.

  10. Synthesis of ZnO nanorod–nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Wai Kian [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Abdul Razak, Khairunisak; Lockman, Zainovia [School of Materials and Mineral Resources, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Kawamura, Go; Muto, Hiroyuki [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@ee.tut.ac.jp [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan)

    2014-03-15

    ZnO composite films consisting of ZnO nanorods and nanosheets were prepared by low-temperature hydrothermal processing at 80 °C on seeded glass substrates. The seed layer was coated on glass substrates by sol–gel dip-coating and pre-heated at 300 °C for 10 min prior to hydrothermal growth. The size of the grain formed after pre-heat treatment was ∼40 nm. A preferred orientation seed layer at the c-axis was obtained, which promoted vertical growth of the ZnO nanorod arrays and formation of the ZnO nanosheets. X-ray diffraction patterns and high-resolution transmission electron microscope (HR-TEM) images confirmed that the ZnO nanorods and nanosheets consist of single crystalline and polycrystalline structures, respectively. Room temperature photoluminescence spectra of the ZnO nanorod–nanosheet composite films exhibited band-edge ultraviolet (UV) and visible emission (blue and green) indicating the formation of ZnO crystals with good crystallinity and are supported by Raman scattering results. The formation of one-dimensional (1D) ZnO nanorod arrays and two-dimensional (2D) ZnO nanosheet films using seeded substrates in a single low-temperature hydrothermal step would be beneficial for realization of device applications that utilize substrates with limited temperature stability. The ZnO nanorods and nanosheets composite structure demonstrated higher photocatalytic activity during degradation of aqueous methylene blue under visible-light irradiation. -- Graphical abstract: Schematic illustration of ZnO nanorod–nanosheet composite structure formation by hydrothermal at low-temperature of 80 °C against time. Highlights: • Novel simultaneous formation of ZnO nanorods and nanosheets composite structure. • Facile single hydrothermal step formation at low-temperature. • Photoluminescence showed ultraviolet and visible emission. • Feasible application on substrates with low temperature stability. • Improved photocatalytic activity under visible

  11. Photocatalytic properties of hierarchical ZnO flowers synthesized by a sucrose-assisted hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Lv Wei [Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China); Wei Bo [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Xu Lingling, E-mail: xulingling_hit@163.com [Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China) and Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Zhao Yan, E-mail: zhaoyan516@126.com [Department of Physics, Northeast Forestry University, Harbin 150040 (China); Gao Hong; Liu Jia [Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrothermal method. Black-Right-Pointing-Pointer The sucrose added ZnO flowers showed improved activity mainly due to the improved crystallinity. Black-Right-Pointing-Pointer The effect of sucrose content was studied and optimized. - Abstract: In this work, hierarchical ZnO flowers were synthesized via a sucrose-assisted urea hydrothermal method. The thermogravimetric analysis/differential thermal analysis (TGA-DTA) and Fourier transform infrared spectra (FTIR) showed that sucrose acted as a complexing agent in the synthesis process and assisted combustion during annealing. Photocatalytic activity was evaluated using the degradation of organic dye methyl orange. The sucrose added ZnO flowers showed improved activity, which was mainly attributed to the better crystallinity as confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The effect of sucrose amount on photocatalytic activity was also studied.

  12. Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity.

    Science.gov (United States)

    Bharti, Dattatraya B; Bharati, A V

    2017-05-01

    ZnO nanoparticles (NPs) with a granular morphology were synthesized using a hydrothermal method. Structural analysis revealed that ZnO NPs had a single crystal wurtzite hexagonal structure. Solvent polarity was responsible for varying and controlling their size and morphology. The process was very trouble free and scalable. In addition, it could be used for fundamental studies on tunable morphology formation. This hydrothermal method showed different morphology with different co-surfactants such as a floral-like or wire-like belt sheet structures etc. Based on their surface morphology, the same material had different applications as a catalyst in various organic reactions and also could be used as a photocatalyst and fuel cell, solar cell or in semiconductors etc. X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy and photoluminescence of the resulting product was performed to study its purity, morphology and size, plus its optical properties via measurement of band gap energy and light absorbance. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Synthesis of SnSe nanosheets by hydrothermal intercalation and exfoliation route and their photoresponse properties

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiaohui; Qi, Xiang, E-mail: xqi@xtu.edu.cn; Shen, Yongzhen; Xu, Guanghua; Li, Jun; Li, Zhenqing; Huang, Zongyu; Zhong, Jianxin

    2016-12-15

    Two dimensional Tin Selenide (SnSe) nanosheets (NSs) have been prepared via a facile hydrothermal intercalation and exfoliation route. Morphological test verifies high yield of SnSe NSs with good quality. Additional X-ray diffraction pattern and Raman spectra are carried out and confirm the exfoliated SnSe nanosheet is pure and well crystalized. AFM measurement, along with the SEM images and Raman shifts, reveals few-layers SnSe nanosheet has been successfully obtained after hydrothermal intercalation and exfoliation route. Photoelectrochemical tests also demonstrate the photocurrent density of SnSe NSs is greatly improved compare to that of bulk SnSe. Photocurrent density of exfoliated SnSe NSs can achieve 16 μA/cm{sup 2} when the applied potential is 0.8 V, which is nearly four times higher than that of bulk SnSe. This work demonstrates that the two-dimensional SnSe NSs may have a great potential application in photovoltaic devices.

  14. Synthesis of SnSe nanosheets by hydrothermal intercalation and exfoliation route and their photoresponse properties

    International Nuclear Information System (INIS)

    Ren, Xiaohui; Qi, Xiang; Shen, Yongzhen; Xu, Guanghua; Li, Jun; Li, Zhenqing; Huang, Zongyu; Zhong, Jianxin

    2016-01-01

    Two dimensional Tin Selenide (SnSe) nanosheets (NSs) have been prepared via a facile hydrothermal intercalation and exfoliation route. Morphological test verifies high yield of SnSe NSs with good quality. Additional X-ray diffraction pattern and Raman spectra are carried out and confirm the exfoliated SnSe nanosheet is pure and well crystalized. AFM measurement, along with the SEM images and Raman shifts, reveals few-layers SnSe nanosheet has been successfully obtained after hydrothermal intercalation and exfoliation route. Photoelectrochemical tests also demonstrate the photocurrent density of SnSe NSs is greatly improved compare to that of bulk SnSe. Photocurrent density of exfoliated SnSe NSs can achieve 16 μA/cm"2 when the applied potential is 0.8 V, which is nearly four times higher than that of bulk SnSe. This work demonstrates that the two-dimensional SnSe NSs may have a great potential application in photovoltaic devices.

  15. Luminescence studies of CdS spherical particles via hydrothermal synthesis

    Science.gov (United States)

    Xu, Guo Qin; Liu, Bing; Xu, Shi Jie; Chew, Chwee Har; Chua, Soo Jin; Gana, Leong Ming

    2000-06-01

    The spherical particles of CdS consisting of nanoparticles (∼100 nm) were synthesized by a hydrothermal process. The particle formation and growth depend on the rate of sulfide-ion generation and diffusion-controlled aggregation of nanoparticles. As demonstrated in the profiles of powder X-ray diffraction, the crystalline phases are governed by the reaction temperature. Photoluminescence studies on CdS particles show two emission bands at the room temperature. The red emission at 680 nm is due to sulfur vacancies, and a new infrared red (IR) emission at 760 nm is attributed to self-activated centers. A red shift of IR band with the decrease of temperature was explained with a configurational coordinate model. The different saturation limits for the red and IR bands are discussed in terms of the formation of donor-acceptor pairs and exciton in CdS particles.

  16. In-Situ Hydrothermal Synthesis of Bi-Bi2O2CO3 Heterojunction Photocatalyst with Enhanced Visible Light Photocatalytic Activity

    Science.gov (United States)

    Kar, Prasenjit; Maji, Tuhin Kumar; Nandi, Ramesh; Lemmens, Peter; Pal, Samir Kumar

    2017-04-01

    Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi-Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi-Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi-Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.

  17. One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform

    International Nuclear Information System (INIS)

    Teymourian, Hazhir; Salimi, Abdollah; Firoozi, Somayeh; Korani, Aazam; Soltanian, Saied

    2014-01-01

    Graphical abstract: - Highlights: • One pot hydrothermal synthesis used for preparing of ZrO 2 NPs reduced graphene oxide. • Electrocatalytic activity of ZrO 2 /rGO improved in compared to ZrO 2 based C- materials. • ZrO 2 NPs/rGO modified GCE was used for electrocatalytic reduction of O 2 and H 2 O 2 . • ZrO 2 NPs/rGO/GCE shows excellent ability to simultaneous detection of AA,UA and DP. • With immobilization of GOX onto ZrO 2 NPs/rGO a sensitive glucose biosensor fabricated. - Abstract: We report on the synthesis of zirconium dioxide-reduced graphene oxide composite (ZrO 2 -rGO) and its application as a novel architecture for electrochemical sensing and biosensing purposes. ZrO 2 -rGO hybrid is synthesized through a simple one-step hydrothermal route, where the reduction of GO and the in-situ generation of ZrO 2 nanoparticles (NPs) occurred simultaneously. Characterization of the resultant hybrid material using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy clearly indicated the homogeneous dispersion of ZrO 2 NPs with particle sizes of ∼5 nm on rGO sheets. The potential application of ZrO 2 -rGO modified glassy carbon electrode (ZrO 2 -rGO/GC) for electroanalytical purposes was demonstrated by using several important electroactive compounds as representative examples (i.e., O 2 , hydrogen peroxide (H 2 O 2 ), glucose, ascorbic acid (AA), dopamine (DA) and uric acid (UA)). Electrochemical control experiments by using different composites of ZrO 2 /graphite, ZrO 2 /Active Carbon and ZrO 2 electrodeposited on activated GC electrode revealed that the ZrO 2 -rGO composite possessed superior electrocatalytic activitiy towards the catalytic reduction of O 2 and H 2 O 2 at more reduced overpotentials. The linear range of H 2 O 2 concentration was from 0.10 to 1340 μM with the detection limit of 20 nM (S/N = 3). Furthermore, via immobilization of glucose oxidase (GOx) enzyme onto the

  18. Size dependent photoluminescence property of hydrothermally synthesized crystalline carbon quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, S.; Banerjee, D.; Ghorai, U.K.; Das, N.S. [School of Material Science and Nanotechnology Jadavpur University, Kolkata 700032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [School of Material Science and Nanotechnology Jadavpur University, Kolkata 700032 (India); Thin Film and NanoScience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India)

    2016-10-15

    In this work, simple hydrothermal synthesis of water soluble Carbon quantum dots (CQDs) of different sizes has been reported. The effect of synthesis temperature and synthesis time on the particle size has also been shown. The structures of all the as-prepared samples were studied by field emission scanning electron microscope and high resolution transmission electron microscope. Fourier transformed infrared spectrophotometer analyzes the different bonding present in the sample whereas Raman spectrophotometer quantifies the hybridization state of the prepared samples. UV–vis spectrophotometer gives the variation of absorbance of all the samples with wavelength. Dynamic light scattering study shows the variation of particle size with deposition condition and corresponding zeta potential gives the idea about the stability of the CQD solutions. The photoluminescence (PL) properties of the as prepared CQDs were also studied in detail. It is noticed that with the increase of excitation wavelength, the PL emissions for the different samples were red shifted. The results have been explained in terms of the excitation dependent emission, variations in size of the CQD and presence of different functional groups on the surface of CQDs.

  19. Size dependent photoluminescence property of hydrothermally synthesized crystalline carbon quantum dots

    International Nuclear Information System (INIS)

    Sarkar, S.; Banerjee, D.; Ghorai, U.K.; Das, N.S.; Chattopadhyay, K.K.

    2016-01-01

    In this work, simple hydrothermal synthesis of water soluble Carbon quantum dots (CQDs) of different sizes has been reported. The effect of synthesis temperature and synthesis time on the particle size has also been shown. The structures of all the as-prepared samples were studied by field emission scanning electron microscope and high resolution transmission electron microscope. Fourier transformed infrared spectrophotometer analyzes the different bonding present in the sample whereas Raman spectrophotometer quantifies the hybridization state of the prepared samples. UV–vis spectrophotometer gives the variation of absorbance of all the samples with wavelength. Dynamic light scattering study shows the variation of particle size with deposition condition and corresponding zeta potential gives the idea about the stability of the CQD solutions. The photoluminescence (PL) properties of the as prepared CQDs were also studied in detail. It is noticed that with the increase of excitation wavelength, the PL emissions for the different samples were red shifted. The results have been explained in terms of the excitation dependent emission, variations in size of the CQD and presence of different functional groups on the surface of CQDs.

  20. Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets

    International Nuclear Information System (INIS)

    Biswas, Subhajit; Kar, Soumitra; Chaudhuri, Subhadra

    2007-01-01

    Nanorods and nanosheets of tin sulfide (SnS) were synthesized by a novel thioglycolic acid (TGA) assisted hydrothermal process. The as prepared nanostructures were characterized by X-ray diffraction (XRD) study, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD study reveals the formation of well-crystallized orthorhombic structure of SnS. Diameter of the SnS nanorods varied within 30-100 nm. High-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) patterns identify the single crystalline nature for the SnS nanocrystals. The mechanism for the TGA assisted growth for the nanosheets and nanorods have been discussed

  1. Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure

    DEFF Research Database (Denmark)

    Ahmadi, Majid; Younesi, Reza; Guinel, Maxime J-F

    2014-01-01

    ) nanoparticles were synthesized using a simple and inexpensive low temperature and low pressure hydrothermal (HT) method. The precursor solution used for the HT process was prepared by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4 center dot 2H(2)O) at temperatures below 5 degrees C...... and then dissolved using oxalic acid. This HT process yielded tungstite (WO3 center dot H2O) nanoparticles with the orthorhombic structure. A heat treatment at temperatures at or above 300 degrees C resulted in a phase transformation to monoclinic WO3, while preserving the nanoparticles morphology. The production...

  2. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method

    International Nuclear Information System (INIS)

    Mao Baodong; Kang Zhenhui; Wang Enbo; Lian Suoyuan; Gao Lei; Tian Chungui; Wang Chunlei

    2006-01-01

    Magnetite (Fe 3 O 4 ) octahedral particles were fabricated from iron powders through a simple one-step alkali-assisted hydrothermal process. The crystallinity, morphology, and structural features of the as-prepared magnetite particles were investigated using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The values of saturation magnetization (M s ) and coercivity (H) of the magnetite octahedrons characterized on a vibrating sample magnetometer (VSM) are 89.81 emu/g and 70.6 Oe, respectively. The concentration of NaOH and the reaction temperature played a key role in the formation of the magnetite octahedrons

  3. A facile approach to the elucidation of magnetic parameters of CuFe{sub 2}O{sub 4} nanoparticles synthesized by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Kurian, Jessyamma [B.A.M. College, Thuruthicad, Mallappally, Kerala (India); Jacob Mathew, M., E-mail: jacob.chrisdale@gmail.com [S.B. College, Changanassery, Kerala (India)

    2017-04-15

    Pure pseudo cubic shaped copper ferrite nanoparticles with narrow size distribution in the range 6–17 nanometer are prepared by hydrothermal method under various synthesis conditions namely, hydrothermal temperature, heating time, and pH. The structural and morphological studies are carried out in detail using XRD and TEM analysis. The crystallite size and particle size are calculated from different characterization techniques. The distribution of cations among the tetrahedral and octahedral sites is determined from the XRD intensity calculation. Compositional features are determined from EDS analysis. Magnetic studies are carried out using VSM at room temperature and the important magnetic parameters are extracted from it. Contributions due to various types of magnetization to the total magnetization are determined from the theoretical fitting of the magnetization curve. Excellent fits are obtained for all samples prepared under various conditions. The ferromagnetic, superparamagnetic and paramagnetic contributions to the magnetization are determined from the analysis of fitted M-H curve. It is observed that the hydrothermal reaction time and temperature has little effect on the structural and magnetic parameters of the material. However, pH plays a crucial role in the physical properties of nanoparticles. Optimized synthesis conditions are identified for changing the soft ferrimagnetic nature of copper ferrite nanoparticles to superparamagnetic nature. - Highlights: • CuFe{sub 2}O{sub 4} particles of 6–17 nm size are produced by varying synthesis conditions. • Cubic single phase nano copper ferrite is obtained at a pH of 12. • Magnetic parameters calculated from theoretical fitting of M-H curves. • Dependence of the magnetic properties on Particle size and pH elucidated.

  4. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures using one-pot hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Guo, E-mail: guogao@sjtu.edu.cn [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Qiang; Cheng, Xin-Bing [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Sun, Rongjin [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shapter, Joseph G., E-mail: joe.shapter@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide 5042 (Australia); Yin, Ting [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Cui, Daxiang, E-mail: dxcui@sjtu.edu.cn [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-15

    Rechargeable lithium ion batteries (LIBs) are currently the dominant power source for all sorts of electronic devices due to their low cost and high energy density. The cycling stability of LIBs is significantly compromised due to the broad satellite peak for many anode materials. Herein, we develop a facile hydrothermal process for preparing rare-earth (Er, Tm) ions doped three-dimensional (3D) transition metal oxides/carbon hybrid nanocomposites, namely CNTs-GO-Fe{sub 3}O{sub 4}, CNTs-GO-Fe{sub 3}O{sub 4}-Er and CNTs-GO-Fe{sub 3}O{sub 4}-Tm. The GO sheets and CNTs are interlinked by ultrafine Fe{sub 3}O{sub 4} nanoparticles forming three-dimensional (3D) architectures. When evaluated as anode materials for LIBs, the CNTs-GO-Fe{sub 3}O{sub 4} hybrid composites have a bigger broad satellite peak. As for the CNTs-GO-Fe{sub 3}O{sub 4}-Er and CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites, the broad satellite peak can be completely eliminated. When the current density changes from 5 C back to 0.1 C, the capacity of CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites can recover to 1023.9 mAhg{sup −1}, indicating an acceptable rate capability. EIS tests show that the charge transfer resistance does not change significantly after 500 cycles, demonstrating that the cycling stability of CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites are superior to CNTs-GO-Fe{sub 3}O{sub 4} and CNTs-GO-Fe{sub 3}O{sub 4}-Er hybrid structures. - Graphical abstract: One-pot hydrothermal method for synthesis of rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures as anode materials of LIBs have been reported. - Highlights: • We report the synthesis of rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures. • The hybrid structures can improve the cycling stability of lithium storage. • As for anode materials, the broad satellite peak can be completely eliminated. • When the rate return back to 0.1 C, the capacity can recover to 1023.9 mAhg{sup −1}. • After 500

  5. Interfacial hydrothermal synthesis of nanorod-like CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with enhanced photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Linrui, E-mail: houlr629@163.com; Lian, Lin; Zhang, Longhai; Zhou, Lu; Yuan, Changzhou, E-mail: ayuancz@163.com

    2014-12-15

    In the work, CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with various compositions in the entire range of 0 ≤ x ≤ 1 have been prepared successfully by a facile interfacial hydrothermal method. All CdMo{sub 1−x}W{sub x}O{sub 4} products are composed of one-dimensional (1D) nanorods (NRs) with tetragonal structure. The composition-dependent structure, absorption properties and photocatalytic efficiencies of the resulting 1D CdMo{sub 1−x}W{sub x}O{sub 4} samples are systematically investigated. The photocatalytic degradation of methylene blue (MB) under ultraviolet (UV) light irradiation was utilized as a model reaction to evaluate the photocatalytic activities of all the samples. The sample, CdMo{sub 0.5}W{sub 0.5}O{sub 4} (i.e., x = 0.5) NRs, exhibits the highest photocatalytic activity and appealing stability for widespread photocatalytic application, owing to the unique 1D nanoscale architecture, suitable band gap and strong absorption in the UV region. Our approach developed here provides an elegant technique to tune both the nanoarchitecture and band gap of the photocatalysts by simply adjusting the composition of the solid solutions, resulting in the enhanced photocatalytic activity. Moreover, the method we proposed can be further extended to the smart design and controllable synthesis of other novel and highly efficient multi-component photocatalysts for environmental remediation. - Graphical abstract: 1D nanorod-based CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with various W compositions in the entire range of 0 ≤ x ≤ 1 were fabricated by a facile interfacial hydrothermal strategy, and exhibited intriguing photodecomposition of the MB under UV light irradiation. - Highlights: • CdMo{sub 1−x}W{sub x}O{sub 4} solid solutions with W compositions of 0 ≤ x ≤ 1 were prepared. • Facile interfacial hydrothermal strategy was developed. • 1D nanorod-based CdMo{sub 1−x}W{sub x}O{sub 4} photocatalysts were synthesized.

  6. RBE comparison between rapid electrons of 20 MeV and 45 MeV with survival rate, DNA synthesis, DNA reparation and nucleoid sedimentation

    International Nuclear Information System (INIS)

    Alth, G.; Weniger, P.; Turtzer, K.; Klein, W.; Kocsis, F.; Krankenhaus der Stadt Wien-Lainz; Oesterreichisches Forschungszentrum Seibersdorf G.m.b.H. Inst. fuer Biologie)

    1982-01-01

    In order to find out possible differences of the biologic efficacy of rapid electrons of different energies, the authors examined the influence of rapid electrons of 20 MeV and 45 MeV upon the survival rate of Hela cells S3, their cell growth, DNA synthesis, DNA reparation, and sedimentation of nucleoids. The results show a difference only for the nucleoid sedimentation, i.e. there are more fractured DNA cords after 45 MeV irradiation. No significant differences could be demonstrated for the parameters of the survival curve, DNA synthesis and DNA reparation. Four double tests were carried out corresponding to the indicated types of examination. (orig.) [de

  7. Synthesis of ZSM-5 on the Surface of Foam Type Porous SiC Support

    International Nuclear Information System (INIS)

    Jung, Eunjin; Lee, Yoon Joo; Won, Ji Yeon; Kim, Younghee; Kim, Soo Ryong; Shin, Dong-Geun; Kwon, Woo Teck; Lee, Hyun Jae

    2015-01-01

    ZSM-5 crystals grew by hydrothermal synthesis method on the surface of foam type porous silicon carbide ceramics which fabricated by polymer replica method. Oxide layer was developed on the surface of the porous silicon carbide ceramics to induce growth of ZSM-5 from the surface. In this study, hydrothermal synthesis was carried out for 7 h at 150 .deg. C using TEOS, Al(NO 3 )•9H 2 O and TPAOH as raw materials in the presence of the porous silicon carbide ceramics. X-ray Powder Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses were confirmed 1-3 μm sized ZSM-5 crystals have grown on the surface of porous silicon carbide ceramics. BET data shows that small pores about 10Å size drastically enhanced and surface area increased from 0.83 m 2 /g to 30.75 m 2 /g after ZSM-5 synthesis on the surface of foam type porous silicon carbide ceramics.

  8. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    In this study we have examined the effects of insulin on protein synthesis in cultured fetal chick neurons. Protein synthesis was monitored by measuring the incorporation of [3H]leucine (3H-leu) into trichloroacetic acid (TCA)-precipitable protein. Upon addition of 3H-leu, there was a 5-min lag before radioactivity occurred in protein. During this period cell-associated radioactivity reached equilibrium and was totally recovered in the TCA-soluble fraction. After 5 min, the incorporation of 3H-leu into protein was linear for 2 h and was inhibited (98%) by the inclusion of 10 micrograms/ml cycloheximide. After 24 h of serum deprivation, insulin increased 3H-leu incorporation into protein by approximately 2-fold. The stimulation of protein synthesis by insulin was dose dependent (ED50 = 70 pM) and seen within 30 min. Proinsulin was approximately 10-fold less potent than insulin on a molar basis in stimulating neuronal protein synthesis. Insulin had no effect on the TCA-soluble fraction of 3H-leu at any time and did not influence the uptake of [3H]aminoisobutyric acid into neurons. The isotope ratio of 3H-leu/14C-leu in the leucyl tRNA pool was the same in control and insulin-treated neurons. Analysis of newly synthesized proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that insulin uniformly increased the incorporation of 14C-leu into all of the resolved neuronal proteins. We conclude from these data that (1) insulin rapidly stimulates overall protein synthesis in fetal neurons independent of amino acid uptake and aminoacyl tRNA precursor pools; (2) stimulation of protein synthesis is mediated by the brain subtype of insulin receptor; and (3) insulin is potentially an important in vivo growth factor for fetal central nervous system neurons

  9. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  10. Hydrothermal synthesis of histidine-functionalized single-crystalline gold nanoparticles and their pH-dependent UV absorption characteristic.

    Science.gov (United States)

    Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Meng, Ronghua; Guo, Songling; Xing, Zhimin; Tan, Shengnan

    2010-03-01

    L-Histidine capped single-crystalline gold nanoparticles have been synthesized by a hydrothermal process under a basic condition at temperature between 65 and 150 degrees C. The produced gold nanoparticles were spherical with average diameter of 11.5+/-2.9nm. The synthesized gold colloidal solution was very stable and can be stored at room temperature for more than 6 months. The color of the colloidal solution can change from wine red to mauve, purple and blue during the acidifying process. This color changing phenomenon is attributed to the aggregation of gold nanoparticles resulted from hydrogen bond formation between the histidines adsorbed on the gold nanoparticles surfaces. This hydrothermal synthetic method is expected to be used for synthesizing some other amino acid functionalized gold nanomaterials.

  11. Hydrothermal synthesis and photoelectrochemical performance enhancement of TiO{sub 2}/graphene composite in photo-generated cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwei, E-mail: vivizhg@yahoo.com [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590 (China); Guo, Hanlin; Sun, Haiqing [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Zeng, Rong-Chang [College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590 (China)

    2016-09-30

    Highlights: • TiO{sub 2}/graphene composites were synthesized through one-step hydrothermal method. • A bicrystalline framework of anatase and brookite formed. • Electrons transfer in the biphasic TiO{sub 2} results in electron-hole separation. • Graphene lead to a negative shift of the Fermi level. • The transfer barrier in the TiO{sub 2} and 304 stainless steel interface is decreased. - Abstract: TiO{sub 2}/graphene composites were synthesized through one-step hydrothermal method. The composites show an enhancement in photo-generated cathodic protection as the time-dependent profiles of photocurrent responses has confirmed. XRD data show that a bicrystalline framework of anatase and brookite formed as graphene provided donor groups in the hydrothermal process. The transfer of photoinduced electrons in the biphasic TiO{sub 2} results in effective electron-hole separation. Moreover, graphene lead to a negative shift of the Fermi level as evidenced by Mott–Schottky analysis, which decreases the Schottky barrier formed in the TiO{sub 2} and 304 stainless steel interface and results in the enhancement of photo-generated cathodic protection.

  12. Template-free synthesis of ZnWO{sub 4} powders via hydrothermal process in a wide pH range

    Energy Technology Data Exchange (ETDEWEB)

    Hojamberdiev, Mirabbos, E-mail: mirabbos_uz@yahoo.com [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China); Zhu, Gangqiang [School of Physics and Information Technology, Shaanxi Normal University, Xi' an 710062 (China); Xu, Yunhua [Shaanxi Key Laboratory of Nano-materials and Technology, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2010-12-15

    ZnWO{sub 4} powders with different morphologies were fabricated through a template-free hydrothermal method at 180 {sup o}C for 8 h in a wide pH range. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible and luminescence spectrophotometers were applied to study the effects of pH values on crystallinity, morphology, optical and luminescence properties. The XRD results showed that the WO{sub 3} + ZnWO{sub 4}, ZnWO{sub 4}, and ZnO phases could form after hydrothermal processing at 180 {sup o}C for 8 h with the pH values of 1, 3-11, and 13, respectively. The SEM and TEM observation revealed that the morphological transformation of ZnWO{sub 4} powders occurred with an increase in pH values as follows: star anise-, peony-, and desert rose-like microstructures and soya bean- and rod-like nanostructures. The highest luminescence intensity was found to be in sample consisting of star anise-like crystallites among all the samples due to the presence of larger particles with high crystallinity resulted from the favorable pH under the current hydrothermal conditions.

  13. Synthesis of barium titanate crystalline nanoparticles using hydrothermal microwave method; Obtencao de nanoparticulas cristalinas de titanato de bario usando metodo hidrotermal assistido por microondas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.E.; Silva, R.A.; Teixeira, S.R. [Universidade Estadual Paulista (DFQB/FCT/UNESP), Presidente Prudente, SP (Brazil). Dept. de Fisica, Quimica e Biologia. Lab. de Compositos e Ceramicas Funcionais; Moreira, M.L. [Universidade Federal de Sao Carlos (LiEC/UFSCAR), SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica; Volanti, D.P.; Longo, E. [Universidade Estadual Paulista (LiEC/UNESP), Araraquara, SP (Brazil). Lab. Interdisciplinar de Eletroquimica e Ceramica

    2009-07-01

    The hydrothermal microwave method (HTMW) was used in the synthesis of barium titanate (BaTiO{sub 3}) nanoparticles. The solution was prepared in deionized water by using titanium (IV) isopropoxide (C{sub 12}H{sub 28}O{sub 4}Ti), barium chloride (BaCl{sub 2}.2H{sub 2}O) and potassium hydroxide (KOH). Afterwards it was heated in an adapted conventional microwave oven. The system is composed of a temperature controller with thermocouple, a hermetic camera of reaction made of teflon, a manometer and a safety valve. The solution was heated to 140 deg C, at a 140 deg C/min heating rate, and maintained at this temperature for 40 minutes. The obtained ceramic powder was characterized by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The XRD data confirms the formation of a high crystalline ceramic material with perovskite structure. The FE-SEM images reveal morphologies with dimensions varying from 27 to 54 nm. (author)

  14. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    Science.gov (United States)

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field.

    Science.gov (United States)

    Lang, Susan Q; Früh-Green, Gretchen L; Bernasconi, Stefano M; Brazelton, William J; Schrenk, Matthew O; McGonigle, Julia M

    2018-01-15

    Hydrogen produced during water-rock serpentinization reactions can drive the synthesis of organic compounds both biotically and abiotically. We investigated abiotic carbon production and microbial metabolic pathways at the high energy but low diversity serpentinite-hosted Lost City hydrothermal field. Compound-specific 14 C data demonstrates that formate is mantle-derived and abiotic in some locations and has an additional, seawater-derived component in others. Lipids produced by the dominant member of the archaeal community, the Lost City Methanosarcinales, largely lack 14 C, but metagenomic evidence suggests they cannot use formate for methanogenesis. Instead, sulfate-reducing bacteria may be the primary consumers of formate in Lost City chimneys. Paradoxically, the archaeal phylotype that numerically dominates the chimney microbial communities appears ill suited to live in pure hydrothermal fluids without the co-occurrence of organisms that can liberate CO 2 . Considering the lack of dissolved inorganic carbon in such systems, the ability to utilize formate may be a key trait for survival in pristine serpentinite-hosted environments.

  16. Evaluating Growth of Zeolites on Fly Ash in Hydro-Thermally Heated Low Alkaline Solution

    Science.gov (United States)

    Jha, Bhagwanjee; Singh, D. N.

    2017-12-01

    Fly ash has been well established materials for synthesis of zeolites, under hydrothermally heated aqueous NaOH solution. Efficacy of such technique is reported to be improved when high molarity of NaOH is used. Consequently, highly alkaline waste solution, as by-product, is generally disposed of in the surrounding, which may contaminate the environment. In this context, less alkaline NaOH solution may become a safer option, which has not been tried in the past as per the literature. With this in view, the present study demonstrates effectiveness of the 0.5 M NaOH solution and critically monitors transition on the fly ash after hydrothermal treatment. As an enhancement over previous researchers, such activation of the fly ash finally results in remarkable morphological and mineralogical growth on the bulk material (the residue), which comprises of new nano-sized crystals (the zeolites Na-P1 and natrolite), after 24 h of activation of the fly ash.

  17. Synthesis of fibrous TiO2 from layered protonic tetratitanate by a hydrothermal soft chemical process

    International Nuclear Information System (INIS)

    Jing Xuezhen; Li Yongxiang; Yang Qunbao; Yin Qingrui

    2004-01-01

    Fibrous TiO 2 (anatase) was prepared by a hydrothermal soft chemical process using H 2 Ti 4 O 9 ·0.25H 2 O as a template precursor. The influence of reaction time, temperature and precursor concentration on the phase formation, morphology and crystal-axis orientation were studied. The results have shown that fibrous anatase can be obtained at 220 deg. C for 24 h with the precursor concentrations in the range of 0.025-0.100 M, and that particles had diameters of 0.2-1 μm and lengths of 2-20 μm. The fibrous TiO 2 anatase prepared by this method showed a high orientation along a-axis direction. X-ray diffractometer (XRD) and SEM analyses have indicated that in situ transformation mechanism dominated the entire hydrothermal process but dissolution-recrystallization also occurred on the surface of the particles

  18. Investigation of the Optimal Parameters in Hydrothermal Method for the Synthesis of ZnO Nanorods

    Directory of Open Access Journals (Sweden)

    Ying-Chung Chen

    2014-01-01

    Full Text Available We investigated a two-step method to deposit the ZnO-based nanostructure films, including nanorods and nanoflowers. In the first step, sputtering method was used to deposit the ZnO films on SiO2/Si substrates as the seed layer. In the second step, Zn(NO32–6H2O and C6H12N4 were used as precursors and hydrothermal process was used as the method to synthesize the ZnO films. After that, the ZnO films were measured by an X-ray diffraction pattern and a FESEM to analyze their crystallization and morphology. We had found that the ZnO films had three different morphologies synthesized on ZnO/SiO2/Si substrates, including irregular-plate structure films, nanorod films, and beautiful chrysanthemum-like clusters (nanoflower films. We would prove that the face direction of ZnO/SiO2/Si substrates in the hydrothermal bottle and deposition time were two important factors to influence the synthesized results of the ZnO films.

  19. A thermoelectric cap for seafloor hydrothermal vents

    International Nuclear Information System (INIS)

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun

    2016-01-01

    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  20. Effects of quartz particle size and water-to-solid ratio on hydrothermal synthesis of tobermorite studied by in-situ time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Kikuma, J.; Tsunashima, M.; Ishikawa, T.; Matsuno, S.; Ogawa, A.; Matsui, K.; Sato, M.

    2011-01-01

    Hydrothermal synthesis process of tobermorite (5CaO.6SiO 2 .5H 2 O) has been investigated by in-situ X-ray diffraction using high-energy X-rays from a synchrotron radiation source in combination with a purpose-build autoclave cell. Dissolution rates of quartz were largely affected by its particle size distribution in the starting mixtures. However, the composition (Ca/Si) of non-crystalline C-S-H at the start of tobermorite formation was identical regardless of the quartz dissolution rate. An effect of water-to-solid ratio (w/s) was investigated for samples using fine particle quartz. Tobermorite did not occur with w/s of 1.7 but occurred with w/s higher than 3.0. Surprisingly, however, the dissolution curves of quartz were nearly identical for all samples with w/s from 1.7 to 9, indicating that the dissolution rate is predominated by surface area. Possible reaction mechanism for tobermorite formation will be discussed in terms of Ca and/or silicate ion concentration in the liquid phase and distribution of Ca/Si in non-crystalline C-S-H. - Graphical abstract: Time-resolved XRD data set was obtained at up to 190 deg. C under a saturated steam pressure. Tobermorite (5CaO.6SiO 2 .5H 2 O) formation reaction was investigated in detail for several different starting materials. Highlights: → Hydrothermal formation of tobermorite was monitored by in-situ XRD. → Ca/Si of C-S-H at the start time of tobermorite formation was determined. → The Ca/Si value was identical regardless of the quartz particle size in the starting mixture.

  1. Biomolecule-Assisted Hydrothermal Synthesis and Self-Assembly of Bi2Te3 Nanostring-Cluster Hierarchical Structure

    DEFF Research Database (Denmark)

    Mi, Jianli; Lock, Nina; Sun, Ting

    2010-01-01

    A simple biomolecule-assisted hydrothermal approach has been developed for the fabrication of Bi2Te3 thermoelectric nanomaterials. The product has a nanostring-cluster hierarchical structure which is composed of ordered and aligned platelet-like crystals. The platelets are100 nm in diameter...

  2. ZnO nanoparticle as catalyst for efficient green one-pot synthesis of ...

    Indian Academy of Sciences (India)

    The zinc oxide (ZnO) nanoparticles functions as highly effective catalyst for the reactions of various o-hydroxy ... the synthesis of relatively large and complex molecules .... of ethylene diamine in hydrothermal ZnO nanorod syn- thesis. Di- and ...

  3. BCT phase formation in synthesis via microwave assisted hydrothermal method

    International Nuclear Information System (INIS)

    Barra, B.C.; Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Lanzi, C.A.C.

    2012-01-01

    In previous work, samples of barium and calcium titanate (Ba1-xCaxTiO3 (BCT x = 0- 1) were prepared using the microwave assisted hydrothermal method in conditions of relatively short time and temperature. To the sample with 75wt% of Ca no BCT phase was formed but the photoluminescent emission was improved. In the present study, these titanates were synthesized by the same method with other concentrations of Ca, Ba1-xCaxTiO3 (x = 0, 0.20, 0.40, 0. 60, 0.80 and 1) to evaluate the limit of BCT phase formation. Results of X-ray diffraction showed that the phase BCT is formed between zero and 50wt%-Ca, in Ba substitution. Above this concentration, was observed only the formation of carbonates, and to x = 1 there was carbonate formation together with CaTiO3. These results were confirmed by micro Raman spectroscopy. (author)

  4. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation

    Directory of Open Access Journals (Sweden)

    Andreas eTeske

    2016-02-01

    Full Text Available The hydrothermal mats, mounds and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heatflow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for a wider survey of the entire spreading region.

  5. Rapid sedimentation of iron oxyhydroxides in an active hydrothermal shallow semi-enclosed bay at Satsuma Iwo-Jima Island, Kagoshima, Japan

    Science.gov (United States)

    Kiyokawa, Shoichi; Ueshiba, Takuya

    2015-04-01

    Hydrothermal activity is common in the fishing port of Nagahama Bay, a small semi-enclosed bay located on the southwest coast of Satsuma Iwo-Jima Island (38 km south of Kyushu Island, Japan). The bay contains red-brown iron oxyhydroxides and thick deposits of sediment. In this work, the high concentration and sedimentation rates of oxyhydroxide in this bay were studied and the sedimentary history was reconstructed. Since dredging work in 1998, a thickness of 1.0-1.5 m of iron oxyhydroxide-rich sediments has accumulated on the floor of the bay. To estimate the volume of iron oxyhydroxide sediments and the amount discharged from hydrothermal vents, sediment traps were operated for several years and 13 sedimentary core samples were collected to reconstruct the 10-year sedimentary history of Nagahama Bay. To confirm the timing of sedimentary events, the core data were compared with meteorological records obtained on the island, and the ages of characteristic key beds were thus identified. The sedimentation rate of iron oxyhydroxide mud was calculated, after correcting for sediment input from other sources. The sediments in the 13 cores from Nagahama Bay consist mainly of iron oxyhydroxide mud, three thick tephra beds, and a topmost thick sandy mud bed. Heavy rainfall events in 2000, 2001, 2002, and 2004-2005 coincide with tephra beds, which were reworked from Iwo-Dake ash deposits to form tephra-rich sediment. Strong typhoon events with gigantic waves transported outer-ocean-floor sediments and supplied quartz, cristobalite, tridymite, and albite sands to Nagahama Bay. These materials were redeposited together with bay sediments as the sandy mud bed. Based on the results from the sediment traps and cores, it is estimated that the iron oxyhydroxide mud accumulated in the bay at the relatively rapid rate of 33.3 cm/year (from traps) and 2.8-4.9 cm/year (from cores). The pore water contents within the sediment trap and core sediments are 73%-82% and 47%-67%, respectively

  6. CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method

    International Nuclear Information System (INIS)

    Keyson, D.; Volanti, D.P.; Cavalcante, L.S.; Simoes, A.Z.; Varela, J.A.; Longo, E.

    2008-01-01

    This letter reports the synthesis of CuO urchin-nanostructures by a simple and novel hydrothermal microwave method. The formation and growth of urchin-nanostructures is mainly affected by the addition of polyethylene glycol (PEG). The hierarchical malachite particles are uniform spheres with a diameter of 0.7-1.9 μm. CuO urchin-nanostructures were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FEG-SEM) and nitrogen adsorption (BET). The specific surface area of the CuO nanostructured microspheres was about 170.5 m 2 /g. A possible mechanism for the formation of such CuO urchin-nanostructures is proposed

  7. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki [Laboratory of Interface Microstructure Analysis (LIMSA), Division of Materials Science and Engineering, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)], E-mail: himendra@eng.hokudai.ac.jp

    2008-10-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method.

  8. Synthesis of aluminum oxy-hydroxide nanofibers from porous anodic alumina

    International Nuclear Information System (INIS)

    Jha, Himendra; Kikuchi, Tatsuya; Sakairi, Masatoshi; Takahashi, Hideaki

    2008-01-01

    A novel method for the synthesis of aluminum oxy-hydroxide nanofibers from a porous anodic oxide film of aluminum is demonstrated. In the present method, the porous anodic alumina not only acts as a template, but also serves as the starting material for the synthesis. The porous anodic alumina film is hydrothermally treated for pore-sealing, which forms aluminum oxy-hydroxide inside the pores of the oxide film as well as on the surface of the film. The hydrothermally sealed porous oxide film is immersed in the sodium citrate solution, which selectively etches the porous aluminum oxide from the film, leaving the oxy-hydroxide intact. The method is simple and gives highly uniform aluminum oxy-hydroxide nanofibers. Moreover, the diameter of the nanofibers can be controlled by controlling the pore size of the porous anodic alumina film, which depends on the anodizing conditions. Nanofibers with diameters of about 38-85 nm, having uniform shape and size, were successfully synthesized using the present method

  9. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery

    International Nuclear Information System (INIS)

    Myung, Seung-Taek; Lee, Myung-Hun; Komaba, Shinichi; Kumagai, Naoaki; Sun, Yang-Kook

    2005-01-01

    In attempts to prepare layered Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 , hydrothermal method was employed. The hydrothermal precursor, [Ni 1/3 Co 1/3 Mn 1/3 ](OH) 2 , was synthesized via a coprecipitation route. The sphere-shaped powder precursor was hydrothermally reacted with LiOH aqueous solution at 170 deg. C for 4 days in autoclave. From X-ray diffraction and scanning electron microscopic studies, it was found that the as-hydrothermally prepared powders were crystallized to layered α-NaFeO 2 structure and the particles had spherical shape. The as-prepared Li[Ni 1/3 Co 1/3 Mn 1/3 ]O 2 delivered an initial discharge of about 110 mA h g -1 due to lower crystallinity. Heat treatment of the hydrothermal product at 800 deg. C was significantly effective to improve the structural integrity, which consequently affected the increase in the discharge capacity to 157 (4.3 V cut-off) and 182 mA h g -1 (4.6 V cut-off) at 25 deg. C with good reversibility

  10. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Demes, Thomas [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Ternon, Céline, E-mail: celine.ternon@grenoble-inp.fr [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, LTM, F-38000 Grenoble (France); Morisot, Fanny [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Riassetto, David [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Legallais, Maxime [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Roussel, Hervé; Langlet, Michel [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France)

    2017-07-15

    Highlights: • ZnO nanowires are grown on sol-gel ZnO seed layers by hydrothermal synthesis. • Ultra-thin and high aspect ratio nanowires are obtained without using additives. • Nanowire diameter is 20–25 nm regardless of growth time and seed morphology. • A nanowire growth model is developed on the basis of thermodynamic considerations. • The nanowires are intended for integration into electrically conductive nanonets. - Abstract: Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20–25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20–25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  11. Synthesis of high intrinsic loss power aqueous ferrofluids of iron oxide nanoparticles by citric acid-assisted hydrothermal-reduction route

    International Nuclear Information System (INIS)

    Behdadfar, Behshid; Kermanpur, Ahmad; Sadeghi-Aliabadi, Hojjat; Morales, Maria del Puerto; Mozaffari, Morteza

    2012-01-01

    Monodispersed aqueous ferrofluids of iron oxide nanoparticle were synthesized by hydrothermal-reduction route. They were characterized by X-ray diffraction analysis, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy and dynamic light scattering. The results showed that certain concentrations of citric acid (CA) are required to obtain only magnetic iron oxides with mean particle sizes around 8 nm. CA acts as a modulator and reducing agent in iron oxide formation which controls nanoparticle size. The XRD, magnetic and heating measurements showed that the temperature and time of hydrothermal reaction can affect the magnetic properties of obtained ferrofluids. The synthesized ferrofluids were stable at pH 7. Their mean hydrodynamic size was around 80 nm with polydispersity index (PDI) of 0.158. The calculated intrinsic loss power (ILP) was 9.4 nHm 2 /kg. So this clean and cheap route is an efficient way to synthesize high ILP aqueous ferrofluids applicable in magnetic hyperthermia. - Graphical abstract: Monodispersed aqueous ferrofluids of iron oxide nanoparticles were synthesized by hydrothermal-reduction method with citric acid as reductant which is an efficient way to synthesize aqueous ferrofluids applicable in magnetic hyperthermia. Highlights: ► Aqueous iron oxide ferrofluids were synthesized by hydrothermal-reduction route. ► Citric acid acted as reducing agent and surfactant in the route. ► This is a facile, low energy and environmental friendly route. ► The aqueous iron oxide ferrofluids were monodispersed and stable at pH of 7. ► The calculated intrinsic loss power of the synthesized ferrofluids was very high.

  12. Presence and diversity of anammox bacteria in cold hydrocarbon-rich seeps and hydrothermal vent sediments of the Guaymas Basin

    NARCIS (Netherlands)

    Russ, L.; Kartal, B.; Op den Camp, H.J.M.; Sollai, M.; Le Bruchec, J.; Caprais, J.-C.; Godfroy, A.; Sinninghe Damsté, J.S.; Jetten, M.S.M.

    2013-01-01

    Hydrothermally active sediments are highly productive, chemosynthetic areas which are characterized by the rapid turnover of particulate organic matter under extreme conditions in which ammonia is liberated. These systems might be suitable habitats for anaerobic ammonium oxidizing (anammox) bacteria

  13. Hydrothermal synthesis and electrochemical characterization of VO2 (B) with controlled crystal structures

    International Nuclear Information System (INIS)

    Jiang Wentao; Ni Juan; Yu Ke; Zhu Ziqiang

    2011-01-01

    Three different VO 2 (B) nanostructures, including urchin-like VO 2 (B), VO 2 (B) honeycombs and VO 2 (B) nanorods have been successfully fabricated through hydrothermal process by adjusting the concentrations of the oxalic acid. The microstructure and morphology of the VO 2 nanostructures were evaluated by using X-ray diffraction and scanning and transmission electron microscopies. Electrochemical properties measurements of urchin-like VO 2 (B) and VO 2 (B) honeycombs showed excellent cycling performance, especially the urchin-like VO 2 (B) exhibited higher discharge capacity and better capacity retention.

  14. Microwave synthesis of Titanium Dioxide nanotubes for use in water treatment

    CSIR Research Space (South Africa)

    Sikhwivhilu, L

    2010-09-01

    Full Text Available various methods have been used to synthesise Titanium Dioxide (TiO2) (also known as Titania) nanoparticles hydrothermal synthesis in the presence of a base solution, has proved to be an effective approach to prepare 1D nanostructures of TiO2...

  15. Hydrothermal synthesis of uranyl squarates and squarate-oxalates: hydrolysis trends and in situ oxalate formation.

    Science.gov (United States)

    Rowland, Clare E; Cahill, Christopher L

    2010-07-19

    We report the synthesis of two uranyl squarates and two mixed-ligand uranyl squarate-oxalates from aqueous solutions under hydrothermal conditions. These products exhibit a range of uranyl building units from squarates with monomers in (UO(2))(2)(C(4)O(4))(5).6NH(4).4H(2)O (1; a = 16.731(17) A, b = 7.280(8) A, c = 15.872(16) A, beta = 113.294(16) degrees , monoclinic, P2(1)/c) and chains in (UO(2))(2)(OH)(2)(H(2)O)(2)(C(4)O(4)) (2; a = 12.909(5) A, b = 8.400(3) A, c = 10.322(4) A, beta = 100.056(7) degrees , monoclinic, C2/c) to two squarate-oxalate polymorphs with dimers in (UO(2))(2)(OH)(C(4)O(4))(C(2)O(4)).NH(4).H(2)O (3; a = 9.0601(7) A, b = 15.7299(12) A, c = 10.5108(8) A, beta = 106.394(1) degrees , monoclinic, P2(1)/n; and 4; a = 8.4469(6) A, b = 7.7589(5) A, c = 10.5257(7) A, beta = 105.696(1) degrees , monoclinic, P2(1)/m). The dominance at low pH of monomeric species and the increasing occurrence of oligomeric species with increasing pH suggests that uranyl hydrolysis, mUO(2)(2+) + nH(2)O right harpoon over left harpoon [(UO(2))(m)(OH)(n)](2m-n) + nH(+), has a significant role in the identity of the inorganic building unit. Additional factors that influence product assembly include in situ hydrolysis of squaric acid to oxalic acid, dynamic metal to ligand concentration, and additional binding modes resulting from the introduction of oxalate anions. These points and the effects of uranyl hydrolysis with changing pH are discussed in the context of the compounds presented herein.

  16. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  17. Synthesis and Photocatalytic Activity of Zn Cd S/TiO ...

    African Journals Online (AJOL)

    NICOLAAS

    Synthesis and Photocatalytic Activity of Zn x. Cd. 1–x ... Electrospinning and Hydrothermal Method. Wei Changa,b,* ... conductor composites such as CdS,9 SnO,10 PbS11. .... 280 nm. ZnxCd1–xS nanoparticles grew on the surface of TiO2 with.

  18. Ge/Si Ratios as a Tracer of Hydrothermal Activity in the Nepal Himalaya

    Science.gov (United States)

    Evans, M. J.; Derry, L. A.

    2001-12-01

    Advection of deep-seated crustal rocks, high internal heat production, and rapid erosion of the thrust wedge result in steep thermal gradients in the crystalline rocks of the Himalayan front. Meteoric water circulation within these rocks produces geothermal activity in the deeply-incised river valleys near the Main Central Thrust shear zone. The springs have measured temperatures up to 70° C and TDS up to 8000 mg/L and drive significant anomalies in river chemistry. We have carried out a detailed study of the role of hot springs in the Narayani River basin of central Nepal (area 35,000 km2), the major drainage of the central Nepal Himalaya and a major tributary to the Ganges. In order to quantify the fluxes of heat and solutes from geothermal systems in the Narayani basin, the hydrothermal fluid flux must be estimated. As part of an ongoing effort to investigate the use of germanium-silicon systematics, we measured Ge/Si ratios in main stem, tributary and hot spring waters of the Narayani basin. While Ge/Si ratios in tributaries are similar to non-polluted world rivers (Iceland (9 to 150 μ mol/mol). The high Ge/Si ratios in the hot springs may reflect Rayleigh fractionation as low Ge/Si quartz is precipitated. The wide disparity in stream vs. hydrothermal values makes Ge/Si a valuable tool for quantifying hydrothermal fluid flux by mass balance. We can use a hydrothermal fluid flux estimate derived from the chemical mass balance to estimate convective heat loss in the Narayani basin. Preliminary estimates in the Marsyandi River yield a thermal power output rate of 200 MW, comparable with geothermal fields in the Taupo Volcanic Zone and when distributed over the spring affected area, yield a hydrothermal heat flow (160 mW/m2) comparable to continental heat flow and hydrothermal heat loss in the geothermal belt across Tibet. Fluxes of solutes and heat carried by Himalayan hot springs appear to be significant for Himalayan river chemistry and for thermal models of

  19. Synthesis of Co9S8 and CoS nanocrystallites using Co(II ...

    Indian Academy of Sciences (India)

    Synthesis of Co9S8 and CoS nanocrystallites using Co(II) ... hydrothermal processing,24,25 etc. However, the ..... Cobalt sulphide nanoparticles were prepared by refluxing .... CdS nanostructures in ethylenediamine.28,29 Figure 2a shows.

  20. Study on the hydrothermal treatment of Shenhua coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhicai Wang; Hengfu Shui; Zhanning Pei; Jinsheng Gao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-04-15

    In this paper, the hydrothermal treatment of Shenhua coal was carried out under 0.1 MPa (initial pressure) nitrogen and different temperature. Effects of hydrothermal treatment on the structure and the hydro-liquefaction activity of Shenhua coal were investigated by the ultimate and proximate analyses, the FTIR measurements and TG analyses of hydrothermally treated coals, and the characterizations of extraction and swelling properties, and the batch hydro-liquefaction of treated coal were also carried out. The results indicate that hydrothermal treatment above 200{sup o}C can increase the hydrogen content of treated coal and decrease the yield of volatiles and the content of ash, especially a large amount of CO and CH{sub 4} are found in gas products obtained by the hydrothermal treatment above 250{sup o}C. Hydrothermal treatment disrupts the weak covalent bond such as ether, ester and side-chain substituent by hydrolysis and pyrolysis, and changes the distribution of H-bond in coal. The swelling ratio and the Soxhlet extraction yield of treated coal decrease with the increase of hydrothermal treatment temperature. The conversion of liquefaction and the yield of CS{sub 2}/NMP mixed solvent extraction at ambient temperature are enhanced by hydrothermal treatment at 300{sup o}C. Therefore hydrogen donation reactions and the rupture of non-covalent bond and weak covalent bonds present in the process of hydrothermal treatment resulting in the changes of structure and reactivity of Shenhua coal. The results show that the hydro-liquefaction activity of Shenhua coal can be improved by hydrothermal pretreatment between 250{sup o}C and 300{sup o}C. 15 refs., 5 figs., 4 tabs.

  1. Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Xing Weinan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Ni Liang, E-mail: xingweinan3@126.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Huo Pengwei; Lu Ziyang; Liu Xinlin; Luo Yingying; Yan Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer CdS/halloysite nanotubes (HNTs) were synthesized by hydrothermal method. Black-Right-Pointing-Pointer The CdS/HNTs had better photocatalytic activity for degradation of tetracycline. Black-Right-Pointing-Pointer The presence of halloysite nanotubes both improved its photocatalytic activity and stability. - Abstract: A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.

  2. Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method

    International Nuclear Information System (INIS)

    Xing Weinan; Ni Liang; Huo Pengwei; Lu Ziyang; Liu Xinlin; Luo Yingying; Yan Yongsheng

    2012-01-01

    Highlights: ► CdS/halloysite nanotubes (HNTs) were synthesized by hydrothermal method. ► The CdS/HNTs had better photocatalytic activity for degradation of tetracycline. ► The presence of halloysite nanotubes both improved its photocatalytic activity and stability. - Abstract: A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.

  3. Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application

    International Nuclear Information System (INIS)

    Xi, Min; Zhang, Yulan; Long, Lizhen; Li, Xinjun

    2014-01-01

    Rutile TiO 2 nanorod arrays (TNRs) were achieved by hydrothermal process on TiCl 4 pretreated Ti foil. Subsequently, TNRs were hydrothermally etched in HCl solution to form hollow TiO 2 nanorod arrays (H-TNRs). The TiCl 4 pretreatment plays key roles in enhancement of Ti foil corrosion resistance ability and crystal nucleation introduction for TNRs growth. TNRs with desired morphology can be obtained by controlling TiCl 4 concentration and the amount of tetrabutyl titanate (TTB) accordingly. TNRs with the length of ∼1.5 μm and diameter of ∼200 nm, obtained on 0.15 M TiCl 4 pretreated Ti foil with 0.6 mL TTB, exhibits relatively higher photocurrent. The increased pore volume of the H-TNRs has contributed to the increased surface area which is benefit for Dye-Sensitized Solar Cells (DSSC) application. And the 180 °C-H-TNRs photoanode obtained from the 0.15-TiCl 4 -TNRs sample demonstrated 128.9% enhancement of photoelectric efficiency of DSSC compared to that of the original TNR photoanode. - Graphical abstract: Rutile hollow TiO 2 nanorod array photoanode obtained from original TiO 2 nanorod array photoanode by hydrothermal etching demonstrates enhanced photoelectric efficiency of DSSC. - Highlights: • TiO 2 nanorods are prepared via hydrothermal process on TiCl 4 -pretreated Ti foil. • Hollow TiO 2 nanorods are obtained by hydrothermal etching of TiO 2 nanorods. • TiCl 4 pretreatment plays a key role in protecting Ti foil from chemical corrosion. • Hollow TiO 2 nanorods photoanode shows enhanced photoelectric efficiency for DSSC

  4. Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method

    International Nuclear Information System (INIS)

    Doong, Ruey-an; Liao, Chun-Yi

    2017-01-01

    Highlights: • The Cu, N-codoped TNTs were prepared by microwave assisted hydrothermal method. • The Cu(0) in codoped TNTs can serve as electron donors as well as electron meditors. • The surface normalized rate constants for BPA removal by Cu, N-TNT were 1.5–4.3 times higher than that of P25 TiO_2. • The Cu, N-codoped TNTs prolonged the generation of radicals for at least 5 min. - Abstract: In this study, a rapid and effective microwave-assisted hydrothermal method was developed for the synthesis of Cu, N-codoped titanate nanotubes (Cu, N-TNTs) to enhance the photocatalytic degradation efficiency and rate of bisphenol A (BPA) under UV and visible light irradiations. The TNTs were first synthesized at 150 °C for 3 h under microwave heating conditions followed by the calcination at 450 °C in the presence of 6 wt% Cu ions and N_2/NH_3 to fabricate Cu, N-TNTs composites. The Cu, N-TNTs exhibited excellent photocatalytic activity toward BPA degradation under UV and visible light irradiations. The X-ray photoelectron spectra indicated that Cu species in Cu, N-TNTs were mainly in zerovalent form and could serve as the electron donors as well as shuttling species to accelerate the photodegradation of BPA. In addition, the nitrogen atoms were incorporated into the anatase lattices to increase the visible-light-responsive capability. The surface normalized reaction rate constants for BPA degradation were 4.3 and 1.5 times higher than those of Degussa P25 TiO_2 under UV and visible light irradiations, respectively. The electron spin resonance spectra showed that Cu, N-codoped TNTs prolonged the generation of oxygen-containing radicals for at least 5 min, resulting in the significant enhancement of photodegradation efficiency and rate of BPA. Results obtained in this study open a new avenue by using simple and effective microwave-assisted hydrothermal method to fabricate low dimensional codoped TNTs which can be potentially applied in a wide variety of fields of

  5. Hydrothermal carbonization. Investigation of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrueck, J.; Rossbach, M.; Reichert, D.; Bockhorn, H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. of Technical Chemistry and Polymerchemistry; Walz, L. [Energie Baden-Wuerttemberg AG, Karlsruhe (Germany); Eyler, D. [European Institute for Energy Research, Karlsruhe (Germany)

    2010-07-01

    For energetic use and as a raw material lignocellulosic biomass becomes more and more important. Among pyrolytic refining, the hydrothermal treatment can be an alternative way to deoxygenerate biomass. The objective of this study is to gain deeper insights into the Hydrothermal Carbonization (HTC) process and also to define basic parameters for the construction of a small pilot plant. The biomass is converted in an autoclave at temperatures between 180 C and 240 C establishing the respective vapour pressure. Reaction times between 1 and 12 hours are applied and various catalysts in different concentrations are tested. Elemental analysis of the product, a brown coal-like solid, shows a composition of ca. C{sub 4}H{sub 3}O{sub 1}, corresponding to a carbon recovery of 60% of initial carbon mass. The elemental composition of the product is independent of the process temperature and the applied biomass, if a minimal reaction time is adhered, which however heavily depends on the reaction temperature. The remaining carbon species in intermediate reaction products in the liquid and gas phase are characterised by use of GC/MS, HPLC and FTIR. From the experimental data a two-way mechanism is deduced that includes a rapid formation of an initial solid and dehydration and decomposition reactions which lead to smaller organic molecules, e.g. furfural and aromatic species, and can be promoted by acid catalysis, e.g. H{sub 2}SO{sub 4}. (orig.)

  6. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    Science.gov (United States)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  7. Hydrothermal bitumen generated from sedimentary organic matter of rift lakes - Lake Chapala, Citala Rift, western Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarate del Valle, Pedro F. [Departamento de Quimica, Universidad de Guadalajara - CUCEI, Ap. Postal 4-021, Guadalajara, Jalisco CP 44410 (Mexico); Simoneit, Bernd R.T. [Environmental and Petroleum Geochemistry Group, College of Oceanic and Atmospheric Sciences, Oregon State University, Building 104, Corvallis, OR 97331-5503 (United States)]. E-mail: simoneit@coas.oregonstate.edu

    2005-12-15

    Lake Chapala is in the Citala Rift of western Mexico, which in association with the Tepic-Zacoalco and Colima Rifts, form the well-known neotectonic Jalisco continental triple junction. The rifts are characterized by evidence for both paleo- and active hydrothermal activity. At the south shore of the lake, near the Los Gorgos sublacustrine hydrothermal field, there are two tar emanations that appear as small islands composed of solid, viscous and black bitumen. Aliquots of tar were analyzed by GC-MS and the mixtures are comprised of geologically mature biomarkers and an UCM. PAH and n-alkanes are not detectable. The biomarkers consist mainly of hopanes, gammacerane, tricyclic terpanes, carotane and its cracking products, steranes, and drimanes. The biomarker composition and bulk C isotope composition ({delta} {sup 13}C = -21.4%) indicate an organic matter source from bacteria and algae, typical of lacustrine ecosystems. The overall composition of these tars indicates that they are hydrothermal petroleum formed from lacustrine organic matter in the deeper sediments of Lake Chapala exceeding 40 ka ({sup 14}C) in age and then forced to the lakebed by tectonic activity. The absence of alkanes and the presence of an UCM with mature biomarkers are consistent with rapid hydrothermal oil generation and expulsion at temperatures of 200-250 deg. C. The occurrence of hydrothermal petroleum in continental rift systems is now well known and should be considered in future energy resource exploration in such regions.

  8. Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: Comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness.

    Science.gov (United States)

    Ezeh, Collins I; Tomatis, Marco; Yang, Xiaogang; He, Jun; Sun, Chenggong

    2018-01-01

    Amine functionalized layered double hydroxide (LDHs) adsorbents prepared using three different routes: co-precipitation, sono-chemical and ultrasonic-assisted high pressure hydrothermal. The prepared adsorbent samples were characterized using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning electron microscope-Energy dispersive X-ray spectroscopy (SEM-EDX), Temperature Programmed Desorption (TPD), Brunauer-Emmett-Teller (BET), and Thermogravimetric analysis (TGA), respectively. The performance of the prepared adsorbents was tested in a controlled thermal-swing adsorption process to measure its adsorption capacity, regeneration and cyclic efficiencies subsequently. The characterisation results were compared with those obtained using the conventional preparation routes but taking into account of the impact of sonochemical and hydrothermal pre-treatment on textural properties, adsorption capacity, regeneration and cyclic efficiencies. Textural results depicts a surge in surface area of the adsorbent synthesised by hydrothermal route (311m 2 /g) from 25 to 171m 2 /g for conventional and ultrasonic routes respectively. Additionally, it has been revealed from the present study that adsorbents prepared using ultrasonic-assisted hydrothermal route exhibit a better CO 2 uptake capacity than that prepared using sonochemical and conventional routes. Thus, the ultrasonic-assisted hydrothermal treatment can effectively promote the adsorption capacity of the adsorbent. This is probably due to the decrease of moderate (M-O) and weak (OH - groups) basic sites with subsequent surge in the number of strong basic sites (O 2- ) resulting from the hydrothermal process. Moreover, the cyclic adsorption efficiency of the ultrasonic mediated process was found to be 76% compared with 60% for conventional and 53% for hydrothermal routes, respectively. According to the kinetic model analysis, adsorption mechanism is mostly dominated by physisorption before amine

  9. Synthesis and Characterization of WO3/Graphene Nanocomposites for Enhanced Photocatalytic Activities by One-Step In-Situ Hydrothermal Reaction

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Hu

    2018-01-01

    Full Text Available Tungsten trioxide (WO3 nanorods are synthesized on the surface of graphene (GR sheets by using a one-step in-situ hydrothermal method employing sodium tungstate (Na2WO4·2H2O and graphene oxide (GO as precursors. The resulting WO3/GR nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirm that the interface between WO3 nanorod and graphene contains chemical bonds. The enhanced optical absorption properties are measured by UV-vis diffuse reflectance spectra. The photocatalytic activity of the WO3/GR nanocomposites under visible light is evaluated by the photodegradation of methylene blue, where the degradation rate of WO3/GR nanocomposites is shown to be double that of pure WO3. This is attributed to the synergistic effect of graphene and the WO3 nanorod, which greatly enhances the photocatalytic performance of the prepared sample, reduces the recombination of the photogenerated electron-hole pairs and increases the visible light absorption efficiency. Finally, the photocatalytic mechanism of the WO3/GR nanocomposites is presented. The synthesis of the prepared sample is convenient, direct and environmentally friendly. The study reports a highly efficient composite photocatalyst for the degradation of contaminants that can be applied to cleaning up the environment.

  10. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route

    Science.gov (United States)

    Iwasaki, Tomohiro; Nakatsuka, Ryo; Murase, Kenya; Takata, Hiroshige; Nakamura, Hideya; Watano, Satoru

    2013-01-01

    This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type) hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments. PMID:23629669

  11. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route

    Directory of Open Access Journals (Sweden)

    Tomohiro Iwasaki

    2013-04-01

    Full Text Available This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments.

  12. Synthesis and characterization of high-quality water-soluble CdMnTe quantum dots capped by N-acetyl-L-cysteine through hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fang; Li, Jiaotian; Wang, Fengxue; Yang, Tanming; Zhao, Dan, E-mail: wqzhdpai@163.com

    2015-03-15

    High-quality water-soluble Mn{sup 2+} doped CdTe quantum dots (QDs) with N-acetyl-L-cysteine (NAC) as capping reagent have been synthesized through hydrothermal route, allowing a rapid preparation time (<1 h), tunable emitting peaks (from 530 to 646 nm) and excellent quantum yields (approximately 50%). The influences of various experimental variables, including Mn-to-Cd ratio, Te-to-Cd ratio, pH value, and reaction time on the growth rate and luminescent properties of the obtained QDs have been systematically investigated. And the optimum reaction conditions (Cd:Mn:NAC:Te=1.0:1.0:2.4:0.2, pH=9.5, 35 min, 200 °C) are found out. The optical features and structure of the obtained CdMnTe QDs have been characterized through fluorescence spectroscopy, UV absorption spectroscopy and TEM. In particular, we realized qualitative, semi-quantitative and quantitative studies on the doping of Mn to CdTe QDs through XPS, EDS, and AAS. The actual molar ratio of Mn to Cd in CdMnTe QDs (551 nm) is 1.166:1.00, very close to the feed ratios (1:1). - Highlights: • Mn doped CdTe QDs have been synthesized through one-pot hydrothermal route. • The prepared QDs possess excellent quantum yields as high as 63.1% and tunable emitting peaks from 530 to 646 nm. • We found out that the enhancement of Mn:Cd will decrease the QY of the prepared QDs and lead to the blueshift of emission peaks. • The QDs have been characterized through TEM, EDS, XPS, and AAS.

  13. Synthesis and characterization of thermally stable large-pore mesoporous nanocrystallineanatase

    Energy Technology Data Exchange (ETDEWEB)

    Ermokhina, Natalia I.; Nevinskiy, Vitaly A.; Manorik, Piotr A.; Ilyin, Vladimir G. [L.V. Pisarzhevskiy Institute of Physical Chemistry, National Academy of Sciences of Ukraine, 31 Prospekt Nauki, Kyiv 03028 (Ukraine); Novichenko, Viktor N.; Shcherbatiuk, Mykola M.; Klymchuk, Dmitro O. [M.G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, 2Tereshchenkivska St., 01601, Kyiv (Ukraine); Tsyba, Mykola M. [Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, 13 Naumov St., Kyiv 03164 (Ukraine); Puziy, Alexander M., E-mail: alexander.puziy@ispe.kiev.ua [Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, 13 Naumov St., Kyiv 03164 (Ukraine)

    2013-04-15

    Thermally stable mesoporous nanocrystalline TiO{sub 2} with a pure anatase structure was obtained by sol–gel synthesis (in combination with hydrothermal treatment) using titanium tetrabutoxide and dibenzo-18-crown-6 as a structure-directing agent in presence of surfactant and/or La{sup 3+} ions additives. Nanocrystalline TiO{sub 2} demonstrates various textures with a well-defined spherical morphology (micro- and nanospheres), a crystallite size of no greater than 10 nm (XRD), and a narrow pore size distribution. Spherical particles of micrometer scale in the presence of La{sup 3+} ions do not form. TiO{sub 2} calcined (at 500 °C) after hydrothermal treatment (at 175 °C) has a significantly more developed porous structure as compared with TiO{sub 2} which was not treated hydrothermally. For example, specific surface area amounts 137 m{sup 2} g{sup −1} and 69 m{sup 2} g{sup −1}, pore volume 0.98 cm{sup 3} g{sup −1} and 0.21 cm{sup 3} g{sup −1}, pore diameter 17.5 nm and 12.5 nm respectively for samples hydrothermally treated and not treated. - Graphical abstract: Large-pore mesoporous nanocristalline anatase. Highlights: ► Large-pore mesoporous nanocrystalline TiO{sub 2} was obtained by sol–gel synthesis. ► Crown ether was used as template in presence of surfactant and/or La{sup 3+} ions. ► Anatase (crystalline size<11 nm) is the only crystalline phase present in TiO{sub 2}. ► TiO{sub 2} shows well-defined homogeneous spherical morphology (micro- and nano-spheres)

  14. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    Science.gov (United States)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  15. Continuous and rapid synthesis of nanoclusters and nanocrystals using scalable microstructured reactors

    Science.gov (United States)

    Jin, Hyung Dae

    formation mechanism of CuInSe2 nanocrystals for the development of a continuous flow process for their synthesis. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times, along with the formation of Cu2Se and In2Se3. It was found that Cu2Se was formed at a much faster rate than In2Se3 under the same reaction conditions. By adjusting the Cu/In precursor ratio, we were able to develop a very rapid and simple synthesis of CuInSe2 nanocrystals using a continuous flow microreactor with a high throughput per reactor volume. The microreactor has a simple design which uses readily available low cost components. It comprised an inner microtube to precisely control the injection of TOPSe into a larger diameter tube that preheated CuCl and InCl3 hot mixture was pumped through. Rapid injection plays an important role in dividing the nucleation and growth process which is crucial in getting narrow size distribution. The design of this microreactor also has the advantages of alleviating sticking of QDs on the growth channel wall since QDs were formed from the center of the reactor. Furthermore, size-controlled synthesis of CuInSe2 nanocrystals was achieved using this reactor simply by adjusting ratio between coordinating solvents. Semiconductors with a direct bandgap between 1 and 2eV including Cu(In,Ga)Se 2 (1.04--1.6eV) and CuIn(Se,S)2 (1.04--1.53eV) are ideal for single junction cells utilize the visible spectrum. However, half of the solar energy available to the Earth lies in the infrared region. Inorganic QD-based solar cells with a decent efficiency near 1.5 mum have been reported. Therefore, syntheses of narrow gap IV-VI (SnTe, PbS, PbSe, PbTe), II-IV (HgTe, CdXHg1-XTe), and III-V (InAs) QDs have attracted significant attention and these materials have potential uses for a variety of other optical, electronic, and optoelectronic applications. SnTe with an energy gap of 0.18e

  16. Rapid hydrothermal route to synthesize cubic-phase gadolinium oxide nanorods

    International Nuclear Information System (INIS)

    Hazarika, Samiran; Paul, Nibedita; Mohanta, Dambarudhar

    2014-01-01

    An inexpensive fabrication route and growth mechanism is being reported for obtaining quality gadolinium oxide ( Gd 2 O 3 ) nanoscale rods. The elongated nanoscale systems, as produced via a hydrothermal process, were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), optical absorption spectroscopy, photoluminescence (PL) spectroscopy, Raman spectroscopy and magnetic hysteresis measurements. XRD patterns of the nanorods, as-prepared from independent precursors of different pH, depict a cubic crystal phase and an average crystallite size of 5-6.5 nm. As revealed from HRTEM micrographs, diameter of the nanorods prepared at pH = 13.3 (∼7 nm) was much smaller than the rods prepared at pH = 10.8 (∼19 nm). However, the aspect ratio was more than double in the former case than the latter case. PL response was found to be dominated by defect mediated emissions, whereas Raman spectrum of a given specimen (pH = 10.8) has revealed characteristic F g + A g modes of cubic phase of Gd 2 O 3 nanorods, apart from other independent modes. Furthermore, M ∼ H plot of the nanorod system (pH = 10.8) exhibited slight departure from the ideal superparamagnetic behaviour, with low remanence and coercive field values. The exploitation of one-dimensional Gd 2 O 3 nanorods have immense potential in the production of advanced contrast agents, smart drives and also in making novel ferrofluids of technological relevance. (author)

  17. Application of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-06-01

    Full Text Available Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD, scanning electron microscopy (SEM and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong pore size distribution peaks with average of 37.8 Å and pore volume of 0.41 cm3/g and the (Brunauer–Emmett–TellerBET specific surface area of 365 m2/g. Hydrothermal and non-hydrothermal spherical TiO2 nanoporous have been used as adsorbent to study of the adsorption behavior of Pb(II, Co(II and Ni(II ions from aqueous system in a batch system. Effect of equilibrium time on adsorption Pb(II, Co(II and Ni(II ions on these adsorbent was studied The results show that the shaking time 0.5 to 10h has no serious effect on the percentage of ions removal, and the adsorption is fast in all cases. The maximum uptake capacities of Hydrothermal and non-hydrothermal spherical TiO2 nanoporous was calculated. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential as new adsorbents in removal of these ions. In batch systems the maximum uptake capacities of Pb(II, Ni(II and Co(II on the hydrothermal and non-hydrothermal TiO2 nanoporous materials was Co(II > Pb(II > Ni(II and Co(II > Ni(II > Pb(II, respectively.

  18. Hydrothermal-reduction synthesis of manganese oxide nanomaterials for electrochemical supercapacitors.

    Science.gov (United States)

    Zhang, Xiong; Chen, Yao; Yu, Peng; Ma, Yanwei

    2010-11-01

    In the present work, amorphous manganese oxide nanomaterials have been synthesized by a common hydrothermal method based on the redox reaction between MnO4(-) and Fe(2+) under an acidic condition. The synthesized MnO2 samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electrochemical studies. XRD results showed that amorphous manganese oxide phase was obtained. XPS quantitative analysis revealed that the atomic ratio of Mn to Fe was 3.5 in the MnO2 samples. TEM images showed the porous structure of the samples. Electrochemical properties of the MnO2 electrodes were studied using cyclic voltammetry and galvanostatic charge-discharge cycling in 1 M Na2SO4 aqueous electrolyte, which showed excellent pseudocapacitance properties. A specific capacitance of 192 Fg(-1) at a current density of 0.5 Ag(-1) was obtained at the potential window from -0.1 to 0.9 V (vs. SCE).

  19. Synthesis of quaternary chalcogenide CZTS nanoparticles by a hydrothermal route

    Science.gov (United States)

    Das, S.; Sa, K.; Mahakul, P. C.; Raiguru, J.; Alam, I.; Subramanyam, BVRS; Mahanandia, P.

    2018-03-01

    Cu2ZnSnS4 (CZTS) has emerged as a potential absorber towards inorganic photovoltaic device application for its outstanding properties like non toxicity, earth abundancy nature, optimal band gap matched with solar spectrum (1.45- 1.65eV), high absorption coefficient (104cm‑1). Here, a low cost, environment friendly facile hydrothermal route to synthesize phase pure CZTS nanoparticles using Cu (II), Zn (II), Sn (II) inorganic metal salts and thiourea as Sulphur source in distilled water solution as precursor is reported. The as synthesized samples characterized by X-Ray diffraction (XRD) and RAMAN confirmed structure and phase of CZTS nanocrystals. The morphology of the prepared CZTS have been characterized by scanning electron microscopy (SEM). The particle size is found in the range 4-5 nm with crystalline nature have been characterized by transmission electron microscope (TEM). The optical band gap of the as prepared samples is calculated to be 1.65eV from UV-Visible analysis which proves it can be used towards photovoltaic applications.

  20. Hydrothermal synthesis and rate capacity studies of Li3V2(PO4)3 nanorods as cathode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu Haowen; Cheng Cuixia; Huang Xintang; Li Jinlin

    2010-01-01

    It is an effective method by synthesizing one-dimensional nanostructure to improve the rate performances of cathode materials for Li-ion batteries. In this paper, Li 3 V 2 (PO 4 ) 3 nanorods were successfully prepared by hydrothermal reaction method. The structure, composition and shape of the prepared were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scan electron microscope (SEM) and transmission electron microscope (TEM), respectively. The data indicate the as-synthesis powders are defect-rich nanorods and the sizes are the length of several hundreds of nanometers to 1 μm and the diameter of about 60 nm. The preferential growth direction of the prepared material was the [1 2 0]. The electrodes consisting of the Li 3 V 2 (PO 4 ) 3 nanorods show the better discharge capacities at high rates over a potential range of 3.0-4.6 V. These results can be attributed to the shorter distance of electron transport and the fact that ion diffusion in the electrode material is limited by the nanorod radius. All these results indicate that the resulting Li 3 V 2 (PO 4 ) 3 nanorods are promising cathode materials in lithium-ion batteries.

  1. MOF-derived Cu-Pd/nanoporous carbon composite as an efficient catalyst for hydrogen evolution reaction: A comparison between hydrothermal and electrochemical synthesis

    Science.gov (United States)

    Mandegarzad, Sakineh; Raoof, Jahan Bakhsh; Hosseini, Sayed Reza; Ojani, Reza

    2018-04-01

    In this study, a novel catalyst based on Cu-Pd bimetallic nanoparticles supported on nanoporous carbon composite (NPCC) is successfully fabricated through three-step process and used as an electrocatalyst towards hydrogen evolution reaction (HER). At the first step, MOF-199 is synthesized via two distinct strategies; (1) hydrothermal (HT) and (2) electrochemical (EC). Next, the synthesized MOF-199 is used as a template in order to prepare Cu/NPCC by direct carbonization under N2 atmosphere followed by galvanic replacement reaction of Cu metals by PdII ions. All the prepared materials are characterized by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and nitrogen adsorption/desorption measurements. The effect of synthesis method of MOF-199 on the electrocatalytic activity of the final product towards HER is investigated. The electrochemical measurements indicate that Cu-Pd/NPCC derived from the MOF prepared by EC method (Cu-Pd/NPCC/EC) exhibits an enhanced catalytic activity towards HER in H2SO4 solution than the Cu-Pd/NPCC/HT. This improvement may be attributed to using of supporting electrolyte in the preparation of Cu-Pd/NPCC/EC.

  2. One-step hydrothermal synthesis of sandwich-type NiCo2S4@reduced graphene oxide composite as active electrode material for supercapacitors

    Science.gov (United States)

    Wang, Fangping; Li, Guifang; Zhou, Qianqian; Zheng, Jinfeng; Yang, Caixia; Wang, Qizhao

    2017-12-01

    A facile one step hydrothermal process is developed for the synthesis of NiCo2S4@reduced graphene oxide (NiCo2S4@RGO) composite as electrode for electrochemical supercapacitors. This NiCo2S4@RGO electrode exhibits an ultrahigh specific capacitance of 2003 F g-1 at 1 A g-1 and 1726 F g-1 at 20 A g-1 (86.0% capacitance retention from 1 A g-1 to 20 A g-1), excellent cycling stabilities (86.0% retention after 3500 cycles). Moreover, an asymmetric supercapacitor is successfully assembled by using NiCo2S4@RGO nanoparticle as the positive electrode and active carbon(AC) as the negative electrode in 2 M KOH electrolyte. The fabricated NiCo2S4@RGO//AC asymmetric supercapacitor exhibits a high energy density of 21.9 Wh kg-1 at a power density of 417.1 W kg-1 and still remains an impressive energy density of 13.5 Wh kg-1 at a large power density of 2700 W kg-1. The results demonstrate that the NiCo2S4@RGO composite is a promising electrode material as supercapacitors in energy storage.

  3. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    Science.gov (United States)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  4. Organic Dye Degradation Under Solar Irradiation by Hydrothermally Synthesized ZnS Nanospheres

    Science.gov (United States)

    Samanta, Dhrubajyoti; Chanu, T. Inakhunbi; Basnet, Parita; Chatterjee, Somenath

    2018-02-01

    The green synthesis of ZnS nanospheres using Citrus limetta (sweet lime) juice as a capping agent through a conventional hydrothermal method was studied. The particle size, morphology, chemical composition, band gap, and optical properties of the synthesized ZnS nanospheres were characterized using x-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of the ZnS nanospheres was evaluated by degradation of rhodamine B (RhB) and methyl orange (MO) under solar irradiation. Upon 150 min of solar irradiation, the extent of degradation was 94% and 77% for RhB and MO, respectively.

  5. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    Science.gov (United States)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  6. Thermodynamic and physico-chemical fluctuations in hydrothermal systems suitable for the geological cradle of life

    Science.gov (United States)

    Kompanichenko, Vladimir

    Thermodynamic and physico-chemical fluctuations in the medium seem are the necessary factor for the origin of life. Fluctuations are usual phenomena in hydrothermal systems including their outcrops in ocean or terrestrial groundwater aquifers. Investigation of the fluctuations regimes in natural hydrothermal systems can be used in advanced laboratory experiments on prebiotic organic synthesis under changeable conditions. To characterize a scale of the thermodynamic and physic-chemical fluctuations four hydrothermal systems were explored: several terrestrial hydrothermal systems, primarily on the Russian Far East. Temperature of water and water-steam mixture (from boreholes) in Mutnovsky and Pauzhetsky hydrothermal fields (Kamchatka peninsula) ranges from less than 100 o C up to 240 o C. Water from Kuldur thermal basin (in-tracontinental part of the Russian Far East) is characterized with the lower temperature: 60-70 o C. Data of monitoring of pressure, temperature and some chemical parameters in the boreholes of these fields were mathematically processed. Periods of long-range macrofluctuations of pres-sure and temperature in Mutnovsky and Kuldur fields are 2-4.5 months, maximum amplitudes of temperature in the wells' orifices are 53o C and 9 o C correspondingly, maximum amplitude of pressure in Mutnovsky field 34 bars. Periods of minioscillations are from 10 to 70 minutes in Mutnovsky and Pauzhetsky fields, average amplitudes of pressure are 0.2-0.7 bars. These data are comparable with similar data from Mura basin in Slovenia: amplitudes of temperature and pH minioscillations are about 1-2o C and 0.2 correspondingly; there exists strict positive correlation of temperature with pH, K+, Na+, Ca2+, HCO3-, SO42-, Cl-, F-, but concentra-tions of Mg2+, NH4+, CO2 change independently (Kralj, 2000).. The general conclusion is that minifluctuations of thermodynamic and physic-chemical parameters in hydrothermal sys-tems are usual phenomenon. From time to time the

  7. Expediting evidence synthesis for healthcare decision-making: exploring attitudes and perceptions towards rapid reviews using Q methodology

    Directory of Open Access Journals (Sweden)

    Shannon E. Kelly

    2016-10-01

    Full Text Available Background Rapid reviews expedite the knowledge synthesis process with the goal of providing timely information to healthcare decision-makers who want to use evidence-informed policy and practice approaches. A range of opinions and viewpoints on rapid reviews is thought to exist; however, no research to date has formally captured these views. This paper aims to explore evidence producer and knowledge user attitudes and perceptions towards rapid reviews. Methods A Q methodology study was conducted to identify central viewpoints about rapid reviews based on a broad topic discourse. Participants rank-ordered 50 text statements and explained their Q-sort in free-text comments. Individual Q-sorts were analysed using Q-Assessor (statistical method: factor analysis with varimax rotation. Factors, or salient viewpoints on rapid reviews, were identified, interpreted and described. Results Analysis of the 11 individual Q sorts identified three prominent viewpoints: Factor A cautions against the use of study design labels to make judgements. Factor B maintains that rapid reviews should be the exception and not the rule. Factor C focuses on the practical needs of the end-user over the review process. Conclusion Results show that there are opposing viewpoints on rapid reviews, yet some unity exists. The three factors described offer insight into how and why various stakeholders act as they do and what issues may need to be resolved before increase uptake of the evidence from rapid reviews can be realized in healthcare decision-making environments.

  8. Expediting evidence synthesis for healthcare decision-making: exploring attitudes and perceptions towards rapid reviews using Q methodology

    Science.gov (United States)

    Moher, David; Clifford, Tammy J.

    2016-01-01

    Background Rapid reviews expedite the knowledge synthesis process with the goal of providing timely information to healthcare decision-makers who want to use evidence-informed policy and practice approaches. A range of opinions and viewpoints on rapid reviews is thought to exist; however, no research to date has formally captured these views. This paper aims to explore evidence producer and knowledge user attitudes and perceptions towards rapid reviews. Methods A Q methodology study was conducted to identify central viewpoints about rapid reviews based on a broad topic discourse. Participants rank-ordered 50 text statements and explained their Q-sort in free-text comments. Individual Q-sorts were analysed using Q-Assessor (statistical method: factor analysis with varimax rotation). Factors, or salient viewpoints on rapid reviews, were identified, interpreted and described. Results Analysis of the 11 individual Q sorts identified three prominent viewpoints: Factor A cautions against the use of study design labels to make judgements. Factor B maintains that rapid reviews should be the exception and not the rule. Factor C focuses on the practical needs of the end-user over the review process. Conclusion Results show that there are opposing viewpoints on rapid reviews, yet some unity exists. The three factors described offer insight into how and why various stakeholders act as they do and what issues may need to be resolved before increase uptake of the evidence from rapid reviews can be realized in healthcare decision-making environments. PMID:27761324

  9. Facile hydrothermal synthesis of alpha manganese sesquioxide ({alpha}-Mn{sub 2}O{sub 3}) nanodumb-bells: Structural, magnetic, optical and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gnanam, S., E-mail: gnanam.nanoscience@gmail.com [Department of Physics, Presidency College, Chennai 600005, Tamilnadu (India); Rajendran, V. [Department of Physics, Presidency College, Chennai 600005, Tamilnadu (India)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer {alpha}-Mn{sub 2}O{sub 3} nanoparticles sizes of 35-42 nm have been prepared by hydrothermal process. Black-Right-Pointing-Pointer Shapes of {alpha}-Mn{sub 2}O{sub 3}: Dumb-bell, Cauliflower, spherical with rod, spherical with wires. Black-Right-Pointing-Pointer The strong UV emission can be attributed to high purity and perfect crystallinity. Black-Right-Pointing-Pointer Photocatalytic activity of {alpha}-Mn{sub 2}O{sub 3} was studied by degradation of Remazol red B dye. - Abstract: Nanometer scale cubic bixbyite {alpha}-Mn{sub 2}O{sub 3} has been synthesized by a facile hydrothermal method, at a temperature of 450 Degree-Sign C in the presence of various surfactants. The X-ray diffraction (XRD) analysis shows that the average crystallite size of the sample is {approx}35-42 nm. The shapes of the {alpha}-Mn{sub 2}O{sub 3} nanoparticles include: Dumb-bell-like (anionic surfactant), Cauliflower-like (nonionic surfactant), spherical with rods (cationic surfactant) and spherical with wires (surface modifier). The shapes of {alpha}-Mn{sub 2}O{sub 3} nanoparticles depend on the type of surfactant used in the synthesis. The magnetic property of the anionic surfactant assisted sample was primarily studied, using the vibrating sample magnetometer (VSM). The optical absorption spectra confirmed the effectiveness of the selected capping agents, as the anionic capped {alpha}-Mn{sub 2}O{sub 3} colloids absorbed at shorter wavelength than the other agents, indicating a much smaller crystallite size. The property of strong UV emissions may be attributed to the high purity and perfect crystallinity of the as-prepared {alpha}-Mn{sub 2}O{sub 3}. The surfactants-assisted catalyst was tested for its photocatalytic activity towards the photodegradation of the harmful organic dye Remazol Red B, using a multilamp photo reactor. Possible formation mechanisms have also been proposed for the as-synthesized anionic surfactant assisted samples.

  10. Nitrogen Dioxide-Sensing Properties at Room Temperature of Metal Oxide-Modified Graphene Composite via One-Step Hydrothermal Method

    Science.gov (United States)

    Zhang, Dongzhi; Liu, Jingjing; Xia, Bokai

    2016-08-01

    A metal oxide/graphene composite film-based sensor toward room-temperature detection of ppm-level nitrogen dioxide (NO2) gas has been demonstrated. The sensor prototype was constructed on a PCB substrate with microelectrodes, and a tin oxide-reduced graphene oxide (SnO2-rGO) composite as sensing film was prepared by one-step hydrothermal synthesis of tin tetrachloride pentahydrate solution in the presence of graphene oxide (GO). The SnO2-rGO hybrid composite was examined by scanning electron microscope and x-ray diffraction (XRD). The gas sensing properties of the SnO2-rGO composite were investigated at room temperature by exposing it to a wide concentration ranging from 1 ppm to 2000 ppm toward NO2 gas. The experiment results showed that the sensor exhibited a high response, superior selectivity, good repeatability, rapid response/recovery characteristics and low detection limit of 1 ppm, which exceeded that of a pure rGO sensor. The gas sensing mechanisms of the proposed sensor toward NO2 were possibly attributed to the nano-hybrid structures and n- p heterojunctions created at the interface of the SnO2 nanocrystals and rGO nanosheets.

  11. The rapid synthesis of high purity [{sup 18}F]butyrophenone neuroleptics from nitro precursors for PET study

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Kazunari; Hashimoto, Naoto; Kato, Hiroo; Cork, D G; Miyake, Yoshihiro [National Cardiovascular Center, Suita, Osaka (Japan)

    1995-04-01

    We have completed rapid syntheses of [{sup 18}F]butyrophenone neuroleptics ([{sup 18}F]haloperidol and [{sup 18}F]spiperone) from their nitro precursors in high radiochemical yields (up to 21%) by combining a one-step nitro-fluoro exchange reaction and a novel high performance liquid chromatography (HPLC) separation method. The synthesis time was ca. 95 min and both the radiochemical and chemical purities of the labeled products were over 99%. (author).

  12. Preparation high photocatalytic activity of CdS/halloysite nanotubes (HNTs) nanocomposites with hydrothermal method

    Science.gov (United States)

    Xing, Weinan; Ni, Liang; Huo, Pengwei; Lu, Ziyang; Liu, Xinlin; Luo, Yingying; Yan, Yongsheng

    2012-10-01

    A novel nanocatalyst CdS/halloysite nanotubes (HNTs) was synthesized by hydrothermal method with direct growth of CdS nanoparticles on the surface of HNTs. The as-prepared photocatalysts had been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), Fourier transform infrared (FT-IR) and the thermo gravimetric analysis (TGA). The photocatalytic activity of the sample was evaluated by the degradation of tetracycline (TC) under visible light irradiation. Benefit from the excellent properties of CdS and HNTs, the photocatalyst exhibited good photocatalytic activity and stability. In order to find out the optimum synthesis condition to obtain the best photocatalytic activity, a series of experiments were performed with different CdS loading capacity, different sources of sulfide and different hydrothermal temperatures, etc. The best photodegradation rate could reach 93% in 60 min under visible light irradiation. Therefore, the combination of CdS nanoparticles with HNTs endowed this material with a potential use in environmental treatments in industries.

  13. Benzodiazepine Synthesis and Rapid Toxicity Assay

    Science.gov (United States)

    Fletcher, James T.; Boriraj, Grit

    2010-01-01

    A second-year organic chemistry laboratory experiment to introduce students to general concepts of medicinal chemistry is described. Within a single three-hour time window, students experience the synthesis of a biologically active small molecule and the assaying of its biological toxicity. Benzodiazepine rings are commonly found in antidepressant…

  14. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    Science.gov (United States)

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Absolute Magnetization Distribution on Back-arc Spreading Axis Hosting Hydrothermal Vents; Insight from Shinkai 6500 Magnetic Survey

    Science.gov (United States)

    Fujii, M.; Okino, K.; Honsho, C.; Mochizuki, N.; Szitkar, F.; Dyment, J.

    2013-12-01

    demagnetized by hydrothermal circulation. The low magnetization zones around the off-axis vent sites are about ten times wider than those surrounding the on-axis sites, possibly reflecting the longer duration of hydrothermal circulation at these sites. Another interesting result is that the absolute magnetization shows extremely high intensities (>80 A/m) at the neo volcanic zones (NVZ) and relatively low intensities (age due to the combination of the both hydrothermal rapid alteration and the low-temperature gradual alteration processes.

  16. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira

    2016-08-26

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  17. A process to enhance the specific surface area and capacitance of hydrothermally reduced graphene oxide

    KAUST Repository

    Alazmi, Amira; El Tall, Omar; Rasul, Shahid; Hedhili, Mohamed N.; Patole, Shashikant P.; Da Costa, Pedro M. F. J.

    2016-01-01

    The impact of post-synthesis processing in reduced graphene oxide materials for supercapacitor electrodes has been analyzed. A comparative study of vacuum, freeze and critical point drying was carried out for hydrothermally reduced graphene oxide demonstrating that the optimization of the specific surface area and preservation of the porous network are critical to maximize its supercapacitance performance. As described below, using a supercritical fluid as the drying medium, unprecedented values of the specific surface area (364 m2 g−1) and supercapacitance (441 F g−1) for this class of materials have been achieved.

  18. Rapid synthesis of spherical-shaped green-emitting MgGa2O4:Mn2+ phosphor via spray pyrolysis

    International Nuclear Information System (INIS)

    Choi, Sungho; Kim, Kyoungun; Moon, Young-Min; Park, Byung-Yoon; Jung, Ha-Kyun

    2010-01-01

    Simple, one-step synthesis of spherical-shaped powder phosphors with aqueous precursors via a spray pyrolysis method is reported. Green-emitting MgGa 2 O 4 :Mn 2+ phosphor with a controlled shape was successfully obtained by spraying under a reductive atmosphere (N 2 + H 2 carrier gas) without high-temperature post-heat treatment. In addition, the corresponding powder phosphors were well dispersed and showed a clean surface morphology compared to an existing cumbersome process using high-temperature post-annealing. The new method may help to prevent surface residual non-radiative defect sites. The result of highly luminescent and spherical morphology, non-aggregated powder phosphor by this procedure holds promise for a cost-effective and rapid synthesis process for conventional inorganic phosphors.

  19. Hydrothermal synthesis of highly luminescent blue-emitting ZnSe(S) quantum dots exhibiting low toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Mirnajafizadeh, Fatemeh; Ramsey, Deborah; McAlpine, Shelli [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Wang, Fan; Reece, Peter [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Stride, John Arron, E-mail: j.stride@unsw.edu.au [School of Chemistry, University of New South Wales, Sydney, NSW 2052 (Australia); Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234 (Australia)

    2016-07-01

    Highly luminescent quantum dots (QDs) that emit in the visible spectrum are of interest to a number of imaging technologies, not least that of biological samples. One issue that hinders the application of luminescent markers in biology is the potential toxicity of the fluorophore. Here we show that hydrothermally synthesized ZnSe(S) QDs have low cytotoxicity to both human colorectal carcinoma cells (HCT-116) and human skin fibroblast cells (WS1). The QDs exhibited a high degree of crystallinity, with a strong blue photoluminescence at up to 29% quantum yield relative to 4′,6-diamidino-2-phenylindole (DAPI) without post-synthetic UV-irradiation. Confocal microscopy images obtained of HCT-116 cells after incubation with the QDs highlighted the stability of the particles in cell media. Cytotoxicity studies showed that both HCT-116 and WS1 cells retain 100% viability after treatment with the QDs at concentrations up to 0.5 g/L, which makes them of potential use in biological imaging applications. - Highlights: • Highly luminescent ZnSe(S) QDs were synthesized using a simple, one-step hydrothermal method. • The as-synthesized QDs were found to be nontoxic in the presence of biological cells. • The QDs were stable in biological media with identical emission profile to that in water.

  20. Hydrothermal synthesis of HoMn{sub 2}O{sub 5} nanorods and their size-dependent magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yichao; Wu, Songping, E-mail: chwsp@scut.edu.cn; Xu, Rui

    2017-03-01

    The HoMn{sub 2}O{sub 5} nanorods were synthesized by a surfactant-assisted hydrothermal process. The length of nanorods is readily controllable with basically constant diameter. HoMn{sub 2}O{sub 5} nanorods show recognizable divagation at T{sub N}(Ho) of 13 K between FC and ZFC curve due to the contribution of the magnetic ordering of holmium. Size-dependent magnetic properties (i.e. a critical length for magnetization) of HoMn{sub 2}O{sub 5} nanorods can be ascribed to the competition between surface strain and uncompensated spin at the surface. - Highlights: • HoMn{sub 2}O{sub 5} nanorods were synthesized by a surfactant-assisted hydrothermal route. • HoMn{sub 2}O{sub 5} nanorods show recognizable divagation at T{sub N}(Ho) of 13 K between FC and ZFC. • Size-dependent magnetic properties of HoMn{sub 2}O{sub 5} nanorods can be observed.