WorldWideScience

Sample records for rapid homogenous detection

  1. A recombinant estrogen receptor fragment-based homogeneous fluorescent assay for rapid detection of estrogens.

    Science.gov (United States)

    Wang, Dan; Xie, Jiangbi; Zhu, Xiaocui; Li, Jinqiu; Zhao, Dongqin; Zhao, Meiping

    2014-05-15

    In this work, we demonstrate a novel estrogenic receptor fragment-based homogeneous fluorescent assay which enables rapid and sensitive detection of 17β-estradiol (E2) and other highly potent estrogens. A modified human estrogenic receptor fragment (N-His × 6-hER270-595-C-Strep tag II) has been constructed that contains amino acids 270-595 of wild-type human estrogenic receptor α (hER270-595) and two specific tags (6 × His and Strep tag II) fused to the N and C terminus, respectively. The designed receptor protein fragment could be easily produced by prokaryotic expression with high yield and high purity. The obtained protein exhibits high binding affinity to E2 and the two tags greatly facilitate the application of the recombinant protein. Taking advantage of the unique spectroscopic properties of coumestrol (CS), a fluorescent phytoestrogen, a CS/hER270-595-based fluorescent assay has been developed which can sensitively respond to E2 within 1.0 min with a linear working range from 0.1 to 20 ng/mL and a limit of detection of 0.1 ng/mL. The assay was successfully applied for rapid detection of E2 in the culture medium of rat hippocampal neurons. The method also holds great potential for high-throughput monitoring the variation of estrogen levels in complex biological fluids, which is crucial for investigation of the molecular basis of various estrogen-involved processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Anomaly detection in random heterogeneous media Feynman-Kac formulae, stochastic homogenization and statistical inversion

    CERN Document Server

    Simon, Martin

    2015-01-01

    This monograph is concerned with the analysis and numerical solution of a stochastic inverse anomaly detection problem in electrical impedance tomography (EIT). Martin Simon studies the problem of detecting a parameterized anomaly in an isotropic, stationary and ergodic conductivity random field whose realizations are rapidly oscillating. For this purpose, he derives Feynman-Kac formulae to rigorously justify stochastic homogenization in the case of the underlying stochastic boundary value problem. The author combines techniques from the theory of partial differential equations and functional analysis with probabilistic ideas, paving the way to new mathematical theorems which may be fruitfully used in the treatment of the problem at hand. Moreover, the author proposes an efficient numerical method in the framework of Bayesian inversion for the practical solution of the stochastic inverse anomaly detection problem.   Contents Feynman-Kac formulae Stochastic homogenization Statistical inverse problems  Targe...

  3. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies.

    Science.gov (United States)

    Burgisser, Alain; Bergantz, George W

    2011-03-10

    The largest products of magmatic activity on Earth, the great bodies of granite and their corresponding large eruptions, have a dual nature: homogeneity at the large scale and spatial and temporal heterogeneity at the small scale. This duality calls for a mechanism that selectively removes the large-scale heterogeneities associated with the incremental assembly of these magmatic systems and yet occurs rapidly despite crystal-rich, viscous conditions seemingly resistant to mixing. Here we show that a simple dynamic template can unify a wide range of apparently contradictory observations from both large plutonic bodies and volcanic systems by a mechanism of rapid remobilization (unzipping) of highly viscous crystal-rich mushes. We demonstrate that this remobilization can lead to rapid overturn and produce the observed juxtaposition of magmatic materials with very disparate ages and complex chemical zoning. What distinguishes our model is the recognition that the process has two stages. Initially, a stiff mushy magma is reheated from below, producing a reduction in crystallinity that leads to the growth of a subjacent buoyant mobile layer. When the thickening mobile layer becomes sufficiently buoyant, it penetrates the overlying viscous mushy magma. This second stage rapidly exports homogenized material from the lower mobile layer to the top of the system, and leads to partial overturn within the viscous mush itself as an additional mechanism of mixing. Model outputs illustrate that unzipping can rapidly produce large amounts of mobile magma available for eruption. The agreement between calculated and observed unzipping rates for historical eruptions at Pinatubo and at Montserrat demonstrates the general applicability of the model. This mechanism furthers our understanding of both the formation of periodically homogenized plutons (crust building) and of ignimbrites by large eruptions.

  4. Online screening of homogeneous catalyst performance using reaction detection mass spectrometry

    NARCIS (Netherlands)

    Martha, C.T.; Elders, N.; Krabbe, J.G.; Kool, J.; Niessen, W.M.A.; Orru, R.V.A.; Irth, H.

    2008-01-01

    An integrated online screening system was developed to rapidly screen homogeneous catalysts for activity toward a selected synthesis. The continuous-flow system comprises standard HPLC pumps for the delivery of substrates, an HPLC autosampler for the injection of homogeneous catalysts, a

  5. Cosmic Ray Hit Detection with Homogenous Structures

    Science.gov (United States)

    Smirnov, O. M.

    Cosmic ray (CR) hits can affect a significant number of pixels both on long-exposure ground-based CCD observations and on the Space Telescope frames. Thus, methods of identifying the damaged pixels are an important part of the data preprocessing for practically any application. The paper presents an implementation of a CR hit detection algorithm based on a homogenous structure (also called cellular automata ), a concept originating in artificial intelligence and dicrete mathematics. Each pixel of the image is represented by a small automaton, which interacts with its neighbors and assumes a distinct state if it ``decides'' that a CR hit is present. On test data, the algorithm has shown a high detection rate (~0.7 ) and a low false alarm rate (frame. A homogenous structure is extremely trainable, which can be very important for processing large batches of data obtained under similar conditions. Training and optimizing issues are discussed, as well as possible other applications of this concept to image processing.

  6. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  7. Homogeneous liquid-liquid extraction (HoLLE) via flotation combined with gas chromatography-flame ionization detection as a very simple, rapid and sensitive method for the determination of fenitrothion in water samples.

    Science.gov (United States)

    Mashayekhi, Hossein Ali

    2013-01-01

    Homogeneous liquid-liquid extraction via flotation assistance (HoLLE-FA) and gas chromatography-flame ionization detection (GC-FID) was presented for the extraction and determination of fenitrothion in water samples. In this work, a rapid, simple and efficient HoLLE-FA method was developed based on applying low-density organic solvents without employing centrifugation. A special extraction cell was designed to facilitate the collection of low-density solvent extraction in the determination of fenitrothion in water samples. The water sample solution was added into an extraction cell that contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Under the optimum conditions, the method performance was studied in terms of the linear dynamic range (LDR from 1.0 up to 100 μg L⁻¹), linearity (r² > 0.998), and precision (repeatability extraction and determination of fenitrothion in three different water samples.

  8. Rapid determination of ampicillin in bovine milk by liquid chromatography with fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Ang, C.Y.W.; Luo, Wenhong [National Center for Toxicological Research, Jefferson, AR (United States)

    1997-01-01

    A rapid and sensitive liquid chromatographic (LC) method was developed for the determination of ampicillin residues in raw bovine milk, processed skim milk, and pasteurized, homogenized whole milk with vitamin D. Milk samples were deproteinized with trichloroacetic acid (TCA) and acetonictrile. After centrifugation, the clear supernatant was reacted with formaldehyde and TCA under heat. The major fluorescent derivative of ampicillin was then determined by reversed-phase LC with fluorescence detection. Average recoveries of ampicillin fortified at 5, 10, and 20 ppb (ng/mL) were all >85% with coefficients of variation <10%. Limits of detection ranged from 0.31 to 0.51 ppb and limits of quantitation, from 0.66 to 1.2 ppb. After appropriate validation, this method should be suitable for rapid analysis of milk for ampicillin residues at the tolerance level of 10 ppb. 16 refs., 4 figs., 3 tabs.

  9. An infrared small target detection method based on multiscale local homogeneity measure

    Science.gov (United States)

    Nie, Jinyan; Qu, Shaocheng; Wei, Yantao; Zhang, Liming; Deng, Lizhen

    2018-05-01

    Infrared (IR) small target detection plays an important role in the field of image detection area owing to its intrinsic characteristics. This paper presents a multiscale local homogeneity measure (MLHM) for infrared small target detection, which can enhance the performance of IR small target detection system. Firstly, intra-patch homogeneity of the target itself and the inter-patch heterogeneity between target and the local background regions are integrated to enhance the significant of small target. Secondly, a multiscale measure based on local regions is proposed to obtain the most appropriate response. Finally, an adaptive threshold method is applied to small target segmentation. Experimental results on three different scenarios indicate that the MLHM has good performance under the interference of strong noise.

  10. Rapid biotic homogenization of marine fish assemblages

    Science.gov (United States)

    Magurran, Anne E.; Dornelas, Maria; Moyes, Faye; Gotelli, Nicholas J.; McGill, Brian

    2015-01-01

    The role human activities play in reshaping biodiversity is increasingly apparent in terrestrial ecosystems. However, the responses of entire marine assemblages are not well-understood, in part, because few monitoring programs incorporate both spatial and temporal replication. Here, we analyse an exceptionally comprehensive 29-year time series of North Atlantic groundfish assemblages monitored over 5° latitude to the west of Scotland. These fish assemblages show no systematic change in species richness through time, but steady change in species composition, leading to an increase in spatial homogenization: the species identity of colder northern localities increasingly resembles that of warmer southern localities. This biotic homogenization mirrors the spatial pattern of unevenly rising ocean temperatures over the same time period suggesting that climate change is primarily responsible for the spatial homogenization we observe. In this and other ecosystems, apparent constancy in species richness may mask major changes in species composition driven by anthropogenic change. PMID:26400102

  11. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  12. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changhua; Mao, Mao [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Yuan, Hang [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Shen, Huaibin [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Wu, Feng; Ma, Lan, E-mail: malan@sz.tsinghua.edu.cn [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Li, Lin Song, E-mail: lsli@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China)

    2013-09-15

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 Degree-Sign C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  13. Development of Colloidal Gold-Based Immunochromatographic Assay for Rapid Detection of Goose Parvovirus

    Directory of Open Access Journals (Sweden)

    Xianglong Yu

    2018-05-01

    Full Text Available Goose parvovirus (GPV remains as a worldwide problem in goose industry. For this reason, it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. A rapid immunochromatographic assay based on antibody colloidal gold nanoparticles specific to GPV was developed for the detection of GPV in goose allantoic fluid and supernatant of tissue homogenate. The monoclonal antibodies (Mab was produced by immunizing the BALB/c mice with purified GPV suspension, and the polyclonal antibody (pAb was produced by immunizing the rabbits with recombinant VP3 protein. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with Mab against GPV. The optimal concentrations of the coating antibody and capture antibody were determined to be 1.6 mg/ml and 9 μg/ml. With visual observation, the lower limit was found to be around 1.2 μg/ml. Common diseases of goose were tested to evaluate the specificity of the immune colloidal gold (ICG strip, and no cross-reaction was observed. The clinical detection was examined by carrying out the ICG strip test with 92 samples and comparing the results of these tests with those obtained via agar diffusion test and polymerase chain reaction (PCR test. Therefore, the ICG strip test was a sufficiently sensitive and accurate detection method for a rapid screening of GPV.

  14. Development of a Rapid Insulin Assay by Homogenous Time-Resolved Fluorescence.

    Directory of Open Access Journals (Sweden)

    Zachary J Farino

    Full Text Available Direct measurement of insulin is critical for basic and clinical studies of insulin secretion. However, current methods are expensive and time-consuming. We developed an insulin assay based on homogenous time-resolved fluorescence that is significantly more rapid and cost-effective than current commonly used approaches. This assay was applied effectively to an insulin secreting cell line, INS-1E cells, as well as pancreatic islets, allowing us to validate the assay by elucidating mechanisms by which dopamine regulates insulin release. We found that dopamine functioned as a significant negative modulator of glucose-stimulated insulin secretion. Further, we showed that bromocriptine, a known dopamine D2/D3 receptor agonist and newly approved drug used for treatment of type II diabetes mellitus, also decreased glucose-stimulated insulin secretion in islets to levels comparable to those caused by dopamine treatment.

  15. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    Science.gov (United States)

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Mechanical Homogenization Increases Bacterial Homogeneity in Sputum

    Science.gov (United States)

    Stokell, Joshua R.; Khan, Ammad

    2014-01-01

    Sputum obtained from patients with cystic fibrosis (CF) is highly viscous and often heterogeneous in bacterial distribution. Adding dithiothreitol (DTT) is the standard method for liquefaction prior to processing sputum for molecular detection assays. To determine if DTT treatment homogenizes the bacterial distribution within sputum, we measured the difference in mean total bacterial abundance and abundance of Burkholderia multivorans between aliquots of DTT-treated sputum samples with and without a mechanical homogenization (MH) step using a high-speed dispersing element. Additionally, we measured the effect of MH on bacterial abundance. We found a significant difference between the mean bacterial abundances in aliquots that were subjected to only DTT treatment and those of the aliquots which included an MH step (all bacteria, P = 0.04; B. multivorans, P = 0.05). There was no significant effect of MH on bacterial abundance in sputum. Although our results are from a single CF patient, they indicate that mechanical homogenization increases the homogeneity of bacteria in sputum. PMID:24759710

  17. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chou Ju, E-mail: Ju.Chou@selu.ed [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States); Clement, Garret; Bursavich, Bradley; Elbers, Don [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States); Cao Baobao; Zhou Weilie [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States)

    2010-06-15

    The aim of this study was the multi-elemental detection of toxic metals such as lead (Pb) in non-crushed oyster shells by using a portable X-ray fluorescence (XRF) spectrometer. A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using a portable XRF which provides a quick, quantitative, non-destructive, and cost-effective mean for assessment of oyster shell contamination from Pb. Pb contamination in oyster shells was further confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicated that Pb is distributed in-homogeneously in contaminated shells. Oyster shells have a lamellar structure that could contribute to the high accumulation of Pb on oyster shells. - A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using XRF and contamination of lead on oyster shells was confirmed by XRF and SEM-EDS.

  18. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Chou Ju; Clement, Garret; Bursavich, Bradley; Elbers, Don; Cao Baobao; Zhou Weilie

    2010-01-01

    The aim of this study was the multi-elemental detection of toxic metals such as lead (Pb) in non-crushed oyster shells by using a portable X-ray fluorescence (XRF) spectrometer. A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using a portable XRF which provides a quick, quantitative, non-destructive, and cost-effective mean for assessment of oyster shell contamination from Pb. Pb contamination in oyster shells was further confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicated that Pb is distributed in-homogeneously in contaminated shells. Oyster shells have a lamellar structure that could contribute to the high accumulation of Pb on oyster shells. - A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using XRF and contamination of lead on oyster shells was confirmed by XRF and SEM-EDS.

  19. Rapid-onset obesity, hypoventilation, hypothalamic dysfunction, autonomic dysregulation and neuroendocrine tumor syndrome with a homogenous enlargement of the pituitary gland: a case report.

    Science.gov (United States)

    Aljabban, Lama; Kassab, Lina; Bakoura, Nour Alhuda; Alsalka, Mohammad Fayez; Maksoud, Ismaeil

    2016-11-22

    Rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome is a rare pediatric disorder with a variable sequence of clinical presentations, undefined etiology, and high risk of mortality. Our patient presented an unusual course of the disease accompanied by a homogenous mild enlargement of her pituitary gland with an intact pituitary-endocrine axis which, to the best of our knowledge, represents a new finding in rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome. We present a documented case of a 4 years and 8-month-old Syrian Arabic girl with a distinctive course of signs and symptoms of rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome accompanied by mature ganglioneuroma in her chest, a homogenous mild enlargement of her pituitary gland, generalized cortical brain atrophy, and seizures. Three months after her first marked symptoms were noted she had a sudden progression of severe respiratory distress that ended with her death. The findings of this case could increase our understanding of the pathogenetic mechanisms of rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation, and place more emphases on pediatricians to consider rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome whenever early rapid onset of obesity, associated with any malfunction, is observed in children. This knowledge could be lifesaving for children with rapid-onset obesity with hypoventilation, hypothalamic dysfunction, and autonomic dysregulation syndrome.

  20. A literature review on biotic homogenization

    OpenAIRE

    Guangmei Wang; Jingcheng Yang; Chuangdao Jiang; Hongtao Zhao; Zhidong Zhang

    2009-01-01

    Biotic homogenization is the process whereby the genetic, taxonomic and functional similarity of two or more biotas increases over time. As a new research agenda for conservation biogeography, biotic homogenization has become a rapidly emerging topic of interest in ecology and evolution over the past decade. However, research on this topic is rare in China. Herein, we introduce the development of the concept of biotic homogenization, and then discuss methods to quantify its three components (...

  1. Biotic homogenization of three insect groups due to urbanization.

    Science.gov (United States)

    Knop, Eva

    2016-01-01

    Cities are growing rapidly, thereby expected to cause a large-scale global biotic homogenization. Evidence for the homogenization hypothesis is mostly derived from plants and birds, whereas arthropods have so far been neglected. Here, I tested the homogenization hypothesis with three insect indicator groups, namely true bugs, leafhoppers, and beetles. In particular, I was interested whether insect species community composition differs between urban and rural areas, whether they are more similar between cities than between rural areas, and whether the found pattern is explained by true species turnover, species diversity gradients and geographic distance, by non-native or specialist species, respectively. I analyzed insect species communities sampled on birch trees in a total of six Swiss cities and six rural areas nearby. In all indicator groups, urban and rural community composition was significantly dissimilar due to native species turnover. Further, for bug and leafhopper communities, I found evidence for large-scale homogenization due to urbanization, which was driven by reduced species turnover of specialist species in cities. Species turnover of beetle communities was similar between cities and rural areas. Interestingly, when specialist species of beetles were excluded from the analyses, cities were more dissimilar than rural areas, suggesting biotic differentiation of beetle communities in cities. Non-native species did not affect species turnover of the insect groups. However, given non-native arthropod species are increasing rapidly, their homogenizing effect might be detected more often in future. Overall, the results show that urbanization has a negative large-scale impact on the diversity specialist species of the investigated insect groups. Specific measures in cities targeted at increasing the persistence of specialist species typical for the respective biogeographic region could help to stop the loss of biodiversity. © 2015 John Wiley & Sons Ltd.

  2. Evaluating the use of dedicated swab for rapid antigen detection ...

    African Journals Online (AJOL)

    Evaluating the use of dedicated swab for rapid antigen detection testing in group a ... African Journal of Clinical and Experimental Microbiology ... Several generations of rapid antigen detection tests (RADTs) have been developed to facilitate ...

  3. Evaluating a novel application of optical fibre evanescent field absorbance: rapid measurement of red colour in winegrape homogenates

    Science.gov (United States)

    Lye, Peter G.; Bradbury, Ronald; Lamb, David W.

    Silica optical fibres were used to measure colour (mg anthocyanin/g fresh berry weight) in samples of red wine grape homogenates via optical Fibre Evanescent Field Absorbance (FEFA). Colour measurements from 126 samples of grape homogenate were compared against the standard industry spectrophotometric reference method that involves chemical extraction and subsequent optical absorption measurements of clarified samples at 520 nm. FEFA absorbance on homogenates at 520 nm (FEFA520h) was correlated with the industry reference method measurements of colour (R2 = 0.46, n = 126). Using a simple regression equation colour could be predicted with a standard error of cross-validation (SECV) of 0.21 mg/g, with a range of 0.6 to 2.2 mg anthocyanin/g and a standard deviation of 0.33 mg/g. With a Ratio of Performance Deviation (RPD) of 1.6, the technique when utilizing only a single detection wavelength, is not robust enough to apply in a diagnostic sense, however the results do demonstrate the potential of the FEFA method as a fast and low-cost assay of colour in homogenized samples.

  4. Rapid assessment of assignments using plagiarism detection software.

    Science.gov (United States)

    Bischoff, Whitney R; Abrego, Patricia C

    2011-01-01

    Faculty members most often use plagiarism detection software to detect portions of students' written work that have been copied and/or not attributed to their authors. The rise in plagiarism has led to a parallel rise in software products designed to detect plagiarism. Some of these products are configurable for rapid assessment and teaching, as well as for plagiarism detection.

  5. Rapid detection of small oscillation faults via deterministic learning.

    Science.gov (United States)

    Wang, Cong; Chen, Tianrui

    2011-08-01

    Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.

  6. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    Science.gov (United States)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  7. Rapid detection, characterization, and enumeration of foodborne pathogens.

    Science.gov (United States)

    Hoorfar, J

    2011-11-01

    As food safety management further develops, microbiological testing will continue to play an important role in assessing whether Food Safety Objectives are achieved. However, traditional microbiological culture-based methods are limited, particularly in their ability to provide timely data. The present review discusses the reasons for the increasing interest in rapid methods, current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing practices. Rapid methods are comprised of many different detection technologies, including specialized enzyme substrates, antibodies and DNA, ranging from simple differential plating media to the use of sophisticated instruments. The use of non-invasive sampling techniques for live animals especially came into focus with the 1990s outbreak of bovine spongiform encephalopathy that was linked to the human outbreak of Creutzfeldt Jakob's Disease. Serology is still an important tool in preventing foodborne pathogens to enter the human food supply through meat and milk from animals. One of the primary uses of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture broth is tested in PCR, is the most common approach in rapid testing. Recent reports show that it is possible both to enrich a sample and enumerate by pathogen-specific real-time PCR, if the enrichment time is short. This can be especially useful in situations where food producers ask for the level of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible

  8. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Directory of Open Access Journals (Sweden)

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  9. EU-approved rapid tests for bovine spongiform encephalopathy detect atypical forms: a study for their sensitivities.

    Directory of Open Access Journals (Sweden)

    Daniela Meloni

    Full Text Available Since 2004 it become clear that atypical bovine spongiform encephalopthies (BSEs exist in cattle. Whenever their detection has relied on active surveillance plans implemented in Europe since 2001 by rapid tests, the overall and inter-laboratory performance of these diagnostic systems in the detection of the atypical strains has not been studied thoroughly to date. To fill this gap, the present study reports on the analytical sensitivity of the EU-approved rapid tests for atypical L- and H-type and classical BSE in parallel. Each test was challenged with two dilution series, one created from a positive pool of the three BSE forms according to the EURL standard method of homogenate preparation (50% w/v and the other as per the test kit manufacturer's instructions. Multilevel logistic models and simple logistic models with the rapid test as the only covariate were fitted for each BSE form analyzed as directed by the test manufacturer's dilution protocol. The same schemes, but excluding the BSE type, were then applied to compare test performance under the manufacturer's versus the water protocol. The IDEXX HerdChek ® BSE-scrapie short protocol test showed the highest sensitivity for all BSE forms. The IDEXX® HerdChek BSE-scrapie ultra short protocol, the Prionics®--Check WESTERN and the AJ Roboscreen® BetaPrion tests showed similar sensitivities, followed by the Roche® PrionScreen, the Bio-Rad® TeSeE™ SAP and the Prionics®--Check PrioSTRIP in descending order of analytical sensitivity. Despite these differences, the limit of detection of all seven rapid tests against the different classes of material set within a 2 log(10 range of the best-performing test, thus meeting the European Food Safety Authority requirement for BSE surveillance purposes. These findings indicate that not many atypical cases would have been missed surveillance since 2001 which is important for further epidemiological interpretations of the sporadic character of

  10. PORSCHA: a novel homogeneous assay for detection of DNA/RNA

    Science.gov (United States)

    Kidwell, David A.

    1995-05-01

    A novel assay, Pi Overlapping Ring Systems Contained in a Homogeneous Assay (PORSCHA), has been developed which relies upon the change in fluorescent spectral properties that pyrene and its derivatives show as a function of their proximity. When two pyrene rings are sufficiently close such that their pi-systems can overlap during the excited lifetime, an excimer emission centered at 480 nm is observed. When the pi-systems are too far apart for overlap, only monomer emission is observed at 378 nm and 396 nm. Only Angstrom changes in distances are necessary to switch from excimer to monomer emission. Due to its many degrees of freedom, single-stranded DNA adopts a random-coil conformation in solution. When labeled with two pyrene fluorophores and upon binding to its complimentary strand, the excimer intensity changes because the pyrenes may be either closer together or farther apart, corresponding to the reduced degrees of freedom of the double helix. Because the probe does not disturb the system and no separation steps are necessary before detecting the DNA binding, completely reversible, in situ, detection of DNA is possible.

  11. Individual differences in detecting rapidly presented fearful faces.

    Directory of Open Access Journals (Sweden)

    Dandan Zhang

    Full Text Available Rapid detection of evolutionarily relevant threats (e.g., fearful faces is important for human survival. The ability to rapidly detect fearful faces exhibits high variability across individuals. The present study aimed to investigate the relationship between behavioral detection ability and brain activity, using both event-related potential (ERP and event-related oscillation (ERO measurements. Faces with fearful or neutral facial expressions were presented for 17 ms or 200 ms in a backward masking paradigm. Forty-two participants were required to discriminate facial expressions of the masked faces. The behavioral sensitivity index d' showed that the detection ability to rapidly presented and masked fearful faces varied across participants. The ANOVA analyses showed that the facial expression, hemisphere, and presentation duration affected the grand-mean ERP (N1, P1, and N170 and ERO (below 20 Hz and lasted from 100 ms to 250 ms post-stimulus, mainly in theta band brain activity. More importantly, the overall detection ability of 42 subjects was significantly correlated with the emotion effect (i.e., fearful vs. neutral on ERP (r = 0.403 and ERO (r = 0.552 measurements. A higher d' value was corresponding to a larger size of the emotional effect (i.e., fearful--neutral of N170 amplitude and a larger size of the emotional effect of the specific ERO spectral power at the right hemisphere. The present results suggested a close link between behavioral detection ability and the N170 amplitude as well as the ERO spectral power below 20 Hz in individuals. The emotional effect size between fearful and neutral faces in brain activity may reflect the level of conscious awareness of fearful faces.

  12. Detecting Stems in Dense and Homogeneous Forest Using Single-Scan TLS

    Directory of Open Access Journals (Sweden)

    Shaobo Xia

    2015-10-01

    Full Text Available Stem characteristics of plants are of great importance to both ecology study and forest management. Terrestrial laser scanning (TLS may provide an effective way to characterize the fine-scale structures of vegetation. However, clumping plants, dense foliage and thin structure could intensify the shadowing effect and pose a series of problems in identifying stems, distinguishing neighboring stems, and merging disconnected stem parts in point clouds. This paper presents a new method to automatically detect stems in dense and homogeneous forest using single-scan TLS data. Stem points are first identified with a two-scale classification method. Then a clustering approach is used to group the candidate stem points. Finally, a direction-growing algorithm based on a simple stem curve model is applied to merge stem points. Field experiments were carried out in two different bamboo plots with a stem density of about 7500 stems/ha. Overall accuracy of the stem detection is 88% and the quality of detected stems is mainly affected by the shadowing effect. Results indicate that the proposed method is feasible and effective in detection of bamboo stems using TLS data, and can be applied to other species of single-stem plants in dense forests.

  13. Persymmetric Adaptive Detectors of Subspace Signals in Homogeneous and Partially Homogeneous Clutter

    Directory of Open Access Journals (Sweden)

    Ding Hao

    2015-08-01

    Full Text Available In the field of adaptive radar detection, an effective strategy to improve the detection performance is to exploit the structural information of the covariance matrix, especially in the case of insufficient reference cells. Thus, in this study, the problem of detecting multidimensional subspace signals is discussed by considering the persymmetric structure of the clutter covariance matrix, which implies that the covariance matrix is persymmetric about its cross diagonal. Persymmetric adaptive detectors are derived on the basis of the one-step principle as well as the two-step Generalized Likelihood Ratio Test (GLRT in homogeneous and partially homogeneous clutter. The proposed detectors consider the structural information of the covariance matrix at the design stage. Simulation results suggest performance improvement compared with existing detectors when reference cells are insufficient. Moreover, the detection performance is assessed with respect to the effects of the covariance matrix, signal subspace dimension, and mismatched performance of signal subspace as well as signal fluctuations.

  14. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Hiraiwa, Morgan; Lee, Hyun-Boo; Inoue, Shinnosuke; Chung, Jae-Hyun; Kim, Jong-Hoon; Becker, Annie L; Weigel, Kris M; Cangelosi, Gerard A; Lee, Kyong-Hoon

    2015-01-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL −1 , comparable to a more labor-intensive fluorescence detection method reported previously. (paper)

  15. Amperometric immunosensor for rapid detection of Mycobacterium tuberculosis

    Science.gov (United States)

    Hiraiwa, Morgan; Kim, Jong-Hoon; Lee, Hyun-Boo; Inoue, Shinnosuke; Becker, Annie L.; Weigel, Kris M.; Cangelosi, Gerard A.; Lee, Kyong-Hoon; Chung, Jae-Hyun

    2015-05-01

    Tuberculosis (TB) has been a major public health problem, which can be better controlled by using accurate and rapid diagnosis in low-resource settings. A simple, portable, and sensitive detection method is required for point-of-care (POC) settings. This paper studies an amperometric biosensor using a microtip immunoassay for a rapid and low-cost detection of Mycobacterium tuberculosis (MTB) in sputum. MTB in sputum is specifically captured on the functionalized microtip surface and detected by electric current. According to the numerical study, the current signal on the microtip surface is linearly changed with increasing immersion depth. Using a reference microtip, the immersion depth is compensated for a sensing microtip. On the microtip surface, target bacteria are concentrated and organized by a coffee-ring effect, which amplifies the electric current. To enhance the signal-to-noise ratio, both the sample processing and rinsing steps are presented with the use of deionized water as a medium for the amperometric measurement. When applied to cultured MTB cells spiked into human sputum, the detection limit was 100 CFU mL-1, comparable to a more labor-intensive fluorescence detection method reported previously.

  16. Rapid detection of EBOLA VP40 in microchip immunofiltration assay

    Science.gov (United States)

    Miethe, Peter; Gary, Dominik; Hlawatsch, Nadine; Gad, Anne-Marie

    2015-05-01

    In the spring of 2014, the Ebola virus (EBOV) strain Zaire caused a dramatic outbreak in several regions of West Africa. The RT-PCR and antigen capture diagnostic proved to be effective for detecting EBOV in blood and serum. In this paper, we present data of a rapid antigen capture test for the detection of VP40. The test was performed in a microfluidic chip for immunofiltration analysis. The chip integrates all necessary assay components. The analytical sensitivity of the rapid test was 8 ng/ml for recombinant VP40. In serum and whole blood samples spiked with virus culture material, the detection limit was 2.2 x 102 PFU/ml. The performance data of the rapid test (15 min) are comparable to that of the VP40 laboratory ELISA.

  17. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    Science.gov (United States)

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  18. Rapid detection of the positive side reactions in vanadium flow batteries

    International Nuclear Information System (INIS)

    Liu, Le; Li, Zhaohua; Xi, Jingyu; Zhou, Haipeng; Wu, Zenghua; Qiu, Xinping

    2017-01-01

    Highlights: • A method for rapid measurement of the positive side reactions in VFB is presented. • The SOC of positive electrolytes can be detected with resolution of 0.002%. • Side reaction ratios at different charge currents, flow rates are obtained. - Abstract: We present an optical detection method for rapid measurement of the positive side reactions in vanadium flow batteries (VFB). By measuring the transmittance of the positive electrolytes in VFB, the states of charge (SOC) of the positive electrolytes can be detected at very high resolution (better than 0.002% in the SOC range from 98% to 100%), due to the nonlinear transmittance spectra caused by the interactions between V(IV) and V(V) ions. The intensity of the positive side reactions of a VFB can be rapidly measured by a few steps, attributing to the fact that the positive side reactions occur only during the high voltage charging process. The ratios of the positive side reactions at different charge currents and different flow rates are obtained while causing no damage to the battery. This optical detection method can rapidly determine the optimal parameters of the VFB system, providing new means for studying the electrochemical reactions in the VFB system and rapid test in industrial production of VFBs.

  19. Rapid Aminoglycoside NP Test for Rapid Detection of Multiple Aminoglycoside Resistance in Enterobacteriaceae.

    Science.gov (United States)

    Nordmann, Patrice; Jayol, Aurélie; Dobias, Jan; Poirel, Laurent

    2017-04-01

    The rapid aminoglycoside NP (Nordmann/Poirel) test was developed to rapidly identify multiple aminoglycoside (AG) resistance in Enterobacteriaceae It is based on the detection of the glucose metabolism related to enterobacterial growth in the presence of a defined concentration of amikacin plus gentamicin. Formation of acid metabolites was evidenced by a color change (orange to yellow) of the red phenol pH indicator. The rapid aminoglycoside NP test was evaluated by using bacterial colonies of 18 AG-resistant isolates producing 16S rRNA methylases, 20 AG-resistant isolates expressing AG-modifying enzymes (acetyl-, adenyl-, and phosphotransferases), and 10 isolates susceptible to AG. Its sensitivity and specificity were 100% and 97%, respectively, compared to the broth dilution method, which was taken as the gold standard for determining aminoglycoside resistance. The test is inexpensive, rapid (<2 h), and implementable worldwide. Copyright © 2017 American Society for Microbiology.

  20. Rapid Detection of the Varicella Zoster Virus

    Science.gov (United States)

    Lewis, Michelle P.; Harding, Robert

    2011-01-01

    1.Technology Description-Researchers discovered that when the Varicella Zoster Virus (VZV) reactivates from latency in the body, the virus is consistently present in saliva before the appearance of skin lesions. A small saliva sample is mixed with a specialized reagent in a test kit. If the virus is present in the saliva sample, the mixture turns a red color. The sensitivity and specificity emanates from an antibody-antigen reaction. This technology is a rapid, non-invasive, point of-of-care testing kit for detecting the virus from a saliva sample. The device is easy to use and can be used in clinics and in remote locations to quickly detect VZV and begin treatment with antiviral drugs. 2.Market Opportunity- RST Bioscience will be the first and only company to market a rapid, same day test kit for the detection of VZV in saliva. The RST detection test kit will have several advantages over existing, competitive technology. The test kit is self contained and laboratory equipment is not required for analysis of the sample. Only a single saliva sample is required to be taken instead of blood or cerebral spinal fluid. The test kit is portable, sterile and disposable after use. RST detection test kits require no electrical power or expensive storage equipment and can be used in remote locations. 3.Market Analysis- According to the CDC, it is estimated that 1 million cases of shingles occur each year in the U.S. with more than half over the age of sixty. There is a high demand for rapid diagnostics by the public. The point-of-care testing (POCT) market is growing faster than other segments of in vitro diagnostics. According to a July 2007 InteLab Corporation industry report the overall market for POCT was forecast to increase from $10.3 billion in 2005 to $18.7 billion by 2011. The market value of this test kit has not been determined. 4.Competition- The VZV vaccine prevents 50% of cases and reduces neuralgia by 66%. The most popular test detects VZV-specific IgM antibody

  1. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection

  2. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Loke, Weng Keong; Nguyen, Nam-Trung

    2014-01-01

    This paper reports a lab-on-a-chip for the detection of Sarin nerve agent based on rapid electrochemical detection. The chemical warfare agent Sarin (C4H10FO2P, O-isopropyl methylphosphonofluoridate) is a highly toxic organophosphate that induces rapid respiratory depression, seizures and death...

  3. Advances in developing rapid, reliable and portable detection systems for alcohol.

    Science.gov (United States)

    Thungon, Phurpa Dema; Kakoti, Ankana; Ngashangva, Lightson; Goswami, Pranab

    2017-11-15

    Development of portable, reliable, sensitive, simple, and inexpensive detection system for alcohol has been an instinctive demand not only in traditional brewing, pharmaceutical, food and clinical industries but also in rapidly growing alcohol based fuel industries. Highly sensitive, selective, and reliable alcohol detections are currently amenable typically through the sophisticated instrument based analyses confined mostly to the state-of-art analytical laboratory facilities. With the growing demand of rapid and reliable alcohol detection systems, an all-round attempt has been made over the past decade encompassing various disciplines from basic and engineering sciences. Of late, the research for developing small-scale portable alcohol detection system has been accelerated with the advent of emerging miniaturization techniques, advanced materials and sensing platforms such as lab-on-chip, lab-on-CD, lab-on-paper etc. With these new inter-disciplinary approaches along with the support from the parallel knowledge growth on rapid detection systems being pursued for various targets, the progress on translating the proof-of-concepts to commercially viable and environment friendly portable alcohol detection systems is gaining pace. Here, we summarize the progress made over the years on the alcohol detection systems, with a focus on recent advancement towards developing portable, simple and efficient alcohol sensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Research advance in rapid detection of foodborne Staphylococcus aureus

    OpenAIRE

    Xihong Zhao; Caijiao Wei; Junliang Zhong; Shiwei Jin

    2016-01-01

    Staphylococcus aureus is a gram-positive, coccus-shaped facultative anaerobe and a member of the Staphylococcaceae family. In recent years, alimentary toxicosis caused by S. aureus is a very serious problem worldwide, which constitutes a great threat to public health. In this review, we tried to summarize the conventional methods and newly developed rapid detection techniques of S. aureus (traditional detection method, biochemical detection, immunology method, molecular biology, and biosensor...

  5. Rapid Detection and Identification of miRNAs by Surface-Enhanced Raman Spectroscopy Using Hollow Au Nanoflowers Substrates

    Directory of Open Access Journals (Sweden)

    Xiaowei Cao

    2017-01-01

    Full Text Available MicroRNAs (miRNAs are recognized as regulators of gene expression during the biological processes of cells as well as biomarkers of many diseases. Development of rapid and sensitive miRNA profiling methods is crucial for evaluating the pattern of miRNA expression related to normal and diseased states. This work presents a novel hollow Au nanoflowers (HAuNFs substrate for rapid detection and identification of miRNAs by surface-enhanced Raman scattering (SERS spectroscopy. We synthesized the HAuNFs by a seed-mediated growth approach. Then, HAuNFs substrates were fabricated by depositing HAuNFs onto the surfaces of (3-aminopropyltriethoxysilane- (APTES- functionalized ITO glass. The result demonstrated that HAuNFs substrates had very good reproducibility, homogeneous SERS activity, and high SERS effect. The substrates enabled us to successfully obtain the SERS spectra of miR-10a-5p, miR-125a-5p, and miR-196a-5p. The difference spectra among the three kinds of miRNAs were studied to better interpret the spectral differences and identify miRNA expression patterns with high accuracy. The principal component analysis (PCA of the SERS spectra was used to distinguish among the three kinds of miRNAs. Considering its time efficiency, being label-free, and its sensitivity, the SERS based on HAuNFs substrates is very promising for miRNA research and plays an important role in early disease detection and prevention.

  6. Rapid Methods for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Law eJodi Woan-Fei

    2015-01-01

    Full Text Available The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR, multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA, loop-mediated isothermal amplification (LAMP and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases.

  7. Rapid detection, characterization, and enumeration of foodborne pathogens

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey

    2011-01-01

    . The present review discusses the reasons for the increasing interest in rapid methods; current developments in the field, the research needs, and the future trends. The advent of biotechnology has introduced new technologies that led to the emergence of rapid diagnostic methods and altered food testing...... of rapid methods is for fast screening of large number of samples, where most of them are expected to be test-negative, leading to faster product release for sale. This has been the main strength of rapid methods such as real-time Polymerase Chain Reaction (PCR). Enrichment PCR, where a primary culture...... of pathogen in a contaminated product. Another key issue is automation, where the key drivers are miniaturization and multiple testing, which mean that not only one instrument is flexible enough to test for many pathogens but also many pathogens can be detected with one test. The review is mainly based...

  8. Homogeneous protein analysis by magnetic core-shell nanorod probes

    KAUST Repository

    Schrittwieser, Stefan

    2016-03-29

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.

  9. Mechanized syringe homogenization of human and animal tissues.

    Science.gov (United States)

    Kurien, Biji T; Porter, Andrew C; Patel, Nisha C; Kurono, Sadamu; Matsumoto, Hiroyuki; Scofield, R Hal

    2004-06-01

    Tissue homogenization is a prerequisite to any fractionation schedule. A plethora of hands-on methods are available to homogenize tissues. Here we report a mechanized method for homogenizing animal and human tissues rapidly and easily. The Bio-Mixer 1200 (manufactured by Innovative Products, Inc., Oklahoma City, OK) utilizes the back-and-forth movement of two motor-driven disposable syringes, connected to each other through a three-way stopcock, to homogenize animal or human tissue. Using this method, we were able to homogenize human or mouse tissues (brain, liver, heart, and salivary glands) in 5 min. From sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and a matrix-assisted laser desorption/ionization time-of-flight mass spectrometric enzyme assay for prolidase, we have found that the homogenates obtained were as good or even better than that obtained used a manual glass-on-Teflon (DuPont, Wilmington, DE) homogenization protocol (all-glass tube and Teflon pestle). Use of the Bio-Mixer 1200 to homogenize animal or human tissue precludes the need to stay in the cold room as is the case with the other hands-on homogenization methods available, in addition to freeing up time for other experiments.

  10. Research advance in rapid detection of foodborne Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xihong Zhao

    2016-09-01

    Full Text Available Staphylococcus aureus is a gram-positive, coccus-shaped facultative anaerobe and a member of the Staphylococcaceae family. In recent years, alimentary toxicosis caused by S. aureus is a very serious problem worldwide, which constitutes a great threat to public health. In this review, we tried to summarize the conventional methods and newly developed rapid detection techniques of S. aureus (traditional detection method, biochemical detection, immunology method, molecular biology, and biosensor method for their principles, advantages, disadvantages, and applications. Furthermore, the future perspectives of S. aureus detection methods were forecasted at last.

  11. Rapid detection of illegal colorants on traditional Chinese pastries through mass spectrometry with an interchangeable thermal desorption electrospray ionization source.

    Science.gov (United States)

    Chao, Yu-Ying; Chen, Yen-Ling; Chen, Wei-Chu; Chen, Bai-Hsiun; Huang, Yeou-Lih

    2018-06-30

    Ambient mass spectrometry using an interchangeable thermal desorption/electrospray ionization source (TD-ESI) is a relatively new technique that has had only a limited number of applications to date. Nevertheless, this direct-analysis technique has potential for wider use in analytical chemistry (e.g., in the rapid direct detection of contaminants, residues, and adulterants on and in food) when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to a TD-ESI source from a conventional ESI source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants on traditional Chinese pastries (TCPs), as a proof-of-concept for the detection of illegal colorants. While TD-ESI can offer direct (i.e., without any sample preparation) qualitative screening analyses for TCPs with adequate sensitivity within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous matrices (e.g., tang yuan). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Homogeneous immunosubtraction integrated with sample preparation is enabled by a microfluidic format

    Science.gov (United States)

    Apori, Akwasi A.; Herr, Amy E.

    2011-01-01

    Immunosubtraction is a powerful and resource-intensive laboratory medicine assay that reports both protein mobility and binding specificity. To expedite and automate this electrophoretic assay, we report on advances to the electrophoretic immunosubtraction assay by introducing a homogeneous, not heterogeneous, format with integrated sample preparation. To accomplish homogeneous immunosubtraction, a step-decrease in separation matrix pore-size at the head of a polyacrylamide gel electrophoresis (PAGE) separation channel enables ‘subtraction’ of target analyte when capture antibody is present (as the large immune-complex is excluded from PAGE), but no subtraction when capture antibody is absent. Inclusion of sample preparation functionality via small pore size polyacrylamide membranes is also key to automated operation (i.e., sample enrichment, fluorescence sample labeling, and mixing of sample with free capture antibody). Homogenous sample preparation and assay operation allows on-the-fly, integrated subtraction of one to multiple protein targets and reuse of each device. Optimization of the assay is detailed which allowed for ~95% subtraction of target with 20% non-specific extraction of large species at the optimal antibody-antigen ratio, providing conditions needed for selective target identification. We demonstrate the assay on putative markers of injury and inflammation in cerebrospinal fluid (CSF), an emerging area of diagnostics research, by rapidly reporting protein mobility and binding specificity within the sample matrix. We simultaneously detect S100B and C-reactive protein, suspected biomarkers for traumatic brain injury (TBI), in ~2 min. Lastly, we demonstrate S100B detection (65 nM) in raw human CSF with a lower limit of detection of ~3.25 nM, within the clinically relevant concentration range for detecting TBI in CSF. Beyond the novel CSF assay introduced here, a fully automated immunosubtraction assay would impact a spectrum of routine but labor

  13. Rapid In-Place Composite Rotor Damage Detection, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is proposing to further develop the Rapid In-Place Composite Rotor Damage Detection (RIPCoRDD) System for determining and tracking the structural...

  14. Rapid In-Place Composite Rotor Damage Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations is proposing to develop the Rapid In-Place Composite Rotor Damage Detection (RIPCoRDD) for determining and tracking the structural health of...

  15. Rapid Detection of Biological and Chemical Threat Agents Using Physical Chemistry, Active Detection, and Computational Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Myung; Dong, Li; Fu, Rong; Liotta, Lance; Narayanan, Aarthi; Petricoin, Emanuel; Ross, Mark; Russo, Paul; Zhou, Weidong; Luchini, Alessandra; Manes, Nathan; Chertow, Jessica; Han, Suhua; Kidd, Jessica; Senina, Svetlana; Groves, Stephanie

    2007-01-01

    Basic technologies have been successfully developed within this project: rapid collection of aerosols and a rapid ultra-sensitive immunoassay technique. Water-soluble, humidity-resistant polyacrylamide nano-filters were shown to (1) capture aerosol particles as small as 20 nm, (2) work in humid air and (3) completely liberate their captured particles in an aqueous solution compatible with the immunoassay technique. The immunoassay technology developed within this project combines electrophoretic capture with magnetic bead detection. It allows detection of as few as 150-600 analyte molecules or viruses in only three minutes, something no other known method can duplicate. The technology can be used in a variety of applications where speed of analysis and/or extremely low detection limits are of great importance: in rapid analysis of donor blood for hepatitis, HIV and other blood-borne infections in emergency blood transfusions, in trace analysis of pollutants, or in search of biomarkers in biological fluids. Combined in a single device, the water-soluble filter and ultra-sensitive immunoassay technique may solve the problem of early warning type detection of aerosolized pathogens. These two technologies are protected with five patent applications and are ready for commercialization.

  16. Radiometric method for the rapid detection of Leptospira organisms

    International Nuclear Information System (INIS)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-01-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with 14 C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques

  17. Radiometric method for the rapid detection of Leptospira organisms

    Energy Technology Data Exchange (ETDEWEB)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-02-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with /sup 14/C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques.

  18. ETV Tech Brief: Rapid Fungi and Bacteria Detection Technologies

    Science.gov (United States)

    Technical brief that summarizes the results for Mycometer, Inc. Mycometer®-test and Bactiquant®-test, which are rapid detection technologies for fungi and bacteria. The brief summarizes the results of the verification report and statement.

  19. Validation of the Applied Biosystems RapidFinder Shiga Toxin-Producing E. coli (STEC) Detection Workflow.

    Science.gov (United States)

    Cloke, Jonathan; Matheny, Sharon; Swimley, Michelle; Tebbs, Robert; Burrell, Angelia; Flannery, Jonathan; Bastin, Benjamin; Bird, Patrick; Benzinger, M Joseph; Crowley, Erin; Agin, James; Goins, David; Salfinger, Yvonne; Brodsky, Michael; Fernandez, Maria Cristina

    2016-11-01

    The Applied Biosystems™ RapidFinder™ STEC Detection Workflow (Thermo Fisher Scientific) is a complete protocol for the rapid qualitative detection of Escherichia coli (E. coli) O157:H7 and the "Big 6" non-O157 Shiga-like toxin-producing E. coli (STEC) serotypes (defined as serogroups: O26, O45, O103, O111, O121, and O145). The RapidFinder STEC Detection Workflow makes use of either the automated preparation of PCR-ready DNA using the Applied Biosystems PrepSEQ™ Nucleic Acid Extraction Kit in conjunction with the Applied Biosystems MagMAX™ Express 96-well magnetic particle processor or the Applied Biosystems PrepSEQ Rapid Spin kit for manual preparation of PCR-ready DNA. Two separate assays comprise the RapidFinder STEC Detection Workflow, the Applied Biosystems RapidFinder STEC Screening Assay and the Applied Biosystems RapidFinder STEC Confirmation Assay. The RapidFinder STEC Screening Assay includes primers and probes to detect the presence of stx1 (Shiga toxin 1), stx2 (Shiga toxin 2), eae (intimin), and E. coli O157 gene targets. The RapidFinder STEC Confirmation Assay includes primers and probes for the "Big 6" non-O157 STEC and E. coli O157:H7. The use of these two assays in tandem allows a user to detect accurately the presence of the "Big 6" STECs and E. coli O157:H7. The performance of the RapidFinder STEC Detection Workflow was evaluated in a method comparison study, in inclusivity and exclusivity studies, and in a robustness evaluation. The assays were compared to the U.S. Department of Agriculture (USDA), Food Safety and Inspection Service (FSIS) Microbiology Laboratory Guidebook (MLG) 5.09: Detection, Isolation and Identification of Escherichia coli O157:H7 from Meat Products and Carcass and Environmental Sponges for raw ground beef (73% lean) and USDA/FSIS-MLG 5B.05: Detection, Isolation and Identification of Escherichia coli non-O157:H7 from Meat Products and Carcass and Environmental Sponges for raw beef trim. No statistically significant

  20. Toehold-mediated nonenzymatic amplification circuit on graphene oxide fluorescence switching platform for sensitive and homogeneous microRNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ru; Liao, Yuhui; Zhou, Xiaoming, E-mail: zhouxm@scnu.edu.cn; Xing, Da, E-mail: xingda@scnu.edu.cn

    2015-08-12

    A novel graphene oxide (GO) fluorescence switch-based homogenous system has been developed to solve two problems that are commonly encountered in conventional GO-based biosensors. First, with the assistance of toehold-mediated nonenzymatic amplification (TMNA), the sensitivity of this system greatly surpasses that of previously described GO-based biosensors, which are always limited to the nM range due to the lack of efficient signal amplification. Second, without enzymatic participation in amplification, the unreliability of detection resulting from nonspecific desorption of DNA probes on the GO surface by enzymatic protein can be avoided. Moreover, the interaction mechanism of the double-stranded TMNA products contains several single-stranded toeholds at two ends and GO has also been explored with combinations of atomic force microscopy imaging, zeta potential detection, and fluorescence assays. It has been shown that the hybrids can be anchored to the surface of GO through the end with more unpaired bases, and that the other end, which has weaker interaction with GO, can escape GO adsorption due to the robustness of the central dsDNA structures. We verified this GO fluorescence switch-based detection system by detecting microRNA 21, an overexpressed non-encoding gene in a variety of malignant cells. Rational design of the probes allowed the isothermal nonenzymatic reaction to achieve more than 100-fold amplification efficiency. The detection results showed that our strategy has a detection limit of 10 pM and a detection range of four orders of magnitude. - Highlights: • This paper explored the interaction mechanism of TMNA products with GO surface. • This homogeneous and isothermal system permits a detection limit of 10 pM for microRNA. • This nonenzymatic strategy can avoid nonspecific desorption caused by enzyme protein. • The interaction model can be used to explore the application ability of nonenzymatic circuit.

  1. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection.

    Directory of Open Access Journals (Sweden)

    Roy Cohen

    Full Text Available Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs. As proof of principle, we use oriented immobilization of pyruvate kinase (PK and luciferase (Luc on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE, a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices.We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815 with the current gold standard for biomarker detection, ELISA-with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA.Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using oriented immobilization of active

  2. Homogeneity and internal defects detect of infrared Se-based chalcogenide glass

    Science.gov (United States)

    Li, Zupana; Wu, Ligang; Lin, Changgui; Song, Bao'an; Wang, Xunsi; Shen, Xiang; Dai, Shixunb

    2011-10-01

    Ge-Sb-Se chalcogenide glasses is a kind of excellent infrared optical material, which has been enviromental friendly and widely used in infrared thermal imaging systems. However, due to the opaque feature of Se-based glasses in visible spectral region, it's difficult to measure their homogeneity and internal defect as the common oxide ones. In this study, a measurement was proposed to observe the homogeneity and internal defect of these glasses based on near-IR imaging technique and an effective measurement system was also constructed. The testing result indicated the method can gives the information of homogeneity and internal defect of infrared Se-based chalcogenide glass clearly and intuitionally.

  3. A homogeneous fluorometric assay platform based on novel synthetic proteins

    International Nuclear Information System (INIS)

    Vardar-Schara, Goenuel; Krab, Ivo M.; Yi, Guohua; Su, Wei Wen

    2007-01-01

    Novel synthetic recombinant sensor proteins have been created to detect analytes in solution, in a rapid single-step 'mix and read' noncompetitive homogeneous assay process, based on modulating the Foerster resonance energy transfer (FRET) property of the sensor proteins upon binding to their targets. The sensor proteins comprise a protein scaffold that incorporates a specific target-capturing element, sandwiched by genetic fusion between two molecules that form a FRET pair. The utility of the sensor proteins was demonstrated via three examples, for detecting an anti-biotin Fab antibody, a His-tagged recombinant protein, and an anti-FLAG peptide antibody, respectively, all done directly in solution. The diversity of sensor-target interactions that we have demonstrated in this study points to a potentially universal applicability of the biosensing concept. The possibilities for integrating a variety of target-capturing elements with a common sensor scaffold predict a broad range of practical applications

  4. Affinity-Mediated Homogeneous Electrochemical Aptasensor on a Graphene Platform for Ultrasensitive Biomolecule Detection via Exonuclease-Assisted Target-Analog Recycling Amplification.

    Science.gov (United States)

    Ge, Lei; Wang, Wenxiao; Sun, Ximei; Hou, Ting; Li, Feng

    2016-02-16

    As is well-known, graphene shows a remarkable difference in affinity toward nonstructured single-stranded (ss) DNA and double-stranded (ds) DNA. This property makes it popular to prepare DNA-based optical sensors. In this work, taking this unique property of graphene in combination with the sensitive electrochemical transducer, we report a novel affinity-mediated homogeneous electrochemical aptasensor using graphene modified glassy carbon electrode (GCE) as the sensing platform. In this approach, the specific aptamer-target recognition is converted into an ultrasensitive electrochemical signal output with the aid of a novel T7 exonuclease (T7Exo)-assisted target-analog recycling amplification strategy, in which the ingeniously designed methylene blue (MB)-labeled hairpin DNA reporters are digested in the presence of target and, then, converted to numerous MB-labeled long ssDNAs. The distinct difference in differential pulse voltammetry response between the designed hairpin reporters and the generated long ssDNAs on the graphene/GCE allows ultrasensitive detection of target biomolecules. Herein, the design and working principle of this homogeneous electrochemical aptasensor were elucidated, and the working conditions were optimized. The gel electrophoresis results further demonstrate that the designed T7Exo-assisted target-analog recycling amplification strategy can work well. This electrochemical aptasensor realizes the detection of biomolecule in a homogeneous solution without immobilization of any bioprobe on electrode surface. Moreover, this versatile homogeneous electrochemical sensing system was used for the determination of biomolecules in real serum samples with satisfying results.

  5. Biocontrol and Rapid Detection of Food-borne Pathogens Using Bacteriophages and Endolysins

    Directory of Open Access Journals (Sweden)

    Jaewoo eBai

    2016-04-01

    Full Text Available Bacteriophages have been suggested as natural food preservatives as well as rapid detection materials for food-borne pathogens in various foods. Since Listeria monocytogenes-targeting phage cocktail (ListShield was approved for applications in foods, numerous phages have been screened and experimentally characterized for phage applications in foods. A single phage and phage cocktail treatments to various foods contaminated with food-borne pathogens including E. coli O157:H7, Salmonella enterica, Campylobacter jejuni, Listeria monocytogenes, Staphylococcus aureus, Cronobacter sakazakii, and Vibrio spp. revealed that they have great potential to control various food-borne pathogens and may be alternative for conventional food preservatives. In addition, phage-derived endolysins with high host specificity and host lysis activities may be preferred to food applications rather than phages. For rapid detection of food-borne pathogens, cell-wall binding domains (CBDs from endolysins have been suggested due to their high host-specific binding. Fluorescence-tagged CBDs have been successfully evaluated and suggested to be alternative materials of expensive antibodies for various detection applications. Most recently, reporter phage systems have been developed and tested to confirm their usability and accuracy for specific detection. These systems revealed some advantages like rapid detection of only viable pathogenic cells without interference by food components in a very short reaction time, suggesting that these systems may be suitable for monitoring of pathogens in foods. Consequently, phage is the next-generation biocontrol agent as well as rapid detection tool to confirm and even identify the food-borne pathogens present in various foods.

  6. Homogeneous Finsler Spaces

    CERN Document Server

    Deng, Shaoqiang

    2012-01-01

    "Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc

  7. Using molecular techniques for rapid detection of Salmonella ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-02-01

    Feb 1, 2010 ... A total of 152 samples of chicken and chicken products ... detection of Salmonella species in the collected field samples ... that 16 million new cases of typhoid fever occur each ... vative methods for the rapid identification of Salmonella ... saved for the PCR-Non Selective test (PCR-NS) and 1 ml of the.

  8. Indigenous people's detection of rapid ecological change.

    Science.gov (United States)

    Aswani, Shankar; Lauer, Matthew

    2014-06-01

    When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster-relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources. © 2014 Society for Conservation Biology.

  9. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike, E-mail: zhkhe@whu.edu.cn

    2015-01-01

    Graphical abstract: A universal, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. - Highlights: • The single-color QDs–Ru assembling dyads were applied in homogeneous DNA assay. • This biosensor exhibited high selectivity against base mismatched sequences. • This biosensor could be severed as universal platform for the detection of ssDNA. • This sensor could be used to detect the target in human serum samples. • This DNA sensor had a good selectivity under the interference of other dsDNA. - Abstract: In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots–ruthenium complex (QDs–Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen){sub 2}(dppx)]{sup 2+} (dppx = 7,8-dimethyldipyrido [3,2-a:2′,3′-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen){sub 2}(dppx)]{sup 2+} is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen){sub 2}(dppx)]{sup 2+} through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover

  10. Rapid detection of Avian Influenza Virus - Towards point of care diagnosis

    DEFF Research Database (Denmark)

    Dhumpa, Raghuram

    barcode and fluorescent beads were also developed for rapid detection and identification of the AIV. In both methods, the detection involved sandwiching of the target AIV between monoclonal antibodies for nucleoproteins and for matrix proteins. In the fluorescent DNA barcode-based immunoassay, fluorophore...

  11. Rapid hydrolysis of celluloses in homogeneous solution

    Energy Technology Data Exchange (ETDEWEB)

    Garves, K

    1979-01-01

    Dissolution of cellulose (I), cotton, and cotton linters in a mixture of Ac0H, Ac/sub 2/O, H/sub 2/SO/sub 4/, and DMF at 120 to 160 degrees resulted in rapid and complete hydrolysis of I with decomposition of the cellulose acetatesulfate formed by gradual addition of aqueous acid. Highly crystalline I is quickly decomposed to glucose with minimum byproduct formation. Carbohydrate products containing sugar units other than glucose are hydrolyzed with destruction of monosaccharides.

  12. Development of a homogeneous pulse shape discriminating flow-cell radiation detection system

    International Nuclear Information System (INIS)

    Hastie, K.H.; DeVol, T.A.; Fjeld, R.A.

    1999-01-01

    A homogeneous flow-cell radiation detection system which utilizes coincidence counting and pulse shape discrimination circuitry was assembled and tested with five commercially available liquid scintillation cocktails. Two of the cocktails, Ultima Flo (Packard) and Mono Flow 5 (National Diagnostics) have low viscosities and are intended for flow applications; and three of the cocktails, Optiphase HiSafe 3 (Wallac), Ultima Gold AB (Packard), and Ready Safe (Beckman), have higher viscosities and are intended for static applications. The low viscosity cocktails were modified with 1-methylnaphthalene to increase their capability for alpha/beta pulse shape discrimination. The sample loading and pulse shape discriminator setting were optimized to give the lowest minimum detectable concentration for methylnaphthalenein a 30 s count time. Of the higher viscosity cocktails, Optiphase HiSafe 3 had the lowest minimum detectable activities for alpha and beta radiation, 0.2 and 0.4 Bq/ml for 233 U and 90 Sr/ 90 Y, respectively, for a 30 s count time. The sample loading was 70% and the corresponding alpha/beta spillover was 5.5%. Of the low viscosity cocktails, Mono Flow 5 modified with 2.5% (by volume) 1-methylnaphthalene resulted in the lowest minimum detectable activities for alpha and beta radiation; 0.3 and 0.5 Bq/ml for 233 U and 90 Sr/ 90 Y, respectively, for a 30 s count time. The sample loading was 50%, and the corresponding alpha/beta spillover was 16.6%. HiSafe 3 at a 10% sample loading was used to evaluate the system under simulated flow conditions

  13. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals.

    Science.gov (United States)

    Mitchell, Deborah G; Rosen, Gerald M; Tseitlin, Mark; Symmes, Breanna; Eaton, Sandra S; Eaton, Gareth R

    2013-07-16

    The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 μM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Rapid Detection of Salmonella enterica in Food Using a Compact Disc-Shaped Device

    Directory of Open Access Journals (Sweden)

    Shunsuke Furutani

    2016-01-01

    Full Text Available Rapid detection of food-borne pathogens is essential to public health and the food industry. Although the conventional culture method is highly sensitive, it takes at least a few days to detect food-borne pathogens. Even though polymerase chain reaction (PCR can detect food-borne pathogens in a few hours, it is more expensive and unsatisfactorily sensitive relative to the culture method. We have developed a method to rapidly detect Salmonella enterica by using a compact disc (CD-shaped device that can reduce reagent consumption in conventional PCR. The detection method, which combines culture and PCR, is more rapid than the conventional culture method and is more sensitive and cheaper than PCR. In this study, we also examined a sample preparation method that involved collecting bacterial cells from food. The bacteria collected from chicken meat spiked with S. enterica were mixed with PCR reagents, and PCR was performed on the device. At a low concentration of S. enterica, the collected S. enterica was cultured before PCR for sensitive detection. After cultivation for 4 h, S. enterica at 1.7 × 104 colony-forming units (CFUs·g−1 was detected within 8 h, which included the time needed for sample preparation and detection. Furthermore, the detection of 30 CFUs·g−1 of S. enterica was possible within 12 h including 8 h for cultivation.

  15. Use of Tethered Enzymes as a Platform Technology for Rapid Analyte Detection

    Science.gov (United States)

    Cohen, Roy; Lata, James P.; Lee, Yurim; Hernández, Jean C. Cruz; Nishimura, Nozomi; Schaffer, Chris B.; Mukai, Chinatsu; Nelson, Jacquelyn L.; Brangman, Sharon A.; Agrawal, Yash; Travis, Alexander J.

    2015-01-01

    Background Rapid diagnosis for time-sensitive illnesses such as stroke, cardiac arrest, and septic shock is essential for successful treatment. Much attention has therefore focused on new strategies for rapid and objective diagnosis, such as Point-of-Care Tests (PoCT) for blood biomarkers. Here we use a biomimicry-based approach to demonstrate a new diagnostic platform, based on enzymes tethered to nanoparticles (NPs). As proof of principle, we use oriented immobilization of pyruvate kinase (PK) and luciferase (Luc) on silica NPs to achieve rapid and sensitive detection of neuron-specific enolase (NSE), a clinically relevant biomarker for multiple diseases ranging from acute brain injuries to lung cancer. We hypothesize that an approach capitalizing on the speed and catalytic nature of enzymatic reactions would enable fast and sensitive biomarker detection, suitable for PoCT devices. Methods and findings We performed in-vitro, animal model, and human subject studies. First, the efficiency of coupled enzyme activities when tethered to NPs versus when in solution was tested, demonstrating a highly sensitive and rapid detection of physiological and pathological concentrations of NSE. Next, in rat stroke models the enzyme-based assay was able in minutes to show a statistically significant increase in NSE levels in samples taken 1 hour before and 0, 1, 3 and 6 hours after occlusion of the distal middle cerebral artery. Finally, using the tethered enzyme assay for detection of NSE in samples from 20 geriatric human patients, we show that our data match well (r = 0.815) with the current gold standard for biomarker detection, ELISA—with a major difference being that we achieve detection in 10 minutes as opposed to the several hours required for traditional ELISA. Conclusions Oriented enzyme immobilization conferred more efficient coupled activity, and thus higher assay sensitivity, than non-tethered enzymes. Together, our findings provide proof of concept for using

  16. Modified DNA extraction for rapid PCR detection of methicillin-resistant staphylococci

    International Nuclear Information System (INIS)

    Japoni, A.; Alborzi, A.; Rasouli, M.; Pourabbas, B.

    2004-01-01

    Nosocomial infection caused by methicillin-resistant staphylococci poses a serious problem in many countries. The aim of this study was to rapidly and reliably detect methicillin-resistant-staphylococci in order to suggest appropriate therapy. The presence or absence of the methicillin-resistance gene in 115 clinical isolates of staphylococcus aureus and 50 isolates of coagulase negative staphylococci was examined by normal PCR. DNA extraction for PCR performance was then modified by omission of achromopeptadiase and proteinase K digestion, phenol/chloroform extraction and ethanol precipitation. All isolates with Mic>8 μ g/ml showed positive PCR. No differences in PCR detection have been observed when normal and modified DNA extractions have been performed. Our modified DNA extraction can quickly detect methicillin-resistant staphylococci by PCR. The advantage of rapid DNA extraction extends to both reduction of time and cost of PCR performance. This modified DNA extraction is suitable for different PCR detection, when staphylococci are the subject of DNA analysis

  17. Rapid and specific detection of Asian- and African-lineage Zika viruses.

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M; Fauver, Joseph R; Andre, Barb; Gray, Meg; Black, William C; Kading, Rebekah C; Ebel, Gregory D; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T A; Brault, Aaron C; Harris, Eva; Foy, Brian D; Quackenbush, Sandra L; Perera, Rushika; Rovnak, Joel

    2017-05-03

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. Copyright © 2017, American Association for the Advancement of Science.

  18. Rapid and specific detection of Asian- and African-lineage Zika viruses

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D.; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K.; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M.; Fauver, Joseph R.; Andre, Barb; Gray, Meg; Black, William C.; Kading, Rebekah C.; Ebel, Gregory D.; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T. A.; Brault, Aaron C.; Harris, Eva; Foy, Brian D.; Quackenbush, Sandra L.; Perera, Rushika; Rovnak, Joel

    2017-01-01

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. PMID:28469032

  19. Homogenization and structural topology optimization theory, practice and software

    CERN Document Server

    Hassani, Behrooz

    1999-01-01

    Structural topology optimization is a fast growing field that is finding numerous applications in automotive, aerospace and mechanical design processes. Homogenization is a mathematical theory with applications in several engineering problems that are governed by partial differential equations with rapidly oscillating coefficients Homogenization and Structural Topology Optimization brings the two concepts together and successfully bridges the previously overlooked gap between the mathematical theory and the practical implementation of the homogenization method. The book is presented in a unique self-teaching style that includes numerous illustrative examples, figures and detailed explanations of concepts. The text is divided into three parts which maintains the book's reader-friendly appeal.

  20. Rapid antemortem detection of CWD prions in deer saliva.

    Directory of Open Access Journals (Sweden)

    Davin M Henderson

    Full Text Available Chronic wasting disease (CWD is an efficiently transmitted prion disease of cervids, now identified in 22 United States, 2 Canadian provinces and Korea. One hallmark of CWD is the shedding of infectious prions in saliva, as demonstrated by bioassay in deer. It is also clear that the concentration of prions in saliva, blood, urine and feces is much lower than in the nervous system or lymphoid tissues. Rapid in vitro detection of CWD (and other prions in body fluids and excreta has been problematic due to the sensitivity limits of direct assays (western blotting, ELISA and the presence of inhibitors in these complex biological materials that hamper detection. Here we use real-time quaking induced conversion (RT-QuIC to demonstrate CWD prions in both diluted and prion-enriched saliva samples from asymptomatic and symptomatic white-tailed deer. CWD prions were detected in 14 of 24 (58.3% diluted saliva samples from CWD-exposed white-tailed deer, including 9 of 14 asymptomatic animals (64.2%. In addition, a phosphotungstic acid enrichment enhanced the RT-QuIC assay sensitivity, enabling detection in 19 of 24 (79.1% of the above saliva samples. Bioassay in Tg[CerPrP] mice confirmed the presence of infectious prions in 2 of 2 RT-QuIC-positive saliva samples so examined. The modified RT-QuIC analysis described represents a non-invasive, rapid ante-mortem detection of prions in complex biologic fluids, excreta, or environmental samples as well as a tool for exploring prion trafficking, peripheralization, and dissemination.

  1. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens.

    Science.gov (United States)

    Mustafa, Fatima; Hassan, Rabeay Y A; Andreescu, Silvana

    2017-09-15

    Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.

  2. Homogeneous Biosensing Based on Magnetic Particle Labels

    KAUST Repository

    Schrittwieser, Stefan

    2016-06-06

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  3. Homogeneous Biosensing Based on Magnetic Particle Labels

    Science.gov (United States)

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  4. Homogeneous Biosensing Based on Magnetic Particle Labels

    KAUST Repository

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang; Lentijo Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschö pe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation.

  5. The application of automatic chemiluminescence machine in rapid immune detection

    International Nuclear Information System (INIS)

    Lin Aizhen; Li Xuanwei; Chen Binhong; Li Zhenqian; Chen Zhaoxuan

    2004-01-01

    Objective: To provide high-quality, rapid and dependable result for clinical practice, and give satisfactory service to patients of different economical status by supplementation with other labeling immune examination. With an innovative attitude, we carried out efficient technical reform on ACS180 automatic chemiluminescence machine, making it possible for patients to complete the whole process including examination, check-out, diagnosis and getting drugs. The reported will be issued within an hour, thus a rapid immune detection service was established in out-patients department. Methods: 1. ACS-180 automatic chemiluminescence machine is used based on the principle of chemiluminescence immune methods. 2. The reagents are provided by Ciba-Comig Company of USA, composed of anti acridinium ester antibody of liquid phase and particulate antigen of solid phase wrapped in magnetic powder. 3. Calibration and quality control: high and low concentration are set for each calibration fluid with attached standard curve. Product for quality controlling includes three concentration of low, moderate and high. Results: 1. rapid machine detection for sample: serum is replaced with plasma coagulated by heparin, and comparison among series of methods using serum or plasma suggest no significant difference exists. 2. The problem about fasting detection: chemiluminescence machine measure optical density directly, with the results hardly being influenced by turbidity. But attention should be paid to the treatment of lipid turbid samples. 3. Other innovations: (1) direct placement of sample tube on machine: a cushion is placed on sample plate to transfer sample to machine directly after centrifugation, saving time and reducing the accident in sample transference. (2) for HCG quantification in blood and urine, 'gold criteria' is used firstly in screening to determine approximately the dilution range, with an advantage of saving time and reagent as well as accuracy. (3) we design a

  6. A duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    Science.gov (United States)

    Benacer, Douadi; Zain, Siti Nursheena Mohd; Lewis, John W; Khalid, Mohd Khairul Nizam Mohd; Thong, Kwai Lin

    2017-01-01

    This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains. Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively. The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water. Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.

  7. Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection.

    Science.gov (United States)

    Hiramatsu, Kotaro; Luo, Yizhi; Ideguchi, Takuro; Goda, Keisuke

    2017-11-01

    High-speed Raman spectroscopy has become increasingly important for analyzing chemical dynamics in real time. To address the need, rapid-scan Fourier-transform coherent anti-Stokes Raman scattering (FT-CARS) spectroscopy has been developed to realize broadband CARS measurements at a scan rate of more than 20,000 scans/s. However, the detection sensitivity of FT-CARS spectroscopy is inherently low due to the limited number of photons detected during each scan. In this Letter, we show our experimental demonstration of enhanced sensitivity in rapid-scan FT-CARS spectroscopy by heterodyne detection. Specifically, we implemented heterodyne detection by superposing the CARS electric field with an external local oscillator (LO) for their interference. The CARS signal was amplified by simply increasing the power of the LO without the need for increasing the incident power onto the sample. Consequently, we achieved enhancement in signal intensity and the signal-to-noise ratio by factors of 39 and 5, respectively, compared to FT-CARS spectroscopy with homodyne detection. The sensitivity-improved rapid-scan FT-CARS spectroscopy is expected to enable the sensitive real-time observation of chemical dynamics in a broad range of settings, such as combustion engines and live biological cells.

  8. Rapid paper disk test for identification of Helicobacter pylori in mixed cultures of gerbil gastric homogenates.

    Science.gov (United States)

    Castillo-Juarez, Israel; Rangel-Vega, Adrian; Romero, Irma

    2010-10-01

    A method denominated rapid paper disk test (RPDT) was developed to identify H. pylori colonies in complex cultures obtained from gerbil gastric homogenates. Identification is based on a characteristic reaction pattern (RP) for H. pylori colonies given by the combination of the urease-oxidase activities on a paper disk. Compared to the RPs obtained from gerbil's intestinal tract isolated bacteria, H. pylori RP is completely distinguishable, even from those of bacteria that share one or both activities as are Aerococcus urinae, Bacillus sphaericus, Bacillus brevis, Corynebacterium pseudogenitalium, and Staphylococcus simulans, as well as from those produced by collection strains Proteus vulgaris and Pseudomonas aeruginosa. This method allows the practical quantification of H. pylori colonies in highly contaminated plates. RPDT has the following advantages over other methodologies that use indicators in the medium: it employs two of the three routinely used H. pylori biochemical identification tests, the reagents do not interfere with bacterial viability, there are no restrictions in relation to the medium used, and it is a simple, fast, and low-cost method. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Effect of heat and homogenization on in vitro digestion of milk.

    Science.gov (United States)

    Tunick, Michael H; Ren, Daxi X; Van Hekken, Diane L; Bonnaillie, Laetitia; Paul, Moushumi; Kwoczak, Raymond; Tomasula, Peggy M

    2016-06-01

    Central to commercial fluid milk processing is the use of high temperature, short time (HTST) pasteurization to ensure the safety and quality of milk, and homogenization to prevent creaming of fat-containing milk. Ultra-high-temperature sterilization is also applied to milk and is typically used to extend the shelf life of refrigerated, specialty milk products or to provide shelf-stable milk. The structures of the milk proteins and lipids are affected by processing but little information is available on the effects of the individual processes or sequences of processes on digestibility. In this study, raw whole milk was subjected to homogenization, HTST pasteurization, and homogenization followed by HTST or UHT processing. Raw skim milk was subjected to the same heating regimens. In vitro gastrointestinal digestion using a fasting model was then used to detect the processing-induced changes in the proteins and lipids. Using sodium dodecyl sulfate-PAGE, gastric pepsin digestion of the milk samples showed rapid elimination of the casein and α-lactalbumin bands, persistence of the β-lactoglobulin bands, and appearance of casein and whey peptide bands. The bands for β-lactoglobulin were eliminated within the first 15min of intestinal pancreatin digestion. The remaining proteins and peptides of raw, HTST, and UHT skim samples were digested rapidly within the first 15min of intestinal digestion, but intestinal digestion of raw and HTST pasteurized whole milk showed some persistence of the peptides throughout digestion. The availability of more lipid droplets upon homogenization, with greater surface area available for interaction with the peptides, led to persistence of the smaller peptide bands and thus slower intestinal digestion when followed by HTST pasteurization but not by UHT processing, in which the denatured proteins may be more accessible to the digestive enzymes. Homogenization and heat processing also affected the ζ-potential and free fatty acid release

  10. Rapid detection of urinary polyomavirus BK by heterodyne-based surface plasmon resonance biosensor

    Science.gov (United States)

    Su, Li-Chen; Tian, Ya-Chung; Chang, Ying-Feng; Chou, Chien; Lai, Chao-Sung

    2014-01-01

    In renal transplant patients, immunosuppressive therapy may result in the reactivation of polyomavirus BK (BKV), leading to polyomavirus-associated nephropathy (PVAN), which inevitably causes allograft failure. Since the treatment outcomes of PVAN remain unsatisfactory, early identification and continuous monitoring of BKV reactivation and reduction of immunosuppressants are essential to prevent PVAN development. The present study demonstrated that the developed dual-channel heterodyne-based surface plasmon resonance (SPR) biosensor is applicable for the rapid detection of urinary BKV. The use of a symmetrical reference channel integrated with the poly(ethylene glycol)-based low-fouling self-assembled monolayer to reduce the environmental variations and the nonspecific noise was proven to enhance the sensitivity in urinary BKV detection. Experimentally, the detection limit of the biosensor for BKV detection was estimated to be around 8500 copies/mL. In addition, urine samples from five renal transplant patients were tested to rapidly distinguish PVAN-positive and PVAN-negative renal transplant patients. By virtue of its simplicity, rapidity, and applicability, the SPR biosensor is a remarkable potential to be used for continuous clinical monitoring of BKV reactivation.

  11. At-tank Low-Activity Feed Homogeneity Analysis Verification

    International Nuclear Information System (INIS)

    DOUGLAS, J.G.

    2000-01-01

    This report evaluates the merit of selecting sodium, aluminum, and cesium-137 as analytes to indicate homogeneity of soluble species in low-activity waste (LAW) feed and recommends possible analytes and physical properties that could serve as rapid screening indicators for LAW feed homogeneity. The three analytes are adequate as screening indicators of soluble species homogeneity for tank waste when a mixing pump is used to thoroughly mix the waste in the waste feed staging tank and when all dissolved species are present at concentrations well below their solubility limits. If either of these conditions is violated, then the three indicators may not be sufficiently chemically representative of other waste constituents to reliably indicate homogeneity in the feed supernatant. Additional homogeneity indicators that should be considered are anions such as fluoride, sulfate, and phosphate, total organic carbon/total inorganic carbon, and total alpha to estimate the transuranic species. Physical property measurements such as gamma profiling, conductivity, specific gravity, and total suspended solids are recommended as possible at-tank methods for indicating homogeneity. Indicators of LAW feed homogeneity are needed to reduce the U.S. Department of Energy, Office of River Protection (ORP) Program's contractual risk by assuring that the waste feed is within the contractual composition and can be supplied to the waste treatment plant within the schedule requirements

  12. Quenching the chemiluminescence of acridinium ester by graphene oxide for label-free and homogeneous DNA detection.

    Science.gov (United States)

    He, Yi; Huang, Guangming; Cui, Hua

    2013-11-13

    It was found that graphene oxide (GO) could effectively quench the chemiluminescence (CL) emission from a acridinium ester (AE)-hydrogen peroxide system. By taking advantage of this quenching effect, as a proof of concept, a label-free and homogeneous DNA assay was developed for the detection of Mycobacterium tuberculosis DNA. In the absence of target DNA, both probe DNA and AE were absorbed on the surface of GO, producing a weak CL emission owing to the CL quenching effect of GO. However, in the presence of target DNA, a double-stranded structure of DNA was generated, leading to the release of the oligonucleotide from the GO surface. AE favors binding with double-stranded DNA, which will be released from the GO surface; thus, the quenching effect of GO will be no longer effective and a strong CL signal can be observed. This assay can detect M. tuberculosis DNA with a detection limit of 0.65 nM. This sensitivity is lower than that of previously reported electrochemical detection.

  13. A biosensor platform for rapid detection of E. coli in drinking water.

    Science.gov (United States)

    Hesari, Nikou; Alum, Absar; Elzein, Mohamad; Abbaszadegan, Morteza

    2016-02-01

    There remains a need for rapid, specific and sensitive assays for the detection of bacterial indicators for water quality monitoring. In this study, a strategy for rapid detection of Escherichia coli in drinking water has been developed. This strategy is based on the use of the substrate 4-methylumbelliferyl-β-d-glucuronide (MUG), which is hydrolyzed rapidly by the action of E. coli β-d-glucuronidase (GUD) enzyme to yield a fluorogenic 4-methylumbelliferone (4-MU) product that can be quantified and related to the number of E. coli cells present in water samples. In this study, the detection time required for the biosensor response ranged between 20 and 120 min, depending on the number of bacteria in the sample. This approach does not need extensive sample processing with a rapid detection capability. The specificity of the MUG substrate was examined in both, pure cultures of non-target bacterial genera such as Klebsiella, Salmonella, Enterobacter and Bacillus. Non-target substrates that included 4-methylumbelliferyl-β-d-galactopyranoside (MUGal) and l-leucine β-naphthylamide aminopeptidase (LLβ-N) were also investigated to identify nonspecific patterns of enzymatic activities in E. coli. GUD activity was found to be specific for E. coli and no further enzymatic activity was detected by other species. In addition, fluorescence assays were performed for the detection of E. coli to generate standard curves; and the sensitivity of the GUD enzymatic response was measured and repeatedly determined to be less than 10 E. coli cells in a reaction vial. The applicability of the method was tested by performing multiple fluorescence assays under pure and mixed bacterial flora in environmental samples. The results of this study showed that the fluorescence signals generated in samples using specific substrate molecules can be utilized to develop a bio-sensing platform for the detection of E. coli in drinking water. Furthermore, this system can be applied independently or

  14. A homogeneous, high-throughput assay for phosphatidylinositol 5-phosphate 4-kinase with a novel, rapid substrate preparation.

    Directory of Open Access Journals (Sweden)

    Mindy I Davis

    Full Text Available Phosphoinositide kinases regulate diverse cellular functions and are important targets for therapeutic development for diseases, such as diabetes and cancer. Preparation of the lipid substrate is crucial for the development of a robust and miniaturizable lipid kinase assay. Enzymatic assays for phosphoinositide kinases often use lipid substrates prepared from lyophilized lipid preparations by sonication, which result in variability in the liposome size from preparation to preparation. Herein, we report a homogeneous 1536-well luciferase-coupled bioluminescence assay for PI5P4Kα. The substrate preparation is novel and allows the rapid production of a DMSO-containing substrate solution without the need for lengthy liposome preparation protocols, thus enabling the scale-up of this traditionally difficult type of assay. The Z'-factor value was greater than 0.7 for the PI5P4Kα assay, indicating its suitability for high-throughput screening applications. Tyrphostin AG-82 had been identified as an inhibitor of PI5P4Kα by assessing the degree of phospho transfer of γ-(32P-ATP to PI5P; its inhibitory activity against PI5P4Kα was confirmed in the present miniaturized assay. From a pilot screen of a library of bioactive compounds, another tyrphostin, I-OMe tyrphostin AG-538 (I-OMe-AG-538, was identified as an ATP-competitive inhibitor of PI5P4Kα with an IC(50 of 1 µM, affirming the suitability of the assay for inhibitor discovery campaigns. This homogeneous assay may apply to other lipid kinases and should help in the identification of leads for this class of enzymes by enabling high-throughput screening efforts.

  15. Rapid Detection Technology for Pesticides Residues Based on Microelectrodes Impedance Immunosensor

    Directory of Open Access Journals (Sweden)

    Wen Ping Zhao

    2014-09-01

    Full Text Available Compared with conventional methods, electrochemical immunosensors have many advantages, such as low cost, high sensitivity, and rapid detection, and has certain prospects for realizing real-time-monitoring. In this paper, a design of portable pesticide residues detection instrument was presented based on an electrochemical impedance immunosensor. Firstly, we studied on an impedance immunosensor based on interdigitated array microelectrode (IDAM coupled with magnetic nanobeads-antibody conjugates (MNAC for the pesticide detection. Magnetic nanobeads (diameter 150 nm coated with anti-carbofuran antibodies were used for further amplification of the binding reaction between antibody and hapten (carbofuran. Secondly, in order to develop a portable pesticide residue apparatus, we designed the impedance detection electric circuit. Main work included designing and constructing of the system circuit, designing and debugging of the system software and so on. Thirdly, the apparatus was used for the standard pesticides solutions testing combined with immunosensor to test the reliability and stability. The pesticide added standard recovery was more than 70 % and the impedance test error was less than 5 %. The results showed that the proposed instrument had a good consistence compared with the traditional analytical methods. Thus, it would be a promising rapid detection instrument for pesticide residues in agricultural products.

  16. RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin.

    Science.gov (United States)

    Janardhanan, Pavithra; Mello, Charlene M; Singh, Bal Ram; Lou, Jianlong; Marks, James D; Cai, Shuowei

    2013-12-15

    A surface plasmon resonance based RNA aptasensor for rapid detection of natively folded type A botulinum neurotoxin is reported. Using detoxified recombinant type A botulinum neurotoxin as the surrogate, the aptasensor detects active toxin within 90 min. The detection limit of the aptasensor in phosphate buffered saline, carrot juice, and fat free milk is 5.8 ng/ml, 20.3 ng/ml and 23.4 ng/ml, respectively, while that in 5-fold diluted human serum is 22.5 ng/ml. Recovery of toxin from disparate sample matrices are within 91-116%. Most significant is the ability of this aptasensor to effectively differentiate the natively folded toxin from denatured, inactive toxin, which is important for homeland security surveillance and threat assessment. The aptasensor is stable for more than 30 days and over 400 injections/regeneration cycles. Such an aptasensor holds great promise for rapid detection of active botulinum neurotoxin for field surveillance due to its robustness, stability and reusability. © 2013 Elsevier B.V. All rights reserved.

  17. Rapid Detection of Food Allergens by Microfluidics ELISA-Based Optical Sensor

    Directory of Open Access Journals (Sweden)

    Xuan Weng

    2016-06-01

    Full Text Available The risks associated with the presence of hidden allergens in food have increased the need for rapid, sensitive, and reliable methods for tracing food allergens in commodities. Conventional enzyme immunosorbent assay (ELISA has usually been performed in a centralized lab, requiring considerable time and sample/reagent consumption and expensive detection instruments. In this study, a microfluidic ELISA platform combined with a custom-designed optical sensor was developed for the quantitative analysis of the proteins wheat gluten and Ara h 1. The developed microfluidic ELISA biosensor reduced the total assay time from hours (up to 3.5 h to 15–20 min and decreased sample/reagent consumption to 5–10 μL, compared to a few hundred microliters in commercial ELISA kits, with superior sensitivity. The quantitative capability of the presented biosensor is a distinctive advantage over the commercially available rapid methods such as lateral flow devices (LFD and dipstick tests. The developed microfluidic biosensor demonstrates the potential for sensitive and less-expensive on-site determination for rapidly detecting food allergens in a complex sample system.

  18. Rapid and real-time detection technologies for emerging viruses of ...

    Indian Academy of Sciences (India)

    2008-10-17

    Oct 17, 2008 ... The development of technologies with rapid and sensitive detection capabilities and increased throughput have become crucial for responding to greater number threats posed by emerging and re-emerging viruses in the recent past. The conventional identification methods require time-consuming culturing ...

  19. Rapid Change Detection Algorithm for Disaster Management

    Science.gov (United States)

    Michel, U.; Thunig, H.; Ehlers, M.; Reinartz, P.

    2012-07-01

    This paper focuses on change detection applications in areas where catastrophic events took place which resulted in rapid destruction especially of manmade objects. Standard methods for automated change detection prove not to be sufficient; therefore a new method was developed and tested. The presented method allows a fast detection and visualization of change in areas of crisis or catastrophes. While often new methods of remote sensing are developed without user oriented aspects, organizations and authorities are not able to use these methods because of absence of remote sensing know how. Therefore a semi-automated procedure was developed. Within a transferable framework, the developed algorithm can be implemented for a set of remote sensing data among different investigation areas. Several case studies are the base for the retrieved results. Within a coarse dividing into statistical parts and the segmentation in meaningful objects, the framework is able to deal with different types of change. By means of an elaborated Temporal Change Index (TCI) only panchromatic datasets are used to extract areas which are destroyed, areas which were not affected and in addition areas where rebuilding has already started.

  20. Rapid and Sensitive Detection of BLAD in Cattle Population

    Directory of Open Access Journals (Sweden)

    Daniela Elena Ilie

    2014-05-01

    Full Text Available Bovine leukocyte adhesion deficiency (BLAD is an autosomal recessive disorder with negative impact on dairy cattle breeding. The molecular basis of BLAD is a single point mutation (A→G, resulting in a single amino acid substitution (aspartic acid → glycine at amino acid 128 in the adhesion molecule CD18. The object of this study was to establish a fast and sensitive molecular genotyping assay to detect BLAD carriers using high-resolution melting (HRM curve analysis. We tested animals with known genotypes for BLAD that were previously confirmed by PCR-RFLP method, and then examined the sensitivity of mutation detection using PCR followed by HRM curve analysis. BLAD carriers were readily detectable using HRM assay. Thus, the PCR-HRM genotyping method is a rapid, easily interpretable, reliable and cost-effective assay for BLAD mutant allele detection. This assay can be useful in cattle genotyping and genetic selection.

  1. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-03-09

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection. The GMRsensor is fabricated in a horseshoe shape in order to detect the majority of MPs that are trapped around the conducting structure. The GMR sensing elements are connected in a Wheatstone bridge circuit topology for optimum noise suppression. Full fabrication details of the micro-chip, characterization of the GMRsensors, and experimental results with MPs are presented in this paper. Experimental results showed that the micro-chip can detect MPs from low concentration samples after they were guided toward the GMRsensors by applying current to the conducting ring structure.

  2. Rapid detection of benzoyl peroxide in wheat flour by using Raman scattering spectroscopy

    Science.gov (United States)

    Zhao, Juan; Peng, Yankun; Chao, Kuanglin; Qin, Jianwei; Dhakal, Sagar; Xu, Tianfeng

    2015-05-01

    Benzoyl peroxide is a common flour additive that improves the whiteness of flour and the storage properties of flour products. However, benzoyl peroxide adversely affects the nutritional content of flour, and excess consumption causes nausea, dizziness, other poisoning, and serious liver damage. This study was focus on detection of the benzoyl peroxide added in wheat flour. A Raman scattering spectroscopy system was used to acquire spectral signal from sample data and identify benzoyl peroxide based on Raman spectral peak position. The optical devices consisted of Raman spectrometer and CCD camera, 785 nm laser module, optical fiber, prober, and a translation stage to develop a real-time, nondestructive detection system. Pure flour, pure benzoyl peroxide and different concentrations of benzoyl peroxide mixed with flour were prepared as three sets samples to measure the Raman spectrum. These samples were placed in the same type of petri dish to maintain a fixed distance between the Raman CCD and petri dish during spectral collection. The mixed samples were worked by pretreatment of homogenization and collected multiple sets of data of each mixture. The exposure time of this experiment was set at 0.5s. The Savitzky Golay (S-G) algorithm and polynomial curve-fitting method was applied to remove the fluorescence background from the Raman spectrum. The Raman spectral peaks at 619 cm-1, 848 cm-1, 890 cm-1, 1001 cm-1, 1234 cm-1, 1603cm-1, 1777cm-1 were identified as the Raman fingerprint of benzoyl peroxide. Based on the relationship between the Raman intensity of the most prominent peak at around 1001 cm-1 and log values of benzoyl peroxide concentrations, the chemical concentration prediction model was developed. This research demonstrated that Raman detection system could effectively and rapidly identify benzoyl peroxide adulteration in wheat flour. The experimental result is promising and the system with further modification can be applicable for more products in near

  3. [Rapid test for detection of susceptibility to cefotaxime in Enterobacteriaceae].

    Science.gov (United States)

    Jiménez-Guerra, Gemma; Hoyos-Mallecot, Yannik; Rodríguez-Granger, Javier; Navarro-Marí, José María; Gutiérrez-Fernández, José

    In this work an "in house" rapid test based on the change in pH that is due to hydrolysis for detecting Enterobacteriaceae susceptible to cefotaxime is evaluated. The strains of Enterobacteriaceae from 1947 urine cultures were assessed using MicroScan panels and the "in house" test. This rapid test includes red phenol solution and cefotaxime. Using MicroScan panels, 499 Enterobacteriaceae isolates were evaluated, which included 27 isolates of Escherichia coli producing extended-spectrum beta-lactamases (ESBL), 16 isolates of Klebsiella pneumoniae ESBL and 1 isolate of Klebsiella oxytoca ESBL. The "in house" test offers the following values: sensitivity 98% and specificity 97%, with negative predictive value 100% and positive predictive value 78%. The "in house" test based on the change of pH is useful in our area for detecting presumptively cefotaxime-resistant Enterobacteriaceae strains. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Chen Meijun; Wu Yingsong; Lin Guanfeng; Hou Jingyuan; Li Ming [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China); Liu Tiancai, E-mail: liutc@smu.edu.cn [Institute of Antibody Engineering, School of Biotechnology, Southern Medical University, Guangzhou, 510515 (China)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer QDs-based homogeneous time-resolved fluoroimmunoassay was developed to detect AFP. Black-Right-Pointing-Pointer The conjugates were prepared with QDs-doped microspheres and anti-AFP McAb. Black-Right-Pointing-Pointer The conjugates were prepared with LTCs and another anti-AFP McAb. Black-Right-Pointing-Pointer Excess amounts of conjugates were used for detecting AFP without rinsing. Black-Right-Pointing-Pointer The wedding of QPs and LTCs was suitable for HTRFIA to detect AFP. - Abstract: Quantum dots (QDs) with novel photoproperties are not widely used in clinic diagnosis, and homogeneous time-resolved fluorescence assays possess many advantages over current methods for alpha-fetoprotein (AFP) detection. A novel QD-based homogeneous time-resolved fluorescence assay was developed and used for detection of AFP, a primary marker for many cancers and diseases. QD-doped carboxyl-modified polystyrene microparticles (QPs) were prepared by doping oil-soluble QDs possessing a 605 nm emission peak. The antibody conjugates (QPs-E014) were prepared from QPs and an anti-AFP monoclonal antibody, and luminescent terbium chelates (LTCs) were prepared and conjugated to a second anti-AFP monoclonal antibody (LTCs-E010). In a double-antibodies sandwich structure, QPs-E014 and LTCs-E010 were used for detection of AFP, serving as energy acceptor and donor, respectively, with an AFP bridge. The results demonstrated that the luminescence lifetime of these QPs was sufficiently long for use in a time-resolved fluoroassay, with the efficiency of time-resolved Foerster resonance transfer (TR-FRET) at 67.3% and the spatial distance of the donor to acceptor calculated to be 66.1 Angstrom-Sign . Signals from TR-FRET were found to be proportional to AFP concentrations. The resulting standard curve was log Y = 3.65786 + 0.43863{center_dot}log X (R = 0.996) with Y the QPs fluorescence intensity and X the AFP concentration; the calculated sensitivity was 0

  5. Sampling and Homogenization Strategies Significantly Influence the Detection of Foodborne Pathogens in Meat.

    Science.gov (United States)

    Rohde, Alexander; Hammerl, Jens Andre; Appel, Bernd; Dieckmann, Ralf; Al Dahouk, Sascha

    2015-01-01

    Efficient preparation of food samples, comprising sampling and homogenization, for microbiological testing is an essential, yet largely neglected, component of foodstuff control. Salmonella enterica spiked chicken breasts were used as a surface contamination model whereas salami and meat paste acted as models of inner-matrix contamination. A systematic comparison of different homogenization approaches, namely, stomaching, sonication, and milling by FastPrep-24 or SpeedMill, revealed that for surface contamination a broad range of sample pretreatment steps is applicable and loss of culturability due to the homogenization procedure is marginal. In contrast, for inner-matrix contamination long treatments up to 8 min are required and only FastPrep-24 as a large-volume milling device produced consistently good recovery rates. In addition, sampling of different regions of the spiked sausages showed that pathogens are not necessarily homogenously distributed throughout the entire matrix. Instead, in meat paste the core region contained considerably more pathogens compared to the rim, whereas in the salamis the distribution was more even with an increased concentration within the intermediate region of the sausages. Our results indicate that sampling and homogenization as integral parts of food microbiology and monitoring deserve more attention to further improve food safety.

  6. Application of a rapid screening method to detect irradiated meat in Brazil

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Delincee, H.

    1998-01-01

    Complete text of publication follows. Based on the enormous potential for food irradiation in Brazil, and to ensure free consumer choice, there is a need to find a convenient and rapid method for detection of irradiated food. Since treatment with ionizing radiation causes DNA fragmentation, the analysis of DNA damage might be promising. In fact, DNA fragmentation measured in single cells by agarose gel electrophoresis - DNA Comet Assay - has shown to offer great potential as a rapid tool to detect whether a wide variety of foodstuffs has been radiation processed. However, more work is needed to exploit the full potential of this promising technique. In this paper, the DNA Comet Assay was used to identify exotic meat (boar, jacare and capybara), irradiated with 60 Co gamma-rays. The applied radiation doses were 0, 1.5, 3.0 and 4.5 kGy. Analysis of the DNA migration enable a rapid identification of the radiation treatment

  7. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool.

    Science.gov (United States)

    Mesquita, Flávio da Silva; Oliveira, Danielle Bruna Leal de; Crema, Daniela; Pinez, Célia Miranda Nunes; Colmanetti, Thaís Cristina; Thomazelli, Luciano Matsumia; Gilio, Alfredo Elias; Vieira, Sandra Elisabeth; Martinez, Marina Baquerizo; Botosso, Viviane Fongaro; Durigon, Edison Luiz

    The aim of this study was to evaluate the QuickVue ® RSV Test Kit (QUIDEL Corp, CA, USA) as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue ® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. From 313 positive samples by immunofluorescence assays, 282 (90%) were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue ® RSV Test and viral load or specific strain. The QuickVue ® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. This study demonstrated that the QuickVue ® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  8. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool,

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    Full Text Available Abstract Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics.

  9. Homogeneous time-resolved fluoroimmunoassay of microcystin-LR using layered WS2 nanosheets as a transducer

    Science.gov (United States)

    Qin, Xiaodan; Wang, Yuanxiu; Song, Bo; Wang, Xin; Ma, Hua; Yuan, Jingli

    2017-06-01

    A homogeneous time-resolved fluoroimmunoassay method for rapid and sensitive detection of microcystin-LR (MC-LR) in water samples was developed based on the interaction between water-soluble WS2 nanosheets and the conjugate of MC-LR with a luminescent Eu3+ complex BHHBCB-Eu3+ (BHHBCB: 1,2-bis[4‧-(1″,1″,1″,2″,2″,3″,3″-heptafluoro-4″,6″-hexanedion-6″-yl)- benzyl]-4-chlorosulfobenzene). The large lateral dimensions and high surface areas of two-dimensional layered WS2 nanosheets enable easy adsorption of the MC-LR-BHHBCB-Eu3+ conjugate, that lead to efficient quenching of the luminescence of Eu3+ complex via energy transfer or electron transfer process. However, the addition of monoclonal anti-MC-LR antibody can induce the formation of MC-LR-BHHBCB-Eu3+/antibody immune complex, which prevents the interaction between WS2 nanosheets and MC-LR-BHHBCB-Eu3+ to result in the restoration of Eu3+ luminescence. This signal transduction mechanism made it possible for analysis of the target MC-LR in a homogeneous system. The present method has advantages of rapidity and simplicity since the B/F (bound reagent/free reagent) separation steps, the solid-phase carrier and antibody labeling or modification process are not necessary. The proposed immunosensing system displayed a wide linear range, good precision and accuracy, and comparable sensitivity with a detection limit of 0.3 μg l-1, which satisfied the World Health Organization (WHO) provisional guideline limit of 1.0 μg l-1 for MC-LR in drinking water.

  10. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.

    Science.gov (United States)

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders

    2018-03-10

    Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.

  11. Portable microfluidic raman system for rapid, label-free early disease signature detection

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Davis, Ryan Wesley [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Hatch, Anson [Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-09-01

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguish infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.

  12. Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles.

    Science.gov (United States)

    Chang, Yi-Chung; Yang, Chia-Ying; Sun, Ruei-Lin; Cheng, Yi-Feng; Kao, Wei-Chen; Yang, Pan-Chyr

    2013-01-01

    Staphylococcus aureus is one of the most important human pathogens, causing more than 500,000 infections in the United States each year. Traditional methods for bacterial culture and identification take several days, wasting precious time for patients who are suffering severe bacterial infections. Numerous nucleic acid-based detection methods have been introduced to address this deficiency; however, the costs and requirement for expensive equipment may limit the widespread use of such technologies. Thus, there is an unmet demand of new platform technology to improve the bacterial detection and identification in clinical practice. In this study, we developed a rapid, ultra-sensitive, low cost, and non-polymerase chain reaction (PCR)-based method for bacterial identification. Using this method, which measures the resonance light-scattering signal of aptamer-conjugated gold nanoparticles, we successfully detected single S. aureus cell within 1.5 hours. This new platform technology may have potential to develop a rapid and sensitive bacterial testing at point-of-care.

  13. Detection of gonococcal infection : pros and cons of a rapid test.

    Science.gov (United States)

    Vickerman, Peter; Peeling, Rosanna W; Watts, Charlotte; Mabey, David

    2005-01-01

    WHO estimates that 62 million cases of gonorrhea occur annually worldwide. Untreated infection can cause serious long-term complications, especially in women. In addition, Neisseria gonorrheae infection can facilitate HIV transmission, and babies born to infected mothers are at risk of ocular infection, which can lead to blindness. Where diagnostic facilities are lacking, gonorrhea can be treated syndromically. However, this inevitably leads to over-treatment, especially in women in whom the syndrome of vaginal discharge may be due not to N. gonorrheae infection but to several other more prevalent conditions. Over-treatment is a major concern because of widespread N. gonorrheae antibiotic resistance. Moreover, a high proportion of gonorrhea cases are asymptomatic and so do not present for syndromic management. Such cases will only be detected by screening tests. The gold standard test for the detection of N. gonorrheae is culture, which has high sensitivity and specificity. However, it requires well trained staff and its performance is affected by specimen transport conditions. Other options include microscopy and tests that detect gonococcal antigen or nucleic acid. Nucleic acid amplification tests (NAATs) have higher sensitivity and can be used on non-invasive samples (urine). However, they can cross-react with other Neisseria species and are expensive, requiring highly trained staff and sophisticated equipment. In settings where patients are asked to return for laboratory results, some infected patients never receive treatment as they fail to return for their test results. This reduction in treatment, and the possible onward transmission of N. gonorrheae during any delay in treatment, means that a rapid test of lower sensitivity may be more effective if it results in patients being treated at the initial visit. Indeed, even with the low sensitivity of currently available rapid tests (50-70%), modeling shows that they can outperform gold standard tests in

  14. Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex.

    Science.gov (United States)

    Lo, Hoi-Shing; Lo, Ka-Wai; Yeung, Chi-Fung; Wong, Chun-Yuen

    2017-10-16

    Quantitative determination of nitrite ion (NO 2 - ) is of great importance in environmental and clinical investigations. A rapid visual and spectrophotometric assay for NO 2 - detection was developed based on a newly designed ruthenium complex, [Ru(npy)([9]aneS3)(CO)](ClO 4 ) (denoted as RuNPY; npy = 2-(1-naphthyl)pyridine, [9]aneS3 = 1,4,7-trithiacyclononane). This complex traps NO + produced in acidified NO 2 - solution, and yields observable color change within 1 min at room temperature. The assay features excellent dynamic range (1-840 μmol L -1 ) and high selectivity, and its limit of detection (0.39 μmol L -1 ) is also well below the guideline values for drinking water recommended by WHO and U.S. EPA. Practical use of this assay in tap water and human urine was successfully demonstrated. Overall, the rapidity and selectivity of this assay overcome the problems suffered by the commonly used modified Griess assays for nitrite determination. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Size-dependent homogenized diffusion parameters for a finite lattice

    International Nuclear Information System (INIS)

    Premuda, F.

    1980-01-01

    A numerical technique is reported for solving the transcendental equation for unknown Ysub(n+1). The solution is expressed in terms of quantities related to Ysub(n). This is an iterative reversion technique which has already been proven to converge rapidly in the homogeneous slab problem considered herein. (author)

  16. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay.

    Science.gov (United States)

    Du, Xin-Jun; Zhou, Tian-Jiao; Li, Ping; Wang, Shuo

    2017-08-01

    Salmonella is a major foodborne pathogen that is widespread in the environment and can cause serious human and animal disease. Since conventional culture methods to detect Salmonella are time-consuming and laborious, rapid and accurate techniques to detect this pathogen are critically important for food safety and diagnosing foodborne illness. In this study, we developed a rapid, simple and portable Salmonella detection strategy that combines thermophilic helicase-dependent amplification (tHDA) with a lateral flow assay to provide a detection result based on visual signals within 90 min. Performance analyses indicated that the method had detection limits for DNA and pure cultured bacteria of 73.4-80.7 fg and 35-40 CFU, respectively. Specificity analyses showed no cross reactions with Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Enterobacter aerogenes, Shigella and Campylobacter jejuni. The results for detection in real food samples showed that 1.3-1.9 CFU/g or 1.3-1.9 CFU/mL of Salmonella in contaminated chicken products and infant nutritional cereal could be detected after 2 h of enrichment. The same amount of Salmonella in contaminated milk could be detected after 4 h of enrichment. This tHDA-strip can be used for the rapid detection of Salmonella in food samples and is particularly suitable for use in areas with limited equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A novel kit for rapid detection of Vibrio cholerae O1.

    OpenAIRE

    Hasan, J A; Huq, A; Tamplin, M L; Siebeling, R J; Colwell, R R

    1994-01-01

    We report on the development and testing of a novel, rapid, colorimetric immunodiagnostic kit, Cholera SMART, for direct detection of the presence of Vibrio cholerae O1 in clinical specimens. Unlike conventional culture methods requiring several days to complete, the Cholera SMART kit can be used directly in the field by untrained or minimally skilled personnel to detect V. cholerae O1 in less than 15 min, without cumbersome laboratory equipment. A total of 120 clinical and environmental bact...

  18. Rapid quantitative assay for chloramphenicol acetyltransferase

    International Nuclear Information System (INIS)

    Neumann, J.R.; Morency, C.A.; Russian, K.O.

    1987-01-01

    Measuring the expression of exogenous genetic material in mammalian cells is commonly done by fusing the DNA of interest to a gene encoding an easily-detected enzyme. Chloramphenicol acetyltransferase(CAT) is a convenient marker because it is not normally found in eukaryotes. CAT activity has usually been detected using a thin-layer chromatographic separation followed by autoradiography. An organic solvent extraction-based method for CAT detection has also been described, as well as a procedure utilizing HPLC analysis. Building on the extraction technique, they developed a rapid sensitive kinetic method for measuring CAT activity in cell homogenates. The method exploits the differential organic solubility of the substrate ([ 3 H] or [ 14 C]acetyl CoA) and the product (labeled acetylchloramphenicol). The assay is a simple one-vial, two-phase procedure and requires no tedious manipulations after the initial setup. Briefly, a 0.25 ml reaction with 100mM Tris-HCL, 1mM chloramphenicol, 0.1mM [ 14 C]acetyl CoA and variable amounts of cell homogenate is pipetted into a miniscintillation vial, overlaid with 5 ml of a water-immiscible fluor, and incubated at 37 0 C. At suitable intervals the vial is counted and the CAT level is quantitatively determined as the rate of increase in counts/min of the labeled product as it diffuses into the fluor phase, compared to a standard curve. When used to measure CAT in transfected Balb 3T3 cells the method correlated well with the other techniques

  19. Immunomagnetic nanoparticle based quantitative PCR for rapid detection of Salmonella

    International Nuclear Information System (INIS)

    Bakthavathsalam, Padmavathy; Rajendran, Vinoth Kumar; Saran, Uttara; Chatterjee, Suvro; Ali, Baquir Mohammed Jaffar

    2013-01-01

    We have developed a rapid and sensitive method for immunomagnetic separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated magnetic nanoparticles were functionalized with carboxy groups to which anti-Salmonella antibody raised against heat-inactivated whole cells of Salmonella were covalently attached. The immuno-captured target cells were detected in beverages like milk and lemon juice by multiplex PCR and real time PCR with a detection limit of 10 4 cfu.mL −1 and 10 3 cfu.mL −1 , respectively. We demonstrate that IMS can be used for selective concentration of target bacteria from beverages for subsequent use in PCR detection. PCR also enables differentiation of Salmonella typhi and Salmonella paratyphi A using a set of four specific primers. In addition, IMS—PCR can be used as a screening tool in the food and beverage industry for the detection of Salmonella within 3–4 h which compares favorably to the time of several days that is needed in case of conventional detection based on culture and biochemical methods. (author)

  20. Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor.

    Science.gov (United States)

    Zhao, Wenjun; Lu, Jie; Ma, Wenwei; Xu, Chuanlai; Kuang, Hua; Zhu, Shuifang

    2011-06-15

    Acidovorax avenae subsp. citrulli (AAC) is one of the most harmful diseases in cucurbit production. A rapid and sensitive DNA strip sensor was constructed based on gold nanoparticle-labeled oligonucleotide probes for the detection of AAC. Both the qualitative and semi-quantitative detections of target DNA were successfully achieved using the developed DNA strip sensor. The qualitative limit of detection (LOD) of the strip sensor was determined as 4 nM. The LOD for the semi-quantitative detection was calculated to be 0.48 nM in the range of 0-10 nM. The genomic DNA was detected directly using the DNA strip sensor without any further treatment. This DNA strip sensor is a potentially useful tool for rapid on-site DNA screening. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Aptasensors for rapid detection of Escherichia coli O157:H7 and Salmonella typhimurium

    Science.gov (United States)

    Wu, Wen-he; Li, Min; Wang, Yue; Ouyang, Hou-xian; Wang, Lin; Li, Ci-xiu; Cao, Yu-chen; Meng, Qing-he; Lu, Jian-xin

    2012-11-01

    Herein we reported the development of aptamer-based biosensors (aptasensors) based on label-free aptamers and gold nanoparticles (AuNPs) for detection of Escherichia coli ( E. coli) O157:H7 and Salmonella typhimurium. Target bacteria binding aptamers are adsorbed on the surface of unmodified AuNPs to capture target bacteria, and the detection was accomplished by target bacteria-induced aggregation of the aptasensor which is associated as red-to-purple color change upon high-salt conditions. By employing anti- E. coli O157:H7 aptamer and anti- S. typhimurium aptamer, we developed a convenient and rapid approach that could selectively detect bacteria without specialized instrumentation and pretreatment steps such as cell lysis. The aptasensor could detect as low as 105colony-forming units (CFU)/ml target bacteria within 20 min or less and its specificity was 100%. This novel method has a great potential application in rapid detection of bacteria in the near future.

  2. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    Science.gov (United States)

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  3. Flow cytometry for rapid detection of Salmonella spp. in seed sprouts

    Directory of Open Access Journals (Sweden)

    Bledar Bisha

    2014-12-01

    Full Text Available Seed sprouts (alfalfa, mung bean, radish, etc. have been implicated in several recent national and international outbreaks of salmonellosis. Conditions used for sprouting are also conducive to the growth of Salmonella. As a result, this pathogen can quickly grow to very high cell densities during sprouting without any detectable organoleptic impact. Seed sprouts typically also support heavy growth (~108 CFU g−1 of a heterogeneous microbiota consisting of various bacterial, yeast, and mold species, often dominated by non-pathogenic members of the family Enterobacteriaceae. This heavy background may present challenges to the detection of Salmonella, especially if this pathogen is present in relatively low numbers. We combined DNA-based fluorescence in situ hybridization (FISH with flow cytometry (FCM for the rapid molecular detection of Salmonella enterica ser. Typhimurium in artificially contaminated alfalfa and other seed sprouts. Components of the assay included a set of cooperatively binding probes, a chemical blocking treatment intended to reduce non-specific background, and sample concentration via tangential flow filtration (TFF. We were able to detect S. Typhimurium in sprout wash at levels as low as 103 CFU ml−1 sprout wash (104 CFU g−1 sprouts against high microbial backgrounds (~108 CFU g−1 sprouts. Hybridization times were typically 30 min, with additional washing, but we ultimately found that S. Typhimurium could be readily detected using hybridization times as short as 2 min, without a wash step. These results clearly demonstrate the potential of combined DNA-FISH and FCM for rapid detection of Salmonella in this challenging food matrix and provide industry with a useful tool for compliance with sprout production standards proposed in the Food Safety Modernization Act (FSMA.

  4. Early Detection Rapid Response Program Targets New Noxious Weed Species in Washington State

    Science.gov (United States)

    Andreas, Jennifer E.; Halpern, Alison D.; DesCamp, Wendy C.; Miller, Timothy W.

    2015-01-01

    Early detection, rapid response is a critical component of invasive plant management. It can be challenging, however, to detect new invaders before they become established if landowners cannot identify species of concern. In order to increase awareness, eye-catching postcards were developed in Washington State as part of a noxious weed educational…

  5. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    International Nuclear Information System (INIS)

    Lee, Inkyu; Oh, Wan-Kyu; Jang, Jyongsik

    2013-01-01

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax

  6. Homogenization and isotropization of an inflationary cosmological model

    International Nuclear Information System (INIS)

    Barrow, J.D.; Groen, Oe.; Oslo Univ.

    1986-01-01

    A member of the class of anisotropic and inhomogeneous cosmological models constructed by Wainwright and Goode is investigated. It is shown to describe a universe containing a scalar field which is minimally coupled to gravitation and a positive cosmological constant. It is shown that this cosmological model evolves exponentially rapidly towards the homogeneous and isotropic de Sitter universe model. (orig.)

  7. RAPID DETECTION OF PNEUMOCOCCAL ANTIGEN IN PLEURAL FLUID OF PATIENTS WITH COMMUNITY ACQUIRED PNEUMONIA

    NARCIS (Netherlands)

    BOERSMA, WG; LOWENBERG, A; HOLLOWAY, Y; KUTTSCHRUTTER, H; SNIJDER, JAM; KOETER, GH

    Background Detection of pneumococcal antigen may help to increase the rate of diagnosis of pneumococcal pneumonia. This study was designed to determine the value of rapid detection of pneumococcal antigen in pleural fluid from patients with community acquired pneumonia. Methods Thoracentesis was

  8. Rapid determination of Faraday rotation in optical glasses by means of secondary Faraday modulator.

    Science.gov (United States)

    Sofronie, M; Elisa, M; Sava, B A; Boroica, L; Valeanu, M; Kuncser, V

    2015-05-01

    A rapid high sensitive method for determining the Faraday rotation of optical glasses is proposed. Starting from an experimental setup based on a Faraday rod coupled to a lock-in amplifier in the detection chain, two methodologies were developed for providing reliable results on samples presenting low and large Faraday rotations. The proposed methodologies were critically discussed and compared, via results obtained in transmission geometry, on a new series of aluminophosphate glasses with or without rare-earth doping ions. An example on how the method can be used for a rapid examination of the optical homogeneity of the sample with respect to magneto-optical effects is also provided.

  9. Homogeneous (Cu, Ni)6Sn5 intermetallic compound joints rapidly formed in asymmetrical Ni/Sn/Cu system using ultrasound-induced transient liquid phase soldering process.

    Science.gov (United States)

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Tian, H; Liu, J H; Feng, J C; Yan, J C

    2018-04-01

    Homogeneous (Cu, Ni) 6 Sn 5 intermetallic compound (IMC) joints were rapidly formed in asymmetrical Ni/Sn/Cu system by an ultrasound-induced transient liquid phase (TLP) soldering process. In the traditional TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system consisted of major (Cu, Ni) 6 Sn 5 and minor Cu 3 Sn IMCs, and the grain morphology of (Cu, Ni) 6 Sn 5 IMCs subsequently exhibited fine rounded, needlelike and coarse rounded shapes from the Ni side to the Cu side, which was highly in accordance with the Ni concentration gradient across the joints. However, in the ultrasound-induced TLP soldering process, the intermetallic joints formed in Ni/Sn/Cu system only consisted of the (Cu, Ni) 6 Sn 5 IMCs which exhibited an uniform grain morphology of rounded shape with a remarkably narrowed Ni concentration gradient. The ultrasound-induced homogeneous intermetallic joints exhibited higher shear strength (61.6 MPa) than the traditional heterogeneous intermetallic joints (49.8 MPa). Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Pi overlapping ring systems contained in a homogeneous assay: a novel homogeneous assay for antigens

    Science.gov (United States)

    Kidwell, David A.

    1993-05-01

    A novel immunoassay, Pi overlapping ring systems contained in a homogeneous assay (PORSCHA), is described. This assay relies upon the change in fluorescent spectral properties that pyrene and its derivatives show with varying concentration. Because antibodies and other biomolecules can bind two molecules simultaneously, they can change the local concentration of the molecules that they bind. This concentration change may be detected spectrally as a change in the fluorescence emission wavelength of an appropriately labeled biomolecule. Several tests of PORSCHA have been performed which demonstrate this principle. For example: with streptavidin as the binding biomolecule and a biotin labeled pyrene derivative, the production of the excimer emitting at 470 nm is observed. Without the streptavidin present, only the monomer emitting at 378 and 390 nm is observed. The ratio of monomer to excimer provides the concentration of unlabeled biotin in the sample. Approximately 1 ng/mL of biotin may be detected with this system using a 50 (mu) l sample (2 X 10-16 moles biotin). The principles behind PORSCHA, the results with the streptavidin/biotin system are discussed and extensions of the PORSCHA concept to antibodies as the binding partner and DNA in homogeneous assays are suggested.

  11. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet

    Directory of Open Access Journals (Sweden)

    Reiko Sawada

    2017-06-01

    Full Text Available Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food, low-fat food (i.e., Japanese diet, and non-food (i.e., kitchen utensils targets within crowds of non-food distractors (i.e., cars. Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection.

  12. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet.

    Science.gov (United States)

    Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru

    2017-01-01

    Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs) during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food), low-fat food (i.e., Japanese diet), and non-food (i.e., kitchen utensils) targets within crowds of non-food distractors (i.e., cars). Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection.

  13. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet

    Science.gov (United States)

    Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru

    2017-01-01

    Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat content on the detection of food remains unclear. To investigate these issues, we measured reaction times (RTs) during a visual search task in which participants with normal weight detected high-fat food (i.e., fast food), low-fat food (i.e., Japanese diet), and non-food (i.e., kitchen utensils) targets within crowds of non-food distractors (i.e., cars). Results showed that RTs for food targets were shorter than those for non-food targets. Moreover, the RTs for high-fat food were shorter than those for low-fat food. These results suggest that food is more rapidly detected than non-food within the environment and that a higher fat content in food facilitates rapid detection. PMID:28690568

  14. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. [Development and evaluation of a rapid PCR detection kit for Ophiocordyceps sinensis].

    Science.gov (United States)

    Hou, Fei-Xia; Cao, Jing; Wang, Sha-Sha; Wang, Xi; Yuan, Yuan; Peng, Cheng; Wan, De-Guang; Guo, Jin-Lin

    2017-03-01

    Ophiocordyceps sinensis is a valuable traditional Chinese medicine. Due to resource shortage, expensive price and huge market demand, there are many adulterants of O. sinensis in markets. Therefore, it is necessary to establish a rapid and effective method for distinguishing O. sinensis. Based on the species-specific PCR of O. sinensis, this study developed a detection kit by optimizing the components and evaluated the specificity, detection limit, repeatability and shelf life of the kit. The results showed that when the quality of O. sinensis accounted for more than 1/200 of that mixture, it could be detected successfully. Moreover, only O. sinensis could be amplified and glowed bright green fluorescence under ultraviolet light. The kit was still in effect when it was placed at 37 ℃ for three days, which indicated that it was stable and effective for one year stored in 4 ℃. The kit in the same batch under different operation conditions, and in different batch under the same operation conditions gave the same result and accuracy, which showed good repeatability of the kit. It is simple, rapid and accurate to distinguish O. sinensis from its adulterants using the kit, and lays the foundation for commercialization of traditional Chinese medicine fast detection kit. Copyright© by the Chinese Pharmaceutical Association.

  16. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    International Nuclear Information System (INIS)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng

    2014-01-01

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β 2 -agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β 2 -agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β 2 -agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β 2 -agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL −1 , with the detection limits of 0.20 and 0.040 ng mL −1 (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β 2 -agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety

  17. Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hongfei; Han, Jing; Yang, Shijia; Wang, Zhenxing; Wang, Lin; Fu, Zhifeng, E-mail: fuzf@swu.edu.cn

    2014-08-11

    Graphical abstract: A multianalyte immunochromatographic test strip was developed for the rapid detection of two β{sub 2}-agonists. Due to the application of chemiluminescent detection, this quantitative method shows much higher sensitivity. - Highlights: • An immunochromatographic test strip was developed for detection of multiple β{sub 2}-agonists. • The whole assay process can be completed within 20 min. • The proposed method shows much higher sensitivity due to the application of CL detection. • It is a portable analytical tool suitable for field analysis and rapid screening. - Abstract: A novel immunochromatographic assay (ICA) was proposed for rapid and multiple assay of β{sub 2}-agonists, by utilizing ractopamine (RAC) and salbutamol (SAL) as the models. Owing to the introduction of chemiluminescent (CL) approach, the proposed protocol shows much higher sensitivity. In this work, the described ICA was based on a competitive format, and horseradish peroxidase-tagged antibodies were used as highly sensitive CL probes. Quantitative analysis of β{sub 2}-agonists was achieved by recording the CL signals of the probes captured on the two test zones of the nitrocellulose membrane. Under the optimum conditions, RAC and SAL could be detected within the linear ranges of 0.50–40 and 0.10–50 ng mL{sup −1}, with the detection limits of 0.20 and 0.040 ng mL{sup −1} (S/N = 3), respectively. The whole process for multianalyte immunoassay of RAC and SAL can be completed within 20 min. Furthermore, the test strip was validated with spiked swine urine samples and the results showed that this method was reliable in measuring β{sub 2}-agonists in swine urine. This CL-based multianalyte test strip shows a series of advantages such as high sensitivity, ideal selectivity, simple manipulation, high assay efficiency and low cost. Thus, it opens up new pathway for rapid screening and field analysis, and shows a promising prospect in food safety.

  18. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy

    2018-01-01

    and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews...... diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices...... recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods...

  19. The relationship between continuum homogeneity and statistical homogeneity in cosmology

    International Nuclear Information System (INIS)

    Stoeger, W.R.; Ellis, G.F.R.; Hellaby, C.

    1987-01-01

    Although the standard Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe models are based on the concept that the Universe is spatially homogeneous, up to the present time no definition of this concept has been proposed that could in principle be tested by observation. Such a definition is here proposed, based on a simple spatial averaging procedure, which relates observable properties of the Universe to the continuum homogeneity idea that underlies the FLRW models. It turns out that the statistical homogeneity often used to describe the distribution of matter on a large scale does not imply spatial homogeneity according to this definition, and so cannot be simply related to a FLRW Universe model. Values are proposed for the homogeneity parameter and length scale of homogeneity of the Universe. (author)

  20. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles

    International Nuclear Information System (INIS)

    Li, Yaqi; Sun, Li; Qian, Jing; Wang, Chengke; Liu, Qian; Han, En; Hao, Nan; Zhang, Liuping; Cai, Jianrong; Wang, Kun

    2016-01-01

    In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1–500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection. - Highlights: • Both NGQDs and AgNPs were selected as the novel FRET donor-acceptor pairs. • The proposed homogeneous FRET assay was developed for CaMV35S detection. • The resulting method could identify 0.5% containing transgenic soybean sample. • This assay was inexpensive, simple and highly sensitive.

  1. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaqi; Sun, Li [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Qian, Jing [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Wang, Chengke [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Liu, Qian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Han, En [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Hao, Nan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China); Zhang, Liuping [Sinograin Zhenjiang Grains & Oils Quality Testing Center Co., Ltd., Zhenjiang, 212013 (China); Cai, Jianrong, E-mail: jrcai@ujs.edu.cn [School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013 (China)

    2016-12-15

    In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1–500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection. - Highlights: • Both NGQDs and AgNPs were selected as the novel FRET donor-acceptor pairs. • The proposed homogeneous FRET assay was developed for CaMV35S detection. • The resulting method could identify 0.5% containing transgenic soybean sample. • This assay was inexpensive, simple and highly sensitive.

  2. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Laura C Bonney

    2017-10-01

    Full Text Available Crimean-Congo Haemorrhagic fever Virus (CCHFV is a rapidly emerging vector-borne pathogen and the cause of a virulent haemorrhagic fever affecting large parts of Europe, Africa, the Middle East and Asia.An isothermal recombinase polymerase amplification (RPA assay was successfully developed for molecular detection of CCHFV. The assay showed rapid (under 10 minutes detection of viral extracts/synthetic virus RNA of all 7 S-segment clades of CCHFV, with high target specificity. The assay was shown to tolerate the presence of inhibitors in crude preparations of mock field samples, indicating that this assay may be suitable for use in the field with minimal sample preparation. The CCHFV RPA was successfully used to screen and detect CCHFV positives from a panel of clinical samples from Tajikistan.The assay is a rapid, isothermal, simple-to-perform molecular diagnostic, which can be performed on a light, portable real-time detection device. It is ideally placed therefore for use as a field-diagnostic or in-low resource laboratories, for monitoring of CCHF outbreaks at the point-of-need, such as in remote rural regions in affected countries.

  3. Rapid Detection of Herpes Viruses for Clinical Applications

    Science.gov (United States)

    Pierson, Duane; Mehta, Satish

    2013-01-01

    There are eight herpes viruses that infect humans, causing a wide range of diseases resulting in considerable morbidity and associated costs. Varicella zoster virus (VZV) is a human herpes virus that causes chickenpox in children and shingles in adults. Approximately 1,000,000 new cases of shingles occur each year; post-herpetic neuralgia (PHN) follows shingles in 100,000 to 200,000 people annually. PHN is characterized by debilitating, nearly unbearable pain for weeks, months, and even years. The onset of shingles is characterized by pain, followed by the zoster rash, leading to blisters and severe pain. The problem is that in the early stages, shingles can be difficult to diagnose; chickenpox in adults can be equally difficult to diagnose. As a result, both diseases can be misdiagnosed (false positive/negative). A molecular assay has been adapted for use in diagnosing VZV diseases. The polymerase chain reaction (PCR) assay is a non-invasive, rapid, sensitive, and highly specific method for VZV DNA detection. It provides unequivocal results and can effectively end misdiagnoses. This is an approximately two-hour assay that allows unequivocal diagnosis and rapid antiviral drug intervention. It has been demonstrated that rapid intervention can prevent full development of the disease, resulting in reduced likelihood of PHN. The technology was extended to shingles patients and demonstrated that VZV is shed in saliva and blood of all shingles patients. The amount of VZV in saliva parallels the medical outcome.

  4. Numerical simulation of homogenization time measurement by probes with different volume size

    International Nuclear Information System (INIS)

    Thyn, J.; Novy, M.; Zitny, R.; Mostek, M.; Jahoda, M.

    2004-01-01

    Results of continuous homogenization time measurement of liquid in a stirred tank depend on the scale of scrutiny. Experimental techniques use a probe, which is situated inside as a conductivity method, or outside of the tank as in the case of gamma-radiotracer methods. Expected value of homogenization time evaluated for a given degree of homogenization is higher when using the conductivity method because the conductivity probe measures relatively small volume in contrast to application of radiotracer, when the volume is much greater. Measurement through the wall of tank is a great advantage of radiotracer application but a comparison of the results with another method supposes a determination of measured volume, which is not easy. Simulation of measurement by CFD code can help to solve the problem. Methodology for CFD simulation of radiotracer experiments was suggested. Commercial software was used for simulation of liquid homogenization in mixed vessel with Rushton turbine. Numerical simulation of liquid homogenization time by CFD for different values of detected volume was confronted with measurement of homogenization time with conductivity probe and with different radioisotopes 198 Au, 82 Br and 24 Na. Detected size of the tank volume was affected by different energy of radioisotope used. (author)

  5. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    Science.gov (United States)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  6. Rapid Detection of Enterobacter Sakazakii in milk Powder using amino modified chitosan immunomagnetic beads.

    Science.gov (United States)

    Zhu, Yinglian; Wang, Dongfeng

    2016-12-01

    Chitosan immunomagnetic beads (CIBs) were first prepared through converting hydroxyl groups of natural polymer material-chitosan into amino groups using epichlorohydrin and ethylenediamine as modification agent and then coupling with polyclonal antibodies of Enterobacter sakazakii using glutaraldehyde as cross-linking agent. The beads before coupling with antibodies were characterized by magnetic property measurement, FTIR, SEM and XRD technologies. In the assay a natural polysaccharide-chitosan, which has good biological and chemical properties such as non-toxicity, biocompatibility and high chemical reactivity was first used for synthesis of immunomagnetic beads. The detection method first established in this paper that combined the beads with chromogenic medium together to rapid detect E. sakazakii in milk powder could greatly improve the detection specificity and working efficiency. The beads exhibited a maximum capturing capacity of 1×10 6 cfu/g with the detection sensitivity of 4cfu/g. The results demonstrate that the assay is a straightforward, specific and sensitive alternative for rapid detection of E.sakazakii in food matrix. The total analysis time was as little as about 25h, which greatly shorten the detection time. The method can provides new ideas not only to preparation technique of immunomagnetic beads but to imunne detection technique in food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy (SERS).

    Science.gov (United States)

    Wijaya, Wisiani; Pang, Shintaro; Labuza, Theodore P; He, Lili

    2014-04-01

    Acetamiprid is a neonicotinoid pesticide that is commonly used in modern farming. Acetamiprid residue in food commodities can be a potential harm to human and has been implicated in the honey bee hive die off crisis. In this study, we developed rapid, simple, and sensitive methods to detect acetamiprid in apple juice and on apple surfaces using surface-enhanced Raman spectroscopy (SERS). No pretreatment of apple juice sample was performed. A simple surface swab method was used to recover acetamiprid from the apple surface. Samples were incubated with silver dendrites for several minutes and SERS spectra were taken directly from the silver surface. Detection of a set of 5 apple juice samples can be done within 10 min. The swab-SERS method took 15 min for a set of 5 samples. Resulting spectral data were analyzed using principal component analysis. The highest acetamiprid peak at 634 cm(-1) was used to detect and quantify the amount of acetamiprid spiked in 1:1 water-methanol solvent, apple juice, and on apple surface. The SERS method was able to successfully detect acetamiprid at 0.5 μg/mL (0.5 ppm) in solvent, 3 μg/mL (3 ppm) in apple juice, and 0.125 μg/cm(2) on apple surfaces. The SERS methods provide simple, rapid, and sensitive ways to detect acetamiprid in beverages and on the surfaces of thick skinned fruits and vegetables. © 2014 Institute of Food Technologists®

  8. A nationwide web-based automated system for early outbreak detection and rapid response in China

    Directory of Open Access Journals (Sweden)

    Yilan Liao

    2011-03-01

    Full Text Available Timely reporting, effective analyses and rapid distribution of surveillance data can assist in detecting the aberration of disease occurrence and further facilitate a timely response. In China, a new nationwide web-based automated system for outbreak detection and rapid response was developed in 2008. The China Infectious Disease Automated-alert and Response System (CIDARS was developed by the Chinese Center for Disease Control and Prevention based on the surveillance data from the existing electronic National Notifiable Infectious Diseases Reporting Information System (NIDRIS started in 2004. NIDRIS greatly improved the timeliness and completeness of data reporting with real time reporting information via the Internet. CIDARS further facilitates the data analysis, aberration detection, signal dissemination, signal response and information communication needed by public health departments across the country. In CIDARS, three aberration detection methods are used to detect the unusual occurrence of 28 notifiable infectious diseases at the county level and to transmit that information either in real-time or on a daily basis. The Internet, computers and mobile phones are used to accomplish rapid signal generation and dissemination, timely reporting and reviewing of the signal response results. CIDARS has been used nationwide since 2008; all Centers for Disease Control and Prevention (CDC in China at the county, prefecture, provincial and national levels are involved in the system. It assists with early outbreak detection at the local level and prompts reporting of unusual disease occurrences or potential outbreaks to CDCs throughout the country.

  9. Comparing rapid methods for detecting Listeria in seafood and environmental samples using the most probably number (MPN) technique.

    Science.gov (United States)

    Cruz, Cristina D; Win, Jessicah K; Chantarachoti, Jiraporn; Mutukumira, Anthony N; Fletcher, Graham C

    2012-02-15

    The standard Bacteriological Analytical Manual (BAM) protocol for detecting Listeria in food and on environmental surfaces takes about 96 h. Some studies indicate that rapid methods, which produce results within 48 h, may be as sensitive and accurate as the culture protocol. As they only give presence/absence results, it can be difficult to compare the accuracy of results generated. We used the Most Probable Number (MPN) technique to evaluate the performance and detection limits of six rapid kits for detecting Listeria in seafood and on an environmental surface compared with the standard protocol. Three seafood products and an environmental surface were inoculated with similar known cell concentrations of Listeria and analyzed according to the manufacturers' instructions. The MPN was estimated using the MPN-BAM spreadsheet. For the seafood products no differences were observed among the rapid kits and efficiency was similar to the BAM method. On the environmental surface the BAM protocol had a higher recovery rate (sensitivity) than any of the rapid kits tested. Clearview™, Reveal®, TECRA® and VIDAS® LDUO detected the cells but only at high concentrations (>10(2) CFU/10 cm(2)). Two kits (VIP™ and Petrifilm™) failed to detect 10(4) CFU/10 cm(2). The MPN method was a useful tool for comparing the results generated by these presence/absence test kits. There remains a need to develop a rapid and sensitive method for detecting Listeria in environmental samples that performs as well as the BAM protocol, since none of the rapid tests used in this study achieved a satisfactory result. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Lateral flow assay for rapid detection of white spot syndrome virus (WSSV) using a phage-displayed peptide as bio-recognition probe.

    Science.gov (United States)

    Kulabhusan, Prabir Kumar; Rajwade, Jyutika M; Sahul Hameed, A S; Paknikar, Kishore M

    2017-06-01

    White spot disease caused by the white spot syndrome virus (WSSV) has a major socio-economic impact on shrimp farming in India. It has been realized that a field-usable diagnostic capable of rapid detection of WSSV can prevent huge economic losses in disease outbreaks. In this work, we explored the possibility of using a peptide as bio-recognition probe in a field-usable device for the detection of WSSV from infected shrimps and prawns. A commercially available random phage-display library was screened against rVP28 (a major structural protein of WSSV, expressed as a recombinant protein in Escherichia coli). A bacteriophage clone VP28-4L was obtained, and its binding to purified rVP28 protein as well as WSSV from infected shrimp Litopaeneus vannamei tissue was confirmed by ELISA and western blot. The apparent equilibrium dissociation constant (K d ,app) was calculated to be 810 nM. VP28-4L did not show cross-reactivity with any other shrimp viruses. A 12-mer peptide (pep28, with the sequence 'TFQAFDLSPFPS') displayed on the VP28-4L was synthesized, and its diagnostic potential was evaluated in a lateral flow assay (LFA). Visual detection of WSSV could be achieved using biotinylated-pep28 and streptavidin-conjugated gold nanoparticles. In LFA, 12.5 μg/mL of the virus could be detected from L. vannamei gill tissue homogenate within 20 min. Pep28 thus becomes an attractive candidate in bio-recognition of WSSV in field-usable diagnostic platforms benefitting the aquaculture sector.

  11. Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae.

    Science.gov (United States)

    Vásquez, Gersson; Rey, Alba; Rivera, Camilo; Iregui, Carlos; Orozco, Jahir

    2017-01-15

    Pathogenic bacteria are responsible for several diseases in humans and in a variety of hosts. Detection of pathogenic bacteria is imperative to avoid and/or fight their potential harmful effects. This work reports on the first amperometric biosensor for the rapid detection of Streptococcus agalactiae (S. agalactiae). The biosensor relies on a single biotinylated antibody that immobilizes the bacteria on a screen-printed carbon electrode while is further linked to a streptavidin-conjugated HRP reporter. The biotinylated antibody provides selectivity to the biosensor whereas serves as an anchoring point to the reporter for further amplification of the electrochemical signal. The resultant immunosensor is simple, responds rapidly, and allows for the selective and highly sensitive quantification of S. agalactiae cells in a concentration range of 10 1 -10 7 CFUml -1 , with a detection limit of 10CFUml -1 . The approach not only enables a rapid detection and quantification of S. agalactiae in environmental samples but also opens up new opportunities for the simple fabrication of electrochemical immunosensors for different target pathogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rapid detection of fungal keratitis with DNA-stabilizing FTA filter paper.

    Science.gov (United States)

    Menassa, Nardine; Bosshard, Philipp P; Kaufmann, Claude; Grimm, Christian; Auffarth, Gerd U; Thiel, Michael A

    2010-04-01

    Purpose. Polymerase chain reaction (PCR) is increasingly important for the rapid detection of fungal keratitis. However, techniques of specimen collection and DNA extraction before PCR may interfere with test sensitivity. The purpose of this study was to investigate the use of DNA-stabilizing FTA filter paper (Indicating FTA filter paper; Whatman International, Ltd., Maidstone, UK) for specimen collection without DNA extraction in a single-step, nonnested PCR for fungal keratitis. Methods. Specimens were collected from ocular surfaces with FTA filter discs, which automatically lyse collected cells and stabilize nucleic acids. Filter discs were directly used in single-step PCR reactions to detect fungal DNA. Test sensitivity was evaluated with serial dilutions of Candida albicans, Fusarium oxysporum, and Aspergillus fumigatus cultures. Test specificity was analyzed by comparing 196 and 155 healthy individuals from Switzerland and Egypt, respectively, with 15 patients with a diagnosis of microbial keratitis. Results. PCR with filter discs detected 3 C. albicans, 25 F. oxysporum, and 125 A. fumigatus organisms. In healthy volunteers, fungal PCR was positive in 1.0% and 8.4% of eyes from Switzerland and Egypt, respectively. Fungal PCR remained negative in 10 cases of culture-proven bacterial keratitis, became positive in 4 cases of fungal keratitis, but missed 1 case of culture-proven A. fumigatus keratitis. Conclusions. FTA filter paper for specimen collection together with direct PCR is a promising method of detecting fungal keratitis. The analytical sensitivity is high without the need for a semi-nested or nested second PCR, the clinical specificity is 91.7% to 99.0%, and the method is rapid and inexpensive.

  13. Homogenization Kinetics of a Nickel-based Superalloy Produced by Powder Bed Fusion Laser Sintering.

    Science.gov (United States)

    Zhang, Fan; Levine, Lyle E; Allen, Andrew J; Campbell, Carelyn E; Lass, Eric A; Cheruvathur, Sudha; Stoudt, Mark R; Williams, Maureen E; Idell, Yaakov

    2017-04-01

    Additively manufactured (AM) metal components often exhibit fine dendritic microstructures and elemental segregation due to the initial rapid solidification and subsequent melting and cooling during the build process, which without homogenization would adversely affect materials performance. In this letter, we report in situ observation of the homogenization kinetics of an AM nickel-based superalloy using synchrotron small angle X-ray scattering. The identified kinetic time scale is in good agreement with thermodynamic diffusion simulation predictions using microstructural dimensions acquired by ex situ scanning electron microscopy. These findings could serve as a recipe for predicting, observing, and validating homogenization treatments in AM materials.

  14. Rapid detection and quantification of haptophyte alkenones by Fourier transform infrared spectroscopy (FTIR)

    Czech Academy of Sciences Publication Activity Database

    Pelusi, A.; Hanawa, Y.; Araie, H.; Suzuki, I.; Giordano, Mario; Shiraiwa, I.

    2016-01-01

    Roč. 19, NOVEMBER 2016 (2016), s. 48-56 ISSN 2211-9264 Institutional support: RVO:61388971 Keywords : Rapid detection * haptophyte alkenones * Fourier spectroscopy Subject RIV: EE - Microbiology, Virology Impact factor: 3.994, year: 2016

  15. Rapid and sensitive detection of ketamine in blood using novel fluorescence genosensor.

    Science.gov (United States)

    Ding, Yanjun; Li, Xingmei; Guo, Yadong; Yan, Jie; Ling, Jiang; Li, Weichen; Lan, Lingmei; Chang, Yunfeng; Cai, Jifeng; Zha, Lagabaiyla

    2017-12-01

    In recent years, drug abuse has been considered as a most challenging social problem that aroused public attention. Ketamine has increased in unregulated use as a 'recreational drug' in teenagers. However, there is no suitable and maneuverable detection method for ketamine in situ at the moment. Fluorescence sensor technique, with predominant recognition and simple operation, is a good potential application in drug detection. Here, we first reported a highly sensitive and selective fluorescence genosensor for rapid detection of ketamine based on DNA-templated silver nanoclusters (DNA-AgNCs) probes, in which the DNA sequence could specially recognize ketamine with high affinity. Parameters affecting detection efficiency were investigated and optimized. Under optimum conditions, the as-prepared genosensor can allow for the determination of ketamine in the concentration range of 0.0001-20 μg/mL with two linear equations: one is y = 2.84x-7.139 (R 2 = 0.987) for 0.0001-0.1 μg/mL, and the other is y = 1.87x-0.091 (R 2 = 0.962) for 0.1-20 μg/mL, and the estimated detection limit of ketamine is 0.06 ng/mL. Moreover, the feasibility of this proposed method was also demonstrated by analyzing forensic blood samples. Compared with official gas chromatography/mass spectrometry (GC/MS), this fluorescence genosensor is simple, rapid, and accurate for quantitative determination of ketamine in blood for pharmaceutical and forensic analysis. Overall, it is the first report on a fluorescence genosensor for detecting ketamine directly in blood. This research may provide a new insight for the analyst to band fluorescence genosensor technology together with drug monitoring in the battle against drug abuse and forensic examination. Graphical abstract High selectively detection of ketamine using a novel fluorescence genosensor based on DNA-AgNCs probe.

  16. Development of an immunochromatographic assay for the rapid detection of bromoxynil in water

    International Nuclear Information System (INIS)

    Zhu Jiang; Chen Wenchao; Lu Yitong; Cheng Guohua

    2008-01-01

    A rapid immunochromatographic one-step strip test was developed to specifically determine bromoxynil in surface and drinking water by competitive inhibition with the nano colloidal gold-conjugated monoclonal antibody (mAb). Bromoxynil standard samples of 0.01-10 mg L -1 in water were tested by this method and the visual limit was 0.06 mg L -1 . The assay only required 5 min and one-step by dispensing a drop of sample solution onto a strip. Parallel analysis of water samples with bromoxynil showed comparable results from one-step strip test and ELISA. Therefore, the one-step strip test is very useful as a screening method for qualitative detection of bromoxynil in water. - One-step strip test is a rapid method for qualitative detection of bromoxynil residues in water

  17. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay

    Science.gov (United States)

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  18. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    Science.gov (United States)

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  19. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium.

    Science.gov (United States)

    Wen, Tao; Wang, Ronghui; Sotero, America; Li, Yanbin

    2017-08-28

    Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S . Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S . Typhimurium -antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S . Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S . Typhimurium cells ranging from 76 to 7.6 × 10⁶ CFU (colony-forming unit) (50 μL) -1 . The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S . Typhimurium cells with a limit of detection (LOD) of 10² CFU (50 μL) -1 . The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S . Typhimurium achieved

  20. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium

    Directory of Open Access Journals (Sweden)

    Tao Wen

    2017-08-01

    Full Text Available Salmonella Typhimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM, a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit (50 μL−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD of 102 CFU (50 μL−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium

  1. Mid-infrared spectrometry of milk for dairy metabolomics: a comparison of two sampling techniques and effect of homogenization.

    Science.gov (United States)

    Aernouts, Ben; Polshin, Evgeny; Saeys, Wouter; Lammertyn, Jeroen

    2011-10-31

    Milk production is a dominant factor in the metabolism of dairy cows involving a very intensive interaction with the blood circulation. As a result, the extracted milk contains valuable information on the metabolic status of the cow. On-line measurement of milk components during milking two or more times a day would promote early detection of systemic and local alterations, thus providing a great input for strategic and management decisions. The objective of this study was to investigate the potential of mid-infrared (mid-IR) spectroscopy to measure the milk composition using two different measurement modes: micro attenuated total reflection (μATR) and high throughput transmission (HTT). Partial least squares (PLS) regression was used for prediction of fat, crude protein, lactose and urea after preprocessing IR data and selecting the most informative wavenumber variables. The prediction accuracies were determined separately for raw and homogenized copies of a wide range of milk samples in order to estimate the possibility for on-line analysis of the milk. In case of fat content both measurement modes resulted in an excellent prediction for homogenized samples (R(2)>0.92) but in poor results for raw samples (R(2)protein and lactose with both μATR and HTT, and urea with μATR spectroscopy. Excellent results were obtained for prediction of crude protein, lactose and urea content (R(2)>0.99, 0.98 and 0.86 respectively) in raw and homogenized milk using μATR IR spectroscopy. These results were significantly better than those obtained by HTT IR spectroscopy. However, the prediction performance of HTT was still good for crude protein and lactose content (R(2)>0.86 and 0.78 respectively) in raw and homogenized samples. However, the detection of urea in milk with HTT spectroscopy was significantly better (R(2)=0.69 versus 0.16) after homogenization of the milk samples. Based on these observations it can be concluded that μATR approach is most suitable for rapid at line

  2. Homogenization of variational inequalities for obstacle problems

    International Nuclear Information System (INIS)

    Sandrakov, G V

    2005-01-01

    Results on the convergence of solutions of variational inequalities for obstacle problems are proved. The variational inequalities are defined by a non-linear monotone operator of the second order with periodic rapidly oscillating coefficients and a sequence of functions characterizing the obstacles. Two-scale and macroscale (homogenized) limiting variational inequalities are obtained. Derivation methods for such inequalities are presented. Connections between the limiting variational inequalities and two-scale and macroscale minimization problems are established in the case of potential operators.

  3. A parylene-based dual channel microelectrophoresis system for rapid mutation detection via heteroduplex analysis

    NARCIS (Netherlands)

    Sukas, S.; Erson, Ayse Elif; Sert, Cuneyt; Kulah, Haluk

    2008-01-01

    A new dual channel micro-electrophoresis system for rapid mutation detection based on heteroduplex analysis was designed and implemented. Mutation detection was successfully achieved in a total separation length of 250 μm in less than 3 min for a 590 bp DNA sample harboring a 3 bp mutation causing

  4. RAPID AND SENSITIVE DETERMINATION OF PALLADIUM USING HOMOGENEOUS LIQUID-LIQUID MICROEXTRACTION VIA FLOTATION ASSISTANCE FOLLOWED BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaee

    2015-05-01

    Full Text Available A method for the determination of trace amounts of palladium was developed using homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA followed by graphite furnace atomic absorption spectrometry (GFAAS. Ammonium pyrrolidine dithiocarbamate (APDC was used as a complexing agent. This was applied to determine palladium in three types of water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added to the extraction cell which contained an appropriate mixture of extraction and homogeneous solvents. By using air flotation, the organic solvent was collected at the conical part of the designed cell. Parameters affecting extraction efficiency were investigated and optimized. Under the optimum conditions, the calibration graph was linear in the range of 1.0-200 µg L-1 with a limit of detection of 0.3 µg L-1. The performance of the method was evaluated for the extraction and determination of palladium in water samples and satisfactory results were obtained. In order to verify the accuracy of the approach, the standard addition method was applied for the determination of palladium in spiked synthetic samples and satisfactory results were obtained.

  5. Rapid detection of Brucella spp. using loop-mediated isothermal amplification (LAMP).

    Science.gov (United States)

    Chen, Shouyi; Li, Xunde; Li, Juntao; Atwill, Edward R

    2013-01-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Livestock that are most vulnerable to brucellosis include cattle, goats, and pigs. Brucella spp. cause serious health problems to humans and animals and economic losses to the livestock industry. Traditional methods for detection of Brucella spp. take 48-72 h (Kumar et al., J Commun Dis 29:131-137, 1997; Barrouin-Melo et al., Res Vet Sci 83:340-346, 2007) that do not meet the food industry's need of rapid detection. Therefore, there is an urgent need of fast, specific, sensitive, and inexpensive method for diagnosing of Brucella spp. Loop-mediated isothermal amplification (LAMP) is a method to amplify nucleic acid at constant temperatures. Amplification can be detected by visual detection, fluorescent stain, turbidity, and electrophoresis. We targeted at the Brucella-specific gene omp25 and designed LAMP primers for detection of Brucella spp. Amplification of DNA with Bst DNA polymerase can be completed at 65 °C in 60 min. Amplified products can be detected by SYBR Green I stain and 2.0% agarose gel electrophoresis. The LAMP method is feasible for detection of Brucella spp. from blood and milk samples.

  6. Rapid detection and identification of Bacillus anthracis in food using pyrosequencing technology.

    Science.gov (United States)

    Amoako, Kingsley K; Janzen, Timothy W; Shields, Michael J; Hahn, Kristen R; Thomas, Matthew C; Goji, Noriko

    2013-08-01

    The development of advanced methodologies for the detection of Bacillus anthracis has been evolving rapidly since the release of the anthrax spores in the mail in 2001. Recent advances in detection and identification techniques could prove to be an essential component in the defense against biological attacks. Sequence based such as pyrosequencing, which has the capability to determine short DNA stretches in real-time using biotinylated PCR amplicons, has potential biodefense applications. Using markers from the virulence plasmids (pXO1 and pXO2) and chromosomal regions, we have demonstrated the power of this technology in the rapid, specific and sensitive detection of B. anthracis spores in food matrices including milk, juice, bottled water, and processed meat. The combined use of immunomagnetic separation and pyrosequencing showed positive detection when liquid foods (bottled water, milk, juice), and processed meat were experimentally inoculated with 6CFU/mL and 6CFU/g, respectively, without an enrichment step. Pyrosequencing is completed in about 60min (following PCR amplification) and yields accurate and reliable results with an added layer of confidence. The entire assay (from sample preparation to sequencing information) can be completed in about 7.5h. A typical run on food samples yielded 67-80bp reads with 94-100% identity to the expected sequence. This sequence based approach is a novel application for the detection of anthrax spores in food with potential application in foodborne bioterrorism response and biodefense involving the use of anthrax spores. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  7. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2016-07-01

    In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.

  8. A rapid and simple method of detection of Blepharisma japonicum using PCR and immobilisation on FTA paper

    Science.gov (United States)

    Hide, Geoff; Hughes, Jacqueline M; McNuff, Robert

    2003-01-01

    Background The rapid expansion in the availability of genome and DNA sequence information has opened up new possibilities for the development of methods for detecting free-living protozoa in environmental samples. The protozoan Blepharisma japonicum was used to investigate a rapid and simple detection system based on polymerase chain reaction amplification (PCR) from organisms immobilised on FTA paper. Results Using primers designed from the α-tubulin genes of Blepharisma, specific and sensitive detection to the equivalent of a single Blepharisma cell could be achieved. Similar detection levels were found using water samples, containing Blepharisma, which were dried onto Whatman FTA paper. Conclusion This system has potential as a sensitive convenient detection system for Blepharisma and could be applied to other protozoan organisms. PMID:14516472

  9. Rapid and label-free bioanalytical method of alpha fetoprotein detection using LSPR chip

    Science.gov (United States)

    Kim, Dongjoo; Kim, Jinwoon; Kwak, Cheol Hwan; Heo, Nam Su; Oh, Seo Yeong; Lee, Hoomin; Lee, Go-Woon; Vilian, A. T. Ezhil; Han, Young-Kyu; Kim, Woo-Sik; Kim, Gi-bum; Kwon, Soonjo; Huh, Yun Suk

    2017-07-01

    Alpha fetoprotein (AFP) is a cancer marker, particularly for hepatocellular carcinoma. Normal levels of AFP are less than 20 ng/mL; however, its levels can reach more than 400 ng/mL in patients with HCC. Enzyme linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) have been employed for clinical diagnosis of AFP; however, these methods are time consuming and labor intensive. In this study, we developed a localized surface plasmon resonance (LSPR) based biosensor for simple and rapid detection of AFP. This biosensor consists of a UV-Vis spectrometer, a cuvette cell, and a biosensor chip nanopatterned with gold nanoparticles (AuNPs). In our LSPR biosensor, binding of AFP to the surface of the sensor chip led to an increasing magnitude of the LSPR signals, which was measured by an ultraviolet-visible (UV-Vis) spectrometer. Our LSPR biosensor showed sufficient detectability of AFP at concentrations of 1 ng/mL to 1 μg/mL. Moreover, the overall procedure for detection of AFP was completed within 20 min. This biosensor could also be utilized for a point of care test (POCT) by employing a portable UV-Vis spectrometer. Owing to the simplicity and rapidity of the detection process, our LSPR biosensor is expected to replace traditional diagnostic methods for the early detection of diseases.

  10. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    Directory of Open Access Journals (Sweden)

    David S Boyle

    Full Text Available Improved access to effective tests for diagnosing tuberculosis (TB has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110 and 20 fg (IS1081were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9 and 86.1% (95%CI: 78.1, 94.1 respectively (n = 71. Specificities were 100% and 88.6% (95% CI: 80.8, 96.1 respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2 and 70.8% (95%CI: 62.9, 78.7 were obtained (n = 90. Specificities were 95.4 (95% CI: 92.3,98.1 and 88% (95% CI: 83.6, 92.4 respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB

  11. [Research on rapid and quantitative detection method for organophosphorus pesticide residue].

    Science.gov (United States)

    Sun, Yuan-Xin; Chen, Bing-Tai; Yi, Sen; Sun, Ming

    2014-05-01

    The methods of physical-chemical inspection is adopted in the traditional pesticide residue detection, which require a lot of pretreatment processes, are time-consuming and complicated. In the present study, the authors take chlorpyrifos applied widely in the present agricultural field as the research object and propose a rapid and quantitative detection method for organophosphorus pesticide residues. At first, according to the chemical characteristics of chlorpyrifos and comprehensive chromogenic effect of several colorimetric reagents and secondary pollution, the pretreatment of the scheme of chromogenic reaction of chlorpyrifos with resorcin in a weak alkaline environment was determined. Secondly, by analyzing Uv-Vis spectrum data of chlorpyrifos samples whose content were between 0. 5 and 400 mg kg-1, it was confirmed that the characteristic information after the color reaction mainly was concentrated among 360 approximately 400 nm. Thirdly, the full spectrum forecasting model was established based on the partial least squares, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 995 6, standard deviation of calibration (RMSEC) was 2. 814 7 mg kg-1, and standard deviation of verification (RMSEP) was 8. 012 4 mg kg-1. Fourthly, the wavelengths whose center wavelength is 400 nm was extracted as characteristic region to build a forecasting model, whose correlation coefficient of calibration was 0. 999 6, correlation coefficient of prediction reached 0. 999 3, standard deviation of calibration (RMSEC) was 2. 566 7 mg kg-1 , standard deviation of verification (RMSEP) was 4. 886 6 mg kg-1, respectively. At last, by analyzing the near infrared spectrum data of chlorpyrifos samples with contents between 0. 5 and 16 mg kg-1, the authors found that although the characteristics of the chromogenic functional group are not obvious, the change of absorption peaks of resorcin itself in the neighborhood of 5 200 cm

  12. Development and Evaluation of a Rapid Antigen Detection and Serotyping Lateral Flow Antigen Detection System for Foot-and-Mouth Disease Virus.

    Directory of Open Access Journals (Sweden)

    Kazuki Morioka

    Full Text Available We developed a lateral flow strip using monoclonal antibodies (MAbs which allows for rapid antigen detection and serotyping of foot-and-mouth disease virus (FMDV. This FMDV serotyping strip was able to detect all 7 serotypes and distinguish serotypes O, A, C and Asia1. Its sensitivities ranged from 10(3 to 10(4 of a 50% tissue culture infectious dose of each FMDV stain; this is equal to those of the commercial product Svanodip (Boehringer Ingelheim Svanova, Uppsala, Sweden, which can detect all seven serotypes of FMDV, but does not distinguish them. Our evaluation of the FMDV serotyping strip using a total of 118 clinical samples (vesicular fluids, vesicular epithelial emulsions and oral and/or nasal swabs showed highly sensitive antigen detection and accuracy in serotyping in accordance with ELISA or RT-PCR. To the best of our knowledge, this is the first report on any FMDV serotyping strip that provides both rapid antigen detection and serotyping of FMDV at the same time on one strip without extra devices. This method will be useful in both FMD-free countries and FMD-infected countries, especially where laboratory diagnosis cannot be carried out.

  13. Impact of the rapid antigen detection test in diagnosis and treatment of acute pharyngotonsillitis in a pediatric emergency room.

    Science.gov (United States)

    Cardoso, Débora Morais; Gilio, Alfredo Elias; Hsin, Shieh Huei; Machado, Beatriz Marcondes; de Paulis, Milena; Lotufo, João Paulo B; Martinez, Marina Baquerizo; Grisi, Sandra Josefina E

    2013-01-01

    To evaluate the impact of the routine use of rapid antigen detection test in the diagnosis and treatment of acute pharyngotonsillitis in children. This is a prospective and observational study, with a protocol compliance design established at the Emergency Unit of the University Hospital of Universidade de São Paulo for the care of children and adolescents diagnosed with acute pharyngitis. 650 children and adolescents were enrolled. Based on clinical findings, antibiotics would be prescribed for 389 patients (59.8%); using the rapid antigen detection test, they were prescribed for 286 patients (44.0%). Among the 261 children who would not have received antibiotics based on the clinical evaluation, 111 (42.5%) had positive rapid antigen detection test. The diagnosis based only on clinical evaluation showed 61.1% sensitivity, 47.7% specificity, 44.9% positive predictive value, and 57.5% negative predictive value. The clinical diagnosis of streptococcal pharyngotonsillitis had low sensitivity and specificity. The routine use of rapid antigen detection test led to the reduction of antibiotic use and the identification of a risk group for complications of streptococcal infection, since 42.5% positive rapid antigen detection test patients would not have received antibiotics based only on clinical diagnosis.

  14. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    Science.gov (United States)

    Jarquin, Robin; Hanning, Irene; Ahn, Soohyoun; Ricke, Steven C.

    2009-01-01

    Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR) assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered. PMID:22346699

  15. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    Directory of Open Access Journals (Sweden)

    Steven C. Ricke

    2009-07-01

    Full Text Available Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered.

  16. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Science.gov (United States)

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  17. Detecting and Remembering Simultaneous Pictures in a Rapid Serial Visual Presentation

    Science.gov (United States)

    Potter, Mary C.; Fox, Laura F.

    2009-01-01

    Viewers can easily spot a target picture in a rapid serial visual presentation (RSVP), but can they do so if more than 1 picture is presented simultaneously? Up to 4 pictures were presented on each RSVP frame, for 240 to 720 ms/frame. In a detection task, the target was verbally specified before each trial (e.g., "man with violin"); in a…

  18. Application of a rapid screening method to detect irradiated meat in Brazil

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mancini-Filho, J.; Delincee, H.

    2000-01-01

    Based on the enormous potential for food irradiation in Brazil, and to ensure free consumer choice, there is a need to find a convenient and rapid method for detection of irradiated food. Since treatment with ionising radiation causes DNA fragmentation, the analysis of DNA damage might be promising. In this paper, the DNA Comet Assay was used to identify exotic meat (boar, jacare and capybara), irradiated with 60 Co gamma rays. The applied radiation doses were 0, 1.5, 3.0 and 4.5 kGy. Analysis of the DNA migration enabled a rapid identification of the radiation treatment

  19. A Rapid, Onsite, Ultrasensitive Melamine Quantitation Method for Protein Beverages Using Time-Resolved Fluorescence Detection Paper.

    Science.gov (United States)

    Li, Guanghua; Wang, Du; Zhou, Aijun; Sun, Yimin; Zhang, Qi; Poapolathep, Amnart; Zhang, Li; Fan, Zhiyong; Zhang, Zhaowei; Li, Peiwu

    2018-05-02

    To ensure protein beverage safety and prevent illegal melamine use to artificially increase protein content, a rapid, onsite, ultrasensitive detection method for melamine must be developed because melamine is detrimental to human health and life. Herein, an ultrasensitive time-resolved fluorescence detection paper (TFDP) was developed to detect melamine in protein beverages within 15 min using a one-step sample preparation. The lower limits of detection were 0.89, 0.94, and 1.05 ng/mL, and the linear ranges were 2.67-150, 2.82-150, and 3.15-150 ng/mL (R2>0.982) for peanut, walnut, and coconut beverages, respectively. The recovery rates were 85.86-110.60% with a coefficient of variation beverage samples, the TFDP and ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS) results were consistent. This method is a promising alternative for rapid, onsite detection of melamine in beverages.

  20. Computer aided detection of suspicious regions on digital mammograms : rapid segmentation and feature extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ruggiero, C; Giacomini, M; Sacile, R [DIST - Department of Communication Computer and System Sciences, University of Genova, Via Opera Pia 13, 16145 Genova (Italy); Rosselli Del Turco, M [Centro per lo studio e la prevenzione oncologica, Firenze (Italy)

    1999-12-31

    A method is presented for rapid detection of suspicious regions which consists of two steps. The first step is segmentation based on texture analysis consisting of : histogram equalization, Laws filtering for texture analysis, Gaussian blur and median filtering to enhance differences between tissues in different respects, histogram thresholding to obtain a binary image, logical masking in order to detect regions to be discarded from the analysis, edge detection. This method has been tested on 60 images, obtaining 93% successful detection of suspicious regions. (authors) 4 refs, 9 figs, 1 tabs.

  1. Microbiological evaluation of a new growth-based approach for rapid detection of methicillin-resistant Staphylococcus aureus

    NARCIS (Netherlands)

    von Eiff, Christof; Maas, Dominik; Sander, Gunnar; Friedrich, Alexander W; Peters, Georg; Becker, Karsten

    OBJECTIVES: Recently, a rapid screening tool for methicillin-resistant Staphylococcus aureus (MRSA) has been introduced that applies a novel detection technology allowing the rapid presence or absence of MRSA to be determined from an enrichment broth after only a few hours of incubation. To evaluate

  2. Core homogenization method for pebble bed reactors

    International Nuclear Information System (INIS)

    Kulik, V.; Sanchez, R.

    2005-01-01

    This work presents a core homogenization scheme for treating a stochastic pebble bed loading in pebble bed reactors. The reactor core is decomposed into macro-domains that contain several pebble types characterized by different degrees of burnup. A stochastic description is introduced to account for pebble-to-pebble and pebble-to-helium interactions within a macro-domain as well as for interactions between macro-domains. Performance of the proposed method is tested for the PROTEUS and ASTRA critical reactor facilities. Numerical simulations accomplished with the APOLLO2 transport lattice code show good agreement with the experimental data for the PROTEUS reactor facility and with the TRIPOLI4 Monte Carlo simulations for the ASTRA reactor configuration. The difference between the proposed method and the traditional volume-averaged homogenization technique is negligible while only one type of fuel pebbles present in the system, but it grows rapidly with the level of pebble heterogeneity. (authors)

  3. Human anti-HIV IgM detection by the OraQuick ADVANCE® Rapid HIV 1/2 Antibody Test.

    Science.gov (United States)

    Guillon, Geraldine; Yearwood, Graham; Snipes, Casey; Boschi, Daniel; Reed, Michael R

    2018-01-01

    The Centers for Disease Control and Prevention (CDC) and many public health jurisdictions continue to advocate for the most sensitive rapid HIV test that is available. Currently, the recommendation is to utilize tests that can detect HIV infection biomarkers within 30 days of infection, when initial immune responses are mounted. The infected patient's IgM response is often used to detect acute infection within a 20-25 days window after infection. This requirement applies to lab-based testing with automated analyzers and rapid, point of care (POC) testing used for screening in a non-clinical setting. A recent study has demonstrated that POC tests using a Protein A-based detection system can detect samples with predominantly HIV-1 IgM reactivity (Moshgabadi et al., 2015). The OraQuick ADVANCE ® Rapid HIV-1/2 Antibody Test (OraQuick ADVANCE ®) also uses Protein A as the detection protein in the antibody-binding colloidal gold conjugate, so it is expected that the OraQuick ADVANCE ® Test will also detect samples with predominantly IgM reactivity. This report definitively demonstrates that the OraQuick ADVANCE ® Test can detect IgM antibodies during an acute infection window period of approximately 20-25 days after infection, and is therefore suitable for use in testing environments requiring adherence to current CDC recommendations.

  4. Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization.

    Science.gov (United States)

    Kwiatkowski, M; Wurlitzer, M; Krutilin, A; Kiani, P; Nimer, R; Omidi, M; Mannaa, A; Bussmann, T; Bartkowiak, K; Kruber, S; Uschold, S; Steffen, P; Lübberstedt, J; Küpker, N; Petersen, H; Knecht, R; Hansen, N O; Zarrine-Afsar, A; Robertson, W D; Miller, R J D; Schlüter, H

    2016-02-16

    Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Common Strains of Escherichia coli▿

    Science.gov (United States)

    Hill, Joshua; Beriwal, Shilpa; Chandra, Ishwad; Paul, Vinod K.; Kapil, Aarti; Singh, Tripti; Wadowsky, Robert M.; Singh, Vinita; Goyal, Ankur; Jahnukainen, Timo; Johnson, James R.; Tarr, Phillip I.; Vats, Abhay

    2008-01-01

    We developed a highly sensitive and specific LAMP assay for Escherichia coli. It does not require DNA extraction and can detect as few as 10 copies. It detected all 36 of 36 E. coli isolates and all 22 urine samples (out of 89 samples tested) that had E. coli. This assay is rapid, low in cost, and simple to perform. PMID:18550738

  6. Loop-mediated isothermal amplification assay for rapid detection of common strains of Escherichia coli.

    Science.gov (United States)

    Hill, Joshua; Beriwal, Shilpa; Chandra, Ishwad; Paul, Vinod K; Kapil, Aarti; Singh, Tripti; Wadowsky, Robert M; Singh, Vinita; Goyal, Ankur; Jahnukainen, Timo; Johnson, James R; Tarr, Phillip I; Vats, Abhay

    2008-08-01

    We developed a highly sensitive and specific LAMP assay for Escherichia coli. It does not require DNA extraction and can detect as few as 10 copies. It detected all 36 of 36 E. coli isolates and all 22 urine samples (out of 89 samples tested) that had E. coli. This assay is rapid, low in cost, and simple to perform.

  7. Rapid method for Detection of Irradiation Mango Fruits

    International Nuclear Information System (INIS)

    El Salhy, F.T.

    2011-01-01

    To detect mango fruits which have been exposed to low doses of gamma rays (0.5-3.0 kGy), three recommended methods by European Committee for Standardization (EN 1784:1996, EN 1785:1996 and EN 1787:2000) were used to study the possibility for identification of irradiated mango fruits (Ewais variety). Fresh mangoes were irradiated to different doses (0.5, 0.75, 1.0 and 3.0 kGy). The first method for determining the volatile hydrocarbons (VHC) was carried out by using florisil column then identified by gas chromatography and mass spectrometry (GC-MS). The major VHCs were C14:1, C15:0 and C17:1 at different doses which increased linearly with increasing doses either at low or high doses. The second one for determining the 2-alkyl cyclobutanone (2-DCB) was carried out using florisil chromatography method activated with 20% for separation and identified by GC-MS. 2-DCB bio marker specific for irradiated food proved its presence at the applied doses from 0.75-3.0 kGy but not at 0.5 kGy. All the mentioned compounds could not detected in non-irradiated samples, which mean that these radiolytic products (VHC and 2-DCB) can be used as a detection markers for irradiated mangoes even at low doses. The third one (EN 1787:2000) was conducted by electron spin resonance (ESR) on dried petioles of mangoes. The results proved that ESR was more sensitive for all applied doses.It could be concluded that using the three methods can be succeeded for detection of irradiated mangoes but the rapid one even at low doses with high accuracy was ESR.

  8. Rapid detection of pandemic influenza in the presence of seasonal influenza

    Science.gov (United States)

    2010-01-01

    Background Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance) for influenza-like illness (ILI) in Scotland. Methods We develop an algorithm based on the weekly case ratio (WCR) of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum) and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT) of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5%) and 99% specificity, the WCR and threshold methods

  9. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Science.gov (United States)

    Escadafal, Camille; Faye, Oumar; Sall, Amadou Alpha; Faye, Ousmane; Weidmann, Manfred; Strohmeier, Oliver; von Stetten, Felix; Drexler, Josef; Eberhard, Michael; Niedrig, Matthias; Patel, Pranav

    2014-03-01

    Yellow fever (YF) is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV), is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA) assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay) to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction) and rapid processing time (<20 min). Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for YFV detection in low-resource settings.

  10. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Directory of Open Access Journals (Sweden)

    Camille Escadafal

    2014-03-01

    Full Text Available BACKGROUND: Yellow fever (YF is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV, is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. METHODOLOGY: The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. CONCLUSION/SIGNIFICANCE: The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction and rapid processing time (<20 min. Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for

  11. A technique to detect periodic and non-periodic ultra-rapid flux time variations with standard radio-astronomical data

    Science.gov (United States)

    Borra, Ermanno F.; Romney, Jonathan D.; Trottier, Eric

    2018-06-01

    We demonstrate that extremely rapid and weak periodic and non-periodic signals can easily be detected by using the autocorrelation of intensity as a function of time. We use standard radio-astronomical observations that have artificial periodic and non-periodic signals generated by the electronics of terrestrial origin. The autocorrelation detects weak signals that have small amplitudes because it averages over long integration times. Another advantage is that it allows a direct visualization of the shape of the signals, while it is difficult to see the shape with a Fourier transform. Although Fourier transforms can also detect periodic signals, a novelty of this work is that we demonstrate another major advantage of the autocorrelation, that it can detect non-periodic signals while the Fourier transform cannot. Another major novelty of our work is that we use electric fields taken in a standard format with standard instrumentation at a radio observatory and therefore no specialized instrumentation is needed. Because the electric fields are sampled every 15.625 ns, they therefore allow detection of very rapid time variations. Notwithstanding the long integration times, the autocorrelation detects very rapid intensity variations as a function of time. The autocorrelation could also detect messages from Extraterrestrial Intelligence as non-periodic signals.

  12. A homogeneous assay for highly sensitive detection of CaMV35S promoter in transgenic soybean by förster resonance energy transfer between nitrogen-doped graphene quantum dots and Ag nanoparticles.

    Science.gov (United States)

    Li, Yaqi; Sun, Li; Qian, Jing; Wang, Chengke; Liu, Qian; Han, En; Hao, Nan; Zhang, Liuping; Cai, Jianrong; Wang, Kun

    2016-12-15

    In this work, a novel homogeneous assay for DNA quantitative analysis based on förster resonance energy transfer (FRET) was developed for cauliflwer mosaic virus 35s (CaMV35S) promoter of transgenic soybean detection. The homogenous FRET of fluorescence signal was fabricated by DNA hybridization with probe modified nitrogen-doped graphene quantum dots (NGQDs) and silver nanoparticles (AgNPs), which acted the donor-acceptor pairs for the first time. The highly efficient FRET and unique properties of the NGQDs made the proposed FRET system as a functionalized detection platform for labelling of DNA. Upon the recognition of specific target DNA (tDNA), the FRET between NGQDs and AgNPs was triggered to produce fluorescence quenching, which could be used for tDNA detection. The fabricated homogeneous FRET assay displayed a wide linear range of 0.1-500.0 nM and a low limit of detection 0.03 nM for the detection of CaMV35S (S/N = 3). This proposed biosensor revealed high specificity to detect tDNA, with acceptable intra-assay precision and excellent stability. This method was successfully applied to identify the real sample of 0.5% containing transgenic soybean, which achieved the most of national law regulations. This assay was further validated by polymerase chain reaction as the genetically modified organisms, suggesting that the proposed FRET system is a feasible tool for the further daily genetically modified organism detection. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Homogenization versus homogenization-free method to measure muscle glycogen fractions.

    Science.gov (United States)

    Mojibi, N; Rasouli, M

    2016-12-01

    The glycogen is extracted from animal tissues with or without homogenization using cold perchloric acid. Three methods were compared for determination of glycogen in rat muscle at different physiological states. Two groups of five rats were kept at rest or 45 minutes muscular activity. The glycogen fractions were extracted and measured by using three methods. The data of homogenization method shows that total glycogen decreased following 45 min physical activity and the change occurred entirely in acid soluble glycogen (ASG), while AIG did not change significantly. Similar results were obtained by using "total-glycogen-fractionation methods". The findings of "homogenization-free method" indicate that the acid insoluble fraction (AIG) was the main portion of muscle glycogen and the majority of changes occurred in AIG fraction. The results of "homogenization method" are identical with "total glycogen fractionation", but differ with "homogenization-free" protocol. The ASG fraction is the major portion of muscle glycogen and is more metabolically active form.

  14. Detection of Benzoic Acid by an Amperometric Inhibitor Biosensor Based on Mushroom Tissue Homogenate

    Directory of Open Access Journals (Sweden)

    Mustafa Kemal Sezgintürk

    2005-01-01

    Full Text Available An amperometric benzoic acid-sensing inhibitor biosensor was prepared by immobilizing mushroom (Agaricus bisporus tissue homogenate on a Clark-type oxygen electrode. The effects of the quantity of mushroom tissue homogenate, the quantity of gelatin and the effect of the crosslinking agent glutaraldehyde percent on the biosensor were studied. The optimum concentration of phenol used as substrate was 200 μM. The bioanalytical properties of the proposed biosensor, such as dependence of the biosensor response on the pH value and the temperature, were investigated. The biosensor responded linearly to benzoic acid in a concentration range of 25–100 μM. Standard deviation (s.d. was ±0.49 μM for 7 successive determinations at a concentration of 75 μM. The inhibitor biosensor based on mushroom tissue homogenate was applied for the determination of benzoic acid in fizzy lemonade, some fruits and groundwater samples. Results were compared to those obtained using AOAC method, showing a good agreement.

  15. A multiplex RT-PCR assay for the rapid and differential diagnosis of classical swine fever and other pestivirus infections.

    Science.gov (United States)

    Díaz de Arce, Heidy; Pérez, Lester J; Frías, Maria T; Rosell, Rosa; Tarradas, Joan; Núñez, José I; Ganges, Llilianne

    2009-11-18

    Classical swine fever is a highly contagious viral disease causing severe economic losses in pig production almost worldwide. All pestivirus species can infect pigs, therefore accurate and rapid pestivirus detection and differentiation is of great importance to assure control measures in swine farming. Here we describe the development and evaluation of a novel multiplex, highly sensitive and specific RT-PCR for the simultaneous detection and rapid differentiation between CSFV and other pestivirus infections in swine. The universal and differential detection was based on primers designed to amplify a fragment of the 5' non-coding genome region for the detection of pestiviruses and a fragment of the NS5B gene for the detection of classical swine fever virus. The assay proved to be specific when different pestivirus strains from swine and ruminants were evaluated. The analytical sensitivity was estimated to be as little as 0.89TCID(50). The assay analysis of 30 tissue homogenate samples from naturally infected and non-CSF infected animals and 40 standard serum samples evaluated as part of two European Inter-laboratory Comparison Tests conducted by the European Community Reference Laboratory, Hanover, Germany proved that the multiplex RT-PCR method provides a rapid, highly sensitive, and cost-effective laboratory diagnosis for classical swine fever and other pestivirus infections in swine.

  16. Application of a Homogenous Assay for the Detection of 2,4,6-Trinitrotoluene to Environmental Water Samples

    Directory of Open Access Journals (Sweden)

    Ellen R. Goldman

    2005-01-01

    Full Text Available A homogeneous assay was used to detect 2,4,6-trinitrotoluene (TNT spiked into environmental water samples. This assay is based on changes in fluorescence emission intensity when TNT competitively displaces a fluorescently labeled, TNT analog bound to an anti-TNT antibody. The effectiveness of the assay was highly dependent on the source of the sample being tested. As no correlation between pH and assay performance was observed, ionic strength was assumed to be the reason for variation in assay results. Addition of 10x phosphate-buffered saline to samples to increase their ionic strength to that of our standard laboratory buffer (about 0.17 M significantly improved the range over which the assay functioned in several river water samples.

  17. Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Maria-Cristina Radulescu

    2014-01-01

    Full Text Available A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX, carboxyl esterase (CaE and bovine serum albumin (BSA were immobilised with glutaraldehyde (GA onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC. The biosensor response was fast. The sample throughput using a flow injection analysis (FIA system was 40 h−1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples without any pre-treatment step prior to measurement.

  18. Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.

    Science.gov (United States)

    Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian

    2014-01-09

    A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h⁻¹ with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement.

  19. Lab on a chip sensor for rapid detection and antibiotic resistance determination of Staphylococcus aureus.

    Science.gov (United States)

    Abeyrathne, Chathurika D; Huynh, Duc H; Mcintire, Thomas W; Nguyen, Thanh C; Nasr, Babak; Zantomio, Daniela; Chana, Gursharan; Abbott, Iain; Choong, Peter; Catton, Mike; Skafidas, Efstratios

    2016-03-21

    The Gram-positive bacterium, Staphylococcus aureus (S. aureus), is a major pathogen responsible for a variety of infectious diseases ranging from cellulitis to more serious conditions such as septic arthritis and septicaemia. Timely treatment with appropriate antibiotic therapy is essential to ensure clinical defervescence and to prevent further complications such as infective endocarditis or organ impairment due to septic shock. To date, initial antibiotic choice is empirical, using a "best guess" of likely organism and sensitivity- an approach adopted due to the lack of rapid identification methods for bacteria. Current culture based methods take up to 5 days to identify the causative bacterial pathogen and its antibiotic sensitivity. This paper provides proof of concept for a biosensor, based on interdigitated electrodes, to detect the presence of S. aureus and ascertain its sensitivity to flucloxacillin rapidly (within 2 hours) in a cost effective manner. The proposed method is label-free and uses non-faradic measurements. This is the first study to successfully employ interdigitated electrodes for the rapid detection of antibiotic resistance. The method described has important potential outcomes of faster definitive antibiotic treatment and more rapid clinical response to treatment.

  20. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen.

    Science.gov (United States)

    Alhogail, Sahar; Suaifan, Ghadeer A R Y; Zourob, Mohammed

    2016-12-15

    Listeria monocytogenes is a serious cause of human foodborne infections worldwide, which needs spending billions of dollars for inspection of bacterial contamination in food every year. Therefore, there is an urgent need for rapid, in-field and cost effective detection techniques. In this study, rapid, low-cost and simple colorimetric assay was developed using magnetic nanoparticles for the detection of listeria bacteria. The protease from the listeria bacteria was detected using D-amino acid substrate. D-amino acid substrate was linked to the carboxylic acid on the magnetic nanoparticles using EDC/NHS chemistry. The cysteine residue at the C-terminal of the substrate was used for the self-assembled monolayer formation on the gold sensor surface, which in turn the black magnetic nanobeads will mask the golden color. The color will change from black to golden color upon the cleavage of the specific peptide sequence by the Listeria protease. The sensor was tested with serial dilutions of Listeria bacteria. It was found that the appearance of the gold surface area is proportional to the bacterial concentrations in CFU/ml. The lowest detection limit of the developed sensor for Listeria was found to be 2.17×10(2) colony forming unit/ml (CFU/ml). The specificity of the biosensor was tested against four different foodborne associated bacteria (Escherichia coli, Salmonella, Shigella flexnerii and Staphylococcus aureus). Finally, the sensor was tested with artificially spiked whole milk and ground meat spiked with listeria. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Rapid Newcastle Disease Virus Detection Based on Loop-Mediated Isothermal Amplification and Optomagnetic Readout

    DEFF Research Database (Denmark)

    Tian, Bo; Ma, Jing; Zardán Gómez de la Torre, Teresa

    2016-01-01

    Rapid and sensitive diagnostic methods based on isothermal amplification are ideal substitutes for PCR in out-of-lab settings. However, there are bottlenecks in terms of establishing low-cost and user-friendly readout methods for isothermal amplification schemes. Combining the high amplification...... efficiency of loop-mediated isothermal amplification (LAMP) with an optomagnetic nanoparticle-based readout system, we demonstrate ultrasensitive and rapid detection of Newcastle disease virus RNA. Biotinylated amplicons of LAMP and reverse transcription LAMP (RT-LAMP) bind to streptavidin-coated magnetic...... nanoparticles (MNPs) resulting in a dramatical increase in the hydrodynamic size of the MNPs. This increase was measured by an optomagnetic readout system and provided quantitative information on the amount of LAMP target sequence. Our assay resulted in a limit of detection of 10 aM of target sequence...

  2. Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors

    Science.gov (United States)

    Lukianova-Hleb, Ekaterina Y.; Ren, Xiaoyang; Townley, Debra; Wu, Xiangwei; Kupferman, Michael E.; Lapotko, Dmitri O.

    2012-01-01

    The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC). The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil) in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB). HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres) converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment. PMID:23139725

  3. A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies

    Science.gov (United States)

    Song, Dandan; Qu, Xiaofeng; Liu, Yushen; Li, Li; Yin, Dehui; Li, Juan; Xu, Kun; Xie, Renguo; Zhai, Yue; Zhang, Huiwen; Bao, Hao; Zhao, Chao; Wang, Juan; Song, Xiuling; Song, Wenzhi

    2017-03-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Traditional methods for detection of Brucella spp. take 48-72 h that does not meet the need of rapid detection. Herein, a new rapid detection method of Brucella was developed based on polyclonal antibody-conjugating quantum dots and antibody-modified magnetic beads. First, polyclonal antibodies IgG and IgY were prepared and then the antibody conjugated with quantum dots (QDs) and immunomagnetic beads (IMB), respectively, which were activated by N-(3-dimethylaminopropyl)- N'-ethylcar-bodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form probes. We used the IMB probe to separate the Brucella and labeled by the QD probe, and then detected the fluorescence intensity with a fluorescence spectrometer. The detection method takes 105 min with a limit of detection of 103 CFU/mL and ranges from 10 to 105 CFU/mL ( R 2 = 0.9983), and it can be well used in real samples.

  4. Rapid and robust detection methods for poison and microbial contamination.

    Science.gov (United States)

    Hoehl, Melanie M; Lu, Peter J; Sims, Peter A; Slocum, Alexander H

    2012-06-27

    Real-time on-site monitoring of analytes is currently in high demand for food contamination, water, medicines, and ingestible household products that were never tested appropriately. Here we introduce chemical methods for the rapid quantification of a wide range of chemical and microbial contaminations using a simple instrument. Within the testing procedure, we used a multichannel, multisample, UV-vis spectrophotometer/fluorometer that employs two frequencies of light simultaneously to interrogate the sample. We present new enzyme- and dye-based methods to detect (di)ethylene glycol in consumables above 0.1 wt % without interference and alcohols above 1 ppb. Using DNA intercalating dyes, we can detect a range of pathogens ( E. coli , Salmonella , V. Cholera, and a model for Malaria) in water, foods, and blood without background signal. We achieved universal scaling independent of pathogen size above 10(4) CFU/mL by taking advantage of the simultaneous measurement at multiple wavelengths. We can detect contaminants directly, without separation, purification, concentration, or incubation. Our chemistry is stable to ± 1% for >3 weeks without refrigeration, and measurements require <5 min.

  5. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Yi-Mo Deng

    Full Text Available BACKGROUND: Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. METHODOLOGY/PRINCIPAL FINDINGS: A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. CONCLUSIONS/SIGNIFICANCE: In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  6. Rapid detection and subtyping of human influenza A viruses and reassortants by pyrosequencing.

    Science.gov (United States)

    Deng, Yi-Mo; Caldwell, Natalie; Barr, Ian G

    2011-01-01

    Given the continuing co-circulation of the 2009 H1N1 pandemic influenza A viruses with seasonal H3N2 viruses, rapid and reliable detection of newly emerging influenza reassortant viruses is important to enhance our influenza surveillance. A novel pyrosequencing assay was developed for the rapid identification and subtyping of potential human influenza A virus reassortants based on all eight gene segments of the virus. Except for HA and NA genes, one universal set of primers was used to amplify and subtype each of the six internal genes. With this method, all eight gene segments of 57 laboratory isolates and 17 original specimens of seasonal H1N1, H3N2 and 2009 H1N1 pandemic viruses were correctly matched with their corresponding subtypes. In addition, this method was shown to be capable of detecting reassortant viruses by correctly identifying the source of all 8 gene segments from three vaccine production reassortant viruses and three H1N2 viruses. In summary, this pyrosequencing assay is a sensitive and specific procedure for screening large numbers of viruses for reassortment events amongst the commonly circulating human influenza A viruses, which is more rapid and cheaper than using conventional sequencing approaches.

  7. Rapid islanding detection using multi-level inverter for grid-interactive PV system

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2014-01-01

    Graphical abstract: - Highlights: • Novel reference signal is used to form an islanding detection scheme for PV system. • Supply fixed magnitude sinusoidal signal even if utility grid is disconnected. • Seamless transfer between grid-connected and stand-alone modes is possible. - Abstract: A novel reference signal generator is combined with a multi-level inverter to form a rapid islanding detection scheme for grid-interactive PV system. The reference signal generator can easily be synchronized with the utility grid signal and produced a fixed magnitude and very low total harmonic distortion (THD) sinusoidal signal which is in phase with the utility grid signal. Unlike conventional phase-locked loop (PLL) circuitry, the reference signal generator can also provide a fixed magnitude sinusoidal signal even if the utility grid is disconnected and automatically re-synchronous with the grid rapidly. Consequently, seamless transfer between grid-connected and stand-alone modes could easily be achieved if anti-islanding protection is not required. If a saturation element is applied to the raw reference signal followed by the synthesis of the truncated signal using a multi-level inverter, the distinct flat-top feature of the synthesized signal can quickly and easily be identified if the network is in islanding mode at the point of common coupling. Experimental results are included to demonstrate the effectiveness of the proposed detection scheme

  8. Rapid Isolation and Molecular Detection of Streptomycin-Producing Streptomycetes

    Directory of Open Access Journals (Sweden)

    M Motovali-bashi

    2006-07-01

    Full Text Available Introduction: Streptomyces species are mycelial, aerobic gram-positive bacteria that are isolated from soil and produce a diverse range of antibiotics. Streptomyces griseus produces the antibiotic, streptomycin and forms spores even in a liquid culture. The gene cluster for the production of Streptomycin antibiotic contains strR gene that encodes StrR, a pathway-specific regulator. Then, this pathway-specific regulator induces transcription of other streptomycin production genes in the gene cluster. The overall aim of this work was rapid isolation and molecular detection of streptomycin-producing Streptomycetes, especially S. griseus, from Iranian soils in order to manipulate them for increased production of streptomycin. Methods: This research used new initiative half-specific medium for isolation of Streptomycetes from natural environments, called FZmsn. The fifty colonies of Streptomyces strains grown on the surface of FZmsn medium isolated from environmental samples were defined on the basis of their morphological characteristics and light microscope studies. A set of primers was designed to detect strR by OLIGO software. Results: In colony-PCR reactions followed by gel electrophoresis, 6 colonies from Streptomyces strains colonies were detected as S. griseus colonies. Conclusion: These native Streptomyces strains will be used for genetic manipulation of S. griseus in order to increase production levels of streptomycin.

  9. Rapid detection of human fecal Eubacterium species and related genera by nested PCR method.

    Science.gov (United States)

    Kageyama, A; Benno, Y

    2001-01-01

    PCR procedures based on 16S rDNA gene sequence specific for seven Eubacterium spp. and Eggerthella lenta that predominate in the human intestinal tract were developed, and used for direct detection of these species in seven human feces samples. Three species of Eggerthella lenta, Eubacterium rectale, and Eubacterium eligens were detected from seven fecal samples. Eubacterium biforme was detected from six samples. It was reported that E. rectale, E. eligens, and E. biforme were difficult to detect by traditional culture method, but the nested PCR method is available for the detection of these species. This result shows that the nested PCR method utilizing a universal primer pair, followed by amplification with species-specific primers, would allow rapid detection of Eubacterium species in human feces.

  10. Rapid Detection of Salmonella in Food and Beverage Samples by Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Radji, M.

    2010-01-01

    Full Text Available Polymerase chain reaction (PCR assay had been used to detect Salmonella in food and beverage samples using suitable primers which are based on specific invA gene of Salmonella. Twenty nine samples were collected from street food counters and some canteens in Margonda Street, Depok, West Java, Indonesia. It was found that five of twenty nine samples were detected to contain Salmonella and showed the presence of the amplified product of the size 244 bp. The method of PCR demonstrated the specificity of invA primers for detection of Salmonella as confirmed by biochemical and serological assay. The results of this study revealed that PCR was a rapid and useful tool for detection of Salmonella in food and beverage samples.

  11. Original Article. Evaluation of Rapid Detection of Nasopharyngeal Colonization with MRSA by Real-Time PCR

    Directory of Open Access Journals (Sweden)

    Kang Feng-feng

    2012-03-01

    Full Text Available Objective To investigate the clinical application of Real-Time PCR for rapid detection of methicillin-resistant Staphylococcus aureus (MRSA directly from nasopharyngeal swab specimens.

  12. Rapid detection of MERS coronavirus-like viruses in bats: pote1ntial for tracking MERS coronavirus transmission and animal origin.

    Science.gov (United States)

    Woo, Patrick C Y; Lau, Susanna K P; Chen, Yixin; Wong, Emily Y M; Chan, Kwok-Hung; Chen, Honglin; Zhang, Libiao; Xia, Ningshao; Yuen, Kwok-Yung

    2018-03-07

    Recently, we developed a monoclonal antibody-based rapid nucleocapsid protein detection assay for diagnosis of MERS coronavirus (MERS-CoV) in humans and dromedary camels. In this study, we examined the usefulness of this assay to detect other lineage C betacoronaviruses closely related to MERS-CoV in bats. The rapid MERS-CoV nucleocapsid protein detection assay was tested positive in 24 (88.9%) of 27 Tylonycteris bat CoV HKU4 (Ty-BatCoV-HKU4) RNA-positive alimentary samples of Tylonycteris pachypus and 4 (19.0%) of 21 Pipistrellus bat CoV HKU5 (Pi-BatCoV-HKU5) RNA-positive alimentary samples of Pipistrellus abramus. There was significantly more Ty-BatCoV-HKU4 RNA-positive alimentary samples than Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive by the rapid MERS-CoV nucleocapsid protein detection assay (P < 0.001 by Chi-square test). The rapid assay was tested negative in all 51 alimentary samples RNA-positive for alphacoronaviruses (Rhinolophus bat CoV HKU2, Myotis bat CoV HKU6, Miniopterus bat CoV HKU8 and Hipposideros batCoV HKU10) and 32 alimentary samples positive for lineage B (SARS-related Rhinolophus bat CoV HKU3) and lineage D (Rousettus bat CoV HKU9) betacoronaviruses. No significant difference was observed between the viral loads of Ty-BatCoV-HKU4/Pi-BatCoV-HKU5 RNA-positive alimentary samples that were tested positive and negative by the rapid test (Mann-Witney U test). The rapid MERS-CoV nucleocapsid protein detection assay is able to rapidly detect lineage C betacoronaviruses in bats. It detected significantly more Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5 because MERS-CoV is more closely related to Ty-BatCoV-HKU4 than Pi-BatCoV-HKU5. This assay will facilitate rapid on-site mass screening of animal samples for ancestors of MERS-CoV and tracking transmission in the related bat species.

  13. Resolving Rapid Variation in Energy for Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    Haut, Terry Scot [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Ahrens, Cory Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Jonko, Alexandra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Till, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division; Lowrie, Robert Byron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Computer, Computational, and Statistical Sciences Division

    2016-08-23

    Resolving the rapid variation in energy in neutron and thermal radiation transport is needed for the predictive simulation capability in high-energy density physics applications. Energy variation is difficult to resolve due to rapid variations in cross sections and opacities caused by quantized energy levels in the nuclei and electron clouds. In recent work, we have developed a new technique to simultaneously capture slow and rapid variations in the opacities and the solution using homogenization theory, which is similar to multiband (MB) and to the finite-element with discontiguous support (FEDS) method, but does not require closure information. We demonstrated the accuracy and efficiency of the method for a variety of problems. We are researching how to extend the method to problems with multiple materials and the same material but with different temperatures and densities. In this highlight, we briefly describe homogenization theory and some results.

  14. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  15. Rapid and label-free detection of protein a by aptamer-tethered porous silicon nanostructures.

    Science.gov (United States)

    Urmann, Katharina; Reich, Peggy; Walter, Johanna-Gabriela; Beckmann, Dieter; Segal, Ester; Scheper, Thomas

    2017-09-10

    Protein A, which is secreted by and displayed on the cell membrane of Staphylococcus aureus is an important biomarker for S. aureus. Thus, its rapid and specific detection may facilitate the pathogen identification and initiation of proper treatment. Herein, we present a simple, label-free and rapid optical biosensor enabling specific detection of protein A. Protein A-binding aptamer serves as the capture probe and is immobilized onto a nanostructured porous silicon thin film, which serves as the optical transducer element. We demonstrate high sensitivity of the biosensor with a linear detection range between 8 and 23μM. The apparent dissociation constant was determined as 13.98μM and the LoD is 3.17μM. Harnessing the affinity between protein A and antibodies, a sandwich assay format was developed to amplify the optical signal associated with protein A capture by the aptamer. Using this approach, we increase the sensitivity of the biosensor, resulting in a three times lower LoD. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. OmpU as a biomarker for rapid discrimination between toxigenic and epidemic Vibrio cholerae O1/O139 and non-epidemic Vibrio cholerae in a modified MALDI-TOF MS assay

    NARCIS (Netherlands)

    Paauw, A.; Trip, H.; Niemcewicz, M.; Sellek, R.; Heng, J.M.E.; Mars-Groenendijk, R.H.; Jong, A.L. de; Majchrzykiewicz-Koehorst, J.A.; Olsen, J.S.; Tsivtsivadze, E.

    2014-01-01

    Background Cholera is an acute diarrheal disease caused by Vibrio cholerae. Outbreaks are caused by a genetically homogenous group of strains from serogroup O1 or O139 that are able to produce the cholera toxin. Rapid detection and identification of these epidemic strains is essential for an

  17. Rapid capacitive detection of femtomolar levels of bisphenol A using an aptamer-modified disposable microelectrode array

    International Nuclear Information System (INIS)

    Cui, Haochen; Wu, Jayne; Eda, Shigetoshi; Chen, Jiangang; Chen, Wei; Zheng, Lei

    2015-01-01

    A label-free and single-step method is reported for rapid and highly sensitive detection of bisphenol A (BPA) in aqueous samples. It utilizes an aptamer acting as a probe molecule immobilized on a commercially available array of interdigitated aluminum microelectrodes. BPA was quantified by measuring the interfacial capacitance change rate caused by the specific binding between bisphenol A and the immobilized aptamer. The AC signal also induces an AC electrokinetic effect to generate microfluidic motion for enhanced binding. The capacitive aptasensor achieves a limit of detection as low as 10 fM(2.8 fg ⋅ mL −1 ) with a 20 s response time. The method is inexpensive, highly sensitive, rapid and therefore provides a promising technology for on-site detection of BPA in food and water samples. (author)

  18. Rapid detection of TiO2 (E171) in table sugar using Raman spectroscopy.

    Science.gov (United States)

    Tan, Chen; Zhao, Bin; Zhang, Zhiyun; He, Lili

    2017-02-01

    The potential toxic effects of titanium dioxide (TiO 2 ) to humans remain debatable despite its broad application as a food additive. Thus, confirmation of the existence of TiO 2 particles in food matrices and subsequently quantifying them are becoming increasingly critical. This study developed a facile, rapid (E171) from food products (e.g., table sugar) by Raman spectroscopy. To detect TiO 2 particles from sugar solution, sequential centrifugation and washing procedures were effectively applied to separate and recover 97% of TiO 2 particles from the sugar solution. The peak intensity of TiO 2 sensitively responded to the concentration of TiO 2 with a limit of detection (LOD) of 0.073 mg kg -1 . In the case of sugar granules, a mapping technique was applied to directly estimate the level of TiO 2 , which can be potentially used for rapid online monitoring. The plot of averaged intensity to TiO 2 concentration in the sugar granules exhibited a good linear relationship in the wide range of 5-2000 mg kg -1 , with an LOD of 8.46 mg kg -1 . Additionally, we applied Raman spectroscopy to prove the presence of TiO 2 in sugar-coated doughnuts. This study begins to fill in the analytical gaps that exist regarding the rapid detection and quantification of TiO 2 in food, which facilitate the risk assessment of TiO 2 through food exposure.

  19. Rapid eye movement sleep behavior disorder as an outlier detection problem

    DEFF Research Database (Denmark)

    Kempfner, Jacob; Sørensen, Gertrud Laura; Nikolic, M.

    2014-01-01

    OBJECTIVE: Idiopathic rapid eye movement (REM) sleep behavior disorder is a strong early marker of Parkinson's disease and is characterized by REM sleep without atonia and/or dream enactment. Because these measures are subject to individual interpretation, there is consequently need...... for quantitative methods to establish objective criteria. This study proposes a semiautomatic algorithm for the early detection of Parkinson's disease. This is achieved by distinguishing between normal REM sleep and REM sleep without atonia by considering muscle activity as an outlier detection problem. METHODS......: Sixteen healthy control subjects, 16 subjects with idiopathic REM sleep behavior disorder, and 16 subjects with periodic limb movement disorder were enrolled. Different combinations of five surface electromyographic channels, including the EOG, were tested. A muscle activity score was automatically...

  20. Rapid detection of pandemic influenza in the presence of seasonal influenza

    Directory of Open Access Journals (Sweden)

    Robertson Chris

    2010-11-01

    Full Text Available Abstract Background Key to the control of pandemic influenza are surveillance systems that raise alarms rapidly and sensitively. In addition, they must minimise false alarms during a normal influenza season. We develop a method that uses historical syndromic influenza data from the existing surveillance system 'SERVIS' (Scottish Enhanced Respiratory Virus Infection Surveillance for influenza-like illness (ILI in Scotland. Methods We develop an algorithm based on the weekly case ratio (WCR of reported ILI cases to generate an alarm for pandemic influenza. From the seasonal influenza data from 13 Scottish health boards, we estimate the joint probability distribution of the country-level WCR and the number of health boards showing synchronous increases in reported influenza cases over the previous week. Pandemic cases are sampled with various case reporting rates from simulated pandemic influenza infections and overlaid with seasonal SERVIS data from 2001 to 2007. Using this combined time series we test our method for speed of detection, sensitivity and specificity. Also, the 2008-09 SERVIS ILI cases are used for testing detection performances of the three methods with a real pandemic data. Results We compare our method, based on our simulation study, to the moving-average Cumulative Sums (Mov-Avg Cusum and ILI rate threshold methods and find it to be more sensitive and rapid. For 1% case reporting and detection specificity of 95%, our method is 100% sensitive and has median detection time (MDT of 4 weeks while the Mov-Avg Cusum and ILI rate threshold methods are, respectively, 97% and 100% sensitive with MDT of 5 weeks. At 99% specificity, our method remains 100% sensitive with MDT of 5 weeks. Although the threshold method maintains its sensitivity of 100% with MDT of 5 weeks, sensitivity of Mov-Avg Cusum declines to 92% with increased MDT of 6 weeks. For a two-fold decrease in the case reporting rate (0.5% and 99% specificity, the WCR and

  1. Mini-column assay for rapid detection of malachite green in fish.

    Science.gov (United States)

    Shalaby, Ali R; Emam, Wafaa H; Anwar, Mervat M

    2017-07-01

    A simple, rapid and economical mini-column method for detecting malachite green (MG) residue in fish was developed. The method used a column with 2mm ID that was tightly packed with silica gel followed by alumina. Detection of MG was performed by viewing the developed mini-column at visible light by naked eye; where MG was seen as compact green band at the confluence of the silica gel layer with alumina layer. The limit of detection of the assay was 2ng which conform the minimum required performance limit (MRPL). Evaluation utility of the method indicated that all blank and spiked samples at levels below MRPL were assessed as accepted. The intensity of the green band increased whenever MG level in the extract increased; indicated that suggested mini-column technique could be used for semi-quantitative determination of MG in fish samples. The method can be used to select the questionable samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Facile preparation of a DNA sensor for rapid herpes virus detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: tampd-hast@mail.hut.edu.vn [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Tuan, Mai Anh, E-mail: tuanma-itims@mail.hut.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam); Huy, Tran Quang [National Institute of Hygiene and Epidemiology (NIHE), 01 Yersin, Hai Ba Trung District, Hanoi (Viet Nam); Le, Anh-Tuan [Hanoi Advanced School of Science and Technology, Hanoi University of Technology (Viet Nam); Hieu, Nguyen Van, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Technology (Viet Nam)

    2010-10-12

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  3. Facile preparation of a DNA sensor for rapid herpes virus detection

    International Nuclear Information System (INIS)

    Tam, Phuong Dinh; Tuan, Mai Anh; Huy, Tran Quang; Le, Anh-Tuan; Hieu, Nguyen Van

    2010-01-01

    In this paper, a simple DNA sensor platform was developed for rapid herpes virus detection in real samples. The deoxyribonucleic acid (DNA) sequences of the herpes simplex virus (DNA probe) were directly immobilized on the surface of interdigitated electrodes by electrochemical polymerization along with pyrrole monomers. The potential was scanned from - 0.7 to + 0.6 V, and the scanning rate was 100 mV/s. Fourier transform infrared spectroscopy was employed to verify specific DNA sequence binding and the conducting polymer. The morphology of the conducting polymer doped with DNA strands was characterized using a field emission scanning electron microscope. As-obtained DNA sensor was used to detect the herpes virus DNA in the real samples. The results show that the current DNA sensors detected the lowest DNA concentration of 2 nM. This sensitivity appears to be better than that of the DNA sensors prepared by immobilization of the DNA probe on the 3-aminopropyl-triethoxy-silance (APTS) membrane.

  4. 7 CFR 58.920 - Homogenization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.920 Section 58.920 Agriculture... Procedures § 58.920 Homogenization. Where applicable concentrated products shall be homogenized for the... homogenization and the pressure at which homogenization is accomplished will be that which accomplishes the most...

  5. Autoregressive Processes in Homogenization of GNSS Tropospheric Data

    Science.gov (United States)

    Klos, A.; Bogusz, J.; Teferle, F. N.; Bock, O.; Pottiaux, E.; Van Malderen, R.

    2016-12-01

    Offsets due to changes in hardware equipment or any other artificial event are all a subject of a task of homogenization of tropospheric data estimated within a processing of Global Navigation Satellite System (GNSS) observables. This task is aimed at identifying exact epochs of offsets and estimate their magnitudes since they may artificially under- or over-estimate trend and its uncertainty delivered from tropospheric data and used in climate studies. In this research, we analysed a common data set of differences of Integrated Water Vapour (IWV) from GPS and ERA-Interim (1995-2010) provided for a homogenization group working within ES1206 COST Action GNSS4SWEC. We analysed daily IWV records of GPS and ERA-Interim in terms of trend, seasonal terms and noise model with Maximum Likelihood Estimation in Hector software. We found that this data has a character of autoregressive process (AR). Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different noise types: white as well as combination of white and autoregressive and also added few strictly defined offsets. This synthetic data set of exactly the same character as IWV from GPS and ERA-Interim was then subjected to a task of manual and automatic/statistical homogenization. We made blind tests and detected possible epochs of offsets manually. We found that simulated offsets were easily detected in series with white noise, no influence of seasonal signal was noticed. The autoregressive series were much more problematic when offsets had to be determined. We found few epochs, for which no offset was simulated. This was mainly due to strong autocorrelation of data, which brings an artificial trend within. Due to regime-like behaviour of AR it is difficult for statistical methods to properly detect epochs of offsets, which was previously reported by climatologists.

  6. Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations

    Directory of Open Access Journals (Sweden)

    Stürenburg, Enno

    2009-07-01

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA isolates is a serious public health problem whose ever-increasing rate is commensurate with the pressure it is exerting on the healthcare system. At present, more than 20% of clinical S. aureus isolates in German hospitals are methicillin resistant. Strategies from low-prevalence countries show that this development is not necessarily inevitable. In the Scandinavian countries and the Netherlands, thanks to a rigorous prevention programme, MRSA prevalence has been kept at an acceptably low level (<1–3%. Central to these ‘search and destroy’ control strategies is an admission screening using several MRSA swabs taken from mucocutaneous colonisation sites of high-risk patients (‘MRSA surveillance’. It has also been reported that the speed with which MRSA carriage is detected has an important role to play, as it is a key component of any effective strategy to prevent the pathogen from spreading. Since MRSA culturing involves a 2–3 day delay before the final results are available, rapid detection techniques (commonly referred to as ‘MRSA rapid tests’ using PCR methods and, most recently, rapid culturing methods have been developed. The implementation of rapid tests reduces the time of detection of MRSA carriers from 48–72 to 2–5 h. Clinical evaluation data have shown that MRSA can thus be detected with very high sensitivity. Specificity however is sometimes impaired due to false-positive PCR signals occurring in mixed flora specimens. In order to rule out any false-positive PCR results, a culture screen must always be carried out simultaneously.The data provide preliminary evidence that a PCR assay can reduce nosocomial MRSA transmission in high-risk patients or high-risk areas, whereas an approach that screens all patients admitted to the hospital is probably not effective. Information concerning the cost-effectiveness of rapid MRSA tests is still sparse and thus the issue remains

  7. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay.

    Science.gov (United States)

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg(2+), 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane.

  9. Detection of bar transgenic sugarcane with a rapid and visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Dinggang eZhou

    2016-03-01

    Full Text Available Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg2+, 6:1 ratio of inner vs outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was ten-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100% by LAMP and 97/100 cases (97% by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable and cost-effective for detection of the bar specific transgenic sugarcane.

  10. Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides) in Europe as a Result of Rapid Population Expansion

    Science.gov (United States)

    Drygala, Frank; Korablev, Nikolay; Ansorge, Hermann; Fickel, Joerns; Isomursu, Marja; Elmeros, Morten; Kowalczyk, Rafał; Baltrunaite, Laima; Balciauskas, Linas; Saarma, Urmas; Schulze, Christoph; Borkenhagen, Peter; Frantz, Alain C.

    2016-01-01

    The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species’ dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large ‘central’ population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations. PMID:27064784

  11. A rapid qualitative assay for detection of Clostridium perfringens in canned food products.

    Science.gov (United States)

    Dave, Gayatri Ashwinkumar

    2017-01-01

    Clostridium perfringens (MTCC 1349) is a Gram-positive, anaerobic, endospore forming, and rod-shaped bacterium. This bacterium produces a variety of toxins under strict anaerobic environment. C. perfringens can grow at temperatures ranging between 20°C and 50°C. It is the major causetive agent for gas gangrene, cellulitis, septicemia, necrotic enteritis and food poisoning, which are common toxin induced conditions noted in human and animals. C. perfringens can produce produce four major types of toxins that are used for the classification of strains, classified under type A-E. Across the globe many countries, including the United States, are affected by C. perfringens food poisonings where it is ranked as one of the most common causes of food borne infections. To date, no direct one step assay for the detection of C. perfringens has been developed and only few methods are known for accurate detection of C. perfringens. Long detection and incubation time is the major consideration of these reporter assays. The prensent study proposes a rapid and reliable colorimetric assay for the detection of C. perfringens. In principale, this assay detects the para nitrophenyl (yellow colour end product) liberated due to the hydrolysis of paranitrophenyl phosphetidyl choline (PNPC) through phospholipase C (lecithinase). Constitutive secretion of phospholipase C is a charactristic feature of C. perfringens. This assay detects the presence of the extracellular lecithinse through the PNPC impragnated impregnated probe. The probe is impregnated with peranitrophenyl phosphotidyl choline ester, which is colourless substrate used by lecithinase. The designed assay is specific towards PNPC and detectes very small quantites of lecithinase under conditions used. The reaction is substrate specific, no cross reaction was observed upon incubation with other substrates. In addition, this assay gave negative results with other clostridium strains, no cross reactions were observed with other

  12. A simple, rapid, cost-effective and sensitive method for detection of Salmonella in environmental and pecan samples.

    Science.gov (United States)

    Dobhal, S; Zhang, G; Rohla, C; Smith, M W; Ma, L M

    2014-10-01

    PCR is widely used in the routine detection of foodborne human pathogens; however, challenges remain in overcoming PCR inhibitors present in some sample matrices. The objective of this study was to develop a simple, sensitive, cost-effective and rapid method for processing large numbers of environmental and pecan samples for Salmonella detection. This study was also aimed at validation of a new protocol for the detection of Salmonella from in-shell pecans. Different DNA template preparation methods, including direct boiling, prespin, multiple washing and commercial DNA extraction kits, were evaluated with pure cultures of Salmonella Typhimurium and with enriched soil, cattle feces and in-shell pecan each spiked individually with Salmonella Typhimurium. PCR detection of Salmonella was conducted using invA and 16S rRNA gene (internal amplification control) specific primers. The effect of amplification facilitators, including bovine serum albumin (BSA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin on PCR sensitivity, was also evaluated. Conducting a prespin of sample matrices in combination with the addition of 0·4% (w/v) BSA and 1% (w/v) PVP in PCR mix was the simplest, most rapid, cost-effective and sensitive method for PCR detection of Salmonella, with up to 40 CFU Salmonella per reaction detectable in the presence of over 10(9 ) CFU ml(-1) of background micro-organisms from enriched feces soil or pecan samples. The developed method is rapid, cost-effective and sensitive for detection of Salmonella from different matrices. This study provides a method with broad applicability for PCR detection of Salmonella in complex sample matrices. This method has a potential for its application in different research arenas and diagnostic laboratories. © 2014 The Society for Applied Microbiology.

  13. HOMPRA Europe - A gridded precipitation data set from European homogenized time series

    Science.gov (United States)

    Rustemeier, Elke; Kapala, Alice; Meyer-Christoffer, Anja; Finger, Peter; Schneider, Udo; Venema, Victor; Ziese, Markus; Simmer, Clemens; Becker, Andreas

    2017-04-01

    Reliable monitoring data are essential for robust analyses of climate variability and, in particular, long-term trends. In this regard, a gridded, homogenized data set of monthly precipitation totals - HOMPRA Europe (HOMogenized PRecipitation Analysis of European in-situ data)- is presented. The data base consists of 5373 homogenized monthly time series, a carefully selected subset held by the Global Precipitation Climatology Centre (GPCC). The chosen series cover the period 1951-2005 and contain less than 10% missing values. Due to the large number of data, an automatic algorithm had to be developed for the homogenization of these precipitation series. In principal, the algorithm is based on three steps: * Selection of overlapping station networks in the same precipitation regime, based on rank correlation and Ward's method of minimal variance. Since the underlying time series should be as homogeneous as possible, the station selection is carried out by deterministic first derivation in order to reduce artificial influences. * The natural variability and trends were temporally removed by means of highly correlated neighboring time series to detect artificial break-points in the annual totals. This ensures that only artificial changes can be detected. The method is based on the algorithm of Caussinus and Mestre (2004). * In the last step, the detected breaks are corrected monthly by means of a multiple linear regression (Mestre, 2003). Due to the automation of the homogenization, the validation of the algorithm is essential. Therefore, the method was tested on artificial data sets. Additionally the sensitivity of the method was tested by varying the neighborhood series. If available in digitized form, the station history was also used to search for systematic errors in the jump detection. Finally, the actual HOMPRA Europe product is produced by interpolation of the homogenized series onto a 1° grid using one of the interpolation schems operationally at GPCC

  14. Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit

    Science.gov (United States)

    Yang, Xue; Hameed, Uzma; Zhang, Ai-Fang; Zang, Hao-Yu; Gu, Chun-Yan; Chen, Yu; Xu, Yi-Liu

    2017-01-01

    Pilidiella granati, a causal agent of twig blight and crown rot of pomegranate, is an emerging threat that may cause severe risk to the pomegranate industry in the future. Development of a rapid assay for the timely and accurate detection of P. granati will be helpful in the active surveillance and management of the disease caused by this pathogen. In this study, a nested PCR method was established for the detection of P. granati. Comparative analysis of genetic diversity within 5.8S rDNA internal transcribed spacer (ITS) sequences of P. granati and 21 other selected fungal species was performed to design species-specific primers (S1 and S2). This primer pair successfully amplified a 450 bp product exclusively from the genomic DNA of P. granati. The developed method can detect 10 pg genomic DNA of the pathogen in about 6 h. This technique was successfully applied to detect the natural infection of P. granati in the pomegranate fruit. The designed protocol is rapid and precise with a high degree of sensitivity. PMID:28106107

  15. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  16. An Improved Surface Simplification Method for Facial Expression Animation Based on Homogeneous Coordinate Transformation Matrix and Maximum Shape Operator

    Directory of Open Access Journals (Sweden)

    Juin-Ling Tseng

    2016-01-01

    Full Text Available Facial animation is one of the most popular 3D animation topics researched in recent years. However, when using facial animation, a 3D facial animation model has to be stored. This 3D facial animation model requires many triangles to accurately describe and demonstrate facial expression animation because the face often presents a number of different expressions. Consequently, the costs associated with facial animation have increased rapidly. In an effort to reduce storage costs, researchers have sought to simplify 3D animation models using techniques such as Deformation Sensitive Decimation and Feature Edge Quadric. The studies conducted have examined the problems in the homogeneity of the local coordinate system between different expression models and in the retainment of simplified model characteristics. This paper proposes a method that applies Homogeneous Coordinate Transformation Matrix to solve the problem of homogeneity of the local coordinate system and Maximum Shape Operator to detect shape changes in facial animation so as to properly preserve the features of facial expressions. Further, root mean square error and perceived quality error are used to compare the errors generated by different simplification methods in experiments. Experimental results show that, compared with Deformation Sensitive Decimation and Feature Edge Quadric, our method can not only reduce the errors caused by simplification of facial animation, but also retain more facial features.

  17. Loop-Mediated Isothermal Amplification Assay Targeting the MOMP Gene for Rapid Detection of Chlamydia psittaci Abortus Strain

    Directory of Open Access Journals (Sweden)

    Guo-Zhen Lin, Fu-Ying Zheng, Ji-Zhang Zhou, Guang-Hua Wang, Xiao-An Cao, Xiao-Wei Gong and Chang-Qing Qiu*

    2012-05-01

    Full Text Available For rapid detection of the Chlamydia psittaci abortus strain, a loop-mediated isothermal amplification (LAMP assay was developed and evaluated in this study. The primers for the LAMP assay were designed on the basis of the main outer membrane protein (MOMP gene sequence of C. psittaci. Analysis showed that the assay could detect the abortus strain of C. psittaci with adequate specificity. The sensitivity of the test was the same as that of the nested-conventional PCR and higher than that of chick embryo isolation. Testing of 153 samples indicated that the LAMP assay could detect the genome of the C. psittaci abortus strain effectively in clinical samples. This assay is a useful tool for rapid diagnosis of C. psittaci infection in sheep, swine and cattle.

  18. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC.

    Science.gov (United States)

    Muniroh, M S; Sariah, M; Zainal Abidin, M A; Lima, N; Paterson, R R M

    2014-05-01

    Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method was capable of being optimised. This current study was designed to develop a simpler, more rapid and efficient ergosterol method with utility in the field that involved the use of microwave extraction. The optimised procedure involved extracting a small amount of Ganoderma, or Ganoderma-infected oil palm suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30s, resulting in simultaneous extraction and saponification. Ergosterol was detected by thin layer chromatography (TLC) and quantified using high performance liquid chromatography with diode array detection. The TLC method was novel and provided a simple, inexpensive method with utility in the field. The new method was particularly effective at extracting high yields of ergosterol from infected oil palm and enables rapid analysis of field samples on site, allowing infected oil palms to be treated or culled very rapidly. Some limitations of the method are discussed herein. The procedures lend themselves to controlling the disease more effectively and allowing more effective use of land currently employed to grow oil palms, thereby reducing pressure to develop new plantations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Rapid detection of SMARCB1 sequence variation using high resolution melting

    Directory of Open Access Journals (Sweden)

    Ashley David M

    2009-12-01

    Full Text Available Abstract Background Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM, for detecting sequence variations in SMARCB1. Methods Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. Results The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4% showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA. A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. Conclusions This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to

  20. Rapid detection of SMARCB1 sequence variation using high resolution melting

    International Nuclear Information System (INIS)

    Dagar, Vinod; Chow, Chung-Wo; Ashley, David M; Algar, Elizabeth M

    2009-01-01

    Rhabdoid tumors are rare cancers of early childhood arising in the kidney, central nervous system and other organs. The majority are caused by somatic inactivating mutations or deletions affecting the tumor suppressor locus SMARCB1 [OMIM 601607]. Germ-line SMARCB1 inactivation has been reported in association with rhabdoid tumor, epitheloid sarcoma and familial schwannomatosis, underscoring the importance of accurate mutation screening to ascertain recurrence and transmission risks. We describe a rapid and sensitive diagnostic screening method, using high resolution melting (HRM), for detecting sequence variations in SMARCB1. Amplicons, encompassing the nine coding exons of SMARCB1, flanking splice site sequences and the 5' and 3' UTR, were screened by both HRM and direct DNA sequencing to establish the reliability of HRM as a primary mutation screening tool. Reaction conditions were optimized with commercially available HRM mixes. The false negative rate for detecting sequence variants by HRM in our sample series was zero. Nine amplicons out of a total of 140 (6.4%) showed variant melt profiles that were subsequently shown to be false positive. Overall nine distinct pathogenic SMARCB1 mutations were identified in a total of 19 possible rhabdoid tumors. Two tumors had two distinct mutations and two harbored SMARCB1 deletion. Other mutations were nonsense or frame-shifts. The detection sensitivity of the HRM screening method was influenced by both sequence context and specific nucleotide change and varied from 1: 4 to 1:1000 (variant to wild-type DNA). A novel method involving digital HRM, followed by re-sequencing, was used to confirm mutations in tumor specimens containing associated normal tissue. This is the first report describing SMARCB1 mutation screening using HRM. HRM is a rapid, sensitive and inexpensive screening technology that is likely to be widely adopted in diagnostic laboratories to facilitate whole gene mutation screening

  1. Homogenization of Mammalian Cells.

    Science.gov (United States)

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-02

    Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells. © 2015 Cold Spring Harbor Laboratory Press.

  2. Rapid and early detection of salmonella serotypes with hyperspectral microscope and multivariate data analysis

    Science.gov (United States)

    This study was designed to evaluate hyperspectral microscope images for early and rapid detection of Salmonella serotypes: S. Enteritidis, S. Heidelberg, S. Infantis, S. Kentucky, and S. Typhimurium at incubation times of 6, 8, 10, 12, and 24 hours. Images were collected by an acousto-optical tunab...

  3. Rapid surface enhanced Raman scattering detection method for chloramphenicol residues

    Science.gov (United States)

    Ji, Wei; Yao, Weirong

    2015-06-01

    Chloramphenicol (CAP) is a widely used amide alcohol antibiotics, which has been banned from using in food producing animals in many countries. In this study, surface enhanced Raman scattering (SERS) coupled with gold colloidal nanoparticles was used for the rapid analysis of CAP. Density functional theory (DFT) calculations were conducted with Gaussian 03 at the B3LYP level using the 3-21G(d) and 6-31G(d) basis sets to analyze the assignment of vibrations. Affirmatively, the theoretical Raman spectrum of CAP was in complete agreement with the experimental spectrum. They both exhibited three strong peaks characteristic of CAP at 1104 cm-1, 1344 cm-1, 1596 cm-1, which were used for rapid qualitative analysis of CAP residues in food samples. The use of SERS as a method for the measurements of CAP was explored by comparing use of different solvents, gold colloidal nanoparticles concentration and absorption time. The method of the detection limit was determined as 0.1 μg/mL using optimum conditions. The Raman peak at 1344 cm-1 was used as the index for quantitative analysis of CAP in food samples, with a linear correlation of R2 = 0.9802. Quantitative analysis of CAP residues in foods revealed that the SERS technique with gold colloidal nanoparticles was sensitive and of a good stability and linear correlation, and suited for rapid analysis of CAP residue in a variety of food samples.

  4. Central Andean temperature and precipitation measurements and its homogenization

    Science.gov (United States)

    Hunziker, Stefan; Gubler, Stefanie

    2015-04-01

    Observation of climatological parameters and the homogenization of these time series have a well-established history in western countries. This is not the case for many other countries, such as Bolivia and Peru. In Bolivia and Peru, the organization of measurements, quality of measurement equipment, equipment maintenance, training of staff and data management are fundamentally different compared to the western standard. The data needs special attention, because many problems are not detected by standard quality control procedures. Information about the weather stations, best achieved by station visits, is very beneficial. If the cause of the problem is known, some of the data may be corrected. In this study, cases of typical problems and measurement errors will be demonstrated. Much of research on homogenization techniques (up to subdaily scale) has been completed in recent years. However, data sets of the quality of western station networks have been used, and little is known about the performance of homogenization methods on data sets from countries such as Bolivia and Peru. HOMER (HOMogenizaton softwarE in R) is one of the most recent and widely used homogenization softwares. Its performance is tested on Peruvian-like data that has been sourced from Swiss stations (similar station density and metadata availability). The Swiss station network is a suitable test bed, because climate gradients are strong and the terrain is complex, as is also found in the Central Andes. On the other hand, the Swiss station network is dense, and long time series and extensive metadata are available. By subsampling the station network and omitting the metadata, the conditions of a Peruvian test region are mimicked. Results are compared to a dataset homogenized by THOMAS (Tool for Homogenization of Monthly Data Series), the homogenization tool used by MeteoSwiss.

  5. Rapid-viability PCR method for detection of live, virulent Bacillus anthracis in environmental samples.

    Science.gov (United States)

    Létant, Sonia E; Murphy, Gloria A; Alfaro, Teneile M; Avila, Julie R; Kane, Staci R; Raber, Ellen; Bunt, Thomas M; Shah, Sanjiv R

    2011-09-01

    In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples.

  6. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Xiefeng Yao

    2016-08-01

    Full Text Available Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB in Cucurbitaceae crops (e.g. cantaloupe, muskmelon, cucumber, and watermelon. GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462 common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR. The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL−1 of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics.

  7. Improvement of the field homogeneity with a permanent magnet assembly for MRI

    International Nuclear Information System (INIS)

    Sakurai, H.; Aoki, M.; Miyamoto, T.

    1990-01-01

    In the last few years, MRI (Magnetic Resonance imaging) has become one of the most excellent and important radiological and diagnostic methods. For this application, a strong and uniform magnetic field is required in the area where the patient is examined. This requirement for a high order of homogeneity is increasing with the rapid progress of tomographic technology. On the other hand, the cost reduction for the magnet is also strongly required. As reported in the last paper, we developed and mass-produced a permanent type magnet using high energy Nd-Fe-B material. This paper presents a newly developed 15 plane measuring method instead of a 7 plane method to evaluate the homogeneous field precisely. By using this analytical method and linear programing method, a new-shaped pole piece has been developed. In consequence, homogeneity was improved twice as much and the magnet weight was reduced 10 % as compared with the formerly developed pole piece. (author)

  8. Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents

    International Nuclear Information System (INIS)

    Adams, K.L.; Steele, P.T.; Bogan, M.J.; Sadler, N.M.; Martin, S.; Martin, A.N.; Frank, M.

    2008-01-01

    Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening

  9. Rapid Reagentless Detection of M. tuberculosis H37Ra in Respiratory Effluents

    Energy Technology Data Exchange (ETDEWEB)

    Adams, K L; Steele, P T; Bogan, M J; Sadler, N M; Martin, S; Martin, A N; Frank, M

    2008-01-29

    Two similar mycobacteria, Mycobacteria tuberculosis H37Ra and Mycobacteria smegmatis are rapidly detected and identified within samples containing a complex background of respiratory effluents using Single Particle Aerosol Mass Spectrometry (SPAMS). M. tuberculosis H37Ra (TBa), an avirulent strain, is used as a surrogate for virulent tuberculosis (TBv); M. smegmatis (MSm) is utilized as a near neighbor confounder for TBa. Bovine lung surfactant and human exhaled breath condensate are used as first-order surrogates for infected human lung expirations from patients with pulmonary tuberculosis. This simulated background sputum is mixed with TBa or MSm and nebulized to produce conglomerate aerosol particles, single particles that contain a bacterium embedded within a background respiratory matrix. Mass spectra of single conglomerate particles exhibit ions associated with both respiratory effluents and mycobacteria. Spectral features distinguishing TBa from MSm in pure and conglomerate particles are shown. SPAMS pattern matching alarm algorithms are able to distinguish TBa containing particles from background matrix and MSm for >50% of the test particles, which is sufficient to enable a high probability of detection and a low false alarm rate if an adequate number of such particles are present. These results indicate the potential usefulness of SPAMS for rapid, reagentless tuberculosis screening.

  10. A magnetic particles-based chemiluminescence enzyme immunoassay for rapid detection of ovalbumin.

    Science.gov (United States)

    Feng, Xiao-Li; Ren, Hong-Lin; Li, Yan-Song; Hu, Pan; Zhou, Yu; Liu, Zeng-Shan; Yan, Dong-Ming; Hui, Qi; Liu, Dong; Lin, Chao; Liu, Nan-Nan; Liu, Yan-Yan; Lu, Shi-Ying

    2014-08-15

    Egg allergy is an important public health and safety concern, so quantification and administration of food or vaccines containing ovalbumin (OVA) are urgently needed. This study aimed to establish a rapid and sensitive magnetic particles-chemiluminescence enzyme immunoassay (MPs-CLEIA) for the determination of OVA. The proposed method was developed on the basis of a double antibodies sandwich immunoreaction and luminol-H2O2 chemiluminescence system. The MPs served as both the solid phase and separator, the anti-OVA MPs-coated polyclonal antibodies (pAbs) were used as capturing antibody, and the horseradish peroxidase (HRP)-labeled monoclonal antibody (mAb) was taken as detecting antibody. The parameters of the method were evaluated and optimized. The established MPs-CLEIA method had a linear range from 0.31 to 100ng/ml with a detection limit of 0.24ng/ml. The assays showed low reactivities and less than 5% of intraassay and interassay coefficients of variation (CVs), and the average recoveries were between 92 and 97%. Furthermore, the developed method was applied in real samples analysis successfully, and the correlation coefficient with the commercially available OVA kit was 0.9976. Moreover, it was more rapid and sensitive compared with the other methods for testing OVA. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Automatic RST-based system for a rapid detection of man-made disasters

    Science.gov (United States)

    Tramutoli, Valerio; Corrado, Rosita; Filizzola, Carolina; Livia Grimaldi, Caterina Sara; Mazzeo, Giuseppe; Marchese, Francesco; Pergola, Nicola

    2010-05-01

    Man-made disasters may cause injuries to citizens and damages to critical infrastructures. When it is not possible to prevent or foresee such disasters it is hoped at least to rapidly detect the accident in order to intervene as soon as possible to minimize damages. In this context, the combination of a Robust Satellite Technique (RST), able to identify for sure actual (i.e. no false alarm) accidents, and satellite sensors with high temporal resolution seems to assure both a reliable and a timely detection of abrupt Thermal Infrared (TIR) transients related to dangerous explosions. A processing chain, based on the RST approach, has been developed in the framework of the GMOSS and G-MOSAIC projects by DIFA-UNIBAS team, suitable for automatically identify on MSG-SEVIRI images harmful events. Maps of thermal anomalies are generated every 15 minutes (i.e. SEVIRI temporal repetition rate) over a selected area together with kml files (containing information on latitude and longitude of "thermally" anomalous SEVIRI pixel centre, time of image acquisition, relative intensity of anomalies, etc.) for a rapid visualization of the accident position even on Google Earth. Results achieved in the cases of gas pipelines recently exploded or attacked in Russia and in Iraq will be presented in this work.

  12. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Kawahara Ryuji

    2008-09-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP assay for the sensitive and rapid detection of Vibrio parahaemolyticus. Results The assay provided markedly more sensitive and rapid detection of V. parahaemolyticus strains than conventional biochemical and PCR assays. The assay correctly identified 143 V. parahaemolyticus strains, but did not detect 33 non-parahaemolyticus Vibrio and 56 non-Vibrio strains. Sensitivity of the LAMP assay for direct detection of V. parahaemolyticus in pure cultures and in spiked shrimp samples was 5.3 × 102 CFU per ml/g (2.0 CFU per reaction. The sensitivity of the LAMP assay was 10-fold more sensitive than that of the conventional PCR assay. The LAMP assay was markedly faster, requiring for amplification 13–22 min in a single colony on TCBS agar from each of 143 V. parahaemolyticus strains and less than 35 min in spiked shrimp samples. The LAMP assay for detection of V. parahaemolyticus required less than 40 min in a single colony on thiosulfate citrate bile salt sucrose (TCBS agar and 60 min in spiked shrimp samples from the beginning of DNA extraction to final determination. Conclusion The LAMP assay is a sensitive, rapid and simple tool for the detection of V. parahaemolyticus and will facilitate the surveillance for control of contamination of V

  13. Homogenization of Portuguese long-term temperature data series: Lisbon, Coimbra and Porto

    Directory of Open Access Journals (Sweden)

    A. L. Morozova

    2012-12-01

    Full Text Available Three long-term temperature data series measured in Portugal were studied to detect and correct non-climatic homogeneity breaks and are now available for future studies of climate variability.

    Series of monthly minimum (Tmin and maximum (Tmax temperatures measured in the three Portuguese meteorological stations of Lisbon (from 1856 to 2008, Coimbra (from 1865 to 2005 and Porto (from 1888 to 2001 were studied to detect and correct non-climatic breaks. These series, together with monthly series of average temperature (Taver and temperature range (DTR derived from them, were tested in order to detect breaks, using firstly metadata, secondly a visual analysis, and thirdly four widely used homogeneity tests: von Neumann ratio test, Buishand test, standard normal homogeneity test, and Pettitt test. The homogeneity tests were used in absolute (using temperature series themselves and relative (using sea-surface temperature anomalies series obtained from HadISST2.0.0.0 close to the Portuguese coast or already corrected temperature series as reference series modes. We considered the Tmin, Tmax and DTR series as most informative for the detection of breaks due to the fact that Tmin and Tmax could respond differently to changes in position of a thermometer or other changes in the instrument's environment; Taver series have been used mainly as control.

    The homogeneity tests showed strong inhomogeneity of the original data series, which could have both internal climatic and non-climatic origins. Breaks that were identified by the last three mentioned homogeneity tests were compared with available metadata containing data such as instrument changes, changes in station location and environment, observation procedures, etc. Significant breaks (significance 95% or more that coincided with known dates of

  14. Functionality and homogeneity.

    NARCIS (Netherlands)

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass,

  15. Rapid detection of polyethylene glycol sonolysis upon functionalization of carbon nanomaterials.

    Science.gov (United States)

    Murali, Vasanth S; Wang, Ruhung; Mikoryak, Carole A; Pantano, Paul; Draper, Rockford

    2015-09-01

    Polyethylene glycol (PEG) and related polymers are often used in the functionalization of carbon nanomaterials in procedures that involve sonication. However, PEG is very sensitive to sonolytic degradation and PEG degradation products can be toxic to mammalian cells. Thus, it is imperative to assess potential PEG degradation to ensure that the final material does not contain undocumented contaminants that can introduce artifacts into experimental results. Described here is a simple and inexpensive polyacrylamide gel electrophoresis method to detect the sonolytic degradation of PEG. The method was used to monitor the integrity of PEG phospholipid constructs and branched chain PEGs after different sonication times. This approach not only helps detect degraded PEG, but should also facilitate rapid screening of sonication parameters to find optimal conditions that minimize PEG damage. © 2015 by the Society for Experimental Biology and Medicine.

  16. Homogeneous and label-free detection of microRNAs using bifunctional strand displacement amplification-mediated hyperbranched rolling circle amplification.

    Science.gov (United States)

    Zhang, Li-rong; Zhu, Guichi; Zhang, Chun-yang

    2014-07-01

    MicroRNAs (miRNAs) are an emerging class of biomarkers and therapeutic targets for various diseases including cancers. Here, we develop a homogeneous and label-free method for sensitive detection of let-7a miRNA based on bifunctional strand displacement amplification (SDA)-mediated hyperbranched rolling circle amplification (HRCA). The binding of target miRNA with the linear template initiates the bifunctional SDA reaction, generating two different kinds of triggers which can hybridize with the linear template to initiate new rounds of SDA reaction for the production of more and more triggers. In the meantime, the released two different kinds of triggers can function as the first and the second primers, respectively, to initiate the HRCA reaction whose products can be simply monitored by a standard fluorometer with SYBR Green I as the fluorescent indicator. The proposed method exhibits high sensitivity with a detection limit of as low as 1.8 × 10(-13) M and a large dynamic range of 5 orders of magnitude from 0.1 pM to 10 nM, and it can even discriminate the single-base difference among the miRNA family members. Moreover, this method can be used to analyze the total RNA samples from the human lung tissues and might be further applied for sensitive detection of various proteins, small molecules, and metal ions in combination with specific aptamers.

  17. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet

    OpenAIRE

    Sawada, Reiko; Sato, Wataru; Toichi, Motomi; Fushiki, Tohru

    2017-01-01

    Rapid detection of food is crucial for the survival of organisms. However, previous visual search studies have reported discrepant results regarding the detection speeds for food vs. non-food items; some experiments showed faster detection of food than non-food, whereas others reported null findings concerning any speed advantage for the detection of food vs. non-food. Moreover, although some previous studies showed that fat content can affect visual attention for food, the effect of fat cont...

  18. Comet assay for rapid detection of base damage in foods

    International Nuclear Information System (INIS)

    Al-Zubaidi, I. A.; Abdullah, T. S.; Qasim, S. R.

    2012-12-01

    Single cell gel electrophoresis (SCGE) or comet assay technique a sensitive, reliable and rapid method for DNA double and single strand break, alkali- labile site and delayed repair site detection in individual cells. In recent years, this method has been widely used for studies of DNA repair, genetic toxicology, and environmental biomontoring, however, this technique serves as an important tool for detection of DNA damage in living organism and is increasing being used in genetic testing of industrial chemicals, environmental agent's contaminations. This research paper helps to evaluate the oxidant agent's effects of exposure to organic pollutants by using comet assay techniques. This study used five samples of each food sample (Meat, Chicken, Rice, Fruits, Vegetables and Tea) to evaluate the genotoxic effects of exposure, to environmental agent's pollutants. The experimental data suggest that the DNA damage parameters ( Tail length, Tail width 1 ) were found higher value in exposed population when compared with the ratio of the length to width that cells exhibiting no migration having a ratio of 1. The percentage and distribution of cells in exposed population of cells also increases with the increase in values. This study demonstrates that, using sensitive techniques, it is possible to detect environmental agent's risks at an early stage. (Author)

  19. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  20. Whole-bacterium SELEX of DNA aptamers for rapid detection of E.coli O157:H7 using a QCM sensor.

    Science.gov (United States)

    Yu, Xiaofan; Chen, Fang; Wang, Ronghui; Li, Yanbin

    2018-01-20

    The rapid detection of foodborne pathogens is critical to ensure food safety. The objective of this study is to select aptamers specifically bound to Escherichia coli O157:H7 using the whole-bacterium SELEX (Systematic Evolution of Ligands by Exponential Enrichment) and apply the selected aptamer to a QCM (quartz crystal microbalance) sensor for rapid and sensitive detection of target bacteria. A total of 19 rounds of selection against live E. coli O157:H7 and 6 rounds of counter selection against a mixture of Staphylococcus aureus, Listeria monocytogenes, and Salmonella Typhimurium, were performed. The aptamer pool from the last round was cloned and sequenced. One sequence S1 that appeared 16 times was characterized and a dissociation constant (K d ) of 10.30nM was obtained. Subsequently, a QCM aptasensor was developed for the rapid detection of E. coli O157:H7. The limit of detection (LOD) and the detection time of the aptasensor was determined to be 1.46×10 3 CFU/ml and 50min, respectively. This study demonstrated that the ssDNA aptamer selected by the whole-bacterium SELEX possessed higher sensitivity than previous work and the potential use of the constructed QCM aptasensor in rapid screening of foodborne pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR.

    Directory of Open Access Journals (Sweden)

    Kirill V Sergueev

    Full Text Available BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3 CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.

  2. TaqMan MGB probe fluorescence real-time quantitative PCR for rapid detection of Chinese Sacbrood virus.

    Directory of Open Access Journals (Sweden)

    Ma Mingxiao

    Full Text Available Sacbrood virus (SBV is a picorna-like virus that affects honey bees (Apis mellifera and results in the death of the larvae. Several procedures are available to detect Chinese SBV (CSBV in clinical samples, but not to estimate the level of CSBV infection. The aim of this study was develop an assay for rapid detection and quantification of this virus. Primers and probes were designed that were specific for CSBV structural protein genes. A TaqMan minor groove binder (MGB probe-based, fluorescence real-time quantitative PCR was established. The specificity, sensitivity and stability of the assay were assessed; specificity was high and there were no cross-reactivity with healthy larvae or other bee viruses. The assay was applied to detect CSBV in 37 clinical samples and its efficiency was compared with clinical diagnosis, electron microscopy observation, and conventional RT-PCR. The TaqMan MGB-based probe fluorescence real-time quantitative PCR for CSBV was more sensitive than other methods tested. This assay was a reliable, fast, and sensitive method that was used successfully to detect CSBV in clinical samples. The technology can provide a useful tool for rapid detection of CSBV. This study has established a useful protocol for CSBV testing, epidemiological investigation, and development of animal models.

  3. Real-time PCR-based method for the rapid detection of extended RAS mutations using bridged nucleic acids in colorectal cancer.

    Science.gov (United States)

    Iida, Takao; Mizuno, Yukie; Kaizaki, Yasuharu

    2017-10-27

    Mutations in RAS and BRAF are predictors of the efficacy of anti-epidermal growth factor receptor (EGFR) therapy in patients with metastatic colorectal cancer (mCRC). Therefore, simple, rapid, cost-effective methods to detect these mutations in the clinical setting are greatly needed. In the present study, we evaluated BNA Real-time PCR Mutation Detection Kit Extended RAS (BNA Real-time PCR), a real-time PCR method that uses bridged nucleic acid clamping technology to rapidly detect mutations in RAS exons 2-4 and BRAF exon 15. Genomic DNA was extracted from 54 formalin-fixed paraffin-embedded (FFPE) tissue samples obtained from mCRC patients. Among the 54 FFPE samples, BNA Real-time PCR detected 21 RAS mutations (38.9%) and 5 BRAF mutations (9.3%), and the reference assay (KRAS Mutation Detection Kit and MEBGEN™ RASKET KIT) detected 22 RAS mutations (40.7%). The concordance rate of detected RAS mutations between the BNA Real-time PCR assay and the reference assays was 98.2% (53/54). The BNA Real-time PCR assay proved to be a more simple, rapid, and cost-effective method for detecting KRAS and RAS mutations compared with existing assays. These findings suggest that BNA Real-time PCR is a valuable tool for predicting the efficacy of early anti-EGFR therapy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    Science.gov (United States)

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Evaluation of a rapid immunodiagnostic test kit for detection of African lyssaviruses from brain material

    Directory of Open Access Journals (Sweden)

    W. Markotter

    2009-09-01

    Full Text Available Rapid immunodiagnostic test kit was evaluated against a selection of isolates of lyssavirus genotypes occurring in Africa. The test was carried out in parallel comparison with the fluorescent antibody test (FAT and isolates representing previously established phylogenetic groups from each genotype were included. The specificity of the rapid immunodiagnostic test compared favourably with the FAT and was found to detect all representatives of genotypes 1, 2, 3 and 4 in brain samples of either field cases or suckling mouse brain inoculates.

  6. Rapid detection of fungal alpha-amylase in the work environment with a lateral flow immunoassay

    NARCIS (Netherlands)

    Bogdanovic, J.; Koets, M.; Sander, I.; Wouters, I.; Meijster, T.; Heederik, D.J.J.; Amerongen, van A.; Doekes, G.

    2006-01-01

    Background Occupational allergen exposure assessment usually requires airborne dust sampling at the worksite followed by dust extraction and enzyme immunoassay (EIA) analysis at the laboratory. Use of semiquantitative lateral flow immunoassays (LFIAs) may allow a more rapid detection procedure with

  7. A C. elegans-based foam for rapid on-site detection of residual live virus.

    Energy Technology Data Exchange (ETDEWEB)

    Negrete, Oscar A.; Branda, Catherine; Hardesty, Jasper O. E. (Sandia National Laboratories, Albuquerque, NM); Tucker, Mark David (Sandia National Laboratories, Albuquerque, NM); Kaiser, Julia N. (Global Product Management, Hilden, Germany); Kozina, Carol L.; Chirica, Gabriela S.

    2012-02-01

    In the response to and recovery from a critical homeland security event involving deliberate or accidental release of biological agents, initial decontamination efforts are necessarily followed by tests for the presence of residual live virus or bacteria. Such 'clearance sampling' should be rapid and accurate, to inform decision makers as they take appropriate action to ensure the safety of the public and of operational personnel. However, the current protocol for clearance sampling is extremely time-intensive and costly, and requires significant amounts of laboratory space and capacity. Detection of residual live virus is particularly problematic and time-consuming, as it requires evaluation of replication potential within a eukaryotic host such as chicken embryos. The intention of this project was to develop a new method for clearance sampling, by leveraging Sandia's expertise in the biological and material sciences in order to create a C. elegans-based foam that could be applied directly to the entire contaminated area for quick and accurate detection of any and all residual live virus by means of a fluorescent signal. Such a novel technology for rapid, on-site detection of live virus would greatly interest the DHS, DoD, and EPA, and hold broad commercial potential, especially with regard to the transportation industry.

  8. Rapid detection of food pathogens using RNA aptamers-immobilized slide.

    Science.gov (United States)

    Maeng, Jin-Soo; Kim, Namsoo; Kim, Chong-Tai; Han, Seung Ryul; Lee, Young Ju; Lee, Seong-Wook; Lee, Myung-Hyun; Cho, Yong-Jin

    2012-07-01

    The purpose of this study was to develop a simple and rapid detection system for foodborne bacteria, which consisted of an optical microscope and its slide chip with artificial antibodies, or RNA aptamers. From an RNA pool, three each RNA aptamers were built by the method of SELEX (systematic evolution of ligands by exponential enrichment) for components of cell wall, LPS (lipopolysaccharide) from E. coli O157:H7, teichoic acid from Staphylococcus aureus and a cell membrane protein of OmpC from Salmonella typhimurium, respectively. These aptamers were hybridized with thiol-conjugated 16 dT-linker molecules in order to be immobilized on silver surface which was, in advance, fabricated on glass slide, using a spin-coating method. To confirm that each aptamers retained its specific binding activities to their antigenic live bacteria, microscopic view of bound cells immobilized on silver film were observed. Furthermore, we observed the fluorescence-emitting bacteria-aptamer complex immobilized on silver film after adding RNA aptamers hybridized with fluorophore, FAM-conjugated 16 dT-linker molecules. As a result, the RNA aptamers-immobilized slide system developed in this study was a useful new tool to rapidly monitor individual food pathogens.

  9. Product ion filtering with rapid polarity switching for the detection of all fumonisins and AAL-toxins.

    Science.gov (United States)

    Renaud, Justin B; Kelman, Megan J; Qi, Tianyu F; Seifert, Keith A; Sumarah, Mark W

    2015-11-30

    Fumonisins and AAL-toxins are structurally similar mycotoxins that contaminate agricultural crops and foodstuffs. Traditional analytical screening methods are designed to target the known compounds for which standards are available but there is clear evidence that many other derivatives exist and could be toxic. A fast, semi-targeted method for the detection of all known fumonisins, AAL-toxins and related emerging toxins is required. Strains of Fusarium verticillioides, Alternaria arborescens and Aspergillus welwitschiae were grown on their associated crops (maize, tomatoes, and grapes, respectively). Extracts were first analyzed in negative mode using product ion filtering to detect the tricarballylic ester product ion that is common to fumonisins and AAL-toxins (m/z 157.0142). During the same liquid chromatography (LC) run, rapid polarity switching was then used to collect positive mode tandem mass spectrometric (MS(2) ) data for characterization of the detected compounds. Fumonisin B1 , B2 , B3 and B4 were detected on Fusarium contaminated maize, AAL-toxins TA, TB, TD, TE were detected on Alternaria inoculated tomatoes and fumonisin B2 , B4 and B6 on Aspergillus contaminated grapes. Additionally, over 100 structurally related compounds possessing a tricarballylic ester were detected from the mould inoculated plant material. These included a hydroxyl-FB1 from F. verticillioides inoculated maize, keto derivatives of AAL-toxins from A. arborescens inoculated tomatoes, and two previously unreported classes of non-aminated fumonisins from Asp. welwitschiae contaminated grapes. A semi-targeted method for the detection of all fumonisins and AAL-toxins in foodstuffs was developed. The use of the distinctive tricarballylic ester product anion for detection combined with rapid polarity switching and positive mode MS(2) is an effective strategy for differentiating between known isomers such as FB1 and FB6 . This analytical tool is also effective for the identification of

  10. Preliminary Results of a Multicentre Study of the UBC Rapid Test for Detection of Urinary Bladder Cancer.

    Science.gov (United States)

    Ecke, Thorsten H; Arndt, Christian; Stephan, Carsten; Hallmann, Steffen; Lux, Oliver; Otto, Thomas; Ruttloff, Jürgen; Gerullis, Holger

    2015-05-01

    UBC Rapid is a test detecting fragments of cytokeratins 8 and 18 in urine. These are cytokeratins frequently overexpressed in tumor cells. We present the first results of a multi-centre study using UBC Rapid in patients with bladder cancer and healthy controls. Clinical urine samples from 92 patients with tumors of the urinary bladder (45 low-grade and 47 high-grade tumors) and from 33 healthy controls were used. Urine samples were analyzed by the UBC Rapid point-of-care (POC) system and evaluated both visually and quantitatively using a concile Omega 100 POC reader. For visual evaluation, different thresholds of band intensity for considering a test as positive were applied. Sensitivities and specificities were calculated by contingency analyses. We found that pathological concentrations by UBC Rapid are detectable in urine of patients with bladder cancer. The calculated diagnostic sensitivity of UBC Rapid in urine was 68.1% for high-grade, but only 46.2% for low-grade tumors. The specificity was 90.9%. The area under the curve (AUC) after receiver-operated curve (ROC) analysis was 0.733. Pathological levels of UBC Rapid in urine are higher in patients with bladder cancer in comparison to the control group (pbladder cancer and controls. Further studies with a greater number of patients will show how valuable these results are. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Detection and monitoring of human bocavirus 1 infection by a new rapid antigen test

    Directory of Open Access Journals (Sweden)

    A.H.L. Bruning

    2016-05-01

    Full Text Available Clinically relevant diagnosis of human bocavirus 1 (HBoV1 is challenging, as the virus is frequently detected in asymptomatic patients, and cofindings with other respiratory viruses are common. The clinical value of current diagnostic methods, such as PCR, is therefore low, and alternative diagnostic strategies are needed. We describe for the first time the use of an antigen detection assay for the rapid identification of HBoV1 in a paediatric patient with respiratory tract infection symptoms. We estimate the duration of active HBoV1 infection to be 6 days.

  12. A nanoparticle label/immunochromatographic electrochemical biosensor for rapid and sensitive detection of prostate-specific antigen

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Ying; Wang, Jun; Liu, Guodong; Wu, Hong; Wai, Chien M.; Lin, Yuehe

    2008-06-15

    We present a nanoparticle (NP) label/immunochromatographic electrochemical biosensor (IEB) for rapid and sensitive detection of prostate-specific antigen (PSA) in human serum. This IEB integrates the immunochromatographic strip with the electrochemical detector for transducing quantitative signals. The NP label, made of CdSe@ZnS, serves as a signal-amplifier vehicle. A sandwich immunoreaction was performed on the immunochromatographic strip. The captured NP labels in the test zone were determined by highly sensitive stripping voltammetric measurement of the dissolved metallic component (cadmium) with a disposable-screen-printed electrode, which is embedded underneath the membrane of the test zone. Experimental parameters (e.g., immunoreaction time, the amount of anti-PSA-NP conjugations applied) and electrochemical detection conditions (e.g., preconcentration potential and time) were optimized using this biosensor for PSA detection. The analytical performance of this biosensor was evaluated with serum PSA samples according to the “figure-of-merits” (e.g., dynamic range, reproducibility, and detection limit). The results were validated with enzyme-linked immunosorbent assay (ELISA) and show high consistency. It is found that this biosensor is very sensitive with the detection limit of 0.02 ng/mL PSA and is quite reproducible. This method is rapid, clinically accurate, and less expensive than other diagnosis tools for PSA; therefore, this IEB coupled with a portable electrochemical analyzer shows great promise for simple, sensitive, quantitative point-of-care testing of disease-related protein biomarkers.

  13. Rapid DNA haplotyping using a multiplex heteroduplex approach: Application to Duchenne muscula dystrophy carrier detection

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Wenger, G.D.; Moore, J. [Ohio State Univ., Columbus, OH (United States)] [and others

    1994-09-01

    A new strategy has been developed for rapid haplotype analysis. It is based on an initial multiplex amplification of several polymorphic sites, followed by heteroduplex detection. Heteroduplexes formed between two different alleles are detected because they migrate differently than the corresponding homoduplexes in Hydrolink-MDE gel. The method is simple, rapid, does not depend on specific sequences such as restriction enzyme sites or CA boxes and does not require the use of isotope. This approach has been tested using 12 commonly occurring polymorphisms spanning the dystrophin gene as a model. We describe the use of the method to assign the carrier status of females in Duchenne muscular dystrophy (DMD) pedigrees. As a result of expanding the number of detectable polymorphisms throughout the dystrophin gene, we show how the method can easily be combined with dinucleotide analysis to improve the accuracy of carrier detection in the nondeletion cases. The technique is also shown to be used as an effective screen for improving carrier detection in several families with deletions. The finding of heterozygosity within the deletion identifies the at-risk female as a noncarrier. Using this method, we have identified and incorporated 3 new dystrophin polymorphisms (one of which in exon 16 is unique to African Americans). The method may be used other genetic diseases when mutations are unknown, or there are few dinucleotide markers in the gene proximity, or for the identification of haplotype backgrounds of mutant alleles.

  14. High resolution melting analysis: a rapid and accurate method to detect CALR mutations.

    Directory of Open Access Journals (Sweden)

    Cristina Bilbao-Sieyro

    Full Text Available The recent discovery of CALR mutations in essential thrombocythemia (ET and primary myelofibrosis (PMF patients without JAK2/MPL mutations has emerged as a relevant finding for the molecular diagnosis of these myeloproliferative neoplasms (MPN. We tested the feasibility of high-resolution melting (HRM as a screening method for rapid detection of CALR mutations.CALR was studied in wild-type JAK2/MPL patients including 34 ET, 21 persistent thrombocytosis suggestive of MPN and 98 suspected secondary thrombocytosis. CALR mutation analysis was performed through HRM and Sanger sequencing. We compared clinical features of CALR-mutated versus 45 JAK2/MPL-mutated subjects in ET.Nineteen samples showed distinct HRM patterns from wild-type. Of them, 18 were mutations and one a polymorphism as confirmed by direct sequencing. CALR mutations were present in 44% of ET (15/34, 14% of persistent thrombocytosis suggestive of MPN (3/21 and none of the secondary thrombocytosis (0/98. Of the 18 mutants, 9 were 52 bp deletions, 8 were 5 bp insertions and other was a complex mutation with insertion/deletion. No mutations were found after sequencing analysis of 45 samples displaying wild-type HRM curves. HRM technique was reproducible, no false positive or negative were detected and the limit of detection was of 3%.This study establishes a sensitive, reliable and rapid HRM method to screen for the presence of CALR mutations.

  15. Rapid antibiotic efficacy screening with aluminum oxide nanoporous membrane filter-chip and optical detection system.

    Science.gov (United States)

    Tsou, Pei-Hsiang; Sreenivasappa, Harini; Hong, Sungmin; Yasuike, Masayuki; Miyamoto, Hiroshi; Nakano, Keiyo; Misawa, Takeyuki; Kameoka, Jun

    2010-09-15

    We have developed a filter-chip and optical detection system for rapid antibiotic efficacy screening. The filter-chip consisted of a 1-mL reservoir and an anodic aluminum oxide (AAO) nanoporous membrane. Sample solution with liquid growth media, bacteria, and antibiotics was incubated in the reservoir for a specific period of time. The number of live bacteria on the surface of membrane was counted after the incubation with antibiotics and filtration. Using this biosensing system, we have demonstrated a 1-h antibiotic screening for patients' clinical samples, significantly faster than the conventional antibiotic susceptibility tests that typically take more than 24h. This rapid screening nature makes the filter-chip and detection system ideal for tailoring antibiotic treatment to individual patients by reducing the microbial antibiotic resistance, and improving the survival rate for patients suffering from postoperative infections. Published by Elsevier B.V.

  16. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs-Based Electrochemical Biosensors

    Directory of Open Access Journals (Sweden)

    Weiwei Ye

    2017-05-01

    Full Text Available The wide abuse of antibiotics has accelerated bacterial multiresistance, which means there is a need to develop tools for rapid detection and characterization of bacterial response to antibiotics in the management of infections. In the study, an electrochemical biosensor based on nanoporous alumina membrane and graphene quantum dots (GQDs was developed for bacterial response to antibiotics detection. Anti-Salmonella antibody was conjugated with amino-modified GQDs by glutaraldehyde and immobilized on silanized nanoporous alumina membranes for Salmonella bacteria capture. The impedance signals across nanoporous membranes could monitor the capture of bacteria on nanoporous membranes as well as bacterial response to antibiotics. This nanoporous membrane and GQD-based electrochemical biosensor achieved rapid detection of bacterial response to antibiotics within 30 min, and the detection limit could reach the pM level. It was capable of investigating the response of bacteria exposed to antibiotics much more rapidly and conveniently than traditional tools. The capability of studying the dynamic effects of antibiotics on bacteria has potential applications in the field of monitoring disease therapy, detecting comprehensive food safety hazards and even life in hostile environment.

  17. Diurnal Variations of the Flux Imbalance Over Homogeneous and Heterogeneous Landscapes

    Science.gov (United States)

    Zhou, Yanzhao; Li, Dan; Liu, Heping; Li, Xin

    2018-05-01

    It is well known that the sum of the turbulent sensible and latent heat fluxes as measured by the eddy-covariance method is systematically lower than the available energy (i.e., the net radiation minus the ground heat flux). We examine the separate and joint effects of diurnal and spatial variations of surface temperature on this flux imbalance in a dry convective boundary layer using the Weather Research and Forecasting model. Results show that, over homogeneous surfaces, the flux due to turbulent-organized structures is responsible for the imbalance, whereas over heterogeneous surfaces, the flux due to mesoscale or secondary circulations is the main contributor to the imbalance. Over homogeneous surfaces, the flux imbalance in free convective conditions exhibits a clear diurnal cycle, showing that the flux-imbalance magnitude slowly decreases during the morning period and rapidly increases during the afternoon period. However, in shear convective conditions, the flux-imbalance magnitude is much smaller, but slightly increases with time. The flux imbalance over heterogeneous surfaces exhibits a diurnal cycle under both free and shear convective conditions, which is similar to that over homogeneous surfaces in free convective conditions, and is also consistent with the general trend in the global observations. The rapid increase in the flux-imbalance magnitude during the afternoon period is mainly caused by the afternoon decay of the turbulent kinetic energy (TKE). Interestingly, over heterogeneous surfaces, the flux imbalance is linearly related to the TKE and the difference between the potential temperature and surface temperature, ΔT; the larger the TKE and ΔT values, the smaller the flux-imbalance magnitude.

  18. Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe.

    Science.gov (United States)

    Ingianni, A; Floris, M; Palomba, P; Madeddu, M A; Quartuccio, M; Pompei, R

    2001-10-01

    Listeria monocytogenes is a frequent contaminant of water and foods. Its rapid detection is needed before some foods can be prepared for marketing. In this work L. monocytogenes has been searched for in foods, by a combination of polymerase chain reaction (PCR) and a DNA probe. Both PCR and the probe were prepared for recognizing a specific region of the internalin gene, which is responsible for the production of one of the most important pathogenic factors of Listeria. The combined use of PCR and the DNA probe was used for the detection of L. monocytogenes in over 180 environmental and food samples. Several detection methods were compared in this study, namely conventional culture methods; direct PCR; PCR after an enrichment step; a DNA probe alone; a DNA probe after enrichment and another commercially available gene-probe. Finally PCR and the DNA probe were used in series on all the samples collected. When the DNA probe was associated with the PCR, specific and accurate detection of listeria in the samples could be obtained in about a working-day. The present molecular method showed some advantages in terms of rapidity and specificity in comparison to the other aforementioned tests. In addition, it resulted as being easy to handle, even for non-specialized personnel in small diagnostic microbiology laboratories. Copyright 2001 Academic Press.

  19. Combining magnetic nanoparticle with biotinylated nanobodies for rapid and sensitive detection of influenza H3N2

    Science.gov (United States)

    Zhu, Min; Hu, Yonghong; Li, Guirong; Ou, Weijun; Mao, Panyong; Xin, Shaojie; Wan, Yakun

    2014-09-01

    Our objective is to develop a rapid and sensitive assay based on magnetic beads to detect the concentration of influenza H3N2. The possibility of using variable domain heavy-chain antibodies (nanobody) as diagnostic tools for influenza H3N2 was investigated. A healthy camel was immunized with inactivated influenza H3N2. A nanobody library of 8 × 108 clones was constructed and phage displayed. After three successive biopanning steps, H3N2-specific nanobodies were successfully isolated, expressed in Escherichia coli, and purified. Sequence analysis of the nanobodies revealed that we possessed four classes of nanobodies against H3N2. Two nanobodies were further used to prepare our rapid diagnostic kit. Biotinylated nanobody was effectively immobilized onto the surface of streptavidin magnetic beads. The modified magnetic beads with nanobody capture specifically influenza H3N2 and can still be recognized by nanobodies conjugated to horseradish peroxidase (HRP) conjugates. Under optimized conditions, the present immunoassay exhibited a relatively high sensitive detection with a limit of 50 ng/mL. In conclusion, by combining magnetic beads with specific nanobodies, this assay provides a promising influenza detection assay to develop a potential rapid, sensitive, and low-cost diagnostic tool to screen for influenza infections.

  20. Rapid Detection of Human Immunodeficiency Virus Types 1 and 2 by Use of an Improved Piezoelectric Biosensor

    Science.gov (United States)

    Severns, Virginia; Branch, Darren W.; Edwards, Thayne L.; Larson, Richard S.

    2013-01-01

    Disasters can create situations in which blood donations can save lives. However, in emergency situations and when resources are depleted, on-site blood donations require the rapid and accurate detection of blood-borne pathogens, including human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Techniques such as PCR and antibody capture by an enzyme-linked immunosorbent assay (ELISA) for HIV-1 and HIV-2 are precise but time-consuming and require sophisticated equipment that is not compatible with emergency point-of-care requirements. We describe here a prototype biosensor based on piezoelectric materials functionalized with specific antibodies against HIV-1 and HIV-2. We show the rapid and accurate detection of HIV-1 and HIV-2 in both simple and complex solutions, including human serum, and in the presence of a cross-confounding virus. We report detection limits of 12 50% tissue culture infective doses (TCID50s) for HIV-1 and 87 TCID50s for HIV-2. The accuracy, precision of measurements, and operation of the prototype biosensor compared favorably to those for nucleic acid amplification. We conclude that the biosensor has significant promise as a successful point-of-care diagnostic device for use in emergency field applications requiring rapid and reliable testing for blood-borne pathogens. PMID:23515541

  1. Interagency partnering for weed prevention--progress on development of a National Early Detection and Rapid Response System for Invasive Plants in the United States

    Science.gov (United States)

    Westbrooks, R.; Westbrooks, R.

    2011-01-01

    Over the past 50 years, experience has shown that interagency groups provide an effective forum for addressing various invasive species issues and challenges on multiple land units. However, more importantly, they can also provide a coordinated framework for early detection, reporting, identification and vouchering, rapid assessment, and rapid response to new and emerging invasive plants in the United States. Interagency collaboration maximizes the use of available expertise, resources, and authority for promoting early detection and rapid response (EDRR) as the preferred management option for addressing new and emerging invasive plants. Currently, an interagency effort is underway to develop a National EDRR System for Invasive Plants in the United States. The proposed system will include structural and informational elements. Structural elements of the system include a network of interagency partner groups to facilitate early detection and rapid response to new invasive plants, including the Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW), State Invasive Species Councils, State Early Detection and Rapid Response Coordinating Committees, State Volunteer Detection and Reporting Networks, Invasive Plant Task Forces, and Cooperative Weed Management Areas. Informational elements and products being developed include Regional Invasive Plant Atlases, and EDRR Guidelines for EDRR Volunteer Network Training, Rapid Assessment and Rapid Response, and Criteria for Selection of EDRR Species. System science and technical support elements which are provided by cooperating state and federal scientists, include EDRR guidelines, training curriculum for EDRR volunteers and agency field personnel, plant identification and vouchering, rapid assessments, as well as predictive modeling and ecological range studies for invasive plant species.

  2. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2015-09-18

    The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.

  3. Rapid Detection of Bacillus anthracis Spores Using Immunomagnetic Separation and Amperometry

    Directory of Open Access Journals (Sweden)

    David F. Waller

    2016-12-01

    Full Text Available Portable detection and quantitation methods for Bacillus anthracis (anthrax spores in pure culture or in environmental samples are lacking. Here, an amperometric immunoassay has been developed utilizing immunomagnetic separation to capture the spores and remove potential interferents from test samples followed by amperometric measurement on a field-portable instrument. Antibody-conjugated magnetic beads and antibody-conjugated glucose oxidase were used in a sandwich format for the capture and detection of target spores. Glucose oxidase activity of spore pellets was measured indirectly via amperometry by applying a bias voltage after incubation with glucose, horseradish peroxidase, and the electron mediator 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid. Target capture was mediated by polyclonal antisera, whereas monoclonal antibodies were used for signal generation. This strategy maximized sensitivity (500 target spores, 5000 cfu/mL, while also providing a good specificity for Bacillus anthracis spores. Minimal signal deviation occurs in the presence of environmental interferents including soil and modified pH conditions, demonstrating the strengths of immunomagnetic separation. The simultaneous incubation of capture and detection antibodies and rapid substrate development (5 min result in short sample-to-signal times (less than an hour. With attributes comparable or exceeding that of ELISA and LFDs, amperometry is a low-cost, low-weight, and practical method for detecting anthrax spores in the field.

  4. Rapid and reliable detection and identification of GM events using multiplex PCR coupled with oligonucleotide microarray.

    Science.gov (United States)

    Xu, Xiaodan; Li, Yingcong; Zhao, Heng; Wen, Si-yuan; Wang, Sheng-qi; Huang, Jian; Huang, Kun-lun; Luo, Yun-bo

    2005-05-18

    To devise a rapid and reliable method for the detection and identification of genetically modified (GM) events, we developed a multiplex polymerase chain reaction (PCR) coupled with a DNA microarray system simultaneously aiming at many targets in a single reaction. The system included probes for screening gene, species reference gene, specific gene, construct-specific gene, event-specific gene, and internal and negative control genes. 18S rRNA was combined with species reference genes as internal controls to assess the efficiency of all reactions and to eliminate false negatives. Two sets of the multiplex PCR system were used to amplify four and five targets, respectively. Eight different structure genes could be detected and identified simultaneously for Roundup Ready soybean in a single microarray. The microarray specificity was validated by its ability to discriminate two GM maizes Bt176 and Bt11. The advantages of this method are its high specificity and greatly reduced false-positives and -negatives. The multiplex PCR coupled with microarray technology presented here is a rapid and reliable tool for the simultaneous detection of GM organism ingredients.

  5. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, C; Androsch, R; Schmelzer, J W P

    2017-11-15

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 10 6 K s -1 , allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of the classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation.

  6. Development of rapid detection system on BEPC Ⅱ magnet power supply

    International Nuclear Information System (INIS)

    Chen Suying; Zhan Mingchuan; Long Fengli; Ye Weidong

    2014-01-01

    To quickly find the causes of the accelerator unstable or lost beam caused by magnet power supply in Beijing Electron Positron Collider (BEPC Ⅱ) running, the rapid detection system for magnet power supply was developed. The stability of the system in 8 h is about 0.005%, and it can acquire over nearly 500 sets of magnet power supply current values most quickly in 0.33 ms. All data were written to the MySQL database in real time, so as to be able to quickly troubleshoot magnet power supply problem through historical data analysis and comparison. (authors)

  7. Homogeneous nucleation limit on the bulk formation of metallic glasses

    International Nuclear Information System (INIS)

    Drehman, A.J.

    1983-01-01

    Glassy Pd 82 Si 18 spheres, of up to 1 mm diameter, were formed in a drop tube filled with He gas. The largest spheres were successfully cooled to a glass using a cooling rate of less than 800 K/sec. Even at this low cooling rate, crystallization (complete or partial) was the result of heterogeneous nucleation at a high temperature, relative to the temperature at which copious homogeneous nucleation would commence. Bulk underscoring experiments demonstrated that this alloy could be cooled to 385 K below its eutectic melting temperature (1083 K) without the occurrence of crystallization. If heterogeneous nucleation can be avoided, it is estimated that a cooling rate of at most 100 K/sec would be required to form this alloy in the glassy state. Ingots of glassy Pd 40 Ni 40 P 20 were formed from the liquid by cooling at a rate of only 1 K/sec. It was found that glassy samples of this alloy could be heated well above the glass transition temperature without the occurrence of rapid divitrification. This is a result due, in part of the low density of pre-existing nuclei, but, more importantly, due to the low homogeneous nucleation rate and the slow crystal growth kinetics. Based on the observed devitrification kinetics, the steady-state homogeneous nucleation rate is approximately 1 nuclei/cm 3 sec at 590 K (the temperature at which the homogeneous nucleation rate is estimated to be a maximum). Two iron-nickel based glass-forming alloys (Fe 40 Ni 40 P 14 B 6 and Fe 40 Ni 40 B 20 , were not successfully formed into glassy spheres, however, microstructural examination indicates that crystallization was not the result of copious homogeneous nucleation. In contrast, glass forming iron based alloys (Fe 80 B 20 and Fe/sub 79.3/B/sub 16.4/Si/sub 4.0/C/sub 0.3/) exhibit copious homogeneous nucleation when cooled at approximately the same rate

  8. Feasibility Study of Aseptic Homogenization: Affecting Homogenization Steps on Quality of Sterilized Coconut Milk

    Directory of Open Access Journals (Sweden)

    Phungamngoen Chanthima

    2016-01-01

    Full Text Available Coconut milk is one of the most important protein-rich food sources available today. Separation of an emulsion into an aqueous phase and cream phase is commonly occurred and this leads an unacceptably physical defect of either fresh or processed coconut milk. Since homogenization steps are known to affect the stability of coconut milk. This work was aimed to study the effect of homogenization steps on quality of coconut milk. The samples were subject to high speed homogenization in the range of 5000-15000 rpm under sterilize temperatures at 120-140 °C for 15 min. The result showed that emulsion stability increase with increasing speed of homogenization. The lower fat particles were generated and easy to disperse in continuous phase lead to high stability. On the other hand, the stability of coconut milk decreased, fat globule increased, L value decreased and b value increased when the high sterilization temperature was applied. Homogenization after heating led to higher stability than homogenization before heating due to the reduced particle size of coconut milk after aggregation during sterilization process. The results implied that homogenization after sterilization process might play an important role on the quality of the sterilized coconut milk.

  9. A novel kit for rapid detection of Vibrio cholerae O1.

    Science.gov (United States)

    Hasan, J A; Huq, A; Tamplin, M L; Siebeling, R J; Colwell, R R

    1994-01-01

    We report on the development and testing of a novel, rapid, colorimetric immunodiagnostic kit, Cholera SMART, for direct detection of the presence of Vibrio cholerae O1 in clinical specimens. Unlike conventional culture methods requiring several days to complete, the Cholera SMART kit can be used directly in the field by untrained or minimally skilled personnel to detect V. cholerae O1 in less than 15 min, without cumbersome laboratory equipment. A total of 120 clinical and environmental bacterial strains, including both O1 and non-O1 serotypes of V. cholerae isolated from samples collected from a variety of geographical regions, were tested, and positive reactions were observed only with V. cholerae O1. Also, results of a field trial in Bangladesh, employing Cholera SMART, showed 100% specificity and 96% sensitivity compared with conventional culture methods. Another field trial, in Mexico, showed that Cholera SMART was 100% in agreement with a recently described coagglutination test when 108 stool specimens were tested.

  10. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray.

    Directory of Open Access Journals (Sweden)

    Bettina Stieber

    Full Text Available S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins.In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays.110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate.The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers.

  11. Rapid Electrochemical Detection and Identification of Microbiological and Chemical Contaminants for Manned Spaceflight Project

    Science.gov (United States)

    Pierson, Duane; Botkin, Douglas; Gazda, Daniel

    2014-01-01

    Microbial control in the spacecraft environment is a daunting task, especially in the presence of human crew members. Currently, assessing the potential crew health risk associated with a microbial contamination event requires return of representative environmental samples that are analyzed in a ground-based laboratory. It is therefore not currently possible to quickly identify microbes during spaceflight. This project addresses the unmet need for spaceflight-compatible microbial identification technology. The electrochemical detection and identification platform is expected to provide a sensitive, specific, and rapid sample-to-answer capability for in-flight microbial monitoring that can distinguish between related microorganisms (pathogens and non-pathogens) as well as chemical contaminants. This will dramatically enhance our ability to monitor the spacecraft environment and the health risk to the crew. Further, the project is expected to eliminate the need for sample return while significantly reducing crew time required for detection of multiple targets. Initial work will focus on the optimization of bacterial detection and identification. The platform is designed to release nucleic acids (DNA and RNA) from microorganisms without the use of harmful chemicals. Bacterial DNA or RNA is captured by bacteria-specific probe molecules that are bound to a microelectrode, and that capture event can generate a small change in the electrical current (Lam, et al. 2012. Anal. Chem. 84(1): 21-5.). This current is measured, and a determination is made whether a given microbe is present in the sample analyzed. Chemical detection can be accomplished by directly applying a sample to the microelectrode and measuring the resulting current change. This rapid microbial and chemical detection device is designed to be a low-cost, low-power platform anticipated to be operated independently of an external power source, characteristics optimal for manned spaceflight and areas where power

  12. Comparison of rapid diagnostic tests to detect Mycobacterium avium subsp. paratuberculosis disseminated infection in bovine liver.

    Science.gov (United States)

    Zarei, Mehdi; Ghorbanpour, Masoud; Tajbakhsh, Samaneh; Mosavari, Nader

    2017-08-01

    Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a chronic enteritis in cattle and other domestic and wild ruminants. The presence of MAP in tissues other than intestines and associated lymph nodes, such as meat and liver, is a potential public health concern. In the present study, the relationship between the results of rapid diagnostic tests of the Johne's disease, such as serum ELISA, rectal scraping PCR, and acid-fast staining, and the presence of MAP in liver was evaluated. Blood, liver, and rectal scraping samples were collected from 200 slaughtered cattle with unknown Johne's disease status. ELISA was performed to determine the MAP antibody activity in the serum. Acid-fast staining was performed on rectal scraping samples, and PCR was performed on rectal scraping and liver samples. PCR-positive liver samples were used for mycobacterial culture. Overall, the results of this study demonstrated that MAP can be detected and cultured from liver of slaughtered cattle and rapid diagnostic tests of Johne's disease have limited value in detecting cattle with MAP infection in liver. These findings show that the presence of MAP in liver tissue may occur in cows with negative results for rapid diagnostic tests and vice versa. Hence, liver might represent another possible risk of human exposure to MAP. Given concerns about a potential zoonotic role for MAP, these results show the necessity to find new methods for detecting cattle with MAP disseminated infection.

  13. Rapid, enhanced detection of Salmonella Typhimurium on fresh spinach leaves using micron-scale, phage-coated magnetoelastic biosensors

    Science.gov (United States)

    Horikawa, Shin; Vaglenov, Kiril A.; Gerken, Dana M.; Chai, Yating; Park, Mi-Kyung; Li, Suiqiong; Petrenko, Valery A.; Chin, Bryan A.

    2012-05-01

    In order to cost-effectively and rapidly detect bacterial food contamination in the field, the potential usefulness of phage-coated magnetoelastic (ME) biosensors has been recently reported. These biosensors are freestanding, mass-sensitive biosensors that can be easily batch-fabricated, thereby reducing the fabrication cost per sensor to a fraction of a cent. In addition, the biosensors can be directly placed on fresh produce surfaces and used to rapidly monitor possible bacterial food contamination without any preceding sample preparation. Previous investigations showed that the limit of detection (LOD) with millimeter-scale ME biosensors was fairly low for fresh produce with smooth surfaces (e.g., tomatoes and shell eggs). However, the LOD is anticipated to be dependent on the size of the biosensors as well as the topography of produce surfaces of interest. This paper presents an investigation into the use of micron-scale, phage-coated ME biosensors for the enhanced detection of Salmonella Typhimurium on fresh spinach leaves.

  14. Rapid Molecular detection of citrus brown spot disease using ACT gene in Alternaria alternata

    Directory of Open Access Journals (Sweden)

    Hamid Moghimi

    2017-06-01

    Full Text Available Introduction:Using rapid detection methods is important for detection of plant pathogens and also prevention through spreading pests in agriculture. Citrus brown spot disease caused by pathogenic isolates of Alternaria alternata is a common disease in Iran. Materials and methods: In this study, for the first time a PCR based molecular method was used for rapid diagnosis of brown spot disease. Nine isolates of A. Alternata were isolated in PDA medium from different citrus gardens. The plant pathogenic activity was examined in tangerine leaves for isolates. Results showed that these isolates are the agents of brown spot disease. PCR amplification of specific ACT-toxin gene was performed for DNA extracted from A. alternata isolates, with 11 different fungal isolates as negative controls and 5 DNA samples extracted from soil. Results: Results showed that A. alternata, the causal agent of brown spot disease, can be carefully distinguished from other pathogenic agents by performing PCR amplification with specific primers for ACT toxin gene. Also, the results from Nested-PCR method confirmed the primary reaction and the specificity of A. alternata for brown spot disease. PCR results to control samples of the other standard fungal isolates, showed no amplification band. In addition, PCR with the DNA extracted from contaminated soils confirmed the presence of ACT toxin gene. Discussion and conclusion: Molecular procedure presented here can be used in rapid identification and prevention of brown spot infection in citrus gardens all over the country.

  15. 7 CFR 58.636 - Homogenization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Homogenization. 58.636 Section 58.636 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.636 Homogenization. Homogenization of the pasteurized mix shall be accomplished to...

  16. A Rapid and Simple Real-Time PCR Assay for Detecting Foodborne Pathogenic Bacteria in Human Feces.

    Science.gov (United States)

    Hanabara, Yutaro; Ueda, Yutaka

    2016-11-22

    A rapid, simple method for detecting foodborne pathogenic bacteria in human feces is greatly needed. Here, we examined the efficacy of a method that employs a combination of a commercial PCR master mix, which is insensitive to PCR inhibitors, and a DNA extraction method which used sodium dodecyl benzene sulfonate (SDBS), and Tween 20 to counteract the inhibitory effects of SDBS on the PCR assay. This method could detect the target genes (stx1 and stx2 of enterohemorrhagic Escherichia coli, invA of Salmonella Enteritidis, tdh of Vibrio parahaemolyticus, gyrA of Campylobacter jejuni, ceuE of Campylobacter coli, SEA of Staphylococcus aureus, ces of Bacillus cereus, and cpe of Clostridium perfringens) in a fecal suspension containing 1.0 × 10 1 to 1.0 × 10 3 CFU/ml. Furthermore, the assay was neither inhibited nor influenced by individual differences among the fecal samples of 10 subjects or fecal concentration (40-160 mg/ml in the fecal suspension). When we attempted to detect the genes of pathogenic bacteria in 4 actual clinical cases, we found that this method was more sensitive than standard culture method. These results showed that this assay is a rapid, simple detection method for foodborne pathogenic bacteria in human feces.

  17. Rapid detection of chlorpyrifos pesticide residue concentration in agro-product using Raman spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei; Zhang, Leilei; Xu, Tianfeng

    2014-05-01

    Different chemicals are sprayed in fruits and vegetables before and after harvest for better yield and longer shelf-life of crops. Cases of pesticide poisoning to human health are regularly reported due to excessive application of such chemicals for greater economic benefit. Different analytical technologies exist to detect trace amount of pesticides in fruits and vegetables, but are expensive, sample destructive, and require longer processing time. This study explores the application of Raman spectroscopy for rapid and non-destructive detection of pesticide residue in agricultural products. Raman spectroscopy with laser module of 785 nm was used to collect Raman spectral information from the surface of Gala apples contaminated with different concentrations of commercially available organophosphorous (48% chlorpyrifos) pesticide. Apples within 15 days of harvest from same orchard were used in this study. The Raman spectral signal was processed by Savitzky-Golay (SG) filter for noise removal, Multiplicative Scatter Correction (MSC) for drift removal and finally polynomial fitting was used to eliminate the fluorescence background. The Raman spectral peak at 677 cm-1 was recognized as Raman fingerprint of chlorpyrifos. Presence of Raman peak at 677 cm-1 after fluorescence background removal was used to develop classification model (presence and absence of pesticide). The peak intensity was correlated with actual pesticide concentration obtained using Gas Chromatography and MLR prediction model was developed with correlation coefficient of calibration and validation of 0.86 and 0.81 respectively. Result shows that Raman spectroscopy is a promising tool for rapid, real-time and non-destructive detection of pesticide residue in agro-products.

  18. Rapid, highly sensitive detection of Gram-negative bacteria with lipopolysaccharide based disposable aptasensor.

    Science.gov (United States)

    Zhang, Jian; Oueslati, Rania; Cheng, Cheng; Zhao, Ling; Chen, Jiangang; Almeida, Raul; Wu, Jayne

    2018-07-30

    Gram-negative bacteria are one of the most common microorganisms in the environment. Their differential detection and recognition from Gram-positive bacteria has been attracting much attention over the years. Using Escherichia coli (E. coli) as a model, we demonstrated on-site detection of Gram-negative bacteria by an AC electrokinetics-based capacitive sensing method using commercial microelectrodes functionalized with an aptamer specific to lipopolysaccharides. Dielectrophoresis effect was utilized to enrich viable bacteria to the microelectrodes rapidly, achieving a detection limit of 10 2 cells/mL within a 30 s' response time. The sensor showed a negligible response to Staphylococcus aureus (S. aureus), a Gram-positive species. The developed sensor showed significant advantages in sensitivity, selectivity, cost, operation simplicity, and response time. Therefore, this sensing method has shown great application potential for environmental monitoring, food safety, and real-time diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Cheng, Wei [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Ju, Huangxian [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ding, Shijia, E-mail: dingshijia@163.com [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2014-10-10

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL{sup −1} in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring.

  20. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    International Nuclear Information System (INIS)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo; Cheng, Wei; Ju, Huangxian; Ding, Shijia

    2014-01-01

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL −1 in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring

  1. Direct detection of Mycobacterium tuberculosis complex in bovine and bubaline tissues through nested-PCR.

    Science.gov (United States)

    Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Klaudia S G; Ramos, Carlos A N; Souza Filho, Antonio F; Vidal, Carlos E S; Vargas, Agueda P C; Roxo, Eliana; Rocha, Adalgiza S; Suffys, Philip N; Fonseca, Antônio A; Silva, Marcio R; Barbosa Neto, José D; Cerqueira, Valíria D; Araújo, Flábio R

    2014-01-01

    Post-mortem bacterial culture and specific biochemical tests are currently performed to characterize the etiologic agent of bovine tuberculosis. Cultures take up to 90 days to develop. A diagnosis by molecular tests such as PCR can provide fast and reliable results while significantly decreasing the time of confirmation. In the present study, a nested-PCR system, targeting rv2807, with conventional PCR followed by real-time PCR, was developed to detect Mycobacterium tuberculosis complex (MTC) organisms directly from bovine and bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other Actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. Regarding the analytical sensitivity, DNA of the M. bovis AN5 strain was detected up to 1.5 pg by nested-PCR, whereas DNA of M. tuberculosis H37Rv strain was detected up to 6.1 pg. The nested-PCR system showed 100% analytical specificity for MTC when tested with DNA of reference strains of non-tuberculous mycobacteria and closely-related Actinomycetales. A clinical sensitivity level of 76.7% was detected with tissues samples positive for MTC by means of the culture and conventional PCR. A clinical specificity of 100% was detected with DNA from tissue samples of cattle with negative results in the comparative intradermal tuberculin test. These cattle exhibited no visible lesions and were negative in the culture for MTC. The use of the nested-PCR assay to detect M. tuberculosis complex in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.

  2. Rapid Detection of Microorganisms Based on Active and Passive Modes of QCM

    Directory of Open Access Journals (Sweden)

    Zdeněk Farka

    2014-12-01

    Full Text Available Label-free immunosensors are well suited for detection of microorganisms because of their fast response and reasonable sensitivity comparable to infection doses of common pathogens. Active (lever oscillator and frequency counter and passive (impedance analyzer modes of quartz crystal microbalance (QCM were used and compared for rapid detection of three strains of E. coli. Different approaches for antibody immobilization were compared, the immobilization of reduced antibody using Sulfo‑SMCC was most effective achieving the limit of detection (LOD 8 × 104 CFU·mL−1 in 10 min. For the passive mode, software evaluating impedance characteristics in real-time was developed and used. Almost the same results were achieved using both active and passive modes confirming that the sensor properties are not limited by the frequency evaluation method but mainly by affinity of the antibody. Furthermore, reference measurements were done using surface plasmon resonance. Effect of condition of cells on signal was observed showing that cells ruptured by ultrasonication provided slightly higher signal changes than intact microbes.

  3. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  4. Value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations

    Directory of Open Access Journals (Sweden)

    Luo Li-Qin

    2016-01-01

    Full Text Available In this paper, we investigate the value distribution of meromorphic solutions of homogeneous and non-homogeneous complex linear differential-difference equations, and obtain the results on the relations between the order of the solutions and the convergence exponents of the zeros, poles, a-points and small function value points of the solutions, which show the relations in the case of non-homogeneous equations are sharper than the ones in the case of homogeneous equations.

  5. Rapid detection and identification of four major Schistosoma species by high-resolution melt (HRM) analysis.

    Science.gov (United States)

    Li, Juan; Zhao, Guang-Hui; Lin, RuiQing; Blair, David; Sugiyama, Hiromu; Zhu, Xing-Quan

    2015-11-01

    Schistosomiasis, caused by blood flukes belonging to several species of the genus Schistosoma, is a serious and widespread parasitic disease. Accurate and rapid differentiation of these etiological agents of animal and human schistosomiasis to species level can be difficult. We report a real-time PCR assay coupled with a high-resolution melt (HRM) assay targeting a portion of the nuclear 18S rDNA to detect, identify, and distinguish between four major blood fluke species (Schistosoma japonicum, Schistosoma mansoni, Schistosoma haematobium, and Schistosoma mekongi). Using this system, the Schistosoma spp. was accurately identified and could also be distinguished from all other trematode species with which they were compared. As little as 10(-5) ng genomic DNA from a Schistosoma sp. could be detected. This process is inexpensive, easy, and can be completed within 3 h. Examination of 21 representative Schistosoma samples from 15 geographical localities in seven endemic countries validated the value of the HRM detection assay and proved its reliability. The melting curves were characterized by peaks of 83.65 °C for S. japonicum and S. mekongi, 85.65 °C for S. mansoni, and 85.85 °C for S. haematobium. The present study developed a real-time PCR coupled with HRM analysis assay for detection and differential identification of S. mansoni, S. haematobium, S. japonicum, and S. mekongi. This method is rapid, sensitive, and inexpensive. It has important implications for epidemiological studies of Schistosoma.

  6. Development of a colloidal gold immunochromatographic strip for rapid detection of Streptococcus agalactiae in tilapia.

    Science.gov (United States)

    Wen-de, Wu; Min, Li; Ming, Chen; Li-Ping, Li; Rui, Wang; Hai-Lan, Chen; Fu-Yan, Chen; Qiang, Mi; Wan-Wen, Liang; Han-Zhong, Chen

    2017-05-15

    A colloidal gold immunochromatographic strip was developed for rapid detection of Streptococcus agalactiae (S. agalactiae) infection in tilapia. The monoclonal antibodies (mAb) 4C12 and 3A9 were used to target S. agalactiae as colloidal gold-mAb conjugate and captured antibody, respectively. The colloidal gold immunochromatographic strip was assembled via routine procedures. Optimal pH and minimum antibody levels in the reaction system for gold colloidal-mAb 4C12 conjugation were pH 7.4 and 18μg/mL, respectively. Optimal concentrations of the captured antibody 3A9 and goat anti-mouse antibody were 0.6mg/mL and 2mg/mL, respectively. The sensitivity of the strip for detecting S. agalactiae was 1.5×10 5 colony forming units (CFU). No cross-reaction was observed with other commonly encountered bacteria, including Pseudomonas fluorescens, Aeromonas hydrophila, Vibrio anguillarum and Streptococcus iniae. The assay time for S. agalactiae was less than 15min. Tilapia samples artificially infected with S. agalactiae were tested using the newly developed strip. The results indicated that blood, brain, kidney, spleen, metanephros and intestine specimens of infected fish can be used for S. agalactiae detection. The validity of the strip was maintained for 6 months at 4°C. These findings suggested that the immunochromatographic strip was effective for spot and rapid detection of S. agalactiae infected tilapia. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Development of a Rapid Detection Method for Potato virus X by Reverse Transcription Loop-Mediated Isothermal Amplification

    Directory of Open Access Journals (Sweden)

    Joojin Jeong

    2015-09-01

    Full Text Available The primary step for efficient control of viral diseases is the development of simple, rapid, and sensitive virus detection. Reverse transcription loop-mediated isothermal amplification (RT-LAMP has been used to detect viral RNA molecules because of its simplicity and high sensitivity for a number of viruses. RT-LAMP for the detection of Potato virus X (PVX was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR to demonstrate its advantages over RT-PCR. RT-LAMP reactions were conducted with or without a set of loop primers since one out of six primers showed PVX specificity. Based on real-time monitoring, RT-LAMP detected PVX around 30 min, compared to 120 min for RT-PCR. By adding a fluorescent reagent during the reaction, the extra step of visualization by gel electrophoresis was not necessary. RT-LAMP was conducted using simple inexpensive instruments and a regular incubator to evaluate whether RNA could be amplified at a constant temperature instead of using an expensive thermal cycler. This study shows the potential of RT-LAMP for the diagnosis of viral diseases and PVX epidemiology because of its simplicity and rapidness compared to RT-PCR.

  8. Rapid and sensitive detection of Plesiomonas shigelloides by loop-mediated isothermal amplification of the hugA gene.

    Directory of Open Access Journals (Sweden)

    Shuang Meng

    Full Text Available Plesiomonas shigelloides is one of the causative agents of human gastroenteritis, with increasing number of reports describing such infections in recent years. In this study, the hugA gene was chosen as the target to design loop-mediated isothermal amplification (LAMP assays for the rapid, specific, and sensitive detection of P. shigelloides. The performance of the assay with reference plasmids and spiked human stools as samples was evaluated and compared with those of quantitative PCR (qPCR. No false-positive results were observed for the 32 non-P. shigelloides strains used to evaluate assay specificity. The limit of detection for P. shigelloides was approximately 20 copies per reaction in reference plasmids and 5×10(3 CFU per gram in spiked human stool, which were more sensitive than the results of qPCR. When applied in human stool samples spiked with 2 low levels of P. shigelloides, the LAMP assays achieved accurate detection after 6-h enrichment. In conclusion, the LAMP assay developed in this study is a valuable method for rapid, cost-effective, and simple detection of P. shigelloides in basic clinical and field laboratories in the rural areas of China.

  9. Rapid detection of technological disasters by using a RST-based processing chain

    Science.gov (United States)

    Filizzola, Carolina; Corrado, Rosita; Mazzeo, Giuseppe; Marchese, Francesco; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2010-05-01

    Natural disasters may be responsible for technological disasters which may cause injuries to citizens and damages to relevant infrastructures. When it is not possible to prevent or foresee such disasters it is hoped at least to rapidly detect the accident in order to intervene as soon as possible to minimize damages. In this context, the combination of a Robust Satellite Technique (RST), able to identify for sure actual (i.e. no false alarm) accidents, and satellite sensors with high temporal resolution seems to assure both a reliable and a timely detection of abrupt Thermal Infrared (TIR) transients related to dangerous explosions. A processing chain, based on the RST approach, has been developed in the framework of the G-MOSAIC project by DIFA-UNIBAS team, suitable for automatically identify on MSG-SEVIRI images harmful events. Maps of thermal anomalies are generated every 15 minutes (i.e. SEVIRI temporal repetition rate) over a selected area together with kml files (containing information on latitude and longitude of "thermally" anomalous SEVIRI pixel centre, time of image acquisition, relative intensity of anomalies, etc.) for a rapid visualization of the accident position even on google earth. Results achieved in the case of the event occurred in Russia on 10th May 2009 will be presented: a gas pipeline exploded, causing injures to citizens and a huge damage to a Physicochemical Scientific Research Institute which is, according to official data, an organisation, running especially dangerous production and facilities.

  10. Alterations in regional homogeneity of resting-state brain activity in internet gaming addicts

    Directory of Open Access Journals (Sweden)

    Dong Guangheng

    2012-08-01

    Full Text Available Abstract Backgrounds Internet gaming addiction (IGA, as a subtype of internet addiction disorder, is rapidly becoming a prevalent mental health concern around the world. The neurobiological underpinnings of IGA should be studied to unravel the potential heterogeneity of IGA. This study investigated the brain functions in IGA patients with resting-state fMRI. Methods Fifteen IGA subjects and fourteen healthy controls participated in this study. Regional homogeneity (ReHo measures were used to detect the abnormal functional integrations. Results Comparing to the healthy controls, IGA subjects show enhanced ReHo in brainstem, inferior parietal lobule, left posterior cerebellum, and left middle frontal gyrus. All of these regions are thought related with sensory-motor coordination. In addition, IGA subjects show decreased ReHo in temporal, occipital and parietal brain regions. These regions are thought responsible for visual and auditory functions. Conclusions Our results suggest that long-time online game playing enhanced the brain synchronization in sensory-motor coordination related brain regions and decreased the excitability in visual and auditory related brain regions.

  11. Direct nitrate reductase assay versus microscopic observation drug susceptibility test for rapid detection of MDR-TB in Uganda.

    Directory of Open Access Journals (Sweden)

    Freddie Bwanga

    Full Text Available The most common method for detection of drug resistant (DR TB in resource-limited settings (RLSs is indirect susceptibility testing on Lowenstein-Jensen medium (LJ which is very time consuming with results available only after 2-3 months. Effective therapy of DR TB is therefore markedly delayed and patients can transmit resistant strains. Rapid and accurate tests suitable for RLSs in the diagnosis of DR TB are thus highly needed. In this study we compared two direct techniques--Nitrate Reductase Assay (NRA and Microscopic Observation Drug Susceptibility (MODS for rapid detection of MDR-TB in a high burden RLS. The sensitivity, specificity, and proportion of interpretable results were studied. Smear positive sputum was collected from 245 consecutive re-treatment TB patients attending a TB clinic in Kampala, Uganda. Samples were processed at the national reference laboratory and tested for susceptibility to rifampicin and isoniazid with direct NRA, direct MODS and the indirect LJ proportion method as reference. A total of 229 specimens were confirmed as M. tuberculosis, of these interpretable results were obtained in 217 (95% with either the NRA or MODS. Sensitivity, specificity and kappa agreement for MDR-TB diagnosis was 97%, 98% and 0.93 with the NRA; and 87%, 95% and 0.78 with the MODS, respectively. The median time to results was 10, 7 and 64 days with NRA, MODS and the reference technique, respectively. The cost of laboratory supplies per sample was low, around 5 USD, for the rapid tests. The direct NRA and MODS offered rapid detection of resistance almost eight weeks earlier than with the reference method. In the study settings, the direct NRA was highly sensitive and specific. We consider it to have a strong potential for timely detection of MDR-TB in RLS.

  12. Rapid detection of fumonisin B1 using a colloidal gold immunoassay strip test in corn samples.

    Science.gov (United States)

    Ling, Sumei; Wang, Rongzhi; Gu, Xiaosong; Wen, Can; Chen, Lingling; Chen, Zhibin; Chen, Qing-Ai; Xiao, Shiwei; Yang, Yanling; Zhuang, Zhenhong; Wang, Shihua

    2015-12-15

    Fumonisin B1 (FB1) is the most common and highest toxic of fumonisins species, exists frequently in corn and corn-based foods, leading to several animal and human diseases. Furthermore, FB1 was reported that it was associated with the human esophageal cancer. In view of the harmful of FB1, it is urgent to develop a feasible and accuracy method for rapid detection of FB1. In this study, a competitive immunoassay for FB1 detection was developed based on colloidal gold-antibody conjugate. The FB1-keyhole limpet hemoeyanin (FB1-KLH) conjugate was embedded in the test line, and goat anti-mouse IgG antibody embedded in the control line. The color density of the test line correlated with the concentration of FB1 in the range from 2.5 to 10 ng/mL, and the visual limit detection of test for FB1 was 2.5 ng/mL. The results indicated that the test strip is specific for FB1, and no cross-reactivity to other toxins. The quantitative detection for FB1 was simple, only needing one step without complicated assay performance and expensive equipment, and the total time of visual evaluation was less than 5 min. Hence, the developed colloidal gold-antibody assay can be used as a feasible method for FB1 rapid and quantitative detection in corn samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Using rapid-scan EPR to improve the detection limit of quantitative EPR by more than one order of magnitude.

    Science.gov (United States)

    Möser, J; Lips, K; Tseytlin, M; Eaton, G R; Eaton, S S; Schnegg, A

    2017-08-01

    X-band rapid-scan EPR was implemented on a commercially available Bruker ELEXSYS E580 spectrometer. Room temperature rapid-scan and continuous-wave EPR spectra were recorded for amorphous silicon powder samples. By comparing the resulting signal intensities the feasibility of performing quantitative rapid-scan EPR is demonstrated. For different hydrogenated amorphous silicon samples, rapid-scan EPR results in signal-to-noise improvements by factors between 10 and 50. Rapid-scan EPR is thus capable of improving the detection limit of quantitative EPR by at least one order of magnitude. In addition, we provide a recipe for setting up and calibrating a conventional pulsed and continuous-wave EPR spectrometer for rapid-scan EPR. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Rapid detection of Salmonella in pet food: design and evaluation of integrated methods based on real-time PCR detection.

    Science.gov (United States)

    Balachandran, Priya; Friberg, Maria; Vanlandingham, V; Kozak, K; Manolis, Amanda; Brevnov, Maxim; Crowley, Erin; Bird, Patrick; Goins, David; Furtado, Manohar R; Petrauskene, Olga V; Tebbs, Robert S; Charbonneau, Duane

    2012-02-01

    Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results. In this study, we developed two methods for the detection of low levels of Salmonella in pet food using real-time PCR: (i) detection of Salmonella in 25 g of dried pet food in less than 14 h with an automated magnetic bead-based nucleic acid extraction method and (ii) detection of Salmonella in 375 g of composite dry pet food matrix in less than 24 h with a manual centrifugation-based nucleic acid preparation method. Both methods included a preclarification step using a novel protocol that removes food matrix-associated debris and PCR inhibitors and improves the sensitivity of detection. Validation studies revealed no significant differences between the two real-time PCR methods and the standard U.S. Food and Drug Administration Bacteriological Analytical Manual (chapter 5) culture confirmation method.

  15. Microfluidic method for rapid turbidimetric detection of the DNA of Mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes

    International Nuclear Information System (INIS)

    Rafati, Adele; Gill, Pooria

    2015-01-01

    We describe a microfluidic method for rapid isothermal turbidimetric detection of the DNA of Mycobacterium tuberculosis. Loop-mediated isothermal amplification is accomplished in capillary tubes for amplifying DNA in less than 15 min, and sensitivity and specificity were compared to conventional loop-mediated isothermal amplification (LAMP). The method can detect as little as 1 pg mL −1 DNA in a sample. Results obtained with clinical specimens indicated 90 % sensitivity and 95 % specificity for microfluidic LAMP in comparison to culture methods. No interference occurred due to the presence of nonspecific DNAs. The findings demonstrate the power of the new microfluidic LAMP test for rapid molecular detection of microorganisms even when using bare eyes. (author)

  16. Rapid antigen detection test for respiratory syncytial virus diagnosis as a diagnostic tool

    Directory of Open Access Journals (Sweden)

    Flávio da Silva Mesquita

    2017-05-01

    Full Text Available Objective: The aim of this study was to evaluate the QuickVue® RSV Test Kit (QUIDEL Corp, CA, USA as a screening tool for respiratory syncytial virus in children with acute respiratory disease in comparison with the indirect immunofluorescence assay as gold standard. In Brazil, rapid antigen detection tests for respiratory syncytial virus are not routinely utilized as a diagnostic tool, except for the diagnosis of dengue and influenza. Methods: The authors retrospectively analyzed 486 nasopharyngeal aspirate samples from children under age 5 with acute respiratory infection, between December 2013 and August 2014, the samples were analyzed by indirect immunofluorescence assay and QuickVue® RSV Test kit. Samples with discordant results were analyzed by real time PCR and nucleotide sequencing. Results: From 313 positive samples by immunofluorescence assays, 282 (90% were also positive by the rapid antigen detection test, two were positive only by rapid antigen detection test, 33 were positive only by immunofluorescence assays, and 171 were positive by both methods. The 35 samples with discordant results were analyzed by real time PCR; the two samples positive only by rapid antigen detection test and the five positive only by immunofluorescence assays were also positive by real time PCR. There was no relation between the negativity by QuickVue® RSV Test and viral load or specific strain. The QuickVue® RSV Test showed sensitivity of 90%, specificity of 98.8%, predictive positive value of 99.3%, and negative predictive value of 94.6%, with accuracy of 93.2% and agreement κ index of 0.85 in comparison to immunofluorescence assay. Conclusions: This study demonstrated that the QuickVue® RSV Test Kit can be effective in early detection of Respiratory syncytial virus in nasopharyngeal aspirate and is reliable for use as a diagnostic tool in pediatrics. Resumo: Objetivo: Avaliar o teste QuickVue® RSV Test Kit (QUIDEL Corp, CA, EUA para o diagn

  17. The SPH homogeneization method

    International Nuclear Information System (INIS)

    Kavenoky, Alain

    1978-01-01

    The homogeneization of a uniform lattice is a rather well understood topic while difficult problems arise if the lattice becomes irregular. The SPH homogeneization method is an attempt to generate homogeneized cross sections for an irregular lattice. Section 1 summarizes the treatment of an isolated cylindrical cell with an entering surface current (in one velocity theory); Section 2 is devoted to the extension of the SPH method to assembly problems. Finally Section 3 presents the generalisation to general multigroup problems. Numerical results are obtained for a PXR rod bundle assembly in Section 4

  18. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...

  19. Simple and rapid detection of the porcine reproductive and respiratory syndrome virus from pig whole blood using filter paper.

    Science.gov (United States)

    Inoue, Ryo; Tsukahara, Takamitsu; Sunaba, Chinatsu; Itoh, Mitsugi; Ushida, Kazunari

    2007-04-01

    The combination of Flinders Technology Associates filter papers (FTA cards) and real-time PCR was examined to establish a simple and rapid technique for the detection of porcine reproductive and respiratory syndrome virus (PRRSV) from whole pig blood. A modified live PRRS vaccine was diluted with either sterilised saline or pig whole blood, and the suspensions were applied onto the FTA cards. The real-time RT-PCR detection of PRRSV was performed directly with the samples applied to the FTA card without the RNA extraction step. Six whole blood samples from at random selected piglets in the PRRSV infected farm were also assayed in this study. The expected PCR product was successfully amplified from either saline diluted or pig whole blood diluted vaccine. The same PCR ampliocon was detected from all blood samples assayed in this study. This study suggested that the combination of an FTA card and real-time PCR is a rapid and easy technique for the detection of PRRSV. This technique can remarkably shorten the time required for PRRSV detection from whole blood and makes the procedure much easier.

  20. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe

    Science.gov (United States)

    Xue, Yong; Wilkes, Jon G.; Moskal, Ted J.; Williams, Anna J.; Cooper, Willie M.; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A.

    2016-01-01

    Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts. PMID:26913737

  1. Development of a Flow Cytometry-Based Method for Rapid Detection of Escherichia coli and Shigella Spp. Using an Oligonucleotide Probe.

    Directory of Open Access Journals (Sweden)

    Yong Xue

    Full Text Available Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.

  2. Study of an ultrasound-based process analytical tool for homogenization of nanoparticulate pharmaceutical vehicles.

    Science.gov (United States)

    Cavegn, Martin; Douglas, Ryan; Akkermans, Guy; Kuentz, Martin

    2011-08-01

    There are currently no adequate process analyzers for nanoparticulate viscosity enhancers. This article aims to evaluate ultrasonic resonator technology as a monitoring tool for homogenization of nanoparticulate gels. Aqueous dispersions of colloidal microcrystalline cellulose (MCC) and a mixture of clay particles with xanthan gum were compared with colloidal silicon dioxide in oil. The processing was conducted using a laboratory-scale homogenizing vessel. The study investigated first the homogenization kinetics of the different systems to focus then on process factors in the case of colloidal MCC. Moreover, rheological properties were analyzed offline to assess the structure of the resulting gels. Results showed the suitability of ultrasound velocimetry to monitor the homogenization process. The obtained data were fitted using a novel heuristic model. It was possible to identify characteristic homogenization times for each formulation. The subsequent study of the process factors demonstrated that ultrasonic process analysis was equally sensitive as offline rheological measurements in detecting subtle manufacturing changes. It can be concluded that the ultrasonic method was able to successfully assess homogenization of nanoparticulate viscosity enhancers. This novel technique can become a vital tool for development and production of pharmaceutical suspensions in the future. Copyright © 2011 Wiley-Liss, Inc.

  3. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  4. Reflector homogenization

    International Nuclear Information System (INIS)

    Sanchez, R.; Ragusa, J.; Santandrea, S.

    2004-01-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P 0 transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP N core calculations. (Author)

  5. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    Science.gov (United States)

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  6. Hybrid diffusion–transport spatial homogenization method

    International Nuclear Information System (INIS)

    Kooreman, Gabriel; Rahnema, Farzad

    2014-01-01

    Highlights: • A new hybrid diffusion–transport homogenization method. • An extension of the consistent spatial homogenization (CSH) transport method. • Auxiliary cross section makes homogenized diffusion consistent with heterogeneous diffusion. • An on-the-fly re-homogenization in transport. • The method is faster than fine-mesh transport by 6–8 times. - Abstract: A new hybrid diffusion–transport homogenization method has been developed by extending the consistent spatial homogenization (CSH) transport method to include diffusion theory. As in the CSH method, an “auxiliary cross section” term is introduced into the source term, making the resulting homogenized diffusion equation consistent with its heterogeneous counterpart. The method then utilizes an on-the-fly re-homogenization in transport theory at the assembly level in order to correct for core environment effects on the homogenized cross sections and the auxiliary cross section. The method has been derived in general geometry and tested in a 1-D boiling water reactor (BWR) core benchmark problem for both controlled and uncontrolled configurations. The method has been shown to converge to the reference solution with less than 1.7% average flux error in less than one third the computational time as the CSH method – 6 to 8 times faster than fine-mesh transport

  7. Development and Validation of a Lateral Flow Immunoassay for Rapid Detection of NDM-Producing Enterobacteriaceae

    Science.gov (United States)

    Boutal, Hervé; Naas, Thierry; Devilliers, Karine; Oueslati, Saoussen; Bernabeu, Sandrine; Simon, Stéphanie

    2017-01-01

    ABSTRACT The global spread of carbapenemase-producing Enterobacteriaceae (CPE) that are often resistant to most, if not all, classes of antibiotics is a major public health concern. The NDM-1 carbapenemase is among the most worrisome carbapenemases given its rapid worldwide spread. We have developed and evaluated a lateral flow immunoassay (LFIA) (called the NDM LFIA) for the rapid and reliable detection of NDM-like carbapenemase-producing Enterobacteriaceae from culture colonies. We evaluated the NDM LFIA using 175 reference enterobacterial isolates with characterized β-lactamase gene content and 74 nonduplicate consecutive carbapenem-resistant clinical isolates referred for expertise to the French National Reference Center (NRC) for Antibiotic Resistance during a 1-week period (in June 2016). The reference collection included 55 non-carbapenemase producers and 120 carbapenemase producers, including 27 NDM producers. All 27 NDM-like carbapenemase producers of the reference collection were correctly detected in less than 15 min by the NDM LFIA, including 22 strains producing NDM-1, 2 producing NDM-4, 1 producing NDM-5, 1 producing NDM-7, and 1 producing NDM-9. All non-NDM-1 producers gave a negative result with the NDM LFIA. No cross-reaction was observed with carbapenemases (VIM, IMP, NDM, KPC, and OXA-48-like), extended-spectrum β-lactamases (ESBLs) (TEM, SHV, and CTX-M), AmpCs (CMY-2, DHA-2, and ACC-1), and oxacillinases (OXA-1, -2, -9, and -10). Similarly, among the 74 referred nonduplicate consecutive clinical isolates, all 7 NDM-like producers were identified. Overall, the sensitivity and specificity of the assay were 100% for NDM-like carbapenemase detection with strains cultured on agar. The NDM LFIA was efficient, rapid, and easy to implement in the routine workflow of a clinical microbiology laboratory for the confirmation of NDM-like carbapenemase-producing Enterobacteriaceae. PMID:28404680

  8. Homogenization of variational inequalities and equations defined by pseudomonotone operators

    International Nuclear Information System (INIS)

    Sandrakov, G V

    2008-01-01

    Results on the convergence of sequences of solutions of non-linear equations and variational inequalities for obstacle problems are proved. The variational inequalities and equations are defined by a non-linear, pseudomonotone operator of the second order with periodic, rapidly oscillating coefficients and by sequences of functions characterizing the obstacles and the boundary conditions. Two-scale and macroscale (homogenized) limiting problems for such variational inequalities and equations are obtained. Results on the relationship between solutions of these limiting problems are established and sufficient conditions for the uniqueness of solutions are presented. Bibliography: 25 titles

  9. Novel Sample Preparation Method for Safe and Rapid Detection of Bacillus anthracis Spores in Environmental Powders and Nasal Swabs

    OpenAIRE

    Luna, Vicki A.; King, Debra; Davis, Carisa; Rycerz, Tony; Ewert, Matthew; Cannons, Andrew; Amuso, Philip; Cattani, Jacqueline

    2003-01-01

    Bacillus anthracis spores have been used as a biological weapon in the United States. We wanted to develop a safe, rapid method of sample preparation that provided safe DNA for the detection of spores in environmental and clinical specimens. Our method reproducibly detects B. anthracis in samples containing

  10. Technique for rapid detection of phthalates in water and beverages

    KAUST Repository

    Zia, Asif I.

    2013-05-01

    ), USA. Results showed that the new sensor was able to detect different concentrations of phthalates in energy drinks. The experimental outcomes provided sufficient indication to favour the development of a low cost detection system for rapid quantification of phthalates in beverages for industrial use. © 2012 Elsevier Ltd. All rights reserved.

  11. A multisyringe flow injection system with immobilized glucose oxidase based on homogeneous chemiluminescence detection

    International Nuclear Information System (INIS)

    Manera, Matias; Miro, Manuel; Estela, Jose Manuel; Cerda, Victor

    2004-01-01

    In this paper, enzyme containing reactors are for the first time implemented in the multisyringe flow injection analysis (MSFIA) technique interfaced with chemiluminescence detection for biochemical assays. The automated methodology is based on the on-line substrate conversion in an oxidase packed-bed reactor and the post-column chemiluminogenic catalysed-reaction of the generated oxidising species with an organic molecule (namely, 3-aminophthalhydrazide) in front of the photosensor module. Various catalysts in homogeneous phase are compared taking advantage of the benefits of the MSFIA concept. On one hand, mineral catalysts (namely, Co(II)) are assessed, on the other hand, minute and accurate volumes of soluble organic species (viz., horseradish peroxidase (HRP)) are readily handled without requiring further immobilization protocols. The potentials of the MSFIA-CL concept with immobilisation of the proper oxidase protein are demonstrated using glucose as a model of substrate. Despite the different pH and kinetic requirements for both the substrate conversion in the enzyme-reactor and the Co(II)/HRP-mediated luminol oxidation integrated in the flow system, the MSFIA approach warrants maximum yields owing to the independent optimisation of the physical and chemical parameters of the various reactions involved. Under the optimised configurations and experimental variables, dynamic working ranges from 2.5x10 -6 to 1.0x10 -3 mol l -1 glucose may be obtained for both detection schemes by proper photomultiplier gain selection. The detection and determination limits calculated at the 3σ and 10σ level were 8.6x10 -7 and 2.0x10 -6 mol l -1 glucose, respectively, for the Co(II)-luminol system, and 1.3x10 -6 and 2.3x10 -6 mol l -1 glucose, respectively, for the HRP-luminol procedure. The repeatability (n=10) at the 1.0x10 -5 mol l -1 level was slightly better for the Co(II)-catalysed reaction (2.5% versus 4.0%). The developed MSFIA-CL methodology was used for kinetic

  12. Electro-magnetostatic homogenization of bianisotropic metamaterials

    OpenAIRE

    Fietz, Chris

    2012-01-01

    We apply the method of asymptotic homogenization to metamaterials with microscopically bianisotropic inclusions to calculate a full set of constitutive parameters in the long wavelength limit. Two different implementations of electromagnetic asymptotic homogenization are presented. We test the homogenization procedure on two different metamaterial examples. Finally, the analytical solution for long wavelength homogenization of a one dimensional metamaterial with microscopically bi-isotropic i...

  13. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    Directory of Open Access Journals (Sweden)

    Hoseok Choi

    2016-04-01

    Full Text Available Assaying the glycogen synthase kinase-3 (GSK3 activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  14. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    Science.gov (United States)

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts. PMID:27092510

  15. Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography.

    Science.gov (United States)

    Che, Yulan; Xu, Yi; Wang, Renjie; Chen, Li

    2017-08-01

    A rapid and sensitive analytical method was developed to detect pathogenic bacteria which combined magnetic enrichment, fluorescence labeling with polyethylene glycol (PEG) magnetophoretic chromatography. As pathogenic bacteria usually exist in complex matrixes at low concentration, an efficient enrichment is essential for diagnosis. In order to capture series types of pathogenic bacteria in samples, amino-modified magnetic nanoparticles (Fe 3 O 4 @SiO 2 -NH 2 ) were prepared for efficient enrichment by the electrostatic interaction with pathogenic bacteria. It was shown that the capture efficiency reached up to 95.4% for Escherichia coli (E. coli). Furthermore, quantitative analysis of the bacteria was achieved by using acridine orange (AO) as a fluorescence probe for the captured E. coli due to its ability of staining series types of bacteria and rapid labeling. In order to remove the free magnetic nanoparticles and redundant fluorescent reagent, the labeled suspension was poured into a PEG separation column and was separated by applying an external magnetic field. The presence of 100 cfu mL -1 E. coli could be detected for semi-quantitative analysis by observing the separation column with the naked eye, and the concentration could be further evaluated by fluorescence detection. All the above processes were finished within 80 min. It was demonstrated that a good linear relationship existed between the fluorescence intensity and the concentration of E. coli ranging from 10 2 to 10 6  cfu mL -1 , with a detection limit of 100 cfu mL -1 when E. coli acted as target bacteria. The recovery rate of E. coli was 93.6∼102.0% in tap water and cooked meat samples, and the RSD was lower than 7% (n = 6); the result coincided with the conventional plate count method. Graphical abstract ᅟ.

  16. Detection of Mycobacterium bovis in bovine and bubaline tissues using nested-PCR for TbD1.

    Science.gov (United States)

    Araújo, Cristina P; Osório, Ana Luiza A R; Jorge, Kláudia S G; Ramos, Carlos Alberto N; Filho, Antonio Francisco S; Vidal, Carlos Eugênio S; Roxo, Eliana; Nishibe, Christiane; Almeida, Nalvo F; Júnior, Antônio A F; Silva, Marcio R; Neto, José Diomedes B; Cerqueira, Valíria D; Zumárraga, Martín J; Araújo, Flábio R

    2014-01-01

    In the present study, a nested-PCR system, targeting the TbD1 region, involving the performance of conventional PCR followed by real-time PCR, was developed to detect Mycobacterium bovis in bovine/bubaline tissue homogenates. The sensitivity and specificity of the reactions were assessed with DNA samples extracted from tuberculous and non-tuberculous mycobacteria, as well as other actinomycetales species and DNA samples extracted directly from bovine and bubaline tissue homogenates. In terms of analytical sensitivity, the DNA of M. bovis AN5 was detected up to 1.56 ng with conventional PCR, 97.6 pg with real-time PCR, and 1.53 pg with nested-PCR in the reaction mixture. The nested-PCR exhibited 100% analytical specificity for M. bovis when tested with the DNA of reference strains of environmental mycobacteria and closely-related Actinomycetales. A clinical sensitivity value of 76.0% was detected with tissue samples from animals that exhibited positive results in the comparative intradermal tuberculin test (CITT), as well as from those with lesions compatible with tuberculosis (LCT) that rendered positive cultures. A clinical specificity value of 100% was detected with tissue samples from animals with CITT- results, with no visible lesions (NVL) and negative cultures. No significant differences were found between the nested-PCR and culture in terms of detecting CITT+ animals with LCT or with NVL. No significant differences were recorded in the detection of CITT- animals with NVL. However, nested-PCR detected a significantly higher number of positive animals than the culture in the group of animals exhibiting LCT with no previous records of CITT. The use of the nested-PCR assay to detect M. bovis in tissue homogenates provided a rapid diagnosis of bovine and bubaline tuberculosis.

  17. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus.

    Science.gov (United States)

    Lian, Yan; He, Fengjiao; Wang, Huan; Tong, Feifei

    2015-03-15

    A novel aptamer/graphene interdigitated gold electrode piezoelectric sensor was developed for the rapid and specific detection of Staphylococcus aureus (S. aureus) by employing S. aureus aptamer as a biological recognition element. 4-Mercaptobenzene-diazonium tetrafluoroborate (MBDT) salt was used as a molecular cross-linking agent to chemically bind graphene to interdigital gold electrodes (IDE) that are connected to a series electrode piezoelectric quartz crystal (SPQC). S. aureus aptamers were assembly immobilized onto graphene via the π-π stacking of DNA bases. Due to the specific binding between S. aureus and aptamer, when S. aureus is present, the DNA bases interacted with the aptamer, thereby dropping the aptamer from the surface of the graphene. The electric parameters of the electrode surface was changed and resulted in the change of oscillator frequency of the SPQC. This detection was completed within 60min. The constructed sensor demonstrated a linear relationship between resonance frequency shifts with bacterial concentrations ranging from 4.1×10(1)-4.1×10(5)cfu/mL with a detection limit of 41cfu/mL. The developed strategy can detect S. aureus rapidly and specifically for clinical diagnosis and food testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tu, Lung-Chen; Chang, Chia-Ching; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang

    2013-01-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics. (paper)

  19. Rapid and highly sensitive detection of Enterovirus 71 by using nanogold-enhanced electrochemical impedance spectroscopy

    Science.gov (United States)

    Li, Hsing-Yuan; Tseng, Shing-Hua; Cheng, Tsai-Mu; Chu, Hsueh-Liang; Lu, Yu-Ning; Wang, Fang-Yu; Tsai, Li-Yun; Shieh, Juo-Yu; Yang, Jyh-Yuan; Juan, Chien-Chang; Tu, Lung-Chen; Chang, Chia-Ching

    2013-07-01

    Enterovirus 71 (EV71) infection is an emerging infectious disease causing neurological complications and/or death within two to three days after the development of fever and rash. A low viral titre in clinical specimens makes the detection of EV71 difficult. Conventional approaches for detecting EV71 are time consuming, poorly sensitive, or complicated, and cannot be used effectively for clinical diagnosis. Furthermore, EV71 and Coxsackie virus A16 (CA16) may cross react in conventional assays. Therefore, a rapid, highly sensitive, specific, and user-friendly test is needed. We developed an EV71-specific nanogold-modified working electrode for electrochemical impedance spectroscopy in the detection of EV71. Our results show that EV71 can be distinguished from CA16, Herpes simplex virus, and lysozyme, with the modified nanogold electrode being able to detect EV71 in concentrations as low as 1 copy number/50 μl reaction volume, and the duration between sample preparation and detection being 11 min. This detection platform may have the potential for use in point-of-care diagnostics.

  20. A PCR detection method for rapid identification of Melissococcus pluton in honeybee larvae.

    Science.gov (United States)

    Govan, V A; Brözel, V; Allsopp, M H; Davison, S

    1998-05-01

    Melissococcus pluton is the causative agent of European foulbrood, a disease of honeybee larvae. This bacterium is particularly difficult to isolate because of its stringent growth requirements and competition from other bacteria. PCR was used selectively to amplify specific rRNA gene sequences of M. pluton from pure culture, from crude cell lysates, and directly from infected bee larvae. The PCR primers were designed from M. pluton 16S rRNA sequence data. The PCR products were visualized by agarose gel electrophoresis and confirmed as originating from M. pluton by sequencing in both directions. Detection was highly specific, and the probes did not hybridize with DNA from other bacterial species tested. This method enabled the rapid and specific detection and identification of M. pluton from pure cultures and infected bee larvae.

  1. A field-practical assay for rapid detection of chlorophenols

    Energy Technology Data Exchange (ETDEWEB)

    Washburn, K.S.; Phillips, T.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Veterinary Anatomy and Public Health

    1994-12-31

    Water-solvated chlorophenols (CPs) are environmental toxins associated with wood preservation and pesticide synthesis and usage. Their toxicity and association with dioxin-contaminated wastes are well-documented, as is their stability in most environmental settings. Several analytical procedures, mainly HPLC and GC/MS, are currently used to detect and quantify CPs, but these procedures are based on expensive equipment and technical expertise in a laboratory setting. The authors have developed an inexpensive, field-practical method for CPs, utilizing a small, packed glass minicolumn and derivatization of target CP molecules with dansyl chloride (5-dimethylaminonaphthalene-1sulfonyl chloride), or DsCl. A nonfluorescent borosilicate glass tube was used to house an array of inorganic sorbent materials, including preparative layers and a reactive neutral alumina interface separated by sand. DsCl is a substituted naphthalene with a conjugated X system that is responsible for its fluorescent complexation. Amines that reacted with DsCl were removed with a small amount of phyllosilicate clay to avoid interference. A neutral alumina/sand interface was used to strongly bind and immobilize the dansylated CPs. Activities greater than 3.0 for the alumina were avoided to prevent loss of selectivity, intensity and color of the fluorescence at the reactive interface. The results indicated that this assay was capable of rapidly screening potable water samples and detecting CP contamination at very low concentrations (i.e., 1.0 ppb of pentachlorophenol in drinking water).

  2. Direct numerical simulation of homogeneous stratified rotating turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Iida, O.; Tsujimura, S.; Nagano, Y. [Nagoya Institute of Technology, Department of Mech. Eng., Nagoya (Japan)

    2005-12-01

    The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. (orig.)

  3. Rapid detection of fifteen known soybean viruses by dot-immunobinding assay.

    Science.gov (United States)

    Ali, Akhtar

    2017-11-01

    A dot-immunobinding assay (DIBA) was optimized and used successfully for the rapid detection of 15 known viruses [Alfalfa mosaic virus (AMV), Bean pod mottle virus (BPMV), Bean yellow mosaic virus (BYMV), Cowpea mild mottle virus (CPMMV), Cowpea severe mosaic virus (CPSMV), Cucumber mosaic virus (CMV), Peanut mottle virus (PeMoV), Peanut stunt virus (PSV), Southern bean mosaic virus (SBMV), Soybean dwarf virus (SbDV), Soybean mosaic virus (SMV), Soybean vein necrosis virus (SVNV), Tobacco ringspot virus (TRSV), Tomato ringspot virus (ToRSV), and Tobacco streak virus (TSV)] infecting soybean plants in Oklahoma. More than 1000 leaf samples were collected in approximately 100 commercial soybean fields in 24 counties of Oklahoma, during the 2012-2013 growing seasons. All samples were tested by DIBA using polyclonal antibodies of the above 15 plant viruses. Thirteen viruses were detected, and 8 of them were reported for the first time in soybean crops of Oklahoma. The highest average incidence was recorded for PeMoV (13.5%) followed by SVNV (6.9%), TSV (6.4%), BYMV, (4.5%), and TRSV (3.9%), while the remaining seven viruses were detected in less than 2% of the samples tested. The DIBA was quick, and economical to screen more than 1000 samples against 15 known plant viruses in a very short time. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A portable device for rapid nondestructive detection of fresh meat quality

    Science.gov (United States)

    Lin, Wan; Peng, Yankun

    2014-05-01

    Quality attributes of fresh meat influence nutritional value and consumers' purchasing power. In order to meet the demand of inspection department for portable device, a rapid and nondestructive detection device for fresh meat quality based on ARM (Advanced RISC Machines) processor and VIS/NIR technology was designed. Working principal, hardware composition, software system and functional test were introduced. Hardware system consisted of ARM processing unit, light source unit, detection probe unit, spectral data acquisition unit, LCD (Liquid Crystal Display) touch screen display unit, power unit and the cooling unit. Linux operating system and quality parameters acquisition processing application were designed. This system has realized collecting spectral signal, storing, displaying and processing as integration with the weight of 3.5 kg. 40 pieces of beef were used in experiment to validate the stability and reliability. The results indicated that prediction model developed using PLSR method using SNV as pre-processing method had good performance, with the correlation coefficient of 0.90 and root mean square error of 1.56 for validation set for L*, 0.95 and 1.74 for a*,0.94 and 0.59 for b*, 0.88 and 0.13 for pH, 0.79 and 12.46 for tenderness, 0.89 and 0.91 for water content, respectively. The experimental result shows that this device can be a useful tool for detecting quality of meat.

  5. Rapid detection of Pseudomonas aeruginosa from positive blood cultures by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Cattoir Vincent

    2010-08-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is responsible for numerous bloodstream infections associated with severe adverse outcomes in case of inappropriate initial antimicrobial therapy. The present study was aimed to develop a novel quantitative PCR (qPCR assay, using ecfX as the specific target gene, for the rapid and accurate identification of P. aeruginosa from positive blood cultures (BCs. Methods Over the period August 2008 to June 2009, 100 BC bottles positive for gram-negative bacilli were tested in order to evaluate performances of the qPCR technique with conventional methods as gold standard (i.e. culture and phenotypic identification. Results Thirty-three strains of P. aeruginosa, 53 strains of Enterobactericaeae, nine strains of Stenotrophomonas maltophilia and two other gram-negative species were isolated while 3 BCs were polymicrobial including one mixture containing P. aeruginosa. All P. aeruginosa clinical isolates were detected by qPCR except a single strain in mixed culture. Performances of the qPCR technique were: specificity, 100%; positive predictive value, 100%; negative predictive value, 98.5%; and sensitivity, 97%. Conclusions This reliable technique may offer a rapid (

  6. Rapid Detection of Ricin in Serum Based on Cu-Chelated Magnetic Beads Using Mass Spectrometry

    Science.gov (United States)

    Zhao, Yong-Qiang; Song, Jian; Wang, Hong-Li; Xu, Bin; Liu, Feng; He, Kun; Wang, Na

    2016-04-01

    The protein toxin ricin obtained from castor bean plant (Ricinus communis) seeds is a potent biological warfare agent due to its ease of availability and acute toxicity. In this study, we demonstrated a rapid and simple method to detect ricin in serum in vitro. The ricin was mixed with serum and digested by trypsin, then all the peptides were efficiently extracted using Cu-chelated magnetic beads and were detected with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The specific ricin peptides were identified by Nanoscale Ultra Performance liquid chromatography coupled to tandem mass spectrometry according to their sequences. The assay required 2.5 hours, and a characteristic peptide could be detected down to 4 ng/μl and used as a biomarker to detect ricin in serum. The high sensitivity and simplicity of the procedure makes it valuable in clinical practice.

  7. Bilipschitz embedding of homogeneous fractals

    OpenAIRE

    Lü, Fan; Lou, Man-Li; Wen, Zhi-Ying; Xi, Li-Feng

    2014-01-01

    In this paper, we introduce a class of fractals named homogeneous sets based on some measure versions of homogeneity, uniform perfectness and doubling. This fractal class includes all Ahlfors-David regular sets, but most of them are irregular in the sense that they may have different Hausdorff dimensions and packing dimensions. Using Moran sets as main tool, we study the dimensions, bilipschitz embedding and quasi-Lipschitz equivalence of homogeneous fractals.

  8. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    International Nuclear Information System (INIS)

    Moutsopoulos, George

    2013-01-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre–Petrov types and discuss the warped de Sitter spacetime. (paper)

  9. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    Science.gov (United States)

    Moutsopoulos, George

    2013-06-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.

  10. Nationwide Genomic Study in Denmark Reveals Remarkable Population Homogeneity.

    Science.gov (United States)

    Athanasiadis, Georgios; Cheng, Jade Y; Vilhjálmsson, Bjarni J; Jørgensen, Frank G; Als, Thomas D; Le Hellard, Stephanie; Espeseth, Thomas; Sullivan, Patrick F; Hultman, Christina M; Kjærgaard, Peter C; Schierup, Mikkel H; Mailund, Thomas

    2016-10-01

    Denmark has played a substantial role in the history of Northern Europe. Through a nationwide scientific outreach initiative, we collected genetic and anthropometrical data from ∼800 high school students and used them to elucidate the genetic makeup of the Danish population, as well as to assess polygenic predictions of phenotypic traits in adolescents. We observed remarkable homogeneity across different geographic regions, although we could still detect weak signals of genetic structure reflecting the history of the country. Denmark presented genomic affinity with primarily neighboring countries with overall resemblance of decreasing weight from Britain, Sweden, Norway, Germany, and France. A Polish admixture signal was detected in Zealand and Funen, and our date estimates coincided with historical evidence of Wend settlements in the south of Denmark. We also observed considerably diverse demographic histories among Scandinavian countries, with Denmark having the smallest current effective population size compared to Norway and Sweden. Finally, we found that polygenic prediction of self-reported adolescent height in the population was remarkably accurate (R 2 = 0.639 ± 0.015). The high homogeneity of the Danish population could render population structure a lesser concern for the upcoming large-scale gene-mapping studies in the country. Copyright © 2016 by the Genetics Society of America.

  11. Benchmarking homogenization algorithms for monthly data

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  12. Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices.

    Science.gov (United States)

    Pearson, Brooke; Mills, Alexander; Tucker, Madeline; Gao, Siyue; McLandsborough, Lynne; He, Lili

    2018-06-01

    Bacterial foodborne illness continues to be a pressing issue in our food supply. Rapid detection methods are needed for perishable foods due to their short shelf lives and significant contribution to foodborne illness. Previously, a sensitive and reliable surface-enhanced Raman spectroscopy (SERS) sandwich assay based on 3-mercaptophenylboronic acid (3-MBPA) as a capturer and indicator molecule was developed for rapid bacteria detection. In this study, we explored the advantages and constraints of this assay over the conventional aerobic plate count (APC) method and further developed methods for detection in real environmental and food matrices. The SERS sandwich assay was able to detect environmental bacteria in pond water and on spinach leaves at higher levels than the APC method. In addition, the SERS assay appeared to have higher sensitivity to quantify bacteria in the stationary phase. On the other hand, the APC method was more sensitive to cell viability. Finally, a method to detect bacteria in a challenging high-sugar juice matrix was developed to enhance bacteria capture. This study advanced the SERS technique for real applications in environment and food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A new methodology for rapid detection of Lactobacillus delbrueckii subsp. bulgaricus based on multiplex PCR.

    Science.gov (United States)

    Nikolaou, Anastasios; Saxami, Georgia; Kourkoutas, Yiannis; Galanis, Alex

    2011-02-01

    In this study we present a novel multiplex PCR assay for rapid and efficient detection of Lactobacillus delbrueckii subsp. bulgaricus. The accuracy of our method was confirmed by the successful identification of L. delbrueckii subsp. bulgaricus in commercial yoghurts and food supplements and it may be readily applied to the food industry. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. A Rapid Protocol of Crude RNA/DNA Extraction for RT-qPCR Detection and Quantification of 'Candidatus Phytoplasma prunorum'.

    Science.gov (United States)

    Minguzzi, Stefano; Terlizzi, Federica; Lanzoni, Chiara; Poggi Pollini, Carlo; Ratti, Claudio

    2016-01-01

    Many efforts have been made to develop a rapid and sensitive method for phytoplasma and virus detection. Taking our cue from previous works, different rapid sample preparation methods have been tested and applied to Candidatus Phytoplasma prunorum ('Ca. P. prunorum') detection by RT-qPCR. A duplex RT-qPCR has been optimized using the crude sap as a template to simultaneously amplify a fragment of 16S rRNA of the pathogen and 18S rRNA of the host plant. The specific plant 18S rRNA internal control allows comparison and relative quantification of samples. A comparison between DNA and RNA contribution to qPCR detection is provided, showing higher contribution of the latter. The method presented here has been validated on more than a hundred samples of apricot, plum and peach trees. Since 2013, this method has been successfully applied to monitor 'Ca. P. prunorum' infections in field and nursery. A triplex RT-qPCR assay has also been optimized to simultaneously detect 'Ca. P. prunorum' and Plum pox virus (PPV) in Prunus.

  15. Detection of tPA-Induced Hyperfibrinolysis in Whole Blood by RapidTEG, KaolinTEG, and Functional FibrinogenTEG in Healthy Individuals

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Ostrowski, Sisse Rye; Sørensen, Anne Marie

    2012-01-01

    hyperfibrinolysis, as compared to standard KaolinTEG, is unknown. To investigate this, the ability of RapidTEG, KaolinTEG, and functional fibrinogenTEG (FFTEG) to detect tPA-induced (tissue plasminogen activator) lysis in whole blood from healthy individuals was investigated. Our hypothesis was that the initial...... powerful clot formation in the RapidTEG assay would reduce the sensitivity as compared to the normally used KaolinTEG assay. We also evaluated the FFTEG assay. Methods: In vitro comparison of the sensitivity of RapidTEG, KaolinTEG, and FFTEG to 1.8 nmol/L tPA in citrated whole blood (299 ± 23 ng/mL plasma......) induced hyperfibrinolysis in 10 healthy individuals and duplicate titration of the tPA whole blood (WB) concentration from 0.09 to 7.2 nmol/L (14-1144 ng/mL plasma) in 1 healthy donor. Results: At 1.8 nmol/L tPA, KaolinTEG, RapidTEG, and FFTEG all detected fibrinolysis but with different sensitivities...

  16. Rapid radiometric detection of microbial contamination using 14C-glucose and standard liquid scintillation counting system

    International Nuclear Information System (INIS)

    Joshi, S.H.; Kamble, S.B.; Pilkhwal, N.S.; Ramamoorthy, N.

    1998-01-01

    A simple and rapid method for detection of microbial contamination based on quantitation of 14 CO 2 released during metabolism of 14 C-Glucose by microorganisms is reported. Liquid scintillation counting system (LSCS) with a modified sample preparation method was utilised. The scintillator was impregnated on Whatman-1 paper on which 14 CO 2 evolved during metabolism could be absorbed. The important parameters of counting such as efficiency, position sensitivity and geometry as well as effect of NaOH quantity and of microbial load on detection period were studied. The efficiency of radioactivity assay was 18±2.8 %. Contamination of the order of 5-10 organism/ml of product could be detected in about 24 hours. (author)

  17. Simultaneous point-of-care detection of anemia and sickle cell disease in Tanzania: the RAPID study.

    Science.gov (United States)

    Smart, Luke R; Ambrose, Emmanuela E; Raphael, Kevin C; Hokororo, Adolfine; Kamugisha, Erasmus; Tyburski, Erika A; Lam, Wilbur A; Ware, Russell E; McGann, Patrick T

    2018-02-01

    Both anemia and sickle cell disease (SCD) are highly prevalent across sub-Saharan Africa, and limited resources exist to diagnose these conditions quickly and accurately. The development of simple, inexpensive, and accurate point-of-care (POC) assays represents an important advance for global hematology, one that could facilitate timely and life-saving medical interventions. In this prospective study, Robust Assays for Point-of-care Identification of Disease (RAPID), we simultaneously evaluated a POC immunoassay (Sickle SCAN™) to diagnose SCD and a first-generation POC color-based assay to detect anemia. Performed at Bugando Medical Center in Mwanza, Tanzania, RAPID tested 752 participants (age 1 day to 20 years) in four busy clinical locations. With minimally trained medical staff, the SCD POC assay diagnosed SCD with 98.1% sensitivity and 91.1% specificity. The hemoglobin POC assay had 83.2% sensitivity and 74.5% specificity for detection of severe anemia (Hb ≤ 7 g/dL). Interobserver agreement was excellent for both POC assays (r = 0.95-0.96). Results for the hemoglobin POC assay have informed the second-generation assay design to be more suitable for low-resource settings. RAPID provides practical feasibility data regarding two novel POC assays for the diagnosis of anemia and SCD in real-world field evaluations and documents the utility and potential impact of these POC assays for sub-Saharan Africa.

  18. Homogenization of resonant chiral metamaterials

    OpenAIRE

    Andryieuski, Andrei; Menzel, Christoph; Rockstuhl, Carsten; Malureanu, Radu; Lederer, Falk; Lavrinenko, Andrei

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as e.g. propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to pho...

  19. [Rapid detection of four antipertensive chemicals adulterated in traditional Chinese medicine for hypertension using TLC-SERS].

    Science.gov (United States)

    Zhu, Qing-Xia; Cao, Yong-Bing; Cao, Ying-Ying; Lu, Feng

    2014-04-01

    A novel facile method for on-site detection of antipertensive chemicals (e. g. nicardipine hydrochloride, doxazosin mesylate, propranolol hydrochloride, and hydrochlorothiazide) adulterated in traditional Chinese medicine for hypertension using thin layer chromatography (TLC) combined with surface enhanced Raman spectroscopy (SERS) was reported in the present paper. Analytes and pharmaceutical matrices was separated by TLC, then SERS method was used to complete qualitative identification of trace substances on TLC plate. By optimizing colloidal silver concentration and developing solvent, as well as exploring the optimal limits of detection (LOD), the initially established TLC-SERS method was used to detect real hypertension Chinese pharmaceuticals. The results showed that this method had good specificity for the four chemicals and high sensitivity with a limit of detection as lower as to 0.005 microg. Finally, two of the ten antipertensive drugs were detected to be adulterated with chemicals. This simple and fast method can realize rapid detection of chemicals illegally for doping in antipertensive Chinese pharmaceuticals, and would have good prospects in on-site detection of chemicals for doping in Chinese pharmaceuticals.

  20. Romer Labs RapidChek®Listeria monocytogenes Test System for the Detection of L. monocytogenes on Selected Foods and Environmental Surfaces.

    Science.gov (United States)

    Juck, Gregory; Gonzalez, Verapaz; Allen, Ann-Christine Olsson; Sutzko, Meredith; Seward, Kody; Muldoon, Mark T

    2018-04-27

    The Romer Labs RapidChek ® Listeria monocytogenes test system (Performance Tested Method ℠ 011805) was validated against the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook (USDA-FSIS/MLG), U.S. Food and Drug Association Bacteriological Analytical Manual (FDA/BAM), and AOAC Official Methods of Analysis ℠ (AOAC/OMA) cultural reference methods for the detection of L. monocytogenes on selected foods including hot dogs, frozen cooked breaded chicken, frozen cooked shrimp, cured ham, and ice cream, and environmental surfaces including stainless steel and plastic in an unpaired study design. The RapidChek method uses a proprietary enrichment media system, a 44-48 h enrichment at 30 ± 1°C, and detects L. monocytogenes on an immunochromatographic lateral flow device within 10 min. Different L. monocytogenes strains were used to spike each of the matrixes. Samples were confirmed based on the reference method confirmations and an alternate confirmation method. A total of 140 low-level spiked samples were tested by the RapidChek method after enrichment for 44-48 h in parallel with the cultural reference method. There were 88 RapidChek presumptive positives. One of the presumptive positives was not confirmed culturally. Additionally, one of the culturally confirmed samples did not exhibit a presumptive positive. No difference between the alternate confirmation method and reference confirmation method was observed. The respective cultural reference methods (USDA-FSIS/MLG, FDA/BAM, and AOAC/OMA) produced a total of 63 confirmed positive results. Nonspiked samples from all foods were reported as negative for L. monocytogenes by all methods. Probability of detection analysis demonstrated no significant differences in the number of positive samples detected by the RapidChek method and the respective cultural reference method.

  1. The diode pump: its application to nuclear particle counting and to the detection of rapid neutronic power excursions in atomic piles (1962); La pompe a diodes, son application au comptage de particules nucleaires et a la detection des excursions rapides de puissance neutronique d'une pile atomique (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Nicolo, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-05-15

    This work deals in particular with three applications of an electronic device whose principle is based on that of the diode pump. 1- Linear response circuit 2- Logarithmic response circuit 3- Detection of neutronic power excursions in atomic piles using a circuit or a combination of several circuits of the linear response type. Each of the applications has been studied theoretically and experimentally. Finally, the detection of rapid power excursions is extensively discussed with reference to the many methods available, emphasis being laid on the rapidity of the electronic response. (author) [French] Cet ouvrage traite plus particulierement de trois applications d'un dispositif electronique dont le principe de fonctionnement est base sur celui de la pompe a diodes. 1- Circuit a reponse lineaire 2- Circuit a reponse logarithmique 3- Detection des excursions de puissance neutronique d'une pile atomique a l'aide d'un circuit ou d'une association de plusieurs circuits a reponse lineaire. Chacune des applications fait l'objet d'une etude theorique et experimentale. Enfin, la detection des excursions rapides de puissance est tres largement discutee a travers plusieurs methodes, notamment sur la partie concernant la rapidite de reponse de l'electronique. (auteur)

  2. A New Method for Rapid Detection of the Volume and Quality of Watermelon Based on Processing of X-Ray Images

    OpenAIRE

    Zou , Ling; Ming , Sun; Zhang , Di

    2014-01-01

    International audience; Real-time online detection of fruit quality system has been applied to production practice because online testing and grading of fruits screening technology has matured. However, fruit size and quality online testing have always been difficult. Many detection methods of fruit size and quality are very complicated and time consuming, which cannot meet the needs of real-time detection. In this paper, a new method for rapid detecting small watermelon of volume and quality...

  3. A novel gold nanoparticle-DNA aptamer-based plasmonic chip for rapid and sensitive detection of bacterial pathogens

    DEFF Research Database (Denmark)

    Sun, Yi; Phuoc Long, Truong; Wolff, Anders

    2016-01-01

    Gold nanoparticles (AuNPs)-based biosensors are emerging technologies for rapid detection of pathogens. However, it is very challenging to develop chip-based AuNP-biosensors for whole cells. This paper describes a novel AuNPs-DNA aptamer-based plasmonic assay which allows DNA aptamers...

  4. A rapid and user-friendly assay to detect the Neutrophil gelatinase-associated lipocalin (NGAL) using up-converting nanoparticles.

    Science.gov (United States)

    Lei, Lijiang; Zhu, Jin; Xia, Gangqiang; Feng, Hui; Zhang, Hongman; Han, Yuwang

    2017-01-01

    NGAL is a promising novel biomarker for acute kidney injury (AKI) and chronic kidney disease (CKD). More rapid and user-friendly methods are needed for the timely monitoring of NGAL in human urine and serum. UCP technology-based lateral flow assay (UPT-LFA) was developed for rapid, user-friendly and quantitative detection of the NGAL in human serum specimens and urine specimens. Under optimal conditions, the UPT-LFA displayed a rapid response to NGAL with a LOD of 7.68ng/mL and detection range from 7.68 to 1000ng/mL. The UPT-LFA method was compared with commercial immunoturbidimetry (103 urine specimens), and by ELISA (26 serum specimens), respectively. The results demonstrated that the UPT-LFA was consistent with immunoturbidimetry assay, reporting a 97.92% of positive and 92.73% of negative coincidence rates, respectively. Meanwhile, the concordance rate between UPT-LFA and ELISA, as shown by correlative regression analysis, was also high (R 2 =0.95). The whole assay can be completed within 30min compared to 4h consuming with ELISA. The research implies that, the UPT-LFA provides a potential to be used in point of care testing (POCT) to define early acute kidney injury with advantages of user-friendly and rapid testing, promising this new assay a bright future. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Homogenization of neutronic diffusion models

    International Nuclear Information System (INIS)

    Capdebosq, Y.

    1999-09-01

    In order to study and simulate nuclear reactor cores, one needs to access the neutron distribution in the core. In practice, the description of this density of neutrons is given by a system of diffusion equations, coupled by non differential exchange terms. The strong heterogeneity of the medium constitutes a major obstacle to the numerical computation of this models at reasonable cost. Homogenization appears as compulsory. Heuristic methods have been developed since the origin by nuclear physicists, under a periodicity assumption on the coefficients. They consist in doing a fine computation one a single periodicity cell, to solve the system on the whole domain with homogeneous coefficients, and to reconstruct the neutron density by multiplying the solutions of the two computations. The objectives of this work are to provide mathematically rigorous basis to this factorization method, to obtain the exact formulas of the homogenized coefficients, and to start on geometries where two periodical medium are placed side by side. The first result of this thesis concerns eigenvalue problem models which are used to characterize the state of criticality of the reactor, under a symmetry assumption on the coefficients. The convergence of the homogenization process is proved, and formulas of the homogenized coefficients are given. We then show that without symmetry assumptions, a drift phenomenon appears. It is characterized by the mean of a real Bloch wave method, which gives the homogenized limit in the general case. These results for the critical problem are then adapted to the evolution model. Finally, the homogenization of the critical problem in the case of two side by side periodic medium is studied on a one dimensional on equation model. (authors)

  6. Rapid and ultrasensitive colorimetric detection of mercury(II) by chemically initiated aggregation of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, Yinji; Chen, Wei; Yao, Li; Deng, Yi; Pan, Daodong; Cao, Jinxuan; Ogabiela, Edward; Adeloju, Samuel B.

    2015-01-01

    The article describes a method for rapid and visual determination of Hg(II) ion using unmodified gold nanoparticles (Au-NPs). It involves the addition of Au-NPs to a solution containing Hg(II) ions which, however, does not induce a color change. Next, a solution of lysine is added which induces the aggregation of the Au-NPs and causes the color of the solution to change from wine-red to purple. The whole on-site detection process can be executed in less than 15 min. Other amines (ethylenediamine, arginine, and melamine) were also investigated with respect to their capability to induce aggregation. Notably, only amines containing more than one amino group were found to be effective, but a 0.4 μM and pH 8 solution of lysine was found to give the best results. The detection limits for Hg (II) are 8.4 pM (for instrumental read-out) and 10 pM (for visual read-out). To the best of our knowledge, this LOD is better than those reported for any other existing rapid screening methods. The assay is not interfered by the presence of other common metal ions even if present in 1000-fold excess over Hg(II) concentration. It was successfully applied to the determination of Hg(II) in spiked tap water samples. We perceive that this method provides an excellent tool for rapid and ultrasensitive on-site determination of Hg(II) ions at low cost, with relative ease and minimal operation. (author)

  7. Rapid Detection and Identification of Human Hookworm Infections through High Resolution Melting (HRM) Analysis

    Science.gov (United States)

    Ngui, Romano; Lim, Yvonne A. L.; Chua, Kek Heng

    2012-01-01

    Background Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. Methods Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. Conclusion The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species. PMID:22844538

  8. Rapid detection and identification of human hookworm infections through high resolution melting (HRM analysis.

    Directory of Open Access Journals (Sweden)

    Romano Ngui

    Full Text Available BACKGROUND: Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR coupled with high resolution melting-curve (HRM analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species. METHODS: Real-time PCR coupled with HRM analysis targeting the second internal transcribed spacer (ITS-2 of nuclear ribosomal DNA as the genetic marker was used to identify and distinguish hookworm species in human samples. Unique and distinct characteristics of HRM patterns were produced for each of the five hookworm species. The melting curves were characterized by peaks of 79.24±0.05°C and 83.00±0.04°C for Necator americanus, 79.12±0.10°C for Ancylostoma duodenale, 79.40±0.10°C for Ancylostoma ceylanicum, 79.63±0.05°C for Ancylostoma caninum and 79.70±0.14°C for Ancylostoma braziliense. An evaluation of the method's sensitivity and specificity revealed that this assay was able to detect as low as 0.01 ng/µl hookworm DNA and amplification was only recorded for hookworm positive samples. CONCLUSION: The HRM assay developed in this study is a rapid and straightforward method for the diagnosis, identification and discrimination of five human hookworms. This assay is simple compared to other probe-based genotyping methods as it does not require multiplexing, DNA sequencing or post-PCR processing. Therefore, this method offers a new alternative for rapid detection of human hookworm species.

  9. Detection of four important Eimeria species by multiplex PCR in a single assay.

    Science.gov (United States)

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Rapid colorimetric detection of Zika virus from serum and urine specimens by reverse transcription loop-mediated isothermal amplification (RT-LAMP.

    Directory of Open Access Journals (Sweden)

    Amanda E Calvert

    Full Text Available Zika virus (ZIKV has emerged as a major global public health concern in the last two years due to its link as a causative agent of human birth defects. Its rapid expansion into the Western Hemisphere as well as the ability to be transmitted from mother to fetus, through sexual transmission and possibly through blood transfusions has increased the need for a rapid and expansive public health response to this unprecedented epidemic. A non-invasive and rapid ZIKV diagnostic screening assay that can be performed in a clinical setting throughout pregnancy is vital for prenatal care of women living in areas of the world where exposure to the virus is possible. To meet this need we have developed a sensitive and specific reverse transcriptase loop-mediated isothermal amplification (RT-LAMP assay to detect ZIKV RNA in urine and serum with a simple visual detection. RT-LAMP results were shown to have a limit of detection 10-fold higher than qRT-PCR. As little as 1.2 RNA copies/μl was detected by RT-LAMP from a panel of 178 diagnostic specimens. The assay was shown to be highly specific for ZIKV RNA when tested with diagnostic specimens positive for dengue virus (DENV and chikungunya virus (CHIKV. The assay described here illustrates the potential for a fast, reliable, sensitive and specific assay for the detection of ZIKV from urine or serum that can be performed in a clinical or field setting with minimal equipment and technological expertise.

  11. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    International Nuclear Information System (INIS)

    Zhan Fangfang; Zhou Xiaoming; Xing Da

    2013-01-01

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs–TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: ► A novel method for detection of rotavirus has been developed. ► In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. ► To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. ► The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2′-bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs–TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection. In this study, rotavirus in fecal specimens was successfully detected within 1.5 h. Experimental

  12. Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris - wilt pathogen of chickpea.

    Science.gov (United States)

    Ghosh, Raju; Nagavardhini, Avuthu; Sengupta, Anindita; Sharma, Mamta

    2015-02-11

    Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt is a devastating pathogen of chickpea. In chickpea, various soil borne pathogens produce (s) similar symptoms, therefore cannot be distinguished easily at field level. There is real need for a rapid, inexpensive, and easy to operate and maintain genotyping tool to facilitate accurate disease diagnosis and surveillance for better management of Fusarium wilt outbreaks. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay targeting the elongation factor 1 alpha gene sequence for visual detection of Foc. The LAMP reaction was optimal at 63°C for 60 min. When hydroxynaphthol blue (HNB) was added before amplification, samples with Foc DNA developed a characteristic sky blue colour but those without DNA or with the DNA of six other plant pathogenic fungi did not. Results obtained with LAMP and HNB were confirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for Foc was 10 fg of genomic DNA per reaction, while that of conventional PCR was 100 pg. In conclusion, it was found that a LAMP assay combined with HNB is simple, rapid, sensitive, and specific. The LAMP assay does not require specialized equipment, hence can be used in the field for the rapid detection of Foc. This is the first report of the use of LAMP assay for the detection of Foc. The presented LAMP method provides a specific, sensitive and rapid diagnostic tool for the distinction of Foc, with the potential to be standardized as a detection method for Foc in endemic areas and will be very useful for monitoring the disease complex in the field further suggesting the management strategies.

  13. Orthogonality Measurement for Homogenous Projects-Bases

    Science.gov (United States)

    Ivan, Ion; Sandu, Andrei; Popa, Marius

    2009-01-01

    The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…

  14. Rapid Detection of the Varicella Zoster Virus in Saliva

    Science.gov (United States)

    Pierson, Duane L.; Mehta, Satish K.; Cohrs, Randall J.; Gilden, Don H.; Harding, Robert E.

    2011-01-01

    Varicella zoster virus (VZV) causes chicken pox on first exposure (usually in children), and reactivates from latency causing shingles (usually in adults). Shingles can be extremely painful, causing nerve damage, organ damage, and blindness in some cases. The virus can be life-threatening in immune-compromised individuals. The virus is very difficult to culture for diagnosis, requiring a week or longer. This invention is a rapid test for VZV from a saliva sample and can be performed in a doctor s office. The kit is small, compact, and lightweight. Detec tion is sensitive, specific, and noninvasive (no needles); only a saliva sample is required. The test provides results in minutes. The entire test is performed in a closed system, with no exposure to infectious materials. The components are made mostly of inexpensive plastic injection molded parts, many of which can be purchased off the shelf and merely assembled. All biological waste is contained for fast, efficient disposal. This innovation was made possible because of discovery of a NASA scientists flight experiment showing the presence of VZV in saliva during high stress periods and disease. This finding enables clinicians to quickly screen patients for VZV and treat the ones that show positive results with antiviral medicines. This promotes a rapid recovery, easing of pain and symptoms, and reduces chances of complications from zoster. Screening of high-risk patients could be incorporated as part of a regular physical exam. These patients include the elderly, pregnant women, and immune-compromised individuals. In these patients, VZV can be a life-threatening disease. In both high- and low-risk patients, early detection and treatment with antiviral drugs can dramatically decrease or even eliminate the clinical manifestation of disease.

  15. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy.

    Science.gov (United States)

    Egan, Scott P; Grey, Erin; Olds, Brett; Feder, Jeffery L; Ruggiero, Steven T; Tanner, Carol E; Lodge, David M

    2015-04-07

    Invasive species introduced via the ballast water of commercial ships cause enormous environmental and economic damage worldwide. Accurate monitoring for these often microscopic and morphologically indistinguishable species is challenging but critical for mitigating damages. We apply eDNA sampling, which involves the filtering and subsequent DNA extraction of microscopic bits of tissue suspended in water, to ballast and harbor water sampled during a commercial ship's 1400 km voyage through the North American Great Lakes. Using a lab-based gel electrophoresis assay and a rapid, field-ready light transmission spectroscopy (LTS) assay, we test for the presence of two invasive species: quagga (Dreissena bugensis) and zebra (D. polymorpha) mussels. Furthermore, we spiked a set of uninfested ballast and harbor samples with zebra mussel tissue to further test each assay's detection capabilities. In unmanipulated samples, zebra mussel was not detected, while quagga mussel was detected in all samples at a rate of 85% for the gel assay and 100% for the LTS assay. In the spiked experimental samples, both assays detected zebra mussel in 94% of spiked samples and 0% of negative controls. Overall, these results demonstrate that eDNA sampling is effective for monitoring ballast-mediated invasions and that LTS has the potential for rapid, field-based detection.

  16. Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation.

    Science.gov (United States)

    Yegnasubramanian, Srinivasan; Lin, Xiaohui; Haffner, Michael C; DeMarzo, Angelo M; Nelson, William G

    2006-02-09

    Hypermethylation of CpG island (CGI) sequences is a nearly universal somatic genome alteration in cancer. Rapid and sensitive detection of DNA hypermethylation would aid in cancer diagnosis and risk stratification. We present a novel technique, called COMPARE-MS, that can rapidly and quantitatively detect CGI hypermethylation with high sensitivity and specificity in hundreds of samples simultaneously. To quantitate CGI hypermethylation, COMPARE-MS uses real-time PCR of DNA that was first digested by methylation-sensitive restriction enzymes and then precipitated by methyl-binding domain polypeptides immobilized on a magnetic solid matrix. We show that COMPARE-MS could detect five genome equivalents of methylated CGIs in a 1000- to 10,000-fold excess of unmethylated DNA. COMPARE-MS was used to rapidly quantitate hypermethylation at multiple CGIs in >155 prostate tissues, including benign and malignant prostate specimens, and prostate cell lines. This analysis showed that GSTP1, MDR1 and PTGS2 CGI hypermethylation as determined by COMPARE-MS could differentiate between malignant and benign prostate with sensitivities >95% and specificities approaching 100%. This novel technology could significantly improve our ability to detect CGI hypermethylation.

  17. Rapid and label-free electrochemical DNA biosensor for detecting hepatitis A virus.

    Science.gov (United States)

    Manzano, Marisa; Viezzi, Sara; Mazerat, Sandra; Marks, Robert S; Vidic, Jasmina

    2018-02-15

    Diagnostic systems that can deliver highly specific and sensitive detection of hepatitis A virus (HAV) in food and water are of particular interest in many fields including food safety, biosecurity and control of outbreaks. Our aim was the development of an electrochemical method based on DNA hybridization to detect HAV. A ssDNA probe specific for HAV (capture probe) was designed and tested on DNAs from various viral and bacterial samples using Nested-Reverse Transcription Polymerase Chain Reaction (nRT-PCR). To develop the electrochemical device, a disposable gold electrode was functionalized with the specific capture probe and tested on complementary ssDNA and on HAV cDNA. The DNA hybridization on the electrode was measured through the monitoring of the oxidative peak potential of the indicator tripropylamine by cyclic voltammetry. To prevent non-specific binding the gold surface was treated with 3% BSA before detection. High resolution atomic force microscopy (AFM) confirmed the efficiency of electrode functionalization and on-electrode hybridization. The proposed device showed a limit of detection of 0.65pM for the complementary ssDNA and 6.94fg/µL for viral cDNA. For a comparison, nRT-PCR quantified the target HAV cDNA with a limit of detection of 6.4fg/µL. The DNA-sensor developed can be adapted to a portable format to be adopted as an easy-to- use and low cost method for screening HAV in contaminated food and water. In addition, it can be useful for rapid control of HAV infections as it takes only a few minutes to provide the results. Copyright © 2017. Published by Elsevier B.V.

  18. A rapid mini-prep DNA extraction method in rice (Oryza sativa)

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... homogenizer with a plastic tip is incomplete, since the leaves of these plants .... mortar and pestle with liquid nitrogen and transferred to a tube. ... rapid DNA extraction protocols for gymnosperms for application in population ...

  19. The Considere condition and rapid stretching of linear and branched polymer melts

    DEFF Research Database (Denmark)

    McKinley, Gareth H; Hassager, Ole

    1999-01-01

    to larger Hencky strains as the number of branches is increased. Numerical computations at finite Deborah numbers also show that there is an optimal range of deformation rates over which homogeneous extensions can be maintained to large strain. We also consider other rapid homogeneous stretching...... deformations, such as biaxial and planar stretching, and show that the degree of stabilization afforded by inclusion of material with long-chain branching is a sensitive function of the imposed mode of deformation....

  20. Loop-mediated isothermal amplification (LAMP) test for specific and rapid detection of Brucella abortus in cattle.

    Science.gov (United States)

    Karthik, K; Rathore, Rajesh; Thomas, Prasad; Arun, T R; Viswas, K N; Agarwal, R K; Manjunathachar, H V; Dhama, Kuldeep

    2014-01-01

    Brucella abortus, the major causative agent of abortion in cattle and a zoonotic pathogen, needs to be diagnosed at an early stage. Loop-mediated isothermal amplification (LAMP) test is easy to perform and also promising to be adapted at field level. To develop a LAMP assay for specific and rapid detection of B. abortus from clinical samples of cattle. LAMP primers were designed targeting BruAb2_0168 region using specific software tool and LAMP was optimized. The developed LAMP was tested for its specificity with 3 Brucella spp. and 11 other non-Brucella spp. Sensitivity of the developed LAMP was also carried out with known quantity of DNA. Cattle whole blood samples and aborted fetal stomach contents were collected and used for testing with developed LAMP assay and results were compared with polymerase chain reaction (PCR). The developed LAMP assay works at 61 °C for 60 min and the detection limit was observed to be 100-fold more than the conventional PCR that is commonly used for diagnosis of B. abortus. Clinical sensitivity and specificity of the developed LAMP assay was 100% when compared with Rose Bengal plate test and standard tube agglutination test. SYB® green dye I was used to visualize the result with naked eye. The novelty of the developed LAMP assay for specifically detecting B. abortus infection in cattle along with its inherent rapidness and high sensitivity can be employed for detecting this economically important pathogen of cattle at field level as well be exploited for screening of human infections.

  1. Homogenization in thermoelasticity: application to composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Peyroux, R [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France); Licht, C [Lab. de Mecanique et Genie Civil, Univ. Montpellier 2, 34 Montpellier (France)

    1993-11-01

    One of the obstacles to the industrial use of metal matrix composite materials is the damage they rapidly undergo when they are subjected to cyclic thermal loadings; local thermal stresses of high level can develop, sometimes nearby or over the elastic limit, due to the mismatch of elastic and thermal coefficients between the fibers and the matrix. For the same reasons, early cracks can appear in composites like ceramic-ceramic. Therefore, we investigate the linear thermoelastic behaviour of heterogeneous materials, taking account of the isentropic coupling term in the heat conduction equation. In the case of periodic materials, recent results, using the homogenization theory, allowed us to describe macroscopic and microscopic behaviours of such materials. This paper is concerned with the numerical simulation of this problem by a finite element method, using a multiscale approach. (orig.).

  2. Improved detection limit in rapid detection of human enterovirus 71 and coxsackievirus A16 by a novel reverse transcription-isothermal multiple-self-matching-initiated amplification assay.

    Science.gov (United States)

    Ding, Xiong; Nie, Kai; Shi, Lei; Zhang, Yong; Guan, Li; Zhang, Dan; Qi, Shunxiang; Ma, Xuejun

    2014-06-01

    Rapid detection of human enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) is important in the early phase of hand-foot-and-mouth disease (HFMD). In this study, we developed and evaluated a novel reverse transcription-isothermal multiple-self-matching-initiated amplification (RT-IMSA) assay for the rapid detection of EV71 and CVA16 by use of reverse transcriptase, together with a strand displacement DNA polymerase. Real-time RT-IMSA assays using a turbidimeter and visual RT-IMSA assays to detect EV71 and CVA16 were established and completed in 1 h, and the reported corresponding real-time reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assays targeting the same regions of the VP1 gene were adopted as parallel tests. Through testing VP1 RNAs transcribed in vitro, the real-time RT-IMSA assays exhibited better linearity of quantification, with R(2) values of 0.952 (for EV71) and 0.967 (for CVA16), than the real-time RT-LAMP assays, which had R(2) values of 0.803 (for EV71) and 0.904 (for CVA16). Additionally, the detection limits of the real-time RT-IMSA assays (approximately 937 for EV71 and 67 for CVA16 copies/reaction) were higher than those of real-time RT-LAMP assays (approximately 3,266 for EV71 and 430 for CVA16 copies/reaction), and similar results were observed in the visual RT-IMSA assays. The new approaches also possess high specificities for the corresponding targets, with no cross-reactivity observed. In clinical assessment, compared to commercial reverse transcription-quantitative PCR (qRT-PCR) kits, the diagnostic sensitivities of the real-time RT-IMSA assays (96.4% for EV71 and 94.6% for CVA16) were higher than those of the real-time RT-LAMP assays (91.1% for EV71 and 90.8% for CVA16). The visual RT-IMSA assays also exhibited the same results. In conclusion, this proof-of-concept study suggests that the novel RT-IMSA assay is superior to the RT-LAMP assay in terms of detection limit and has the potential to rapidly detect EV71

  3. Rapid Salmonella detection in experimentally inoculated equine faecal and veterinary hospital environmental samples using commercially available lateral flow immunoassays.

    Science.gov (United States)

    Burgess, B A; Noyes, N R; Bolte, D S; Hyatt, D R; van Metre, D C; Morley, P S

    2015-01-01

    Salmonella enterica is the most commonly reported cause of outbreaks of nosocomial infections in large animal veterinary teaching hospitals and the closure of equine hospitals. Rapid detection may facilitate effective control practices in equine populations. Shipping and laboratory testing typically require ≥48 h to obtain results. Lateral flow immunoassays developed for use in food-safety microbiology provide an alternative that has not been evaluated for use with faeces or environmental samples. We aimed to identify enrichment methods that would allow commercially available rapid Salmonella detection systems (lateral flow immunoassays) to be used in clinical practice with equine faecal and environmental samples, providing test results in 18-24 h. In vitro experiment. Equine faecal and environmental samples were inoculated with known quantities of S. enterica serotype Typhimurium and cultured using 2 different enrichment techniques for faeces and 4 enrichment techniques for environmental samples. Samples were tested blindly using 2 different lateral flow immunoassays and plated on agar media for confirmatory testing. In general, commercial lateral flow immunoassays resulted in fewer false-negative test results with enrichment of 1 g faecal samples in tetrathionate for 18 h, while all environmental sample enrichment techniques resulted in similar detection rates. The limit of detection from spiked samples, ∼4 colony-forming units/g, was similar for all methods evaluated. The lateral flow immunoassays evaluated could reliably detect S. enterica within 18 h, indicating that they may be useful for rapid point-of-care testing in equine practice applications. Additional evaluation is needed using samples from naturally infected cases and the environment to gain an accurate estimate of test sensitivity and specificity and to substantiate further the true value of these tests in clinical practice. © 2014 EVJ Ltd.

  4. Homogeneous Spaces and Equivariant Embeddings

    CERN Document Server

    Timashev, DA

    2011-01-01

    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  5. In vivo rapid field map measurement and shimming

    International Nuclear Information System (INIS)

    Kanayama, Shoichi; Kassai, Yoshimori; Kondo, Masafumi; Kuhara, Shigehide; Satoh, Kozo; Seo, Yasutsugu.

    1992-01-01

    MR imaging and MR spectroscopy need a homogeneous static magnetic field. The static field characteristics are determined by the magnet's homogeneity, the set-up conditions, and the magnetic suspectibility of the subject itself. The field inhomogeneity is usually minimized only once when the apparatus is installed. However, field distortions arising from the magnetic susceptibility differ with each subject and region. To overcome this problem, in vivo shimming can be carried out to improve the homogeneity. The procedures are too lengthy when applying the conventional shimming techniques in vivo. We have developed a new field map measurement technique using a double gradient-recalled echo phase mapping. The values of the currents for the 13-channel shim coils are derived by least squares fitting to the field map and automatically applied to the shim coils. The proposed technique can rapidly and accurately measure the field map in vivo and correct the field inhomogeneity. The results show that this technique improves the homogeneity, especially in regions having a simple field distribution. However, local sharp field distortions which can not be practically corrected by shimming occur near the eyes, ears, heart, etc. due to abrupt susceptibility changes. (author)

  6. Gas evolution as a rapid screening method for detection of irradiated foods

    International Nuclear Information System (INIS)

    Roberts, P.B.; Chambers, D.M.; Brailsford, G.W.

    1996-01-01

    A number of detection methods for irradiated foods are in advanced state of development. No single method is likely to be universally applicable but a battery of tests such as thermoluminescence, electron spin resonance and analysis of lipid radiolytic products may soon be available for most foods and technical uses of irradiation. Most of these proposed tests require relatively sophisticated equipment or technical skills and are often time consuming and costly. There would be value in relatively simple tests which could be used as a rapid screening system or confirmatory method. The literature on the use of radiolytic gases as a detection method is limited and this paper extends the above studies. In particular, it extends the work to frozen shellfish, for which irradiation has been used as a commercial decontaminant technique for many years, and considers the effect of storage temperature. Work on poultry is also reported as a cross-reference to earlier work and because irradiated poultry has recently been released into the US retail trade. (author)

  7. A new diagnostic tool for rapid and accurate detection of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Ali Nour-Neamatollahi

    2018-03-01

    Full Text Available Mycobacterium tuberculosis, acid fast bacilli from the family of Mycobacteriaceae, is the causative agent of most cases of tuberculosis. Tuberculosis, as a communicable disease, remains a serious public health threat, killing more than one million people globally every year. Primary diagnosis of tuberculosis bacilli (TB relies mainly on microscopic detection of acid fast bacilli (AFB, but the method suffers from low sensitivity and the results largely depend on the technician’s skill. New diagnostic tools are necessary to be introduced for rapid and accurate detection of the bacilli in sputum samples. We, in collaboration with Anda Biologicals, have developed a new platform, named as “Patho-tb”, for rapid detection of AFB with high sensitivity and with low dependence on human skills. Evaluation of Patho-tb test performance was done in two settings: (1 primary field study conducted using 38 sputa from high TB prevalence area of Iran (Zabol city near to the Afghanistan border, and (2 main study conducted using 476 sputa from Tehran, capital of Iran. Patho-tb was applied for processed sputum samples in parallel with routine diagnostic methods (including AFB microscopy, culture and PCR. All test results were compared to final clinical diagnostic state of an individual and diagnostic sensitivity (DSe, specificity, positive predictive value, negative predictive value and accuracy of each test results were calculated using standard formulations. Analytical sensitivity and specificity of the Patho-tb test were also determined. Calculated values for five above mentioned parameters are as follows: for field study: AFB (DSe: 29.6, DSp: 81.8, PPV: 80, NPV: 23.1, AC: 44.7, Patho-tb (DSe: 63, DSp: 72.7, PPV: 85, NPV: 44.4, AC: 65.8, and for main study: AFB (DSe: 86.1, DSp: 99.4, PPV: 98.5, NPV: 93.9, AC: 95.2, Patho-tb (DSe: 97.4, DSp: 92.9, PPV: 86.5, NPV: 98.7, AC: 94.3. Reproducibility of Patho-tb test results were near to 100% (Cohen’s kappa value

  8. A semi-automated method for rapid detection of ripple events on interictal voltage discharges in the scalp electroencephalogram.

    Science.gov (United States)

    Chu, Catherine J; Chan, Arthur; Song, Dan; Staley, Kevin J; Stufflebeam, Steven M; Kramer, Mark A

    2017-02-01

    High frequency oscillations are emerging as a clinically important indicator of epileptic networks. However, manual detection of these high frequency oscillations is difficult, time consuming, and subjective, especially in the scalp EEG, thus hindering further clinical exploration and application. Semi-automated detection methods augment manual detection by reducing inspection to a subset of time intervals. We propose a new method to detect high frequency oscillations that co-occur with interictal epileptiform discharges. The new method proceeds in two steps. The first step identifies candidate time intervals during which high frequency activity is increased. The second step computes a set of seven features for each candidate interval. These features require that the candidate event contain a high frequency oscillation approximately sinusoidal in shape, with at least three cycles, that co-occurs with a large amplitude discharge. Candidate events that satisfy these features are stored for validation through visual analysis. We evaluate the detector performance in simulation and on ten examples of scalp EEG data, and show that the proposed method successfully detects spike-ripple events, with high positive predictive value, low false positive rate, and high intra-rater reliability. The proposed method is less sensitive than the existing method of visual inspection, but much faster and much more reliable. Accurate and rapid detection of high frequency activity increases the clinical viability of this rhythmic biomarker of epilepsy. The proposed spike-ripple detector rapidly identifies candidate spike-ripple events, thus making clinical analysis of prolonged, multielectrode scalp EEG recordings tractable. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Micropower Impulse Radar: A Novel Technology for Rapid, Real-Time Detection of Pneumothorax

    Directory of Open Access Journals (Sweden)

    Phillip D. Levy

    2011-01-01

    Full Text Available Pneumothorax detection in emergency situations must be rapid and at the point of care. Current standards for detection of a pneumothorax are supine chest X-rays, ultrasound, and CT scans. Unfortunately these tools and the personnel necessary for their facile utilization may not be readily available in acute circumstances, particularly those which occur in the pre-hospital setting. The decision to treat therefore, is often made without adequate information. In this report, we describe a novel hand-held device that utilizes Micropower Impulse Radar to reliably detect the presence of a pneumothorax. The technology employs ultra wide band pulses over a frequency range of 500 MHz to 6 GHz and a proprietary algorithm analyzes return echoes to determine if a pneumothorax is present with no user interpretation required. The device has been evaluated in both trauma and surgical environments with sensitivity of 93% and specificity of 85%. It is has the CE Mark and is available for sale in Europe. Post market studies are planned starting in May of 2011. Clinical studies to support the FDA submission will be completed in the first quarter of 2012.

  10. Loop-mediated isothermal amplification assay for rapid and sensitive detection of sheep pox and goat pox viruses in clinical samples.

    Science.gov (United States)

    Venkatesan, G; Balamurugan, V; Bhanuprakash, V; Singh, R K; Pandey, A B

    2016-06-01

    A Loop-mediated isothermal amplification (LAMP) assay targeting the highly conserved DNA polymerase gene of capripox virus genome was developed and evaluated for rapid detection of sheep pox and goat pox viruses. The optimized LAMP assay is found specific and sensitive for amplification of target DNA with a diagnostic sensitivity and specificity of 96.6% and 100% respectively compared to quantitative PCR. The detection rate of LAMP, PCR and Q-PCR assays is found to be 81.5%, 67% and 83% respectively. This LAMP assay has the potential for rapid clinical diagnosis and surveillance of sheep pox and goat pox in field diagnostic laboratories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Internal homogenization: effective permittivity of a coated sphere.

    Science.gov (United States)

    Chettiar, Uday K; Engheta, Nader

    2012-10-08

    The concept of internal homogenization is introduced as a complementary approach to the conventional homogenization schemes, which could be termed as external homogenization. The theory for the internal homogenization of the permittivity of subwavelength coated spheres is presented. The effective permittivity derived from the internal homogenization of coreshells is discussed for plasmonic and dielectric constituent materials. The effective model provided by the homogenization is a useful design tool in constructing coated particles with desired resonant properties.

  12. Homogenization methods for heterogeneous assemblies

    International Nuclear Information System (INIS)

    Wagner, M.R.

    1980-01-01

    The third session of the IAEA Technical Committee Meeting is concerned with the problem of homogenization of heterogeneous assemblies. Six papers will be presented on the theory of homogenization and on practical procedures for deriving homogenized group cross sections and diffusion coefficients. That the problem of finding so-called ''equivalent'' diffusion theory parameters for the use in global reactor calculations is of great practical importance. In spite of this, it is fair to say that the present state of the theory of second homogenization is far from being satisfactory. In fact, there is not even a uniquely accepted approach to the problem of deriving equivalent group diffusion parameters. Common agreement exists only about the fact that the conventional flux-weighting technique provides only a first approximation, which might lead to acceptable results in certain cases, but certainly does not guarantee the basic requirement of conservation of reaction rates

  13. Transmission and selection of macrolide resistant Mycoplasma genitalium infections detected by rapid high resolution melt analysis.

    Directory of Open Access Journals (Sweden)

    Jimmy Twin

    Full Text Available BACKGROUND: Mycoplasma genitalium (MG causes urethritis, cervicitis and pelvic inflammatory disease. The MG treatment failure rate using 1 g azithromycin at an Australian Sexual Health clinic in 2007-9 was 31% (95%CI 23-40%. We developed a rapid high resolution melt analysis (HRMA assay targeting resistance mutations in the MG 23S rRNA gene, and validated it against DNA sequencing by examining pre- and post-treatment archived samples from MG-infected patients. METHODOLOGY/PRINCIPAL FINDINGS: Available MG-positive pre-treatment (n = 82 and post-treatment samples from individuals with clinical treatment failure (n = 20 were screened for 23S rRNA gene mutations. Sixteen (20% pre-treatment samples possessed resistance mutations (A2058G, A2059G, A2059C, which were significantly more common in patients with symptomatic azithromycin-treatment failure (12/26; 44% than in those clinically cured (4/56; 7%, p<0.001. All 20 patients experiencing azithromycin-failure had detectable mutations in their post-treatment samples. In 9 of these cases, the same mutational types were present in both pre- and post-treatment samples indicating transmitted resistance, whilst in 11 of these cases (55%, mutations were absent in pre-treatment samples indicating likely selection of resistant isolates have occurred. HRMA was able to detect all mutational changes determined in this study by DNA sequencing. An additional HRMA assay incorporating an unlabelled probe was also developed to detect type 4 single-nucleotide polymorphisms found in other populations, with a slightly lower sensitivity of 90%. CONCLUSIONS/SIGNIFICANCE: Treatment failure is associated with the detection of macrolide resistance mutations, which appear to be almost equally due to selection of resistant isolates following exposure to 1 g azithromycin and pre-existing transmitted resistance. The application of a rapid molecular assay to detect resistance at the time of initial detection of infection allows

  14. Homogeneous versus heterogeneous zeolite nucleation

    NARCIS (Netherlands)

    Dokter, W.H.; Garderen, van H.F.; Beelen, T.P.M.; Santen, van R.A.; Bras, W.

    1995-01-01

    Aggregates of fractal dimension were found in the intermediate gel phases that organize prior to nucleation and crystallization (shown right) of silicalite from a homogeneous reaction mixture. Small- and wide-angle X-ray scattering studies prove that for zeolites nucleation may be homogeneous or

  15. A replaceable liposomal aptamer for the ultrasensitive and rapid detection of biotin

    Science.gov (United States)

    Sung, Tzu-Cheng; Chen, Wen-Yih; Shah, Pramod; Chen, Chien-Sheng

    2016-02-01

    Biotin is an essential vitamin which plays an important role for maintaining normal physiological function. A rapid, sensitive, and simple method is necessary to monitor the biotin level. Here, we reported a replacement assay for the detection of biotin using a replaceable liposomal aptamer. Replacement assay is a competitive assay where a sample analyte replaces the labeled competitor of analyte out of its biorecognition element on a surface. It is user friendly and time-saving because of washing free. We used aptamer as a competitor, not a biorecognition element as tradition. To label aptamers, we used cholesterol-conjugated aptamers to tag signal-amplifying-liposomes. Without the need of conjugation procedure, aptamers can be easily incorporated into the surface of dye-encapsulating liposomes. Two aptamers as competitors of biotin, ST-21 and ST-21M with different affinities to streptavidin, were studied in parallel for the detection of biotin using replacement assays. ST-21 and ST-21M aptamers reached to limits of detection of 1.32 pg/80 μl and 0.47 pg/80 μl, respectively. The dynamic ranges of our assays using ST-21 and ST-21M aptamers were seven and four orders of magnitude, respectively. This assay can be completed in 20 minutes without washing steps. These results were overall better than previous reported assays.

  16. Rapid detection of pathogenic bacteria by volatile organic compound (VOC) analysis

    Science.gov (United States)

    Senecal, Andre G.; Magnone, Joshua; Yeomans, Walter; Powers, Edmund M.

    2002-02-01

    Developments in rapid detection technologies have made countless improvements over the years. However, because of the limited sample that these technologies can process in a single run, the chance of capturing and identifying a small amount of pathogens is difficult. The problem is further magnified by the natural random distribution of pathogens in foods. Methods to simplify pathogenic detection through the identification of bacteria specific VOC were studied. E. coli O157:H7 and Salmonella typhimurium were grown on selected agar medium to model protein, and carbohydrate based foods. Pathogenic and common spoilage bacteria (Pseudomonas and Morexella) were screened for unique VOC production. Bacteria were grown on agar slants in closed vials. Headspace sampling was performed at intervals up to 24 hours using Solid Phase Micro-Extraction (SPME) techniques followed by GC/MS analysis. Development of unique volatiles was followed to establish sensitivity of detection. E. coli produced VOC not found in either Trypticase Soy Yeast (TSY) agar blanks or spoilage organism samples were - indole, 1-decanol, and 2-nonanone. Salmonella specific VOC grown on TSY were 3-methyl-1-butanol, dimethyl sulfide, 2-undecanol, 2-pentadecanol and 1-octanol. Trials on potato dextrose agar (PDA) slants indicated VOC specific for E. coli and Salmonella when compared to PDA blanks and Pseudomonas samples. However, these VOC peaks were similar for both pathogens. Morexella did not grow on PDA slants. Work will continue with model growth mediums at various temperatures, and mixed flora inoculums. As well as, VOC production based on the dynamics of bacterial growth.

  17. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  18. An efficient probe for rapid detection of cyanide in water at parts per billion levels and naked-eye detection of endogenous cyanide.

    Science.gov (United States)

    Kumari, Namita; Jha, Satadru; Bhattacharya, Santanu

    2014-03-01

    A new molecular probe based on an oxidized bis-indolyl skeleton has been developed for rapid and sensitive visual detection of cyanide ions in water and also for the detection of endogenously bound cyanide. The probe allows the "naked-eye" detection of cyanide ions in water with a visual color change from red to yellow (Δλmax =80 nm) with the immediate addition of the probe. It shows high selectivity towards the cyanide ion without any interference from other anions. The detection of cyanide by the probe is ratiometric, thus making the detection quantitative. A Michael-type addition reaction of the probe with the cyanide ion takes place during this chemodosimetric process. In water, the detection limit was found to be at the parts per million level, which improved drastically when a neutral micellar medium was employed, and it showed a parts-per-billion-level detection, which is even 25-fold lower than the permitted limits of cyanide in water. The probe could also efficiently detect the endogenously bound cyanide in cassava (a staple food) with a clear visual color change without requiring any sample pretreatment and/or any special reaction conditions such as pH or temperature. Thus the probe could serve as a practical naked-eye probe for "in-field" experiments without requiring any sophisticated instruments. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Apparatus and method for rapid separation and detection of hydrocarbon fractions in a fluid stream

    Science.gov (United States)

    Sluder, Charles S.; Storey, John M.; Lewis, Sr., Samuel A.

    2013-01-22

    An apparatus and method for rapid fractionation of hydrocarbon phases in a sample fluid stream are disclosed. Examples of the disclosed apparatus and method include an assembly of elements in fluid communication with one another including one or more valves and at least one sorbent chamber for removing certain classifications of hydrocarbons and detecting the remaining fractions using a detector. The respective ratios of hydrocarbons are determined by comparison with a non separated fluid stream.

  20. A second stage homogenization method

    International Nuclear Information System (INIS)

    Makai, M.

    1981-01-01

    A second homogenization is needed before the diffusion calculation of the core of large reactors. Such a second stage homogenization is outlined here. Our starting point is the Floquet theorem for it states that the diffusion equation for a periodic core always has a particular solution of the form esup(j)sup(B)sup(x) u (x). It is pointed out that the perturbation series expansion of function u can be derived by solving eigenvalue problems and the eigenvalues serve to define homogenized cross sections. With the help of these eigenvalues a homogenized diffusion equation can be derived the solution of which is cos Bx, the macroflux. It is shown that the flux can be expressed as a series of buckling. The leading term in this series is the well known Wigner-Seitz formula. Finally three examples are given: periodic absorption, a cell with an absorber pin in the cell centre, and a cell of three regions. (orig.)

  1. Sewage sludge solubilization by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Yuxuan; Zhang, Panyue; Guo, Jianbin; Ma, Weifang; Fang, Wei; Ma, Boqiang; Xu, Xiangzhe

    2013-01-01

    The behavior of sludge solubilization using high-pressure homogenization (HPH) treatment was examined by investigating the sludge solid reduction and organics solubilization. The sludge volatile suspended solids (VSS) decreased from 10.58 to 6.67 g/L for the sludge sample with a total solids content (TS) of 1.49% after HPH treatment at a homogenization pressure of 80 MPa with four homogenization cycles; total suspended solids (TSS) correspondingly decreased from 14.26 to 9.91 g/L. About 86.15% of the TSS reduction was attributed to the VSS reduction. The increase of homogenization pressure from 20 to 80 MPa or homogenization cycle number from 1 to 4 was favorable to the sludge organics solubilization, and the protein and polysaccharide solubilization linearly increased with the soluble chemical oxygen demand (SCOD) solubilization. More proteins were solubilized than polysaccharides. The linear relationship between SCOD solubilization and VSS reduction had no significant change under different homogenization pressures, homogenization cycles and sludge solid contents. The SCOD of 1.65 g/L was solubilized for the VSS reduction of 1.00 g/L for the three experimental sludge samples with a TS of 1.00, 1.49 and 2.48% under all HPH operating conditions. The energy efficiency results showed that the HPH treatment at a homogenization pressure of 30 MPa with a single homogenization cycle for the sludge sample with a TS of 2.48% was the most energy efficient.

  2. A fibre optic oxygen sensor that detects rapid PO2 changes under simulated conditions of cyclical atelectasis in vitro.

    Science.gov (United States)

    Formenti, Federico; Chen, Rongsheng; McPeak, Hanne; Matejovic, Martin; Farmery, Andrew D; Hahn, Clive E W

    2014-01-15

    Two challenges in the management of Acute Respiratory Distress Syndrome are the difficulty in diagnosing cyclical atelectasis, and in individualising mechanical ventilation therapy in real-time. Commercial optical oxygen sensors can detect [Formula: see text] oscillations associated with cyclical atelectasis, but are not accurate at saturation levels below 90%, and contain a toxic fluorophore. We present a computer-controlled test rig, together with an in-house constructed ultra-rapid sensor to test the limitations of these sensors when exposed to rapidly changing [Formula: see text] in blood in vitro. We tested the sensors' responses to simulated respiratory rates between 10 and 60 breaths per minute. Our sensor was able to detect the whole amplitude of the imposed [Formula: see text] oscillations, even at the highest respiratory rate. We also examined our sensor's resistance to clot formation by continuous in vivo deployment in non-heparinised flowing animal blood for 24h, after which no adsorption of organic material on the sensor's surface was detectable by scanning electron microscopy. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Fangfang; Zhou Xiaoming [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Xing Da, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2013-01-25

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs-TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: Black-Right-Pointing-Pointer A novel method for detection of rotavirus has been developed. Black-Right-Pointing-Pointer In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. Black-Right-Pointing-Pointer To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. Black-Right-Pointing-Pointer The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2 Prime -bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs-TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection

  4. Loop-mediated isothermal amplification assay for rapid detection of Streptococcus agalactiae (group B streptococcus) in vaginal swabs - a proof of concept study.

    Science.gov (United States)

    McKenna, James Patrick; Cox, Ciara; Fairley, Derek John; Burke, Rachael; Shields, Michael D; Watt, Alison; Coyle, Peter Valentine

    2017-03-01

    Neonatal sepsis caused by Streptococcus agalactiae [group B streptococcus (GBS)] is a life-threatening condition, which is preventable if colonized mothers are identified and given antibiotic prophylaxis during labour. Conventional culture is time consuming and unreliable, and many available non-culture diagnostics are too complex to implement routinely at point of care. Loop-mediated isothermal amplification (LAMP) is a method that, enables the rapid and specific detection of target nucleic acid sequences in clinical materials without the requirement for extensive sample preparation. A prototype LAMP assay targeting GBS sip gene is described. The assay was 100 % specific for GBS, with a limit of detection of 14 genome copies per reaction. The clinical utility of the LAMP assay for rapid direct molecular detection of GBS was determined by testing a total of 157 vaginal swabs with minimal sample processing using a rapid lysis solution. Compared to a reference quantitative real-time PCR assay, the direct LAMP protocol had a sensitivity and specificity of 95.4 and 100 %, respectively, with positive and negative predictive values of 100 and 98.3 %, respectively. Positive and negative likelihood ratios were infinity and 0.05, respectively. The direct LAMP method required a mean time of 45 min from the receipt of a swab to generation of a confirmed result, compared to 2 h 30 min for the reference quantitative real-time PCR test. The direct LAMP protocol described is easy to perform, facilitating rapid and accurate detection of GBS in vaginal swabs. This test has a potential for use at point of care.

  5. Consumer participation in early detection of the deteriorating patient and call activation to rapid response systems: a literature review.

    Science.gov (United States)

    Vorwerk, Jane; King, Lindy

    2016-01-01

    This review investigated the impact of consumer participation in recognition of patient deterioration and response through call activation in rapid response systems. Nurses and doctors have taken the main role in recognition and response to patient deterioration through hospital rapid response systems. Yet patients and visitors (consumers) have appeared well placed to notice early signs of deterioration. In response, many hospitals have sought to partner health professionals with consumers in detection and response to early deterioration. However, to date, there have been no published research-based reviews to establish the impact of introducing consumer involvement into rapid response systems. A critical research-based review was undertaken. A comprehensive search of databases from 2006-2014 identified 11 studies. Critical appraisal of these studies was undertaken and thematic analysis of the findings revealed four major themes. Following implementation of the consumer activation programmes, the number of calls made by the consumers following detection of deterioration increased. Interestingly, the number of staff calls also increased. Importantly, mortality numbers were found to decrease in one major study following the introduction of consumer call activation. Consumer and staff knowledge and satisfaction with the new programmes indicated mixed results. Initial concerns of the staff over consumer involvement overwhelming the rapid response systems did not eventuate. Evaluation of successful consumer-activated programmes indicated the importance of: effective staff education and training; ongoing consumer education by nurses and clear educational materials. Findings indicated positive patient outcomes following introduction of consumer call activation programmes within rapid response systems. Effective consumer programmes included information that was readily accessible, easy-to-understand and available in a range of multimedia materials accompanied by the

  6. Rapid and simple detection of foot-and-mouth disease virus: Evaluation of a cartridge-based molecular detection system for use in basic laboratories.

    Science.gov (United States)

    Goller, K V; Dill, V; Madi, M; Martin, P; Van der Stede, Y; Vandenberge, V; Haas, B; Van Borm, S; Koenen, F; Kasanga, C J; Ndusilo, N; Beer, M; Liu, L; Mioulet, V; Armson, B; King, D P; Fowler, V L

    2018-04-01

    Highly contagious transboundary animal diseases such as foot-and-mouth disease (FMD) are major threats to the productivity of farm animals. To limit the impact of outbreaks and to take efficient steps towards a timely control and eradication of the disease, rapid and reliable diagnostic systems are of utmost importance. Confirmatory diagnostic assays are typically performed by experienced operators in specialized laboratories, and access to this capability is often limited in the developing countries with the highest disease burden. Advances in molecular technologies allow implementation of modern and reliable techniques for quick and simple pathogen detection either in basic laboratories or even at the pen-side. Here, we report on a study to evaluate a fully automated cartridge-based real-time RT-PCR diagnostic system (Enigma MiniLab ® ) for the detection of FMD virus (FMDV). The modular system integrates both nucleic acid extraction and downstream real-time RT-PCR (rRT-PCR). The analytical sensitivity of this assay was determined using serially diluted culture grown FMDV, and the performance of the assay was evaluated using a selected range of FMDV positive and negative clinical samples of bovine, porcine and ovine origin. The robustness of the assay was evaluated in an international inter-laboratory proficiency test and by deployment into an African laboratory. It was demonstrated that the system is easy to use and can detect FMDV with high sensitivity and specificity, roughly on par with standard laboratory methods. This cartridge-based automated real-time RT-PCR system for the detection of FMDV represents a reliable and easy to use diagnostic tool for the early and rapid disease detection of acutely infected animals even in remote areas. This type of system could be easily deployed for routine surveillance within endemic regions such as Africa or could alternatively be used in the developed world. © 2017 The Authors. Transboundary and Emerging Diseases

  7. Selectivity improvement of positive photoionization ion mobility spectrometry for rapid detection of organophosphorus pesticides by switching dopant concentration.

    Science.gov (United States)

    Zhou, Qinghua; Li, Jia; Wang, Bin; Wang, Shuang; Li, Haiyang; Chen, Jinyuan

    2018-01-01

    Ion mobility spectrometry (IMS) opened a potential avenue for the rapid detection of organophosphorus pesticides (OPPs), though an improved selectivity of stand-alone IMS was still in high demand. In this study, a stand-alone positive photoionization ion mobility spectrometry (PP-IMS) apparatus was constructed for the rapid detection of OPPs with acetone as dopant. The photoionization of acetone molecules was induced by the ultraviolet irradiation to produce the reactant ions (Ac) 2 H + , which were employed to ionize the OPPs including fenthion, imidan, phosphamidon, dursban, dimethoate and isocarbophos via the proton transfer reaction. Due to the difference in proton affinity, the tested OPPs exhibited the different dopant-dependent manners. Based on this observation, the switching of dopant concentration was implemented to improve the selectivity of PP-IMS for OPPs detection. For instance, a mixture of fenthion, dursban and dimethoate was tested. By switching the concentration of doped acetone from 0.07 to 2.33 to 19.94mgL -1 , the ion peaks of fenthion and dursban were inhibited in succession, achieving the selective detection of dimethoate at last. In addition, another mixture of imidan and phosphamidon was initially detected by PP-IMS with a dose of 0.07mgL -1 acetone, indicating that their ion peaks were severely overlapped; when the concentration of doped acetone was switched to 19.94mgL -1 , the inhibition of imidan signals promised the accurate identification of phosphamidon in mixture. Finally, the PP-IMS in combination of switching dopant concentration was applied to detect the mixed fenthion, dursban and dimethoate in Chinese cabbage, demonstrating the applicability of proposed method to real samples. Copyright © 2017. Published by Elsevier B.V.

  8. Automated Detection of Buildings from Heterogeneous VHR Satellite Images for Rapid Response to Natural Disasters

    Directory of Open Access Journals (Sweden)

    Shaodan Li

    2017-11-01

    Full Text Available In this paper, we present a novel approach for automatically detecting buildings from multiple heterogeneous and uncalibrated very high-resolution (VHR satellite images for a rapid response to natural disasters. In the proposed method, a simple and efficient visual attention method is first used to extract built-up area candidates (BACs from each multispectral (MS satellite image. After this, morphological building indices (MBIs are extracted from all the masked panchromatic (PAN and MS images with BACs to characterize the structural features of buildings. Finally, buildings are automatically detected in a hierarchical probabilistic model by fusing the MBI and masked PAN images. The experimental results show that the proposed method is comparable to supervised classification methods in terms of recall, precision and F-value.

  9. Rapid and Sensitive Detection of sFAT-1 Transgenic Pigs by Visual Loop-Mediated Isothermal Amplification.

    Science.gov (United States)

    Tao, Chenyu; Yang, Yalan; Li, Xunbi; Zheng, Xinmin; Ren, Hongyan; Li, Kui; Zhou, Rong

    2016-07-01

    Genetically modified (GM) livestock have the potential to contribute to improving the environment and human health, with consumption of fewer resources and reduced waste production. However, the transgene process also poses risks. The safety assessment and control of transgenic animal products have drawn wide attention, and the relevant regulations and technology are being developed. Quick testing technology plays a significant role in on-site and customs sampling. Nowadays, loop-mediated isothermal amplification (LAMP) was widely applied in nucleic acid analysis because of its simplicity, rapidity, high efficiency and specificity. In this study, a specific, sensitive detection system for detecting sFAT-1 transgenic pigs was designed. A set of six primers including two loop primers was designed for the target sequence. The DNA samples were amplified in less than 1 h at the optimized temperature and detecting by both Nephelometer LA-320c and unaided eyes directly adding calcein. The detection limit of sFAT-1 LAMP was as low as 1.26 ng/μL. Furthermore, blind tests of transgenic and non-transgenic DNA samples were all correctly detected. Hence, the results in this study demonstrated that LAMP is a very useful tool for transgenic detection.

  10. Nature of complex time eigenvalues of the one speed transport equation in a homogeneous sphere

    International Nuclear Information System (INIS)

    Dahl, E.B.; Sahni, D.C.

    1990-01-01

    The complex time eigenvalues of the transport equation have been studied for one speed neutrons, scattered isotropically in a homogeneous sphere with vacuum boundary conditions. It is shown that the complex decay constants vary continuously with the radius of the sphere. Our earlier conjecture (Dahl and Sahni (1983-84)) regarding disjoint arcs is thus shown to be true. We also indicate that complex decay constants exist even for large assemblies, though with rapid oscillations in the corresponding eigenvectors. These modes cannot be predicted by the diffusion equation as this behaviour of the eigenvectors contradicts the assumption of 'slowly varying flux' needed to derive the diffusion approximation from the transport equation. For an infinite system, the existence of complex modes is related to the solution of a homogeneous equation. (author)

  11. Homogeneous electrochemical aptamer-based ATP assay with signal amplification by exonuclease III assisted target recycling.

    Science.gov (United States)

    Liu, Shufeng; Wang, Ying; Zhang, Chengxin; Lin, Ying; Li, Feng

    2013-03-21

    A novel and homogeneous electrochemical aptamer-based adenosine triphosphate (ATP) assay was demonstrated with signal amplification by exonuclease III-assisted target recycling. A superior detection limit of 1 nM toward ATP with an excellent selectivity could be achieved.

  12. Detecting Malaria Hotspots: A Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction.

    Science.gov (United States)

    Mogeni, Polycarp; Williams, Thomas N; Omedo, Irene; Kimani, Domtila; Ngoi, Joyce M; Mwacharo, Jedida; Morter, Richard; Nyundo, Christopher; Wambua, Juliana; Nyangweso, George; Kapulu, Melissa; Fegan, Gregory; Bejon, Philip

    2017-11-27

    Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  13. Early Detection of Rapidly Developing Cumulus Area using HIMAWARI-8

    Science.gov (United States)

    Yamada, Y.; Kadosaki, G.

    2017-12-01

    In recent years, many disasters have been occured by influence of meteorological change in Japan. So, it becomes more important to inform rapid weather change caused by cumulus which brings concentrated heavy rain/hail, wind gust, lightning in a short period. These severe events should inclease in the future by global warming. Therefore we are developping the alert system for Rapidly Developing Cumulus Area (RDCA) detection using Japanese new satellite. At July 2015, Japan Meteorological Agency started operation of new geostationary meteorological satellite "Himawari-8". This satellite has optical imager named Advanced Himawari Imager (AHI). It can observe Japan area every 2.5 minutes. The frequently infrared image with high resolution (2km) is the key of our alert system. We took some special functions in the algorithm of this system. One of the points is cloud location which shifts to north from true location around Japan by viewing angle from the satellite above the equator. We moved clouds to the correct position using geometric correction method according to its height and latitude. This algorithm also follows a movement of cloud every 2.5 minutes during several observations. It derives the information about degree of the development of cumulus. The prototype system gives the alert before 30 to 60 minutes in advance to the first lightning in typical cumulus case. However, we understand that there are some difficult cases to alert. For example, winter low cloud over the Japan Sea which brings a winter lightning, and tornado (although it is not cumulus). Now, we are adjusting some parameters of the algorithm. In the near future, our algorithm will be used in weather information delivery service to the customer.

  14. Individualized choice in prenatal diagnosis : the impact of karyotyping and standalone rapid aneuploidy detection on quality of life

    NARCIS (Netherlands)

    Boormans, E. M. A.; Birnie, E.; Oepkes, D.; Boekkooi, P. F.; Bonsel, G. J.; van Lith, J. M. M.

    2010-01-01

    Objective To assess the reasons and perceptions of women who are offered a choice between karyotyping and standalone rapid aneuploidy detection (RAD) and to compare the impact of both tests on anxiety and health-related quality of life Methods In this prospective comparative study, women undergoing

  15. Direct PCR - A rapid method for multiplexed detection of different serotypes of Salmonella in enriched pork meat samples

    DEFF Research Database (Denmark)

    Chin, Wai Hoe; Sun, Yi; Høgberg, Jonas

    2017-01-01

    , in this study, we developed a multiplex Direct PCR method for rapid detection of different Salmonella serotypes directly from pork meat samples without any DNA purification steps. An inhibitor-resistant Phusion Pfu DNA polymerase was used to overcome PCR inhibition. Four pairs of primers including a pair...

  16. A new amperometric method for rapid detection of Escherichia coli density using a self-assembled monolayer-based bienzyme biosensor

    International Nuclear Information System (INIS)

    Tang Hui; Zhang Wen; Geng Ping; Wang Qingjiang; Jin Litong; Wu Zirong; Lou Min

    2006-01-01

    A new amperometric method was developed for rapid detection of Escherichia coli (E. coli) density using a bienzyme biosensor. The bienzyme biosensor was fabricated based on the covalent immobilization of laccase and horseradish peroxidase (HRP) at indium tin oxide (ITO) electrode by (3-aminopropyl) triethoxysilane (APTES) monolayer. The bienzyme biosensor showed a high sensitivity in determination of the polyphenolic compounds, which was microbially generated from the salicylic acid (SA) added into the culture medium during the course of E. coli metabolism. Since the amount of polyphenolic compounds depends on E. coli density, the bienzyme biosensor was applied for the rapid and high sensitive detection of E. coli density after the E. coli solution was incubated in culture medium with salicylic acid for 2.5 h at 37 deg. C. By chronoamperometry, the amplified response current was obtained at the bienzyme biosensor, due to the substrate recycling of the polyphenolic compounds driven by bienzyme-catalyzed oxidation and electrochemical reduction. The amplified response current at the biosensor was linear with the E. coli density ranging from 1.6 x 10 3 to 1.0 x 10 7 cells/mL. The bienzyme biosensor could detect the E. coli density with a detection limit of 9.7 x 10 2 cells/mL within 3 h

  17. Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water

    Directory of Open Access Journals (Sweden)

    Marketa Kominkova

    2014-02-01

    Full Text Available Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED. Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer and potential changes (1,000, 1,100 and 1,200 mV offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments.

  18. Rapid Diagnostic Device for Subclinical Mastitis Based on Electrochemical Detection of Superoxide Produced from Neutrophils in Fresh Milk

    Science.gov (United States)

    Okada, Kohei; Fukuda, Junji; Suzuki, Hiroaki

    Electrochemical microdevices were fabricated to identify mastitic cows based on the increased number of neutrophils in raw milk. Because neutrophils produce superoxide (O2·-), the amount of O2·- can be used as an early indicator for subclinical mastitis. In the microdevices, O2·- was detected on a gold electrode using superoxide dismutase immobilized via a self-assembled monolayer of cysteine. In a preliminary test using xanthine oxidase to produce O2·-, one of the devices detected the production and rapid extinction of O2·-. When neutrophils obtained from a mastitic cow were concentrated by centrifugation and introduced into the device, a current increase distinctly different from the background was observed. Furthermore, a micropillar structure was fabricated on the gold electrode to trap and collect neutrophils, thereby facilitating the concentration of these cells around the electrode. The measured current clearly depended on the number of neutrophils in raw milk samples, demonstrating the applicability of the device for rapid diagnosis of subclinical mastitis.

  19. Rapid, sensitive, and selective fluorescent DNA detection using iron-based metal-organic framework nanorods: Synergies of the metal center and organic linker.

    Science.gov (United States)

    Tian, Jingqi; Liu, Qian; Shi, Jinle; Hu, Jianming; Asiri, Abdullah M; Sun, Xuping; He, Yuquan

    2015-09-15

    Considerable recent attention has been paid to homogeneous fluorescent DNA detection with the use of nanostructures as a universal "quencher", but it still remains a great challenge to develop such nanosensor with the benefits of low cost, high speed, sensitivity, and selectivity. In this work, we report the use of iron-based metal-organic framework nanorods as a high-efficient sensing platform for fluorescent DNA detection. It only takes about 4 min to complete the whole "mix-and-detect" process with a low detection limit of 10 pM and a strong discrimination of single point mutation. Control experiments reveal the remarkable sensing behavior is a consequence of the synergies of the metal center and organic linker. This work elucidates how composition control of nanostructures can significantly impact their sensing properties, enabling new opportunities for the rational design of functional materials for analytical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Photoelectrochemical Sensors for the Rapid Detection of DNA Damage Induced by Some Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Jamaluddin Ahmed

    2010-06-01

    Full Text Available Photoelectrochemcal sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy2 (dppz2+ [bpy=2, 2′ -bipyridine, dppz=dipyrido( 3, 2-a: 2′ 3′-c phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy2 (dppz2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time – dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polysterene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals.

  1. Photoelectrochemical sensors for the rapid detection of DNA damage Induced by some nanoparticles

    International Nuclear Information System (INIS)

    Ahmed, M.J.; Zhang, B.T.; Guo, L.H.

    2010-01-01

    Photoelectrochemical sensors were developed for the rapid detection of oxidative DNA damage induced by titanium dioxide and polystyrene nanoparticles. Each sensor is a multilayer film prepared on a tin oxide nanoparticle electrode using layer- by-layer self assembly and is composed of separate layer of a photoelectrochemical indicator, DNA. The organic compound and heavy metals represent genotoxic chemicals leading two major damaging mechanisms, DNA adduct formation and DNA oxidation. The DNA damage is detected by monitoring the change of photocurrent of the indicator. In one sensor configuration, a DNA intercalator, Ru(bpy)2 (dppz)2+ [bpy=2, 2' -bipyridine, dppz=dipyrido (3, 2-a: 2' 3'-c) phenazine], was employed as the photoelectrochemical indicator. The damaged DNA on the sensor bound lesser Ru(bpy)2 (dppz)2+ than the intact DNA, resulting in a drop in photocurrent. In another configuration, ruthenium tris(bipyridine) was used as the indicator and was immobilized on the electrode underneath the DNA layer. After oxidative damage, the DNA bases became more accessible to photoelectrochemical oxidation than the intact DNA, producing a rise in photocurrent. Both sensors displayed substantial photocurrent change after incubation in titanium dioxide / polystyrene solution in a time . dependent manner. According to the data, damage of the DNA film was completed in 1h in titanium dioxide / polystyrene solution. In addition, the titanium dioxide induced much more sever damage than polystyrene. The results were verified independently by gel electrophoresis and UV-Vis absorbance experiments. The photoelectrochemical reaction can be employed as a new and inexpensive screening tool for the rapid assessment of the genotoxicity of existing and new chemicals. (author)

  2. Rapid detection of drug resistance and mutational patterns of extensively drug-resistant strains by a novel GenoType® MTBDRsl assay

    Directory of Open Access Journals (Sweden)

    A K Singh

    2013-01-01

    Full Text Available Background: The emergence of extensively drug-resistant tuberculosis (XDR-TB is a major concern in the India. The burden of XDR-TB is increasing due to inadequate monitoring, lack of proper diagnosis, and treatment. The GenoType ® Mycobacterium tuberculosis drug resistance second line (MTBDRsl assay is a novel line probe assay used for the rapid detection of mutational patterns conferring resistance to XDR-TB. Aim: The aim of this study was to study the rapid detection of drug resistance and mutational patterns of the XDR-TB by a novel GenoType ® MTBDRsl assay. Materials and Methods: We evaluated 98 multidrug-resistant (MDR M. tuberculosis isolates for second line drugs susceptibility testing by 1% proportion method (BacT/ALERT 3D system and GenoType ® MTBDRsl assay for rapid detection of conferring drug resistance to XDR-TB. Results: A total of seven (17.4% were identified as XDR-TB by using standard phenotypic method. The concordance between phenotypic and GenoType ® MTBDRsl assay was 91.7-100% for different antibiotics. The sensitivity and specificity of the MTBDRsl assay were 100% and 100% for aminoglycosides; 100% and 100% for fluoroquinolones; 91.7% and 100% for ethambutol. The most frequent mutations and patterns were gyrA MUT1 (A90V in seven (41.2% and gyrA + WT1-3 + MUT1 in four (23.5%; rrs MUT1 (A1401G in 11 (64.7%, and rrs WT1-2 + MUT1 in eight (47.1%; and embB MUT1B (M306V in 11 (64.7% strains. Conclusions: These data suggest that the GenoType ® MTBDRsl assay is rapid, novel test for detection of resistance to second line anti-tubercular drugs. This assay provides additional information about the frequency and mutational patterns responsible for XDR-TB resistance.

  3. A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples

    DEFF Research Database (Denmark)

    Sun, Yi; Than Linh, Quyen; Hung, Tran Quang

    2015-01-01

    was capable to detect Salmonella at concentration of 50 cells per test within 40 min. The simple design, together with high level of integration, isothermal amplification, and quantitative analysis of multiple samples in short time will greatly enhance the practical applicability of the LOC system for rapid...... amplification (LAMP) for rapid and quantitative detection of Salmonella spp. in food samples. The whole diagnostic procedures including DNA isolation, isothermal amplification, and real-time detection were accomplished in a single chamber. Up to eight samples could be handled simultaneously and the system...... and usually take a few hours to days to complete. In response to the demand for rapid on line or at site detection of pathogens, in this study, we describe for the first time an eight-chamber lab-on-a-chip (LOC) system with integrated magnetic beads-based sample preparation and loop-mediated isothermal...

  4. Rapid detection and strain typing of Chlamydia trachomatis using a highly multiplexed microfluidic PCR assay.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available Nucleic acid amplification tests (NAATs are recommended by the CDC for detection of Chlamydia trachomatis (Ct urogenital infections. Current commercial NAATs require technical expertise and sophisticated laboratory infrastructure, are time-consuming and expensive, and do not differentiate the lymphogranuloma venereum (LGV strains that require a longer duration of treatment than non-LGV strains. The multiplexed microfluidic PCR-based assay presented in this work simultaneously interrogates 13 loci to detect Ct and identify LGV and non-LGV strain-types. Based on amplified fragment length polymorphisms, the assay differentiates LGV, ocular, urogenital, and proctocolitis clades, and also serovars L1, L2, and L3 within the LGV group. The assay was evaluated in a blinded fashion using 95 clinical swabs, with 76 previously reported as urogenital Ct-positive samples and typed by ompA genotyping and/or Multi-Locus Sequence Typing. Results of the 13-plex assay showed that 51 samples fell within urogenital clade 2 or 4, 24 samples showed both clade 2 and 4 signatures, indicating possible mixed infection, gene rearrangement, or inter-clade recombination, and one sample was a noninvasive trachoma biovar (either a clade 3 or 4. The remaining 19 blinded samples were correctly identified as LGV clade 1 (3, ocular clade 3 (4, or as negatives (12. To date, no NAAT assay can provide a point-of-care applicable turnaround time for Ct detection while identifying clinically significant Ct strain types to inform appropriate treatment. Coupled with rapid DNA processing of clinical swabs (approximately 60 minutes from swab-in to result-out, the assay has significant potential as a rapid POC diagnostic for Ct infections.

  5. Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection

    Directory of Open Access Journals (Sweden)

    Lemieux Bertrand

    2011-05-01

    Full Text Available Abstract Background In the past decades the rapid growth of molecular diagnostics (based on either traditional PCR or isothermal amplification technologies meet the demand for fast and accurate testing. Although isothermal amplification technologies have the advantages of low cost requirements for instruments, the further improvement on sensitivity, speed and robustness is a prerequisite for the applications in rapid pathogen detection, especially at point-of-care diagnostics. Here, we describe and explore several strategies to improve one of the isothermal technologies, helicase-dependent amplification (HDA. Results Multiple strategies were approached to improve the overall performance of the isothermal amplification: the restriction endonuclease-mediated DNA helicase homing, macromolecular crowding agents, and the optimization of reaction enzyme mix. The effect of combing all strategies was compared with that of the individual strategy. With all of above methods, we are able to detect 50 copies of Neisseria gonorrhoeae DNA in just 20 minutes of amplification using a nearly instrument-free detection platform (BESt™ cassette. Conclusions The strategies addressed in this proof-of-concept study are independent of expensive equipments, and are not limited to particular primers, targets or detection format. However, they make a large difference in assay performance. Some of them can be adjusted and applied to other formats of nucleic acid amplification. Furthermore, the strategies to improve the in vitro assays by maximally simulating the nature conditions may be useful in the general field of developing molecular assays. A new fast molecular assay for Neisseria gonorrhoeae has also been developed which has great potential to be used at point-of-care diagnostics.

  6. Improved rapidly-quenched hydrogen-absorbing alloys for development of improved-capacity nickel metal hydride batteries

    Science.gov (United States)

    Ise, Tadashi; Hamamatsu, Takeo; Imoto, Teruhiko; Nogami, Mitsuzo; Nakahori, Shinsuke

    The effects of annealing a rapidly-quenched hydrogen-absorbing alloy with a stoichiometric ratio of 4.76 were investigated concerning its hydrogen-absorbing properties, crystal structure and electrochemical characteristics. Annealing at 1073 K homogenized the alloy microstructure and flattened its plateau slope in the P-C isotherms. However, annealing at 1273 K segregated a second phase rich in rare earth elements, increased the hydrogen-absorbing pressure and decreased the hydrogen-absorbing capacity. As the number of charge-discharge cycles increases, the particle size distribution of the rapidly-quenched alloy became broad due to partial pulverization. However, particle size distribution of the rapidly-quenched, annealed, alloy was sharp, since the annealing homogenized the microstructure, thereby improving the cycle characteristics. A high-capacity rectangular nickel metal hydride battery using a rapidly-quenched, annealed, surface-treated alloy for the negative electrode and an active material coated with cobalt compound containing sodium for the positive electrode was developed. The capacity of the resulting battery was 30% greater than that of a conventional battery.

  7. Assembly homogenization techniques for light water reactor analysis

    International Nuclear Information System (INIS)

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  8. Improving homogeneity by dynamic speed limit systems.

    NARCIS (Netherlands)

    Nes, N. van Brandenberg, S. & Twisk, D.A.M.

    2010-01-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12

  9. Genomics-enabled sensor platform for rapid detection of viruses related to disease outbreak.

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M; Manginell, Ronald P; Moorman, Matthew W; Xiao, Xiaoyin; Edwards, Thayne L.; Anderson, John Moses; Pfeifer, Kent Bryant; Branch, Darren W.; Wheeler, David Roger; Polsky, Ronen; Lopez, DeAnna M.; Ebel, Gregory D.; Prasad, Abhishek N.; Brozik, James A.; Rudolph, Angela R.; Wong, Lillian P.

    2013-09-01

    Bioweapons and emerging infectious diseases pose growing threats to our national security. Both natural disease outbreak and outbreaks due to a bioterrorist attack are a challenge to detect, taking days after the outbreak to identify since most outbreaks are only recognized through reportable diseases by health departments and reports of unusual diseases by clinicians. In recent decades, arthropod-borne viruses (arboviruses) have emerged as some of the most significant threats to human health. They emerge, often unexpectedly, from cryptic transmission foci causing localized outbreaks that can rapidly spread to multiple continents due to increased human travel and trade. Currently, diagnosis of acute infections requires amplification of viral nucleic acids, which can be costly, highly specific, technically challenging and time consuming. No diagnostic devices suitable for use at the bedside or in an outbreak setting currently exist. The original goals of this project were to 1) develop two highly sensitive and specific diagnostic assays for detecting RNA from a wide range of arboviruses; one based on an electrochemical approach and the other a fluorescent based assay and 2) develop prototype microfluidic diagnostic platforms for preclinical and field testing that utilize the assays developed in goal 1. We generated and characterized suitable primers for West Nile Virus RNA detection. Both optical and electrochemical transduction technologies were developed for DNA-RNA hybridization detection and were implemented in microfluidic diagnostic sensing platforms that were developed in this project.

  10. Homogeneity and thermodynamic identities in geometrothermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Rome (Italy); Quevedo, Maria N. [Universidad Militar Nueva Granada, Departamento de Matematicas, Facultad de Ciencias Basicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2017-03-15

    We propose a classification of thermodynamic systems in terms of the homogeneity properties of their fundamental equations. Ordinary systems correspond to homogeneous functions and non-ordinary systems are given by generalized homogeneous functions. This affects the explicit form of the Gibbs-Duhem relation and Euler's identity. We show that these generalized relations can be implemented in the formalism of black hole geometrothermodynamics in order to completely fix the arbitrariness present in Legendre invariant metrics. (orig.)

  11. Real-time PCR-based method for rapid detection of Aspergillus niger and Aspergillus welwitschiae isolated from coffee.

    Science.gov (United States)

    von Hertwig, Aline Morgan; Sant'Ana, Anderson S; Sartori, Daniele; da Silva, Josué José; Nascimento, Maristela S; Iamanaka, Beatriz Thie; Pelegrinelli Fungaro, Maria Helena; Taniwaki, Marta Hiromi

    2018-05-01

    Some species from Aspergillus section Nigri are morphologically very similar and altogether have been called A. niger aggregate. Although the species included in this group are morphologically very similar, they differ in their ability to produce mycotoxins and other metabolites and their taxonomical status has evolved continuously. Among them, A. niger and A. welwitschiae are ochratoxin A and fumonisin B 2 producers and their detection and/or identification is of crucial importance for food safety. The aim of this study was the development of a real-time PCR-based method for simultaneous discrimination of A. niger and A. welwitschiae from other species of the A. niger aggregate isolated from coffee beans. One primer pair and a hybridization probe specific for detection of A. niger and A. welwitschiae strains were designed based on the BenA gene sequences, and used in a Real-time PCR assay for the rapid discrimination between both these species from all others of the A. niger aggregate. The Real-time PCR assay was shown to be 100% efficient in discriminating the 73 isolates of A. niger/A. welwitschiae from the other A. niger aggregate species analyzed as a negative control. This result testifies to the use of this technique as a good tool in the rapid detection of these important toxigenic species. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique

    Science.gov (United States)

    Bushon, R.N.; Brady, A.M.; Likirdopulos, C.A.; Cireddu, J.V.

    2009-01-01

    Aims: The aim of this study was to examine a rapid method for detecting Escherichia coli and enterococci in recreational water. Methods and Results: Water samples were assayed for E. coli and enterococci by traditional and immunomagnetic separation/adenosine triphosphate (IMS/ATP) methods. Three sample treatments were evaluated for the IMS/ATP method: double filtration, single filtration, and direct analysis. Pearson's correlation analysis showed strong, significant, linear relations between IMS/ATP and traditional methods for all sample treatments; strongest linear correlations were with the direct analysis (r = 0.62 and 0.77 for E. coli and enterococci, respectively). Additionally, simple linear regression was used to estimate bacteria concentrations as a function of IMS/ATP results. The correct classification of water-quality criteria was 67% for E. coli and 80% for enterococci. Conclusions: The IMS/ATP method is a viable alternative to traditional methods for faecal-indicator bacteria. Significance and Impact of the Study: The IMS/ATP method addresses critical public health needs for the rapid detection of faecal-indicator contamination and has potential for satisfying US legislative mandates requiring methods to detect bathing water contamination in 2 h or less. Moreover, IMS/ATP equipment is considerably less costly and more portable than that for molecular methods, making the method suitable for field applications. ?? 2009 The Authors.

  13. A label-free aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids.

    Science.gov (United States)

    Roncancio, Daniel; Yu, Haixiang; Xu, Xiaowen; Wu, Shuo; Liu, Ran; Debord, Joshua; Lou, Xinhui; Xiao, Yi

    2014-11-18

    We report a rapid and specific aptamer-based method for one-step cocaine detection with minimal reagent requirements. The feasibility of aptamer-based detection has been demonstrated with sensors that operate via target-induced conformational change mechanisms, but these have generally exhibited limited target sensitivity. We have discovered that the cocaine-binding aptamer MNS-4.1 can also bind the fluorescent molecule 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and thereby quench its fluorescence. We subsequently introduced sequence changes into MNS-4.1 to engineer a new cocaine-binding aptamer (38-GC) that exhibits higher affinity to both ligands, with reduced background signal and increased signal gain. Using this aptamer, we have developed a new sensor platform that relies on the cocaine-mediated displacement of ATMND from 38-GC as a result of competitive binding. We demonstrate that our sensor can detect cocaine within seconds at concentrations as low as 200 nM, which is 50-fold lower than existing assays based on target-induced conformational change. More importantly, our assay achieves successful cocaine detection in body fluids, with a limit of detection of 10.4, 18.4, and 36 μM in undiluted saliva, urine, and serum samples, respectively.

  14. A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials

    Science.gov (United States)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2015-08-01

    The acoustic cloak, which can make an object hard to detect acoustically in a homogeneous background, has attracted great attention from researchers in recent years. The inhomogeneous background media were considered in this paper. The relative constitutive parameters were derived for acoustic cloaks working in multilayered media. And a unidirectional acoustic cloak for layered background media was proposed, designed and implemented successfully in a wide frequency range. In water and NaCl aqueous solution, the acoustic cloak was designed and realized with homogeneous metamaterials which were composed of steel and porous materials. The effective parameters of the unit cells of the cloak were determined by using the effective medium theory. Numerical results demonstrated excellent cloaking performance and showed that such a device could be physically realized with natural materials which will greatly promote the real applications of an invisibility cloak in inhomogeneous backgrounds.

  15. Homogeneity of Prototypical Attributes in Soccer Teams

    Directory of Open Access Journals (Sweden)

    Christian Zepp

    2015-09-01

    Full Text Available Research indicates that the homogeneous perception of prototypical attributes influences several intragroup processes. The aim of the present study was to describe the homogeneous perception of the prototype and to identify specific prototypical subcategories, which are perceived as homogeneous within sport teams. The sample consists of N = 20 soccer teams with a total of N = 278 athletes (age M = 23.5 years, SD = 5.0 years. The results reveal that subcategories describing the cohesiveness of the team and motivational attributes are mentioned homogeneously within sport teams. In addition, gender, identification, team size, and the championship ranking significantly correlate with the homogeneous perception of prototypical attributes. The results are discussed on the basis of theoretical and practical implications.

  16. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.

    Science.gov (United States)

    Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou

    2017-05-01

    Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively ( P pleural effusion showed the highest sensitivity of 95.0% but the lowest specificity of 38.9%. The cell-free Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS 6110 per ml of pleural effusion and showed good accordance of the results between repeated tests ( r = 0.978, P = 2.84 × 10 -10 ). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.

  17. Development of a System for Rapid Detection of Contaminants in Water Supplies Using Magnetic Resonance and Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lowery, Thomas J; Neely, Lori; Chepin, James; Wellman, Parris; Toso, Ken; Murray, Paul; Audeh, Mark; Demas, Vasiliki; Palazzolo, Robert; Min, Michael; Phung, Nu; Blanco, Matt; Raphel, Jordan; O' Neil, Troy

    2010-09-14

    To keep the water supply safe and to ensure a swift and accurate response to a water supply contamination event, rapid and robust methods for microbial testing are necessary. Current technologies are complex, lengthy and costly and there is a need for rapid, reliable, and precise approaches that can readily address this fundamental security and safety issue. T2 Biosystems is focused on providing solutions to this problem by making breakthroughs in nanotechnology and biosensor techniques that address the current technical restrictions facing rapid, molecular analysis in complex samples. In order to apply the T2 Biosystems nucleic acid detection procedure to the analysis of nucleic acid targets in unprocessed water samples, Bacillus thuringeinsis was selected as a model organism and local river water was selected as the sample matrix. The initial assay reagent formulation was conceived with a manual magnetic resonance reader, was optimized using a high throughput system, and transferred back to the MR reader for potential field use. The final assay employing the designed and manufactured instruments was capable of detecting 10 CFU/mL of B. thuringiensis directly within the environmental water sample within 90 minutes. Further, discrimination of two closely related species of Bacilli was accomplished using the methods of this project; greater than 3-fold discrimination between B. cereus and B. thuringiensis at a concentrations spanning 10 CFU/mL to 10{sup 5} CFU/mL was observed.

  18. A signal amplification assay for HSV type 1 viral DNA detection using nanoparticles and direct acoustic profiling

    Directory of Open Access Journals (Sweden)

    Hammond Richard

    2010-02-01

    Full Text Available Abstract Background Nucleic acid based recognition of viral sequences can be used together with label-free biosensors to provide rapid, accurate confirmation of viral infection. To enhance detection sensitivity, gold nanoparticles can be employed with mass-sensitive acoustic biosensors (such as a quartz crystal microbalance by either hybridising nanoparticle-oligonucleotide conjugates to complimentary surface-immobilised ssDNA probes on the sensor, or by using biotin-tagged target oligonucleotides bound to avidin-modified nanoparticles on the sensor. We have evaluated and refined these signal amplification assays for the detection from specific DNA sequences of Herpes Simplex Virus (HSV type 1 and defined detection limits with a 16.5 MHz fundamental frequency thickness shear mode acoustic biosensor. Results In the study the performance of semi-homogeneous and homogeneous assay formats (suited to rapid, single step tests were evaluated utilising different diameter gold nanoparticles at varying DNA concentrations. Mathematical models were built to understand the effects of mass transport in the flow cell, the binding kinetics of targets to nanoparticles in solution, the packing geometries of targets on the nanoparticle, the packing of nanoparticles on the sensor surface and the effect of surface shear stiffness on the response of the acoustic sensor. This lead to the selection of optimised 15 nm nanoparticles that could be used with a 6 minute total assay time to achieve a limit of detection sensitivity of 5.2 × 10-12 M. Larger diameter nanoparticles gave poorer limits of detection than smaller particles. The limit of detection was three orders of magnitude lower than that observed using a hybridisation assay without nanoparticle signal amplification. Conclusions An analytical model was developed to determine optimal nanoparticle diameter, concentration and probe density, which allowed efficient and rapid optimisation of assay parameters

  19. Detection of cryptic species

    International Nuclear Information System (INIS)

    Cockburn, A.F.; Jensen, T.; Seawright, J.A.

    1998-01-01

    Morphologically similar cryptic species are common in insects. In Anopheles mosquitoes morphologically described species are complexes of cryptic species. Cryptic species are of great practical importance for two reasons: first, one or more species of the complex might not be a pest and control efforts directed at the complex as a whole would therefore be partly wasted; and second, genetic (and perhaps biological) control strategies directed against one species of the complex would not affect other species of the complex. At least one SIT effort has failed because the released sterile insect were of a different species and therefore did not mate with the wild insects being targeted. We use a multidisciplinary approach for detection of cryptic species complexes, focusing first on identifying variability in wild populations using RFLPs of mitochondrial and ribosomal RNA genes (mtDNA and rDNA); followed by confirmation using a variety of other techniques. For rapid identification of wild individuals of field collections, we use a DNA dot blot assay. DNA probes can be isolated by differential screening, however we are currently focusing on the sequencing of the rDNA extragenic spacers. These regions are repeated several hundred times per genome in mosquitoes and evolve rapidly. Molecular drive tends to keen the individual genes homogeneous within a species. (author)

  20. Homogenization theory in reactor lattices

    International Nuclear Information System (INIS)

    Benoist, P.

    1986-02-01

    The purpose of the theory of homogenization of reactor lattices is to determine, by the mean of transport theory, the constants of a homogeneous medium equivalent to a given lattice, which allows to treat the reactor as a whole by diffusion theory. In this note, the problem is presented by laying emphasis on simplicity, as far as possible [fr

  1. Rapid detection of sugar alcohol precursors and corresponding nitrate ester explosives using direct analysis in real time mass spectrometry.

    Science.gov (United States)

    Sisco, Edward; Forbes, Thomas P

    2015-04-21

    This work highlights the rapid detection of nitrate ester explosives and their sugar alcohol precursors by direct analysis in real time mass spectrometry (DART-MS) using an off-axis geometry. Demonstration of the effect of various parameters, such as ion polarity and in-source collision induced dissociation (CID) on the detection of these compounds is presented. Sensitivity of sugar alcohols and nitrate ester explosives was found to be greatest in negative ion mode with sensitivities ranging from hundreds of picograms to hundreds of nanograms, depending on the characteristics of the particular molecule. Altering the in-source CID potential allowed for acquisition of characteristic molecular ion spectra as well as fragmentation spectra. Additional studies were completed to identify the role of different experimental parameters on the sensitivity for these compounds. Variables that were examined included the DART gas stream temperature, the presence of a related compound (i.e., the effect of a precursor on the detection of a nitrate ester explosive), incorporation of dopant species and the role of the analysis surface. It was determined that each variable affected the response and detection of both sugar alcohols and the corresponding nitrate ester explosives. From this work, a rapid and sensitive method for the detection of individual sugar alcohols and corresponding nitrate ester explosives, or mixtures of the two, has been developed, providing a useful tool in the real-world identification of homemade explosives.

  2. Variations in the microbial log reduction curves of irradiated cod fillets, shrimp, and their respective homogenates

    International Nuclear Information System (INIS)

    Green, J.H.; Kaylor, J.D.

    1977-01-01

    When cod (Gadus morhua morhua) and headless white shrimp (Penaeus setiferus) were gamma irradiated with a series of low-ionizing radiation doses, a ''shoulder(s)'' was observed in the graph (log microbial counts versus dose) in the approximate range of 25 to 75 krads. When the microbiological survivors were differentiated into total counts, proteolytic and pseudomonad-type bacteria, it was observed that the pseudomonad-type bacteria were rapidly destroyed by 25 krads and that proteolytic bacteria were destroyed at a faster rate than the rest of the microorganisms. When cod fillets and shrimp were compared with their respective homogenates and irradiated at doses of 0, 10, 20, 30, 40, 50, 60, 80, 100, 150, 200, and 300 krads, the homogenates did not exhibt the characteristic shoulders. A further experiment was designed to test surface versus uniform dispersion of microorganisms on/in gelatin disks subject to low doses of irradiation. Differences were found that may explain the observed differences between solid food materials such as fish fillets and shrimp and their homogenates

  3. Construction of a simple optical sensor based on air stable lipid film with incorporated urease for the rapid detection of urea in milk.

    Science.gov (United States)

    Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Methenitis, Constantinos

    2010-08-18

    This work describes the construction of a simple optical sensor for the rapid, selective and sensitive detection of urea in milk using air stable lipid films with incorporated urease. The lipid film is stabilized on a glass filter by polymerization using UV (ultra-violet) radiation prior its use. Methacrylic acid was the functional monomer, ethylene glycol dimethacrylate was the crosslinker and 2,2'-azobis-(2-methylpropionitrile) was the initiator. Urease is incorporated within this mixture prior to the polymerization. The presence of the enzyme in these films quenched this fluorescence and the colour became similar to that of the filters without the lipid films. A drop of aqueous solution of urea provided a "switching on" of the fluorescence which allows the rapid detection of this compound at the levels of 10(-8) M concentrations. The investigation of the effect of potent interferences included a wide range of compounds usually found in foods and also of proteins and lipids. These lipid membranes were used for the rapid detection of urea in milk. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Rapid detection of Corynebacterium pseudotuberculosis in clinical samples from sheep.

    Science.gov (United States)

    Kumar, Jyoti; Tripathi, Bhupendra Nath; Kumar, Rajiv; Sonawane, Ganesh Gangaram; Dixit, Shivendra Kumar

    2013-08-01

    Corynebacterium pseudotuberculosis, a Gram-positive bacterium is the causative agent of caseous lymphadenitis (CLA), a chronic disease of sheep, goats and other warm blooded animals. In the present study, a total of 1,080 sheep reared under semi-intensive system on organized farms situated in the semi arid tropical region of Rajasthan, India, was clinically examined. Pus samples from superficial lymph nodes of 25 (2.31%) adult sheep showing clinical lesions similar to CLA were collected for laboratory analyses. On the basis of morphological, cultural and biochemical characteristics 12 (48%) bacterial isolates from pus identified it as C. pseudotuberculosis. A polymerase chain reaction (PCR) assay targeting Putative oligopeptide/dipeptide ABC transporter, nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase coenzyme F420-dependent and proline iminopeptidase (PIP) genes of C. pseudotuberculosis was developed that showed 14 pus samples as positive. All C. pseudotuberculosis isolates were also found positive for these genes in the PCR. The specificity of the PCR products was confirmed by sequencing of the amplified products that showed 98-100% homology with published sequences available in the NCBI database. The present study shows the incidence of CLA as 2.31%, 1.1% and 1.29% based on clinical, bacterial culture and direct pus PCR assay, respectively. The PCR assay was rapid, specific and as significant as bacterial culture in detecting bacteria directly in the clinical pus samples. The PCR assay developed in the study can be applied for the diagnosis and control of CLA. Furthermore, the assay can also be applied to detect C. pseudotuberculosis in various clinical samples.

  5. Enhancement of anaerobic sludge digestion by high-pressure homogenization.

    Science.gov (United States)

    Zhang, Sheng; Zhang, Panyue; Zhang, Guangming; Fan, Jie; Zhang, Yuxuan

    2012-08-01

    To improve anaerobic sludge digestion efficiency, the effects of high-pressure homogenization (HPH) conditions on the anaerobic sludge digestion were investigated. The VS and TCOD were significantly removed with the anaerobic digestion, and the VS removal and TCOD removal increased with increasing the homogenization pressure and homogenization cycle number; correspondingly, the accumulative biogas production also increased with increasing the homogenization pressure and homogenization cycle number. The optimal homogenization pressure was 50 MPa for one homogenization cycle and 40 MPa for two homogenization cycles. The SCOD of the sludge supernatant significantly increased with increasing the homogenization pressure and homogenization cycle number due to the sludge disintegration. The relationship between the biogas production and the sludge disintegration showed that the accumulative biogas and methane production were mainly enhanced by the sludge disintegration, which accelerated the anaerobic digestion process and improved the methane content in the biogas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Layered Fiberconcrete with Non-Homogeneous Fibers Distribution

    OpenAIRE

    Lūsis, V; Krasņikovs, A

    2013-01-01

    The aim of present research is to create fiberconcrete construction with non-homogeneous fibers distribution in it. Traditionally fibers are homogeneously dispersed in a concrete. At the same time in many situations fiberconcretes with homogeneously dispersed fibers are not optimal (majority of added fibers are not participating in a loads bearing process).

  7. Phenoloxidase activity in larval and juvenile homogenates and adult plasma and haemocytes of bivalve molluscs.

    Science.gov (United States)

    Luna-González, Antonio; Maeda-Martínez, Alfonso N; Vargas-Albores, Francisco; Ascencio-Valle, Felipe; Robles-Mungaray, Miguel

    2003-10-01

    Phenoloxidase (PO) activity was studied in larval and juvenile homogenates and in the plasma and haemocytes of adult Crassostrea gigas, Argopecten ventricosus, Nodipecten subnodosus, and Atrina maura. Samples were tested for the presence of PO activity by incubation with the substrate L-3, 4-dihydroxyphenylalanine using trypsin, alpha-chymotrypsin, laminarin, lipopolysaccharides (LPS), and sodium dodecyl sulphate (SDS) to elicit activation of prophenoloxidase (proPO) system. PO activity was not detected in larval homogenate. In juvenile homogenate, PO activity was found only in C. gigas and N. subnodosus. PO activity was present in adult samples and was enhanced by elicitors in the plasma of all species tested, but in haemocyte lysate supernatant (HLS) of only N. subnodosus. Activation of proPO by laminarin was suppressed by a protease inhibitor cocktail (P-2714) in plasma and HLS of all species tested.

  8. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    International Nuclear Information System (INIS)

    Baranyai, L.

    1983-01-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with 198 Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed. (orig.) [de

  9. Radiotracer investigation of cement raw meal homogenizers. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Baranyai, L

    1983-12-01

    Based on radioisotopic tracer technique a method has been worked out to study the homogenization and segregation processes of cement-industrial raw meal homogenizers. On-site measurements were carried out by this method in some Hungarian cement works to determine the optimal homogenization parameters of operating homogenizers. The motion and distribution of different raw meal fractions traced with /sup 198/Au radioisotope was studied in homogenization processes proceeding with different parameters. In the first part of the publication the change of charge homogenity in time was discussed which had been measured as the resultant of mixing and separating processes. In the second part the parameters and types of homogenizers influencing the efficiency of homogenization have been detailed.

  10. Monitoring of homogeneity of fuel compacts for high-temperature reactors

    International Nuclear Information System (INIS)

    Mottet, P.; Guery, M.; Chegne, J.

    Apparatus using either gamma transmission or gamma scintillation spectrometry (with NaI(Tl) detector) was developed for monitoring the homogeneity of distribution of fissile and fertile particles in fuel compacts for high-temperature reactors. Three methods were studied: Longitudinal gamma transmission which gives a total distribution curve of heavy metals (U and Th); gamma spectrometry with a well type scintillator, which rapidly gives the U and Th count rates per fraction of compact; and longitudinal gamma spectrometry, giving axial distribution curves for uranium and thorium; apparatus with four scintillators and optimization of the parameters for the measurement, permitting significantly decreasing the duration of the monitoring. These relatively simple procedures should facilitate the industrial monitoring of high-temperature reactor fuel

  11. Evaluation of twenty rapid antigen tests for the detection of human influenza A H5N1, H3N2, H1N1, and B viruses.

    Science.gov (United States)

    Taylor, Janette; McPhie, Kenneth; Druce, Julian; Birch, Chris; Dwyer, Dominic E

    2009-11-01

    Twenty rapid antigen assays were compared for their ability to detect influenza using dilutions of virus culture supernatants from human isolates of influenza A H5N1 (clade 1 and 2 strains), H3N2 and H1N1 viruses, and influenza B. There was variation amongst the rapid antigen assays in their ability to detect different influenza viruses. Six of the 12 assays labeled as distinguishing between influenza A and B had comparable analytical sensitivities for detecting both influenza A H5N1 strains, although their ability to detect influenza A H3N2 and H1N1 strains varied. The two assays claiming H5 specificity did not detect either influenza A H5N1 strains, and the two avian influenza-specific assays detected influenza A H5N1, but missed some influenza A H3N2 virus supernatants. Clinical trials of rapid antigen tests for influenza A H5N1 are limited. For use in a pandemic where novel influenza strains are circulating (such as the current novel influenza A H1N1 09 virus), rapid antigen tests should ideally have comparable sensitivity and specificity for the new strains as for co-circulating seasonal influenza strains.

  12. Rapid MR imaging

    International Nuclear Information System (INIS)

    Edelman, R.R.; Buxton, R.B.; Brady, T.J.

    1988-01-01

    Conventional magnetic resonance (MR) imaging methods typically require several minutes to produce an image, but the periods of respiration, cardiac motion and peristalsis are on the order of seconds or less. The need to reduce motion artifact, as well as the need to reduce imaging time for patient comfort and efficiency, have provided a strong impetus for the development of rapid imaging methods. For abdominal imaging, motion artifacts due to respiration can be significantly reduced by collecting the entire image during one breath hold. For other applications, such as following the kinetics of administered contrast agents, rapid imaging is essential to achieve adequate time resolution. A shorter imaging time entails a cost in image signal/noise (S/N), but improvements in recent years in magnet homogeneity, gradient and radiofrequency coil design have led to steady improvements in S/N and consequently in image quality. For many chemical applications the available S/N is greater than needed, and a trade-off of lower S/N for a shorter imaging time is acceptable. In this chapter, the authors consider the underlying principles of rapid imaging as well as clinical applications of these methods. The bulk of this review concentrates on short TR imaging, but methods that provide for a more modest decrease in imaging time as well as or those that dramatically shorten the imaging time to tens of milliseconds are also discussed

  13. Highly reproducible and sensitive silver nanorod array for the rapid detection of Allura Red in candy

    Science.gov (United States)

    Yao, Yue; Wang, Wen; Tian, Kangzhen; Ingram, Whitney Marvella; Cheng, Jie; Qu, Lulu; Li, Haitao; Han, Caiqin

    2018-04-01

    Allura Red (AR) is a highly stable synthetic red azo dye, which is widely used in the food industry to dye food and increase its attraction to consumers. However, the excessive consumption of AR can result in adverse health effects to humans. Therefore, a highly reproducible silver nanorod (AgNR) array was developed for surface enhanced Raman scattering (SERS) detection of AR in candy. The relative standard deviation (RSD) of AgNR substrate obtained from the same batch and different batches were 5.7% and 11.0%, respectively, demonstrating the high reproducibility. Using these highly reproducible AgNR arrays as the SERS substrates, AR was detected successfully, and its characteristic peaks were assigned by the density function theory (DFT) calculation. The limit of detection (LOD) of AR was determined to be 0.05 mg/L with a wide linear range of 0.8-100 mg/L. Furthermore, the AgNR SERS arrays can detect AR directly in different candy samples within 3 min without any complicated pretreatment. These results suggest the AgNR array can be used for rapid and qualitative SERS detection of AR, holding a great promise for expanding SERS application in food safety control field.

  14. Portable Microplate Analyzer with a Thermostatic Chamber Based on a Smartphone for On-site Rapid Detection.

    Science.gov (United States)

    Wan, Zijian; Zhong, Longjie; Pan, Yuxiang; Li, Hongbo; Zou, Quchao; Su, Kaiqi; Wang, Ping

    2017-01-01

    A microplate method provides an efficient way to use modern detection technology. However, there are some difficulties concerning on-site detection, such as being non-portable and time-consuming. In this work, a novel portable microplate analyzer with a thermostatic chamber based on a smartphone was designed for rapid on-site detection. An analyzer with a wide-angle lens and an optical filter provides a proper environment for the microplate. A smartphone app-iPlate Monitor was used for RGB analyze of image. After a consistency experiment with a microtiter plate reader (MTPR), the normalized calibration curves were y = 0.7276x + 0.0243 (R 2 = 0.9906) and y = 0.3207x + 0.0094 (R 2 = 0.9917) with a BCA protein kit as well as y = 0.182x + 0.0134 (R 2 = 0.994) and y = 0.0674x + 0.0003 (R 2 = 0.9988) with a glucose kit. The times for obtaining the detection requirement were 15 and 10 min for the BCA protein kit and the glucose kit at 37°C; in contrast, it required more than 30 and 20 min at ambient temperature. Meanwhile, it also showed good repeatability for detections.

  15. Rapid detection and differentiation of Clonorchis sinensis and Opisthorchis viverrini using real-time PCR and high resolution melting analysis.

    Science.gov (United States)

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  16. Rapid Detection and Differentiation of Clonorchis sinensis and Opisthorchis viverrini Using Real-Time PCR and High Resolution Melting Analysis

    Directory of Open Access Journals (Sweden)

    Xian-Quan Cai

    2014-01-01

    Full Text Available Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA extracted from the two flukes yielded specific amplification and their identity was confirmed by sequencing, having the accuracy of 100% in reference to conventional methods. The assay was proved to be highly sensitive with a detection limit below 1 pg of purified genomic DNA, 5 EPG, or 1 metacercaria of C. sinensis. Moreover, C. sinensis and O. viverrini were able to be differentiated by their HRM profiles. The method can reduce labor of microscopic examination and the contamination of agarose electrophoresis. Moreover, it can differentiate these two flukes which are difficult to be distinguished using other methods. The established method provides an alternative tool for rapid, simple, and duplex detection of C. sinensis and O. viverrini.

  17. Homogenization approach in engineering

    International Nuclear Information System (INIS)

    Babuska, I.

    1975-10-01

    Homogenization is an approach which studies the macrobehavior of a medium by its microproperties. Problems with a microstructure play an essential role in such fields as mechanics, chemistry, physics, and reactor engineering. Attention is concentrated on a simple specific model problem to illustrate results and problems typical of the homogenization approach. Only the diffusion problem is treated here, but some statements are made about the elasticity of composite materials. The differential equation is solved for linear cases with and without boundaries and for the nonlinear case. 3 figures, 1 table

  18. Rapid and sensitive detection of synthetic cannabinoids AMB-FUBINACA and α-PVP using surface enhanced Raman scattering (SERS)

    Science.gov (United States)

    Islam, Syed K.; Cheng, Yin Pak; Birke, Ronald L.; Green, Omar; Kubic, Thomas; Lombardi, John R.

    2018-04-01

    The application of surface enhanced Raman scattering (SERS) has been reported as a fast and sensitive analytical method in the trace detection of the two most commonly known synthetic cannabinoids AMB-FUBINACA and alpha-pyrrolidinovalerophenone (α-PVP). FUBINACA and α-PVP are two of the most dangerous synthetic cannabinoids which have been reported to cause numerous deaths in the United States. While instruments such as GC-MS, LC-MS have been traditionally recognized as analytical tools for the detection of these synthetic drugs, SERS has been recently gaining ground in the analysis of these synthetic drugs due to its sensitivity in trace analysis and its effectiveness as a rapid method of detection. This present study shows the limit of detection of a concentration as low as picomolar for AMB-FUBINACA while for α-PVP, the limit of detection is in nanomolar concentration using SERS.

  19. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  20. Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce.

    Science.gov (United States)

    Xie, Fang; Lai, WeiHua; Saini, Jasdeep; Shan, Shan; Cui, Xi; Liu, DaoFeng

    2014-05-01

    Soybean sauce, a traditional fermented food in China, has different levels of aflatoxin B1 pollution. Two kinds of direct and indirect immunomagnetic bead methods for the pretreatment of aflatoxin B1 were evaluated in this work. A method was established to detect aflatoxin B1 in soybean sauce using an immunomagnetic bead system for pretreatment and ELISA for quantification. The pretreatment method of immunomagnetic beads performed better compared with the conventional extraction and immunoaffinity column method. ELISA exhibited a good linear relationship at an aflatoxin B1 concentration of 0.05-0.3μg/kg (r(2)=0.9842). The average recoveries across spike levels varied from 0.5 to 7μg/kg were 83.6-104% with a relative standard deviation between 4.2% and 11.7%. With the advantages of rapid detection, easy operation, simple equipment, sensitivity, accuracy, and high recovery; this method can be well applied in the trace determination of aflatoxin B1 in soybean sauce samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food.

    Science.gov (United States)

    Yan, Chao; Zhang, Jing; Yao, Li; Xue, Feng; Lu, Jianfeng; Li, Baoguang; Chen, Wei

    2018-09-15

    We report an aptamer-mediated colorimetric method for sensitive detection of chloramphenicol (CAP). The aptamer of CAP is immobilized by the hybridization with pre-immobilized capture probe in the microtiter plate. The horseradish peroxidase (HRP) is covalently attached to the aptamer by the biotin-streptavidin system for signal production. CAP will preferably bind with aptamer due to the high binding affinity, which attributes to the release of aptamer and HRP and thus, affects the optical signal intensity. Quantitative determination of CAP is successfully achieved in the wide range from 0.001 to 1000 ng/mL with detection limit of 0.0031 ng/mL, which is more sensitive than traditional immunoassays. This method is further validated by measuring the recovery of CAP spiked in two different food matrices (honey and fish). The aptamer-mediated colorimetric method can be a useful protocol for rapid and sensitive screening of CAP, and may be used as an alternative means for traditional immunoassays. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Rapid Detection and Enumeration of Giardia lamblia Cysts in Water Samples by Immunomagnetic Separation and Flow Cytometric Analysis ▿ †

    Science.gov (United States)

    Keserue, Hans-Anton; Füchslin, Hans Peter; Egli, Thomas

    2011-01-01

    Giardia lamblia is an important waterborne pathogen and is among the most common intestinal parasites of humans worldwide. Its fecal-oral transmission leads to the presence of cysts of this pathogen in the environment, and so far, quantitative rapid screening methods are not available for various matrices, such as surface waters, wastewater, or food. Thus, it is necessary to establish methods that enable reliable rapid detection of a single cyst in 10 to 100 liters of drinking water. Conventional detection relies on cyst concentration, isolation, and confirmation by immunofluorescence microscopy (IFM), resulting in low recoveries and high detection limits. Many different immunomagnetic separation (IMS) procedures have been developed for separation and cyst purification, so far with variable but high losses of cysts. A method was developed that requires less than 100 min and consists of filtration, resuspension, IMS, and flow cytometric (FCM) detection. MACS MicroBeads were used for IMS, and a reliable flow cytometric detection approach was established employing 3 different parameters for discrimination from background signals, i.e., green and red fluorescence (resulting from the distinct pattern emitted by the fluorescein dye) and sideward scatter for size discrimination. With spiked samples, recoveries exceeding 90% were obtained, and false-positive results were never encountered for negative samples. Additionally, the method was applicable to naturally occurring cysts in wastewater and has the potential to be automated. PMID:21685159

  3. Stimulus homogeneity enhances implicit learning: evidence from contextual cueing.

    Science.gov (United States)

    Feldmann-Wüstefeld, Tobias; Schubö, Anna

    2014-04-01

    Visual search for a target object is faster if the target is embedded in a repeatedly presented invariant configuration of distractors ('contextual cueing'). It has also been shown that the homogeneity of a context affects the efficiency of visual search: targets receive prioritized processing when presented in a homogeneous context compared to a heterogeneous context, presumably due to grouping processes at early stages of visual processing. The present study investigated in three Experiments whether context homogeneity also affects contextual cueing. In Experiment 1, context homogeneity varied on three levels of the task-relevant dimension (orientation) and contextual cueing was most pronounced for context configurations with high orientation homogeneity. When context homogeneity varied on three levels of the task-irrelevant dimension (color) and orientation homogeneity was fixed, no modulation of contextual cueing was observed: high orientation homogeneity led to large contextual cueing effects (Experiment 2) and low orientation homogeneity led to low contextual cueing effects (Experiment 3), irrespective of color homogeneity. Enhanced contextual cueing for homogeneous context configurations suggest that grouping processes do not only affect visual search but also implicit learning. We conclude that memory representation of context configurations are more easily acquired when context configurations can be processed as larger, grouped perceptual units. However, this form of implicit perceptual learning is only improved by stimulus homogeneity when stimulus homogeneity facilitates grouping processes on a dimension that is currently relevant in the task. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A.

    Science.gov (United States)

    Pan, Daodong; Gu, Yuanyuan; Lan, Hangzhen; Sun, Yangying; Gao, Huiju

    2015-01-01

    In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5×10(-3)-3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Homogeneous Ir-192 afterloading-flab-irradiation of plane surfaces

    International Nuclear Information System (INIS)

    Bratengeier, K.; Krieger, T.

    2002-01-01

    Homogeneous irradiation of plane targets bt Ir-192 afterloading flabs made by a parallel series of linear applicators can be time-consuming even with modern planning systems. The aim of the present study was to develop an algorithm that supplies homogeneous dose distributions in an arbitrary given plane in parallel to the equipped plane of a flab. The edge and corner positions of the flab are of particular importance. The identity of the dose in the optimisation distance above the flab centre, corners, and middle of the flab edges, leads to a strict relation of the respective dwell weights. Formulas can be derived that allow the calculation of the dwell times. The dimensioning of the flab can be rapidly adapted to new conditions. A comparison with the results of Nucletron PLATO-BPS for applicator-applicator distances and step sizes of 1 cm at optimisation distances of 10, 20, 30, and 40 mm and various flab sizes (3 x 3, 9 x 9, and 15 x 15 cm 2 ) shows the following results: The standard deviation of the proposed algorithm is sometimes slightly higher than the results of the commercial planning system, whereas the underdosage at the flab edges is usually smaller. The effort for planning and preparation of the irradiation, for example using a Nucletron HDR, is below 5 minutes - a considerable reduction of planning time. (orig.) [de

  6. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.

    2015-10-01

    In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.

  7. The characteristics of rapid detection of irradiated foods by photostimulated luminescence (PSL)

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Yamazaki, Masao; Mizuno, Hiroaki; Goto, Michiko; Hagiwara, Shoji; Todoriki, Setsuko; Honda, Katsunori

    2007-01-01

    The Photostimulated luminescence (PSL) method offered a rapid, convenient and sensitive way for detecting irradiated food. We developed a new PSL system with the tree classification modes for identifying irradiated foods. The present study reports the changes of the signal intensities and the typical decay curves of PSL for irradiated the powdered leaf products and several kinds of silicate minerals under dark storage. Any of powdered leaf products under dark storage at 4-50degC showed the typical decay curves of PSL even after 5 months, and irradiated paprika and yellow ocher could be still identify after heat-treatment at 120degC. PSL intensities of silicate minerals increased with the increase of radiation dose and show a linear relationship up to a about 1 kGy, but varied among silicate minerals. (author)

  8. Rapid detection of the CYP2A6*12 hybrid allele by Pyrosequencing® technology

    Directory of Open Access Journals (Sweden)

    Gallagher Margaret L

    2009-08-01

    Full Text Available Abstract Background Identification of CYP2A6 alleles associated with reduced enzyme activity is important in the study of inter-individual differences in drug metabolism. CYP2A6*12 is a hybrid allele that results from unequal crossover between CYP2A6 and CYP2A7 genes. The 5' regulatory region and exons 1–2 are derived from CYP2A7, and exons 3–9 are derived from CYP2A6. Conventional methods for detection of CYP2A6*12 consist of two-step PCR protocols that are laborious and unsuitable for high-throughput genotyping. We developed a rapid and accurate method to detect the CYP2A6*12 allele by Pyrosequencing technology. Methods A single set of PCR primers was designed to specifically amplify both the CYP2A6*1 wild-type allele and the CYP2A6*12 hybrid allele. An internal Pyrosequencing primer was used to generate allele-specific sequence information, which detected homozygous wild-type, heterozygous hybrid, and homozygous hybrid alleles. We first validated the assay on 104 DNA samples that were also genotyped by conventional two-step PCR and by cycle sequencing. CYP2A6*12 allele frequencies were then determined using the Pyrosequencing assay on 181 multi-ethnic DNA samples from subjects of African American, European Caucasian, Pacific Rim, and Hispanic descent. Finally, we streamlined the Pyrosequencing assay by integrating liquid handling robotics into the workflow. Results Pyrosequencing results demonstrated 100% concordance with conventional two-step PCR and cycle sequencing methods. Allele frequency data showed slightly higher prevalence of the CYP2A6*12 allele in European Caucasians and Hispanics. Conclusion This Pyrosequencing assay proved to be a simple, rapid, and accurate alternative to conventional methods, which can be easily adapted to the needs of higher-throughput studies.

  9. Early Flood Detection for Rapid Humanitarian Response: Harnessing Near Real-Time Satellite and Twitter Signals

    Directory of Open Access Journals (Sweden)

    Brenden Jongman

    2015-10-01

    Full Text Available Humanitarian organizations have a crucial role in response and relief efforts after floods. The effectiveness of disaster response is contingent on accurate and timely information regarding the location, timing and impacts of the event. Here we show how two near-real-time data sources, satellite observations of water coverage and flood-related social media activity from Twitter, can be used to support rapid disaster response, using case-studies in the Philippines and Pakistan. For these countries we analyze information from disaster response organizations, the Global Flood Detection System (GFDS satellite flood signal, and flood-related Twitter activity analysis. The results demonstrate that these sources of near-real-time information can be used to gain a quicker understanding of the location, the timing, as well as the causes and impacts of floods. In terms of location, we produce daily impact maps based on both satellite information and social media, which can dynamically and rapidly outline the affected area during a disaster. In terms of timing, the results show that GFDS and/or Twitter signals flagging ongoing or upcoming flooding are regularly available one to several days before the event was reported to humanitarian organizations. In terms of event understanding, we show that both GFDS and social media can be used to detect and understand unexpected or controversial flood events, for example due to the sudden opening of hydropower dams or the breaching of flood protection. The performance of the GFDS and Twitter data for early detection and location mapping is mixed, depending on specific hydrological circumstances (GFDS and social media penetration (Twitter. Further research is needed to improve the interpretation of the GFDS signal in different situations, and to improve the pre-processing of social media data for operational use.

  10. A comprehensive survey of thermoelectric homogeneity of commonly used thermocouple types

    Science.gov (United States)

    Machin, Jonathan; Tucker, Declan; Pearce, Jonathan V.

    2018-06-01

    Thermocouples are widely used as temperature sensors in industry. The electromotive force generated by a thermocouple is produced in a temperature gradient and not at the thermocouple tip. This means that the thermoelectric inhomogeneity represents one of the most important contributions to the overall measurement uncertainty associated with thermocouples. To characterise this effect, and to provide some general recommendations concerning the magnitude of this contribution to use when formulating uncertainty analyses, a comprehensive literature survey has been performed. Significant information was found for Types K, N, R, S, B, Pt/Pd, Au/Pt and various other Pt/Rh thermocouples. In the case of Type K and N thermocouples, the survey has been augmented by a substantial amount of data based on calibrations of mineral-insulated, metal-sheathed thermocouple cable reels from thermocouple manufacturers. Some general conclusions are drawn and outline recommendations given concerning typical values for the uncertainty arising from thermoelectric inhomogeneity for the most widely used thermocouple types in the as-new state. It is stressed that these recommendations should only be heeded when individual homogeneity measurements are not possible. It is also stressed that the homogeneity can deteriorate rapidly during use, particularly for base metal thermocouples.

  11. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  12. String pair production in non homogeneous backgrounds

    International Nuclear Information System (INIS)

    Bolognesi, S.; Rabinovici, E.; Tallarita, G.

    2016-01-01

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  13. Development of a reverse transcription loop-mediated isothermal amplification method for the rapid detection of avian influenza virus subtype H7.

    Science.gov (United States)

    Bao, Hongmei; Wang, Xiurong; Zhao, Yuhui; Sun, Xiaodong; Li, Yanbing; Xiong, Yongzhong; Chen, Hualan

    2012-01-01

    A rapid and sensitive reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7 avian influenza virus (H7 AIV) isotype was developed. The minimum detection limit of the RT-LAMP assay was 0.1-0.01 PFU per reaction for H7 AIV RNA, making this assay 100-fold more sensitive than the conventional RT-PCR method. This RT-LAMP assay also has the capacity to detect both high- and low-pathogenic H7 AIV strains. Using a pool of RNAs extracted from influenza viruses corresponding to all 15 HA subtypes (in addition to other avian pathogenic viruses), the RT-LAMP system was confirmed to amplify only H7 AIV RNA. Furthermore, specific pathogen free (SPF) chickens were infected artificially with H7 AIV, throat and cloacal swabs were collected, and viral shedding was examined using viral isolation, RT-PCR and RT-LAMP. Shedding was detected following viral isolation and RT-LAMP one day after infection, whereas viral detection using RT-PCR was effective only on day 3 post-infection. These results indicate that the RT-LAMP method could facilitate epidemiological surveillance and the rapid diagnosis of the avian influenza subtype H7. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Homogeneous M2 duals

    International Nuclear Information System (INIS)

    Figueroa-O’Farrill, José; Ungureanu, Mara

    2016-01-01

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS 4 ×P 7 , with P riemannian and homogeneous under the action of SO(5), or S 4 ×Q 7 with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  15. Homogeneous M2 duals

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa-O’Farrill, José [School of Mathematics and Maxwell Institute for Mathematical Sciences,The University of Edinburgh,James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road,Edinburgh EH9 3FD, Scotland (United Kingdom); Ungureanu, Mara [Humboldt-Universität zu Berlin, Institut für Mathematik,Unter den Linden 6, 10099 Berlin (Germany)

    2016-01-25

    Motivated by the search for new gravity duals to M2 branes with N>4 supersymmetry — equivalently, M-theory backgrounds with Killing superalgebra osp(N|4) for N>4 — we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra so(n)⊕so(3,2) for n=5,6,7. We find that there are no new backgrounds with n=6,7 but we do find a number of new (to us) backgrounds with n=5. All backgrounds are metrically products of the form AdS{sub 4}×P{sup 7}, with P riemannian and homogeneous under the action of SO(5), or S{sup 4}×Q{sup 7} with Q lorentzian and homogeneous under the action of SO(3,2). At least one of the new backgrounds is supersymmetric (albeit with only N=2) and we show that it can be constructed from a supersymmetric Freund-Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  16. SnO2 quantum dots with rapid butane detection at lower ppm-level

    Science.gov (United States)

    Cai, Pan; Dong, Chengjun; Jiang, Ming; Shen, Yuanyuan; Tao, You; Wang, Yude

    2018-04-01

    SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).

  17. A unidirectional acoustic cloak for multilayered background media with homogeneous metamaterials

    International Nuclear Information System (INIS)

    Zhu, Jian; Chen, Tianning; Liang, Qingxuan; Wang, Xiaopeng; Xiong, Jie; Jiang, Ping

    2015-01-01

    The acoustic cloak, which can make an object hard to detect acoustically in a homogeneous background, has attracted great attention from researchers in recent years. The inhomogeneous background media were considered in this paper. The relative constitutive parameters were derived for acoustic cloaks working in multilayered media. And a unidirectional acoustic cloak for layered background media was proposed, designed and implemented successfully in a wide frequency range. In water and NaCl aqueous solution, the acoustic cloak was designed and realized with homogeneous metamaterials which were composed of steel and porous materials. The effective parameters of the unit cells of the cloak were determined by using the effective medium theory. Numerical results demonstrated excellent cloaking performance and showed that such a device could be physically realized with natural materials which will greatly promote the real applications of an invisibility cloak in inhomogeneous backgrounds. (paper)

  18. Position-dependency of Fuel Pin Homogenization in a Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Woong; Kim, Yonghee [Korea Advanced Institute of Science and Technolgy, Daejeon (Korea, Republic of)

    2016-05-15

    By considering the multi-physics effects more comprehensively, it is possible to acquire precise local parameters which can result in a more accurate core design and safety assessment. A conventional approach of the multi-physics neutronics calculation for the pressurized water reactor (PWR) is to apply nodal methods. Since the nodal methods are basically based on the use of assembly-wise homogenized parameters, additional pin power reconstruction processes are necessary to obtain local power information. In the past, pin-by-pin core calculation was impractical due to the limited computational hardware capability. With the rapid advancement of computer technology, it is now perhaps quite practical to perform the direct pin-by-pin core calculation. As such, fully heterogeneous transport solvers based on both stochastic and deterministic methods have been developed for the acquisition of exact local parameters. However, the 3-D transport reactor analysis is still challenging because of the very high computational requirement. Position-dependency of the fuel pin homogenized cross sections in a small PWR core has been quantified via comparison of infinite FA and 2-D whole core calculations with the use of high-fidelity MC simulations. It is found that the pin environmental affect is especially obvious in FAs bordering the baffle reflector regions. It is also noted that the downscattering cross section is rather sensitive to the spectrum changes of the pins. It is expected that the pinwise homogenized cross sections need to be corrected somehow for accurate pin-by-pin core calculations in the peripheral region of the reactor core.

  19. Rapid Detection of the Chlamydiaceae and Other Families in the Order Chlamydiales: Three PCR Tests

    Science.gov (United States)

    Everett, Karin D. E.; Hornung, Linda J.; Andersen, Arthur A.

    1999-01-01

    Few identification methods will rapidly or specifically detect all bacteria in the order Chlamydiales, family Chlamydiaceae. In this study, three PCR tests based on sequence data from over 48 chlamydial strains were developed for identification of these bacteria. Two tests exclusively recognized the Chlamydiaceae: a multiplex test targeting the ompA gene and the rRNA intergenic spacer and a TaqMan test targeting the 23S ribosomal DNA. The multiplex test was able to detect as few as 200 inclusion-forming units (IFU), while the TaqMan test could detect 2 IFU. The amplicons produced in these tests ranged from 132 to 320 bp in length. The third test, targeting the 23S rRNA gene, produced a 600-bp amplicon from strains belonging to several families in the order Chlamydiales. Direct sequence analysis of this amplicon has facilitated the identification of new chlamydial strains. These three tests permit ready identification of chlamydiae for diagnostic and epidemiologic study. The specificity of these tests indicates that they might also be used to identify chlamydiae without culture or isolation. PMID:9986815

  20. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay

    Science.gov (United States)

    Coban, Ahmet Yilmaz; Uzun, Meltem

    2013-01-01

    Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results. PMID:24402143

  1. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz Coban

    2013-12-01

    Full Text Available Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA in detecting isoniazid (INH and rifampicin (RIF resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV, negative predictive value (NPV and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.

  2. Two-Dimensional Homogeneous Fermi Gases

    Science.gov (United States)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  3. Diffusion piecewise homogenization via flux discontinuity ratios

    International Nuclear Information System (INIS)

    Sanchez, Richard; Dante, Giorgio; Zmijarevic, Igor

    2013-01-01

    We analyze piecewise homogenization with flux-weighted cross sections and preservation of averaged currents at the boundary of the homogenized domain. Introduction of a set of flux discontinuity ratios (FDR) that preserve reference interface currents leads to preservation of averaged region reaction rates and fluxes. We consider the class of numerical discretizations with one degree of freedom per volume and per surface and prove that when the homogenization and computing meshes are equal there is a unique solution for the FDRs which exactly preserve interface currents. For diffusion sub-meshing we introduce a Jacobian-Free Newton-Krylov method and for all cases considered obtain an 'exact' numerical solution (eight digits for the interface currents). The homogenization is completed by extending the familiar full assembly homogenization via flux discontinuity factors to the sides of regions laying on the boundary of the piecewise homogenized domain. Finally, for the familiar nodal discretization we numerically find that the FDRs obtained with no sub-mesh (nearly at no cost) can be effectively used for whole-core diffusion calculations with sub-mesh. This is not the case, however, for cell-centered finite differences. (authors)

  4. Rapid solid-phase radioimmunoassay for detection of equine infectious anemia viral antigen and antibodies: parameters involved in standardization

    International Nuclear Information System (INIS)

    Horenstein, A.L.; Feinstein, R.E.

    1985-01-01

    Solid-phase radioimmunoassays (SPRIA) are described for the detection of equine infectious anemia (EIA) viral antigen and antibodies. Protein-antigen P29 currently used in the agar-gel immunodiffusion (AGID) test was used as antigen in the SPRIA. The specificity of the reaction was assessed by inhibition with the antigen. The reaction of immune serum against EIA-virus antigen adsorbed to the wells, was completely inhibited by the antigen in solution. This property was applied in an indirect competitive SPRIA for the detection of viral protein P29. The detection threshold of the SPRIA for EIA virus protein was about 5 ng and about 1 ng of antibody can be detected. The assay is rapid, specific and sensitive and allows the testing of multiple serum samples with the advantage of employing a single secondary labelled antibody. (orig.)

  5. Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers.

    Science.gov (United States)

    Farcas, Gabriella A; Soeller, Rainer; Zhong, Kathleen; Zahirieh, Alireza; Kain, Kevin C

    2006-03-01

    Imported drug-resistant malaria is a growing problem in industrialized countries. Rapid and accurate diagnosis is essential to prevent malaria-associated mortality in returned travelers. However, outside of a limited number of specialized centers, the microscopic diagnosis of malaria is slow, unreliable, and provides little information about drug resistance. Molecular diagnostics have the potential to overcome these limitations. We developed and evaluated a rapid, real-time polymerase chain reaction (PCR) assay to detect Plasmodium falciparum malaria and chloroquine (CQ)-resistance determinants in returned travelers who are febrile. A real-time PCR assay based on detection of the K76T mutation in PfCRT (K76T) of P. falciparum was developed on a LightCycler platform (Roche). The performance characteristics of the real-time assay were compared with those of the nested PCR-restriction fragment-length polymorphism (RFLP) and the sequence analyses of samples obtained from 200 febrile returned travelers, who included 125 infected with P. falciparum (48 of whom were infected CQ-susceptible [K76] and 77 of whom were CQ-resistant [T76] P. falciparum), 22 infected with Plasmodium vivax, 10 infected with Plasmodium ovale, 3 infected with Plasmodium malariae malaria, and 40 infected with other febrile syndromes. All patient samples were coded, and all analyses were performed blindly. The real-time PCR assay detected multiple pfcrt haplotypes associated with CQ resistance in geographically diverse malaria isolates acquired by travelers. Compared with nested-PCR RFLP (the reference standard), the real-time assay was 100% sensitive and 96.2% specific for detection of the P. falciparum K76T mutation. This assay is rapid, sensitive, and specific for the detection and characterization of CQ-resistant P. falciparum malaria in returned travelers. This assay is automated, standardized, and suitable for routine use in clinical diagnostic laboratories.

  6. Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data.

    Science.gov (United States)

    Rowe, Will; Baker, Kate S; Verner-Jeffreys, David; Baker-Austin, Craig; Ryan, Jim J; Maskell, Duncan; Pearce, Gareth

    2015-01-01

    Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR

  7. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    International Nuclear Information System (INIS)

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  8. Homogenization of one-dimensional draining through heterogeneous porous media including higher-order approximations

    Science.gov (United States)

    Anderson, Daniel M.; McLaughlin, Richard M.; Miller, Cass T.

    2018-02-01

    We examine a mathematical model of one-dimensional draining of a fluid through a periodically-layered porous medium. A porous medium, initially saturated with a fluid of a high density is assumed to drain out the bottom of the porous medium with a second lighter fluid replacing the draining fluid. We assume that the draining layer is sufficiently dense that the dynamics of the lighter fluid can be neglected with respect to the dynamics of the heavier draining fluid and that the height of the draining fluid, represented as a free boundary in the model, evolves in time. In this context, we neglect interfacial tension effects at the boundary between the two fluids. We show that this problem admits an exact solution. Our primary objective is to develop a homogenization theory in which we find not only leading-order, or effective, trends but also capture higher-order corrections to these effective draining rates. The approximate solution obtained by this homogenization theory is compared to the exact solution for two cases: (1) the permeability of the porous medium varies smoothly but rapidly and (2) the permeability varies as a piecewise constant function representing discrete layers of alternating high/low permeability. In both cases we are able to show that the corrections in the homogenization theory accurately predict the position of the free boundary moving through the porous medium.

  9. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    Science.gov (United States)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    On-site detection of enzymatic activities has been suggested as a rapid surrogate for microbiological pollution monitoring of water resources (e.g. using glucuronidases, galactosidases, esterases). Due to the possible short measuring intervals enzymatic methods have high potential as near-real time water quality monitoring tools. This presentation describes results from a long termed field test. For twelve months, two ColiMinder devices (Vienna Water Monitoring, Austria) for on-site determination of enzymatic activity were tested for stream water monitoring at the experimental catchment HOAL (Hydrological Open Air Laboratory, Center for Water Resource Systems, Vienna University of Technology). The devices were overall able to follow and reflect the diverse hydrological and microbiological conditions of the monitored stream during the test period. Continuous data in high temporal resolution captured the course of enzymatic activity in stream water during diverse rainfall events. The method also proofed sensitive enough to determine diurnal fluctuations of enzymatic activity in stream water during dry periods. The method was able to capture a seasonal trend of enzymatic activity in stream water that matches the results gained from Colilert18 analysis for E. coli and coliform bacteria of monthly grab samples. Furthermore the comparison of ColiMinder data with measurements gained at the same test site with devices using the same method but having different construction design (BACTcontrol, microLAN) showed consistent measuring results. Comparative analysis showed significant differences between measured enzymatic activity (modified fishman units and pmol/min/100ml) and cultivation based analyses (most probable number, colony forming unit). Methods of enzymatic activity measures are capable to detect ideally the enzymatic activity caused by all active target bacteria members, including VBNC (viable but nonculturable) while cultivation based methods cannot detect VBNC

  10. The homogeneous geometries of real hyperbolic space

    DEFF Research Database (Denmark)

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use...... our analysis to show that the moduli space of homogeneous structures on real hyperbolic space has two connected components....

  11. Spinor structures on homogeneous spaces

    International Nuclear Information System (INIS)

    Lyakhovskii, V.D.; Mudrov, A.I.

    1993-01-01

    For multidimensional models of the interaction of elementary particles, the problem of constructing and classifying spinor fields on homogeneous spaces is exceptionally important. An algebraic criterion for the existence of spinor structures on homogeneous spaces used in multidimensional models is developed. A method of explicit construction of spinor structures is proposed, and its effectiveness is demonstrated in examples. The results are of particular importance for harmonic decomposition of spinor fields

  12. Investigations into homogenization of electromagnetic metamaterials

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau

    This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in term...

  13. Self-paired monoclonal antibody lateral flow immunoassay strip for rapid detection of Acidovorax avenae subsp. citrulli.

    Science.gov (United States)

    Zeng, Haijuan; Guo, Wenbo; Liang, Beibei; Li, Jianwu; Zhai, Xuzhao; Song, Chunmei; Zhao, Wenjun; Fan, Enguo; Liu, Qing

    2016-09-01

    We screened a highly specific monoclonal antibody (McAb), named 6D, against Acidovorax avenae subsp. citrulli (Aac). Single McAb 6D was used as both nanogold-labeled antibody and test antibody to develop a single self-paired colloidal gold immunochromatographic test strip (Sa-GICS). The detection limit achieved using the Sa-GICS approach was 10(5) CFU/mL, with a result that can be observed by the naked eye within 10 min. Moreover, Sa-GICS can detect eight strains of Aac and display no cross-reactions with other pathogenic plant microorganisms. Artificial contamination experiments demonstrated that Sa-GICS would not be affected by impurities in the leaves or stems of the plants and were consistent with the PCR results. This is the first report on the development of a colloidal gold immunoassay strip with self-paired single McAb for the rapid detection of Aac. Graphical Abstract Schematic representation of the test strip.

  14. Development of a rapid immunochromatographic assay to detect contamination of raw oysters with enteropathogenic Vibrio parahaemolyticus.

    Science.gov (United States)

    Sakata, Junko; Yonekita, Taro; Kawatsu, Kentaro

    2018-01-02

    Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are major virulence factors of enteropathogenic Vibrio parahaemolyticus. TDH and TRH are bacterial exotoxins, and their presence in culture medium serves as a specific marker for detecting this significant pathogen. Here, we developed and evaluated an immunochromatographic assay (TDH/TRH-ICA) to simultaneously or individually detect TDH and TRH. The TDH/TRH-ICA detected TDH in all broth cultures of 47 V. parahaemolyticus strains carrying tdh. The genes encoding TRH are classified as variants trh1 and trh2, and TRH was detected in all broth cultures of 25 V. parahaemolyticus strains carrying trh1 and certain proportion (5/31) of broth cultures of V. parahaemolyticus strains carrying trh2. In contrast, TDH and TRH were not detected in broth cultures of 12 non-enteropathogenic V. parahaemolyticus strains without tdh and trh. It was difficult to detect TRH2 using the TDH/TRH-ICA. However, TRH2 may not serve as a suitable marker for detecting enteropathogenic V. parahaemolyticus, and evidence indicates that TRH2 may not contribute to enteropathogenesis. Further, a screening method using a combination of TDH/TRH-ICA and SPP medium supplemented with 1.5% NaCl (modified-SPP medium) detected oyster samples artificially spiked with 1.1-22 colony-forming units of enteropathogenic V. parahaemolyticus per 25g of oysters within approximately 8.5h, including the enrichment culture. The assay may serve as a method that facilitates the rapid and easy detection of raw oysters contaminated with enteropathogenic V. parahaemolyticus. Copyright © 2017. Published by Elsevier B.V.

  15. Evaluation of OXA-48 K-Se T: an immunochromatographic assay for rapid detection of OXA-48-producing Enterobacteriaceae.

    Science.gov (United States)

    Fernández, Javier; Fleites, Ana; Rodcio, María Rosario; Vazquez, Fernando

    2016-05-01

    The OXA-48 K-Se T, a new immunochromatographic assay for rapid detection of OXA-48-producing Enterobacteriaceae, has been evaluated in a Spanish Hospital during a 3-month period. A collection of 100 Enterobacteriaceae including 79 isolates producing OXA-48 has been tested. Sensitivity and specificity of 100% were obtained. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Antigen detection of rabies virus in brain smear using direct Rapid Immunohistochemistry Test

    Directory of Open Access Journals (Sweden)

    Damayanti R

    2014-03-01

    Full Text Available Rabies is zoonotic disease caused by a fatal, neurotropic virus. Rabies virus is classified into the Genus of Lyssavirus under the yang family of Rhabdoviridae. Rabies affecting hot- blooded animals, as well as human. Dogs, cats, monkeys are the vectors or reservoirs for rabies and the virus was transmitted through the saliva after infected animal’s bites. The aim of this study was to conduct rapid diagnosis to detect rabies viral antigen in brain smear using immunohistochemical (IHC method namely direct Rapid Immunohistochemical Test (dRIT. A total number of 119 brain samples were achieved from Bukittinggi Veterinary Laboratory, West Sumatra. Standardisation and validation of the method were compared to Fluorescent Antibody Test (FAT as a golden standard for rabies diagnosis. Results show that dRIT was a very good method, it can be performed within two hours without the need of fluorescent microscope. The samples were tested using FAT and from 119 samples tested, 80 (67.23% samples were positive for rabies and 39 (32.77% samples were negative for rabies whereas using dRIT showed that 78 (65.54% samples were positive for rabies and 41 (34.45% samples were negative for rabies. The dRIT results were validated by comparing them with FAT results as a golden standard for rabies. The relative sensitivity of dRIT to FAT was 97.5% and the relative specificity to FAT was 100% (with Kappa value of 0.976, stated as excellent. The achievement showed that dRIT is very potential diagnostic tool and is highly recommended to be used widely as a rapid diagnosis tool for rabies.

  17. Studies on growth and toxin production of C. botulinum type E on cod homogenate treated with a combination of spices, sodium chloride and gamma-radiation

    International Nuclear Information System (INIS)

    Siddiqui, A.K.; Ando, Y.; Karashimada, T.; Kameyama, K.

    1979-01-01

    Cod homogenates inoculated with spores of C. botulinum type E strain Erimo at 10 2 and 10 4 /g were treated with 1% and 2% sodium chloride, 0.25% each of mustard, garlic and turmeric and 0.3 Mrad ν-radiation either in single or combination treatments. The growth and toxin production of type E spores in the inoculated homogenates were followed at incubation temperatures of 30 0 , 10 0 and 5 0 C for 7, 28 and 56 days respectively. Growth and gas formation were noted in all the samples but type E toxin could not be detected. The reason for the absence of toxin in both the untreated and treated homogenates could not be ascertained. Inadequate detection method, unfavourable growth conditions in the homogenate and weak toxigenicity of the strain employed have been advanced as probable factors that contributed to the negative results on the toxin assay. (author)

  18. Colloidal gold-McAb probe-based rapid immunoassay strip for simultaneous detection of fumonisins in maize.

    Science.gov (United States)

    Yao, Jingjing; Sun, Yaning; Li, Qingmei; Wang, Fangyu; Teng, Man; Yang, Yanyan; Deng, Ruiguang; Hu, Xiaofei

    2017-05-01

    Fumonisins are a kind of toxic and carcinogenic mycotoxin. A rapid immunochromatographic test strip has been developed for simultaneous detection of fumonisin B 1 , B 2 and B 3 (FB 1 , FB 2 and FB 3 ) in maize based on colloidal gold-labelled monoclonal antibody (McAb) against FB 1 probe. The anti-FB 1 McAb (2E11-H3) was produced through immunisation and cell fusion, and identified as high affinity, specificity and sensitivity. The cross-reaction ratios with fumonisin B 2 and B 3 were accordingly 385% and 72.4%, while none with other analogues. The colloid gold-labelled anti-FB 1 McAb probe was successfully prepared and used for establishing the immunochromatographic strip. The test strip showed high sensitivity and specificity, the IC 50 for FB 1 was 58.08 ng mL -1 , LOD was 11.24 ng mL -1 , calculated from standard curve. Moreover, the test strip exhibited high cross-reactivity with FB 2 and FB 3 , and could be applied to the simultaneous detection of FBs (FB 1 :FB 2 :FB 3 = 12:4:1) in maize sample with high accuracy and precision. The average recoveries of FBs in maize ranged from 90.42% to 95.29%, and CVs were 1.25-3.77%. The results of the test strip for FBs samples showed good correlation with high-performance liquid chromatography analysis. The immunochromatographic test strip could be employed in the rapid simultaneous detection of FB 1 , FB 2 and FB 3 in maize samples on-site. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Poisson-Jacobi reduction of homogeneous tensors

    International Nuclear Information System (INIS)

    Grabowski, J; Iglesias, D; Marrero, J C; Padron, E; Urbanski, P

    2004-01-01

    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold M, homogeneous with respect to a vector field Δ on M, and first-order polydifferential operators on a closed submanifold N of codimension 1 such that Δ is transversal to N. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on M to the Schouten-Jacobi bracket of first-order polydifferential operators on N and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can also be understood as a sort of reduction; in the standard case-a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ-homogeneous symplectic structures on M and contact structures on N

  20. Non-homogeneous dynamic Bayesian networks for continuous data

    NARCIS (Netherlands)

    Grzegorczyk, Marco; Husmeier, Dirk

    Classical dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption and cannot deal with non-homogeneous temporal processes. Various approaches to relax the homogeneity assumption have recently been proposed. The present paper presents a combination of a Bayesian network with