WorldWideScience

Sample records for rapid fluorescence assay

  1. Rapid identification of pathogens in blood cultures with a modified fluorescence in situ hybridization assay

    NARCIS (Netherlands)

    Peters, Remco P. H.; van Agtmael, Michiel A.; Simoons-Smit, Alberdina M.; Danner, Sven A.; Vandenbroucke-Grauls, Christina M. J. E.; Savelkoul, Paul H. M.

    2006-01-01

    We evaluated a modified fluorescence in situ hybridization (FISH) assay for rapid ( <1 h) identification of microorganisms in growth-positive blood cultures. The results were compared to those of the standard FISH technique and conventional culturing. The rapid identification of microorganisms with

  2. Fluorescence-based lateral flow assays for rapid oral fluid roadside detection of cannabis use.

    Science.gov (United States)

    Plouffe, Brian D; Murthy, Shashi K

    2017-02-01

    With the recent worldwide changes in the legalization of marijuana, there is a significant need for rapid, roadside screening test for driving under the influence of drugs. A robust, sensitive, lateral flow assay has been developed to detect recent use via oral-fluid testing for Δ 9 -tetrahydrocannabinol (THC). This proof-of-concept assay uses a fluorescent-based immunoassay detection of polymeric beads, conjugated to antibodies against native THC. The fluorescent technique allows for significantly lower limits of detection and higher precision determination of recent marijuana use without the use of urine or blood sampling-thus allowing for roadside identification. Detection levels of 0.01 ng/mL were distinguished from background and the lower limit of quantification was determined to approach 1 ng/mL. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Establishment of a 10-Plex Quantitative Fluorescent-PCR Assay for rapid diagnosis of sex chromosome aneuploidies.

    Directory of Open Access Journals (Sweden)

    Xingmei Xie

    Full Text Available Sex chromosome aneuploidies occur commonly in the general population, with an incidence of 1 in 400 newborns. However, no tests specifically targeting sex chromosomes have been carried out in prenatal diagnosis or newborn screening, resulting in late recognition of these diseases. In this study, a rapid diagnostic method for sex chromosome aneuploidies was established using Quantitative Fluorescent-PCR (QF-PCR. Ten markers were included in one multiplex QF-PCR assay, including two sex determination genes (AMXY and SRY, five X-linked short tandem repeats (STRs; DXS1053, DXS981, DXS6809, DXS1187, and DXS8377, one X/Y-common STR (X22, and two autosomal STRs (D13S305 and D21S11. Retrospective tests of 70 cases with known cytogenetic results indicated that the 10-plex QF-PCR assay could well determine sex chromosome copy numbers by both allelic peak numbers and a sex chromosome dosage calculation with the autosomal STRs as internal controls. Prospective comparison with cytogenetic karyotyping on 534 cases confirmed that the 10-plex QF-PCR assay could be well employed for sex chromosome aneuploidy diagnosis in at least the Chinese Han population. This is the first QF-PCR test for the diagnosis of sex chromosome aneuploidies in the Chinese population. This test is superior to previous designs by including up to 8 sex-linked markers covering different parts of sex chromosomes as well as employing internal controls for copy number dosage calculation in a single PCR reaction. Due to simple technique and data analysis, as well as easy implementation within routine clinical services, this method is of great clinical application value and could be widely applied.

  4. [Fluorescence microscopy and HPLC assay for rapid detection of distribution and content of resveratrol in Polygonum cuspidatum].

    Science.gov (United States)

    Bu, Xiao-Ying; Dong, Ai-Wen; Guan, Qiong-Yu; Wu, Feng

    2012-12-01

    To establish fluorescence microscopy combined with HPLC method for rapid detection the distribution and content of resveratrol tissues in different growth stages of Polygonum cuspidatum. Used sequential experiment to design conditions of frozen and observe of the section by fluorescence microscopy; Resveratrol was extracted by ultrasonic-assisted extraction and its content was detected by HPLC. The results showed that frozen condition for concentration of gum Arabic was from 20% (dipping time was 5 - 6 h) to 40% (2 - 5 min), the freezer temperature was -5 degrees C, and the thickness was 15 microm. Resveratrol in polygonum cuspidatum was mainly accumulated in the organs, tissues and cells of fiber and cellulose, its content in rhizomes declined as the following sequence: spinal cord > xylem > phloem > periderm; Its content declined in organ as the following sequence: buds > rhizomes > ground stem > leaves; The content of resveratrol in root increased with age. The results of fluorescence microscopic observation is in accordance with the HPLC results, indicating that the method is simple, fast and reliable, and provides a fast and reliable detection method for the determination of optimum harvesting period of Polygonum cuspidatum and acquisition of quality.

  5. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. niveum in soil.

    Science.gov (United States)

    Peng, Jun; Zhan, Yuanfeng; Zeng, Fanyun; Long, Haibo; Pei, Yuelin; Guo, Jianrong

    2013-12-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is one of the major limiting factors for watermelon production worldwide. Rapid and accurate detection of the causal pathogen is the cornerstone of integrated disease management. In this paper, a real-time fluorescence loop-mediated isothermal amplification (RealAmp) assay was developed for the rapid and quantitative detection of Fon in soil. Positive products were amplified only from Fon isolates and not from any other species or formae speciales of F. oxysporum tested, showing a high specificity of the primer sets. The detection limit of the RealAmp assay was 1.2 pg μL(-1) genomic DNA or 10(3) spores g(-1) of artificially inoculated soil, whereas real-time PCR could detect as low as 12 fg μL(-1) or 10(2) spores g(-1). The RealAmp assay was further applied to detect eight artificially inoculated and 85 field soil samples. No significant differences were found between the results tested by the RealAmp and real-time PCR assays. The RealAmp assay is a simple, rapid and effective technique for the quantitative detection and monitoring of Fon in soil under natural conditions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Development of a fluorescent-intercalating-dye-based reverse transcription loop-mediated isothermal amplification assay for rapid detection of seasonal Japanese B encephalitis outbreaks in pigs.

    Science.gov (United States)

    Tian, C J; Lin, Z X; He, X M; Luo, Q; Luo, C B; Yu, H Q; Chen, R; Wu, X W; Zhu, D Z; Ren, Z J; Bi, Y Z; Ji, J

    2012-08-01

    The standardization and validation of a one-step, single-tube, accelerated fluorescent-intercalating-dye-based reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay targeting the NS3 gene of Japanese B encephalitis virus (JEV) is described for rapid, simple, and high-throughput detection of JEV. The amplification can be completed in 35 min under isothermal conditions at 63°C by employing a set of six primers targeting the NS3 gene of JEV. The RT-LAMP assay described demonstrated high sensitivity for detecting JEV, with a detection limit in swine samples of 8.13 PFU/ml. The specificity of the selected primer sets was established by cross-reactivity studies with pathogens that exhibit similar clinical signs and testing of samples from healthy animals. The clinical applicability of the RT-LAMP assay was validated using either spiked samples or samples from seasonal outbreaks. The comparative evaluation of the RT-LAMP assay revealed 79.59 % concordance with conventional RT-PCR targeting the E gene of JEV. The RT-LAMP assay reported here is a valuable tool for rapid real-time and high-throughput seasonal infection surveillance and quarantine after outbreak through blood sampling by using ordinary real-time PCR thermocyclers without purchasing an expensive Loopamp real-time turbidimeter.

  7. Rapid, low-cost fluorescent assay of β-lactamase-derived antibiotic resistance and related antibiotic susceptibility

    Science.gov (United States)

    Erdem, S. Sibel; Khan, Shazia; Palanisami, Akilan; Hasan, Tayyaba

    2014-10-01

    Antibiotic resistance (AR) is increasingly prevalent in low and middle income countries (LMICs), but the extent of the problem is poorly understood. This lack of knowledge is a critical deficiency, leaving local health authorities essentially blind to AR outbreaks and crippling their ability to provide effective treatment guidelines. The crux of the problem is the lack of microbiology laboratory capacity available in LMICs. To address this unmet need, we demonstrate a rapid and simple test of β-lactamase resistance (the most common form of AR) that uses a modified β-lactam structure decorated with two fluorophores quenched due to their close proximity. When the β-lactam core is cleaved by β-lactamase, the fluorophores dequench, allowing assay speeds of 20 min to be obtained with a simple, streamlined protocol. Furthermore, by testing in competition with antibiotics, the β-lactamase-associated antibiotic susceptibility can also be extracted. This assay can be easily implemented into standard lab work flows to provide near real-time information of β-lactamase resistance, both for epidemiological purposes as well as individualized patient care.

  8. A novel fluorescent assay for sucrose transporters

    Directory of Open Access Journals (Sweden)

    Gora Peter J

    2012-04-01

    Full Text Available Abstract Background We have developed a novel assay based on the ability of type I sucrose uptake transporters (SUTs to transport the fluorescent coumarin β-glucoside, esculin. Budding yeast (Saccharomyces cerevisiae is routinely used for the heterologous expression of SUTs and does not take up esculin. Results When type I sucrose transporters StSUT1 from potato or AtSUC2 from Arabidopsis were expressed in yeast, the cells were able to take up esculin and became brightly fluorescent. We tested a variety of incubation times, esculin concentrations, and buffer pH values and found that for these transporters, a 1 hr incubation at 0.1 to 1 mM esculin at pH 4.0 produced fluorescent cells that were easily distinguished from vector controls. Esculin uptake was assayed by several methods including fluorescence microscopy, spectrofluorometry and fluorescence-activiated cell sorting (FACS. Expression of the type II sucrose transporter OsSUT1 from rice did not result in increased esculin uptake under any conditions tested. Results were reproduced successfully in two distinct yeast strains, SEY6210 (an invertase mutant and BY4742. Conclusions The esculin uptake assay is rapid and sensitive and should be generally useful for preliminary tests of sucrose transporter function by heterologous expression in yeast. This assay is also suitable for selection of yeast showing esculin uptake activity using FACS.

  9. Development of an Immunomagnetic Bead-Immunoliposome Fluorescence Assay for Rapid Detection of Escherichia coli O157:H7 in Aqueous Samples and Comparison of the Assay with a Standard Microbiological Method

    OpenAIRE

    DeCory, Thomas R.; Durst, Richard A.; Zimmerman, Scott J.; Garringer, Linda A.; Paluca, Gary; DeCory,Heleen H.; Montagna, Richard A.

    2005-01-01

    The objective of this study was to develop and optimize a protocol for the rapid detection of Escherichia coli O157:H7 in aqueous samples by a combined immunomagnetic bead-immunoliposome (IMB/IL) fluorescence assay. The protocol consisted of the filtration or centrifugation of 30- to 100-ml samples followed by incubation of the filter membranes or pellet with anti-E. coli O157:H7 immunomagnetic beads in growth medium specific for E. coli O157:H7. The resulting E. coli O157:H7-immunomagnetic b...

  10. Development of an immunomagnetic bead-immunoliposome fluorescence assay for rapid detection of Escherichia coli O157:H7 in aqueous samples and comparison of the assay with a standard microbiological method.

    Science.gov (United States)

    DeCory, Thomas R; Durst, Richard A; Zimmerman, Scott J; Garringer, Linda A; Paluca, Gary; DeCory, Heleen H; Montagna, Richard A

    2005-04-01

    The objective of this study was to develop and optimize a protocol for the rapid detection of Escherichia coli O157:H7 in aqueous samples by a combined immunomagnetic bead-immunoliposome (IMB/IL) fluorescence assay. The protocol consisted of the filtration or centrifugation of 30- to 100-ml samples followed by incubation of the filter membranes or pellet with anti-E. coli O157:H7 immunomagnetic beads in growth medium specific for E. coli O157:H7. The resulting E. coli O157:H7-immunomagnetic bead complexes were isolated by magnetic separation, washed, and incubated with sulforhodamine B-containing immunoliposomes specific for E. coli O157:H7; the final immunomagnetic bead-E. coli O157:H7-immunoliposome complexes were again isolated by magnetic separation, washed, and lysed with a n-octyl-beta-d-glucopyranoside to release sulforhodamine B. The final protocol took less than 8 h to complete and had a detection limit of less than 1 CFU of E. coli O157:H7 per ml in various aqueous matrices, including apple juice and cider. To validate the protocol at an independent facility, 100-ml samples of groundwater with and without E. coli O157:H7 (15 CFU) were analyzed by a public health laboratory using the optimized protocol and a standard microbiological method. While the IMB/IL fluorescence assay was able to identify E. coli O157:H7-containing samples with 100% accuracy, the standard microbiological method was unable to distinguish E. coli O157:H7-spiked samples from negative controls without further extensive workup. These results demonstrate the feasibility of using immunomagnetic beads in combination with sulforhodamine B-encapsulating immunoliposomes for the rapid detection of E. coli O157:H7 in aqueous samples.

  11. Short communication: A novel method using immunomagnetic separation with a fluorescent nanobeads lateral flow assay for the rapid detection of low-concentration Escherichia coli O157:H7 in raw milk.

    Science.gov (United States)

    Huang, Zhen; Cui, Xi; Xie, Quan-Yuan; Liu, Dao-Feng; Lai, Wei-Hua

    2016-12-01

    Escherichia coli O157:H7 is an important serotype of enterohemorrhagic E. coli that was first identified as a human pathogen in 1982. This pathogen causes several serious diseases. In this study, immunomagnetic separation was coupled with a fluorescent nanobeads lateral flow assay to establish a sensitive and rapid detection method for Escherichia coli O157:H7 in raw milk. The pathogen was captured from raw milk by immunomagnetic separation with immunomagnetic nanobeads and then detected using a fluorescent nanobeads lateral flow assay. A fluorescent line was formed in the test line of the test strip and quantitatively detected using a fluorescent reader. Screening times, which included immunomagnetic separation and the fluorescent nanobeads lateral flow assay, were 8, 7, 6, and 5h when 1, 5, 25, and 125 cfu of E. coli O157:H7, respectively, were inoculated into 25mL of raw milk. The established method could be widely applied to the rapid onsite detection of other pathogens to ensure food safety. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  13. Water-soluble conjugated polymers for fluorescent-enzyme assays.

    Science.gov (United States)

    Feng, Fude; Liu, Libing; Yang, Qiong; Wang, Shu

    2010-08-17

    Enzyme assays are receiving more and more research and application interest because of the rapidly increasing demands of clinical diagnosis, environmental analysis, drug discovery, and molecular biology. Water-soluble light-harvesting conjugated polymers (CPs) coordinate the action of a large number of absorbing units to afford an amplified fluorescence signal, which makes them useful as optical platforms in highly sensitive chemical and biological sensors. This Feature Article highlights recent developments of water-soluble CPs for fluorescent assays of enzymes. Different signal transduction mechanisms, such as electron transfer, fluorescence resonance energy transfer (FRET), and aggregation or conformation changes of CPs, are employed in these assays according to the dissimilar nature of enzymes. Potential challenges and future research directions in these approaches based on CPs are also discussed. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Nuclear Resonance Fluorescence for Materials Assay

    OpenAIRE

    Quiter, Brian

    2010-01-01

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code M...

  15. A Quantitative Fluorescence-Based Lipase Assay

    Directory of Open Access Journals (Sweden)

    Giovanna Lomolino

    2012-01-01

    Full Text Available An easy and fast gel diffusion assay for detecting and monitoring lipase activity by quantification of fluorescein is described. By measuring the intensity of fluorescein, it is possible to obtain a calibration curve with a regression coefficient better than by using the radius of fluorescent haloes. Through the quantification of fluorescence intensity of fluorescein released after the hydrolysis of a fluorescent ester, fluorescein dibutyrate, used as substrate in agar plates, commercial and skimmed milk lipase activity were studied. Moreover, with this method, lipase activity can be monitored in reaction medium that contains compounds which are affected by turbidity or cause measurement interference for UV-spectrophotometer and fluorimeter. In this experiment, boiled skimmed milk was dispersed in the agar gel with fluorescein dibutyrate, and it was used as a reaction medium to mimic natural conditions. The development of such an assay has a potential for applications in industries ranging from pharmaceuticals to food production and monitoring.

  16. Development of a Real-Time Fluorescence Loop-Mediated Isothermal Amplification Assay for Rapid and Quantitative Detection of Fusarium oxysporum f. sp. cubense Tropical Race 4 In Soil

    Science.gov (United States)

    Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 103 spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China. PMID:24376590

  17. A new fluorescent assay for enalapril maleate.

    Science.gov (United States)

    de los A Oliva, María; Sombra, Lorena L; Olsina, Roberto A; Masi, Adriana N

    2005-09-01

    A new spectrofluorimetric method for the enalapril maleate monitoring was studied. Enalapril maleate was found to be highly photolabile. This drug was evaluated according to photodegradation assay at pH 2.5 and 6. Enalapril maleate was exposed to UVA-UVB radiations. Under these specific conditions was found as degradation product, the diketopiperazine. The modification of the fluorescent properties of enalapril maleate in solution after exposure UV-radiation and the degradation mechanisms were studied. The photodegradation was followed by the developed spectrofluorimetric assay.

  18. Fluorescent and Lanthanide Labeling for Ligand Screens, Assays, and Imaging

    Science.gov (United States)

    Josan, Jatinder S.; De Silva, Channa R.; Yoo, Byunghee; Lynch, Ronald M.; Pagel, Mark D.; Vagner, Josef; Hruby, Victor J.

    2012-01-01

    The use of fluorescent (or luminescent) and metal contrast agents in high-throughput screens, in vitro assays, and molecular imaging procedures has rapidly expanded in recent years. Here we describe the development and utility of high-affinity ligands for cancer theranostics and other in vitro screening studies. In this context, we also illustrate the syntheses and use of heteromultivalent ligands as targeted imaging agents. PMID:21318902

  19. Nuclear Resonance Fluorescence for Materials Assay

    Science.gov (United States)

    Quiter, Brian J.; Ludewigt, Bernhard A.; Mozin, Vladimir V.; Prussin, Stanley G.

    2011-04-01

    This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are important contributions to the background and impact the applicability of the NRF assay technique.

  20. Rapid and Quantitative Detection of Leifsonia xyli subsp. xyli in Sugarcane Stalk Juice Using a Real-Time Fluorescent (TaqMan PCR Assay

    Directory of Open Access Journals (Sweden)

    Hua-Ying Fu

    2016-01-01

    Full Text Available Ratoon stunting disease (RSD of sugarcane, one of the most important diseases seriously affecting the productivity of sugarcane crops, was caused by the bacterial agent Leifsonia xyli subsp. xyli (Lxx. A TaqMan probe-based real-time quantitative polymerase chain reaction (qPCR assay was established in this study for the quantification of Lxx detection in sugarcane stalk juice. A pair of PCR primers (Pat1-QF/Pat1-QR and a fluorogenic probe (Pat1-QP targeting the Part1 gene of Lxx were used for the qPCR assay. The assay had a detection limit of 100 copies of plasmid DNA and 100 fg of Lxx genomic DNA, which was 100-fold more sensitive than the conventional PCR. Fifty (28.7% of 174 stalk juice samples from two field trials were tested to be positive by qPCR assay, whereas, by conventional PCR, only 12.1% (21/174 were tested to be positive with a published primer pair CxxITSf#5/CxxITSr#5 and 15.5% (27/174 were tested to be positive with a newly designed primer pair Pat1-F2/Pat1-R2. The new qPCR assay can be used as an alternative to current diagnostic methods for Lxx, especially when dealing with certificating a large number of healthy cane seedlings and determining disease incidence accurately in commercial fields.

  1. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE: INDUCED BY RADIATION, CHEMICALS AND ENZYMES

    Science.gov (United States)

    A simple and rapid assay to detect DNA damage is reported. This assay is based on the ability of certain dyes to fluoresce upon intercalation with dsDNA. Damage caused by ultraviolet (UV) radiation, chemicals or restriction enzymes is detected using this assay. UV radiation at...

  2. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay.

    Science.gov (United States)

    Barizuddin, Syed; Balakrishnan, Baskar; Stringer, R Cody; Dweik, Majed

    2015-08-01

    A method combining immunomagnetic separation and fluorescent sensing was developed to detect Escherichia coli (E. coli) O104:H4. The antibody specific to E. coli O104:H4 was immobilized on protein A-coated magnetic beads. This protein-A-anti E. coli O104:H4 complex was used to bind Fluorescein IsoThioCyanate (FITC) labeled E. coli O104:H4 antigen (whole cell) on it. The goal was to achieve a fluorescently detectable protein-A-anti E. coli O104:H4-E. coli O104:H4 complex on the magnetic beads. Fluorescent microscopy was used to image the magnetic beads. The resulting fluorescence on the beads was due to the FITC labeled antigen binding on the protein-A-anti E. coli O104:H4 immobilized magnetic beads. This visually proves the antigen-antibody binding. The fluorescent imaging results were obtained in 2 h if the minimum available bacteria in the sample were at least 10(5) CFU/ml. If no fluorescence was observed on the magnetic beads during fluorescent imaging, it indicates the bacterial concentration in the sample to be too low for it to have bound to the magnetic beads and hence no detection was possible. To detect bacterial concentration less than 10(5) CFU/ml in the sample, an additional step was required for detection. The magnetic bead complex was added to the LST-MUG (lauryl sulfate tryptose-4-methylumbelliferyl-β-D-glucuronide), a signaling reporter. The E. coli O104:H4 grows in LST-MUG and releases β-glucuronidase enzyme. This enzyme cleaves the MUG substrate that produces 4-methylumbelliferone, a highly fluorescent species. This fluorescence was detected using a spectrofluorometer. The emission peak in the fluorescent spectrum was found to be at 450 nm. The lower and upper detection range for this LST-MUG assay was found to be 2.05×10(5)-4.09×10(8) CFU/ml. The results for the LST-MUG assay for concentrations below 10(5) CFU/ml were ascertained in 8h. The advantages of this technique include the specific detection of bacteria without an enrichment step and

  3. A fluorescence sedimentation assay for dsDNA antibodies

    DEFF Research Database (Denmark)

    Duus, K; Draborg, A H; Güven, E

    2017-01-01

    on precipitation with polyethylene glycol (PEG) and fluorescence of EvaGreen intercalated in dsDNA as detection principle. As dsDNA antibodies are quantified using fluorescence, the disadvantages of working with radioactivity are eliminated. The Fluoro-Farr assay was developed and validated, and the diagnostic...

  4. A Multiplexed Fluorescent Calcium and NFAT Reporter Gene Assay to Identify GPCR Agonists.

    Science.gov (United States)

    Sheth, Heeral; Gorey, Colleen; Roush, Nicole; Smallman, Shelly; Collantes, Elizabeth; Santoro, Maxine; Olson, Barbara; Fitzgerald, Laura; Lee, Paul H; Shen, Xiqiang John

    2013-01-01

    Intracellular calcium response and resulting calcium signaling to an agonist-GPCR interaction are important for the measurement of compound activity in the GPCR drug development. The increase in cytosol calcium concentration can be measured by the fluorescent calcium indicator dye such as Fluo-4 in a quick assay (in 3-5 minutes) using the fluorescence imaging plate reader. The calcium signaling through the transcription factors such as NFAT that induces gene expression can be measured by the reporter gene assay that links to the expression of reporter enzyme such as the beta-lactamase that requires 5-hour incubation. We have evaluated a multiplexed assay that sequentially measures the calcium response to a GPCR agonist in a rapid fluorescent calcium dye assay, followed by a NFAT beta-lactamase assay, and compared them in the single assay format. We found that the agonist activity determined in the multiplexed assay were comparable with these determined in the single assay format and the Z' factors were all >0.5. Five active compounds were identified that were active in both calcium dye assay and beta-lactamase assay. Therefore, our results demonstrated the utility of this multiplexed calcium assay for screening of GPCR compounds that can cross validate the primary hits and help to eliminate the false positive compounds.

  5. Highly Rapid Amplification-Free and Quantitative DNA Imaging Assay

    Science.gov (United States)

    Klamp, Tobias; Camps, Marta; Nieto, Benjamin; Guasch, Francesc; Ranasinghe, Rohan T.; Wiedemann, Jens; Petrášek, Zdeněk; Schwille, Petra; Klenerman, David; Sauer, Markus

    2013-01-01

    There is an urgent need for rapid and highly sensitive detection of pathogen-derived DNA in a point-of-care (POC) device for diagnostics in hospitals and clinics. This device needs to work in a ‘sample-in-result-out’ mode with minimum number of steps so that it can be completely integrated into a cheap and simple instrument. We have developed a method that directly detects unamplified DNA, and demonstrate its sensitivity on realistically sized 5 kbp target DNA fragments of Micrococcus luteus in small sample volumes of 20 μL. The assay consists of capturing and accumulating of target DNA on magnetic beads with specific capture oligonucleotides, hybridization of complementary fluorescently labeled detection oligonucleotides, and fluorescence imaging on a miniaturized wide-field fluorescence microscope. Our simple method delivers results in less than 20 minutes with a limit of detection (LOD) of ~5 pM and a linear detection range spanning three orders of magnitude. PMID:23677392

  6. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection.

    Directory of Open Access Journals (Sweden)

    Ahmed Abd El Wahed

    Full Text Available Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF. Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR are the standard method for molecular detection of the dengue virus (DENV. Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA assays were developed to detect DENV1-4.Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4 to 241 (DENV1-3 RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal and in Bangkok (Thailand. In Kedougou, the RT-RPA was operated at an ambient temperature of 38 °C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31 and 100% (n=23, respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90 and 100%(n=41, respectively.During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations.

  7. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    Science.gov (United States)

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  8. Rapid extraction and assay of uranium from environmental surface samples

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Christopher A.; Chouyyok, Wilaiwan; Speakman, Robert J.; Olsen, Khris B.; Addleman, Raymond Shane

    2017-10-01

    Extraction methods enabling faster removal and concentration of uranium compounds for improved trace and low-level assay are demonstrated for standard surface sampling material in support of nuclear safeguards efforts, health monitoring, and other nuclear analysis applications. A key problem with the existing surface sampling swipes is the requirement for complete digestion of sample and sampling matrix. This is a time-consuming and labour-intensive process that limits laboratory throughput, elevates costs, and increases background levels. Various extraction methods are explored for their potential to quickly and efficiently remove different chemical forms of uranium from standard surface sampling material. A combination of carbonate and peroxide solutions is shown to give the most rapid and complete form of uranyl compound extraction and dissolution. This rapid extraction process is demonstrated to be compatible with standard inductive coupled plasma mass spectrometry methods for uranium isotopic assay as well as screening techniques such as x-ray fluorescence. The general approach described has application beyond uranium to other analytes of nuclear forensic interest (e.g., rare earth elements and plutonium) as well as heavy metals for environmental and industrial hygiene monitoring.

  9. Phallotoxin and actin binding assay by fluorescence enhancement.

    Science.gov (United States)

    Huang, Z J; Haugland, R P; You, W M; Haugland, R P

    1992-01-01

    The fluorescence of five fluorophores conjugated to phallotoxins was found to be specifically enhanced upon binding to F-actin in a polymerizing buffer. Rhodamine phalloidin had the greatest fluorescence enhancement of ninefold. The fluorescence titration of rhodamine phalloidin by actin was shown to be consistent with stoichiometric binding. The fluorescence enhancement of rhodamine phalloidin at 5 microM is linearly related to F-actin concentrations up to 2 microM and therefore can be used as an easy means of F-actin quantitation. In a competition assay, other phallotoxins reduce the fluorescence enhancement that results from the binding of rhodamine phalloidin to polymerized actin. This reduction also permits a convenient measurement of the binding constants of any competing phallotoxins.

  10. Development of fluorescent methods for DNA methyltransferase assay

    Science.gov (United States)

    Li, Yueying; Zou, Xiaoran; Ma, Fei; Tang, Bo; Zhang, Chun-yang

    2017-03-01

    DNA methylation modified by DNA methyltransferase (MTase) plays an important role in regulating gene transcription, cell growth and proliferation. The aberrant DNA MTase activity may lead to a variety of human diseases including cancers. Therefore, accurate and sensitive detection of DNA MTase activity is crucial to biomedical research, clinical diagnostics and therapy. However, conventional DNA MTase assays often suffer from labor-intensive operations and time-consuming procedures. Alternatively, fluorescent methods have significant advantages of simplicity and high sensitivity, and have been widely applied for DNA MTase assay. In this review, we summarize the recent advances in the development of fluorescent methods for DNA MTase assay. These emerging methods include amplification-free and the amplification-assisted assays. Moreover, we discuss the challenges and future directions of this area.

  11. Fluorescence Assay for Evaluating Microbicidal Activity of Hand Antiseptics

    Science.gov (United States)

    Lopez-Gigosos, Rosa M.; Mariscal-Lopez, Eloisa; Gutierrez-Bedmar, Mario; Fernandez, Joaquin

    2015-01-01

    We developed a fluorescent β-d-glucuronidase activity (BGA)-based assay for detecting and quantifying Escherichia coli in samples to assess the biocide efficacy of hand antiseptics. The fluorescence level is proportional to the number of viable E. coli organisms present. We compared our assay results to those of the E. coli plate count method specified by the European standard for testing hygienic hand rub disinfectant products (EN1500). The plate count method requires excessive handling and materials and is not valid if the number of organisms per plate is too low or high for counting in many of the samples. We optimized the fluorescent assay based on the cleavage of 4-methylumbelliferyl-β-d-glucuronide by adding 4-nitrophenyl-β-d-glucuronide, a nonfluorogenic BGA substrate, to induce glucuronidase activity and reduce assay time. Furthermore, our method can be automated and eliminates the need for multiple dilutions. Fluorescence was temporally monitored, and the time required to reach a specific value of fluorescence was correlated with the initial number of viable E. coli organisms on the samples. There was a positive correlation (P < 0.05) with a high correlation coefficient (R2 = 0.82) between the E. coli counts by plate count and fluorescence methods. Reported effects in fluorescent BGA were compared to the EN1500 plate count method with five hand disinfectants. We found our method more advantageous, because it was as sensitive as the EN1500 method, requires less time to complete, and is less expensive and less laborious than conventional plating techniques. PMID:26276114

  12. Diagnosis of bovine brucellosis using a homogeneous fluorescence polarization assay.

    Science.gov (United States)

    Nielsen, K; Gall, D; Lin, M; Massangill, C; Samartino, L; Perez, B; Coats, M; Hennager, S; Dajer, A; Nicoletti, P; Thomas, F

    1998-12-11

    To evaluate the fluorescence polarization assay (FPA) for the serological diagnosis of bovine brucellosis, 118 sera from cattle which were culture positive for Brucella abortus, 1751 sera from cattle from premises containing cattle infected with B. abortus, 1222 sera from cattle vaccinated with B. abortus strain 19 and 1199 sera from cattle with no evidence of brucellosis were tested in Argentina, Chile, Mexico and in the American states of Iowa, Missouri and Texas. Initial determination of serological positivity and negativity was based upon reactivity in currently used serological tests, consisting of a rapid screening test, the rose-bengal or the buffered plate antigen tests, followed by a second serological test, the complement fixation test. Sensitivity of the FPA (sera from culture positive animals) ranged from 87.5% to 100%. Serological positivity of cattle from infected premises ranged from 65.5% to 99.0% while the % negative cattle in herds without evidence of brucellosis was between 94.9 and 100%. Of B. abortus strain 19 vaccinated cattle which were positive in at least one in-use serological tests, 88.2% were negative in the FPA. In contrast, previous Canadian studies, sensitivity values were 99.0% and 100% and the specificity in both cases was 100%. This discrepancy was probably due to the use of less well characterized sera in the current study.

  13. Cell-based lipid flippase assay employing fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Jensen, Maria Stumph; Costa, Sara; Günther-Pomorski, Thomas

    2016-01-01

    , studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid...

  14. Benzodiazepine Synthesis and Rapid Toxicity Assay

    Science.gov (United States)

    Fletcher, James T.; Boriraj, Grit

    2010-01-01

    A second-year organic chemistry laboratory experiment to introduce students to general concepts of medicinal chemistry is described. Within a single three-hour time window, students experience the synthesis of a biologically active small molecule and the assaying of its biological toxicity. Benzodiazepine rings are commonly found in antidepressant…

  15. Development of fluorescent nanoparticle-labeled lateral flow assay for the detection of nucleic acids.

    Science.gov (United States)

    Wang, Yuhong; Nugen, Sam R

    2013-10-01

    The rapid, specific and sensitive detection of nucleic acids is of utmost importance for the identification of infectious agents, diagnosis and treatment of genetic diseases, and the detection of pathogens related to human health and safety. Here we report the development of a simple and sensitive nucleic acid sequence-based and Ru(bpy)3 (2+)-doped silica nanoparticle-labeled lateral flow assay which achieves low limit of detection by using fluorescencent nanoparticles. The detection of the synthetic nucleic acid sequences representative of Trypanosoma mRNA, the causative agent for African sleeping sickness, was utilized to demonstrate this assay. The 30 nm spherical Ru(bpy)3 (2+)-doped silica nanoparticles were prepared in aqueous medium by a novel method recently reported. The nanoparticles were modified by 3-glycidoxypropyl trimethoxysilane in order to conjugate to amine-capped oligonucleotide reporter probes. The fluorescent intensities of the fluorescent assays were quantified on a mictrotiter plate reader using a custom holder. The experimental results showed that the lateral flow fluorescent assay developed was more sensitive compared with the traditional colloidal gold test strips. The limit of detection for the fluorescent lateral flow assay developed is approximately 0.066 fmols as compared to approximately 15 fmols for the colloidal gold. The limit of detection can further be reduced about one order of magnitude when "dipstick" format was used.

  16. Dual color fluorescence in situ hybridization (FISH) assays for detecting Mycobacterium tuberculosis and Mycobacterium avium complexes and related pathogens in cultures

    OpenAIRE

    Shah, Jyotsna; Weltman, Helena; Narciso, Patricia; Murphy, Christina; Poruri, Akhila; Baliga, Shrikala; Sharon, Leesha; York, Mary; Cunningham, Gail; Miller, Steve; Caviedes, Luz; Gilman, Robert; Desmond, Edward; Ramasamy, Ranjan

    2017-01-01

    Two rapid dual color fluorescence in situ hybridization (FISH) assays were evaluated for detecting M. tuberculosis and related pathogens in cultures. The MN Genus-MTBC FISH assay uses an orange fluorescent probe specific for the Mycobacterium tuberculosis complex (MTBC) and a green fluorescent probe specific for the Mycobacterium and Nocardia genera (MN Genus) to detect and distinguish MTBC from other Mycobacteria and Nocardia. A complementary MTBC-MAC FISH assay uses green and orange fluores...

  17. A high-throughput biliverdin assay using infrared fluorescence.

    Science.gov (United States)

    Berlec, Aleš; Štrukelj, Borut

    2014-07-01

    Biliverdin is an intermediate of heme degradation with an established role in veterinary clinical diagnostics of liver-related diseases. The need for chromatographic assays has so far prevented its wider use in diagnostic laboratories. The current report describes a simple, fast, high-throughput, and inexpensive assay, based on the interaction of biliverdin with infrared fluorescent protein (iRFP) that yields functional protein exhibiting infrared fluorescence. The assay is linear in the range of 0-10 µmol/l of biliverdin, has a limit of detection of 0.02 μmol/l, and has a limit of quantification of 0.03 µmol/l. The assay is accurate with relative error less than 0.15, and precise, with coefficient of variation less than 5% in the concentration range of 2-9 µmol/l of biliverdin. More than 95% of biliverdin was recovered from biological samples by simple dimethyl sulfoxide extraction. There was almost no interference by hemin, although bilirubin caused an increase in the biliverdin concentration, probably due to spontaneous oxidation of bilirubin to biliverdin. The newly developed biliverdin assay is appropriate for reliable quantification of large numbers of samples in veterinary medicine.

  18. Rapid Automated Sample Preparation for Biological Assays

    Energy Technology Data Exchange (ETDEWEB)

    Shusteff, M

    2011-03-04

    Our technology utilizes acoustic, thermal, and electric fields to separate out contaminants such as debris or pollen from environmental samples, lyse open cells, and extract the DNA from the lysate. The objective of the project is to optimize the system described for a forensic sample, and demonstrate its performance for integration with downstream assay platforms (e.g. MIT-LL's ANDE). We intend to increase the quantity of DNA recovered from the sample beyond the current {approx}80% achieved using solid phase extraction methods. Task 1: Develop and test an acoustic filter for cell extraction. Task 2: Develop and test lysis chip. Task 3: Develop and test DNA extraction chip. All chips have been fabricated based on the designs laid out in last month's report.

  19. Smartphone-enabled filterless fluorescence assay utilizing the pyrene excimer

    Science.gov (United States)

    Goertz, John P.; White, Ian M.

    2015-03-01

    Fluorescence microscopy offers a number of advantages for cell- and biomarker-based diagnostics with regards to ease of use and interpretation, sensitivity, and specificity. However, its use in low-resource settings is often hindered by the need for bulky microscopes with expensive excitation and filter setups. While many advances have been made towards utilizing smartphones as microscopes, there remains a reliance on complex attachments to facilitate fluorescence microscopy. Here, we report progress towards a filter-less fluorescent assay utilizing ultraviolet light, an unmodified smartphone, and pyrene-labeled aptamers. The pyrene monomer is excited at a wavelength of 350 nm and emits at approximately 390 nm; when two pyrene molecules are brought into close proximity, however, they form an excimer which emits at approximately 490 nm. We have engineered pyrene-conjugated DNA sequences such that the fluorophores, normally in monomeric configuration, are brought into proximity upon binding of the DNA to its target. The large Stokes shift between excitation and emission of the excimer allows us to detect such biorecognition events with an unfiltered smartphone camera, enabling the use of this assay in low-resource settings where portability and easeof- use are paramount.

  20. A high-throughput fluorescence-based assay for Plasmodium dihydroorotate dehydrogenase inhibitor screening.

    Science.gov (United States)

    Caballero, Iván; Lafuente, María José; Gamo, Francisco-Javier; Cid, Concepción

    2016-08-01

    Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z' values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Development and evaluation of a fluorescence microplate assay for quantification of heparins and other sulfated carbohydrates.

    Science.gov (United States)

    Lühn, Susanne; Schrader, Thomas; Sun, Wei; Alban, Susanne

    2010-05-01

    Due to their complex composition, quantification of heparins is difficult. On the one hand there are many biological tests, which only indirectly detect effects of the antithrombin-binding material. On the other hand direct quantitative methods are available but they are often insensitive, challenging, time-consuming or expensive. The aim of this study was to develop a sensitive, rapid, simple as well as inexpensive direct quantification assay suitable for routine analysis. Based on Polymer-H, a novel heparin complexing, fluorescent labeled synthetic polymer (lambda((ex)) 320nm, lambda((em)) 510nm), a microplate assay was developed and optimized. The specificity of the assay was evaluated by structure-assay response relationships studies using structurally defined glucan sulfates, heparins, and other natural and synthetic sulfated carbohydrates. The fluorescence intensity of Polymer-H (7.5microg/ml) showed to be concentration-dependently amplified by heparins as well as by other sulfated carbohydrates. The best sensitivity, accuracy and linearity were observed in a range from 0.63 to 5.0microg/ml heparins. No differences in the fluorescence between various heparins were observed, so that only one calibration curve is needed. In addition, all types of carbohydrates with a degree of sulfation (DS)> approximately 1.2 and a M(r)>3000 can be quantified as well. By own calibration curves also other sulfated carbohydrates like fondaparinux or other glycosaminoglycans (DS>0.4) can be determined. Copyright 2009 Elsevier B.V. All rights reserved.

  2. A Fluorescence Polarization Assay To Detect Steroid Hormone Traces in Milk.

    Science.gov (United States)

    Varriale, Antonio; Pennacchio, Anna; Pinto, Gabriella; Oliviero, Giorgia; D'Errico, Stefano; Majoli, Adelia; Scala, Andrea; Capo, Alessandro; Pennacchio, Angela; Di Giovanni, Stefano; Staiano, Maria; D'Auria, Sabato

    2015-10-21

    Steroids are a class of hormones improperly used in livestock as growth-promoting agents. Due to their high risk for human health, the European Union (EU) has strictly forbidden the administration of all natural and synthetic steroid hormones to food-producing animals, and the development of new rapid detection methods are greatly encouraged. This work reports a novel fluorescence polarization assay, ready to use, capable of detecting 17β-estradiol directly in milk samples with a low limit of detection of <10 pmol. It is based on the coupling of monospecific antibodies against 17β-estradiol and fluorophores, capable of modulating the fluorescence polarization emission on the basis of the specific binding of antibodies to fluorescence-labeled 17β-estradiol derivative. The successful detection of 17β-estradiol has disclosed the development of an efficient method, easily extensible to any food matrix and having the potential to become a milestone in food quality and safety.

  3. Rapid electrochemiluminescence assays of polymerase chain reaction products.

    Science.gov (United States)

    Kenten, J H; Casadei, J; Link, J; Lupold, S; Willey, J; Powell, M; Rees, A; Massey, R

    1991-09-01

    We demonstrate the first use of an electrochemiluminescent (ECL) label, [4-(N-succimidyloxycarbonylpropyl)-4'-methyl-2,2'- bipyridine]ruthenium(II) dihexafluorophosphate (Origen label; IGEN Inc.), in DNA probe assays. This label allows rapid (less than 25 min) quantification and detection of polymerase chain reaction (PCR)-amplified products from oncogenes, viruses, and cloned genes. For the PCR, we used labeled oligonucleotide primers complementary to human papiloma virus and the Ha-ras oncogene. These samples were followed by ECL analysis or hybridization with specific, Origen-labeled oligonucleotide probes. These studies demonstrate the speed, specificity, and effectiveness of the new ECL labels, compared with 32P, for nucleic acid probe applications. We describe formats involving conventional methodologies and a new format that requires no wash step, allowing simple and rapid sample analysis. These rapid assays also reduce PCR contamination, by requiring less sample handling. Improvements in ECL detectability are currently under investigation for use in DNA probe assays without amplification.

  4. Miniaturized fluorescent RNA dot blot method for rapid quantitation of gene expression

    Directory of Open Access Journals (Sweden)

    Yadetie Fekadu

    2004-06-01

    Full Text Available Abstract Background RNA dot blot hybridization is a commonly used technique for gene expression assays. However, membrane based RNA dot/slot blot hybridization is time consuming, requires large amounts of RNA, and is less suited for parallel assays of more than one gene at a time. Here, we describe a glass-slide based miniaturized RNA dot blot (RNA array procedure for rapid and parallel gene expression analysis using fluorescently labeled probes. Results RNA arrays were prepared by simple manual spotting of RNA onto amino-silane coated microarray glass slides, and used for two-color fluorescent hybridization with specific probes labeled with Cy3 and 18S ribosomal RNA house-keeping gene probe labeled with Cy5 fluorescent dyes. After hybridization, arrays were scanned on a fluorescent microarray scanner and images analyzed using microarray image analysis software. We demonstrate that this method gives comparable results to Northern blot analysis, and enables high throughput quantification of transcripts from nanogram quantities of total RNA in hundreds of samples. Conclusion RNA array on glass slide and detection by fluorescently labeled probes can be used for rapid and parallel gene expression analysis. The method is particularly well suited for gene expression assays that involve quantitation of many transcripts in large numbers of samples.

  5. Rapid detection of avian influenza A virus by immunochromatographic test using a novel fluorescent dye.

    Science.gov (United States)

    Yeo, Seon-Ju; Cuc, Bui Thi; Kim, Soon-Ai; Kim, Do Thi Hoang; Bao, Duong Tuan; Tien, Trinh Thi Thuy; Anh, Nguyen Thi Viet; Choi, Do-Young; Chong, Chom-Kyu; Kim, Hak Sung; Park, Hyun

    2017-08-15

    Sensitive and rapid diagnostic systems for avian influenza (AI) virus are required to screen large numbers of samples during a disease outbreak and to prevent the spread of infection. In this study, we employed a novel fluorescent dye for the rapid and sensitive recognition of AI virus. The styrylpyridine phosphor derivative was synthesized by adding allyl bromide as a stable linker and covalently immobilizing it on latex beads with antibodies generating the unique Red dye 53-based fluorescent probe. The performance of the innovative rapid fluorescent immnunochromatographic test (FICT) employing Red dye 53 in detecting the AI virus (A/H5N3) was 4-fold and 16-fold higher than that of Europium-based FICT and the rapid diagnostic test (RDT), respectively. In clinical studies, the presence of human nasopharyngeal specimens did not alter the performance of Red dye 53-linked FICT for the detection of H7N1 virus. Furthermore, in influenza A virus-infected human nasopharyngeal specimens, the sensitivity of the Red dye 53-based assay and RDT was 88.89% (8/9) and 55.56% (5/9) relative to rRT-PCR, respectively. The photostability of Red dye 53 was higher than that of fluorescein isothiocyanate (FITC), showing a stronger fluorescent signal persisting up to 8min under UV. The Red dye 53 could therefore be a potential probe for rapid fluorescent diagnostic systems that can recognize AI virus in clinical specimens. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A rapid assay for Hendra virus IgG antibody detection and its titre estimation using magnetic nanoparticles and phycoerythrin.

    Science.gov (United States)

    Gao, Yuan; Pallister, Jackie; Lapierre, Florian; Crameri, Gary; Wang, Lin-Fa; Zhu, Yonggang

    2015-09-15

    Detection of Hendra viral IgG antibody in animal sera is useful for surveillance following a virus outbreak. The commonly used enzyme-linked immunosorbent assay and fluorescence-based Luminex assay typically consist of three steps and take at least several hours to complete. We have simplified the procedure to two steps in an effort to develop a rapid procedure for IgG antibody, but not IgM antibody, detection. This is achieved by conjugating the fluorescence label R-phycoerythrin directly onto the IgG binding protein Protein G. The use of magnetic nanoparticles, due to their large specific surface area, has helped reduce each of the binding steps to 20 min. As a result, the whole assay can be completed in 60 min. We also demonstrate a method to quickly estimate IgG antibody titres by assaying the sera at only two dilutions (i.e. 1:20 and 1:1000) and using the fluorescence ratio at these dilutions as an indicator of antibody titre. The results of this approach correlated well with the well-regarded serum neutralization test in virus antibody assays. This protocol reported here can be adopted in Luminex assays, fluorescence-linked immunosorbent assays and assays on microfluidics platforms for rapid antibody surveillance of Hendra and other viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Evaluation of the Determine™ fourth generation HIV rapid assay.

    Science.gov (United States)

    Brauer, Marieke; De Villiers, Johanna C; Mayaphi, Simnikiwe H

    2013-04-01

    Assays that detect p24 antigen reduce the diagnostic window period of HIV testing. Most point-of-care HIV assays have poor sensitivity to diagnose acute HIV infection as they only detect antibodies against HIV-1 and HIV-2 (HIV-1/2). This was a cross-sectional laboratory-based study that evaluated the performance of the Determine™ HIV-1/2 Ag/Ab Combo fourth generation rapid strip - currently the only rapid assay that detects both HIV-1/2 antibodies and p24 antigen. A total of 79 serum specimens (29 positive for HIV antibodies only, 14 positive for HIV antibodies and p24 antigen, 20 HIV-negative, and 16 positive for p24 antigen only) were used for the evaluation. Results were compared with those from validated fourth generation HIV ELISAs. The Determine™ Combo rapid strips had a sensitivity of 90.7% and a specificity of 100% for the detection of HIV-1/2 antibodies. Its sensitivity for the detection of p24 antigen was only 10% (3 out of 30 p24 antigen positive specimens). This implies that most acute HIV infections will be missed with this assay. The need for a point-of-care assay which can detect acute HIV infection reliably still remains, particularly for use in a high prevalence setting such as South Africa. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Detection of DNA cross-links in tumor cells with the ethidium bromide fluorescence assay

    NARCIS (Netherlands)

    de Jong, Steven; Zijlstra, J G; Timmer-Bosscha, H; Mulder, N H; de Vries, Liesbeth

    1986-01-01

    Until now the fluorescence assay with ethidium bromide has only been used on pure DNA. This assay depends on the difference in fluorescence between single- and double-stranded DNA (dsDNA). Cross-links in DNA are measured by the return of fluorescence of dsDNA after heat denaturation at pH 12. Under

  9. A simple and rapid plate assay for screening of inulindegrading ...

    African Journals Online (AJOL)

    In this report, a simple and rapid agar plate assay was established for screening of halophilic, inulindegrading microorganisms. Two strains considered inulinolytic with this method were chosen and the inulinolytic activities in their culture supernatant were measured with the Somogyi-Nelson method, while their hydrolysis ...

  10. A rapid membrane potential assay to monitor CFTR function and inhibition.

    Science.gov (United States)

    Maitra, Rangan; Sivashanmugam, Perumal; Warner, Keith

    2013-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is an important regulator of ion transport and fluid secretion in humans. Mutations to CFTR cause cystic fibrosis, which is a common recessive genetic disorder in Caucasians. Involvement of CFTR has been noted in other important diseases, such as secretory diarrhea and polycystic kidney disease. The assays to monitor CFTR function that have been described to date either are complicated or require specialized instrumentation and training for execution. In this report, we describe a rapid FlexStation-based membrane potential assay to monitor CFTR function. In this assay, agonist-mediated activation of CFTR results in membrane depolarization that can be monitored using a fluorescent membrane potential probe. Availability of a simple mix-and-read assay to monitor the function of this important protein might accelerate the discovery of CFTR ligands to study a variety of conditions.

  11. Fluorescent Receptor Binding Assay for Detecting Ciguatoxins in Fish.

    Directory of Open Access Journals (Sweden)

    D Ransom Hardison

    Full Text Available Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs. One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R. However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R in certain labs. A fluorescence based receptor binding assay (RBA(F was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2 for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1. Fish (N = 61 of six different species were screened using the RBA(F. Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a correlated well (R2 = 0.71 with those of the RBA(F, given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F, which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F advantages include the long-term (> 5 years stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R. The RBA(F is cost-effective, allows high sample

  12. Fundamentals of rapid injection molding for microfluidic cell-based assays.

    Science.gov (United States)

    Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B

    2018-01-30

    Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.

  13. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changhua; Mao, Mao [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Yuan, Hang [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Shen, Huaibin [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China); Wu, Feng; Ma, Lan, E-mail: malan@sz.tsinghua.edu.cn [Tsinghua University, Life Science Division, Graduate School at Shenzhen (China); Li, Lin Song, E-mail: lsli@henu.edu.cn [Henan University, Key Laboratory for Special Functional Materials of the Ministry of Education (China)

    2013-09-15

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 Degree-Sign C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  14. Fluorescent QDs-polystyrene composite nanospheres for highly efficient and rapid protein antigen detection

    Science.gov (United States)

    Zhou, Changhua; Mao, Mao; Yuan, Hang; Shen, Huaibin; Wu, Feng; Ma, Lan; Li, Lin Song

    2013-09-01

    In this paper, high-quality carboxyl-functionalized fluorescent (red, green, and blue emitting) nanospheres (46-103 nm) consisting of hydrophobic quantum dots (QDs) and polystyrene were prepared by a miniemulsion polymerization approach. This miniemulsion polymerization approach induced a homogeneous distribution and high aqueous-phase transport efficiency of fluorescent QDs in composite nanospheres, which proved the success of our encoding QDs strategy. The obtained fluorescent nanospheres exhibited high stability in aqueous solution under a wide range of pH, different salt concentrations, PBS buffer, and thermal treatment at 80 °C. Based on the red emitting composite nanosphere, we performed fluorescent lateral flow immunoassay (LFIA) strips for high-sensitivity and rapid alpha-fetal protein detection. The detection limit reached 0.1 ng/mL, which was 200 times higher than commercial colloidal gold-labeled LFIA strips, and it reached similar detection level in enzyme-linked immunosorbent assay kit.

  15. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    OpenAIRE

    Hoseok Choi; Bomi Choi; Ju Tae Seo; Kyung Jin Lee; Myung Chan Gye; Young-Pil Kim

    2016-01-01

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) p...

  16. Detection of Streptococcus pyogenes using rapid visual molecular assay.

    Science.gov (United States)

    Zhao, Xiangna; He, Xiaoming; Li, Huan; Zhao, Jiangtao; Huang, Simo; Liu, Wei; Wei, Xiao; Ding, Yiwei; Wang, Zhaoyan; Zou, Dayang; Wang, Xuesong; Dong, Derong; Yang, Zhan; Yan, Xiabei; Huang, Liuyu; Du, Shuangkui; Yuan, Jing

    2015-09-01

    Streptococcus pyogenes is an increasingly important pathogen in many parts of the world. Rapid and accurate detection of S. pyogenes aids in the control of the infection. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed and validated for the specific detection of S. pyogenes. The assay incorporates two methods: a chromogenic analysis using a calcein/Mn(2+) complex and real-time turbidity monitoring to assess the reaction. Both methods detected the target DNA within 60 min under 64°C isothermal conditions. The assay used specifically designed primers to target spy1258, and correctly identified 111 strains of S. pyogenes and 32 non-S. pyogenes strains, including other species of the genus Streptococcus. Tests using reference strains showed that the LAMP assay was highly specific. The sensitivity of the assay, with a detection limit of 1.49 pg DNA, was 10-fold greater than that of PCR. The LAMP assay established in this study is simple, fast and sensitive, and does not rely upon any special equipment; thus, it could be employed in clinical diagnosis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Evaluation of a Rapid Immunochromatographic Treponemal Antibody Test Comparing the Treponema Pallidum Particle Agglutination Assay.

    Science.gov (United States)

    Lee, Jong-Han; Lim, Chae Seung; Lee, Min-Geol; Kim, Hyon-Suk

    2015-09-01

    In addition to conventional tests, several methods for detection of treponema-specific antibodies in clinical settings have been recently introduced. We aim to comparatively evaluate a rapid immunochromatographic test (ICT) for Treponema pallidum specific antibody (SD Bioline Syphilis 3.0) and the T. pallidum particle agglutination (TPPA) assay. In all, 132 serum samples from 78 syphilis patients and 54 syphilis-negative controls were analyzed. SD Bioline Syphilis 3.0 test (Standard Diagnostic, Inc., Yongin, Korea) was evaluated and compared to Serodia TPPA assay (Fujirebio, Inc., Tokyo, Japan). All discrepant results between the two assays were repeatedly tested and evaluated by the fluorescent treponemal antibody-absorption (FTA-ABS) assay. Test reproducibility and 95% limit of detection of SD Bioline Syphilis 3.0 were determined across three different lots for seven consecutive days in triplicate. Interference due to autoantibodies and pregnancy was also tested. Percent agreement between SD Bioline Syphilis 3.0 and TPPA assays was 99.2%. Sensitivity and specificity were 100%, respectively. In TPPA assay, test-to-test, day-to-day, and lot-to-lot variations were not identified until 1:320 titer (eightfold dilutions). There was no interference due to the presence of antinuclear antibodies or samples or pregnancy. Percent agreement of SD Syphilis 3.0 and TPPA was very good. Sensitivity and specificity were appropriate for T. pallidum antibody detection. Thus, a rapid ICT could be suitable for syphilis antibody detection. © 2014 Wiley Periodicals, Inc.

  18. ASSAY FOR RAPID SCREENING OF PHYTOCHEMICALS AS ANTIMICROBIAL AGENTS

    OpenAIRE

    Ghosh Saurav; Indranil Mukherjee; Ashoke Ranjan Thakur; Shaon Ray Chaudhuri

    2013-01-01

    The present study aims to develop a rapid method for antibiotic sensitivity detection and screening of natural products for antimicrobial activity. The dimension of WBC in blood film was found to get altered when seeded with bacteria and monitored under light microscope. The shrinkage was prevented in response to antibiotic treatment and validated using statistical analysis (two sample one tailed Z test). Thus here is a prompt (4 h) assay system for detection of blood infection, antibiotic se...

  19. Earthworm dispersal assay for rapidly evaluating soil quality.

    Science.gov (United States)

    Kim, Shin Woong; Kim, Dokyung; Moon, Jongmin; Chae, Yooeun; Kwak, Jin Il; Park, Younsu; Jeong, Seung-Woo; An, Youn-Joo

    2017-10-01

    Earthworms enhance soil functioning and are therefore key species in the soil. Their presence is generally a positive sign for a terrestrial ecosystem, because these species serve as important biomarkers in soil quality evaluations. We describe a novel bioassay, the "dispersal assay," that is a simple and rapid technique for field-based soil quality evaluations. It is based on the premise that earthworms prefer optimal soils if given the choice. Thus, assay tubes containing a reference soil were inserted in target sites, and earthworms were placed into these tubes. According to their soil preference, the earthworms dispersed into the surrounding soil, remained in the initial soil within the tubes, avoided both by crawling up the tube, or died. Furthermore, sensitivity responses to metal concentrations, electrical conductivity, and soil pH were observed in field tests. Although the dispersal assay did not completely match traditional toxicity endpoints such as earthworm survival, we found that it can serve as an in situ screening test for assessing soil quality. Overall, our dispersal assay was relatively rapid (within 24 h), had low levels of variation, and showed high correlations between earthworm behavior and soil physicochemical properties. Environ Toxicol Chem 2017;36:2766-2772. © 2017 SETAC. © 2017 SETAC.

  20. Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer.

    Science.gov (United States)

    Liu, Yingxiong; Zhao, Qiang

    2017-06-01

    Development of simple, sensitive, and rapid method for cocaine detection is important in medicine and drug abuse monitoring. Taking advantage of fluorescence anisotropy and aptamer, this study reports a direct fluorescence anisotropy (FA) assay for cocaine by employing an aptamer probe with tetramethylrhodamine (TMR) labeled on a specific position. The binding of cocaine and the aptamer causes a structure change of the TMR-labeled aptamer, leading to changes of the interaction between labeled TMR and adjacent G bases in aptamer sequence, so FA of TMR varies with increasing of cocaine. After screening different labeling positions of the aptamer, including thymine (T) bases and terminals of the aptamer, we obtained a favorable aptamer probe with TMR labeled on the 25th base T in the sequence, which exhibited sensitive and significant FA-decreasing responses upon cocaine. Under optimized assay conditions, this TMR-labeled aptamer allowed for direct FA detection of cocaine as low as 5 μM. The maximum FA change reached about 0.086. This FA method also enabled the detection of cocaine spiked in diluted serum and urine samples, showing potential for applications. Graphical Abstract The binding of cocaine to the TMR-labeled aptamer causes conformation change and alteration of the intramolecular interaction between TMR and bases of aptamer, leading to variance of fluorescence anisotropy (FA) of TMR, so direct FA analyis of cocaine is achieved.

  1. Development of Isothermal Recombinase Polymerase Amplification Assay for Rapid Detection of Porcine Circovirus Type 2

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-01-01

    Full Text Available Porcine circovirus virus type II (PCV2 is the etiology of postweaning multisystemic wasting syndrome (PMWS, porcine dermatitis, nephropathy syndrome (PDNS, and necrotizing pneumonia. Rapid diagnosis tool for detection of PCV2 plays an important role in the disease control and eradication program. Recombinase polymerase amplification (RPA assays using a real-time fluorescent detection (PCV2 real-time RPA assay and RPA combined with lateral flow dipstick (PCV2 RPA LFD assay were developed targeting the PCV2 ORF2 gene. The results showed that the sensitivity of the PCV2 real-time RPA assay was 102 copies per reaction within 20 min at 37°C and the PCV2 RPA LFD assay had a detection limit of 102 copies per reaction in less than 20 min at 37°C. Both assays were highly specific for PCV2, with no cross-reactions with porcine circovirus virus type 1, foot-and-mouth disease virus, pseudorabies virus, porcine parvovirus, porcine reproductive and respiratory syndrome virus, and classical swine fever virus. Therefore, the RPA assays provide a novel alternative for simple, sensitive, and specific identification of PCV2.

  2. Rapid detection of EBOLA VP40 in microchip immunofiltration assay

    Science.gov (United States)

    Miethe, Peter; Gary, Dominik; Hlawatsch, Nadine; Gad, Anne-Marie

    2015-05-01

    In the spring of 2014, the Ebola virus (EBOV) strain Zaire caused a dramatic outbreak in several regions of West Africa. The RT-PCR and antigen capture diagnostic proved to be effective for detecting EBOV in blood and serum. In this paper, we present data of a rapid antigen capture test for the detection of VP40. The test was performed in a microfluidic chip for immunofiltration analysis. The chip integrates all necessary assay components. The analytical sensitivity of the rapid test was 8 ng/ml for recombinant VP40. In serum and whole blood samples spiked with virus culture material, the detection limit was 2.2 x 102 PFU/ml. The performance data of the rapid test (15 min) are comparable to that of the VP40 laboratory ELISA.

  3. Fluorescence In Situ Hybridization (FISH) Assays for Diagnosing Malaria in Endemic Areas

    Science.gov (United States)

    Shah, Jyotsna; Mark, Olivia; Weltman, Helena; Barcelo, Nicolas; Lo, Wai; Wronska, Danuta; Kakkilaya, Srinivas; Rao, Aravinda; Bhat, Shalia T.; Sinha, Ruchi; Omar, Sabah; Moro, Manuel; Gilman, Robert H.; Harris, Nick

    2015-01-01

    Malaria is a responsible for approximately 600 thousand deaths worldwide every year. Appropriate and timely treatment of malaria can prevent deaths but is dependent on accurate and rapid diagnosis of the infection. Currently, microscopic examination of the Giemsa stained blood smears is the method of choice for diagnosing malaria. Although it has limited sensitivity and specificity in field conditions, it still remains the gold standard for the diagnosis of malaria. Here, we report the development of a fluorescence in situ hybridization (FISH) based method for detecting malaria infection in blood smears and describe the use of an LED light source that makes the method suitable for use in resource-limited malaria endemic countries. The Plasmodium Genus (P-Genus) FISH assay has a Plasmodium genus specific probe that detects all five species of Plasmodium known to cause the disease in humans. The P. falciparum (PF) FISH assay and P. vivax (PV) FISH assay detect and differentiate between P. falciparum and P. vivax respectively from other Plasmodium species. The FISH assays are more sensitive than Giemsa. The sensitivities of P-Genus, PF and PV FISH assays were found to be 98.2%, 94.5% and 98.3%, respectively compared to 89.9%, 83.3% and 87.9% for the detection of Plasmodium, P. falciparum and P. vivax by Giemsa staining respectively. PMID:26333092

  4. Real-time PCR assay for rapid qualitative and quantitative detection of Entamoeba histolytica.

    Science.gov (United States)

    Orosz, Erika; Perkátai, Katalin; Kapusinszky, Beatrix; Farkas, Agnes; Kucsera, István

    2012-12-01

    Simple real-time PCR assay with one set of primer and probe for rapid, sensitive qualitative and quantitative detection of Entamoeba histolytica has been used. Consensus sequences were used to amplify a species-specific region of the 16S rRNA gene, and fluorescence resonance energy transfer hybridization probes were used for detection in a LightCycler platform (Roche). The anchor probe sequence was designed to be a perfect match for the 16S rRNA gene of Entamoeba species, while the acceptor probe sequence was designed for Entamoeba histolytica, which allowed differentiation. The performed characteristics of the real-time PCR assay were compared with ELISA antigen and microscopical detection from 77 samples of individuals with suspected clinical diagnosis of imported E. histolytica infection. Stool and liver abscess pus samples were examined with analytical sensitivity of 5 parasites per PCR reaction. The melting curve means Tms (standard deviation) in clinical isolates were 54°C. The real-time assay was 100% sensitive and specific for differentiation of Entamoeba histolytica, compared with conventional ELISA or microscopy. This real-time PCR assay with melting curve analysis is rapid, and specific for the detection and differentiation of Entamoeba histolytica. The suitability for routine use of this assay in clinical diagnostic laboratories is discussed.

  5. [Rapid detection of Shigella dysenteriae by PCR assay].

    Science.gov (United States)

    Chen, Hongyuan; Zhong, Qingping; Wang, Li; Sun, Yuanming

    2010-09-01

    Based on the invasive plasmid antigen H gene (ipaH) of S. dysenteriae, one pair of specific primers was designed for PCR assays in this study. The concentrations of dNTP, Mg2+ and primer, dosage of Taq DNA polymerase, annealing temperature and circulating parameter in the PCR amplification system were optimized. In this way, a rapid and stable method of PCR assay for the detection of S. dysenteriae was established. The specificity and sensitivity of PCR were also analyzed. The detection limits of pure culture and genomic DNA in the PCR assay were 1.06 x 10(2) cfu/ml and 106.34 pg/PCR system, respectively. The detection limit for S. dysenteriae in artificially contaminated food samples was 3.21 x 10(4) cfu/ml. These results indicated that the PCR method for S. dysenteriae detection was simple, rapid, high in specificity and sensitivity and suitable for the detection of pathogens in foods caused by Shigella dysenteriae.

  6. Upconversion fluorescent strip sensor for rapid determination of Vibrio anguillarum

    Science.gov (United States)

    Zhao, Peng; Wu, Yuanyuan; Zhu, Yihua; Yang, Xiaoling; Jiang, Xin; Xiao, Jingfan; Zhang, Yuanxing; Li, Chunzhong

    2014-03-01

    Here, we report a simple and ultrasensitive upconversion fluorescent strip sensor based on NaYF4:Yb,Er nanoparticles (NPs) and the lateral flow immunochromatographic assay (LFIA). Carboxyl-modified β-NaYF4:Yb,Er NPs were successfully synthesized by a facile one-pot solvothermal approach, upon further coupling with monoclonal antibody, the resultant UCNPs-antibody conjugates probes were used in LFIA and served as signal vehicles for the fluorescent reporters. V. anguillarum was used as a model analyte to demonstrate the use of this strip sensor. The limit of the detection for the fluorescent strip was determined as 102 CFU mL-1, which is 100 times lower than those displayed by enzyme-linked immunosorbent assays, while the time needed for the detection was only 15 min. Furthermore, no cross-reaction with other eight pathogens was found, indicating the good specificity of the strip. This developed LFIA would offer the potential as a useful tool for the quantification of pathogens analysis in the future.

  7. Carbon quantum dots-based recyclable real-time fluorescence assay for alkaline phosphatase with adenosine triphosphate as substrate.

    Science.gov (United States)

    Qian, Zhaosheng; Chai, Lujing; Tang, Cong; Huang, Yuanyuan; Chen, Jianrong; Feng, Hui

    2015-03-03

    A convenient, reliable, and highly sensitive real-time assay for alkaline phosphatase (ALP) activity in the continuous and recyclable way is established on the basis of aggregation and disaggregation of carbon quantum dots (CQDs) through the competitive assay approach. CQDs and adenosine triphosphate (ATP) were used as the fluorescent indicator and substrate for ALP activity assessment, respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by cerium ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, ATP can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to cerium ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by redispersion of CQDs in the presence of ALP and ATP. Quantitative evaluation of ALP activity in a broad range from 4.6 to 383.3 U/L with the detection limit of 1.4 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. The assay can be used in a recyclable way for more than three times since the generated product CePO4 as a precipitate can be easily removed from the standard assay system. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility and provides an example based on disaggregation in optical probe development.

  8. Fluorescent peptide indicator displacement assay for monitoring interactions between RNA and RNA binding proteins.

    Science.gov (United States)

    Jeong, Hyun Seok; Choi, Sun Mi; Kim, Hyun Woo; Park, Jung Woo; Park, Ha Na; Park, Sung Mi; Jang, Sung Key; Rhee, Young Min; Kim, Byeang Hyean

    2013-05-01

    This paper describes a sensitive, non-destructive displacement assay, using a fluorescent peptide indicator, for real-time monitoring of the interactions between RNA and RNA binding proteins (RBPs). The developed fluorescent peptide indicators, each containing a mid-sequence fluorophore unit, allowed sensing of target RNA and RNA-RBP interactions through changes in fluorescence intensity. We anticipate that this assay will open up new possibilities for meaningful studies of RNA-RBP interactions.

  9. A rapid mitochondrial toxicity assay utilizing rapidly changing cell energy metabolism.

    Science.gov (United States)

    Sanuki, Yosuke; Araki, Tetsuro; Nakazono, Osamu; Tsurui, Kazuyuki

    2017-01-01

    Drug-induced liver injury is a major cause of safety-related drug-marketing withdrawals. Several drugs have been reported to disrupt mitochondrial function, resulting in hepatotoxicity. The development of a simple and effective in vitro assay to identify the potential for mitochondrial toxicity is thus desired to minimize the risk of causing hepatotoxicity and subsequent drug withdrawal. An in vitro test method called the "glucose-galactose" assay is often used in drug development but requires prior-culture of cells over several passages for mitochondrial adaptation, thereby restricting use of the assay. Here, we report a rapid version of this method with the same predictability as the original method. We found that replacing the glucose in the medium with galactose resulted in HepG2 cells immediately shifting their energy metabolism from glycolysis to oxidative phosphorylation due to drastic energy starvation; in addition, the intracellular concentration of ATP was reduced by mitotoxicants when glucose in the medium was replaced with galactose. Using our proposed rapid method, mitochondrial dysfunction in HepG2 cells can be evaluated by drug exposure for one hour without a pre-culture step. This rapid assay for mitochondrial toxicity may be more suitable for high-throughput screening than the original method at an early stage of drug development.

  10. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis.

    Science.gov (United States)

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-04-16

    Assaying the glycogen synthase kinase-3 (GSK3) activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed) peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  11. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    Directory of Open Access Journals (Sweden)

    Hoseok Choi

    2016-04-01

    Full Text Available Assaying the glycogen synthase kinase-3 (GSK3 activity in sperm is of great importance because it is closely implicated in sperm motility and male infertility. While a number of studies on GSK3 activity have relied on labor-intensive immunoblotting to identify phosphorylated GSK3, here we report the simple and rapid detection of GSK3 activity in mouse sperm using conventional agarose gel electrophoresis and a fluorescent peptide substrate. When a dye-tethered and prephosphorylated (primed peptide substrate for GSK3 was employed, a distinct mobility shift in the fluorescent bands on the agarose was observed by GSK3-induced phosphorylation of the primed peptides. The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  12. Comparison of two rapid assays for Clostridium difficile Common antigen and a C difficile toxin A/B assay with the cell culture neutralization assay.

    Science.gov (United States)

    Reller, Megan E; Alcabasa, Romina C; Lema, Clara A; Carroll, Karen C

    2010-01-01

    We compared 3 rapid assays for Clostridium difficile with a cell culture cytotoxicity neutralization assay (CCNA). Of 600 stool samples, 46 were positive for toxigenic C difficile. Both rapid common antigen assays were highly sensitive (91.3%-100%) and, therefore, were appropriate screening tests. The rapid toxin assay had poor sensitivity (61%) but excellent specificity (99.3%). Testing stools for glutamate dehydrogenase (step 1) and those positive with a rapid toxin assay (step 2) would correctly classify 81% of submitted specimens within 2 hours, including during periods of limited staffing (evenings, nights, and weekends). CCNA could then be used as a third step to test rapid toxin-negative samples, thereby providing a final result for the remaining 19% of samples by 48 to 72 hours. The use of rapid assays as outlined could enhance timely diagnosis of C difficile.

  13. Rapid detection of cryptococcal antigen by a flow assay

    Directory of Open Access Journals (Sweden)

    Graziano Bargiggia

    2017-10-01

    Full Text Available Cryptococcosis is a life-threatening infection caused by Cryptococcus neoformans and C. gattii. Tests for quick detection of the cryptococcal antigen are needed. This study compares the performance of a lateral flow assay (LFA to the latex agglutination method. Thirty-five cryopreserved positive samples (sera and cerebrospinal fluids plus three negative sera for control have been examined. LFA does not need high-temperature incubation or enzyme pre-treatment. All the results, except for one serum, agree with previous obtained with latex agglutination method. LFA has an important clinical utility for its rapidity and sensitivity, and it also can be used as a point-of-care test.

  14. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Science.gov (United States)

    Takahashi, Tadanobu; Agarikuchi, Takashi; Kurebayashi, Yuuki; Shibahara, Nona; Suzuki, Chihiro; Kishikawa, Akiko; Fukushima, Keijo; Takano, Maiko; Suzuki, Fumie; Wada, Hirohisa; Otsubo, Tadamune; Ikeda, Kiyoshi; Minami, Akira; Suzuki, Takashi

    2015-01-01

    Mumps viruses show diverse cytopathic effects (CPEs) of infected cells and viral plaque formation (no CPE or no plaque formation in some cases) depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl)-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac), was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study), even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  15. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  16. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Seema, E-mail: seemanara@mnnit.ac.in [Department of Applied Mechanics (Biotechnology), Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Tripathi, Vinay [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Singh, Harpal [Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Shrivastav, Tulsidas G. [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India)

    2010-12-03

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL{sup -1} with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  17. Rapid diagnosis of aneuploidy using segmental duplication quantitative fluorescent PCR.

    Directory of Open Access Journals (Sweden)

    Xiangdong Kong

    Full Text Available The aim of this study was use a simple and rapid procedure, called segmental duplication quantitative fluorescent polymerase chain reaction (SD-QF-PCR, for the prenatal diagnosis of fetal chromosomal aneuploidies. This method is based on the co-amplification of segmental duplications located on two different chromosomes using a single pair of fluorescent primers. The PCR products of different sizes were subsequently analyzed through capillary electrophoresis, and the aneuploidies were determined based on the relative dosage between the two chromosomes. Each primer set, containing five pairs of primers, was designed to simultaneously detect aneuploidies located on chromosomes 21, 18, 13, X and Y in a single reaction. We applied these two primer sets to DNA samples isolated from individuals with trisomy 21 (n = 36; trisomy 18 (n = 6; trisomy 13 (n = 4; 45, X (n = 5; 47, XXX (n = 3; 48, XXYY (n = 2; and unaffected controls (n = 40. We evaluated the performance of this method using the karyotyping results. A correct and unambiguous diagnosis with 100% sensitivity and 100% specificity, was achieved for clinical samples examined. Thus, the present study demonstrates that SD-QF-PCR is a robust, rapid and sensitive method for the diagnosis of common aneuploidies, and these analyses can be performed in less than 4 hours for a single sample, providing a competitive alternative for routine use.

  18. Rapid measurement of meat spoilage using fluorescence spectroscopy

    Science.gov (United States)

    Wu, Binlin; Dahlberg, Kevin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Food spoilage is mainly caused by microorganisms, such as bacteria. In this study, we measure the autofluorescence in meat samples longitudinally over a week in an attempt to develop a method to rapidly detect meat spoilage using fluorescence spectroscopy. Meat food is a biological tissue, which contains intrinsic fluorophores, such as tryptophan, collagen, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) etc. As meat spoils, it undergoes various morphological and chemical changes. The concentrations of the native fluorophores present in a sample may change. In particular, the changes in NADH and FAD are associated with microbial metabolism, which is the most important process of the bacteria in food spoilage. Such changes may be revealed by fluorescence spectroscopy and used to indicate the status of meat spoilage. Therefore, such native fluorophores may be unique, reliable and nonsubjective indicators for detection of spoiled meat. The results of the study show that the relative concentrations of all above fluorophores change as the meat samples kept in room temperature ( 19° C) spoil. The changes become more rapidly after about two days. For the meat samples kept in a freezer ( -12° C), the changes are much less or even unnoticeable over a-week-long storage.

  19. A fluorescent receptor assay for benzodiazepines using coumarin labeled desethylflumazenil as ligand

    NARCIS (Netherlands)

    Janssen, M.J; Ensing, K; de Zeeuw, R.A

    2001-01-01

    This article describes a novel nonisotopic receptor assay for benzodiazepines with fluorescence detection, As labeled ljgand (coumarin-labeled desethylflumazenil, CLDEF), a metabolite of the benzodiazepine antagonist flumazenil (desetheylflumazenil, Ro15-3890) has been coupled to a coumarin

  20. Rapid Detection of Enterotoxigenic Clostridium perfringens by Real-Time Fluorescence Resonance Energy Transfer PCR

    National Research Council Canada - National Science Library

    dela Cruz, Wilfred P; Gozum, Mary M.A; Lineberry, Sarah F; Stassen, Sarah D; Daughtry, Marianne; Stassen, Nicholas A; Jones, Morris S; Johnson, Oswald L

    2006-01-01

    ...) produced by some strains during sporulation. We developed a quantitative real-time PCR assay based on fluorescence resonance energy transfer hybridization chemistry that targets the C. perfringens...

  1. Rapid screening test for porphyria diagnosis using fluorescence spectroscopy

    Science.gov (United States)

    Lang, A.; Stepp, H.; Homann, C.; Hennig, G.; Brittenham, G. M.; Vogeser, M.

    2015-07-01

    Porphyrias are rare genetic metabolic disorders, which result from deficiencies of enzymes in the heme biosynthesis pathway. Depending on the enzyme defect, different types of porphyrins and heme precursors accumulate for the different porphyria diseases in erythrocytes, liver, blood plasma, urine and stool. Patients with acute hepatic porphyrias can suffer from acute neuropathic attacks, which can lead to death when undiagnosed, but show only unspecific clinical symptoms such as abdominal pain. Therefore, in addition to chromatographic methods, a rapid screening test is required to allow for immediate identification and treatment of these patients. In this study, fluorescence spectroscopic measurements were conducted on blood plasma and phantom material, mimicking the composition of blood plasma of porphyria patients. Hydrochloric acid was used to differentiate the occurring porphyrins (uroporphyrin-III and coproporphyrin-III) spectroscopically despite their initially overlapping excitation spectra. Plasma phantom mixtures were measured using dual wavelength excitation and the corresponding concentrations of uroporphyrin-III and coproporphyrin-III were determined. Additionally, three plasma samples of porphyria patients were examined and traces of coproporphyrin-III and uroporphyrin-III were identified. This study may therefore help to establish a rapid screening test method with spectroscopic differentiation of the occurring porphyrins, which consequently allows for the distinction of different porphyrias. This may be a valuable tool for clinical porphyria diagnosis and rapid or immediate treatment.

  2. Enzyme-Free Nucleic Acid Amplification Assay Using a Cellphone-Based Well Plate Fluorescence Reader.

    Science.gov (United States)

    Kim, Donghyuk; Wei, Qingshan; Kim, Dong Hyeok; Tseng, Derek; Zhang, Jingzi; Pan, Eric; Garner, Omai; Ozcan, Aydogan; Di Carlo, Dino

    2018-01-02

    Nucleic acids, DNA and RNA, provide important fingerprint information for various pathogens and have significant diagnostic value; however, improved approaches are urgently needed to enable rapid detection of nucleic acids in simple point-of-care formats with high sensitivity and specificity. Here, we present a system that utilizes a series of toehold-triggered hybridization/displacement reactions that are designed to convert a given amount of RNA molecules (i.e., the analyte) into an amplified amount of signaling molecules without any washing steps or thermocycling. Fluorescent probes for signal generation were designed to consume products of the catalytic reaction in order to push the equilibrium and enhance the assay fold amplification for improved sensitivity and reaction speed. The system of toehold-assisted reactions is also modeled to better understand its performance and capabilities, and we empirically demonstrate the success of this approach with two analytes of diagnostic importance, i.e., influenza viral RNA and a micro RNA (miR-31). We also show that the amplified signal permits using a compact and cost-effective smartphone-based fluorescence reader, an important requirement toward a nucleic-acid-based point-of-care diagnostic system.

  3. Assay of flippase activity in proteoliposomes using fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Marek, Magdalena; Günther-Pomorski, Thomas

    2016-01-01

    Specific membrane proteins, termed lipid flippases, play a central role in facilitating the movement of lipids across cellular membranes. In this protocol, we describe the reconstitution of ATP-driven lipid flippases in liposomes and the analysis of their in vitro flippase activity based on the use...... of fluorescent lipid derivatives. Working with purified and reconstituted systems provides a well-defined experimental setup and allows to directly characterize these membrane proteins at the molecular level....

  4. Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of graphene quantum dots.

    Science.gov (United States)

    Lin, Feng-E; Gui, Chuang; Wen, Wei; Bao, Ting; Zhang, Xiuhua; Wang, Shengfu

    2016-09-01

    We describe a fluorescent dopamine assay that is based on the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of graphene quantum dots (GQDs). The green fluorescence of GQDs is remarkably inhibited in the presence of citrate-stabilized AuNPs via IFE. Upon the addition of dopamine (DA), aggregation of the AuNPs occurs which is associated with a color change from red to blue. The IFE can no longer occur and the fluorescence of GQDs is recovered. Under the optimum conditions, a linear correlation exists between fluorescence intensity and the concentration of DA in the range from 20nM to 200nM with a detection limit of 15nM (at 3σ/s). The assay is rapid, inexpensive and highly sensitive. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Chromosome-Specific DNA Repeats: Rapid Identification in Silico and Validation Using Fluorescence in Situ Hybridization

    Directory of Open Access Journals (Sweden)

    Heinz-Ulrich G. Weier

    2012-12-01

    Full Text Available Chromosome enumeration in interphase and metaphase cells using fluorescence in situ hybridization (FISH is an established procedure for the rapid and accurate cytogenetic analysis of cell nuclei and polar bodies, the unambiguous gender determination, as well as the definition of tumor-specific signatures. Present bottlenecks in the procedure are a limited number of commercial, non-isotopically labeled probes that can be combined in multiplex FISH assays and the relatively high price and effort to develop additional probes. We describe a streamlined approach for rapid probe definition, synthesis and validation, which is based on the analysis of publicly available DNA sequence information, also known as “database mining”. Examples of probe preparation for the human gonosomes and chromosome 16 as a selected autosome outline the probe selection strategy, define a timeline for expedited probe production and compare this novel selection strategy to more conventional probe cloning protocols.

  6. Analytical and clinical sensitivity of the 3M rapid detection influenza A+B assay.

    Science.gov (United States)

    Dale, Suzanne E; Mayer, Christine; Mayer, Marie C; Menegus, Marilyn A

    2008-11-01

    The performance of the 3M rapid detection influenza A+B (3M flu) assay was compared to the performance of other immunochromatographic assays. The clinical and analytical performance of the 3M flu assay was superior to that of BinaxNOW and Directigen EZ assays and equivalent to that of the QuickVue assay. The 3M flu assay offers an objective output and direct linkage to laboratory information systems.

  7. Analytical and Clinical Sensitivity of the 3M Rapid Detection Influenza A+B Assay

    Science.gov (United States)

    Dale, Suzanne E.; Mayer, Christine; Mayer, Marie C.; Menegus, Marilyn A.

    2008-01-01

    The performance of the 3M rapid detection influenza A+B (3M flu) assay was compared to the performance of other immunochromatographic assays. The clinical and analytical performance of the 3M flu assay was superior to that of BinaxNOW and Directigen EZ assays and equivalent to that of the QuickVue assay. The 3M flu assay offers an objective output and direct linkage to laboratory information systems. PMID:18832133

  8. A rapid assay for on-site monitoring of infliximab trough levels: a feasibility study.

    Science.gov (United States)

    Corstjens, Paul L A M; Fidder, Herma H; Wiesmeijer, Karien C; de Dood, Claudia J; Rispens, Theo; Wolbink, Gert-Jan; Hommes, Daniel W; Tanke, Hans J

    2013-09-01

    Monitoring levels of biologicals against tumor necrosis factor (TNF) has been suggested to improve therapeutic outcomes in inflammatory bowel diseases (IBDs). This pilot study describes a rapid lateral flow (LF)-based assay for on-site monitoring of serum trough levels of humanized monoclonal antibody infliximab (IFX). The applied chromatographic method utilizes sequential flows of diluted serum, wash buffer, and an immunoglobulin generic label on LF strips with a Test line comprised of TNF-α. The successive flows permitted enrichment of IFX at the Test line before the label was applied. The label, luminescent upconverting phosphor (UCP) particles coated with protein-A, emits a 550-nm visible light upon excitation with 980-nm infrared light. IFX concentrations were determined through measurement of UCP fluorescence at the Test line. The assay was optimized to detect IFX levels as low as 0.17 μg/mL in serum. For patients with IBD, this limit is appropriate to detect levels associated with loss of response (0.5 μg IFX/mL). The assay was evaluated with clinical samples from patients with Crohn's disease and correlated well within the physiologically relevant range from 0.17 to 10 μg/mL with an IFX-specific ELISA. Performance of the assay was further successfully validated with samples from blood donors, IFX negative IBD patients, and rheumatoid arthritis patients that had developed anti-IFX antibodies. Because of its generic nature, the assay is suited for detecting most therapeutic anti-TNF-α monoclonal antibodies.

  9. A real-time fluorescent assay for the detection of alkaline phosphatase activity based on carbon quantum dots.

    Science.gov (United States)

    Qian, Zhao Sheng; Chai, Lu Jing; Huang, Yuan Yuan; Tang, Cong; Shen, Jia Jia; Chen, Jian Rong; Feng, Hui

    2015-06-15

    A convenient and real-time fluorometric assay with the assistance of copper ions based on aggregation and disaggregation of carbon quantum dots (CQDs) was developed to achieve highly sensitive detection of alkaline phosphatase activity. CQDs and pyrophosphate anions (PPi) were used as the fluorescent indicator and substrate for ALP activity assessment respectively. Richness of carboxyl groups on the surface of CQDs enables their severe aggregation triggered by copper ions, which results in effective fluorescence quenching. Under the catalytic hydrolysis of ALP, PPi can be rapidly transformed to phosphate ions. Stronger affinity of phosphate ions to copper ions than carboxyl groups is taken advantage of to achieve fluorescence recovery induced by re-dispersion of CQDs in the presence of ALP and PPi. Quantitative evaluation of ALP activity in a broad range from 16.7 to 782.6 U/L with the detection limit of 1.1 U/L can be realized in this way, which endows the assay with high enough sensitivity for practical detection in human serum. This strategy broadens the sensing application of fluorescent CQDs with excellent biocompatibility, and provides an example based on disaggregation in optical probe development. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Simple latex agglutination assay for rapid serodiagnosis of human leptospirosis

    NARCIS (Netherlands)

    Smits, H. L.; van der Hoorn, M. A.; Goris, M. G.; Gussenhoven, G. C.; Yersin, C.; Sasaki, D. M.; Terpstra, W. J.; Hartskeerl, R. A.

    2000-01-01

    A newly developed latex agglutination assay for the detection of genus-specific Leptospira antibodies in human sera was evaluated. The assay is performed by mixing, on an agglutination card, serum with equal volumes of stabilized antigen-coated, dyed test and control latex beads and is read within 2

  11. Four-part leukocyte differential count based on sheathless microflow cytometer and fluorescent dye assay.

    Science.gov (United States)

    Shi, Wendian; Guo, Luke; Kasdan, Harvey; Tai, Yu-Chong

    2013-04-07

    Leukocyte differential count is one of the most frequently ordered clinical tests in hospitals. This paper reports a point-of-care test for the leukocyte count by using a microflow cytometer and a fluorescent dye assay. The dye assay relied on fluorescent detection alone to count leukocytes in blood and to identify leukocyte subtypes. By combining the fluorescent assay with a sheathless microflow design, the proposed method achieved a minimal sample volume by eliminating excessive dilution and sheath flow. In this paper, a four-part leukocyte differential count including lymphocyte, monocyte, neutrophil and eosinophil was demonstrated, and the whole test consumed only a small amount of blood (5 μL) and reagents (68 μL in total). The merits of minimal sample volume, long reagent shelf life and portable instrument made this method optimal for point-of-care applications.

  12. Testing the utility of fluorescent proteins in Mimulus lewisii by an Agrobacterium-mediated transient assay.

    Science.gov (United States)

    Ding, Baoqing; Yuan, Yao-Wu

    2016-04-01

    The Agrobacterium -mediated transient expression assay by leaf infiltration in Mimulus lewisii is robust. Fluorescent proteins EGFP, EYFP and DsRed give bright fluorescence signals in the infiltrated tissue. Mimulus lewisii is an emerging developmental genetic model system. Recently developed genomic and genetic resources and a stable transformation protocol have greatly facilitated the identification and functional characterization of genes controlling the development of ecologically important floral traits using this species. To further expedite gene and protein function analyses in M. lewisii, we adopted and simplified the Agrobacterium-mediated transient gene expression method routinely used in tobacco plants. With the validated transient assay, we examined the performance of fluorescent proteins EGFP, EYFP and DsRed in M. lewisii. All three proteins gave bright fluorescence signals when transiently expressed in agroinfiltrated leaves. Furthermore, we demonstrated the utility of fluorescent proteins in M. lewisii by showing the nuclear localization of Reduced Carotenoid Pigmentation 1 (RCP1), a recently discovered R2R3-MYB transcription factor that regulates carotenoid pigmentation during flower development. Both the transient assay and the fluorescent proteins are valuable additions to the M. lewisii toolbox, making this emerging genetic and developmental model system even more powerful.

  13. TAMRA/TAMRA Fluorescence Quenching Systems for the Activity Assay of Alkaline Phosphatase.

    Science.gov (United States)

    Shiba, Akio; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2017-08-15

    We introduce two types of fluorescence-quenching assay for alkaline phosphatases (APs) by using a carboxytetramethyl-rhodamine (TAMRA)-labeled phosphate-binding tag molecule (TAMRA-Phos-tag). In the first assay, TAMRA-labeled O -phosphorylethanolamine (TAMRA-PEA) was used as an artificial AP-substrate. TAMRA-Phos-tag specifically captured TAMRA-PEA to form a 1:1 complex at pH 7.4; the intensity of the fluorescence peak of the complex at 580 nm (λ ex = 523 nm) was significantly reduced to 32% of the average value for the two individual components as a result of the mutual approach of the TAMRA moieties. As TAMRA-PEA was dephosphorylated by AP, the resulting TAMRA-labeled ethanolamine dissociated and the fluorescence increased in a manner dependent on the AP dose and the time. In the second assay, pyrophosphate (PP), a natural AP-substrate, was used as a bridging ligand to form a dimeric TAMRA-Phos-tag complex. The dimerization reduced the fluorescence intensity to 49% of that in the absence of PP. As pyrophosphate was hydrolyzed to two orthophosphate moieties by AP, the 580-nm fluorescence recovered in a time-dependent manner. By examining the initial slope of this time-dependent fluorescence recovery, we succeeded in evaluating the 50% inhibitory concentrations of orthovanadate toward two AP isozymes under near-physiological conditions.

  14. TAMRA/TAMRA Fluorescence Quenching Systems for the Activity Assay of Alkaline Phosphatase

    OpenAIRE

    Shiba, Akio; Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Koike, Tohru

    2017-01-01

    We introduce two types of fluorescence-quenching assay for alkaline phosphatases (APs) by using a carboxytetramethyl-rhodamine (TAMRA)-labeled phosphate-binding tag molecule (TAMRA-Phos-tag). In the first assay, TAMRA-labeled O-phosphorylethanolamine (TAMRA-PEA) was used as an artificial AP-substrate. TAMRA-Phos-tag specifically captured TAMRA-PEA to form a 1:1 complex at pH 7.4; the intensity of the fluorescence peak of the complex at 580 nm (?ex = 523 nm) was significantly reduced to 32% of...

  15. Development of monoclonal antibody-based ultrasensitive enzyme-linked immunosorbent assay and fluorescence-linked immunosorbent assay for 1-aminohydantoin detection in aquatic animals.

    Science.gov (United States)

    Sun, Qi; Luo, JinHua; Zhang, Lei; Zhang, Zhihao; Le, Tao

    2018-01-05

    Monitoring and rapid evaluation of nitrofurantoin metabolite, 1-aminohydantoin (AHD), are important for food safety and human health. Herein, we established the monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and quantum dots (QDs)-fabricated fluorescence-linked immunosorbent assay (FLISA). Monoclonal antibody specific to nitrophenyl derivative of AHD was derived from hybridoma cell lines 3.2.4/5A8. For another, CdTe core QDs with emission wavelength of 605nm were also synthesized. The performances of the proposed ic-ELISA and FLISA were further examined and the corresponding results were also validated by standard LC-MS/MS analysis. The obtained results indicated that both ic-ELISA and FLISA exhibited good dynamic linear detection for NPAHD over the range from 0.1 to 3.0ngmL-1. Meanwhile, proposed immunosorbent assays are characterized by satisfactory recovery rates of 81.5-113.7%. The experimental data suggested these two immunoassays could be facile, cost-effective and rapid tools for the prospective quantitative method for AHD analysis in food matrix. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime

    Science.gov (United States)

    Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie

    2017-09-01

    Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.

  17. Long term response of a Concanavalin-A based fluorescence glucose sensing assay

    Science.gov (United States)

    Locke, Andrea K.; Cummins, Brian M.; Abraham, Alexander A.; Coté, Gerard L.

    2015-03-01

    Competitive binding assays comprised of the protein Concanavalin A (ConA) have shown potential for use in continuous glucose monitoring devices. However, its time-dependent, thermal instability can impact the lifetime of these ConA based assays. In an attempt to design sensors with longer in vivo lifetimes, different groups have immobilized the protein to various surfaces. For example, Ballerstadt et al. have shown that immobilizing ConA onto the interior of a micro-dialysis membrane and allowing dextran to be freely suspended within solution allowed for successful in vivo glucose sensing up to 16 days. This work explores the glucose response of an assay comprised of modified ConA and a single fluorescently labeled competing ligand in free solution to increase the in vivo sensing lifetime without immobilization,. The behavior of this assay in the presence of varying glucose concentrations is monitored via fluorescence anisotropy over a 30 day period.

  18. A rapid assay for the biological evaluation of helicase activity.

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Dimitrios Vlachakis, Andrea Brancale, Colin Berry & Sophia Kossida ### Abstract A new assay for the measurement of helicase enzyme activity was developed for the evaluation of the potency of potential inhibitors. This assay involves the use of a DNA or RNA duplex substrate and recombinant purified helicase. The DNA duplex consists of a pair of oligonucleotides, one of which is biotinylated and the other is digoxygenin (DIG)-labelled, both at their respective 5’ termini. This ...

  19. Transformation Model Choice in Nonlinear Regression Analysis of Fluorescence-based Serial Dilution Assays

    OpenAIRE

    Fong, Youyi; Yu, Xuesong

    2016-01-01

    Many modern serial dilution assays are based on fluorescence intensity (FI) readouts. We study optimal transformation model choice for fitting five parameter logistic curves (5PL) to FI-based serial dilution assay data. We first develop a generalized least squares-pseudolikelihood type algorithm for fitting heteroscedastic logistic models. Next we show that the 5PL and log 5PL functions can approximate each other well. We then compare four 5PL models with different choices of log transformati...

  20. Development of immunochromatographic strip test using fluorescent, micellar silica nanosensors for rapid detection of B. abortus antibodies in milk samples.

    Science.gov (United States)

    Vyas, Swati S; Jadhav, Sushma V; Majee, Sharmila B; Shastri, Jayanthi S; Patravale, Vandana B

    2015-08-15

    Presence of bacteria such as Brucella spp. in dairy products is an immense risk to public health. Point of care immunoassays are rapid in that they can quickly screen various samples in a relatively short amount of time, are sensitive, specific and offer a great advantage in accurate and fast diagnosis of infectious diseases. We have fabricated a point of care rapid diagnostic assay that employs fluorescent, micellar silica nanosensors capable of specifically detecting Brucella IgG antibodies in milk samples of afflicted animals. Currently, point of care detection assays are not commercially available for field testing of farm animals using milk samples. The nanosensing allows precise detection of antibodies with low sample volumes (50 μl). We demonstrate recognition of B. abortus antibodies through capture by fluorescent silica nanosensors using spiked and raw milk samples validated by ELISA and PCR. The test results are accurate and repeatable with high sensitivity and specificity, and a short assay time of 10 min for antigenic recognition and do not require any sample processing procedures such as isolation and separation. Additionally, well defined antigenic components and surface biomarkers of various disease causing microbes can be broadly incorporated within the purview of this technology for accurate and rapid detection of suspected bovine pathological conditions, and can largely enable rapid field testing that can be implemented in farms and food industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Medically Relevant Assays with a Simple Smartphone and Tablet Based Fluorescence Detection System

    Directory of Open Access Journals (Sweden)

    Piotr Wargocki

    2015-05-01

    Full Text Available Cell phones and smart phones can be reconfigured as biomedical sensor devices but this requires specialized add-ons. In this paper we present a simple cell phone-based portable bioassay platform, which can be used with fluorescent assays in solution. The system consists of a tablet, a polarizer, a smart phone (camera and a box that provides dark readout conditions. The assay in a well plate is placed on the tablet screen acting as an excitation source. A polarizer on top of the well plate separates excitation light from assay fluorescence emission enabling assay readout with a smartphone camera. The assay result is obtained by analysing the intensity of image pixels in an appropriate colour channel. With this device we carried out two assays, for collagenase and trypsin using fluorescein as the detected fluorophore. The results of collagenase assay with the lowest measured concentration of 3.75 µg/mL and 0.938 µg in total in the sample were comparable to those obtained by a microplate reader. The lowest measured amount of trypsin was 930 pg, which is comparable to the low detection limit of 400 pg for this assay obtained in a microplate reader. The device is sensitive enough to be used in point-of-care medical diagnostics of clinically relevant conditions, including arthritis, cystic fibrosis and acute pancreatitis.

  2. Protecting Quantum Dot Fluorescence from Quenching to Achieve a Reliable Automated Multiplex Fluorescence In Situ Hybridization Assay.

    Science.gov (United States)

    Zhang, Wenjun; Hubbard, Antony; Pang, Lizhen; Parkinson, Leslie Baca; Brunhoeber, Patrick; Wang, Yixin; Tang, Lei

    2015-09-01

    Quantum dots (QD) are novel inorganic fluorochromes that are ultra-bright, photo-stable, and available in multiple, highly-resolvable colors. QDs represent an ideal detection material for in situ hybridization (ISH) because they may provide unprecedented resolution and strong signal intensities that are not attainable with traditional fluorophores. Unfortunately, lack of reliability has been an impediment to widespread adoption of QD-based fluorescence in situ hybridization (QD FISH) technology. By optimizing QD-to-target accessibility, we have developed a QD FISH staining procedure that dramatically improves the reliability of an automated ERG/PTEN QD FISH assay (91% 1st pass rate). Here, we report improvements to the assay that protects QD fluorescence from quenching due to trace amounts of heavy metals and minimizes QD background signals. When using this method, highly-consistent staining was observed with the ERG/PTEN QD FISH assay in prostate tissue. Successful staining of several other clinically-relevant genetic markers was also possible. We further demonstrated improved reliability for determining HER2 gene status in breast cancer, identifying anaplastic lymphoma kinase (ALK) gene break-apart in non-small cell lung cancer, and detecting human papillomavirus 16 (HPV16) in cervical intraepithelial neoplasia. The enhanced QD FISH assay allows for examining complicated genetic aberrances without use of enzymatic amplification. Our optimized methods now demonstrate reliability sufficient for QD FISH technology to be a diagnostic tool in a clinical setting.

  3. Continuous-flow protease assay based on fluorescence resonance energy transfer

    NARCIS (Netherlands)

    Hirata, J.; Ariese, F.; Gooijer, C.; Irth, H.

    2003-01-01

    A homogeneous continuous-flow assay using fluorescence resonance energy transfer (FRET) for detection was developed to measure the hydrolysis of HIV Protease Substrate 1 (to which two choromophores, EDANS and DABCYL are covalently attached) by a protease (e.g. Subtilisin Carlsberg) and the influence

  4. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.

    Science.gov (United States)

    Bozóki, Beáta; Gazda, Lívia; Tóth, Ferenc; Miczi, Márió; Mótyán, János András; Tőzsér, József

    2018-01-01

    In connection with the intensive investigation of proteases, several methods have been developed for analysis of the substrate specificity. Due to the great number of proteases and the expected target molecules to be analyzed, time- and cost-efficient high-throughput screening (HTS) methods are preferred. Here we describe the development and application of a separation-based HTS-compatible fluorescent protease assay, which is based on the use of recombinant fusion proteins as substrates of proteases. The protein substrates used in this assay consists of N-terminal (hexahistidine and maltose binding protein) fusion tags, cleavage sequences of the tobacco etch virus (TEV) and HIV-1 proteases, and a C-terminal fluorescent protein (mApple or mTurquoise2). The assay is based on the fluorimetric detection of the fluorescent proteins, which are released from the magnetic bead-attached substrates by the proteolytic cleavage. The protease assay has been applied for activity measurements of TEV and HIV-1 proteases to test the suitability of the system for enzyme kinetic measurements, inhibition studies, and determination of pH optimum. We also found that denatured fluorescent proteins can be renatured after SDS-PAGE of denaturing conditions, but showed differences in their renaturation abilities. After in-gel renaturation both substrates and cleavage products can be identified by in-gel UV detection. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. A Fluorescence-Based High-Throughput Coupled Enzymatic Assay for Quantitation of Isoaspartate in Proteins and Peptides.

    Science.gov (United States)

    Puri, Aastha; Quan, Yong; Narang, Ajit S; Adams, Monica; Gandhi, Rajesh; Nashine, Vishal C

    2017-04-01

    Formation of isoaspartate (IsoAsp) from spontaneous asparagine (Asn) deamidation or aspartate (Asp) isomerization is one of the most common non-enzymatic pathways of chemical degradation of protein and peptide pharmaceuticals. Rapid quantitation of IsoAsp formation can enable rank-ordering of potential drug candidates, mutants, and formulations as well as support shelf life prediction and stability requirements. A coupled enzymatic fluorescence-based IsoAsp assay (CEFIA) was developed as a high-throughput method for quantitation of IsoAsp in peptides and proteins. In this note, application of this method to two therapeutic candidate proteins with distinct structural scaffolds is described. In addition, the results obtained with this method are compared to those from conventional assays.

  6. Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition.

    Science.gov (United States)

    Shen, Congcong; Xia, Xiaodong; Hu, Shengqiang; Yang, Minghui; Wang, Jianxiu

    2015-01-06

    A simple and sensitive fluorescence method for monitoring the activity and inhibition of protein kinase (PKA) has been developed using polycytosine oligonucleotide (dC12)-templated silver nanoclusters (Ag NCs). Adenosine-5'-triphosphate (ATP) was found to enhance the fluorescence of Ag NCs, while the hydrolysis of ATP to adenosine diphosphate (ADP) by PKA decreased the fluorescence of Ag NCs. Compared to the existing methods for kinase activity assay, the developed method does not involve phosphorylation of the substrate peptides, which significantly simplifies the detection procedures. The method exhibits high sensitivity, good selectivity, and wide linear range toward PKA detection. The inhibition effect of kinase inhibitor H-89 on the activity of PKA was also studied. The sensing protocol was also applied to the assay of drug-stimulated activation of PKA in HeLa cell lysates.

  7. Fast and Sensitive Interferon-γ Assay Using Supercritical Angle Fluorescence

    Directory of Open Access Journals (Sweden)

    Stefan Seeger

    2013-02-01

    Full Text Available We present an immunoassay for Interferon-γ (IFN-γ with a limit of detection of 1.9 pM (30 pg/mL and a linear concentration range spanning three orders of magnitude. The developed one-step assay takes only 12 min and can replace the time-consuming and labor-intensive enzyme-linked immunosorbent assay (ELISA. The solid-phase sandwich assay is performed on a new measurement system comprising single-use test tubes and a compact fluorescence reader. The polymer tubes contain an optical configuration for the detection of supercritical angle fluorescence, allowing for highly sensitive real-time binding measurements.

  8. Establishing a safe, rapid, convenient and low-cost antiviral assay of interferon bioactivity based on recombinant VSV expressing GFP.

    Science.gov (United States)

    Chen, Weiye; Wen, Zhiyuan; Zhang, Jialin; Li, Cuicui; Huang, Kehe; Bu, Zhigao

    2017-08-20

    The methods of the quantitative assay of the antiviral activity of interferons (IFNs) (type I, II or III) are very important during carrying out of the research of them, since they were found. Here a recombinant vesicular stomatitis virus expressing green fluorescent protein (GFP) (VSV/GFP) and MDBK cells were used to develop an antiviral assay (AVA) for IFNs. This method was carried out on a 96-well cell culture plate, and the half reduction of virus replication was quantified by assaying GFP. To quantify GFP, cell lysis buffer was directly added to the wells infected with VSV/GFP to lyse cells, the VSV/GFP was then inactivated, and relative fluorescence unit (RFU) of GFP was measured and used to calculate the antiviral activity. This method needed only one step instead of three steps in the staining method with naphthol blue black, medium with phenol red can be used, and it had good reproducibility. The GFP-containing samples could be stored at 4°C in a wet box for at least 1 week without affecting the assay results. In addition, the results obtained with this method were similar to those obtained with the staining method. In conclusion, a safe, rapid, convenient and low-cost AVA of IFN based on recombinant VSV/GFP was established. Copyright © 2017. Published by Elsevier B.V.

  9. Bead-based competitive fluorescence immunoassay for sensitive and rapid diagnosis of cyanotoxin risk in drinking water.

    Science.gov (United States)

    Yu, Hye-Weon; Jang, Am; Kim, Lan Hee; Kim, Sung-Jo; Kim, In S

    2011-09-15

    Due to the increased occurrence of cyanobacterial blooms and their toxins in drinking water sources, effective management based on a sensitive and rapid analytical method is in high demand for security of safe water sources and environmental human health. Here, a competitive fluorescence immunoassay of microcystin-LR (MCYST-LR) is developed in an attempt to improve the sensitivity, analysis time, and ease-of-manipulation of analysis. To serve this aim, a bead-based suspension assay was introduced based on two major sensing elements: an antibody-conjugated quantum dot (QD) detection probe and an antigen-immobilized magnetic bead (MB) competitor. The assay was composed of three steps: the competitive immunological reaction of QD detection probes against analytes and MB competitors, magnetic separation and washing, and the optical signal generation of QDs. The fluorescence intensity was found to be inversely proportional to the MCYST-LR concentration. Under optimized conditions, the proposed assay performed well for the identification and quantitative analysis of MCYST-LR (within 30 min in the range of 0.42-25 μg/L, with a limit of detection of 0.03 μg/L). It is thus expected that this enhanced assay can contribute both to the sensitive and rapid diagnosis of cyanotoxin risk in drinking water and effective management procedures.

  10. A Fluorescence-Based High-Throughput Assay for the Identification of Anticancer Reagents Targeting Fructose-1,6-Bisphosphate Aldolase.

    Science.gov (United States)

    Cho, Eun Jeong; Devkota, Ashwini K; Stancu, Gabriel; Edupunganti, Ramakrishna; Powis, Garth; Dalby, Kevin N

    2017-08-01

    A high rate of glycolysis, which supplies energy and materials for anabolism, is observed in a wide range of tumor cells, making it a potential pathway to control cancer growth. ALDOA is a multifunctional enzyme in the glycolytic pathway and also promotes HIF-1α, which is of importance in hypoxic solid tumors. The current method for assaying ALDOA activity involves monitoring the consumption of NADH in vitro using absorbance or intrinsic fluorescence via a coupled enzymatic reaction. Here, we report the development of a homogeneous biochemical assay that can overcome limitations of current methods, in particular for the application of high-throughput drug screening. The assay utilizes the commercially available Elite NADH Assay Kit, which incorporates an enzymatic reaction to measure the level of NADH using a fluorescent probe. Assay optimization and validation are discussed. Its feasibility for high-throughput screening (HTS) was demonstrated by screening 65,000 compounds for the identification of small molecules that inhibit ALDOA. Through a validation screen and dose-response evaluation, four inhibitors with IC50 below 10 µM were identified. In conclusion, we demonstrate that a traditional ALDOA assay can be transformed readily into a fluorescence-based assay utilizing a commercial NADH detection kit that is rapid, sensitive, inexpensive, and HTS friendly.

  11. Simple and rapid spectrophotometric assay of levocetirizine in ...

    African Journals Online (AJOL)

    Simple, rapid, selective and fairly sensitive method is described for the determination of levocetirizine (LCTZ) in pure form and in its dosage forms. The method is based on the formation of intensely colored charge-transfer (CT) complexes between LCTZ as donor with two π acceptors, chloranilic acid (CAA) and 2 ...

  12. Evaluation of a direct colorimetric assay for rapid detection of ...

    African Journals Online (AJOL)

    Yemane Berhane

    bromide (MTT) for a rapid detection of rifampicin resistance. Methods: Sputum was inoculated directly into 7H9 .... a loopful of the corresponding broth on nutrient agar and incubating it at 370C for 24 hours before performing the .... and Training in Tropical Diseases (TDR). This study was part of the MSc thesis of DW at Addis ...

  13. Genetic damage in oligozoospermic patients detected by fluorescence in-situ hybridization, inverse restriction site mutation assay, sperm chromatin structure assay and the Comet assay.

    Science.gov (United States)

    Schmid, T E; Kamischke, A; Bollwein, H; Nieschlag, E; Brinkworth, M H

    2003-07-01

    The possibility that oligozoospermic men may have elevated levels of genetic damage in their sperm is of particular concern as they could transmit defects to their offspring. Sperm samples were obtained from 12 infertile, oligozoospermic patients and 12 healthy normozoospermic volunteers. Fluorescence in-situ hybridization (FISH) was used to determine aneuploidy rates in sperm and inverse restriction site mutation (iRSM) assay to determine gene mutations; defective chromatin packaging was quantified by sperm chromatin structure assay (SCSA) and DNA strand breaks by the Comet assay. FISH analysis showed a significant increase in gonosomal X,Y,18 (P sperm with X,Y,18,18 (P sperm chromatin was found in the infertility patients compared with the control group using the SCSA assay. In the Comet assay, a significant increase (P assay. The data indicate that infertile oligozoospermic men have an elevated level of XY aneuploidy and XY diploidy in the germ-line, as well as elevated levels of sperm chromatin disturbances and sperm DNA strand breaks. These data demonstrate that oligozoospermic infertility patients show several different types of genetic damage in their sperm. Thus, such men appear to have defects at a variety of levels of spermatogenesis and their infertility may not just be a result of the oligozoospermia.

  14. A fluorescence-based assay for monoacylglycerol lipase compatible with inhibitor screening.

    Science.gov (United States)

    Wang, Yuren; Chanda, Pranab; Jones, Philip G; Kennedy, Jeffrey D

    2008-06-01

    A novel fluorescence-based assay of monoacylglycerol lipase (MAGL) activity that is simple, sensitive, and amenable to the screening of small molecule inhibitors is described. Purified recombinant human MAGL protein and 7-hydroxycoumarinyl-arachidonate (7-HCA), a fluorogenic substrate for MAGL, were employed in the assay. MAGL protein catalyzes the hydrolysis of 7-HCA to generate arachidonic acid and the highly fluorescent 7-hydroxyl coumarin (7-HC). Release of 7-HC was measured using a fluorometer. MAGL protein catalyzed the hydrolysis of 7-HCA with an apparent K(m) of 9.8 microM and V(max) of 1.7 mmol/min/mg of protein. The assay is specific for MAGL as assay buffer alone or heat-denatured MAGL protein had no significant activity against 7-HCA. Furthermore, MAGL activity was inhibited in a dose-dependent manner by the specific inhibitor URB602 as well as N-arachidonyl maleimide with 50% inhibitory concentration values of 3.1 microM and 155 nM, respectively. The assay was further optimized under different conditions, including pH range and bovine serum albumin protein and dimethyl sulfoxide concentrations. The assay was found to be reproducible, having Z' values ranging from 0.7 to 0.9, and is therefore suitable for high-throughput screening.

  15. Serum based fluorescent assay for evaluating dipeptidyl peptidase I activity in collagen induced arthritis rat model.

    Science.gov (United States)

    Liu, Xiaoqian; Wang, Jingjing; Chu, Yi; Zhou, Xiaoying

    2017-04-01

    Dipeptidyl peptidase I (DPPI) is a lysosomal cysteine protease and derived from immune granule cells. It has been suggested playing an important role in the development of rheumatoid arthritis. In this study, a coumarin based fluorescent probe (GF-AFC) was designed and synthesized to evaluate DPPI activity in serum or tissue homogenates of collagen-induced arthritis (CIA) rats, an inflammatory arthropathy model. It was revealed that the fluorescent intensity was significantly increased in a very short time after specific substrate GF-AFC reacted with the DPPI. The fluorophore (AFC) was released to shine after the cleavage reaction which was examined by 19F NMR spectroscopy. It has been shown that DPPI hydrolyzed the GF-AFC in a robust, linear, and time dependent manner at a significant high rate. A serum-based DPPI activity assay was validated by spiking and gradient dilution methods, there were no interferences or auto-fluorescence observed. The Coefficient of Variance calculated for serum-based DPPI activity assays indicates the good reproducibility. The good correlation has been seen between serum DPPI levels and the severity of arthritis during RA development in CIA rats. Our study has demonstrated a new serum based diagnostic assay for detecting DPPI activity using coumarin conjugated fluorescent (GF-AFC) as a substrate. The successful implementation of the case would provide beneficial experience in rheumatoid arthritis research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Competitive binding assay using fluorescence resonance energy transfer for the identification of calmodulin antagonists.

    Science.gov (United States)

    Sharma, Bethel; Deo, Sapna K; Bachas, Leonidas G; Daunert, Sylvia

    2005-01-01

    The ubiquitous calcium regulating protein calmodulin (CaM) has been utilized as a model drug target in the design of a competitive binding fluorescence resonance energy transfer assay for pharmacological screening. The protein was labeled by covalently attaching the thiol-reactive fluorophore, N-[2-(1-maleimidyl)ethyl]-7-(diethylamino)coumarin-3-carboxamide (MDCC) to an engineered C-terminal cysteine residue. Binding of the environmentally sensitive hydrophobic probe 2,6-anilinonaphthalene sulfonate (2,6-ANS) to CaM could be monitored by an increase in the fluorescence emission intensity of the 2,6-ANS. Evidence of fluorescence resonance energy transfer (FRET) from 2,6-ANS (acting as a donor) to MDCC (the acceptor in this system) was also observed; fluorescence emission representative of MDCC could be seen after samples were excited at a wavelength specific for 2,6-ANS. The FRET signal was monitored as a function of the concentration of calmodulin antagonists in solution. Calibration curves for both a selection of small molecules and a series of peptides based upon known CaM-binding domains were obtained using this system. The assay demonstrated dose-dependent antagonism by analytes known to hinder the biological activity of CaM. These data indicate that the presence of molecules known to bind CaM interfere with the ability of FRET to occur, thus leading to a concentration-dependent decrease of the ratio of acceptor:donor fluorescence emission. This assay can serve as a general model for the development of other protein binding assays intended to screen for molecules with preferred binding activity.

  17. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay

    Science.gov (United States)

    Just Sørensen, Thomas; Thyrhaug, Erling; Szabelski, Mariusz; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Laursen, Bo W.

    2013-06-01

    Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.

  18. Assessment of impact of peptide nucleic acid fluorescence in situ hybridization for rapid identification of coagulase-negative staphylococci in the absence of antimicrobial stewardship intervention.

    Science.gov (United States)

    Holtzman, Carol; Whitney, Dana; Barlam, Tamar; Miller, Nancy S

    2011-04-01

    Peptide nucleic acid fluorescence in situ hybridization (PNA FISH) was instituted at Boston Medical Center for the rapid identification of coagulase-negative staphylococci (CoNS). Without active notification or antimicrobial stewardship intervention, a pre- and postimpact analysis showed no benefit of this assay with respect to the length of hospital stay or vancomycin use.

  19. Rapid peptide based diagnosis: peptide-based Fluorescence Resonance Energy Transfer (FRET) protease substrates for the detection and diagnosis of bacillus spp

    NARCIS (Netherlands)

    Bikker, F.J.; Kaman, W.E.

    2014-01-01

    We describe the development of a highly specific protease-based Fluorescence Resonance Energy Transfer (FRET) assay for easy and rapid detection both in vitro and in vivo of Bacillus spp, including Bacillus anthracis. Synthetic substrates for B. anthracis proteases were designed and exposed to

  20. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds on both receptor types

    NARCIS (Netherlands)

    Bovee, T.F.H.; Helsdingen, J.R.; Rietjens, I.M.C.M.; Keijer, J.; Hoogenboom, L.A.P.

    2004-01-01

    Previously, we described the construction of a rapid yeast bioassay stably expressing human estrogen receptor (hER) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, the properties of this assay were further studied by testing a series of estrogenic

  1. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  2. Fluorescence-based assay as a new screening tool for toxic chemicals

    Science.gov (United States)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  3. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.

    Directory of Open Access Journals (Sweden)

    Sean C Warren

    Full Text Available Fluorescence lifetime imaging (FLIM is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset. This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis

  4. Rapid global fitting of large fluorescence lifetime imaging microscopy datasets.

    Science.gov (United States)

    Warren, Sean C; Margineanu, Anca; Alibhai, Dominic; Kelly, Douglas J; Talbot, Clifford; Alexandrov, Yuriy; Munro, Ian; Katan, Matilda; Dunsby, Chris; French, Paul M W

    2013-01-01

    Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell

  5. A fluorescence microscopy assay for monitoring mitophagy in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Mijaljica, Dalibor; Prescott, Mark; Devenish, Rodney J

    2011-07-18

    Autophagy is important for turnover of cellular components under a range of different conditions. It serves an essential homeostatic function as well as a quality control mechanism that can target and selectively degrade cellular material including organelles. For example, damaged or redundant mitochondria (Fig. 1), not disposed of by autophagy, can represent a threat to cellular homeostasis and cell survival. In the yeast, Saccharomyces cerevisiae, nutrient deprivation (e.g., nitrogen starvation) or damage can promote selective turnover of mitochondria by autophagy in a process termed mitophagy. We describe a simple fluorescence microscopy approach to assess autophagy. For clarity we restrict our description here to show how the approach can be used to monitor mitophagy in yeast cells. The assay makes use of a fluorescent reporter, Rosella, which is a dual-emission biosensor comprising a relatively pH-stable red fluorescent protein linked to a pH-sensitive green fluorescent protein. The operation of this reporter relies on differences in pH between the vacuole (pH - 5.0-5.5) and mitochondria (pH - 8.2) in living cells. Under growing conditions, wild type cells exhibit both red and green fluorescence distributed in a manner characteristic of the mitochondria. Fluorescence emission is not associated with the vacuole. When subjected to nitrogen starvation, a condition which induces mitophagy, in addition to red and green fluorescence labeling the mitochondria, cells exhibit the accumulation of red, but not green fluorescence, in the acidic vacuolar lumen representing the delivery of mitochondria to the vacuole. Scoring cells with red, but not green fluorescent vacuoles can be used as a measure of mitophagic activity in cells.

  6. Rapid and accurate identification of Xanthomonas citri subspecies citri by fluorescence in situ hybridization.

    Science.gov (United States)

    Waite, D W; Griffin, R; Taylor, R; George, S

    2016-11-01

    Citrus canker is an economically important disease caused by the bacterial pathogen Xanthomonas citri subsp. citri (Xcc). This organism targets a wide range of citrus plants, including sweet orange, grapefruit, lemon and lime. As Xcc is spread by environmental factors such as wind and rain, it is difficult to control its movement once the disease has established. In order to facilitate monitoring of citrus canker we sought to design a novel diagnostic protocol based on fluorescence in situ hybridization (FISH) for identification of bacterial cells directly from canker pustules without cultivation or DNA extraction. This method was validated for specificity against a range of Xanthomonas species and strains. We show that our assay is extremely rapid (typically requiring between 2 and 3 h), and possesses a similar specificity to existing PCR diagnostic tools. The sensitivity of the assay is comparable to that of an existing PCR-based technique and sufficient for identifying Xcc in symptomatic plant material. The method is easily transferable to diagnosticians without prior experience using FISH. Xanthomonas citri subsp. citri (Xcc) is an aggressive and hardy pathogen of citrus plants worldwide. Outbreaks are difficult and costly to contain and the establishment of citrus canker results in restricted trade. In order to extend the existing toolkit for identification of Xcc we developed a novel diagnostic approach based on fluorescence in situ hybridization. Our approach is of comparable specificity and sensitivity to existing methods but can be performed directly on infected tissue making it significantly faster than existing PCRs, and requiring fewer laboratory resources. © 2016 The Society for Applied Microbiology.

  7. [Rapid centrifugation assay standarization for dengue virus isolation].

    Science.gov (United States)

    Palomino, Miryam; Gutierrez, Victoria; Salas, Ramses

    2010-03-01

    The plate centrifugation assay was standardized for dengue virus isolation from serum samples. C6/36-HT cells were used determining the optimal values for centrifugation spin speed, inoculum, sera dilution, and incubation time. Then, 22 positive serum samples with viral isolation and viral strains of the four reference dengue virus serotypes were tested simultaneously by the standardized plate centrifugation method and the conventional tube culture. The isolations were typified by indirect immunofluorescent test using monoclonal antibodies. The plate centrifugation method was optimized to 200 μL of inoculum, dilution of sera 1/20, centrifugation speed at 1600 rpm/30 min, and sensitivity of 95,5% after 5 days post-inoculation. We concluded that the plate centrifugation method increased dengue virus isolation, with a significant reduction of the time of isolation for dengue virus.

  8. Real-time assays with molecular beacons and other fluorescent nucleic acid hybridization probes.

    Science.gov (United States)

    Marras, Salvatore A E; Tyagi, Sanjay; Kramer, Fred Russell

    2006-01-01

    A number of formats for nucleic acid hybridization have been developed to identify DNA and RNA sequences that are involved in cellular processes and that aid in the diagnosis of genetic and infectious diseases. The introduction of hybridization probes with interactive fluorophore pairs has enabled the development of homogeneous hybridization assays for the direct identification of nucleic acids. A change in the fluorescence of these probes indicates the presence of a target nucleic acid, and there is no need to separate unbound probes from hybridized probes. The advantages of homogeneous hybridization assays are their speed and simplicity. In addition, homogeneous assays can be combined with nucleic acid amplification, enabling the detection of rare target nucleic acids. These assays can be followed in real time, providing quantitative determination of target nucleic acids over a broad range of concentrations.

  9. A fluorescence-based quantitative real-time PCR assay for accurate Pocillopora damicornis species identification

    Science.gov (United States)

    Thomas, Luke; Stat, Michael; Evans, Richard D.; Kennington, W. Jason

    2016-09-01

    Pocillopora damicornis is one of the most extensively studied coral species globally, but high levels of phenotypic plasticity within the genus make species identification based on morphology alone unreliable. As a result, there is a compelling need to develop cheap and time-effective molecular techniques capable of accurately distinguishing P. damicornis from other congeneric species. Here, we develop a fluorescence-based quantitative real-time PCR (qPCR) assay to genotype a single nucleotide polymorphism that accurately distinguishes P. damicornis from other morphologically similar Pocillopora species. We trial the assay across colonies representing multiple Pocillopora species and then apply the assay to screen samples of Pocillopora spp. collected at regional scales along the coastline of Western Australia. This assay offers a cheap and time-effective alternative to Sanger sequencing and has broad applications including studies on gene flow, dispersal, recruitment and physiological thresholds of P. damicornis.

  10. Fluorescent immunochromatography for rapid and sensitive typing of seasonal influenza viruses.

    Directory of Open Access Journals (Sweden)

    Akira Sakurai

    Full Text Available Lateral flow tests also known as Immunochromatography (IC is an antigen-detection method conducted on a nitrocellulose membrane that can be completed in less than 20 min. IC has been used as an important rapid test for clinical diagnosis and surveillance of influenza viruses, but the IC sensitivity is relatively low (approximately 60% and the limit of detection (LOD is as low as 10³ pfu per reaction. Recently, we reported an improved IC assay using antibodies conjugated with fluorescent beads (fluorescent immunochromatography; FLIC for subtyping H5 influenza viruses (FLIC-H5. Although the FLIC strip must be scanned using a fluorescent reader, the sensitivity (LOD is significantly improved over that of conventional IC methods. In addition, the antibodies which are specific against the subtypes of influenza viruses cannot be available for the detection of other subtypes when the major antigenicity will be changed. In this study, we established the use of FLIC to type seasonal influenza A and B viruses (FLIC-AB. This method has improved sensitivity to 100-fold higher than that of conventional IC methods when we used several strains of influenza viruses. In addition, FLIC-AB demonstrated the ability to detect influenza type A and influenza type B viruses from clinical samples with high sensitivity and specificity (Type A: sensitivity 98.7% (74/75, specificity 100% (54/54, Type B: sensitivity 100% (90/90, specificity 98.2% (54/55 in nasal swab samples in comparison to the results of qRT-PCR. And furthermore, FLIC-AB performs better in the detection of early stage infection (under 13 h than other conventional IC methods. Our results provide new strategies to prevent the early-stage transmission of influenza viruses in humans during both seasonal outbreaks and pandemics.

  11. Performance of fluorescent europium(III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay.

    Science.gov (United States)

    Juntunen, Etvi; Myyryläinen, Tiina; Salminen, Teppo; Soukka, Tero; Pettersson, Kim

    2012-09-01

    Lateral flow (LF) immunoassays (i.e., immunochromatographic assays) have traditionally been applied to analytes that do not require very high analytical sensitivity or quantitative results. The selection of potential analytes is often limited by the performance characteristics of the assay technology. Analytes with more demanding sensitivity requirements call for reporter systems enabling high analytical sensitivity. In this study, we systematically compared the performance of fluorescent europium(III) [Eu(III)] chelate dyed polystyrene nanoparticles and colloidal gold particles in lateral flow assays. The effect of time-resolved measurement mode was also studied. Because binder molecules used in immunoassays might not behave similarly when conjugated to different reporter particles, two model assays were constructed to provide reliable technical comparison of the two reporter systems. The comparative experiment demonstrated that the fluorescent nanoparticles yielded 7- and 300-fold better sensitivity compared with colloidal gold in the two test systems, respectively. Although the two reporter particles may induce variable effects using individual binders, overall the high specific activity of Eu(III) nanoparticles has superior potential over colloidal gold particles for the development of robust high-sensitivity bioaffinity assays. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A continuous fluorescent assay for the determination of plasma and tissue angiotensin I-converting enzyme activity

    Directory of Open Access Journals (Sweden)

    Alves M.F.

    2005-01-01

    Full Text Available A continuous assay using internally quenched fluorescent peptides with the general sequence Abz-peptidyl-(DnpP-OH (Abz = ortho-aminobenzoic acid; Dnp = 2,4-dinitrophenyl was optimized for the measurement of angiotensin I-converting enzyme (ACE in human plasma and rat tissues. Abz-FRK(DnpP-OH, which was cleaved at the Arg-Lys bond by ACE, was used for the enzyme evaluation in human plasma. Enzymatic activity was monitored by continuous recording of the fluorescence (lambdaex = 320 nm and lambdaem = 420 nm at 37ºC, in 0.1 M Tris-HCl buffer, pH 7.0, with 50 mM NaCl and 10 µM ZnCl2. The assays can be performed directly in the cuvette of the fluorimeter and the hydrolysis followed for 5 to 10 min. ACE measurements in the plasma of 80 healthy patients with Hip-His-Leu and with Abz-FRK(DnpP-OH correlated closely (r = 0.90, P < 0.001. The specificity of the assay was demonstrated by the complete inhibition of hydrolysis by 0.5 µM lisinopril or captopril. Abz-FRK(DnpP-OH cleavage by ACE was monitored in rat lung, kidney, heart, and liver homogenates in the presence of a cocktail of inhibitors containing trans-epoxy-succinyl-L-leucylamido-(4-guanido-butene, pepstatin, phenyl-methylsulfonyl fluoride, N-tosyl-L-phenylalanyl-chloromethyl ketone, and N-tosyl-lysyl-chloromethyl ketone to prevent undesirable hydrolysis. ACE activity in lung, heart and kidney homogenates, but not in liver homogenates, was completely abolished by 0.5 µM lisinopril or captopril. The advantages of the method are the procedural simplicity and the high sensitivity providing a rapid assay for ACE determinations.

  13. A novel multiplex assay for simultaneously analysing 13 rapidly mutating Y-STRs

    NARCIS (Netherlands)

    R. Alghafri (Rashed); W. Goodwin (Will); A. Ralf (Arwin); M.H. Kayser (Manfred); S. Hadi (Sibte)

    2015-01-01

    textabstractAbstract A multiplex polymerase chain reaction (PCR) assay (RM-Yplex) was developed which is capable of simultaneously amplifying 13 recently introduced rapidly mutating Y-STR markers (RM Y-STRs). This multiplex assay is expected to aid human identity testing in forensic and other

  14. Novel methods for improving rapid paper-based protein assays with gold nanoparticle detection

    OpenAIRE

    Lama, Lara

    2017-01-01

    This thesis describes methods for improving sensitivity in rapid singleplex and multiplex microarray assays. The assays utilize the optical characteristics of colloidal gold nanoparticles for the colorimetric detection of proteins. Multiplexed detection in sandwich immunoassays is limited by cross-reactivity between different detection antibodies. The cross-reactivity between antibodies can contribute to increased background noise - decreasing the Limit-of-Detection of the assay - or generate...

  15. Predicting fetal lung maturity by visual assessment of amniotic fluid turbidity: comparison with fluorescence polarization assay.

    Science.gov (United States)

    Adair, C D; Sanchez-Ramos, L; McDyer, D L; Gaudier, F L; Del Valle, G O; Delke, I

    1995-10-01

    We prospectively studied 159 patients having clinically indicated amniocentesis. Amniotic fluid (3 to 5 mL) was placed in a nonheparinized glass tube. This sample was then classified as turbid (indicating maturity) or clear (indicating immaturity) on the basis of a single examiner's ability to read newspaper print through the glass tube. These results were then compared with fluorescence polarization values for the same sample. A value of 70 mg/g was considered positive evidence of fetal lung maturity. By study criteria, 62 samples (39%) indicated immaturity and 97 (61%) indicated maturity. Turbidity correctly identified 89 samples that produced fluorescence polarization values of at least 70 mg/g. Turbidity as a predictor of fetal lung maturity when compared with fluorescence polarization assay has a 91% positive and 87% negative predictive value. Visual inspection of amniotic fluid may be of value in areas where sophisticated methods are unavailable.

  16. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    Science.gov (United States)

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Comparison of the PRNT and an immune fluorescence assay in yellow fever vaccinees receiving immunosuppressive medication.

    Science.gov (United States)

    Wieten, Rosanne W; Jonker, Emile F F; Pieren, Daan K J; Hodiamont, Caspar J; van Thiel, Pieter P A M; van Gorp, Eric C M; de Visser, Adriëtte W; Grobusch, Martin P; Visser, Leo G; Goorhuis, Abraham

    2016-03-04

    The 17D-yellow fever (YF) vaccination is considered contraindicated in immune-compromised patients; however, accidental vaccination occurs. In this population, measuring the immune response is useful in clinical practice. In this study we compare two antibody tests (the Immune Fluorescence Assay and the Plaque Reduction Neutralization Test) in a group of Dutch immune-compromised travellers with a median of 33 days (IQR [28-49]) after primary YF vaccination. We collected samples of 15 immune-compromised vaccinees vaccinated with the 17D yellow fever vaccine between 2004 and 2012. All samples measured in the plaque reduction neutralization test yielded positive results (>80% virus neutralization with a 1:10 serum dilution). Immune Fluorescence Assay sensitivity was 28% (95% CI [0.12-0.49]). No adverse events were reported. All immune-compromised patients mounted an adequate response with protective levels of virus neutralizing antibodies to the 17-D YF vaccine. No adverse effects were reported. Compared to the plaque reduction neutralization test, the sensitivity of the Immune Fluorescence Assay test was low. Further research is needed to ascertain that 17D vaccination in immune-compromised patients is safe. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Use of 5-cyano-2,3-ditolyl-tetrazolium chloride staining as an indicator of biocidal activity in a rapid assay for anti-Acanthamoeba agents.

    Science.gov (United States)

    Kobayashi, Takeshi; Mito, Tsuyoshi; Watanabe, Narumi; Suzuki, Takashi; Shiraishi, Atsushi; Ohashi, Yuichi

    2012-05-01

    The usefulness of 5-cyano-2,3-ditolyl-tetrazolium chloride (CTC) staining to determine the respiratory activity of Acanthamoeba was evaluated in this study. Acanthamoeba trophozoites and cysts have a red fluorescence after staining with CTC. To determine the effectiveness of CTC staining as a CTC biocidal assay for Acanthamoeba, the trophozoites and cysts of Acanthamoeba castellanii (ATCC 5037) were treated with serial concentrations of disinfectant solutions, namely, polyhexamethylene biguanide (PHMB) and commercial soft contact lens (SCL) disinfectant solutions. The treated Acanthamoeba organisms were stained with CTC, and their respiratory activity was determined by the intensity of fluorescence in a fluorescence microplate reader. The survival rates of the same samples were determined by a culture-dependent biocidal assay using the Spearman-Karber method. Our results showed that the respiratory activities determined by the CTC biocidal assay and the survival rates determined by the culture-dependent biocidal assay for Acanthamoeba trophozoites and cysts decreased in a dose-dependent way after PHMB treatments, and the results were significantly correlated (r = 0.83 and P activities in the trophozoites and cysts treated with SCL disinfectant solutions were significantly correlated with the survival rate (r = 0.70 and P biocidal assay can be used as an alternative method to a culture-dependent biocidal assay. The CTC biocidal assay is a rapid and simple method to test the effectiveness of disinfectant solutions against Acanthamoeba trophozoites and cysts.

  19. Quantitative Fluorescence Assays Using a Self-Powered Paper-Based Microfluidic Device and a Camera-Equipped Cellular Phone.

    Science.gov (United States)

    Thom, Nicole K; Lewis, Gregory G; Yeung, Kimy; Phillips, Scott T

    2014-01-01

    Fluorescence assays often require specialized equipment and, therefore, are not easily implemented in resource-limited environments. Herein we describe a point-of-care assay strategy in which fluorescence in the visible region is used as a readout, while a camera-equipped cellular phone is used to capture the fluorescent response and quantify the assay. The fluorescence assay is made possible using a paper-based microfluidic device that contains an internal fluidic battery, a surface-mount LED, a 2-mm section of a clear straw as a cuvette, and an appropriately-designed small molecule reagent that transforms from weakly fluorescent to highly fluorescent when exposed to a specific enzyme biomarker. The resulting visible fluorescence is digitized by photographing the assay region using a camera-equipped cellular phone. The digital images are then quantified using image processing software to provide sensitive as well as quantitative results. In a model 30 min assay, the enzyme β-D-galactosidase was measured quantitatively down to 700 pM levels. This Communication describes the design of these types of assays in paper-based microfluidic devices and characterizes the key parameters that affect the sensitivity and reproducibility of the technique.

  20. Reliable Rapid Assay for Gonorrhea and Chlamydia in the Emergency Department.

    Science.gov (United States)

    Wilson, Sean P; Vohra, Taher; Goldberg, Jared; Price, Christopher; Calo, Sean; Mahan, Meredith; Miller, Joseph

    2017-12-01

    Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) are common sexually transmitted infections seen in the emergency department (ED). Due to an inability to reliably make accurate diagnosis by physical examination, concern for unreliable follow-up, and current delays in diagnostic nucleic acid amplification testing (NAAT), presumptive treatment active against CT and NG, as described by Centers for Disease Control clinical practice guidelines, is often performed. The purpose of this study was to determine whether a rapid, urine NAAT performed in the ED is noninferior in its diagnostic sensitivity compared with a traditional, swab NAAT assay. We performed a prospective, noninferiority study comparing two U.S. Food and Drug Administration-approved NAAT assays for CT and NG: a 90-min rapid assay, the Xpert CT/NG Assay (Cepheid, Sunnyvale, CA) using a urine sample vs. a traditional assay, the Aptima Combo 2 Assay (Gen-Probe Incorporated, San Diego, CA) using a swab sample. This study was registered on Clinicaltrials.gov (NCT02386514). A total of 1162 patient samples were included in the primary analysis. We observed excellent kappa agreement between assays: NG for men, 1.00 (95% confidence interval [CI] 1.00-1.00); NG for women, 0.87 (95% CI 0.79-0.94); CT for men, 0.81 (95% CI 0.59-1.00); and CT for women: 0.85 (95% CI 0.80-0.90), as well as excellent negative and positive predictive values for the rapid assay. Although the rapid Xpert CT/NG assay's diagnostic sensitivity did not meet our prespecified threshold for noninferiority, the diagnostic characteristics are robust enough to fit into a management pathway that may reduce unnecessary antibiotic use. There may be an opportunity to utilize the rapid Xpert CT/NG assay to improve accuracy of treatment in the ED. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains.

    Science.gov (United States)

    Benacer, Douadi; Zain, Siti Nursheena Mohd; Lewis, John W; Khalid, Mohd Khairul Nizam Mohd; Thong, Kwai Lin

    2017-01-01

    This study aimed to develop a duplex endpoint PCR assay for rapid detection and differentiation of Leptospira strains. Primers were designed to target the rrs (LG1/LG2) and ligB (LP1/LP2) genes to confirm the presence of the Leptospira genus and the pathogenic species, respectively. The assay showed 100% specificity against 17 Leptospira strains with a limit of detection of 23.1pg/µl of leptospiral DNA and sensitivity of 103 leptospires/ml in both spiked urine and water. Our duplex endpoint PCR assay is suitable for rapid early detection of Leptospira with high sensitivity and specificity.

  2. A homogeneous, high-throughput fluorescence anisotropy-based DNA supercoiling assay.

    Science.gov (United States)

    Shapiro, Adam; Jahic, Haris; Prasad, Swati; Ehmann, David; Thresher, Jason; Gao, Ning; Hajec, Laurel

    2010-10-01

    The degree of supercoiling of DNA is vital for cellular processes, such as replication and transcription. DNA topology is controlled by the action of DNA topoisomerase enzymes. Topoisomerases, because of their importance in cellular replication, are the targets of several anticancer and antibacterial drugs. In the search for new drugs targeting topoisomerases, a biochemical assay compatible with automated high-throughput screening (HTS) would be valuable. Gel electrophoresis is the standard method for measuring changes in the extent of supercoiling of plasmid DNA when acted upon by topoisomerases, but this is a low-throughput and laborious method. A medium-throughput method was described previously that quantitatively distinguishes relaxed and supercoiled plasmids by the difference in their abilities to form triplex structures with an immobilized oligonucleotide. In this article, the authors describe a homogeneous supercoiling assay based on triplex formation in which the oligonucleotide strand is labeled with a fluorescent dye and the readout is fluorescence anisotropy. The new assay requires no immobilization, filtration, or plate washing steps and is therefore well suited to HTS for inhibitors of topoisomerases. The utility of this assay is demonstrated with relaxation of supercoiled plasmid by Escherichia coli topoisomerase I, supercoiling of relaxed plasmid by E. coli DNA gyrase, and inhibition of gyrase by fluoroquinolones and nalidixic acid.

  3. Homogeneous plate based antibody internalization assay using pH sensor fluorescent dye.

    Science.gov (United States)

    Nath, Nidhi; Godat, Becky; Zimprich, Chad; Dwight, Stephen J; Corona, Cesear; McDougall, Mark; Urh, Marjeta

    2016-04-01

    Receptor-mediated antibody internalization is a key mechanism underlying several anti-cancer antibody therapeutics. Delivering highly toxic drugs to cancer cells, as in the case of antibody drug conjugates (ADCs), efficient removal of surface receptors from cancer cells and changing the pharmacokinetics profile of the antibody drugs are some of key ways that internalization impacts the therapeutic efficacy of the antibodies. Over the years, several techniques have been used to study antibody internalization including radiolabels, fluorescent microscopy, flow cytometry and cellular toxicity assays. While these methods allow analysis of internalization, they have limitations including a multistep process and limited throughput and are generally endpoint assays. Here, we present a new homogeneous method that enables time and concentration dependent measurements of antibody internalization. The method uses a new hydrophilic and bright pH sensor dye (pHAb dye), which is not fluorescent at neutral pH but becomes highly fluorescent at acidic pH. For receptor mediated antibody internalization studies, antibodies against receptors are conjugated with the pHAb dye and incubated with the cells expressing the receptors. Upon binding to the receptor, the dyes conjugated to the antibody are not fluorescent because of the neutral pH of the media, but upon internalization and trafficking into endosomal and lysosomal vesicles the pH drops and dyes become fluorescent. The enabling attributes of the pHAb dyes are the hydrophilic nature to minimize antibody aggregation and bright fluorescence at acidic pH which allows development of simple plate based assays using a fluorescent reader. Using two different therapeutic antibodies--Trastuzumab (anti-HER2) and Cetuximab (anti-EGFR)--we show labeling with pHAb dye using amine and thiol chemistries and impact of chemistry and dye to antibody ration on internalization. We finally present two new approaches using the pHAb dye, which will be

  4. Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching

    National Research Council Canada - National Science Library

    Wang, L; Brown, A

    2001-01-01

    Observations on naturally occurring gaps in the axonal neurofilament array of cultured neurons have demonstrated that neurofilament polymers move along axons in a rapid, intermittent, and highly asynchronous manner...

  5. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching

    Directory of Open Access Journals (Sweden)

    Weatherford Wendy

    2005-05-01

    Full Text Available Abstract Background High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Results Using a modified QTL Lightspeed™ assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP, Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1. Phosphorylation of the proteins was detected by Protein Kinase Cα (PKCα and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4. Enzyme inhibition yielded IC50 values that were comparable to those obtained using

  6. New in vitro phenotypic assay for epilepsy: fluorescent measurement of synchronized neuronal calcium oscillations.

    Directory of Open Access Journals (Sweden)

    Nathalie Pacico

    Full Text Available Research in the epilepsy field is moving from a primary focus on controlling seizures to addressing disease pathophysiology. This requires the adoption of resource- and time-consuming animal models of chronic epilepsy which are no longer able to sustain the testing of even moderate numbers of compounds. Therefore, new in vitro functional assays of epilepsy are needed that are able to provide a medium throughput while still preserving sufficient biological context to allow for the identification of compounds with new modes of action. Here we describe a robust and simple fluorescence-based calcium assay to measure epileptiform network activity using rat primary cortical cultures in a 96-well format. The assay measures synchronized intracellular calcium oscillations occurring in the population of primary neurons and is amenable to medium throughput screening. We have adapted this assay format to the low magnesium and the 4-aminopyridine epilepsy models and confirmed the contribution of voltage-gated ion channels and AMPA, NMDA and GABA receptors to epileptiform activity in both models. We have also evaluated its translatability using a panel of antiepileptic drugs with a variety of modes of action. Given its throughput and translatability, the calcium oscillations assay bridges the gap between simplified target-based screenings and compound testing in animal models of epilepsy. This phenotypic assay also has the potential to be used directly as a functional screen to help identify novel antiepileptic compounds with new modes of action, as well as pathways with previously unknown contribution to disease pathophysiology.

  7. Fluorescence-quenching-based homogeneous caspase-3 activity assay using photon upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Vuojola, Johanna, E-mail: johanna.vuojola@utu.fi [Department of Biotechnology, University of Turku, Tykistoekatu 6A, FI-20520 Turku (Finland); Riuttamaeki, Terhi; Kulta, Essi; Arppe, Riikka; Soukka, Tero [Department of Biotechnology, University of Turku, Tykistoekatu 6A, FI-20520 Turku (Finland)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer We demonstrate the use of photon upconversion in a caspase-3 activity assay. Black-Right-Pointing-Pointer The separation-free assay uses an internally quenched substrate peptide. Black-Right-Pointing-Pointer UCPs enable simple instrumentation and total elimination of autofluorescence. Black-Right-Pointing-Pointer A sensitive assay with high signal-to-background ratios was achieved. Black-Right-Pointing-Pointer Suitable for high-throughput screening through miniaturization and white plates. - Abstract: Caspase proteases are key mediators in apoptosis and thus of great interest in pharmaceutical industry. Enzyme-activity assays are commonly employed in the screening of protease inhibitors that are potential drug candidates. Conventional homogeneous fluorescence-based assays are susceptible to autofluorescence originating from biological material. This background autofluorescence can be eliminated by using upconverting phosphors (UCPs) that emit visible light upon excitation at near-infrared. In the assay energy was transferred from a UCP-donor to a conventional fluorophore acceptor that resided at one end of a caspase-3-specific substrate peptide. Attached to the other end was a quencher molecule that was used to attenuate the acceptor emission through intramolecular energy transfer in an intact peptide. In non-inhibitory conditions the enzyme reaction separated the fluorophore from the quencher and the emission of the fluorophore was recovered. The method was applied for the detection and characterization of a known caspase-3 inhibitor Z-DEVD-FMK, and the assay gave IC{sub 50} values of approximately 13 nM for this inhibitor. We have demonstrated the applicability of UCPs on a fluorescence-quenching-based homogeneous enzyme-activity assay for the detection of caspase-3 inhibitors. The use of near-infrared excitable UCPs enables inexpensive instrumentation and total elimination of autofluorescence, while the use of an

  8. Comparison of Fluorescent Microspheres and Colloidal Gold as Labels in Lateral Flow Immunochromatographic Assays for the Detection of T-2 Toxin

    OpenAIRE

    Xiya Zhang; Chao Wu; Kai Wen; Haiyang Jiang; Jianzhong Shen; Suxia Zhang; Zhanhui Wang

    2015-01-01

    A new highly specific and sensitive monoclonal antibody (MAb) to T-2 toxin (T-2) was produced, providing an IC50 value of 1.02 ng/mL and negligible cross-reactivity (CR) to other related mycotoxins. Based on the new MAb, a lateral-flow immunochromatographic assay (LFIA) using colloidal gold (CG) and fluorescent microspheres (FMs) as labels was proposed for T-2. Under the optimized conditions, in rapid qualitative assay, the cut-off values of the CG-LFIA were 400 μg/kg in rice and 50 μg/L in f...

  9. Development of a Recombinase Polymerase Amplification Assay for Rapid Detection of the Mycobacterium avium subsp. paratuberculosis.

    Directory of Open Access Journals (Sweden)

    Sören Hansen

    Full Text Available The detection of Mycobacterium avium subsp. paratuberculosis (MAP infections in ruminants is crucial to control spread among animals and to humans. Cultivation of MAP is seen as the gold standard for detection, although it is very time consuming and labour intensive. In addition, several PCR assays have been developed to detect MAP in around 90 minutes, but these assays required highly sophisticated equipment as well as lengthy and complicated procedure.In this study, we have developed a rapid assay for the detection of MAP based on the recombinase polymerase amplification (RPA assay targeting a MAP specific region, the IS900 gene. The detection limit was 16 DNA molecules in 15 minutes as determined by the probit analysis on eight runs of the plasmid standard. Cross reactivity with other mycobacterial and environmentally associated bacterial strains was not observed. The clinical performance of the MAP RPA assay was tested using 48 MAP-positive and 20 MAP-negative blood, sperm, faecal and tissue samples. All results were compared with reads of a highly sensitive real-time PCR assay. The specificity of the MAP RPA assay was 100%, while the sensitivity was 89.5%.The RPA assay is quicker and much easier to handle than real-time PCR. All RPA reagents were cold-chain independent. Moreover, combining RPA assay with a simple extraction protocol will maximize its use at point of need for rapid detection of MAP.

  10. μPAD Fluorescence Scattering Immunoagglutination Assay for Cancer Biomarkers from Blood and Serum.

    Science.gov (United States)

    Baynes, Cayla; Yoon, Jeong-Yeol

    2017-09-01

    A microfluidic paper analytical device (μPAD) was created for the sensitive quantification of cancer antigens, carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9), from human whole blood and serum, toward diagnosis and prognosis of colorectal cancer. Anti-CEA and anti-CA 19-9 antibodies were covalently linked to submicron, fluorescent polystyrene particles, loaded, and then dried in the center of the μPAD channel. CEA- or CA 19-9-spiked blood or serum samples were loaded to the inlet of μPAD, and subsequent immunoagglutination changed the fluorescent scatter signals upon ultraviolet (UV) excitation. The total assay time was about 1 min. Detection limits were 1 pg/mL for CEA and 0.1 U/mL for CA 19-9 from both 10% diluted blood and undiluted serum. The use of UV excitation and subsequent fluorescence scattering enabled much higher double-normalized intensities (up to 1.28-3.51, compared with 1.067 with the elastic Mie scatter detection), successful detection in the presence of blood or serum, and distinct multiplex assays with minimum cross-reaction of antibodies. The results with undiluted serum showed the larger dynamic range and smaller standard errors, which can be attributed to the presence of serum proteins, functioning as a stabilizer or a passivating protein for the particles within paper fibers.

  11. Automation of plasma protein binding assay using rapid equilibrium dialysis device and Tecan workstation.

    Science.gov (United States)

    Ye, Zhengqi; Zetterberg, Craig; Gao, Hong

    2017-06-05

    Binding of drug molecules to plasma proteins is an important parameter in assessing drug ADME properties. Plasma protein binding (PPB) assays are routinely performed during drug discovery and development. A fully automated PPB assay was developed using rapid equilibrium dialysis (RED) device and Tecan workstation coupled to an automated incubator. The PPB assay was carried out in unsealed RED plates which allowed the assay to be fully automated. The plasma pH was maintained at 7.4 during the 6-h dialysis under 2% CO2 condition. The samples were extracted with acetonitrile and analyzed by liquid chromatography tandem mass spectrometry. The percent bound results of 10 commercial drugs in plasma protein binding were very similar between the automated and manual assays, and were comparable to literature values. The automated assay increases laboratory productivity and is applicable to high-throughput screening of drug protein binding in drug discovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. It's about time: The development and validation of a rapid optimized single antigen bead (ROB) assay protocol for LABScreen.

    Science.gov (United States)

    Liwski, Robert S; Greenshields, Anna L; Murphey, Cathi; Bray, Robert A; Gebel, Howard M

    The LABScreen single antigen bead assay (SAB) is a method widely used for the identification and monitoring of human leukocyte antigen (HLA) antibodies in patients pre-and post-transplant. While accurate testing of patient samples is key for optimal patient care, time can also be important, especially during deceased donor workups or post-transplant assessments. Here we describe the development and validation of the Rapid Optimized SAB (ROB) protocol, a modified version of the One Lambda LABScreen SAB (OLSAB) procedure, which reduces assay time from 85 to 25min (>70% reduction) without impacting assay quality or sensitivity. Optimization steps included shortened centrifugation cycles and reduced serum and secondary antibody incubation times in combination with increased secondary antibody concentration. Linear regression analysis of baseline median fluorescence intensity (MFI) values showed excellent correlation between the ROB and OLSAB protocols (r(2)>0.98) for both class I and class II antibodies in 58 sera tested in two HLA laboratories. Importantly, the ROB protocol demonstrated a trend towards improved inter-laboratory MFI concordance when compared to the OLSAB procedure (r(2)=0.9816 vs 0.9451), especially for HLA antibody specificities in the 500-2000 MFI range (r(2)=0.7824 vs 0.6313). Implementation of the ROB protocol will expedite HLA antibody testing and may improve reproducibility of the SAB assay. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Comparative assay of fluorescent antibody test results among twelve European National Reference Laboratories using various anti-rabies conjugates

    DEFF Research Database (Denmark)

    Robardet, E.; Andrieu, S.; Rasmussen, Thomas Bruun

    2013-01-01

    Twelve National Reference Laboratories (NRLs) for rabies have undertaken a comparative assay to assess the comparison of fluorescent antibody test (FAT) results using five coded commercial anti-rabies conjugates (Biorad, Bioveta, Fujirebio, Millipore, and SIFIN conjugates). Homogenized positive...

  14. Comparison of the NIDS® rapid assay with ELISA methods in immunogenicity testing of two biotherapeutics.

    Science.gov (United States)

    Pan, Jing; Small, Thomas; Qin, Dujie; Li, Shawn; Wang, Li; Chen, Dave; Pauley, Cindy; Verch, Thorsten; Kaplanski, Catherine; Bakhtiar, Ray; Vallejo, Yli Remo; Yin, Ray

    2011-01-01

    Rapid lateral flow immunogenicity assays for the detection of anti-drug antibodies (ADAs) to two biotherapeutic antibodies, an anti-HER2 antibody and an anti-TNF-α antibody, were developed using ANP Technologies, Inc.'s proprietary Nano-Intelligent Detection System (NIDS®) and compared to their ELISA counterparts. Biotin and hapten-labeled drugs are incubated with the patient serum sample to allow ADA to form a bridge complex with each drug conjugate. The reaction mixture is then added to a test strip with an anti-hapten capture zone which captures the mixed bridge complex. The bridge-complexed biotinylated drug then reacts with streptavidin-labeled gold particles in situ. The signal developed at the capture zone, which is directly proportional to ADA in the sample, is then quantitatively measured with a handheld reader. The counterpart ELISAs were run using the same reagents. Dose-response, specificity/free drug depletion, and screening cut-point assays were performed using both methods. The rapid assays' performance compare very closely to their ELISA counterparts'. Both types of assays identified the same positive samples in screening a limited population of 50 normal serum samples for the anti-HER2 antibody. In the case of anti-TNF-α, both assays identified the same positive samples out of 50 normal and 20 rheumatoid arthritis patient serum samples but differed in the assessment of two others. The rapid assay correctly identified as negative an ELISA false positive sample, and correctly tested as positive an ELISA false negative sample. Positive results were verified with a specificity/free drug depletion assay. The NIDS® rapid immunogenicity assay offers distinct advantages over current methods in simplicity, low cost, and short time to result. More importantly, the method requires no sample dilution and no washing steps which can perturb fragile complexes formed by low-affinity ADAs. Thus, the assay can potentially detect ADAs with various affinities

  15. An evaluation of commercial fluorescent bead-based luminex cytokine assays.

    Directory of Open Access Journals (Sweden)

    Joel Fleury Djoba Siawaya

    Full Text Available The recent introduction of fluorescent bead-based technology, allowing the measurement of multiples analytes in a single 25-50 microl sample has revolutionized the study of cytokine responses. However, such multiplex approaches may compromise the ability of these assays to accurately measure actual cytokine levels. This study evaluates the performance of three commercially available multiplex cytokine fluorescent bead-based immunoassays (Bio-Rad's Cytokine 17-plex kit; LINCO Inc's 29-plex kit; and RnD System's Fluorokine-Multi Analyte Profiling (MAP base kit A and B. The LINCO Inc kit was found to be the most sensitive assay for measuring concentrations of multiple recombinant cytokines in samples that had been spiked with serial dilutions of the standard provided by the manufacturer, followed respectively by the RnD Fluorokine-(MAP and Bio-Rad 17-plex kits. A positive correlation was found in the levels of IFN-gamma measured in antigen stimulated whole blood culture supernatants by the LINCO Inc 29-plex, RnD Fluorokine-(MAP and RnD system IFN-gamma Quantikine ELISA kits across a panel of controls and stimulated samples. Researchers should take the limitation of such multiplexed assays into account when planning experiments and the most appropriate use for these tests may currently be as screening tools for the selection of promising markers for analysis by more sensitive techniques.

  16. Luminescent Metal-Organic-Framework-Based Label-Free Assay of Polyphenol Oxidase with Fluorescent Scan.

    Science.gov (United States)

    Li, Yue; Guo, An; Chang, Lan; Li, Wen-Juan; Ruan, Wen-Juan

    2017-05-11

    Metal-organic frameworks (MOFs) are emerging in recent years as a kind of versatile fluorescent sensing materials, but their application to enzyme assays has rarely been studied. Here, the first example of a MOF-based label-free enzyme assay system is reported. A luminescent MOF was synthesized and applied to the activity analysis of polyphenol oxidase (PPO). With its distinct responses to the phenolic substrate and o-quinone product, this MOF could transduce the extent of PPO-catalyzed oxidation to fluorescence signal and enable the real-time monitoring of this reaction. Wide substrate adaptability and high sensitivity (detection limit=0.00012 U mL -1 ) were exhibited by this method, which meets the requirement of common bioanalysis. Interestingly, by the comparison with molecular capturing reagents, the heterogeneous nature of this MOF-based assay effectively preventing the interaction with the enzyme was proven, thus ensuring the authenticity of results. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    Science.gov (United States)

    2010-01-01

    Comet assay and micronucleus (MN) test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH) techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology. PMID:20840797

  18. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    Directory of Open Access Journals (Sweden)

    Hovhannisyan Galina G

    2010-09-01

    Full Text Available Abstract Comet assay and micronucleus (MN test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology.

  19. A high-throughput fluorescence polarization assay for inhibitors of gyrase B.

    Science.gov (United States)

    Glaser, Bryan T; Malerich, Jeremiah P; Duellman, Sarah J; Fong, Julie; Hutson, Christopher; Fine, Richard M; Keblansky, Boris; Tang, Mary J; Madrid, Peter B

    2011-02-01

    DNA gyrase, a type II topoisomerase that introduces negative supercoils into DNA, is a validated antibacterial drug target. The holoenzyme is composed of 2 subunits, gyrase A (GyrA) and gyrase B (GyrB), which form a functional A(2)B(2) heterotetramer required for bacterial viability. A novel fluorescence polarization (FP) assay has been developed and optimized to detect inhibitors that bind to the adenosine triphosphate (ATP) binding domain of GyrB. Guided by the crystal structure of the natural product novobiocin bound to GyrB, a novel novobiocin-Texas Red probe (Novo-TRX) was designed and synthesized for use in a high-throughput FP assay. The binding kinetics of the interaction of Novo-TRX with GyrB from Francisella tularensis has been characterized, as well as the effect of common buffer additives on the interaction. The assay was developed into a 21-µL, 384-well assay format and has been validated for use in high-throughput screening against a collection of Food and Drug Administration-approved compounds. The assay performed with an average Z' factor of 0.80 and was able to identify GyrB inhibitors from a screening library.

  20. Fluorescence Resonance Energy Transfer Assay for High-Throughput Screening of ADAMTS1 Inhibitors

    Directory of Open Access Journals (Sweden)

    Guanhua Du

    2011-12-01

    Full Text Available A disintegrin and metalloprotease with thrombospondin type I motifs-1 (ADAMTS1 plays a crucial role in inflammatory joint diseases and its inhibitors are potential candidates for anti-arthritis drugs. For the purposes of drug discovery, we reported the development and validation of fluorescence resonance energy transfer (FRET assay for high-throughput screening (HTS of the ADAMTS1 inhibitors. A FRET substrate was designed for a quantitative assay of ADAMTS1 activity and enzyme kinetics studies. The assay was developed into a 50-µL, 384-well assay format for high throughput screening of ADAMTS1 inhibitors with an overall Z’ factor of 0.89. ADAMTS1 inhibitors were screened against a diverse library of 40,960 total compounds with the established HTS system. Four structurally related hits, naturally occurring compounds, kuwanon P, kuwanon X, albafuran C and mulberrofuran J, extracted from the Chinese herb Morus alba L., were identified for further investigation. The results suggest that this FRET assay is an excellent tool, not only for measurement of ADAMTS1 activity but also for discovery of novel ADAMTS1 inhibitors with HTS.

  1. A Cellular Screening Assay Using Analysis of Metal-Modified Fluorescence Lifetime

    Science.gov (United States)

    Cade, Nicholas I.; Fruhwirth, Gilbert; Archibald, Stephen J.; Ng, Tony; Richards, David

    2010-01-01

    Abstract Current methods for screening cell receptor internalization often require complex image analysis with limited sensitivity. Here we describe a novel bioassay based on detection of changes in global fluorescence lifetime above a gold substrate, with superresolution axial sensitivity and no need for image analysis. We show that the lifetime of enhanced green fluorescent protein expressed in a cellular membrane is greatly reduced in close proximity to the gold, resulting in a distance-dependent lifetime distribution throughout the cell. We demonstrate the application of this phenomenon in a screening assay by comparing the efficacies of two small molecule inhibitors interfering with the internalization process of a G protein-coupled receptor. PMID:20513420

  2. Rapid preclinical detection of sheeppox virus by a real-time PCR assay.

    Science.gov (United States)

    Balinsky, C A; Delhon, G; Smoliga, G; Prarat, M; French, R A; Geary, S J; Rock, D L; Rodriguez, L L

    2008-02-01

    Sheeppox virus (SPPV) is a member of the Capripoxvirus (CaPV) genus of the Poxviridae family. Members of this genus, which also include goatpox and lumpy skin disease viruses, cause economically significant disease in sheep, goats, and cattle. A rapid diagnostic assay for CaPV would be useful for disease surveillance as well as for detection of CaPV in clinical samples and for outbreak management. Here we describe a fluorogenic probe hydrolysis (TaqMan) PCR assay designed for rapid detection of CaPV and tested on sheep experimentally infected with a virulent strain of SPPV. This assay can detect SPPV in buffy coats, nasal swabs, oral swabs, scabs, and skin lesions as well as in lung and lymph nodes collected at necropsy. This single-tube diagnostic assay can be performed in 2 h or less and can detect viral DNA in preclinical, clinical, and postmortem samples.

  3. A novel label-free fluorescence assay for one-step sensitive detection of Hg2+ in environmental drinking water samples

    Science.gov (United States)

    Li, Ya; Liu, Nan; Liu, Hui; Wang, Yu; Hao, Yuwei; Ma, Xinhua; Li, Xiaoli; Huo, Yapeng; Lu, Jiahai; Tang, Shuge; Wang, Caiqin; Zhang, Yinhong; Gao, Zhixian

    2017-04-01

    A novel label-free fluorescence assay for detection of Hg2+ was developed based on the Hg2+-binding single-stranded DNA (ssDNA) and SYBR Green I (SG I). Differences from other assays, the designed rich-thymine (T) ssDNA probe without fluorescent labelling can be rapidly formed a T-Hg2+-T complex and folded into a stable hairpin structure in the presence of Hg2+ in environmental drinking water samples by facilitating fluorescence increase through intercalating with SG I in one-step. In the assay, the fluorescence signal can be directly obtained without additional incubation within 1 min. The dynamic quantitative working ranges was 5-1000 nM, the determination coefficients were satisfied by optimization of the reaction conditions. The lowest detection limit of Hg2+ was 3 nM which is well below the standard of U.S. Environmental Protection Agency. This method was highly specific for detecting of Hg2+ without being affected by other possible interfering ions from different background compositions of water samples. The recoveries of Hg2+ spiked in these samples were 95.05-103.51%. The proposed method is more viable, low-costing and simple for operation in field detection than the other methods with great potentials, such as emergency disposal, environmental monitoring, surveillance and supporting of ecological risk assessment and management.

  4. Rapid Detection of Glycogen Synthase Kinase-3 Activity in Mouse Sperm Using Fluorescent Gel Shift Electrophoresis

    National Research Council Canada - National Science Library

    Choi, Hoseok; Choi, Bomi; Seo, Ju Tae; Lee, Kyung Jin; Gye, Myung Chan; Kim, Young-Pil

    2016-01-01

    .... The GSK3 activity in mouse testes and sperm were quantifiable by gel shift assay with low sample consumption and were significantly correlated with the expression levels of GSK3 and p-GSK3. We suggest that our assay can be used for reliable and rapid detection of GSK3 activity in cells and tissue extracts.

  5. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    Science.gov (United States)

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  6. Direct quantification of brown algae-derived fucoidans in human plasma by a fluorescent probe assay

    CERN Document Server

    Warttinger, Ulrich; Harenberg, Job; Krämer, Roland

    2016-01-01

    Fucoidan is a generic term for a class of fucose rich, structurally diverse sulfated polysaccharides that are found in brown algae and other marine organisms. Depending on the species from which the fucoidan is extracted, a wide variety of biological activities including antitumor, antiinflammatory, immune-modulating, antiviral, antibacterial and pro- and anticoagulant activities has been described. Fucoidans have the advantage of low toxicity and oral bioavailibiity and are viable drug candidates, preclinical and pilot clinical trials show promising results. The availability of robust assays, in particular for analysing the blood levels of fucoidan, is a fundamental requirement for pharmacokinetic analysis in drug development projects. This contribution describes the application of a commercially availbale, protein-free fluorescent probe assay (Heparin Red) for the direct quantification of several fucoidans (from Fucus vesiculosus, Macrocystis pyrifera, and Undaria pinnatifida) in human plasma. By only minor...

  7. Rapid, single-molecule assays in nano/micro-fluidic chips with arrays of closely spaced parallel channels fabricated by femtosecond laser machining.

    Science.gov (United States)

    Canfield, Brian K; King, Jason K; Robinson, William N; Hofmeister, William H; Davis, Lloyd M

    2014-08-20

    Cost-effective pharmaceutical drug discovery depends on increasing assay throughput while reducing reagent needs. To this end, we are developing an ultrasensitive, fluorescence-based platform that incorporates a nano/micro-fluidic chip with an array of closely spaced channels for parallelized optical readout of single-molecule assays. Here we describe the use of direct femtosecond laser machining to fabricate several hundred closely spaced channels on the surfaces of fused silica substrates. The channels are sealed by bonding to a microscope cover slip spin-coated with a thin film of poly(dimethylsiloxane). Single-molecule detection experiments are conducted using a custom-built, wide-field microscope. The array of channels is epi-illuminated by a line-generating red diode laser, resulting in a line focus just a few microns thick across a 500 micron field of view. A dilute aqueous solution of fluorescently labeled biomolecules is loaded into the device and fluorescence is detected with an electron-multiplying CCD camera, allowing acquisition rates up to 7 kHz for each microchannel. Matched digital filtering based on experimental parameters is used to perform an initial, rapid assessment of detected fluorescence. More detailed analysis is obtained through fluorescence correlation spectroscopy. Simulated fluorescence data is shown to agree well with experimental values.

  8. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80.

    Science.gov (United States)

    Cheng, Yongfeng; Wei, Haiming; Sun, Rui; Tian, Zhigang; Zheng, Xiaodong

    2016-02-01

    Bradford assay is one of the most common methods for measuring protein concentrations. However, some pharmaceutical excipients, such as detergents, interfere with Bradford assay even at low concentrations. Protein precipitation can be used to overcome sample incompatibility with protein quantitation. But the rate of protein recovery caused by acetone precipitation is only about 70%. In this study, we found that sucrose not only could increase the rate of protein recovery after 1 h acetone precipitation, but also did not interfere with Bradford assay. So we developed a method for rapid protein quantitation in protein drugs even if they contained interfering substances. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Screen-printed fluorescent sensors for rapid and sensitive anthrax biomarker detection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Inkyu; Oh, Wan-Kyu; Jang, Jyongsik, E-mail: jsjang@plaza.snu.ac.kr

    2013-05-15

    Highlights: •We fabricated flexible anthrax sensors with a simple screen-printing method. •The sensors selectively detected B. anthracis biomarker. •The sensors provide the visible alarm against anthrax attack. -- Abstract: Since the 2001 anthrax attacks, efforts have focused on the development of an anthrax detector with rapid response and high selectivity and sensitivity. Here, we demonstrate a fluorescence sensor for detecting anthrax biomarker with high sensitivity and selectivity using a screen-printing method. A lanthanide–ethylenediamine tetraacetic acid complex was printed on a flexible polyethersulfone film. Screen-printing deposition of fluorescent detecting moieties produced fluorescent patterns that acted as a visual alarm against anthrax.

  10. A Rapid Zika Diagnostic Assay to Measure Neutralizing Antibodies in Patients

    Directory of Open Access Journals (Sweden)

    Chao Shan

    2017-03-01

    Full Text Available The potential association of microcephaly and other congenital abnormalities with Zika virus (ZIKV infection during pregnancy underlines the critical need for a rapid and accurate diagnosis. Due to the short duration of ZIKV viremia in infected patients, a serologic assay that detects antibody responses to viral infection plays an essential role in diagnosing patient specimens. The current serologic diagnosis of ZIKV infection relies heavily on the labor-intensive Plaque Reduction Neutralization Test (PRNT that requires more than one-week turnaround time and represents a major bottleneck for patient diagnosis. To overcome this limitation, we have developed a high-throughput assay for ZIKV and dengue virus (DENV diagnosis that can attain the “gold standard” of the current PRNT assay. The new assay is homogeneous and utilizes luciferase viruses to quantify the neutralizing antibody titers in a 96-well format. Using 91 human specimens, we showed that the reporter diagnostic assay has a higher dynamic range and maintains the relative specificity of the traditional PRNT assay. Besides the improvement of assay throughput, the reporter virus technology has also shortened the turnaround time to less than two days. Collectively, our results suggest that, along with the viral RT-PCR assay, the reporter virus-based serologic assay could be potentially used as the first-line test for clinical diagnosis of ZIKV infection as well as for vaccine clinical trials.

  11. Evaluation of simple rapid HIV assays and development of national rapid HIV test algorithms in Dar es Salaam, Tanzania

    Directory of Open Access Journals (Sweden)

    Mbwana Judica

    2009-02-01

    Full Text Available Abstract Background Suitable algorithms based on a combination of two or more simple rapid HIV assays have been shown to have a diagnostic accuracy comparable to double enzyme-linked immunosorbent assay (ELISA or double ELISA with Western Blot strategies. The aims of this study were to evaluate the performance of five simple rapid HIV assays using whole blood samples from HIV-infected patients, pregnant women, voluntary counseling and testing attendees and blood donors, and to formulate an alternative confirmatory strategy based on rapid HIV testing algorithms suitable for use in Tanzania. Methods Five rapid HIV assays: Determine™ HIV-1/2 (Inverness Medical, SD Bioline HIV 1/2 3.0 (Standard Diagnostics Inc., First Response HIV Card 1–2.0 (PMC Medical India Pvt Ltd, HIV1/2 Stat-Pak Dipstick (Chembio Diagnostic System, Inc and Uni-Gold™ HIV-1/2 (Trinity Biotech were evaluated between June and September 2006 using 1433 whole blood samples from hospital patients, pregnant women, voluntary counseling and testing attendees and blood donors. All samples that were reactive on all or any of the five rapid assays and 10% of non-reactive samples were tested on a confirmatory Inno-Lia HIV I/II immunoblot assay (Immunogenetics. Results Three hundred and ninety samples were confirmed HIV-1 antibody positive, while 1043 were HIV negative. The sensitivity at initial testing of Determine, SD Bioline and Uni-Gold™ was 100% (95% CI; 99.1–100 while First Response and Stat-Pak had sensitivity of 99.5% (95% CI; 98.2–99.9 and 97.7% (95% CI; 95.7–98.9, respectively, which increased to 100% (95% CI; 99.1–100 on repeat testing. The initial specificity of the Uni-Gold™ assay was 100% (95% CI; 99.6–100 while specificities were 99.6% (95% CI; 99–99.9, 99.4% (95% CI; 98.8–99.7, 99.6% (95% CI; 99–99.9 and 99.8% (95% CI; 99.3–99.9 for Determine, SD Bioline, First Response and Stat-Pak assays, respectively. There was no any sample which was

  12. Ribonuclease activity of vaccinia DNA topoisomerase IB: kinetic and high-throughput inhibition studies using a robust continuous fluorescence assay.

    Science.gov (United States)

    Kwon, Keehwan; Nagarajan, Rajesh; Stivers, James T

    2004-11-30

    Vaccinia type I DNA topoisomerase exhibits a strong site-specific ribonuclease activity when provided a DNA substrate that contains a single uridine ribonucleotide within a duplex DNA containing the sequence 5' CCCTU 3'. The reaction involves two steps: attack of the active site tyrosine nucleophile of topo I at the 3' phosphodiester of the uridine nucleotide to generate a covalent enzyme-DNA adduct, followed by nucleophilic attack of the uridine 2'-hydroxyl to release the covalently tethered enzyme. Here we report the first continuous spectroscopic assay for topoisomerase that allows monitoring of the ribonuclease reaction under multiple-turnover conditions. The assay is especially robust for high-throughput screening applications because sensitive molecular beacon technology is utilized, and the topoisomerase is released during the reaction to allow turnover of multiple substrate molecules by a single molecule of enzyme. Direct computer simulation of the fluorescence time courses was used to obtain the rate constants for substrate binding and release, covalent complex formation, and formation of the 2',3'-cyclic phosphodiester product of the ribonuclease reaction. The assay allowed rapid screening of a 500 member chemical library from which several new inhibitors of topo I were identified with IC(50) values in the range of 2-100 microM. Three of the most potent hits from the high-throughput screening were also found to inhibit plasmid supercoil relaxation by the enzyme, establishing the utility of the assay in identifying inhibitors of the biologically relevant DNA relaxation reaction. One of the most potent inhibitors of the vaccinia enzyme, 3-benzo[1,3]dioxol-5-yl-2-oxoproprionic acid, did not inhibit the closely related human enzyme. The inhibitory mechanism of this compound is unique and involves a step required for recycling the enzyme for steady-state turnover.

  13. Increasing the resolution of the comet assay using fluorescent in situ hybridization--a review.

    Science.gov (United States)

    Shaposhnikov, Sergey; Frengen, Eirik; Collins, Andrew R

    2009-09-01

    The comet assay (single-cell gel electrophoresis) is now the most popular method for measuring low levels of damage in cellular DNA. Cells are embedded in agarose on a microscope slide and lysed to produce nucleoids of supercoiled DNA attached to the nuclear matrix. Breaks in the DNA relax the supercoiling and allow DNA loops to expand, and on electrophoresis to move towards the anode, giving the appearance of a comet tail. The % of DNA in the tail reflects the break frequency. Digestion of nucleoid DNA with lesion-specific endonucleases extends the usefulness of the method to investigate different kinds of damage. DNA repair can be studied by treating cells with a genotoxic agent, incubating them and using the comet assay to follow the removal of the damage. An important feature of the assay is that damage is detected at the level of individual cells. The comet assay can be combined with fluorescent in situ hybridization, using labelled probes to particular DNA sequences, and DNA damage and repair can be examined at an even finer level of resolution. Here, we provide a general review of the technique, answer some technical and theoretical questions and give examples of applications of the method.

  14. In vitro infectivity of oncolytic Newcastle Disease Virus: Correlation between plaque and fluorescent focus assays.

    Science.gov (United States)

    Rush, Benjamin S; Coughlin, Melissa L; Sanyal, Gautam

    2018-01-01

    Newcastle Disease Virus (NDV) is an avian paramyxovirus that has no significant pathogenicity in humans. Cancer cells with impaired immune defense mechanisms are susceptible to infection and lysis by NDV. A recombinant construct of a lentogenic form of NDV (rNDV) containing an insertion of granulocyte macrophage colony stimulating factor (GMCSF) transgene was earlier reported and shown to have acceptably low avian pathogenicity as well as oncolytic potential. Reliable measurement of infectious titer is key to determining the effectiveness of virus preparations to infect and lyse cells. We report here a comparative evaluation of two infectious titer assays as applied to rNDV: plaque assay and fluorescent focus assay (FFA). Optimization of assay conditions for both titer methods has produced concordant results spanning several orders of magnitude. While plaque formation is the gold standard measure of virus titer, FFA provides higher throughput and faster turn-around. FFA has been further evaluated on two different instrument platforms, for automated versus manual foci recognition and counting, with equivalent results. These results point to amenability of FFA to transfer between different laboratories and analysts, without introducing significant subjectivity in data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Functional characterisation of the human alpha1 glycine receptor in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Kristiansen, Uffe

    2004-01-01

    In the present study, we have created a stable HEK293 cell line expressing the human homomeric alpha1 glycine receptor (GlyR) and characterised its functional pharmacology in a conventional patch-clamp assay and in the FLIPR Membrane Potential (FMP) assay, a fluorescence-based high throughput scr...

  16. Rapid detection of newly isolated Tembusu-related Flavivirus by reverse-transcription loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Wang Youling

    2011-12-01

    Full Text Available Abstract Background From April 2010 to January 2011, a severe new viral disease had devastated most duck-farming regions in China. This disease affected not only laying ducks but also meat ducks, causing huge economic losses for the poultry industry. The objective of this study is to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP assay for the detection of the new virus related to Tembusu-related Flavivirus. Results The RT-LAMP assay is very simple and rapid, and the amplification can be completed within 50 min under isothermal conditions at 63°C by a set of 6 primers targeting the E gene based on the sequences analysis of the newly isolated viruses and other closely related Flavivirus.The monitoring of gene amplification can also be visualized by using SYBR green I fluorescent dye. In addition, the RT-LAMP assay for newly isolated Tembusu-related Flavivirus showed higher sensitivity with an RNA detection-limit of 2 copies/μL compared with 190 copies/μL of the conventional RT-PCR method. The specificity was identified without cross reaction to other common avian pathogens. By screening a panel of clinical samples this method was more feasible in clinical settings and there was higher positive coincidence rate than conventional RT-PCR and virus isolation. Conclusion The RT-LAMP assay for newly isolated Tembusu-related Flavivirus is a valuable tool for the rapid and real-time detection not only in well-equipped laboratories but also in general conditions.

  17. A sensitive assay of mercury using fluorescence correlation spectroscopy of gold nanoparticles.

    Science.gov (United States)

    Xu, Zhancheng; Lan, Tao; Huang, Xiangyi; Dong, Chaoqing; Ren, Jicun

    2015-08-01

    We described a new and sensitive method for the determination of mercury ions (Hg(2+) ) on the basis of fluorescence correlation spectroscopy (FCS) and recognition of oligonucleotides. In this assay, 30-nm gold nanoparticles (GNPs) were modified with oligonucleotides containing thymine bases (T) as fluorescent probes, and the principle of this assay was based on the specific binding of Hg(2+) by two DNA thymine bases. When two GNPs labelled with different oligonucleotides were mixed with a sample containing Hg(2+), the T-Hg(2+)-T binding reaction should cause GNPs to form dimers (or oligomers), which would lead to a significant increase in the characteristic diffusion time of GNPs in the detection volume. The FCS method is a single molecule detection method and can sensitively detect the change in the characteristic diffusion time of GNPs before and after binding reactions. The quantitative analysis was performed according to the relation between the change in the characteristic diffusion time of GNPs and the concentration of Hg(2+). Under optimal conditions, the linear range of this method was from 0.3 nM to 100 nM, and the detection limit was 0.14 nM for Hg(2+). This new method was successfully applied for direct determination of Hg(2+) levels in water and cosmetics samples. Copyright © 2014 John Wiley & Sons, Ltd.

  18. New fluorescent probes for ligand-binding assays of odorant-binding proteins.

    Science.gov (United States)

    Mastrogiacomo, Rosa; Iovinella, Immacolata; Napolitano, Elio

    2014-03-28

    Fluorescence-linked binding assays allow determination of dissociation constants at equilibrium and have recently become increasingly popular, thanks to their ease of operation. Currently used probes, such as 1-aminoanthracene and N-phenyl-1-naphthylamine, are excited and emit in the ultraviolet region, but alternative ligands operating in the visible spectrum would be highly desirable for applications in biosensing devices. Based on the two above structures, we have designed and synthesised six new fluorescent probes to be used in ligand-binding assays. The compounds are derivatives of naphatalene, anthracene and fluoranthene and present two aromatic moieties linked by an amine nitrogen. We have measured the emission spectra of the new probes and their binding to three odorant-binding proteins. The probes bind the tested proteins with different affinities, generally with dissociation constants about one order of magnitude lower than the parent compounds. The extended aromatic systems present in the new compounds produced a shift of both excitation and emission peaks at higher wavelength, close or within the visible spectrum, thus facilitating measurements in biosensors for odorants and small organic molecules using optical devices. Copyright © 2014. Published by Elsevier Inc.

  19. Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay.

    Directory of Open Access Journals (Sweden)

    Yiyi Sun

    Full Text Available Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (--arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases.

  20. Identification of Adiponectin Receptor Agonist Utilizing a Fluorescence Polarization Based High Throughput Assay

    Science.gov (United States)

    Sun, Yiyi; Zang, Zhihe; Zhong, Ling; Wu, Min; Su, Qing; Gao, Xiurong; Zan, Wang; Lin, Dong; Zhao, Yan; Zhang, Zhonglin

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the development of a two-step screening process to identify adiponectin agonists. First step, we developed a high throughput screening assay based on fluorescence polarization to identify adiponectin ligands. The fluorescence polarization assay reported here could be adapted to screening against larger small molecular compound libraries. A natural product library containing 10,000 compounds was screened and 9 hits were selected for validation. These compounds have been taken for the second-step in vitro tests to confirm their agonistic activity. The most active adiponectin receptor 1 agonists are matairesinol, arctiin, (-)-arctigenin and gramine. The most active adiponectin receptor 2 agonists are parthenolide, taxifoliol, deoxyschizandrin, and syringin. These compounds may be useful drug candidates for hypoadiponectin related diseases. PMID:23691032

  1. Quantification of equine immunoglobulin A in serum and secretions by a fluorescent bead-based assay.

    Science.gov (United States)

    Schnabel, Christiane L; Babasyan, Susanna; Freer, Heather; Wagner, Bettina

    2017-06-01

    Only few quantitative reports exist about the concentrations and induction of immunoglobulin A (IgA) in mucosal secretions of horses. Despite this, it is widely assumed that IgA is the predominant immunoglobulin on mucosal surfaces in the horse. Here, two new monoclonal antibodies (mAbs) against equine IgA, clones 84-1 and 161-1, were developed and characterized in detail. Both IgA mAbs specifically bound monomeric and dimeric equine IgA in different applications, such as Western blots and fluorescent bead-based assays. Cross-reactivity with other equine immunoglobulin isotypes was not observed. The new IgA mAb 84-1 was used in combination with the previously characterized anti-equine IgA mAb BVS2 for the development and validation of a fluorescent bead-based assay to quantify total IgA in equine serum and various secretions. The IgA assay's linear detection ranged from 64pg/ml to 1000ng/ml. For the quantification of IgA in serum or in secretions an IgA standard was purified from serum or nasal wash fluid (secretory IgA), respectively. The different standards were needed for accurate IgA quantification in the respective samples taking the different signal intensities of monomeric and dimeric IgA on the florescent bead-based assay into account. IgA was quantified by the bead-based assay established here in different equine samples of healthy adult individuals. In serum the median total IgA was 0.45mg/ml for Thoroughbred horses (TB, n=10) and 1.16mg/ml in Icelandic horses (ICH, n=12). In nasopharyngeal secretions of TB (n=7) 0.13mg/ml median total IgA was measured, and 0.25mg/ml for ICH (n=12). Saliva of ICH (n=6) contained a median of 0.15mg/ml, colostrum of Warmbloods (n=8) a median of 1.89mg/ml IgA. Compared to IgG1 and IgG4/7 quantified in the same samples, IgA appeared as the major immunoglobulin isotype in nasopharyngeal secretions and saliva while it is a minor isotype in serum and colostrum. The newly developed monoclonal antibodies against equine IgA and the

  2. A high-throughput fluorescence-based assay system for appetite-regulating gene and drug screening.

    Directory of Open Access Journals (Sweden)

    Yasuhito Shimada

    Full Text Available The increasing number of people suffering from metabolic syndrome and obesity is becoming a serious problem not only in developed countries, but also in developing countries. However, there are few agents currently approved for the treatment of obesity. Those that are available are mainly appetite suppressants and gastrointestinal fat blockers. We have developed a simple and rapid method for the measurement of the feeding volume of Danio rerio (zebrafish. This assay can be used to screen appetite suppressants and enhancers. In this study, zebrafish were fed viable paramecia that were fluorescently-labeled, and feeding volume was measured using a 96-well microplate reader. Gene expression analysis of brain-derived neurotrophic factor (bdnf, knockdown of appetite-regulating genes (neuropeptide Y, preproinsulin, melanocortin 4 receptor, agouti related protein, and cannabinoid receptor 1, and the administration of clinical appetite suppressants (fluoxetine, sibutramine, mazindol, phentermine, and rimonabant revealed the similarity among mechanisms regulating appetite in zebrafish and mammals. In combination with behavioral analysis, we were able to evaluate adverse effects on locomotor activities from gene knockdown and chemical treatments. In conclusion, we have developed an assay that uses zebrafish, which can be applied to high-throughput screening and target gene discovery for appetite suppressants and enhancers.

  3. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection.

    Directory of Open Access Journals (Sweden)

    Laura C Bonney

    2017-10-01

    Full Text Available Crimean-Congo Haemorrhagic fever Virus (CCHFV is a rapidly emerging vector-borne pathogen and the cause of a virulent haemorrhagic fever affecting large parts of Europe, Africa, the Middle East and Asia.An isothermal recombinase polymerase amplification (RPA assay was successfully developed for molecular detection of CCHFV. The assay showed rapid (under 10 minutes detection of viral extracts/synthetic virus RNA of all 7 S-segment clades of CCHFV, with high target specificity. The assay was shown to tolerate the presence of inhibitors in crude preparations of mock field samples, indicating that this assay may be suitable for use in the field with minimal sample preparation. The CCHFV RPA was successfully used to screen and detect CCHFV positives from a panel of clinical samples from Tajikistan.The assay is a rapid, isothermal, simple-to-perform molecular diagnostic, which can be performed on a light, portable real-time detection device. It is ideally placed therefore for use as a field-diagnostic or in-low resource laboratories, for monitoring of CCHF outbreaks at the point-of-need, such as in remote rural regions in affected countries.

  4. A recombinase polymerase amplification assay for rapid detection of Crimean-Congo Haemorrhagic fever Virus infection.

    Science.gov (United States)

    Bonney, Laura C; Watson, Robert J; Afrough, Babak; Mullojonova, Manija; Dzhuraeva, Viktoriya; Tishkova, Farida; Hewson, Roger

    2017-10-01

    Crimean-Congo Haemorrhagic fever Virus (CCHFV) is a rapidly emerging vector-borne pathogen and the cause of a virulent haemorrhagic fever affecting large parts of Europe, Africa, the Middle East and Asia. An isothermal recombinase polymerase amplification (RPA) assay was successfully developed for molecular detection of CCHFV. The assay showed rapid (under 10 minutes) detection of viral extracts/synthetic virus RNA of all 7 S-segment clades of CCHFV, with high target specificity. The assay was shown to tolerate the presence of inhibitors in crude preparations of mock field samples, indicating that this assay may be suitable for use in the field with minimal sample preparation. The CCHFV RPA was successfully used to screen and detect CCHFV positives from a panel of clinical samples from Tajikistan. The assay is a rapid, isothermal, simple-to-perform molecular diagnostic, which can be performed on a light, portable real-time detection device. It is ideally placed therefore for use as a field-diagnostic or in-low resource laboratories, for monitoring of CCHF outbreaks at the point-of-need, such as in remote rural regions in affected countries.

  5. Amorphous carbon nanoparticles: a versatile label for rapid diagnostic (immuno)assays

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Wichers, J.H.; Koets, M.; Berendsen, L.B.J.M.; Amerongen, van A.

    2012-01-01

    Carbon nanoparticles (CNPs) labeled with reporter molecules can serve as signaling labels in rapid diagnostic assays as an alternative to gold, colored latex, silica, quantum dots, or up-converting phosphor nanoparticles. Detailed here is the preparation of biomolecule-labeled CNPs and examples of

  6. A rapid assay for on-site monitoring of infliximab trough levels: a feasibility study

    NARCIS (Netherlands)

    Corstjens, Paul L. A. M.; Fidder, Herma H.; Wiesmeijer, Karien C.; de Dood, Claudia J.; Rispens, Theo; Wolbink, Gert-Jan; Hommes, Daniel W.; Tanke, Hans J.

    2013-01-01

    Monitoring levels of biologicals against tumor necrosis factor (TNF) has been suggested to improve therapeutic outcomes in inflammatory bowel diseases (IBDs). This pilot study describes a rapid lateral flow (LF)-based assay for on-site monitoring of serum trough levels of humanized monoclonal

  7. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  8. Evaluation of an Immunochromatographic Assay for the Rapid and Simultaneous Detection of Rotavirus and Adenovirus in Stool Samples

    Science.gov (United States)

    Kim, Jayoung; Kim, Han-Sung; Kim, Jae-Seok; Song, Wonkeun; Lee, Kyu Man; Lee, Sunhwa; Park, Kyoung Un; Lee, Woochang; Hong, Young Jun

    2014-01-01

    Background We evaluated the analytical and clinical performances of the SD BIOLINE Rota/Adeno Rapid kit (SD Rota/Adeno Rapid; Standard Diagnostics, Inc., Korea), an immunochromatographic assay (ICA), for the simultaneous detection of rotaviruses and adenoviruses in human stool samples. Methods We tested 400 clinical stool samples from patients with acute gastroenteritis and compared the ICA results with the results obtained by using ELISA, enzyme-linked fluorescent assays (ELFA), PCR, and multiplex reverse transcription-PCR (mRT-PCR). To assess the analytical performance of the SD BIOLINE Rota/Adeno Rapid kit, we determined its detection limit, reproducibility, cross-reactivity, and analytical reactivity for adenovirus subtypes, and performed interference studies. Results The overall agreement rates among the tested methods were 91.5% for rotavirus and 85.5% for adenovirus. On the basis of mRT-PCR, the overall agreement, positive agreement, and negative agreement rates of the ICA were 95.6%, 100%, and 94.9% for rotavirus, and 94.0%, 71.4%, and 94.8% for adenovirus, respectively. Using the ICA, we detected all the subtypes of adenovirus tested, but the analytical reactivities for adenovirus subtypes were different between the 4 adenovirus detection methods. The high reproducibility was confirmed, and no cross-reactivity or interference was detected. Conclusions The SD BIOLINE Rota/Adeno Rapid kit showed acceptable analytical and clinical performances. However, interpretation of adenovirus positive/negative result should be cautious because of different detectability for adenovirus subtypes among adenovirus detection methods. PMID:24790909

  9. Development of a loop-mediated isothermal amplification assay for rapid detection of Burkholderia mallei.

    Science.gov (United States)

    Mirzai, S; Safi, S; Mossavari, N; Afshar, D; Bolourchian, M

    2016-08-31

    The present study was conducted to establish a Loop-mediated isothermal amplification (LAMP) technique for the rapid detection of B. mallei the etiologic agent of glanders, a highly contagious disease of equines. A set of six specific primers targeting integrase gene cluster were designed for the LAMP test. The reaction was optimized using different temperatures and time intervals. The specificity of the assay was evaluated using DNA from B.pseudomallei and Pseudomonas aeruginosa. The LAMP products were analyzed both visually and under UV light after electrophoresis. The optimized conditions were found to be at 63ºC for 60 min. The assay showed high specificity and sensitivity. It was concluded that the established LAMP assay is a rapid, sensitive and practical tool for detection of B. mallei and early diagnosis of glanders.

  10. First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples

    Energy Technology Data Exchange (ETDEWEB)

    Otero, Paz; Alfonso, Amparo [Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo (Spain); Alfonso, Carmen [CIFGA Laboratorio, Plaza de Santo Domingo, 1, 27001 Lugo (Spain); Araoz, Romulo; Molgo, Jordi [CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Developpement UPR3294, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex (France); Vieytes, Mercedes R. [Departamento de Fisiologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo (Spain); Botana, Luis M., E-mail: luis.botana@usc.es [Departamento de Farmacologia, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario s/n, 27002 Lugo (Spain)

    2011-09-09

    Highlights: {yields} A direct assay based in the binding of nAChR to spirolide toxins by FP is described. {yields} A direct relationship between FP and 13-desMeC in the range of 10-500 nM is obtained. {yields} FP is dependent on the 13, 19-didesMeC in a higher concentration range than 13-desMeC. {yields} FP assay is a sensitive method to detect and quantify 13-desMeC in mussel samples. - Abstract: In 2009, we achieve the first inhibition FP assay to detect imine cyclic toxins. In the present paper we propose a new FP assay for direct quantify spirolides. This new method has resulted in significant improvement of sensitivity, rapidity and accessibility. In the method design, nicotinic acetylcholine receptor from Torpedo marmorata membranes labelled with a derivative of fluorescein was used. Spirolides, 13-desmethyl spirolide C (13-desMeC) and 13,19-didesmethyl spirolide C (13,19-didesMeC) were extracted and purified from cultures of the Alexandrium ostenfeldii dinoflagellate. Data showed the decrease of FP when toxin concentration was increased. Thus, a relationship between the FP units and the spirolides amount present in a sample was obtained. This direct assay is a reproducible, simple and very sensitive method with a detection limit about 25 nM for 13-desMeC and 150 nM for 13,19-didesMeC. The procedure was used to measure spirolides in mussel samples using an extraction and clean up protocol suitable for the FP assay. Results obtained show that this method is able to quantify 13-desMeC in the range of 50-350 {mu}g kg{sup -1} meat. Other liposoluble toxins did not interfere with the assay, proving a specific method. Moreover, the matrix do not affect in the range of toxin concentrations that involving risk of spirolides intoxication.

  11. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function

    Science.gov (United States)

    Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J.; Smithgall, Thomas E.

    2015-01-01

    The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important

  12. A quantitative assay for the juvenile hormones and their precursors using fluorescent tags.

    Directory of Open Access Journals (Sweden)

    Crisalejandra Rivera-Perez

    Full Text Available BACKGROUND: The juvenile hormones (JHs are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. The lipophilic nature of JHs and their precursors, in conjunction with their low concentration in tissues and susceptibility to degradation had made their quantification difficult. A variety of methods exist for JH quantification but few can quantify on the femtomole range. Currently applied methods are expensive and time consuming. In the present study we sought to develop a novel method for accurate detection and quantification of JHs and their precursors. METHODS: A sensitive and robust method was developed to quantify the precursor, farnesoic acid (FA and juvenile hormone III (JH III in biological samples. The assay is based on the derivatization of analytes with fluorescent tags, with subsequent analysis by reverse phase high performance liquid chromatography coupled to a fluorescent detector (HPLC-FD. The carboxyl group of FA was derivatized with 4-Acetamido-7-mercapto-2,1,3-benzoxadiazole (AABD-SH. Tagging the epoxide group of JH III required a two-step reaction: the opening of the epoxide ring with sodium sulfide and derivatization with the fluorescent tag 4-(N,N-Dimethylaminosulfonyl-7-(N-chloroformylmethyl-N-methylamino-2,1,3-benzoxadiazole (DBD-COCl. CONCLUSIONS: The method developed in the present study showed high sensitivity, accuracy and reproducibility. Linear responses were obtained over the range of 10-20 to 1000 fmols. Recovery efficiencies were over 90% for JH III and 98% for FA with excellent reproducibility. SIGNIFICANCE: The proposed method is applicable when sensitive detection and accurate quantification of limited amount of sample is needed. Examples include corpora allata, hemolymph and whole body of female adult Aedes aegypti and whole body Drosophila melanogaster. A variety of additional functional groups can be targeted to add fluorescent tags to the remaining JH III

  13. Bioconjugated fluorescent silica nanoparticles for the rapid detection of Entamoeba histolytica.

    Science.gov (United States)

    Hemadi, Ahmad; Ekrami, Alireza; Oormazdi, Hormozd; Meamar, Ahmad Reza; Akhlaghi, Lame; Samarbaf-Zadeh, Ali Reza; Razmjou, Elham

    2015-05-01

    Rapid detection of Entamoeba histolytica based on fluorescent silica nanoparticle (FSNP) indirect immunofluorescence microscopy was evaluated. Silica nanoparticles were synthesized using Stöber's method, with their surface activated to covalently bind to, and immobilize, protein A. For biolabeling, FSNP was added to conjugated E. histolytica trophozoites with monoclonal anti-E. histolytica IgG1 for microscopic observation of fluorescence. Fluorescent silica nanoparticle sensitivity was determined with axenically cultured E. histolytica serially diluted to seven concentrations. Specificity was evaluated using other intestinal protozoa. Fluorescent silica nanoparticles detected E. histolytica at the lowest tested concentration with no cross-reaction with Entamoeba dispar, Entamoeba moshkovskii, Blastocystis sp., or Giardia lamblia. Visualization of E. histolytica trophozoites with anti-E. histolytica antibody labeled with fluorescein isothiocyanate (FITC) was compared with that using anti-E. histolytica antibody bioconjugated FSNP. Although FITC and FSNP produced similar results, the amount of specific antibody required for FITC to induce fluorescence of similar intensity was fivefold that for FSNP. Fluorescent silica nanoparticles delivered a rapid, simple, cost-effective, and highly sensitive and specific method of detecting E. histolytica. Further study is needed before introducing FSNP for laboratory diagnosis of amoebiasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels.

    Science.gov (United States)

    Cabanos, Cerrone; Wang, Miao; Han, Xianlin; Hansen, Scott B

    2017-08-08

    Lipid regulation of ion channels by low-abundance signaling lipids phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidic acid (PA) has emerged as a central cellular mechanism for controlling ion channels and the excitability of nerves. A lack of robust assays suitable for facile detection of a lipid bound to a channel has hampered the probing of the lipid binding sites and measuring the pharmacology of putative lipid agonists for ion channels. Here, we show a fluorescent PIP2 competition assay for detergent-purified potassium channels, including TWIK-1-related K+-channel (TREK-1). Anionic lipids PA and phosphatidylglycerol (PG) bind dose dependently (9.1 and 96 μM, respectively) and agonize the channel. Our assay shows PIP2 binds with high affinity (0.87 μM) but surprisingly can directly antagonize TREK-1 in liposomes. We propose a model for TREK-1 lipid regulation where PIP2 can compete with PA and PG agonism based on the affinity of the lipid for a site within the channel. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. A Soluble Fluorescent Binding Assay Reveals PIP2 Antagonism of TREK-1 Channels

    Directory of Open Access Journals (Sweden)

    Cerrone Cabanos

    2017-08-01

    Full Text Available Lipid regulation of ion channels by low-abundance signaling lipids phosphatidylinositol 4,5-bisphosphate (PIP2 and phosphatidic acid (PA has emerged as a central cellular mechanism for controlling ion channels and the excitability of nerves. A lack of robust assays suitable for facile detection of a lipid bound to a channel has hampered the probing of the lipid binding sites and measuring the pharmacology of putative lipid agonists for ion channels. Here, we show a fluorescent PIP2 competition assay for detergent-purified potassium channels, including TWIK-1-related K+-channel (TREK-1. Anionic lipids PA and phosphatidylglycerol (PG bind dose dependently (9.1 and 96 μM, respectively and agonize the channel. Our assay shows PIP2 binds with high affinity (0.87 μM but surprisingly can directly antagonize TREK-1 in liposomes. We propose a model for TREK-1 lipid regulation where PIP2 can compete with PA and PG agonism based on the affinity of the lipid for a site within the channel.

  16. Fluorescent Parkin Cell-Based Assay Development for the Screening of Drugs against Parkinson Disease.

    Science.gov (United States)

    Villacé, Patricia; Mella, Rosa M; Roura-Ferrer, Meritxell; Valcárcel, María; Salado, Clarisa; Castilla, Amaia; Kortazar, Danel

    2017-01-01

    Parkinson disease (PD) is a prevalent neurodegenerative disease characterized by selective degeneration of dopaminergic neurons in the substantia nigra, causing tremor and motor impairment. Parkin protein, whose mutants are the cause of Parkinson disease type 2 (PARK2), has been mechanistically linked to the regulation of apoptosis and the turnover of damaged mitochondria. Several studies have implicated aberrant mitochondria as a key contributor to the development of PD. In the attempt to discover new drugs, high-content cell-based assays are becoming more important to mimic the nature of biological processes and their diversifications in diseases and will be essential for lead identification and the optimization of therapeutic candidates. We have developed a novel fluorescence cell-based assay for high-content screening to find compounds that can promote the mitochondrial localization of Parkin without severe mitochondrial damage induction. In this work, this model was used to screen a library of 1280 compounds. After the screening campaign, the positive compounds were chosen for further testing, based on the strength of the initial response and lack of cytotoxicity. These results indicated that this Parkin cell-based assay is a robust (Z' > 0.5) and valid strategy to test potential candidates for preclinical studies.

  17. Rapid identification of Stenotrophomonas maltophilia by peptide nucleic acid fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Knudsen, Nanna Reumert; Rasmussen, A. K. I.; Fiandaca, M. J.

    2014-01-01

    The objective of this study was to develop a novel peptide nucleic acid (PNA) probe for Stenotrophomonas maltophilia identification by fluorescence in situ hybridization (FISH). The probe was evaluated using 33 human and veterinary clinical S. maltophilia isolates and 45 reference strains...... horses. Altogether the study shows that this species-specific PNA FISH probe facilitates rapid detection of S. maltophilia in biological specimens....

  18. Investigation into the applicability of the centrifugal microfluidics platform for the development of protein-ligand binding assays incorporating enhanced green fluorescent protein as a fluorescent reporter.

    Science.gov (United States)

    Puckett, Libby G; Dikici, Emre; Lai, Siyi; Madou, Marc; Bachas, Leonidas G; Daunert, Sylvia

    2004-12-15

    The incorporation of a protein-ligand binding assay into a centrifugal microfluidics platform is described. The platform itself is a disc-shaped polymer substrate, upon which a series of microfluidic channels and reservoirs have been machined. Centrifugal microfluidics platforms require no internal moving parts, and fluid propulsion is achieved solely through rotation of the disc. Fluid flow is controlled by passive valves, the opening of which is dependent on the angular frequency of the rotating platform, the channel dimensions, and the physical properties of the fluid. To evaluate the effectiveness of incorporating a protein-based assay onto the centrifugal microfluidics analytical platform, a class-selective, homogeneous assay for the detection of phenothiazine antidepressants was employed. This class of drugs is known to bind to calmodulin, a calcium binding protein. Specifically, a fusion protein between calmodulin and enhanced green fluorescent protein was utilized. Calmodulin undergoes a conformational change upon binding to phenothiazines that alters the fluorescence properties of the attached fluorescent protein, which can be correlated to the concentration of the drug present. Another important aspect of this work was to study the efficacy of the platform to perform reconstitution assays. To do this, the biological reagent was dried on the platform and rehydrated to carry out the assay. The ability to prealiquot reagents on the platform should enhance its versatility and portability. The integration of protein-based assays in this platform should be useful in the design of analytical systems for high-throughput screening of pharmaceuticals and clinical diagnostics.

  19. Cytotoxicity Test Based on Human Cells Labeled with Fluorescent Proteins: Fluorimetry, Photography, and Scanning for High-Throughput Assay.

    Science.gov (United States)

    Kalinina, Marina A; Skvortsov, Dmitry A; Rubtsova, Maria P; Komarova, Ekaterina S; Dontsova, Olga A

    2017-12-21

    High- and medium-throughput assays are now routine methods for drug screening and toxicology investigations on mammalian cells. However, a simple and cost-effective analysis of cytotoxicity that can be carried out with commonly used laboratory equipment is still required. The developed cytotoxicity assays are based on human cell lines stably expressing eGFP, tdTomato, mCherry, or Katushka2S fluorescent proteins. Red fluorescent proteins exhibit a higher signal-to-noise ratio, due to less interference by medium autofluorescence, in comparison to green fluorescent protein. Measurements have been performed on a fluorescence scanner, a plate fluorimeter, and a camera photodocumentation system. For a 96-well plate assay, the sensitivity per well and the measurement duration were 250 cells and 15 min for the scanner, 500 cells and 2 min for the plate fluorimeter, and 1000 cells and less than 1 min for the camera detection. These sensitivities are similar to commonly used MTT (tetrazolium dye) assays. The used scanner and the camera had not been previously applied for cytotoxicity evaluation. An image processing scheme for the high-resolution scanner is proposed that significantly diminishes the number of control wells, even for a library containing fluorescent substances. The suggested cytotoxicity assay has been verified by measurements of the cytotoxicity of several well-known cytotoxic drugs and further applied to test a set of novel bacteriotoxic compounds in a medium-throughput format. The fluorescent signal of living cells is detected without disturbing them and adding any reagents, thus allowing to investigate time-dependent cytotoxicity effects on the same sample of cells. A fast, simple and cost-effective assay is suggested for cytotoxicity evaluation based on mammalian cells expressing fluorescent proteins and commonly used laboratory equipment.

  20. Rapid detection of unconjugated estriol in the serum via superparamagnetic lateral flow immunochromatographic assay.

    Science.gov (United States)

    Wang, Ce; Guan, Di; Chen, Chen; He, Shang; Liu, Xiaoting; Wang, Chengbin; Wu, Huijuan

    2018-01-01

    Unconjugated estriol (uE 3 ) is one of the main naturally occurring estrogens that plays an important role in growth and development of the fetus. Usually, the level of uE 3 is very low in men and non-pregnant women, but in pregnant women, the level of estriol has been found to be quite high. Therefore, the combination of uE 3 , AFP, and hCG is now widely used for Down Syndrome screening as a triple marker. Here, we developed a superparamagnetic lateral flow immunochromatographic assay to quantitatively detect uE 3 . The detection limit of this assay was 0.86 nmol/L and the linear range for the determination of uE 3 was from 1 to 100 nmol/L. The detection time was 15 min and the assay had very low cross-reactivity with estrone (E 1 ), estradiol (E 2 ), and progesterone. The coefficient of variation (CV) of intra- and inter-assay ranged from 5% to 13%. The magnetic signals were stable under 37 °C within 7 d. Moreover, the concentrations of uE 3 measured by lateral flow immunochromatographic assay in 230 serum samples collected from pregnant women at the Chinese People's Liberation Army General Hospital had a good correlation with those measured by time-resolved fluorescence immunoassay (R = 0.946).

  1. Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Justin; Brault, Amy; Vincent, Fabien; Weng, Shawn; Wang, Hong; Dumlao, Darren; Aulabaugh, Ann; Aivazian, Dikran; Castro, Dana; Chen, Ming; Culp, Jeffrey; Dower, Ken; Gardner, Joseph; Hawrylik, Steven; Golenbock, Douglas; Hepworth, David; Horn, Mark; Jones, Lyn; Jones, Peter; Latz, Eicke; Li, Jing; Lin, Lih-Ling; Lin, Wen; Lin, David; Lovering, Frank; Niljanskul, Nootaree; Nistler, Ryan; Pierce, Betsy; Plotnikova, Olga; Schmitt, Daniel; Shanker, Suman; Smith, James; Snyder, William; Subashi, Timothy; Trujillo, John; Tyminski, Edyta; Wang, Guoxing; Wong, Jimson; Lefker, Bruce; Dakin, Leslie; Leach, Karen; Nakano, Hiroyasu

    2017-09-21

    Cyclic GMP-AMP synthase (cGAS) initiates the innate immune system in response to cytosolic dsDNA. After binding and activation from dsDNA, cGAS uses ATP and GTP to synthesize 2', 3' -cGAMP (cGAMP), a cyclic dinucleotide second messenger with mixed 2'-5' and 3'-5' phosphodiester bonds. Inappropriate stimulation of cGAS has been implicated in autoimmune disease such as systemic lupus erythematosus, thus inhibition of cGAS may be of therapeutic benefit in some diseases; however, the size and polarity of the cGAS active site makes it a challenging target for the development of conventional substrate-competitive inhibitors. We report here the development of a high affinity (KD = 200 nM) inhibitor from a low affinity fragment hit with supporting biochemical and structural data showing these molecules bind to the cGAS active site. We also report a new high throughput cGAS fluorescence polarization (FP)-based assay to enable the rapid identification and optimization of cGAS inhibitors. This FP assay uses Cy5-labelled cGAMP in combination with a novel high affinity monoclonal antibody that specifically recognizes cGAMP with no cross reactivity to cAMP, cGMP, ATP, or GTP. Given its role in the innate immune response, cGAS is a promising therapeutic target for autoinflammatory disease. Our results demonstrate its druggability, provide a high affinity tool compound, and establish a high throughput assay for the identification of next generation cGAS inhibitors.

  2. Rapid and Sensitive Detection of Phytophthora sojae in Soil and Infected Soybeans by Species-Specific Polymerase Chain Reaction Assays.

    Science.gov (United States)

    Wang, Yuanchao; Zhang, Wenli; Wang, Ying; Zheng, Xiaobo

    2006-12-01

    ABSTRACT Root and stem rot caused by Phytophthora sojae is one of the most destructive diseases of soybean (Glycine max) worldwide. P. sojae can survive as oospores in soil for many years. In order to develop a rapid and accurate method for the specific detection of P. sojae in soil, the internal transcribed spacer (ITS) regions of eight P. sojae isolates were amplified using polymerase chain reaction (PCR) with the universal primers DC6 and ITS4. The sequences of PCR products were aligned with published sequences of 50 other Phytophthora species, and a region specific to P. sojae was used to design the specific PCR primers, PS1 and PS2. More than 245 isolates representing 25 species of Phytophthora and at least 35 other species of pathogens were used to test the specificity of the primers. PCR amplification with PS primers resulted in the amplification of a product of approximately 330 bp, exclusively from isolates of P. sojae. Tests with P. sojae genomic DNA determined that the sensitivity of the PS primer set is approximately 1 fg. This PCR assay, combined with a simple soil screening method developed in this work, allowed the detection of P. sojae from soil within 6 h, with a detection sensitivity of two oospores in 20 g of soil. PCR with the PS primers could also be used to detect P. sojae from diseased soybean tissue and residues. Real-time fluorescent quantitative PCR assays were also developed to detect the pathogen directly in soil samples. The PS primer-based PCR assay provides a rapid and sensitive tool for the detection of P. sojae in soil and infected soybean tissue.

  3. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  4. Rapid molecular assays for the detection of yellow fever virus in low-resource settings.

    Directory of Open Access Journals (Sweden)

    Camille Escadafal

    2014-03-01

    Full Text Available BACKGROUND: Yellow fever (YF is an acute viral hemorrhagic disease transmitted by Aedes mosquitoes. The causative agent, the yellow fever virus (YFV, is found in tropical and subtropical areas of South America and Africa. Although a vaccine is available since the 1930s, YF still causes thousands of deaths and several outbreaks have recently occurred in Africa. Therefore, rapid and reliable diagnostic methods easy to perform in low-resources settings could have a major impact on early detection of outbreaks and implementation of appropriate response strategies such as vaccination and/or vector control. METHODOLOGY: The aim of this study was to develop a YFV nucleic acid detection method applicable in outbreak investigations and surveillance studies in low-resource and field settings. The method should be simple, robust, rapid and reliable. Therefore, we adopted an isothermal approach and developed a recombinase polymerase amplification (RPA assay which can be performed with a small portable instrument and easy-to-use lyophilized reagents. The assay was developed in three different formats (real-time with or without microfluidic semi-automated system and lateral-flow assay to evaluate their application for different purposes. Analytical specificity and sensitivity were evaluated with a wide panel of viruses and serial dilutions of YFV RNA. Mosquito pools and spiked human plasma samples were also tested for assay validation. Finally, real-time RPA in portable format was tested under field conditions in Senegal. CONCLUSION/SIGNIFICANCE: The assay was able to detect 20 different YFV strains and demonstrated no cross-reactions with closely related viruses. The RPA assay proved to be a robust, portable method with a low detection limit (<21 genome equivalent copies per reaction and rapid processing time (<20 min. Results from real-time RPA field testing were comparable to results obtained in the laboratory, thus confirming our method is suitable for

  5. LAMP assay for rapid diagnosis of cow DNA in goat milk and meat samples

    OpenAIRE

    Deb, R.; Sengar, G. S.; Singh, U.; Kumar, S.; Raja, T. V.; Alex, R.; Alyethodi, R. R.; Prakash, B.

    2017-01-01

    Animal species detection is one of the crucial steps for consumer’s food analysis. In the present study we developed an in-house built loop-mediated isothermal amplification (LAMP) assay for rapid detection of adulterated cow DNA in goat milk/meat samples. The cow milk/tissue DNA in goat milk/meat samples were identified in the developed LAMP assay by either naked eye visualizing with SYBR Green I dyes or by detecting the typical ladder pattern on gel electrophoresis. This test can detect up ...

  6. Simple and sensitive fluorescence assay of restriction endonuclease on graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Jong Back [Dept. of Nano Chemistry, Gachon University, Incheon (Korea, Republic of)

    2015-09-15

    Restriction endonucleases hydrolyze internal phosphodiester bonds at specific sites in a DNA sequence. These enzymes are essential in a variety of fields, such as biotechnology and clinical diagnostics. It is of great importance and necessity for the scientific and biomedical use of enzymes to measure endonuclease activity. In this study, graphene oxide (GO) has been used as a platform to measure enzyme activity with high sensitivity. To increase the detection sensitivity of Hinf I, the endonuclease-digested reaction was treated with exonuclease III (Exo III) and a fluorescence assay was conducted to measure the emission. Results showed that Exo III treatment enhanced 2.7-fold signal-to-background ratio for the detection of Hinf I compared with that done without Exo III in the presence of GO.

  7. Rapid in situ assessment of physiological activities in bacterial biofilms using fluorescent probes

    Science.gov (United States)

    Yu, F. P.; McFeters, G. A.

    1994-01-01

    Two rapid in situ enumeration methods using fluorescent probes were used to assess the physiological activities of Klebsiella pneumoniae biofilms on stainless steel. Fluorescent dyes, 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and rhodamine 123 (Rh 123), were chosen to perform this study. CTC is a soluble redox indicator which can be reduced by respiring bacteria to fluorescent CTC-formazan crystals. Rh 123 is incorporated into bacteria with respect to cellular proton motive force. The intracellular accumulation of these fluorescent dyes can be determined using epifluorescence microscopy. The results obtained with these two fluorescent probes in situ were compared to the plate count (PC) and in situ direct viable count (DVC) methods. Viable cell densities within biofilms determined by the three in situ methods were comparable and always showed approximately 2-fold higher values than those obtained with the PC method. As an additional advantage, the results were observed after 2 h, which was shorter than the 4 h incubation time required for the DVC method and 24 h for colony formation. The results indicate that staining with CTC and Rh 123 provides rapid information regarding cell numbers and physiological activities of bacteria within biofilms.

  8. Dual color fluorescence in situ hybridization (FISH) assays for detecting Mycobacterium tuberculosis and Mycobacterium avium complexes and related pathogens in cultures

    Science.gov (United States)

    Weltman, Helena; Narciso, Patricia; Murphy, Christina; Poruri, Akhila; Baliga, Shrikala; Sharon, Leesha; York, Mary; Cunningham, Gail; Miller, Steve; Caviedes, Luz; Gilman, Robert; Desmond, Edward; Ramasamy, Ranjan

    2017-01-01

    Two rapid dual color fluorescence in situ hybridization (FISH) assays were evaluated for detecting M. tuberculosis and related pathogens in cultures. The MN Genus-MTBC FISH assay uses an orange fluorescent probe specific for the Mycobacterium tuberculosis complex (MTBC) and a green fluorescent probe specific for the Mycobacterium and Nocardia genera (MN Genus) to detect and distinguish MTBC from other Mycobacteria and Nocardia. A complementary MTBC-MAC FISH assay uses green and orange fluorescent probes specific for the MTBC and M. avium complex (MAC) respectively to identify and differentiate the two species complexes. The assays are performed on acid-fast staining bacteria from liquid or solid cultures in less than two hours. Forty-three of 44 reference mycobacterial isolates were correctly identified by the MN Genus-specific probe as Mycobacterium species, with six of these correctly identified as MTBC with the MTBC-specific probe and 14 correctly as MAC by the MAC-specific probe. Of the 25 reference isolates of clinically relevant pathogens of other genera tested, only four isolates representing two species of Corynebacterium gave a positive signal with the MN Genus probe. None of these 25 isolates were detected by the MTBC and MAC specific probes. A total of 248 cultures of clinical mycobacterial isolates originating in India, Peru and the USA were also tested by FISH assays. DNA sequence of a part of the 23S ribosomal RNA gene amplified by PCR was obtained from 243 of the 248 clinical isolates. All 243 were confirmed by DNA sequencing as Mycobacterium species, with 157 and 50 of these identified as belonging to the MTBC and the MAC, respectively. The accuracy of the MN Genus-, MTBC-and MAC -specific probes in identifying these 243 cultures in relation to their DNA sequence-based identification was 100%. All ten isolates of Nocardia, (three reference strains and seven clinical isolates) tested were detected by the MN Genus-specific probe but not the MTBC- or

  9. Dual color fluorescence in situ hybridization (FISH) assays for detecting Mycobacterium tuberculosis and Mycobacterium avium complexes and related pathogens in cultures.

    Science.gov (United States)

    Shah, Jyotsna; Weltman, Helena; Narciso, Patricia; Murphy, Christina; Poruri, Akhila; Baliga, Shrikala; Sharon, Leesha; York, Mary; Cunningham, Gail; Miller, Steve; Caviedes, Luz; Gilman, Robert; Desmond, Edward; Ramasamy, Ranjan

    2017-01-01

    Two rapid dual color fluorescence in situ hybridization (FISH) assays were evaluated for detecting M. tuberculosis and related pathogens in cultures. The MN Genus-MTBC FISH assay uses an orange fluorescent probe specific for the Mycobacterium tuberculosis complex (MTBC) and a green fluorescent probe specific for the Mycobacterium and Nocardia genera (MN Genus) to detect and distinguish MTBC from other Mycobacteria and Nocardia. A complementary MTBC-MAC FISH assay uses green and orange fluorescent probes specific for the MTBC and M. avium complex (MAC) respectively to identify and differentiate the two species complexes. The assays are performed on acid-fast staining bacteria from liquid or solid cultures in less than two hours. Forty-three of 44 reference mycobacterial isolates were correctly identified by the MN Genus-specific probe as Mycobacterium species, with six of these correctly identified as MTBC with the MTBC-specific probe and 14 correctly as MAC by the MAC-specific probe. Of the 25 reference isolates of clinically relevant pathogens of other genera tested, only four isolates representing two species of Corynebacterium gave a positive signal with the MN Genus probe. None of these 25 isolates were detected by the MTBC and MAC specific probes. A total of 248 cultures of clinical mycobacterial isolates originating in India, Peru and the USA were also tested by FISH assays. DNA sequence of a part of the 23S ribosomal RNA gene amplified by PCR was obtained from 243 of the 248 clinical isolates. All 243 were confirmed by DNA sequencing as Mycobacterium species, with 157 and 50 of these identified as belonging to the MTBC and the MAC, respectively. The accuracy of the MN Genus-, MTBC-and MAC -specific probes in identifying these 243 cultures in relation to their DNA sequence-based identification was 100%. All ten isolates of Nocardia, (three reference strains and seven clinical isolates) tested were detected by the MN Genus-specific probe but not the MTBC- or

  10. Dual color fluorescence in situ hybridization (FISH assays for detecting Mycobacterium tuberculosis and Mycobacterium avium complexes and related pathogens in cultures.

    Directory of Open Access Journals (Sweden)

    Jyotsna Shah

    Full Text Available Two rapid dual color fluorescence in situ hybridization (FISH assays were evaluated for detecting M. tuberculosis and related pathogens in cultures. The MN Genus-MTBC FISH assay uses an orange fluorescent probe specific for the Mycobacterium tuberculosis complex (MTBC and a green fluorescent probe specific for the Mycobacterium and Nocardia genera (MN Genus to detect and distinguish MTBC from other Mycobacteria and Nocardia. A complementary MTBC-MAC FISH assay uses green and orange fluorescent probes specific for the MTBC and M. avium complex (MAC respectively to identify and differentiate the two species complexes. The assays are performed on acid-fast staining bacteria from liquid or solid cultures in less than two hours. Forty-three of 44 reference mycobacterial isolates were correctly identified by the MN Genus-specific probe as Mycobacterium species, with six of these correctly identified as MTBC with the MTBC-specific probe and 14 correctly as MAC by the MAC-specific probe. Of the 25 reference isolates of clinically relevant pathogens of other genera tested, only four isolates representing two species of Corynebacterium gave a positive signal with the MN Genus probe. None of these 25 isolates were detected by the MTBC and MAC specific probes. A total of 248 cultures of clinical mycobacterial isolates originating in India, Peru and the USA were also tested by FISH assays. DNA sequence of a part of the 23S ribosomal RNA gene amplified by PCR was obtained from 243 of the 248 clinical isolates. All 243 were confirmed by DNA sequencing as Mycobacterium species, with 157 and 50 of these identified as belonging to the MTBC and the MAC, respectively. The accuracy of the MN Genus-, MTBC-and MAC -specific probes in identifying these 243 cultures in relation to their DNA sequence-based identification was 100%. All ten isolates of Nocardia, (three reference strains and seven clinical isolates tested were detected by the MN Genus-specific probe but not

  11. Loop-Mediated Isothermal Amplification Assay for the Rapid Detection of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    King Ting Lim

    2013-01-01

    Full Text Available Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA, is an important human pathogen that produces a variety of toxins and causes a wide range of infections, including soft-tissue infections, bacteremia, and staphylococcal food poisoning. A loop-mediated isothermal amplification (LAMP assay targeting the arcC gene of S. aureus was developed and evaluated with 119 S. aureus and 25 non-S. aureus strains. The usefulness of the assay was compared with the PCR method that targets spa and arcC genes. The optimal temperature for the LAMP assay was 58.5°C with a detection limit of 2.5 ng/μL and 102 CFU/mL when compared to 12.5 ng/μL and 103 CFU/mL for PCR (spa and arcC. Both LAMP and PCR assays were 100% specific, 100% sensitive, 100% positive predictive value (PPV, and 100% negative predictive value (NPV. When tested on 30 spiked blood specimens (21 MRSA, eight non-S. aureus and one negative control, the performance of LAMP and PCR was comparable: 100% specific, 100% sensitive, 100% PPV, and 100% NPV. In conclusion, the LAMP assay was equally specific with a shorter detection time when compared to PCR in the identification of S. aureus. The LAMP assay is a promising alternative method for the rapid identification of S. aureus and could be used in resource-limited laboratories and fields.

  12. Direct fluorescent antibody assay and polymerase chain reaction for the detection of Chlamydia trachomatis in patients with vernal keratoconjunctivitis.

    Science.gov (United States)

    Nishiwaki-Dantas, Maria Cristina; de Abreu, Mariza Toledo; de Melo, Cynthia Mendonça; Romero, Ivana Lopes; Neto, Rubens Belfort Matos; Dantas, Paulo Elias Correa

    2011-01-01

    To identify Chlamydia trachomatis via polymerase chain reaction and a direct fluorescent antibody assay in patients with vernal keratoconjunctivitis while comparing the efficacies of both tests for detecting Chlamydia trachomatis in these conditions. Conjunctival scraping samples were obtained from 177 patients who were divided into two groups: a vernal keratoconjunctivitis group (group A) and a control group (group B). The polymerase chain reaction and a direct fluorescent antibody assay were performed. Sensitivity, specificity, receiver operating characteristic curves, and areas under the curve were calculated for both tests in groups A and B. Receiver operating characteristic curves were plotted using a categorical variable with only two possible outcomes (positive and negative). Statistical analysis revealed a significant association between vernal keratoconjunctivitis and Chlamydia trachomatis infection detected by a direct fluorescent antibody assay with high sensitivity and specificity. All patients in group A with positive polymerase chain reactions also presented with positive direct fluorescent antibody assays. The association between vernal keratoconjunctivitis and Chlamydia trachomatis infection was confirmed by positive direct fluorescent antibody assays in 49.4% of vernal keratoconjunctivitis patients and by positive polymerase chain reactions in 20% of these patients. The direct fluorescent antibody assay detected Chlamydia trachomatis in a higher number of patients than did the polymerase chain reaction. Although the diagnosis of trachoma is essentially clinical, the disease may not be detected in vernal keratoconjunctivitis patients. Due to the high frequency of chlamydial infection detected in patients with vernal keratoconjunctivitis, we suggest considering routine laboratory tests to detect Chlamydia trachomatis in patients with severe and refractory allergic disease.

  13. A Rapid Method for Quantifying Viable Mycobacterium avium subsp. paratuberculosis in Cellular Infection Assays

    Science.gov (United States)

    Pooley, Hannah B.; de Silva, Kumudika; Purdie, Auriol C.; Begg, Douglas J.; Whittington, Richard J.

    2016-01-01

    ABSTRACT Determining the viability of bacteria is a key outcome of in vitro cellular infection assays. Currently, this is done by culture, which is problematic for fastidious slow-growing bacteria such as Mycobacterium avium subsp. paratuberculosis, where it can take up to 4 months to confirm growth. This study aimed to identify an assay that can rapidly quantify the number of viable M. avium subsp. paratuberculosis cells in a cellular sample. Three commercially available bacterial viability assays along with a modified liquid culture method coupled with high-throughput quantitative PCR growth detection were assessed. Criteria for assessment included the ability of each assay to differentiate live and dead M. avium subsp. paratuberculosis organisms and their accuracy at low bacterial concentrations. Using the culture-based method, M. avium subsp. paratuberculosis growth was reliably detected and quantified within 2 weeks. There was a strong linear association between the 2-week growth rate and the initial inoculum concentration. The number of viable M. avium subsp. paratuberculosis cells in an unknown sample was quantified based on the growth rate, by using growth standards. In contrast, none of the commercially available viability assays were suitable for use with samples from in vitro cellular infection assays. IMPORTANCE Rapid quantification of the viability of Mycobacterium avium subsp. paratuberculosis in samples from in vitro cellular infection assays is important, as it allows these assays to be carried out on a large scale. In vitro cellular infection assays can function as a preliminary screening tool, for vaccine development or antimicrobial screening, and also to extend findings derived from experimental animal trials. Currently, by using culture, it takes up to 4 months to obtain quantifiable results regarding M. avium subsp. paratuberculosis viability after an in vitro infection assay; however, with the quantitative PCR and liquid culture method

  14. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells.

    Science.gov (United States)

    O'Brien, Martha; Moehring, Danielle; Muñoz-Planillo, Raúl; Núñez, Gabriel; Callaway, Justin; Ting, Jenny; Scurria, Mike; Ugo, Tim; Bernad, Laurent; Cali, James; Lazar, Dan

    2017-08-01

    Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1-/- mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective

  15. LAMP assay for rapid diagnosis of cow DNA in goat milk and meat samples.

    Science.gov (United States)

    Deb, R; Sengar, G S; Singh, U; Kumar, S; Raja, T V; Alex, R; Alyethodi, R R; Prakash, B

    2017-01-01

    Animal species detection is one of the crucial steps for consumer's food analysis. In the present study we developed an in-house built loop-mediated isothermal amplification (LAMP) assay for rapid detection of adulterated cow DNA in goat milk/meat samples. The cow milk/tissue DNA in goat milk/meat samples were identified in the developed LAMP assay by either naked eye visualizing with SYBR Green I dyes or by detecting the typical ladder pattern on gel electrophoresis. This test can detect up to minimum 5% level of cow components admixed in goat milk/meat samples and can be completed within 1 h 40 min starting from DNA extraction from milk/meat samples and can be performed in a water bath. Developed LAMP methodology is simple; rapid and sensitive techniques that can detect adulterant like cow components in goat milk/meat are more accurate than other existing DNA based technologies.

  16. DNA Sequence Signatures for Rapid Detection of Six Target Bacterial Pathogens Using PCR Assays

    Directory of Open Access Journals (Sweden)

    Kenjiro Nagamine

    2015-01-01

    Full Text Available Using Streptococcus pyogenes as a model, we previously established a stepwise computational workflow to effectively identify species-specific DNA signatures that could be used as PCR primer sets to detect target bacteria with high specificity and sensitivity. In this study, we extended the workflow for the rapid development of PCR assays targeting Enterococcus faecalis, Enterococcus faecium, Clostridium perfringens, Clostridium difficile, Clostridium tetani , and Staphylococcus aureus , which are of safety concern for human tissue intended for transplantation. Twenty-one primer sets that had sensitivity of detecting 5–50 fg DNA from target bacteria with high specificity were selected. These selected primer sets can be used in a PCR array for detecting target bacteria with high sensitivity and specificity. The workflow could be widely applicable for the rapid development of PCR-based assays for a wide range of target bacteria, including those of biothreat agents.

  17. Rapid and sensitive single-step radiochemical assay for catechol-O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Zuercher, G.; Da Prada, M. (Hoffmann-La Roche (F.) and Co., Basel (Switzerland))

    1982-01-01

    A simple, rapid and reliable radiometric assay for the determination of catechol-O-methyltransferase activity is described. The method is based on the conversion of catechol to (/sup 3/H)guaiacol by catechol-O-methyltransferase in the presence of Mg/sup 2 +/, adenosine deaminase and S-adenosyl L-(methyl-/sup 3/H)methionine. Incubation and direct extraction of (/sup 3/H)guaiacol into organic scintillation fluid, as well as counting, are performed in the same standard scintillation vial. The assay is easy to perform and more sensitive than previous analogous procedures. The method has been applied to the assay of catechol-O-methyltransferase activity in discrete brain areas and also peripheral organs of rat and in human erythrocytes.

  18. Tuning a 96-Well Microtiter Plate Fluorescence-Based Assay to Identify AGE Inhibitors in Crude Plant Extracts

    Directory of Open Access Journals (Sweden)

    Luc Séro

    2013-11-01

    Full Text Available Advanced glycation end-products (AGEs are involved in the pathogenesis of numerous diseases. Among them, cellular accumulation of AGEs contributes to vascular complications in diabetes. Besides using drugs to lower blood sugar, a balanced diet and the intake of herbal products potentially limiting AGE formation could be considered beneficial for patients’ health. The current paper presents a simple and cheap high-throughput screening (HTS assay based on AGE fluorescence and suitable for plant extract screening. We have already implemented an HTS assay based on vesperlysines-like fluorescing AGEs quickly (24 h formed from BSA and ribose under physiological conditions. However, interference was noted when fluorescent compounds and/or complex mixtures were tested. To overcome these problems and apply this HTS assay to plant extracts, we developed a technique for systematic quantification of both vesperlysines (λexc 370 nm; λem 440 nm and pentosidine-like (λexc 335 nm; λem 385 nm AGEs. In a batch of medicinal and food plant extracts, hits were selected as soon as fluorescence decreased under a fixed threshold for at least one wavelength. Hits revealed during this study appeared to contain well-known and powerful anti-AGE substances, thus demonstrating the suitability of this assay for screening crude extracts (0.1 mg/mL. Finally, quercetin was found to be a more powerful reference compound than aminoguanidine in such assay.

  19. Direct influence of S9 liver homogenate on fluorescence signals: impact on practical applications in a bacterial genotoxicity assay.

    Science.gov (United States)

    Dreier, Jürg; Breitmaier, Eva B; Gocke, Elmar; Apfel, Christian M; Page, Malcolm G P

    2002-01-15

    Assays based on the bacterial SOS-response offer the possibility of automatization of genotoxicity testing for screening of large compound libraries. While existing assays use colorimetric detection or luminescence read-out, we describe here the use of a fluorescence-based system to achieve high sensitivity of detection required for assay miniaturization. Three commonly used fluorophores--fluorescein, DDAO and resorufin--are evaluated. Experimental evidence is given that S9 liver homogenate contains a heat-labile, reversible fluorophore-binding activity and therefore, significantly reduces fluorescence intensities. We have worked out simple solutions to overcome the S9 related interference in order to be able to establish a robust bacterial genotoxicity assay.

  20. Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.

    Science.gov (United States)

    Zhang, Ji-Hu; Kang, Zhao B; Ardayfio, Ophelia; Ho, Pei-i; Smith, Thomas; Wallace, Iain; Bowes, Scott; Hill, W Adam; Auld, Douglas S

    2014-06-01

    Pilot testing of an assay intended for high-throughput screening (HTS) with small compound sets is a necessary but often time-consuming step in the validation of an assay protocol. When the initial testing concentration is less than optimal, this can involve iterative testing at different concentrations to further evaluate the pilot outcome, which can be even more time-consuming. Quantitative HTS (qHTS) enables flexible and rapid collection of assay performance statistics, hits at different concentrations, and concentration-response curves in a single experiment. Here we describe the qHTS process for pilot testing in which eight-point concentration-response curves are produced using an interplate asymmetric dilution protocol in which the first four concentrations are used to represent the range of typical HTS screening concentrations and the last four concentrations are added for robust curve fitting to determine potency/efficacy values. We also describe how these data can be analyzed to predict the frequency of false-positives, false-negatives, hit rates, and confirmation rates for the HTS process as a function of screening concentration. By taking into account the compound pharmacology, this pilot-testing paradigm enables rapid assessment of the assay performance and choosing the optimal concentration for the large-scale HTS in one experiment. © 2013 Society for Laboratory Automation and Screening.

  1. Quantitative methylene blue decolourisation assays as rapid screening tools for assessing the efficiency of catalytic reactions.

    Science.gov (United States)

    Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh

    2017-05-01

    Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO 4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO 4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay.

    Science.gov (United States)

    Nam, Sun-Hwa; Moon, Jongmin; Kim, Shin Woong; Kim, Hakyeong; Jeong, Seung-Woo; An, Youn-Joo

    2017-11-16

    The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.

  3. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function.

    Directory of Open Access Journals (Sweden)

    Prerna Grover

    Full Text Available The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery

  4. A modified MS2 bacteriophage plaque reduction assay for the rapid screening of antiviral plant extracts.

    Science.gov (United States)

    Cock, Ian; Kalt, F R

    2010-07-01

    Traditional methods of screening plant extracts and purified components for antiviral activity require up to a week to perform, prompting the need to develop more rapid quantitative methods to measure the ability of plant based preparations to block viral replication. We describe an adaption of an MS2 plaque reduction assay for use in S. aureus. MS2 bacteriophage was capable of infecting and replicating in B. cereus, S. aureus and F + E. coli but not F- E. coli. Indeed, both B. cereus and S. aureus were more sensitive to MS2 induced lysis than F+ E. coli. When MS2 bacteriophage was mixed with Camellia sinensis extract (1 mg/ml), Scaevola spinescens extract (1 mg/ml) or Aloe barbadensis juice and the mixtures inoculated into S. aureus, the formation of plaques was reduced to 8.9 ± 3.8%, 5.4 ± 2.4% and 72.7 ± 20.9% of the untreated MS2 control values respectively. The ability of the MS2 plaque reduction assay to detect antiviral activity in these known antiviral plant preparations indicates its suitability as an antiviral screening tool. An advantage of this assay compared with traditionally used cytopathic effect reduction assays and replicon based assays is the more rapid acquisition of results. Antiviral activity was detected within 24 h of the start of testing. The MS2 assay is also inexpensive and non-pathogenic to humans making it ideal for initial screening studies or as a simulant for pathogenic viruses.

  5. Gold-nanorod-based colorimetric and fluorescent approach for sensitive and specific assay of disease-related gene and mutation.

    Science.gov (United States)

    Wang, Wenhong; Zhao, Yina; Jin, Yan

    2013-11-27

    Sensitive and specific detection of disease-related gene and single nucleotide polymorphism (SNP) is of great importance in cancer diagnosis. Here, a colorimetric and fluorescent approach is described for detection of the p53 gene and SNP in homogeneous solution by using gold nanorods (GNRs) as both colorimetric probe and fluorescence quencher. Hairpin oligonucleotide was utilized as DNA probe to ensure highly sequence-specific detection of target DNA. In the presence of target DNA, the formation of DNA duplex greatly changed the electrostatic interaction between GNR and DNAs, leading to an obvious change in fluorescence and colorimetric response. The detection limit of fluorescent and colorimetric assay is 0.26 pM and 0.3 nM, respectively. Both fluorescence and colorimetric strategies were able to effectively discriminate complementary DNA from single-base mismatched DNA, which is meaningful for cancer diagnosis. More important, target DNA can be detected as low as 10 nM by the naked eye. Furthermore, transmission electron microscopy and fluorescence anisotropy measurements demonstrated that the color change as well as fluorescence quenching is ascribed to the DNA hybridization-induced aggregation of GNRs. Therefore, the assay provided a fast, sensitive, cost-effective, and specific sensing platform for detecting disease-related gene and SNP.

  6. Continuous fluorescence anisotropy-based assay of BOCILLIN FL penicillin reaction with penicillin binding protein 3.

    Science.gov (United States)

    Shapiro, Adam B; Gu, Rong-Fang; Gao, Ning; Livchak, Stephania; Thresher, Jason

    2013-08-01

    We report a simple, rapid, and reproducible fluorescence anisotropy-based method for measuring rate constants for acylation and deacylation of soluble penicillin binding protein (PBP) constructs by compounds in microtiter plates by means of competition with time-dependent acylation by BOCILLIN FL. The method is demonstrated by measuring the acylation rate constants of the PBP3 periplasmic domains from Pseudomonas aeruginosa and Acinetobacter baumannii by BOCILLIN FL, aztreonam, meropenem, and ceftazidime. The new method requires very little protein and can be completed in approximately 1h per compound. A set of BOCILLIN FL acylation progress curves collected over a range of competitor concentrations is fit globally to a kinetic model by numerical integration. First-order deacylation rate constants could also be measured, as demonstrated with a catalytically impaired mutant OXA-10 β-lactamase. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Comparison of five assays for antibody to varicella-zoster virus and the fluorescent-antibody-to-membrane-antigen test.

    OpenAIRE

    Larussa, P; Steinberg, S; Waithe, E; Hanna, B; Holzman, R

    1987-01-01

    Three commercially available assays (the Varicelisa Test Kit [Whittaker M.A. Bioproducts, Walkersville, Md.], the VZV Indirect Fluorescent-Antibody Test [Electro-Nucleonics, Inc., Columbia, Md.], and the Litton VZV Bio-EnzaBead Screen Kit [Litton Bionetics, Inc., Charleston, S.C.]) and two enzyme-linked immunosorbent assays used in our laboratory, one using a membrane-associated antigen and the other using a soluble antigen dotted on nitrocellulose paper, were compared with a varicella-zoster...

  8. Multicenter evaluation of a new rapid automated human immunodeficiency virus antigen detection assay.

    Science.gov (United States)

    Weber, B; Mühlbacher, A; Michl, U; Paggi, G; Bossi, V; Sargento, C; Camacho, R; Fall, E H; Berger, A; Schmitt, U; Melchior, W

    1999-03-01

    Although human immunodeficiency virus (HIV) antigen assays are of limited value for monitoring antiretroviral therapy, they play an important role for confirmatory testing of fourth generation HIV screening enzyme immunoassay (EIA) reactive samples. In a multicenter study, a new automated rapid p24 antigen assay, Elecsys HIV Ag (Roche Diagnostics Boehringer Mannheim GmbH, Penzberg, Germany), was compared to FDA licensed tests (Abbott HIV-1 Ag monoclonal and Coulter HIV-1 p24 antigen assay). In the evaluation 27 seroconversion panels were included, sera from the acute phase of infection, single and follow-up samples from HIV antibody positive patients, dilution series of HIV antigen positive standards, sera and cell culture supernatants infected with different HIV-1 subtypes (A-H, and O) HIV-2 and recombinant HIV-1 (gag/env) isolates. To challenge the specificity of the new assay, 2565 unselected blood donors, sera from pregnant women, dialysis and hospitalized patients and 407 potentially cross-reactive samples were investigated. Acute HIV infection was detected in three to eight seroconversion panels earlier with Elecsys HIV Ag than with the alternative assays. Higher numbers of serum samples from HIV infected patients tested positive by Elecsys HIV Ag than with the comparative assays. All HIV-1 subtypes and HIV-2 isolates were recognized with Elecsys HIV Ag. Abbott HIV-1 Ag monoclonal and Coulter HIV-1 p24 antigen assay showed a variable sensitivity for the different HIV-1 subtypes. The specificity of Elecsys HIV Ag and Coulter HIV-1 p24 antigen assay were 99.8 and 99.93%, respectively. All the eight sera that were false reactive by Elecsys HIV Ag were tested negative with the Elecsys HIV Ag Neutralization Test. In conclusion, Elecsys HIV Ag was more sensitive than the alternative assays and showed a high specificity in combination with the neutralization assay. The very short incubation time of 18 min and the fully automated procedure of Elecsys HIV Ag which

  9. Development of multiplex-PCR assay for rapid detection of Candida spp.

    Directory of Open Access Journals (Sweden)

    Ni Made A. Tarini

    2010-05-01

    Full Text Available Aim Candida spp. infection commonly occur in immunocompromised patients. Biochemical assay for identification of Candida spp. is time-consuming and shows many undetermined results. Specific detection for antibody, antigen and metabolites of Candida spp. had low sensitivity and specificity. In this study, we developed a rapid diagnostic method, Multiplex-PCR, to identify Candida spp.Methods Five Candida spp. isolates were cultured, identifi ed with germ tube and API® 20 C AUX (BioMerieux® SA kit. Furthermore, DNA was purified by QIAamp DNA mini (Qiagen® kit for Multiplex-PCR assay.Results DNA detection limit by Multiplex-PCR assays for C. albicans, C. tropicalis, C. parapsilosis, C. krusei and C. glabrata were 4 pg, 0.98 pg, 0.98 pg, 0.5 pg and 16 pg respectively. This assay was also more sensitive than culture in that Multiplex-PCR could detect 2.6-2.9 x 100 CFU/ml, whereas culture 2.6-2.9 x 102 CFU/ml.Conclusion Multiplex-PCR is much more sensitive than culture and thus, can be recommended as a sensitive and specific assay for identification of Candida spp. (Med J Indones 2010; 19:83-7Keywords: Candida spp., multiplex-PCR

  10. Competitive fluorescence anisotropy/polarization assay for ATP using aptamer as affinity ligand and dye-labeled ATP as fluorescence tracer.

    Science.gov (United States)

    Li, Yapiao; Sun, Linlin; Zhao, Qiang

    2017-11-01

    We developed an aptamer-based competitive fluorescence anisotropy (FA)/fluorescence polarization (FP) assay for adenosine triphosphate (ATP). Different from the traditional fluorescence polarization immunoassays for small molecules, here DNA aptamer against ATP was used as affinity ligand, and tetramethylrhodamine (TMR) labeled ATP served as fluorescent tracer. The binding between TMR-labeled ATP and aptamer gave large FA due to molecular volume increase and restricted rotation of the dye-labeled ATP. When ATP was added in solution, ATP competitively displaced the TMR-labeled ATP from aptamer affinity complex, causing decrease of FA of TMR-labeled ATP. The buffer containing MgCl 2 and incubation at low temperature were preferred for large FA change in the FA assay. The FA change was further enhanced in this competitive FA assay by increasing the molecular weight of aptamer through extension of aptamer sequences or conjugating streptavidin protein on aptamer. This method allowed for the detection of ATP in the range from 0.5μM to 1mM, generating the maximum FA change about 0.187 (corresponding maximum FP change about 0.242). The detection of ATP spiked in diluted urine or serum sample was achieved, showing capability for analysis in complex sample matrix. This assay also enabled the detection of the analogues of ATP, e.g. adenosine, adenosine monophosphate (AMP), and adenosine diphosphate (ADP) with similar sensitivity. This aptamer-based competitive FA assay takes advantages of aptamer in ease of synthesis, good thermal stability, and facile modulating the molecular mass of aptamer. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Development of a rapid dipstick with latex immunochromatographic assay (DLIA for diagnosis of schistosomiasis japonica

    Directory of Open Access Journals (Sweden)

    Lu Shao-Hong

    2011-08-01

    Full Text Available Abstract Background Schistosomiasis japonica (schistosomiasis is a zoonosis that can seriously affect human health. At present, the immunodiagnostic assays for schistosomiasis detection are time-consuming and require well-trained personnel and special instruments, which can limit their use in the field. Thus, there is a pressing need for a simple and rapid immunoassay to screen patients on a large scale. In this study, we developed a novel rapid dipstick with latex immunochromatographic assay (DLIA to detect anti-Schisaosoma japonicum antibodies in human serum. Results Using latex microspheres as a color probe, DLIA was established to test standard positive and negative sera, in comparison with the classical enzyme-linked immunosorbent assay (ELISA. The sensitivity and specificity of DLIA were 95.10% (97/102 and 94.91% (261/275, respectively. The cross-reaction rates with clonorchiosis, intestinal nematodes, Angiostrongylus cantonensis and paragonimiasis were 0, 0, 0 and 42.11% respectively. All the results showed no significant difference to the ELISA. In field tests, 333 human serum samples from an endemic area were tested with DLIA, and compared with ELISA and Kato-Katz method. There was no significant difference between DLIA and ELISA on positive and negative rates of detection; however, significant differences existed between DLIA and Kato-Katz method, and between ELISA and Kato-Katz method. The kappa value between DLIA and ELISA was 0.90. Conclusions This is the first study in which DLIA was used to detect anti-Schistosoma japonicum antibody. The results show that DLIA is a simple, rapid, convenient, sensitive and specific assay for the diagnosis of schistosomiasis and is therefore very suitable for large-scale field applications and clinical detection.

  12. Reverse transcription genome exponential amplification reaction assay for rapid and universal detection of human rhinoviruses.

    Science.gov (United States)

    Guan, Li; Zhao, Lin-Qing; Zhou, Hang-Yu; Nie, Kai; Li, Xin-Na; Zhang, Dan; Song, Juan; Qian, Yuan; Ma, Xue-Jun

    2016-07-01

    Human rhinoviruses (HRVs) have long been recognized as the cause of more than one-half of acute viral upper respiratory illnesses, and they are associated with more-serious diseases in children, such as asthma, acute otitis media and pneumonia. A rapid and universal test for of HRV infection is in high demand. In this study, a reverse transcription genome exponential amplification reaction (RT-GEAR) assay targeting the HRV 5' untranslated region (UTR) was developed for pan-HRV detection. The reaction was performed in a single tube in one step at 65 °C for 60 min using a real-time fluorometer (Genie(®)II; Optigene). The RT-GEAR assay showed no cross-reactivity with common human enteroviruses, including HEV71, CVA16, CVA6, CVA10, CVA24, CVB5, Echo30, and PV1-3 or with other common respiratory viruses including FluA H3, FluB, PIV1-4, ADV3, RSVA, RSVB and HMPV. With in vitro-transcribed RNA containing the amplified regions of HRV-A60, HRV-B06 and HRV-C07 as templates, the sensitivity of the RT-GEAR assay was 5, 50 and 5 copies/reaction, respectively. Experiments to evaluate the clinical performance of the RT-GEAR assay were also carried out with a panel of 143 previously verified samples, and the results were compared with those obtained using a published semi-nested PCR assay followed by sequencing. The tested panel comprised 91 HRV-negative samples and 52 HRV-positive samples (18 HRV-A-positive samples, 3 HRV-B-positive samples and 31 HRV-C-positive samples). The sensitivity and specificity of the pan-HRVs RT-GEAR assay was 98.08 % and 100 %, respectively. The kappa correlation between the two methods was 0.985. The RT-GEAR assay based on a portable Genie(®)II fluorometer is a sensitive, specific and rapid assay for the universal detection of HRV infection.

  13. A rapid qualitative assay for detection of Clostridium perfringens in canned food products.

    Science.gov (United States)

    Dave, Gayatri Ashwinkumar

    2017-01-01

    Clostridium perfringens (MTCC 1349) is a Gram-positive, anaerobic, endospore forming, and rod-shaped bacterium. This bacterium produces a variety of toxins under strict anaerobic environment. C. perfringens can grow at temperatures ranging between 20°C and 50°C. It is the major causetive agent for gas gangrene, cellulitis, septicemia, necrotic enteritis and food poisoning, which are common toxin induced conditions noted in human and animals. C. perfringens can produce produce four major types of toxins that are used for the classification of strains, classified under type A-E. Across the globe many countries, including the United States, are affected by C. perfringens food poisonings where it is ranked as one of the most common causes of food borne infections. To date, no direct one step assay for the detection of C. perfringens has been developed and only few methods are known for accurate detection of C. perfringens. Long detection and incubation time is the major consideration of these reporter assays. The prensent study proposes a rapid and reliable colorimetric assay for the detection of C. perfringens. In principale, this assay detects the para nitrophenyl (yellow colour end product) liberated due to the hydrolysis of paranitrophenyl phosphetidyl choline (PNPC) through phospholipase C (lecithinase). Constitutive secretion of phospholipase C is a charactristic feature of C. perfringens. This assay detects the presence of the extracellular lecithinse through the PNPC impragnated impregnated probe. The probe is impregnated with peranitrophenyl phosphotidyl choline ester, which is colourless substrate used by lecithinase. The designed assay is specific towards PNPC and detectes very small quantites of lecithinase under conditions used. The reaction is substrate specific, no cross reaction was observed upon incubation with other substrates. In addition, this assay gave negative results with other clostridium strains, no cross reactions were observed with other

  14. Rapid analysis & design methodologies of High-Frequency LCLC Resonant Inverter as Electrodeless Fluorescent Lamp Ballast

    OpenAIRE

    Ang, Y A; Stone, D A; Bingham, Chris; Foster, M

    2007-01-01

    The papers presents methodologies for the analysis of 4th-order LCLC resonant power converters operating at 2.63 MHz as fluorescent lamp ballasts, where high frequency operation facilitates capacitive discharge into the tube, with near resonance operation at high load quality factor enabling high efficiency. State-variable dynamic descriptions of the converter are employed to rapidly determine the steady-state cyclic behaviour of the ballast during nominal operation. Simulation and experiment...

  15. Development of cross-priming amplification assays for rapid and sensitive detection of Aeromonas hydrophila.

    Science.gov (United States)

    Meng, S; Wang, Y; Wang, Y; Liu, D; Ye, C

    2015-08-01

    Aeromonas hydrophila has been increasingly implicated as the aetiologic agent of various human diseases. Therefore, reliable laboratory detection and identification of this bacterium has become clinically and epidemiologically desirable. We developed a nearly instrument-free, simple molecular method for rapid detection of Aer. hydrophila using a cross-priming amplification (CPA) assay with the desA gene as the target. The desA gene is crucial for the survival and growth of Aer. hydrophila under iron starvation. The results can be visualized as colour changes without opening the reaction tubes. No false-positive results were observed for the 33 non-Aer. hydrophila strains tested to evaluate assay specificity. The limit of detection for Aer. hydrophila was approximately 200 copies of desA per reaction (on reference plasmids) and 5 × 10(3)  CFU g(-1) Aer. hydrophila in simulated human stool, which is the same sensitivity as a qPCR assay. The performance of the CPA assay was also evaluated with 100 stool specimens from diarrhoea patients and 40 environmental water samples. In conclusion, the simplicity, cost-effectiveness and nearly instrument-free platform of the CPA assay make it practical for use in primary care facilities and smaller clinical laboratories. Aeromonas hydrophila is a human pathogen that infects via exposed wounds or ingestion of contaminated water and food. In this study, a CPA-based PCR method was developed for specific, rapid, cost-effective detection of Aer. hydrophila, and the test results could be visualized without opening the reaction tubes. This is the first report on the application of the CPA method for the detection of Aer. hydrophila. This novel method could be practical for use in primary care facilities and smaller clinical laboratories. © 2015 The Society for Applied Microbiology.

  16. Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV

    Science.gov (United States)

    Onoyama, Haruna; Kamiya, Mako; Kuriki, Yugo; Komatsu, Toru; Abe, Hiroyuki; Tsuji, Yosuke; Yagi, Koichi; Yamagata, Yukinori; Aikou, Susumu; Nishida, Masato; Mori, Kazuhiko; Yamashita, Hiroharu; Fujishiro, Mitsuhiro; Nomura, Sachiyo; Shimizu, Nobuyuki; Fukayama, Masashi; Koike, Kazuhiko; Urano, Yasuteru; Seto, Yasuyuki

    2016-01-01

    Early detection of esophageal squamous cell carcinoma (ESCC) is an important prognosticator, but is difficult to achieve by conventional endoscopy. Conventional lugol chromoendoscopy and equipment-based image-enhanced endoscopy, such as narrow-band imaging (NBI), have various practical limitations. Since fluorescence-based visualization is considered a promising approach, we aimed to develop an activatable fluorescence probe to visualize ESCCs. First, based on the fact that various aminopeptidase activities are elevated in cancer, we screened freshly resected specimens from patients with a series of aminopeptidase-activatable fluorescence probes. The results indicated that dipeptidylpeptidase IV (DPP-IV) is specifically activated in ESCCs, and would be a suitable molecular target for detection of esophageal cancer. Therefore, we designed, synthesized and characterized a series of DPP-IV-activatable fluorescence probes. When the selected probe was topically sprayed onto endoscopic submucosal dissection (ESD) or surgical specimens, tumors were visualized within 5 min, and when the probe was sprayed on biopsy samples, the sensitivity, specificity and accuracy reached 96.9%, 85.7% and 90.5%. We believe that DPP-IV-targeted activatable fluorescence probes are practically translatable as convenient tools for clinical application to enable rapid and accurate diagnosis of early esophageal cancer during endoscopic or surgical procedures. PMID:27245876

  17. Rapid identification of ST131 Escherichia coli by a novel multiplex real-time allelic discrimination assay.

    Science.gov (United States)

    François, Patrice; Bonetti, Eve-Julie; Fankhauser, Carolina; Baud, Damien; Cherkaoui, Abdessalam; Schrenzel, Jacques; Harbarth, Stephan

    2017-09-01

    Escherichia coli sequence type 131 is increasingly described in severe hospital infections. We developed a rapid real-time allelic discrimination assay for the rapid identification of E. coli ST131 isolates. This rapid assay represents an affordable alternative to sequence-based strategies before completing characterization of potentially highly virulent isolates of E. coli. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Advantages of fluorescent microspheres compared with colloidal gold as a label in immunochromatographic lateral flow assays.

    Science.gov (United States)

    Xie, Quan-Yuan; Wu, Yan-Hua; Xiong, Qi-Rong; Xu, Heng-Yi; Xiong, Yong-Hua; Liu, Kun; Jin, Yong; Lai, Wei-Hua

    2014-04-15

    Label selection is of vital importance for immunochromatographic assays. In this study, the fluorescent microsphere test strip and colloidal gold immunochromatographic test strip (FM-ICTS and CG-ICTS) were developed for the detection of Escherichia coli O157:H7 on the basis of the sandwich format. Two types of labels, namely, colloidal gold particles (CG) and carboxyl-modified fluorescent microspheres (FMs), were compared while coupling with anti-E. coli O157:H7 monoclonal antibody (mAb). The FM-ICTS and CG-ICTS were also compared. Results show that the coupling rate between FMs and mAb was higher than that between CG and mAb. Under optimum conditions, the sensitivity of FM-ICTS was eight times higher than that of CG-ICTS. Approximately 0.1 μg of mAb was used in every FM-ICTS, whereas 0.4 μg of mAb was used in every CG-ICTS. The coefficient of variation of FM-ICTS and CG-ICTS was 4.8% and 16.7%, respectively. The FM-ICTS and CG-ICTS can be stored at room temperature for 12 months and specific to five E. coli O157:H7 strains. Milk sample inoculated with E. coli O157:H7 were tested by the FM-ICTS and CG-ICTS. The FM-ICTS sensitivity was 10(4) CFU/ml while the CG-ICTS sensitivity was 10(5) CFU/ml. The sensitivity, consumption of antibodies, and coefficient of variation of FM-ICTS were better than those of CG-ICTS for the detection of E. coli O157:H7. © 2013 Published by Elsevier B.V.

  19. Testing a dual-fluorescence assay to monitor the viability of filamentous cyanobacteria.

    Science.gov (United States)

    Johnson, Tylor J; Hildreth, Michael B; Gu, Liping; Zhou, Ruanbao; Gibbons, William R

    2015-06-01

    Filamentous cyanobacteria are currently being engineered to produce long-chain organic compounds, including 3rd generation biofuels. Because of their filamentous morphology, standard methods to quantify viability (e.g., plate counts) are not possible. This study investigated a dual-fluorescence assay based upon the LIVE/DEAD® BacLight™ Bacterial Viability Kit to quantify the percent viability of filamentous cyanobacteria using a microplate reader in a high throughput 96-well plate format. The manufacturer's protocol calls for an optical density normalization step to equalize the numbers of viable and non-viable cells used to generate calibration curves. Unfortunately, the isopropanol treatment used to generate non-viable cells released a blue pigment that altered absorbance readings of the non-viable cell solution, resulting in an inaccurate calibration curve. Thus we omitted this optical density normalization step, and carefully divided cell cultures into two equal fractions before the isopropanol treatment. While the resulting calibration curves had relatively high correlation coefficients, their use in various experiments resulted in viability estimates ranging from below 0% to far above 100%. We traced this to the apparent inaccuracy of the propidium iodide (PI) dye that was to stain only non-viable cells. Through further analysis via microplate reader, as well as confocal and wide-field epi-fluorescence microscopy, we observed non-specific binding of PI in viable filamentous cyanobacteria. While PI will not work for filamentous cyanobacteria, it is possible that other fluorochrome dyes could be used to selectively stain non-viable cells. This will be essential in future studies for screening mutants and optimizing photobioreactor system performance for filamentous cyanobacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Photo- and biophysical studies of lectin-conjugated fluorescent nanoparticles: reduced sensitivity in high density assays.

    Science.gov (United States)

    Wang, Yaqi; Gildersleeve, Jeffrey C; Basu, Amit; Zimmt, Matthew B

    2010-11-18

    Lectin-conjugated, fluorescent silica nanoparticles (fNP) have been developed for carbohydrate-based histopathology evaluations of epithelial tissue biopsies. The fNP platform was selected for its enhanced emissive brightness compared to direct dye labeling. Carbohydrate microarray studies were performed to compare the carbohydrate selectivity of the mannose-recognizing lectin Concanavalin A (ConA) before and after conjugation to fluorescent silica nanoparticles (ConA-fNP). These studies revealed surprisingly low emission intensities upon staining with ConA-fNP compared to those with biotin-ConA/Cy3-streptavidin staining. A series of photophysical and biophysical characterizations of the fNP and ConA-fNP conjugates were performed to probe the low sensitivity from fNP in the microarray assays. Up to 1200 fluorescein (FL) and 80 tetramethylrhodamine (TR) dye molecules were incorporated into 46 nm diameter fNP, yielding emissive brightness values 400 and 35 times larger than the individual dye molecules, respectively. ConA lectin conjugated to carboxylic acid surface-modified nanoparticles covers 15-30% of the fNP surface. The CD spectra and mannose substrate selectivity of ConA conjugated to the fNP differed slightly compared to that of soluble ConA. Although, the high emissive brightness of fNP enhances detection sensitivity for samples with low analyte densities, large fNP diameters limit fNP recruitment and binding to samples with high analyte densities. The high analyte density and nearly two-dimensional target format of carbohydrate microarrays make probe size a critical parameter. In this application, fNP labels afford minimal sensitivity advantage compared to direct dye labeling.

  1. Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy

    Directory of Open Access Journals (Sweden)

    Mengyan Wang

    2017-12-01

    Full Text Available A method of rapidly differentiating lung tumor from healthy tissue is extraordinarily needed for both the diagnosis and the intraoperative margin assessment. We assessed the ability of fluorescence lifetime imaging microscopy (FLIM for differentiating human lung cancer and normal tissues with the autofluorescence, and also elucidated the mechanism in tissue studies and cell studies. A 15-patient testing group was used to compare FLIM results with traditional histopathology diagnosis. Based on the endogenous fluorescence lifetimes of the testing group, a criterion line was proposed to distinguish normal and cancerous tissues. Then by blinded examined 41 sections from the validation group of other 16 patients, the sensitivity and specificity of FLIM were determined. The cellular metabolism was studied with specific perturbations of oxidative phosphorylation and glycolysis in cell studies. The fluorescence lifetime of cancerous lung tissues is consistently lower than normal tissues, and this is due to the both decrease of reduced nicotinamide adenine dinucleotide (NADH and flavin adenine dinucleotide (FAD lifetimes. A criterion line of lifetime at 1920 ps can be given for differentiating human lung cancer and normal tissues.The sensitivity and specificity of FLIM for lung cancer diagnosis were determined as 92.9% and 92.3%. These findings suggest that NADH and FAD can be used to rapidly diagnose lung cancer. FLIM is a rapid, accurate and highly sensitive technique in the judgment during lung cancer surgery and it can be potential in earlier cancer detection.

  2. Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae.

    Science.gov (United States)

    Choi, Chang Jae; Berges, John A; Young, Erica B

    2012-05-15

    Chlorophyll a fluorescence of microalgae is a compelling indicator of toxicity of dissolved water contaminants, because it is easily measured and responds rapidly. While different chl a fluorescence parameters have been examined, most studies have focused on single species and/or a narrow range of toxins. We assessed the utility of one chl a fluorescence parameter, the maximum quantum yield of PSII (F(v)/F(m)), for detecting effects of nine environmental pollutants from a range of toxin classes on 5 commonly found freshwater algal species, as well as the USEPA model species, Pseudokirchneriella subcapitata. F(v)/F(m) declined rapidly over glyphosate (glyphosate increased exponentially with concentration. F(v)/F(m) provides a sensitive and easily-measured parameter for rapid and cost-effective detection of effects of many dissolved toxins. Field-portable fluorometers will facilitate field testing, however distinct responses between different species may complicate net F(v)/F(m) signal from a community. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Rapid diagnosis and intraoperative margin assessment of human lung cancer with fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Wang, Mengyan; Tang, Feng; Pan, Xiaobo; Yao, Longfang; Wang, Xinyi; Jing, Yueyue; Ma, Jiong; Wang, Guifang; Mi, Lan

    2017-12-01

    A method of rapidly differentiating lung tumor from healthy tissue is extraordinarily needed for both the diagnosis and the intraoperative margin assessment. We assessed the ability of fluorescence lifetime imaging microscopy (FLIM) for differentiating human lung cancer and normal tissues with the autofluorescence, and also elucidated the mechanism in tissue studies and cell studies. A 15-patient testing group was used to compare FLIM results with traditional histopathology diagnosis. Based on the endogenous fluorescence lifetimes of the testing group, a criterion line was proposed to distinguish normal and cancerous tissues. Then by blinded examined 41 sections from the validation group of other 16 patients, the sensitivity and specificity of FLIM were determined. The cellular metabolism was studied with specific perturbations of oxidative phosphorylation and glycolysis in cell studies. The fluorescence lifetime of cancerous lung tissues is consistently lower than normal tissues, and this is due to the both decrease of reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) lifetimes. A criterion line of lifetime at 1920 ps can be given for differentiating human lung cancer and normal tissues.The sensitivity and specificity of FLIM for lung cancer diagnosis were determined as 92.9% and 92.3%. These findings suggest that NADH and FAD can be used to rapidly diagnose lung cancer. FLIM is a rapid, accurate and highly sensitive technique in the judgment during lung cancer surgery and it can be potential in earlier cancer detection.

  4. A fluorescence polarization based screening assay for identification of small molecule inhibitors of the PICK1 PDZ domain

    DEFF Research Database (Denmark)

    Thorsen, Thor S; Madsen, Kenneth L; Dyhring, Tino

    2011-01-01

    PDZ (PSD-95/Discs-large/ZO-1 homology) domains represent putative targets in several diseases including cancer, stroke, addiction and neuropathic pain. Here we describe the application of a simple and fast screening assay based on fluorescence polarization (FP) to identify inhibitors of the PDZ...

  5. Development and validation of fluorescent receptor assays based on the human recombinant estrogen receptor subtypes alpha and beta

    NARCIS (Netherlands)

    de boer, T; Otjens, D; Muntendam, A; Meulman, E; van Oostijen, M; Ensing, K

    2004-01-01

    This article describes the development and validation of two fluorescent receptor assays for the hRec-estrogen receptor subtypes alpha and beta. As a labelled ligand an autofluorescent phyto-estrogen (coumestrol) has been used. The estrogen receptor (ER) belongs to the nuclear receptor family, a

  6. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    Science.gov (United States)

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  7. Fluorescence self-quenching assay for the detection of target collagen sequences using a short probe peptide.

    Science.gov (United States)

    Nian, Linge; Hu, Yue; Fu, Caihong; Song, Chen; Wang, Jie; Xiao, Jianxi

    2018-01-01

    The development of novel assays to detect collagen fragments is of utmost importance for diagnostic, prognostic and therapeutic decisions in various collagen-related diseases, and one essential question is to discover probe peptides that can specifically recognize target collagen sequences. Herein we have developed the fluorescence self-quenching assay as a convenient tool to screen the capability of a series of fluorescent probe peptides of variable lengths to bind with target collagen peptides. We have revealed that the targeting ability of probe peptides is length-dependent, and have discovered a relatively short probe peptide FAM-G(POG)8 capable to identify the target peptide. We have further demonstrated that fluorescence self-quenching assay together with this short probe peptide can be applied to specifically detect the desired collagen fragment in complex biological media. Fluorescence self-quenching assay provides a powerful new tool to discover effective peptides for the recognition of collagen biomarkers, and it may have great potential to identify probe peptides for various protein biomarkers involved in pathological conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Dual Readout Assay Based on Fluorescence Polarization and Time-Resolved Fluorescence Resonance Energy Transfer to Screen for RSK1 Inhibitors.

    Science.gov (United States)

    Jeong, Eun-mi; Lee, Mi Young; Lee, Jeong Hyun; Lee, Byung Ho; Oh, Kwang-Seok

    2016-01-01

    A dual readout assay based on fluorescence polarization (FP) and time-resolved fluorescence resonance energy transfer (TR-FRET) exhibits many advantages over single assay technology in terms of screening quality and efficiency. In this study, we developed a dual readout assay combining FP and TR-FRET to identify ribosomal S6 kinase 1 (RSK1) inhibitors. This dual readout assay can monitor both FP and TR-FRET signals from a single RSK1 kinase reaction by using the immobilized metal affinity for phosphochemical (IMAP)-based assay. The Z' value and signal to background (S/B) ratio were 0.85 and 4.0 using FP, and 0.79 and 10.6 using TR-FRET, which led to performance of a pilot library screening against the drug repositioning set consisting of 2320 compounds with a reasonable reproducibility. From this screening, we identified 16 compounds showing greater than 50% inhibition against RSK1 for both FP and TR-FRET; 6 compounds with greater than 50% inhibition only for FP; and 4 compounds with greater than 50% inhibition only for TR-FRET. In a cell-based functional assay to validate the hit compounds, 10 compounds identified only in a single assay had little effect on the RSK-mediated phosphorylation of liver kinase B1, whereas 5 compounds showing greater than 80% inhibition for both FP and TR-FRET reduced the phosphorylation of liver kinase B1. These results demonstrate that the dual readout assay can be used to identify hit compounds by subsequently monitoring both FP and TR-FRET signals from one RSK1 reaction.

  9. Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, L.E.; Hoffner, S.E.; Ansehn, S.

    1988-08-01

    Mycobacterial growth was monitored by bioluminescence assay of mycobacterial ATP. Cultures of Mycobacterium tuberculosis H37Rv and of 25 clinical isolates of the same species were exposed to serial dilutions of ethambutol, isoniazid, rifampin, and streptomycin. A suppression of ATP, indicating growth inhibition, occurred for susceptible but not resistant strains within 5 to 7 days of incubation. Breakpoint concentrations between susceptibility and resistance were determined by comparing these results with those obtained by reference techniques. Full agreement was found in 99% of the assays with the resistance ratio method on Lowenstein-Jensen medium, and 98% of the assays were in full agreement with the radiometric system (BACTEC). A main advantage of the bioluminescence method is its rapidity, with results available as fast as with the radiometric system but at a lower cost and without the need for radioactive culture medium. The method provides kinetic data concerning drug effects within available in vivo drug concentrations and has great potential for both rapid routine susceptibility testing and research applications in studies of drug effects on mycobacteria.

  10. Rapid and highly informative diagnostic assay for H5N1 influenza viruses.

    Directory of Open Access Journals (Sweden)

    Nader Pourmand

    Full Text Available A highly discriminative and information-rich diagnostic assay for H5N1 avian influenza would meet immediate patient care needs and provide valuable information for public health interventions, e.g., tracking of new and more dangerous variants by geographic area as well as avian-to-human or human-to-human transmission. In the present study, we have designed a rapid assay based on multilocus nucleic acid sequencing that focuses on the biologically significant regions of the H5N1 hemagglutinin gene. This allows the prediction of viral strain, clade, receptor binding properties, low- or high-pathogenicity cleavage site and glycosylation status. H5 HA genes were selected from nine known high-pathogenicity avian influenza subtype H5N1 viruses, based on their diversity in biologically significant regions of hemagglutinin and/or their ability to cause infection in humans. We devised a consensus pre-programmed pyrosequencing strategy, which may be used as a faster, more accurate alternative to de novo sequencing. The available data suggest that the assay described here is a reliable, rapid, information-rich and cost-effective approach for definitive diagnosis of H5N1 avian influenza. Knowledge of the predicted functional sequences of the HA will enhance H5N1 avian influenza surveillance efforts.

  11. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay.

    Science.gov (United States)

    Mondal, Dinesh; Ghosh, Prakash; Khan, Md Anik Ashfaq; Hossain, Faria; Böhlken-Fascher, Susanne; Matlashewski, Greg; Kroeger, Axel; Olliaro, Piero; Abd El Wahed, Ahmed

    2016-05-13

    Leishmania donovani (LD) is a protozoan parasite transmitted to humans from sand flies, which causes Visceral Leishmaniasis (VL). Currently, the diagnosis is based on presence of the anti-LD antibodies and clinical symptoms. Molecular diagnosis would require real-time PCR, which is not easy to implement at field settings. In this study, we report on the development and testing of a recombinase polymerase amplification (RPA) assay for the detection of LD. A genomic DNA sample was applied to determine the assay analytical sensitivity. The cross-reactivity of the assay was tested by DNA of Leishmania spp. and of pathogens considered for differential diagnosis. The clinical performance of the assay was evaluated on LD positive and negative samples. All results were compared with real-time PCR. To allow the use of the assay at field settings, a mobile suitcase laboratory (56 × 45.5 × 26.5 cm) was developed and operated at the local hospital in Mymensingh, Bangladesh. The LD RPA assay detected equivalent to one LD genomic DNA. The assay was performed at constant temperature (42 °C) in 15 min. The RPA assay also detected other Leishmania species (L. major, L. aethiopica and L. infantum), but did not identify nucleic acid of other pathogens. Forty-eight samples from VL, asymptomatic and post-kala-azar dermal leishmaniasis subjects were detected positive and 48 LD-negative samples were negative by both LD RPA and real-time PCR assays, which indicates 100 % agreement. The suitcase laboratory was successfully operated at the local hospital by using a solar-powered battery. DNA extraction was performed by a novel magnetic bead based method (SpeedXtract), in which a simple fast lysis protocol was applied. Moreover, All reagents were cold-chain independent. The mobile suitcase laboratory using RPA is ideal for rapid sensitive and specific detection of LD especially at low resource settings and could contribute to VL control and elimination programmes.

  12. Development of a loop-mediated isothermal amplification assay for rapid detection of capripoxviruses.

    Science.gov (United States)

    Das, Amaresh; Babiuk, Shawn; McIntosh, Michael T

    2012-05-01

    Sheep pox (SP), goat pox (GP), and lumpy skin disease (LSD), caused by capripoxviruses (CaPVs), are economically important diseases of sheep, goats, and cattle, respectively. Here, we report the development of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of CaPVs. LAMP primers were designed to target a conserved gene encoding the poly(A) polymerase small subunit (VP39) of CaPVs. Hydroxynaphthol blue (HNB) was incorporated to monitor assay progress by color change from violet when negative to sky blue when positive, and results were verified by agarose gel electrophoresis. The LAMP assay was shown to be highly specific for CaPVs, with no apparent cross-reactivity to other related viruses (near neighbors) or viruses that cause similar clinical signs (look-a-like viruses). The performance of LAMP was compared to that of a highly sensitive quantitative real-time PCR (qPCR) assay. LAMP and qPCR exhibited similar analytical sensitivities, with limits of detection of 3 and 8 viral genome copies, respectively. Diagnostic specificity was assessed on 36 negative specimens, including swabs and EDTA blood from control sheep, goats, and cattle. Diagnostic sensitivity was assessed on 275 specimens, including EDTA blood, swabs, and tissues from experimentally infected sheep, goats, and cattle. Overall agreement on diagnostic test results between the two assays was 90 to 95% for specificity and 89 to 100% for sensitivity. The LAMP assay described in this report is simple to use, inexpensive, highly sensitive, and particularly well suited for the diagnosis of capripox in less well equipped laboratories and in rural settings where resources are limited.

  13. Rapid Ganciclovir Susceptibility Assay Using Flow Cytometry for Human Cytomegalovirus Clinical Isolates

    Science.gov (United States)

    McSharry, James J.; Lurain, Nell S.; Drusano, George L.; Landay, Alan L.; Notka, Mostafa; O’Gorman, Maurice R. G.; Weinberg, Adriana; Shapiro, Howard M.; Reichelderfer, Patricia S.; Crumpacker, Clyde S.

    1998-01-01

    Rapid, quantitative, and objective determination of the susceptibilities of human cytomegalovirus (HCMV) clinical isolates to ganciclovir has been assessed by an assay that uses a fluorochrome-labeled monoclonal antibody to an HCMV immediate-early antigen and flow cytometry. Analysis of the ganciclovir susceptibilities of 25 phenotypically characterized clinical isolates by flow cytometry demonstrated that the 50% inhibitory concentrations (IC50s) of ganciclovir for 19 of the isolates were between 1.14 and 6.66 μM, with a mean of 4.32 μM (±1.93) (sensitive; IC50 less than 7 μM), the IC50s for 2 isolates were 8.48 and 9.79 μM (partially resistant), and the IC50s for 4 isolates were greater than 96 μM (resistant). Comparative analysis of the drug susceptibilities of these clinical isolates by the plaque reduction assay gave IC50s of less than 6 μM, with a mean of 2.88 μM (±1.40) for the 19 drug-sensitive isolates, IC50s of 6 to 8 μM for the partially resistant isolates, and IC50s of greater than 12 μM for the four resistant clinical isolates. Comparison of the IC50s for the drug-susceptible and partially resistant clinical isolates obtained by the flow cytometry assay with the IC50s obtained by the plaque reduction assay showed an acceptable correlation (r2 = 0.473; P = 0.001), suggesting that the flow cytometry assay could substitute for the more labor-intensive, subjective, and time-consuming plaque reduction assay. PMID:9736557

  14. Direct fluorescent antibody assay and polymerase chain reaction for the detection of Chlamydia trachomatis in patients with vernal keratoconjunctivitis

    Directory of Open Access Journals (Sweden)

    Maria Cristina Nishiwaki-Dantas

    2011-01-01

    Full Text Available OBJECTIVES: To identify Chlamydia trachomatis via polymerase chain reaction and a direct fluorescent antibodyassay in patients with vernal keratoconjunctivitis while comparing the efficacies of both tests for detectingChlamydia trachomatis in these conditions. METHODS: Conjunctival scraping samples were obtained from 177 patients who were divided into two groups: avernal keratoconjunctivitis group (group A and a control group (group B. The polymerase chain reaction and adirect fluorescent antibody assay were performed. Sensitivity, specificity, receiver operating characteristic curves,and areas under the curve were calculated for both tests in groups A and B. Receiver operating characteristic curveswere plotted using a categorical variable with only two possible outcomes (positive and negative. RESULTS: Statistical analysis revealed a significant association between vernal keratoconjunctivitis and Chlamydia trachomatis infection detected by a direct fluorescent antibody assay with high sensitivity and specificity. Allpatients in group A with positive polymerase chain reactions also presented with positive direct fluorescentantibody assays. CONCLUSION: The association between vernal keratoconjunctivitis and Chlamydia trachomatis infection wasconfirmed by positive direct fluorescent antibody assays in 49.4% of vernal keratoconjunctivitis patients and bypositive polymerase chain reactions in 20% of these patients. The direct fluorescent antibody assay detectedChlamydia trachomatis in a higher number of patients than did the polymerase chain reaction. Although thediagnosis of trachoma is essentially clinical, the disease may not be detected in vernal keratoconjunctivitis patients.Due to the high frequency of chlamydial infection detected in patients with vernal keratoconjunctivitis, we suggestconsidering routine laboratory tests to detect Chlamydia trachomatis in patients with severe and refractory allergicdisease.

  15. Rapid, sensitive, and specific detection of Clostridium tetani by loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Jiang, Dongneng; Pu, Xiaoyun; Wu, Jiehong; Li, Meng; Liu, Ping

    2013-01-01

    Tetanus is a specific infectious disease, which is often associated with catastrophic events such as earthquakes, traumas, and war wounds. The obligate anaerobe Clostridium tetani is the pathogen that causes tetanus. Once the infection of tetanus progresses to an advanced stage within the wounds of limbs, the rates of amputation and mortality increase manifold. Therefore, it is necessary to devise a rapid and sensitive point-of-care detection method for C. tetani so as to ensure an early diagnosis and clinical treatment of tetanus. In this study, we developed a detection method for C. tetani using loop-mediated isothermal amplification (LAMP) assay, wherein the C. tetani tetanus toxin gene was used as the target gene. The method was highly specific and sensitive, with a detection limit of 10 colony forming units (CFU)/ml, and allowed quantitative analysis. While detecting C. tetani in clinical samples, it was found that the LAMP results completely agreed with those of the traditional API 20A anaerobic bacteria identification test. As compared with the traditional API test and PCR assay, LAMP detection of C. tetani is simple and rapid, and the results can be identified through naked-eye observation. Therefore, it is an ideal and rapid point-of-care testing method for tetanus.

  16. Development of TaqMan® MGB fluorescent real-time PCR assay for the detection of anatid herpesvirus 1

    Directory of Open Access Journals (Sweden)

    Shen Chanjuan

    2009-06-01

    Full Text Available Abstract Background Anatid herpesvirus 1 (AHV-1 is an alphaherpesvirus associated with latent infection and mortality in ducks and geese and is currently affecting the world-wide waterfowl production severely. Here we describe a fluorescent quantitative real-time PCR (FQ-PCR method developed for fast measurement of AHV-1 DNA based on TaqMan MGB technology. Results The detection limit of the assay was 1 × 101 standard DNA copies, with a sensitivity of 2 logs higher than that of the conventional gel-based PCR assay targeting the same gene. The real-time PCR was reproducible, as shown by satisfactory low intra-assay and inter-assay coefficients of variation. Conclusion The high sensitivity, specificity, simplicity and reproducibility of the AHV-1 fluorogenic PCR assay, combined with its wide dynamic range and high throughput, make this method suitable for a broad spectrum of AHV-1 etiologically related application.

  17. Rapid fluorometric determination of perfluorooctanoic acid by its quenching effect on the fluorescence of quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Huang, Aizhen; Wang, Nan, E-mail: nwang@hust.edu.cn; Zheng, Guan; Zhu, Lihua

    2015-05-15

    Analysis of perfluorooctanoic acid (PFOA) usually requires a combination of high-performance liquid chromatography and mass spectrometry, which is expensive and time-consuming. In the present work, water-soluble CdS quantum dots (QDs) were employed to develop a simple and rapid fluorometric method for the determination of PFOA. Strongly fluorescent CdS QDs were prepared by using 3-mercaptopropionic acid (MPA) as a stabilizer. It was observed that PFOA strongly quenched the fluorescence emission of the MPA-CdS QDs because PFOA promotes the aggregation of MPA-CdS QDs through a fluorine–fluorine affinity interaction. Under optimum conditions, the fluorescence intensity of MPA-CdS QDs was observed to decrease linearly with an increase in the concentration of PFOA from 0.5 to 40 μmol L{sup −1}, with a limit of detection of 0.3 μmol L{sup −1}. This new method was successfully implemented for the analysis of PFOA-spiked textile samples, with recoveries ranging from 95% to 113%. - Highlights: • PFOA significantly quenched the fluorescence emission of quantum dots (QDs). • A rapid and simple fluorescence sensor was proposed for determining PFOA by QDs. • PFOA determination could be completed within approximately 10 min. • The developed method had a working range of 0.5 to 40 μmol L{sup −1} and a detection limit of 0.3 μmol L{sup −1}.

  18. Rapid screening test for detection of oxytetracycline residues in milk using lateral flow assay.

    Science.gov (United States)

    Naik, Laxmana; Sharma, Rajan; Mann, Bimlesh; Lata, Kiran; Rajput, Y S; Surendra Nath, B

    2017-03-15

    A rapid, semi-quantitative lateral flow assay (LFA) was developed to screen the oxytetracycline (OTC) antibiotics residues in milk samples. In this study a competitive immuno-assay format was established. Colloidal gold nano-particles (GNP) were prepared and used as labelling material in LFA. Polyclonal antibodies were generated against OTC molecule (anti-OTC), purified and the quality was assessed by enzyme linked immuno sorbet assay. For the first time membrane components required for LFA in milk system was optimized. GNP and anti-OTC stable conjugate preparation method was standardized, and then these components were placed over the conjugate pad. OTC coupled with carrier protein was placed on test line; species specific secondary antibodies were placed on the control line of the membrane matrix. Assay was validated by spiking OTC to antibiotic free milk samples and results could be accomplished within 5min. without need of any equipment. The visual detection limit was 30ppb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A simple and rapid liquid chromatographic assay for evaluation of potentially counterfeit Tamiflu.

    Science.gov (United States)

    Lindegårdh, N; Hien, T T; Farrar, J; Singhasivanon, P; White, N J; Day, N P J

    2006-10-11

    A simple and rapid liquid chromatographic assay for the evaluation of potentially counterfeit oseltamivir (Tamiflu has been developed and assessed. The assay uses approximately 1mg Tamiflu powder when used for authentication and content estimate. The procedure was validated using 50 replicates analysed during five independent series with a total R.S.D. of 11.2%. The assay can also be used to monitor the exact content of oseltamivir in Tamiflu capsules. One Tamiflu capsule was transferred to a 250mL volumetric flask and 150mL water was added. The flask was placed in an ultrasonic bath at 40 degrees C for 20min to dissolve the capsule. The solution was allowed to cool to room temperature before the flask was filled up to the mark (250mL). A small aliquot was centrifuged and then directly injected into the LC-system for quantification. Oseltamivir was analysed by liquid chromatography with UV detection on a Hypersil Gold column (150mmx4.6mm) using a mobile phase containing methanol-phosphate buffer (pH 2.5; 0.1M) (50:50, v/v) at a flow rate of 1.0mL/min. The assay was implemented for the analysis of Tamiflu purchased over the Internet and at local pharmacies in Thailand and Vietnam.

  20. Rapid Estimation of Tocopherol Content in Linseed and Sunflower Oils-Reactivity and Assay

    Directory of Open Access Journals (Sweden)

    Tjaša Prevc

    2015-08-01

    Full Text Available The reactivity of tocopherols with 2,2-diphenyl-1-picrylhydrazyl (DPPH was studied in model systems in order to establish a method for quantifying vitamin E in plant oils. The method was optimized with respect to solvent composition of the assay medium, which has a large influence on the course of reaction of tocopherols with DPPH. The rate of reaction of α-tocopherol with DPPH is higher than that of γ-tocopherol in both protic and aprotic solvents. In ethyl acetate, routinely applied for the analysis of antioxidant potential (AOP of plant oils, reactions of tocopherols with DPPH are slower and concentration of tocopherols in the assay has a large influence on their molar reactivity. In 2-propanol, however, two electrons are exchanged for both α- and γ-tocopherols, independent of their concentration. 2-propanol is not toxic and is fully compatible with polypropylene labware. The chromatographically determined content of tocopherols and their molar reactivity in the DPPH assay reveal that only tocopherols contribute to the AOP of sunflower oil, whereas the contribution of tocopherols to the AOP of linseed oil is 75%. The DPPH assay in 2-propanol can be applied for rapid and cheap estimation of vitamin E content in plant oils where tocopherols are major antioxidants.

  1. RAPID MONITORING OF INDICATOR COLIFORMS IN DRINKING WATER BY AN ENZYMATIC ASSAY

    Directory of Open Access Journals (Sweden)

    M. Nikaeen ، A. Pejhan ، M. Jalali

    2009-01-01

    Full Text Available Coliform group has been extensively used as an indicator of drinking water quality and historically led to the public health protection concept. Multiple tube fermentation technique has been currently used for assessment of the microbial quality of drinking water. This method, however, has limitations. Enzymatic assay constitute an alternative approach for detecting indicator bacteria, namely total coliforms and E.coli in various aquatic environments. This study compared the performance of LMX® broth as an enzymatic assay with the standard methods multiple tube fermentation technique and presence–absence test, for the detection of indicator coliforms in drinking water samples. In addition, the potential effect of water quality on the microbial detection method was assayed through measurement of some physicochemical parameters. From the 50 drinking water samples tested, 8 (16% and 7 (14% contained total coliforms and E.coli as indicated by all three techniques. Although on average the LMX recovered more total coliforms and E.Coli numbers comparing to multiple tube fermentation, but there was no significant difference. A significant difference existed between the level of residual chlorine for positive and negative samples. In conclusion, enzymatic assay showed a rapid and less labor method, allowing the simultaneous detection of total coliforms and E.coli. The method is particularly useful in the early warning of fecal pollution of drinking water.

  2. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    Science.gov (United States)

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min. Published by Elsevier Inc.

  3. A label-free fluorescent assay for free chlorine in drinking water based on protein-stabilized gold nanoclusters.

    Science.gov (United States)

    Xiong, Xiaoli; Tang, Yan; Zhang, Liangliang; Zhao, Shulin

    2015-01-01

    Bovine serum albumin stabilized Au nanoclusters (BSA-AuNCs) were demonstrated as a novel fluorescence probe for sensitive and selective detection of free chlorine in drinking water. The fluorescence of BSA-AuNCs was found to be quenched effectively by the free chlorine, and the decrease in fluorescence intensity of BSA-AuNCs allowed the sensitive detection of free chlorine in the range of 0.8-800 μM. The detection limit is 0.50 μM at a signal-to-noise ratio of 3. The present fluorescent assay for free chlorine possesses low detection limit, wide linear range and good selectivity. Real tap water samples were analyzed with satisfactory results, which suggested its potential for water quality analysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Rapid and Sensitive Reporter Gene Assays for Detection of Antiandrogenic and Estrogenic Effects of Environmental Chemicals

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Bonefeld-Jørgensen, Eva Cecilie; Larsen, John Christian

    1999-01-01

    Reports on increasing incidences in developmental abnormalities of the human male reproductive tract and the recent identifications of environmental chemicals with antiandrogenic activity necessitate the screening of a larger number of compounds in order to get an overview of potential...... antiandrogenic chemicals present in our environment. Thus, there is a great need for an effectivein vitroscreening method for (anti)androgenic chemicals. We have developed a rapid, sensitive, and reproducible reporter gene assay for detection of antiandrogenic chemicals. Chinese Hamster Ovary cells were......-on laboratory time. This assay is a powerful tool for the efficient and accurate determination and quantification of the effects of antiandrogens on reporter gene transcription. To extend the application of FuGene, the reagent was shown to be superior compared to Lipofectin for transfecting MCF7 human breast...

  5. Rapid and sensitive reporter gene assays for detection of antiandrogenic and estrogenic effects of environmental chemicals

    DEFF Research Database (Denmark)

    Vinggaard, Anne; Jørgensen, E.C.B.; Larsen, John Christian

    1999-01-01

    antiandrogenic chemicals present in our environment. Thus, there is a great need for an effective in vitro screening method for (anti)androgenic chemicals. We have developed a rapid, sensitive, and reproducible reporter gene assay for detection of antiandrogenic chemicals. Chinese Hamster Ovary cells were...... induction of luciferase activity. The classical antiandrogenic compounds hydroxy-flutamide, bicalutamide, spironolactone, and cyproterone acetate together with the pesticide(metabolite)s, vinclozolin, p,p'-DDE, and procymidone all potently inhibited the response to 0.1 nM R1881, Compared to the traditional...... cancer cells with an estrogen response element-luciferase vector. Thus, FuGene may prove to be valuable in diverse reporter gene assays involving transient transfections for screening of potential endocrine disrupters for (anti)androgenic and (anti)estrogenic properties....

  6. Methodology for benzodiazepine receptor binding assays at physiological temperature. Rapid change in equilibrium with falling temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, R.M.

    1986-12-01

    Benzodiazepine receptors of rat cerebellum were assayed with (/sup 3/H)-labeled flunitrazepam at 37/sup 0/C, and assays were terminated by filtration in a cold room according to one of three protocols: keeping each sample at 37 degrees C until ready for filtration, taking the batch of samples (30) into the cold room and filtering sequentially in the order 1-30, and taking the batch of 30 samples into the cold room and filtering sequentially in the order 30-1. the results for each protocol were substantially different from each other, indicating that rapid disruption of equilibrium occurred as the samples cooled in the cold room while waiting to be filtered. Positive or negative cooperativity of binding was apparent, and misleading effects of gamma-aminobutyric acid on the affinity of diazepam were observed, unless each sample was kept at 37/sup 0/C until just prior to filtration.

  7. Usefulness of a rapid immunometric assay for intraoperative parathyroid hormone measurements

    Directory of Open Access Journals (Sweden)

    M.N. Ohe

    2003-06-01

    Full Text Available Intraoperative parathyroid hormone (IO-PTH measurements have been proposed to improve operative success rates in primary, secondary and tertiary hyperparathyroidism (PHP, SHP and THP. Thirty-one patients requiring parathyroidectomy were evaluated retrospectively from June 2000 to January 2002. Sixteen had PHP, 7 SHP and 8 THP. Serum samples were taken at times 0 (before resection, 10, 20 and 30 min after resection of each abnormal parathyroid gland. Samples from 28 patients were frozen at -70ºC for subsequent tests, whereas samples from three patients were tested while surgery was being performed. IO-PTH was measured using the Elecsys immunochemiluminometric assay (Roche, Mannheim, Germany. The time necessary to perform the assay was 9 min. All samples had a second measurement taken by a conventional immunofluorimetric method. We considered as cured patients who presented normocalcemia in PHP and THP, and normal levels of PTH in SHP one month after surgery and who remained in this condition throughout the follow-up of 1 to 20 months. When rapid PTH assay was compared with a routine immunofluorimetric assay, excellent correlation was observed (r = 0.959, P < 0.0001. IO-PTH measurement showed a rapid average decline of 78.8% in PTH 10 min after adenoma resection in PHP and all patients were cured. SHP patients had an average IO-PTH decrease of 89% 30 min after total parathyroidectomy and cure was observed in 85.7%. THP showed an average IO-PTH decrease of 91.9%, and cure was obtained in 87.5% of patients. IO-PTH can be a useful tool that might improve the rate of successful treatment of PHP, SHP and THP.

  8. Development and validation of a rapid, aldehyde dehydrogenase bright-based cord blood potency assay.

    Science.gov (United States)

    Shoulars, Kevin; Noldner, Pamela; Troy, Jesse D; Cheatham, Lynn; Parrish, Amanda; Page, Kristin; Gentry, Tracy; Balber, Andrew E; Kurtzberg, Joanne

    2016-05-12

    Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDH(br)]), along with viable CD45(+) or CD34(+) cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDH(br), CD34(+), and CFU content of 3908 segments over a 5-year period. ALDH(br) (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34(+) (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDH(br) content of the CBU. These results suggest that the ALDH(br) segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation. © 2016 by The American Society of Hematology.

  9. Development and validation of a rapid, aldehyde dehydrogenase bright–based cord blood potency assay

    Science.gov (United States)

    Noldner, Pamela; Troy, Jesse D.; Cheatham, Lynn; Parrish, Amanda; Page, Kristin; Gentry, Tracy; Balber, Andrew E.; Kurtzberg, Joanne

    2016-01-01

    Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDHbr]), along with viable CD45+ or CD34+ cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDHbr, CD34+, and CFU content of 3908 segments over a 5-year period. ALDHbr (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34+ (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDHbr content of the CBU. These results suggest that the ALDHbr segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation. PMID:26968535

  10. Rapid Cell-Based Assay for Detection and Quantification of Active Staphylococcal Enterotoxin Type D.

    Science.gov (United States)

    Rasooly, Reuven; Do, Paula M; Hernlem, Bradley J

    2017-03-01

    Food poisoning by Staphylococcus aureus is a result of ingestion of Staphylococcal enterotoxins (SEs) produced by this bacterium and is a major source of foodborne illness. Staphylococcal enterotoxin D (SED) is one of the predominant enterotoxins recovered in Staphylococcal food poisoning incidences, including a recent outbreak in Guam affecting 300 children. Current immunology methods for SED detection cannot distinguish between the biologically active form of the toxin, which poses a threat, from the inactive form, which poses no threat. In vivo bioassays that measure emetic activity in kitten and monkeys have been used, but these methods rely upon expensive procedures using live animals and raising ethical concerns. A rapid (5 h) quantitative bioluminescence assay, using a genetically engineered T-cell Jurkat cell line expressing luciferase under regulation of nuclear factor of activated T cells response elements, in combination with the lymphoblastoid B-cell line Raji for antigen presentation, was developed. In this assay, the detection limit of biologically active SED is 100 ng/mL, which is 10 times more sensitive than the splenocyte proliferation assay, and 105 times more sensitive than monkey or kitten bioassay. Pasteurization or repeated freeze-thaw cycles had no effect on SED activity, but reduction in SED activity was shown with heat treatment at 100°C for 5 min. It was also shown that milk exhibits a protective effect on SED. This bioluminescence assay may also be used to rapidly evaluate antibodies to SED for potential therapeutic application as a measurement of neutralizing biological effects of SED. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Fluorescence single-molecule counting assays for protein quantification using epi-fluorescence microscopy with quantum dots labeling.

    Science.gov (United States)

    Jiang, Dafeng; Liu, Chunxia; Wang, Lei; Jiang, Wei

    2010-03-10

    A single-molecule counting approach for quantifying the antibody affixed to a surface using quantum dots and epi-fluorescence microscopy is presented. Modifying the glass substrates with carboxyl groups provides a hydrophilic surface that reacts with amine groups of an antibody to allow covalent immobilization of the antibody. Nonspecific adsorption of single molecules on the modified surfaces was first investigated. Then, quantum dots were employed to form complexes with surface-immobilized antibody molecules and used as fluorescent probes for single-molecule imaging. Epi-fluorescence microscopy was chosen as the tool for single-molecule fluorescence detection here. The generated fluorescence signals were taken by an electron multiplying charge-coupled device and were found to be proportional to the sample concentrations. Under optimal conditions, a linear response range of 5.0x10(-14)-3.0x10(-12) mol L(-1) was obtained between the number of single molecules and sample concentration via a single-molecule counting approach. 2010 Elsevier B.V. All rights reserved.

  12. Rapid assay of the comparative degradation of acetaminophen in binary and ternary combinations

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2014-09-01

    Full Text Available The study is intended to monitor the comparative degradation rates of acetaminophen in binary and ternary combinations by UV–vis spectroscopy. The drugs were exposed to UV-rays in blister packing. The exposition time was 24, 48 and 72 h for both shorter and longer wavelengths. The problem of overlapping UV bands of aspirin and caffeine with acetaminophen was solved by extracting them in diethylether, therefore, we developed a straightforward, rapid and accurate assay method for measuring acetaminophen concentration in binary and ternary mixtures and to monitor its degradation.

  13. Rapid biocompatibility analysis of materials via in vivo fluorescence imaging of mouse models.

    Directory of Open Access Journals (Sweden)

    Kaitlin M Bratlie

    Full Text Available BACKGROUND: Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop rapid, non-invasive methods for in vivo quantification of the inflammatory response to implanted biomaterials. Materials were placed subcutaneously in an array format and monitored for host responses as per ISO 10993-6: 2001. Host cell activity in response to these materials was imaged kinetically, in vivo using fluorescent whole animal imaging. Data captured using whole animal imaging displayed similar temporal trends in cellular recruitment of phagocytes to the biomaterials compared to histological analysis. CONCLUSIONS/SIGNIFICANCE: Histological analysis similarity validates this technique as a novel, rapid approach for screening biocompatibility of implanted materials. Through this technique there exists the possibility to rapidly screen large libraries of polymers in vivo.

  14. Colorimetric deoxyribonucleic acid hybridization assay for rapid screening of Salmonella in foods: collaborative study.

    Science.gov (United States)

    Curiale, M S; Klatt, M J; Mozola, M A

    1990-01-01

    A collaborative study was performed in 11 laboratories to validate a colorimetric DNA hybridization (DNAH) method for rapid detection of Salmonella in foods. The method was compared to the standard culture method for detection of Salmonella in nonfat dry milk, milk chocolate, soy isolate, dried whole egg, ground black pepper, and raw ground turkey. Samples inoculated with high (0.4-2 cells/g) and low (0.04-0.2 cells/g) levels of Salmonella and uninoculated control samples were included in each food group analyzed. There was no significant difference in the proportion of samples positive by DNAH and culture procedure for any of the 6 foods. The colorimetric DNA hybridization assay screening method has been adopted official first action as a rapid screening method for detection of Salmonella in all foods.

  15. Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid.

    Science.gov (United States)

    Liu, Xin; Li, Ying; Liang, Jing; Zhu, Wenyue; Xu, Jingyue; Su, Ruifang; Yuan, Lei; Sun, Chunyan

    2016-11-01

    In this study, an aptamer-based fluorescent sensing platform using triple-helix molecular switch (THMS) was developed for the pesticide screening represented by acetamiprid. The THMS was composed of two tailored DNA probes: a label-free central target specific aptamer sequence flanked by two arm segments acting as a recognition probe; a hairpin-shaped structure oligonucleotide serving as a signal transduction probe (STP), labeled with a fluorophore and a quencher at the 3' and 5'-end, respectively. In the absence of acetamiprid, complementary bindings of two arm segments of the aptamers with the loop sequence of STP enforce the formation of THMS with the "open" configuration of STP, and the fluorescence of THMS is on. In the presence of target acetamiprid, the aptamer-target binding results in the formation of a structured aptamer/target complex, which disassembles the THMS and releases the STP. The free STP is folded to a stem loop structure, and the fluorescence is quenched. The quenched fluorescence intensity was proportional to the concentration of acetamiprid in the range from 100 to 1200nM, with the limit of detection (LOD) as low as 9.12nM. In addition, this THMS-based method has been successfully used to test and quantify acetamiprid in Chinese cabbage with satisfactory recoveries, and the results were in full agreement with those from LC-MS. The aptamer-based THMS presents distinct advantages, including high stability, remarkable sensitivity, and preservation of the affinity and specificity of the original aptamer. Most importantly, this strategy is convenient and generalizable by virtue of altering the aptamer sequence without changing the triple-helix structure. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Sampling and data-taking strategies in X-ray fluorescence assay of low S/N solutions

    Science.gov (United States)

    Hudgens, C. R.

    This projet was initiated for the purpose of demonstrating the feasibility of on-line X-ray fluorescence (XRF) analysis for the nondestructive assay of fissile elements (SNM) in reactor fuel reprocessing (dissolver) solutions, using wavelength dispersive X-ray fluorescence analysis because of its high immunity to the intense gamma emissions of the solutions. A prime objective of this project was the identification and dimensioning of the parameters critical to XRF assays of high accuracy. The concepts presented herein, though directed primarily to assay of solutions with emphasis on low signal-to-noise conditions and low count rates, are applicable to all assays of solids, slurries, and gases. This study shows that for solution analysis total sampling gives total mass assays with no need for solution density or tank volume measurements. Time savings and standard deviations are both benefited by systematically predetermining the count requirements of analysts, standards, and backgrounds by the use of equations based on propagation of error considerations. This becomes quite important when assaying dilute solutions, in which the signal-to-noise ratios of the X-ray intensities are very low. When counting times are long, short dwell times at each spectrometer setting significantly counteract error accumulation arising from long-term instrumental drift.

  17. Comparison of Fluorescent Microspheres and Colloidal Gold as Labels in Lateral Flow Immunochromatographic Assays for the Detection of T-2 Toxin

    Directory of Open Access Journals (Sweden)

    Xiya Zhang

    2015-12-01

    Full Text Available A new highly specific and sensitive monoclonal antibody (MAb to T-2 toxin (T-2 was produced, providing an IC50 value of 1.02 ng/mL and negligible cross-reactivity (CR to other related mycotoxins. Based on the new MAb, a lateral-flow immunochromatographic assay (LFIA using colloidal gold (CG and fluorescent microspheres (FMs as labels was proposed for T-2. Under the optimized conditions, in rapid qualitative assay, the cut-off values of the CG-LFIA were 400 μg/kg in rice and 50 μg/L in fresh milk, and the cut-off values of the FMs-LFIA were 100 μg/kg in both rice and chicken feed. For the quantitative assay with the FMs-LFIA, the limit of detection (LOD were 0.23 μg/kg and 0.41 μg/kg in rice and chicken feed, respectively, and the average recoveries ranged from 80.2% to 100.8% with the coefficient of variation (CV below 10.8%. In addition, we found that the CG-LFIA could tolerate the matrix effect of fresh milk better than the FMs-LFIA, while the FMs-LFIA could tolerate the matrix effect of chicken feed better than CG-LFIA under the same experimental conditions. These results provide a certain reference for the selection of appropriate labels to establish a rapid LFIA in various biological samples.

  18. Comparison of Fluorescent Microspheres and Colloidal Gold as Labels in Lateral Flow Immunochromatographic Assays for the Detection of T-2 Toxin.

    Science.gov (United States)

    Zhang, Xiya; Wu, Chao; Wen, Kai; Jiang, Haiyang; Shen, Jianzhong; Zhang, Suxia; Wang, Zhanhui

    2015-12-28

    A new highly specific and sensitive monoclonal antibody (MAb) to T-2 toxin (T-2) was produced, providing an IC50 value of 1.02 ng/mL and negligible cross-reactivity (CR) to other related mycotoxins. Based on the new MAb, a lateral-flow immunochromatographic assay (LFIA) using colloidal gold (CG) and fluorescent microspheres (FMs) as labels was proposed for T-2. Under the optimized conditions, in rapid qualitative assay, the cut-off values of the CG-LFIA were 400 μg/kg in rice and 50 μg/L in fresh milk, and the cut-off values of the FMs-LFIA were 100 μg/kg in both rice and chicken feed. For the quantitative assay with the FMs-LFIA, the limit of detection (LOD) were 0.23 μg/kg and 0.41 μg/kg in rice and chicken feed, respectively, and the average recoveries ranged from 80.2% to 100.8% with the coefficient of variation (CV) below 10.8%. In addition, we found that the CG-LFIA could tolerate the matrix effect of fresh milk better than the FMs-LFIA, while the FMs-LFIA could tolerate the matrix effect of chicken feed better than CG-LFIA under the same experimental conditions. These results provide a certain reference for the selection of appropriate labels to establish a rapid LFIA in various biological samples.

  19. Evaluation of loop-mediated isothermal amplification assay for rapid diagnosis of Acanthamoeba keratitis

    Directory of Open Access Journals (Sweden)

    Abhishek Mewara

    2017-01-01

    Full Text Available Background: The clinical features of Acanthamoeba keratitis (AK are non-specific and closely resemble bacterial, viral and fungal keratitis. Materials and Methods: We compared loop-mediated isothermal amplification (LAMP with microscopy, non-nutrient agar (NNA culture and polymerase chain reaction (PCR in clinical suspects of AK. Results: Of 52 clinical samples (42 AK suspects and 10 proven bacterial, viral or fungal keratitis, 3 were positive by direct microscopy (sensitivity 60%, confidence interval [CI]: 17%–92.7%, and 5 by NNA culture, 18S rDNA PCR and LAMP (sensitivity 100%, CI: 46.3%–100%. The limit of detection of Acanthamoeba DNA was 1 pg/μl by both LAMP and PCR. Conclusion: PCR and LAMP assays targeting 18S rDNA gene were found particularly suitable for a rapid and accurate diagnosis of AK. LAMP assay takes 2–3 h lesser than PCR, and thus offers a rapid, highly sensitive and specific, simple and affordable diagnostic modality for patients suspected of AK, especially in resource limited settings

  20. HPLC assay of tomato carotenoids: validation of a rapid microextraction technique.

    Science.gov (United States)

    Sérino, Sylvie; Gomez, Laurent; Costagliola, Guy; Gautier, Hélène

    2009-10-14

    Carotenoids are studied for their role as pigments and as precursors of aromas, vitamin A, abscisic acid, and antioxidant compounds in different plant tissues. A novel, rapid, and inexpensive analytical protocol is proposed to enable the simultaneous analysis of four major tomato carotenoids: lutein, lycopene, beta-carotene, and phytoene. Microextraction is performed in the presence of sodium chloride, n-hexane, dichloromethane, and ethyl acetate on fresh tomato powder that has been finely ground in liquid nitrogen. The carotenoids are extracted by agitation and centrifugation and then analyzed by HPLC using a diode array detector. The principal advantage of this extraction resides in the absence of an evaporation step, often necessary to assay tomato carotenoids other than lycopene. Whatever the carotenoid, tests for accuracy, reproducibility, and linearity were satisfactory and indicative of the method's reliability. The stability of extracts over time (several days at -20 degrees C) as the satisfactory sensitivity of the assay whatever the fruit ripeness had a part in the robustness of the method. Reliable, rapid, simple, and inexpensive, this extraction technique is appropriate for the routine analysis of carotenoids in small samples.

  1. Detection of Bar Transgenic Sugarcane with a Rapid and Visual Loop-Mediated Isothermal Amplification Assay.

    Science.gov (United States)

    Zhou, Dinggang; Wang, Chunfeng; Li, Zhu; Chen, Yun; Gao, Shiwu; Guo, Jinlong; Lu, Wenying; Su, Yachun; Xu, Liping; Que, Youxiong

    2016-01-01

    Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP) assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg(2+), 6:1 ratio of inner vs. outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was 10-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100%) by LAMP and 97/100 cases (97%) by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable, and cost-effective for detection of the bar specific transgenic sugarcane.

  2. Detection of bar transgenic sugarcane with a rapid and visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Dinggang eZhou

    2016-03-01

    Full Text Available Genetic engineering offers an attractive alternative in sugarcane breeding for increasing cane and sugar yields as well as disease and insect resistance. Bar transgenic sugarcane employing the herbicide tolerance is a useful agronomical trait in weed control. In this study, a loop-mediated isothermal amplification (LAMP assay for rapid detection of the bar gene in transgenic sugarcane has been developed and evaluated. A set of six primers was designed for LAMP-based amplification of the bar gene. The LAMP reaction conditions were optimized as follows: 5.25 mM of Mg2+, 6:1 ratio of inner vs outer primer, and 6.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. The detection limit of the recombinant plasmid 1Ac0229 was as low as 10 copies in the developed LAMP, which was ten-fold higher sensitive than that of conventional PCR. In 100 putative transgenic lines, the bar gene was detected in 100/100 cases (100% by LAMP and 97/100 cases (97% by conventional PCR, respectively. In conclusion, the developed LAMP assay is visual, rapid, sensitive, reliable and cost-effective for detection of the bar specific transgenic sugarcane.

  3. Rapid determination of gizzerosine in fish meals using microchip capillary electrophoresis with laser-induced fluorescence detection.

    Science.gov (United States)

    Xiao, Meng-Wei; Bai, Xiao-Lin; Xu, Pei-Li; Zhao, Yan; Yang, Li; Liu, Yi-Ming; Liao, Xun

    2017-05-01

    Sensitive detection of gizzerosine, a causative agent for deadly gizzard erosion in chicken feeds, is very important to the poultry industry. In this work, a new method was developed based on microchip capillary electrophoresis (MCE) with laser-induced fluorescence (LIF) detection for rapid analysis of gizzerosine, a biogenic amine in fish meals. The MCE separation was performed on a glass microchip using sodium dodecyl sulfate (SDS) as dynamic coating modifier. Separation conditions, including running buffer pH and concentration, SDS concentration, and the separation voltage were investigated to achieve fast and sensitive quantification of gizzerosine. The assay proposed was very quick and could be completed within 65 s. A linear calibration curve was obtained in the range from 0.04 to 1.8 μg ml-1 gizzerosine. The detection limit was 0.025 μg ml-1 (0.025 mg kg-1), which was far more sensitive than those previously reported. Gizzerosine was well separated from other endogenous components in fish meal samples. Recovery of gizzerosine from this sample matrix (n = 3) was determined to be 97.2-102.8%. The results from analysing fish meal samples indicated that the present MCE-LIF method might hold the potential for rapid detection of gizzerosine in poultry feeds.

  4. Integrated Biosensor Assay for Rapid Uropathogen Identification and Phenotypic Antimicrobial Susceptibility Testing.

    Science.gov (United States)

    Altobelli, Emanuela; Mohan, Ruchika; Mach, Kathleen E; Sin, Mandy Lai Yi; Anikst, Victoria; Buscarini, Maurizio; Wong, Pak Kin; Gau, Vincent; Banaei, Niaz; Liao, Joseph C

    2017-04-01

    Standard diagnosis of urinary tract infection (UTI) via urine culture for pathogen identification (ID) and antimicrobial susceptibility testing (AST) takes 2-3 d. This delay results in empiric treatment and contributes to the misuse of antibiotics and the rise of resistant pathogens. A rapid diagnostic test for UTI may improve patient care and antibiotic stewardship. To develop and validate an integrated biosensor assay for UTI diagnosis, including pathogen ID and AST, with determination of the minimum inhibitory concentration (MIC) for ciprofloxacin. Urine samples positive for Enterobacteriaceae (n=84) or culture-negative (n=23) were obtained from the Stanford Clinical Microbiology Laboratory between November 2013 and September 2014. Each sample was diluted and cultured for 5h with and without ciprofloxacin, followed by quantitative detection of bacterial 16S rRNA using a single electrochemical biosensor array functionalized with a panel of complementary DNA probes. Pathogen ID was determined using universal bacterial, Enterobacteriaceae (EB), and pathogen-specific probes. Phenotypic AST with ciprofloxacin MIC was determined using an EB probe to measure 16S rRNA levels as a function of bacterial growth. Electrochemical signals for pathogen ID at 6 SD over background were considered positive. An MIC signal of 0.4 log units lower than the no-antibiotic control indicated sensitivity. Results were compared to clinical microbiology reports. For pathogen ID, the assay had 98.5% sensitivity, 96.6% specificity, 93.0% positive predictive value, and 99.3% negative predictive value. For ciprofloxacin MIC the categorical and essential agreement was 97.6%. Further automation, testing of additional pathogens and antibiotics, and a full prospective study will be necessary for translation to clinical use. The integrated biosensor platform achieved microbiological results including MIC comparable to standard culture in a significantly shorter assay time. Further assay automation

  5. A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β-lactams

    Science.gov (United States)

    Chen, Yanni; Wang, Yongwei; Liu, Liqiang; Wu, Xiaoling; Xu, Liguang; Kuang, Hua; Li, Aike; Xu, Chuanlai

    2015-10-01

    A novel gold immunochromatographic assay (GICA) based on anti-β-lactam receptors was innovatively developed that successfully allowed rapid and simultaneous detection of fifteen β-lactams in milk samples in 5-10 minutes. By replacing the antibodies used in traditional GICA with anti-β-lactam receptors, the difficulty in producing broad specific antibodies against β-lactams was overcome. Conjugates of ampicillin with BSA and goat anti-mouse immunoglobulin (IgG) were immobilized onto the test and control lines on the nitrocellulose membrane, respectively. Since goat anti-mouse IgG does not combine with receptors, negative serum from mice labelled with gold nanoparticles (GNP) was mixed with GNP-labelled receptors. Results were obtained within 20 min using a paper-based sensor. The utility of the assay was confirmed by the analysis of milk samples. The limits of detection (LOD) for amoxicillin, ampicillin, penicillin G, penicillin V, cloxacillin, dicloxacillin, nafcillin, oxacillin, cefaclor, ceftezole, cefotaxime, ceftiofur, cefoperazone, cefathiamidine, and cefepime were 0.25, 0.5, 0.5, 0.5, 1, 5, 5, 10, 25, 10, 100, 10, 5, 5, and 2 ng mL-1, respectively, which satisfies the maximum residue limits (MRL) set by the European Union (EU). In conclusion, our newly developed GICA-based anti-β-lactam receptor assay provides a rapid and effective method for one-site detection of multiple β-lactams in milk samples.A novel gold immunochromatographic assay (GICA) based on anti-β-lactam receptors was innovatively developed that successfully allowed rapid and simultaneous detection of fifteen β-lactams in milk samples in 5-10 minutes. By replacing the antibodies used in traditional GICA with anti-β-lactam receptors, the difficulty in producing broad specific antibodies against β-lactams was overcome. Conjugates of ampicillin with BSA and goat anti-mouse immunoglobulin (IgG) were immobilized onto the test and control lines on the nitrocellulose membrane, respectively

  6. Development of a novel multiplex PCR assay for rapid detection of virulence associated genes of Pasteurella multocida from pigs

    National Research Council Canada - National Science Library

    Rajkhowa, S

    2015-01-01

    Significance and Impact of the Study: The study reports the development and evaluation of a novel multiplex PCR assay for the rapid detection of 11 important VAGs of Pasteurella multocida isolates from pigs...

  7. Screening test for rapid food safety evaluation by menadione-catalysed chemiluminescent assay.

    Science.gov (United States)

    Yamashoji, Shiro; Yoshikawa, Naoko; Kirihara, Masayuki; Tsuneyoshi, Toshihiro

    2013-06-15

    The chemiluminescent assay of menadione-catalysed H2O2 production by living mammalian cells was proposed to be useful for rapid food safety evaluation. The tested foods were extracted with water, ethanol and dimethylsulfoxide, and each extract was incubated with NIH3T3, Neuro-2a and HepG2 cells for 4h. Menadione-catalysed H2O2 production by living mammalian cells exposed to each extract was determined by the chemiluminescent assay requiring only 10 min, and the viability of the cells was estimated as percentage based on H2O2 production by intact cells. In this study the cytotoxicity of food was rated in order of inhibitory effect on H2O2 production by intact cells. The well known natural toxins such as Fusarium mycotoxin, tomato toxin tomatine, potato toxin solanine and marine toxins terodotoxin and brevetoxin could be detected by the above chemiluminescent assay. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Rapid PCR-based assay for Sclerotinia sclerotiorum detection on soybean seeds

    Directory of Open Access Journals (Sweden)

    Edilaine Mauricia Gelinski Grabicoski

    2015-02-01

    Full Text Available Caused by Sclerotinia sclerotiorum, white mold is an important seed-transmitted disease of soybean (Glycine max. Incubation-based methods available for the detection and quantification of seed-borne inoculum such as the blotter test, paper roll and Neon-S assay are time-consuming, laborious, and not always sensitive. In this study, we developed and evaluated a molecular assay for the detection of S. sclerotiorum in soybean seeds using a species-specific PCR (polymerase chain reaction primer set and seed soaking (without DNA extraction for up to 72 h. The PCR products were amplified in all the samples infected with the pathogen, but not in the other samples of plant material or the other seed-borne fungi DNA. The minimum amount of DNA detected was 10 pg, or one artificially infested seed in a 400-seed sample (0.25 % fungal incidence and one naturally infected seed in a 300-seed sample (0.33 % incidence. The PCR-based assay was rapid (< 9 h, did not require DNA extraction and was very sensitive.

  9. A Rapid Assay to Detect Toxigenic Penicillium spp. Contamination in Wine and Musts

    Directory of Open Access Journals (Sweden)

    Simona Marianna Sanzani

    2016-08-01

    Full Text Available Wine and fermenting musts are grape products widely consumed worldwide. Since the presence of mycotoxin-producing fungi may greatly compromise their quality characteristics and safety, there is an increasing need for relatively rapid “user friendly” quantitative assays to detect fungal contamination both in grapes delivered to wineries and in final products. Although other fungi are most frequently involved in grape deterioration, secondary infections by Penicillium spp. are quite common, especially in cool areas with high humidity and in wines obtained by partially dried grapes. In this work, a single-tube nested real-time PCR approach—successfully applied to hazelnut and peanut allergen detection—was tested for the first time to trace Penicillium spp. in musts and wines. The method consisted of two sets of primers specifically designed to target the β-tubulin gene, to be simultaneously applied with the aim of lowering the detection limit of conventional real-time PCR. The assay was able to detect up to 1 fg of Penicillium DNA. As confirmation, patulin content of representative samples was determined. Most of analyzed wines/musts returned contaminated results at >50 ppb and a 76% accordance with molecular assay was observed. Although further large-scale trials are needed, these results encourage the use of the newly developed method in the pre-screening of fresh and processed grapes for the presence of Penicillium DNA before the evaluation of related toxins.

  10. Nested PCR Assay for Eight Pathogens: A Rapid Tool for Diagnosis of Bacterial Meningitis.

    Science.gov (United States)

    Bhagchandani, Sharda P; Kubade, Sushant; Nikhare, Priyanka P; Manke, Sonali; Chandak, Nitin H; Kabra, Dinesh; Baheti, Neeraj N; Agrawal, Vijay S; Sarda, Pankaj; Mahajan, Parikshit; Ganjre, Ashish; Purohit, Hemant J; Singh, Lokendra; Taori, Girdhar M; Daginawala, Hatim F; Kashyap, Rajpal S

    2016-02-01

    Bacterial meningitis is a dreadful infectious disease with a high mortality and morbidity if remained undiagnosed. Traditional diagnostic methods for bacterial meningitis pose a challenge in accurate identification of pathogen, making prognosis difficult. The present study is therefore aimed to design and evaluate a specific and sensitive nested 16S rDNA genus-based polymerase chain reaction (PCR) assay using clinical cerebrospinal fluid (CSF) for rapid diagnosis of eight pathogens causing the disease. The present work was dedicated to development of an in-house genus specific 16S rDNA nested PCR covering pathogens of eight genera responsible for causing bacterial meningitis using newly designed as well as literature based primers for respective genus. A total 150 suspected meningitis CSF obtained from the patients admitted to Central India Institute of Medical Sciences (CIIMS), India during the period from August 2011 to May 2014, were used to evaluate clinical sensitivity and clinical specificity of optimized PCR assays. The analytical sensitivity and specificity of our newly designed genus-specific 16S rDNA PCR were found to be ≥92%. With such a high sensitivity and specificity, our in-house nested PCR was able to give 100% sensitivity in clinically confirmed positive cases and 100% specificity in clinically confirmed negative cases indicating its applicability in clinical diagnosis. Our in-house nested PCR system therefore can diagnose the accurate pathogen causing bacterial meningitis and therefore be useful in selecting a specific treatment line to minimize morbidity. Results are obtained within 24 h and high sensitivity makes this nested PCR assay a rapid and accurate diagnostic tool compared to traditional culture-based methods.

  11. Rapid detection of Ceratocystis platani inoculum by quantitative real-time PCR assay.

    Science.gov (United States)

    Luchi, Nicola; Ghelardini, Luisa; Belbahri, Lassaâd; Quartier, Marion; Santini, Alberto

    2013-09-01

    Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10(-2) to 1.4 × 10(-2) pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management.

  12. Toward the identification of viral cap-methyltransferase inhibitors by fluorescence screening assay.

    Science.gov (United States)

    Aouadi, Wahiba; Eydoux, Cécilia; Coutard, Bruno; Martin, Baptiste; Debart, Françoise; Vasseur, Jean Jacques; Contreras, Jean Marie; Morice, Christophe; Quérat, Gilles; Jung, Marie-Louise; Canard, Bruno; Guillemot, Jean-Claude; Decroly, Etienne

    2017-08-01

    Two highly pathogenic human coronaviruses associated with severe respiratory syndromes emerged since the beginning of the century. The severe acute respiratory syndrome SARS-coronavirus (CoV) spread first in southern China in 2003 with about 8000 infected cases in few months. Then in 2012, the Middle East respiratory syndrome (MERS-CoV) emerged from the Arabian Peninsula giving a still on-going epidemic associated to a high fatality rate. CoVs are thus considered a major health threat. This is especially true as no vaccine nor specific therapeutic are available against either SARS- or MERS-CoV. Therefore, new drugs need to be identified in order to develop antiviral treatments limiting CoV replication. In this study, we focus on the nsp14 protein, which plays a key role in virus replication as it methylates the RNA cap structure at the N7 position of the guanine. We developed a high-throughput N7-MTase assay based on Homogenous Time Resolved Fluorescence (HTRF ® ) and screened chemical libraries (2000 compounds) on the SARS-CoV nsp14. 20 compounds inhibiting the SARS-CoV nsp14 were further evaluated by IC 50 determination and their specificity was assessed toward flavivirus- and human cap N7-MTases. Our results reveal three classes of compounds: 1) molecules inhibiting several MTases as well as the dengue virus polymerase activity unspecifically, 2) pan MTases inhibitors targeting both viral and cellular MTases, and 3) inhibitors targeting one viral MTase more specifically showing however activity against the human cap N7-MTase. These compounds provide a first basis towards the development of more specific inhibitors of viral methyltransferases. Copyright © 2017. Published by Elsevier B.V.

  13. Exploring the dynamics of fluorescence staining of bacteria with cyanine dyes for the development of kinetic assays

    Science.gov (United States)

    Thomas, Marlon Sheldon

    Bacterial infections continue to be one of the major health risks in the United States. The common occurrence of such infection is one of the major contributors to the high cost of health care and significant patient mortality. The work presented in this thesis describes spectroscopic studies that will contribute to the development of a fluorescent assay that may allow the rapid identification of bacterial species. Herein, the optical interactions between six bacterial species and a series of thiacyanine dyes are investigated. The interactions between the dyes and the bacterial species are hypothesized to be species-specific. For this thesis, two Gram-negative strains, Escherichia coli (E. coli) TOP10 and Enterobacter aerogenes; two Gram-positive bacterial strains, Bacillus sphaericus and Bacillus subtilis; and two Bacillus endospores, B. globigii and B. thuringiensis, were used to test the proposed hypothesis. A series of three thiacyanine dyes---3,3'-diethylthiacyanine iodide (THIA), 3,3'-diethylthiacarbocyanine iodide (THC) and thiazole orange (THO)---were used as fluorescent probes. The basis of our spectroscopic study was to explore the bacterium-induced interactions of the bacterial cells with the individual thiacyanine dyes or with a mixture of the three dyes. Steady-state absorption spectroscopy revealed that the different bacterial species altered the absorption properties of the dyes. Mixed-dye solutions gave unique absorption patterns for each bacteria tested, with competitive binding observed between the bacteria and spectrophotometric probes (thiacyanine dyes). Emission spectroscopy recorded changes in the emission spectra of THIA following the introduction of bacterial cells. Experimental results revealed that the emission enhancement of the dyes resulted from increases in the emission quantum yield of the thiacyanine dyes upon binding to the bacteria cellular components. The recorded emission enhancement data were fitted to an exponential (mono

  14. Rapid identification of Stenotrophomonas maltophilia by peptide nucleic acid fluorescence in situ hybridization.

    Science.gov (United States)

    Hansen, N; Rasmussen, A K I; Fiandaca, M J; Kragh, K N; Bjarnsholt, T; Høiby, N; Stender, H; Guardabassi, L

    2014-05-01

    The objective of this study was to develop a novel peptide nucleic acid (PNA) probe for Stenotrophomonas maltophilia identification by fluorescence in situ hybridization (FISH). The probe was evaluated using 33 human and veterinary clinical S. maltophilia isolates and 45 reference strains representing common bacterial species in the respiratory tract. The probe displayed 100% sensitivity and 100% specificity on pure cultures and allowed detection in sputum from cystic fibrosis patients. The detection limit was 10(4) CFU/mL in spiked tracheal aspirate and bronchoalveolar lavage from healthy horses. Altogether the study shows that this species-specific PNA FISH probe facilitates rapid detection of S. maltophilia in biological specimens.

  15. Immunochromatographic Brucella-specific immunoglobulin M and G lateral flow assays for rapid serodiagnosis of human brucellosis

    NARCIS (Netherlands)

    Smits, Henk L.; Abdoel, Theresia H.; Solera, Javier; Clavijo, Encarnacion; Diaz, Ramon

    2003-01-01

    To fulfill the need for a simple and rapid diagnostic test for human brucellosis, we used the immunochromatographic lateral flow assay format to develop two assays, one for the detection of Brucella-specific immunoglobulin M (IgM) antibodies and one for the detection of Brucella-specific IgG

  16. Development of a multiplex PCR assay for rapid identification of Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex.

    Science.gov (United States)

    Koh, Seng Fook; Tay, Sun Tee; Sermswan, Rasana; Wongratanacheewin, Surasakdi; Chua, Kek Heng; Puthucheary, Savithri D

    2012-09-01

    We have developed a multiplex PCR assay for rapid identification and differentiation of cultures for Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. The assay is valuable for use in clinical and veterinary laboratories, and in a deployable laboratory during outbreaks. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay.

    Science.gov (United States)

    Du, Xin-Jun; Zhou, Tian-Jiao; Li, Ping; Wang, Shuo

    2017-08-01

    Salmonella is a major foodborne pathogen that is widespread in the environment and can cause serious human and animal disease. Since conventional culture methods to detect Salmonella are time-consuming and laborious, rapid and accurate techniques to detect this pathogen are critically important for food safety and diagnosing foodborne illness. In this study, we developed a rapid, simple and portable Salmonella detection strategy that combines thermophilic helicase-dependent amplification (tHDA) with a lateral flow assay to provide a detection result based on visual signals within 90 min. Performance analyses indicated that the method had detection limits for DNA and pure cultured bacteria of 73.4-80.7 fg and 35-40 CFU, respectively. Specificity analyses showed no cross reactions with Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Enterobacter aerogenes, Shigella and Campylobacter jejuni. The results for detection in real food samples showed that 1.3-1.9 CFU/g or 1.3-1.9 CFU/mL of Salmonella in contaminated chicken products and infant nutritional cereal could be detected after 2 h of enrichment. The same amount of Salmonella in contaminated milk could be detected after 4 h of enrichment. This tHDA-strip can be used for the rapid detection of Salmonella in food samples and is particularly suitable for use in areas with limited equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Development of a highly sensitive lateral immunochromatographic assay for rapid detection of Vibrio parahaemolyticus.

    Science.gov (United States)

    Liu, Xinfeng; Guan, Yuyao; Cheng, Shiliang; Huang, Yidan; Yan, Qin; Zhang, Jun; Huang, Guanjun; Zheng, Jian; Liu, Tianqiang

    2016-12-01

    Vibrio parahaemolyticus is widely present in brackish water all over the world, causing infections in certain aquatic animals. It is also a foodborne pathogen that causes diarrhea in humans. The aim of this study is to develop an immunochromatographic lateral flow assay (LFA) for rapid detection of V. parahaemolyticus in both aquatic products and human feces of diarrheal patients. Two monoclonal antibody (MAb) pairs, GA1a-IC9 and IC9-KB4c, were developed and proven to be highly specific and sensitive to V. parahaemolyticus. Based on the two MAb pairs, two types of LFA strips were prepared. Their testing limits for V. parahaemolyticus culture were both 1.2×103CFU/ml. The diagnostic sensitivities and specificities were both 100% for the 32 tested microbial species, including 6 Vibrio species. Subsequently, the LFA strips were used to test Whiteleg shrimps and human feces. The type II strip showed a higher diagnostic sensitivity. Its sensitivity and specificity for hepatopancreas and fecal samples from 13 Whiteleg shrimps and fecal samples from 146 human diarrheal patients were all 100%. In conclusion, our homemade type II LFA is a very promising testing device for rapid and convenient detection of V. parahaemolyticus infection not only in aquatic animals, but also in human diarrheal patients. This sensitive immunochromtographic LFA allows rapid detection of V. parahaemolyticus without requirement of culture enrichment. Copyright © 2016. Published by Elsevier B.V.

  19. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, Lindsey M. [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Irvin, Susan C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Kennedy, Steven C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Guo, Feng [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Goldstein, Harris; Herold, Betsy C. [Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States); Snapp, Erik L., E-mail: erik-lee.snapp@einstein.yu.edu [Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 (United States)

    2015-02-15

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. - Highlights: • Development of fluorescent protein labeled HIV-1 envelope gp120. • Imaging of gp120 dynamics and trafficking in live cells. • Quantitative visual assay of antibody-mediated inhibition of gp120 binding to CD4 on live cells.

  20. Real-time fluorescence assay of alkaline phosphatase in living cells using boron-doped graphene quantum dots as fluorophores.

    Science.gov (United States)

    Chen, Li; Yang, Guancao; Wu, Ping; Cai, Chenxin

    2017-10-15

    This work reports a convenient and real-time assay of alkaline phosphatase (ALP) in living cells based on a fluorescence quench-recovery process at a physiological pH using the boron-doped graphene quantum dots (BGQDs) as fluorophore. The fluorescence of BGQDs is found to be effectively quenched by Ce3+ ions because of the coordination of Ce3+ ions with the carboxyl group of BGQDs. Upon addition of adenosine triphosphate (ATP) into the system, the quenched fluorescence can be recovered by the ALP-positive expressed cells (such as MCF-7 cells) due to the removal of Ce3+ ions from BGQDs surface by phosphate ions, which are generated from ATP under catalytic hydrolysis of ALP that expressed in cells. The extent of fluorescence signal recovery depends on the level of ALP in cells, which establishes the basis of ALP assay in living cells. This approach can also be used for specific discrimination of the ALP expression levels in different type of cells and thus sensitive detection of those ALP-positive expressed cells (for example MCF-7 cells) at a very low abundance (10±5 cells mL-1). The advantages of this approach are that it has high sensitivity because of the significant suppression of the background due to the Ce3+ ion quenching the fluorescence of BGQDs, and has the ability of avoiding false signals arising from the nonspecific adsorption of non-target proteins because it operates via a fluorescence quench-recovery process. In addition, it can be extended to other enzyme systems, such as ATP-related kinases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. [Rapid selection of recombinant orf virus expression vectors using green fluorescent protein].

    Science.gov (United States)

    Zhang, Jiachun; Guo, Xianfeng; Zhang, Min; Wu, Feifan; Peng, Yongzheng

    2016-01-01

    To construct a universal, highly attenuated orf virus expression vector for exogenous genes using green fluorescent protein (GFP) as the reporter gene. The flanking regions of the ORFV132 of orf virus DNA were amplified by PCR to construct the shuttle plasmid pSPV-132LF-EGFP-132RF. The shuttle plasmid was transfected into OFTu cells and GFP was incorporated into orf virus IA82Delta 121 by homologous recombination. The recombinant IA82Delta121-V was selected by green fluorescent signal. The deletion gene was identified by PCR and sequencing. The effects of ORFV132 knockout were evaluated by virus titration and by observing the proliferation of the infected vascular endothelial cells in vitro. The recombinant orf virus IA82Delta121-V was obtained successfully and quickly, and the deletion of ORFV132 did not affect the replication of the virus in vitro but reduced its virulence. Green fluorescent protein is a selectable marker for rapid, convenient and stable selection of the recombinant viruses. Highly attenuated recombinant orf virus IA82Delta121-V can serve as a new expression vector for exogenous genes.

  2. Novel Multitarget Real-Time PCR Assay for Rapid Detection of Bordetella Species in Clinical Specimens ▿

    Science.gov (United States)

    Tatti, Kathleen M.; Sparks, Kansas N.; Boney, Kathryn O.; Tondella, Maria Lucia

    2011-01-01

    A novel multitarget real-time PCR (RT-PCR) assay for the rapid identification of Bordetella pertussis, B. parapertussis, and B. holmesii was developed using multicopy insertion sequences (ISs) in combination with the pertussis toxin subunit S1 (ptxS1) singleplex assay. The RT-PCR targets for the multiplex assay include IS481, commonly found in B. pertussis and B. holmesii; IS1001 of B. parapertussis; and the IS1001-like sequence of B. holmesii. Overall, 402 Bordetella species and 66 non-Bordetella species isolates were tested in the multitarget assay. Cross-reactivity was found only with 5 B. bronchiseptica isolates, which were positive with IS1001 of B. parapertussis. The lower limit of detection (LLOD) of the multiplex assay was similar to the LLOD of each target in an individual assay format, which was approximately 1 genomic equivalent per reaction for all targets. A total of 197 human clinical specimens obtained during cough-illness outbreak investigations were used to evaluate the multitarget RT-PCR assay. The multiplex assay results from 87 clinical specimens were compared to the individual RT-PCR assay and culture results. The multitarget assay is useful as a diagnostic tool to confirm B. pertussis infections and to rapidly identify other Bordetella species. In conclusion, the use of this multitarget RT-PCR approach increases specificity, while it decreases the amount of time, reagents, and specimen necessary for RT-PCRs used for accurate diagnosis of pertussis-like illness. PMID:21940464

  3. Validation Study of Rapid Assays of Bioburden, Endotoxins and Other Contamination.

    Science.gov (United States)

    Shintani, Hideharu

    2016-01-01

    Microbial testing performed in support of pharmaceutical and biopharmaceutical production falls into three main categories: detection (qualitative), enumeration (quantitative), and characterization/identification. Traditional microbiological methods are listed in the compendia and discussed by using the conventional growth-based techniques, which are labor intensive and time consuming. In general, such tests require several days of incubation for microbial contamination (bioburden) to be detected, and therefore management seldom is able to take proactive corrective measures. In addition, microbial growth is limited by the growth medium used and incubation conditions, thus impacting testing sensitivity, accuracy, and reproducibility.  For more than 20 years various technology platforms for rapid microbiological methods (RMM) have been developed, and many have been readily adopted by the food industry and clinical microbiology laboratories. Their use would certainly offer drug companies faster test turnaround times to accommodate the aggressive deadlines for manufacturing processes and product release. Some rapid methods also offer the possibility for real-time microbial analyses, enabling management to respond to microbial contamination events in a more timely fashion, and can provide cost savings and higher efficiencies in quality control testing laboratories. Despite the many proven business and quality benefits and the fact that the FDA's initiative to promote the use of process analytical technology (PAT) includes rapid microbial methods, pharmaceutical and biopharmaceutical industries have been somewhat slow to embrace alternative microbial methodologies for several reasons. The major reason is that the bioburden counts detected by the incubation method and rapid assay are greatly divergent.  The use of rapid methods is a dynamic field in applied microbiology and one that has gained increased attention nationally and internationally over time. This topic

  4. A New Rapid In Vitro Assay for Assessing Reactivity of Acyl Glucuronides.

    Science.gov (United States)

    Zhong, Sheng; Jones, Russell; Lu, Wenzhe; Schadt, Simone; Ottaviani, Giorgio

    2015-11-01

    Idiosyncratic drug toxicity is a major challenge for the pharmaceutical industry since complex and multifactorial steps are involved, the dose-dependency is unclear, and its occurrence is not reliably predictable. Whereas the exact mechanisms leading to idiosyncratic toxicity remain elusive in many cases, there are often hints at the involvement of reactive metabolites, such as acyl glucuronides formed by conjugation of carboxylic acids with glucuronic acid. Because the patient-related susceptibilities leading to idiosyncratic toxicity are not sufficiently understood, the best option for the pharmaceutical industry is to minimize drug-related risk factors such as potential acyl glucuronide formation. Here, we describe a rapid in vitro assay for the assessment of the reactivity of acyl glucuronides, on the basis of acyl glucuronide migration, that can support the selection of low-risk drug candidates in the drug discovery phase. Twenty marketed compounds with a wide range of half-lives were tested, their acyl glucuronide migration rates were determined and compared with the half-lives of the respective acyl glucuronides. Ranking of acyl glucuronide stability using this method compared well with the results from existing methodologies. With this method, migration rates >20% would indicate higher risk of reactivity. This simpler approach using the acyl glucuronide migration rate is not dependent on authentic standards, therefore eliminating the requirement for either lengthy chemical synthesis or in vitro biosynthesis and purification of the 1-O-β-glucuronide. This methodology provides a rapid in vitro assay to assess acyl glucuronide stability and reactivity that is well suited for use early in the drug discovery phase. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Development of a real-time SYBR Green PCR assay for the rapid detection of Dermatophilus congolensis.

    Science.gov (United States)

    García, Alfredo; Martínez, Remigio; Benitez-Medina, José Manuel; Risco, David; Garcia, Waldo Luis; Rey, Joaquín; Alonso, Juan Manuel; Hermoso de Mendoza, Javier

    2013-01-01

    Methods such as real time (RT)-PCR have not been developed for the rapid detection and diagnosis of Dermatophilus (D.) congolensis infection. In the present study, a D. congolensis-specific SYBR Green RT-PCR assay was evaluated. The detection limit of the RT-PCR assay was 1 pg of DNA per PCR reaction. No cross-reaction with nucleic acids extracted from Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, or Austwickia chelonae was observed. Finally, the RT-PCR assay was used to evaluate clinical samples collected from naturally infected animals with D. congolensis. The results showed that this assay is a fast and reliable method for diagnosing dermatophilosis.

  6. A Rapid and Simple TLC-Densitometric Method for Assay of Clobetasol Propionate in Topical Solution.

    Science.gov (United States)

    Dolowy, Malgorzata; Kozik, Violetta; Bak, Andrzej; Jampilek, Josef; Barbusinski, Krzysztof; Thomas, Maciej; Pyka-Pajak, Alina

    2017-11-03

    A rapid, simple to use and low-cost thin-layer chromatographic procedure in normal phase system with densitometric detection at 246 nm was carefully validated according to the International Conference on Harmonisation (ICH) guidelines for assay of clobetasol propionate in topical solution containing clobetasol propionate in quantity 0.50 mg/mL. The adopted thin-layer chromatographic (TLC)-densitometric procedure could effectively separate clobetasol propionate from its related compound, namely clobetasol. It is linear for clobetasol propionate in the range of 0.188 ÷ 5 µg/spot. The limit of detection (LOD) and limit of quantification (LOQ) value is 0.061 and 0.186 µg/spot, respectively. Accuracy of proposed procedure was evaluated by recovery test. The mean recovery of studied clobetasol propionate ranges from 98.7 to 101.0%. The coefficient of variation (CV, %) obtained during intra-day and inter-day studies, which was less than 2% (0.40 ÷ 1.17%), confirms the precision of described method. The assay value of clobetasol propionate is consistent with the pharmacopoeial requirements. In conclusion, it can be suitable as a simple and economic procedure for routine quality control laboratories of clobetasol propionate in topical solution.

  7. Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay

    Science.gov (United States)

    Jauset-Rubio, Miriam; Svobodová, Markéta; Mairal, Teresa; McNeil, Calum; Keegan, Neil; Saeed, Ayman; Abbas, Mohammad Nooredeen; El-Shahawi, Mohammad S.; Bashammakh, Abdulaziz S.; Alyoubi, Abdulrahman O.; O´Sullivan, Ciara K.

    2016-01-01

    Sensitive, specific, rapid, inexpensive and easy-to-use nucleic acid tests for use at the point-of-need are critical for the emerging field of personalised medicine for which companion diagnostics are essential, as well as for application in low resource settings. Here we report on the development of a point-of-care nucleic acid lateral flow test for the direct detection of isothermally amplified DNA. The recombinase polymerase amplification method is modified slightly to use tailed primers, resulting in an amplicon with a duplex flanked by two single stranded DNA tails. This tailed amplicon facilitates detection via hybridisation to a surface immobilised oligonucleotide capture probe and a gold nanoparticle labelled reporter probe. A detection limit of 1 × 10−11 M (190 amol), equivalent to 8.67 × 105 copies of DNA was achieved, with the entire assay, both amplification and detection, being completed in less than 15 minutes at a constant temperature of 37 °C. The use of the tailed primers obviates the need for hapten labelling and consequent use of capture and reporter antibodies, whilst also avoiding the need for any post-amplification processing for the generation of single stranded DNA, thus presenting an assay that can facilely find application at the point of need. PMID:27886248

  8. Rapid intraoperative parathyroid hormone assay--more than just a comfort measure.

    LENUS (Irish Health Repository)

    Hanif, F

    2012-02-03

    BACKGROUND: Minimally invasive radio-guided parathyroidectomy (MIRP) has been embraced as an acceptable therapeutic approach to primary hyperparathyroidism. Preoperative sestamibi scanning has facilitated this technique. Here we evaluate the addition of a rapid intraoperative parathyroid hormone (iPTH) assay for patients undergoing MIRP. METHODS: A series of 51 patients underwent sestamibi localization of parathyroid glands followed by MIRP for primary hyperparathyroidism. Using peripheral venous samples, iPTH levels were measured prior to gland excision, as well as post-excision at 5, 10, and 15 minutes, taking a 50% reduction in iPTH level as indicative of complete excision. Next, changes in serum iPTH were compared with preoperative and postoperative changes in serum calcium, as well as levels of intraoperative ex-vivo radiation counts taken by hand-held gamma probe. RESULTS: In this series, a drop of greater than 50% in iPTH levels was observed in 94% of patients (n=48). Moreover, a significant drop in iPTH occurred within 10 minutes of excision in the majority (n=42) of cases (P<0.004). Changes in iPTH were comparable with the therapeutic reduction in calcium levels, as well as with the change in intraoperative ex-vivo gamma counts. CONCLUSIONS: This study demonstrates that the addition of an iPTH assay to MIRP provides a quick and reliable intraoperative diagnostic modality in confirming correct adenoma removal. Moreover, it precludes the requirement of frozen section.

  9. Potential rapid and simple lateral flow assay for Escherichia coli O111.

    Science.gov (United States)

    Terao, Yoshitaka; Yonekita, Taro; Morishita, Naoki; Fujimura, Tatsuya; Matsumoto, Takashi; Morimatsu, Fumiki

    2013-05-01

    We developed and evaluated a lateral flow assay (LFA) as a simple and rapid method for direct detection of Escherichia coli O111 in food after enrichment. When cell suspensions of 8 E. coli O111 strains and 77 non-E. coli O111 strains were tested with the LFA, the former all yielded positive results and the latter all yielded negative results. The minimum detection limits for the E. coli O111 strains were 1.8 × 10(3) to 5.6 × 10(5) CFU/ml of cell suspension, and the LFA was able to detect live cultures or those killed by autoclaving at nearly the same level of sensitivity. To evaluate the ability of LFA to detect its target in food, enrichment cultures of meat samples inoculated with 10-fold serial dilutions of E. coli O111 were tested with the LFA and PCR. Even when there were very few E. coli O111 cells in the meat samples (1.6 × 10(0) to 1.6 × 10(1) CFU/25 g of food), when they were cultured in modified E. coli broth with novobiocin for 22 h at 42°C, the LFA yielded positive results that corresponded to the PCR results. Although the LFA requires further evaluation and field study, these results suggest that this assay has sufficient sensitivity and specificity. This procedure can be completed with a one-step incubation after the test strip has been inserted into the sample after 22 h of culture, whereas the standard culture method requires multiple cultures, skilled personnel, a well-equipped laboratory, and 4 or 5 days. The speed and simplicity of this LFA make it suitable for use as part of routine screening assays in the food industry.

  10. Portable ceria nanoparticle-based assay for rapid detection of food antioxidants (NanoCerac)

    Science.gov (United States)

    Sharpe, Erica; Frasco, Thalia; Andreescu, Daniel; Andreescu, Silvana

    2012-01-01

    With increased awareness of nutrition and the advocacy for healthier food choices, there exists a great demand for a simple, easy-to-use test that can reliably measure the antioxidant capacity of dietary products. We report development and characterization of a portable nanoparticle based-assay, similar to a small sensor patch, for rapid and sensitive detection of food antioxidants. The assay is based on the use of immobilized ceria nanoparticles, which change color after interaction with antioxidants by means of redox and surface chemistry reactions. Monitoring corresponding optical changes enables sensitive detection of antioxidants in which the nanoceria provides an optical ‘signature’ of antioxidant power, while the antioxidants act as reducing agents. The sensor has been tested for the detection of common antioxidant compounds including ascorbic acid, gallic acid, vanilic acid, quercetin, caffeic acid, and epigallocatechin gallate and its function has been successfully applied for the assessment of antioxidant activity in real samples (teas and medicinal mushrooms). The colorimetric response was concentration dependent, with detection limits ranging from 20–400 μM depending on the antioxidant involved. Steady-state color intensity was achieved within seconds upon addition of antioxidants. The results are presented in terms of Gallic Acid Equivalents (GAE). The sensor performed favorably when compared with commonly used antioxidant detection methods. This assay is particularly appealing for remote sensing applications, where specialized equipment is not available, and also for high throughput analysis of a large number of samples. Potential applications for antioxidant detection in remote locations are envisioned. PMID:23139929

  11. Impact of a Rapid Herpes Simplex Virus PCR Assay on Duration of Acyclovir Therapy.

    Science.gov (United States)

    Van, Tam T; Mongkolrattanothai, Kanokporn; Arevalo, Melissa; Lustestica, Maryann; Dien Bard, Jennifer

    2017-05-01

    Herpes simplex virus (HSV) infections of the central nervous system (CNS) are associated with significant morbidity and mortality rates in children. This study assessed the impact of a direct HSV (dHSV) PCR assay on the time to result reporting and the duration of acyclovir therapy for children with signs and symptoms of meningitis and encephalitis. A total of 363 patients with HSV PCR results from cerebrospinal fluid (CSF) samples were included in this retrospective analysis, divided into preimplementation and postimplementation groups. For the preimplementation group, CSF testing was performed using a laboratory-developed real-time PCR assay; for the postimplementation group, CSF samples were tested using a direct sample-to-answer assay. All CSF samples were negative for HSV. Over 60% of patients from both groups were prescribed acyclovir. The average HSV PCR test turnaround time for the postimplementation group was reduced by 14.5 h (23.6 h versus 9.1 h; P < 0.001). Furthermore, 79 patients (43.6%) in the postimplementation group had dHSV PCR results reported <4 h after specimen collection. The mean time from specimen collection to acyclovir discontinuation was 17.1 h shorter in the postimplementation group (31.1 h versus 14 h; P < 0.001). The median duration of acyclovir therapy was also significantly reduced in the postimplementation group (29.2 h versus 14.3 h; P = 0.01). Our investigation suggests that implementation of rapid HSV PCR testing can decrease turnaround times and the duration of unnecessary acyclovir therapy. Copyright © 2017 American Society for Microbiology.

  12. Rapid diagnosis of tuberculosis using Xpert MTB/RIF assay - Report from a developing country.

    Science.gov (United States)

    Iram, Shagufta; Zeenat, Asyia; Hussain, Shahida; Wasim Yusuf, Noshin; Aslam, Maleeha

    2015-01-01

    To evaluate the diagnostic accuracy of the Xpert MTB/RIF assay for the detection of M. tuberculosis in pulmonary and extrapulmonary specimens and to compare it with conventional techniques. During a period of 10 months from December 2012 through September 2013, two hundred and forty five clinically TB suspects were enrolled for Xpert MTB\\RIF assay. The cohort comprised of 205 suspects of pulmonary TB and 40 of extrapulmonary TB (EPTB). The 40 EPTB samples included pus aspirated from different sites of the body (n=19), pleural fluid (n=11), ascitic fluid (n=7), pericardial fluid, CSF and urine one each. Ziehl-Neelsen (ZN) Stained smear microscopy, culture on LJ media and Xpert MTB/RIF assay was performed on samples from these patients. M. tuberculosis (MTB) were detected by Xpert MTB/RIF test in 111 (45.3%) out of 245 samples. Of these, 85 (34.7%) were smear positive on ZN staining and 102 (41.6%) were positive on LJ cultures. Rifampicin resistance was detected in 16 (6.5%) patients. Nine out of 19 pus samples (47.3%) were positive for MTB by Gene Xpert, 03 (15.8%) on ZN staining and 04 (21%) on LJ culture. MTB could not be detected in any other extrapulmonary sample. Xpert MTB/RIF is a sensitive method for rapid diagnosis of Tuberculosis, especially in smear negative cases and in EPTB as compared to the conventional ZN staining. Among EPTB cases the highest yield of positivity was shown in Pus samples. For countries endemic for TB GeneXpert can serve as a sensitive and time saving diagnostic modality for pulmonary and EPTB.

  13. Solid-phase receptor-based assay for the detection of cyclic imines by chemiluminescence, fluorescence, or colorimetry.

    Science.gov (United States)

    Rodríguez, Laura P; Vilariño, Natalia; Molgó, Jordi; Aráoz, Rómulo; Antelo, Alvaro; Vieytes, Mercedes R; Botana, Luis M

    2011-08-01

    The spirolides and gymnodimines are marine phycotoxins included in the group of cyclic imines. The toxicity of these compounds to humans is still unknown, although their toxicity by intraperitoneal injection in rodents is very high. A receptor-based method was developed using the competition of the 13-desmethyl spirolide C with biotin-labeled α-bungarotoxin for binding to nicotinic acetylcholine receptors and the immobilization of the α-bungarotoxin-receptor complex on streptavidin-coated surfaces. The quantification of the immobilized receptor can be achieved using a specific antibody. Finally, after the addition of a secondary antibody labeled with horseradish peroxidase, three alternative substrates of this enzyme generate a chemiluminescent, fluorescent, or colorimetric signal. The assay performs well in shellfish extracts and the detection range is 5-150 nM of 13-desmethyl spirolide C in shellfish extracts, which is at least 5 times more sensitive than the existing fluorescence polarization assay. This assay can also detect gymnodimine, although with 10 times lower sensitivity than the spirolide. The detection of cyclic imines with microplate assays would be useful for screening purposes in order to reduce the number of samples to be processed by bioassays or analytical methods.

  14. A Novel Assay for Easy and Rapid Quantification of Helicobacter pylori Adhesion.

    Science.gov (United States)

    Skindersoe, Mette E; Rasmussen, Lone; Andersen, Leif P; Krogfelt, Karen A

    2015-06-01

    Reducing adhesion of Helicobacter pylori to gastric epithelial cells could be a new way to counteract infections with this organism. We here present a novel method for quantification of Helicobacter pylori adhesion to cells. Helicobacter pylori is allowed to adhere to AGS or MKN45g cells in a 96-well microtiter plate. Then wells are added saponin, which lyses the cells without affecting the bacteria. After addition of alamarBlue(®) (resazurin) and 1- to 2-hour incubation, fluorescence measurements can be used to quantify the number of adherent bacteria. By use of the method, we demonstrate that adhesion of both a sabA and babA deletion mutant of H. pylori is significantly reduced compared to the wild type. The method offers a number of applications and may be used to compare the adherence potential of different strains of H. pylori to either cells or different materials or to screen for potential anti-adhesive compounds. The results presented here suggest that this easy and reproducible assay is well suited for quantitative investigation of H. pylori adhesion. © 2015 John Wiley & Sons Ltd.

  15. Rapid and Inexpensive Screening of Genomic Copy Number Variations Using a Novel Quantitative Fluorescent PCR Method

    Directory of Open Access Journals (Sweden)

    Martin Stofanko

    2013-01-01

    Full Text Available Detection of human microdeletion and microduplication syndromes poses significant burden on public healthcare systems in developing countries. With genome-wide diagnostic assays frequently inaccessible, targeted low-cost PCR-based approaches are preferred. However, their reproducibility depends on equally efficient amplification using a number of target and control primers. To address this, the recently described technique called Microdeletion/Microduplication Quantitative Fluorescent PCR (MQF-PCR was shown to reliably detect four human syndromes by quantifying DNA amplification in an internally controlled PCR reaction. Here, we confirm its utility in the detection of eight human microdeletion syndromes, including the more common WAGR, Smith-Magenis, and Potocki-Lupski syndromes with 100% sensitivity and 100% specificity. We present selection, design, and performance evaluation of detection primers using variety of approaches. We conclude that MQF-PCR is an easily adaptable method for detection of human pathological chromosomal aberrations.

  16. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine.

    Science.gov (United States)

    Hu, Li-Ming; Luo, Kai; Xia, Jun; Xu, Guo-Mao; Wu, Cheng-Hui; Han, Jiao-Jiao; Zhang, Gang-Gang; Liu, Miao; Lai, Wei-Hua

    2017-05-15

    Label selection is a critical factor for improving the sensitivity of lateral flow assay. Time-resolved fluorescent nanobeads, fluorescent submicrospheres, quantum dots, and colloidal gold-based lateral flow assay (TRFN-LFA, FM-LFA, QD-LFA, and CG-LFA) were first systematically compared for the quantitative detection of ractopamine in swine urine based on competitive format. The limits of detection (LOD) of TRFN-LFA, FM-LFA, QD-LFA, and CG-LFA were 7.2, 14.7, 23.6, and 40.1pg/mL in swine urine samples, respectively. The sensitivity of TRFN-LFA was highest. In the quantitative determination of ractopamine (RAC) in swine urine samples, TRFN-LFA exhibited a wide linear range of 5pg/mL to 2500pg/mL with a reliable coefficient of correlation (R 2 =0.9803). Relatively narrow linear ranges of 10-500pg/mL (FM-LFA) and 25-2500pg/mL (QD-LFA and CG-LFA) were acquired. Approximately 0.005µg of anti-RAC poly antibody (pAb) was used in each TRFN-LFA test strip, whereas 0.02, 0.054, and 0.15µg of pAb were used in each of the FM-LFA, QD-LFA, and CG-LFA test strips, respectively. In addition, TRFN-LFA required the least RAC-BSA antigens and exhibited the shortest detection time compared with the other lateral flow assays. Analysis of the RAC in swine urine samples showed that the result of TRFN-LFA was consistent with that of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and a commercial enzyme-linked immunosorbent assay (ELISA) kit. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoming; Fu, Afu [Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University (Singapore); Luo, Kathy Qian, E-mail: kluo@ntu.edu.sg [Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University (Singapore)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer An endothelial cell apoptosis assay using FRET-based biosensor was developed. Black-Right-Pointing-Pointer The fluorescence of the cells changed from green to blue during apoptosis. Black-Right-Pointing-Pointer This method was developed into a high-throughput assay in 96-well plates. Black-Right-Pointing-Pointer This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z Prime factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  18. Evaluation of Two Lyophilized Molecular Assays to Rapidly Detect Foot-and-Mouth Disease Virus Directly from Clinical Samples in Field Settings.

    Science.gov (United States)

    Howson, E L A; Armson, B; Madi, M; Kasanga, C J; Kandusi, S; Sallu, R; Chepkwony, E; Siddle, A; Martin, P; Wood, J; Mioulet, V; King, D P; Lembo, T; Cleaveland, S; Fowler, V L

    2017-06-01

    Accurate, timely diagnosis is essential for the control, monitoring and eradication of foot-and-mouth disease (FMD). Clinical samples from suspect cases are normally tested at reference laboratories. However, transport of samples to these centralized facilities can be a lengthy process that can impose delays on critical decision making. These concerns have motivated work to evaluate simple-to-use technologies, including molecular-based diagnostic platforms, that can be deployed closer to suspect cases of FMD. In this context, FMD virus (FMDV)-specific reverse transcription loop-mediated isothermal amplification (RT-LAMP) and real-time RT-PCR (rRT-PCR) assays, compatible with simple sample preparation methods and in situ visualization, have been developed which share equivalent analytical sensitivity with laboratory-based rRT-PCR. However, the lack of robust 'ready-to-use kits' that utilize stabilized reagents limits the deployment of these tests into field settings. To address this gap, this study describes the performance of lyophilized rRT-PCR and RT-LAMP assays to detect FMDV. Both of these assays are compatible with the use of fluorescence to monitor amplification in real-time, and for the RT-LAMP assays end point detection could also be achieved using molecular lateral flow devices. Lyophilization of reagents did not adversely affect the performance of the assays. Importantly, when these assays were deployed into challenging laboratory and field settings within East Africa they proved to be reliable in their ability to detect FMDV in a range of clinical samples from acutely infected as well as convalescent cattle. These data support the use of highly sensitive molecular assays into field settings for simple and rapid detection of FMDV. © 2015 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  19. Mycobacteria mobility shift assay: a method for the rapid identification of Mycobacterium tuberculosis and nontuberculous mycobacteria

    Directory of Open Access Journals (Sweden)

    Letícia Muraro Wildner

    2014-06-01

    Full Text Available The identification of mycobacteria is essential because tuberculosis (TB and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA that was designed for Mycobacterium tuberculosis complex (MTC and nontuberculous mycobacteria (NTM species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2% to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.

  20. The DNA 'comet assay' as a rapid screening technique to control irradiated food.

    Science.gov (United States)

    Cerda, H; Delincée, H; Haine, H; Rupp, H

    1997-04-29

    The exposure of food to ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests, and to extend shelf-life, thereby contributing to a safer and more plentiful food supply. To ensure free consumer choice, irradiated food will be labelled as such, and to enforce labelling, analytical methods to detect the irradiation treatment in the food product itself are desirable. In particular, there is a need for simple and rapid screening methods for the control of irradiated food. The DNA comet assay offers great potential as a rapid tool to detect whether a wide variety of foodstuffs have been radiation processed. In order to simplify the test, the agarose single-layer set-up has been chosen, using a neutral protocol. Interlaboratory blind trials have been successfully carried out with a number of food products, both of animal and plant origin. This paper presents an overview of the hitherto obtained results and in addition the results of an intercomparison test with seeds, dried fruits and spices are described. In this intercomparison, an identification rate of 95% was achieved. Thus, using this novel technique, an effective screening of radiation-induced DNA fragmentation is obtained. Since other food treatments also may cause DNA fragmentation, samples with fragmented DNA suspected to have been irradiated should be analyzed by other validated methods for irradiated food, if such treatments which damage DNA cannot be excluded.

  1. The DNA `comet assay` as a rapid screening technique to control irradiated food

    Energy Technology Data Exchange (ETDEWEB)

    Cerda, H. [Department of Radioecology, The Swedish University of Agricultural Sciences, Uppsala (Sweden); Delincee, H. [Institute of Nutritional Physiology, Federal Research Centre for Nutrition, Karlsruhe (Germany); Haine, H. [Campden and Chorleywood Food Research Association, Chipping Campden, Gloucestershire (United Kingdom); Rupp, H. [Swiss Federal Office of Public Health, Section of Food Chemistry, Berne (Switzerland)

    1997-04-29

    The exposure of food to ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests, and to extend shelf-life, thereby contributing to a safer and more plentiful food supply. To ensure free consumer choice, irradiated food will be labelled as such, and to enforce labelling, analytical methods to detect the irradiation treatment in the food product itself are desirable. In particular, there is a need for simple and rapid screening methods for the control of irradiated food. The DNA comet assay offers great potential as a rapid tool to detect whether a wide variety of foodstuffs have been radiation processed. In order to simplify the test, the agarose single-layer set-up has been chosen, using a neutral protocol. Interlaboratory blind trials have been successfully carried out with a number of food products, both of animal and plant origin. This paper presents an overview of the hitherto obtained results and in addition the results of an intercomparison test with seeds, dried fruits and spices are described. In this intercomparison, an identification rate of 95% was achieved. Thus, using this novel technique, an effective screening of radiation-induced DNA fragmentation is obtained. Since other food treatments also may cause DNA fragmentation, samples with fragmented DNA suspected to have been irradiated should be analyzed by other validated methods for irradiated food, if such treatments which damage DNA cannot be excluded.

  2. Development of a lateral flow immunochromatographic assay for the rapid diagnosis of Orf virus infections.

    Science.gov (United States)

    Zhao, Kui; He, Wenqi; Bi, Jingying; Zhang, Ximu; Zhang, Di; Huang, Houshuang; Zhang, Yuexiang; Song, Deguang; Gao, Feng

    2016-10-01

    A rapid and simple lateral-flow immunochromatographic assay (LFIA) was developed for the specific detection of Orf virus (ORFV) using two distinct monoclonal antibodies (MAbs: 5A5 and 6F2) against the ORFV ORF011 protein. The MAb 5A5 was conjugated with colloidal gold, and the MAb 6F2 and goat anti-mouse IgG were sprayed onto a nitrocellulose membrane in strips at positions designated test (T) and control (C), respectively. The results showed that samples of ORFV complexed with colloidal gold-conjugated MAb 5A5, were captured by MAb 6F2 at the T line resulting in the appearance of a purple band. When samples did not contain ORFV or when they contained a quantity of ORFV below the detection limit of the test, only the C line was visible. The analysis of sensitivity of the test demonstrated that the lowest detected quantity of ORFV was 2.03×10(3.0) TCID50/ml. Storage at room temperature for 6 months did not result in the loss of performance of the LFIA test. Using loop-mediated isothermal amplification (LAMP) as a reference test, the relative specificity and sensitivity of the LFIA test were determined to be 100% and 92.1%, respectively. Based on these results, the LFIA test developed may be a suitable tool for rapid on-site testing for ORFV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Real-time PCR TaqMan assay for rapid screening of bloodstream infection

    Science.gov (United States)

    2014-01-01

    Background Sepsis is one of the main causes of mortality and morbidity. The rapid detection of pathogens in blood of septic patients is essential for adequate antimicrobial therapy and better prognosis. This study aimed to accelerate the detection and discrimination of Gram-positive (GP) and Gram-negative (GN) bacteria and Candida species in blood culture samples by molecular methods. Methods The Real-GP®, -GN®, and -CAN® real-time PCR kit (M&D, Wonju, Republic of Korea) assays use the TaqMan probes for detecting pan-GP, pan-GN, and pan-Candida species, respectively. The diagnostic performances of the real-time PCR kits were evaluated with 115 clinical isolates, 256 positive and 200 negative blood culture bottle samples, and the data were compared to results obtained from conventional blood culture. Results Eighty-seven reference strains and 115 clinical isolates were correctly identified with specific probes corresponding to GP-bacteria, GN-bacteria and Candida, respectively. The overall sensitivity and specificity of the real-time PCR kit with blood culture samples were 99.6% and 89.5%, respectively. Conclusions The Real-GP®, -GN®, and -CAN® real-time PCR kits could be useful tools for the rapid and accurate screening of bloodstream infections (BSIs). PMID:24393579

  4. Development of a SERS-Based Rapid Vertical Flow Assay for Point-of-Care Diagnostics.

    Science.gov (United States)

    Clarke, O J R; Goodall, B L; Hui, H P; Vats, N; Brosseau, C L

    2017-02-07

    Point-of-care (POC) diagnostic testing platforms are a growing sector of the healthcare industry as they offer the advantages of rapid provision of results, ease of use, reduced cost, and the ability to link patients to care. While many POC tests are based on chromatographic flow assay technology, this technology suffers from a lack of sensitivity along with limited capacity for multiplexing and quantitative analysis. Several recent reports have begun to investigate the feasibility of coupling chromatographic flow platforms to more advanced read-out technologies which in turn enable on-site acquisition, storage, and transmission of important healthcare metrics. One such technology being explored is surface-enhanced Raman spectroscopy or SERS. In this work, SERS is coupled for the first time to a rapid vertical flow (RVF) immunotechnology for detection of anti-HCV antibodies in an effort to extend the capabilities of this commercially available diagnostic platform. High-quality and reproducible SERS spectra were obtained using reporter-modified gold nanoparticles (AuNPs). Serial dilution studies indicate that the coupling of SERS with RVF technology shows enormous potential for next-generation POC diagnostics.

  5. Mycobacteria mobility shift assay: a method for the rapid identification of Mycobacterium tuberculosis and nontuberculous mycobacteria.

    Science.gov (United States)

    Wildner, Letícia Muraro; Bazzo, Maria Luiza; Liedke, Susie Coutinho; Nogueira, Christiane Lourenço; Segat, Gabriela; Senna, Simone Gonçalves; Schlindwein, Aline Daiane; Oliveira, Jaquelline Germano de; Rovaris, Darcita B; Bonjardim, Claudio A; Kroon, Erna G; Ferreira, Paulo C P

    2014-06-01

    The identification of mycobacteria is essential because tuberculosis (TB) and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA) that was designed for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM) species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC) were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2%) to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.

  6. Intrinsic protein fluorescence assays for GEF, GAP and post-translational modifications of small GTPases.

    Science.gov (United States)

    Goody, Philip R

    2016-12-15

    Evidence and arguments are summarized that suggest that intrinsic (tryptophan) protein fluorescence provides an excellent and convenient signal for monitoring both GEF (guanine nucleotide exchange factor) and GAP (GTPase activating protein) activity of a large number of small GTPases. In addition, post-translational modifications of Rab proteins occurring in a region known to be a hot spot for such modifications also lead to fluorescence changes that can be accurately monitored in a time-dependent manner. It is suggested that intrinsic fluorescence should be the first method chosen for monitoring such reactions of tryptophan-containing small GTPases. Copyright © 2016. Published by Elsevier Inc.

  7. Development of a loop-mediated Isothermal amplification assay for sensitive and rapid detection of Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Kawahara Ryuji

    2008-09-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is a marine seafood-borne pathogen causing gastrointestinal disorders in humans. Thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH are known as major virulence determinants of V. parahaemolyticus. Most V. parahaemolyticus isolates from the environment do not produce TDH or TRH. Total V. parahaemolyticus has been used as an indicator for control of seafood contamination toward prevention of infection. Detection of total V. parahaemolyticus using conventional culture- and biochemical-based assays is time-consuming and laborious, requiring more than three days. Thus, we developed a novel and highly specific loop-mediated isothermal amplification (LAMP assay for the sensitive and rapid detection of Vibrio parahaemolyticus. Results The assay provided markedly more sensitive and rapid detection of V. parahaemolyticus strains than conventional biochemical and PCR assays. The assay correctly identified 143 V. parahaemolyticus strains, but did not detect 33 non-parahaemolyticus Vibrio and 56 non-Vibrio strains. Sensitivity of the LAMP assay for direct detection of V. parahaemolyticus in pure cultures and in spiked shrimp samples was 5.3 × 102 CFU per ml/g (2.0 CFU per reaction. The sensitivity of the LAMP assay was 10-fold more sensitive than that of the conventional PCR assay. The LAMP assay was markedly faster, requiring for amplification 13–22 min in a single colony on TCBS agar from each of 143 V. parahaemolyticus strains and less than 35 min in spiked shrimp samples. The LAMP assay for detection of V. parahaemolyticus required less than 40 min in a single colony on thiosulfate citrate bile salt sucrose (TCBS agar and 60 min in spiked shrimp samples from the beginning of DNA extraction to final determination. Conclusion The LAMP assay is a sensitive, rapid and simple tool for the detection of V. parahaemolyticus and will facilitate the surveillance for control of contamination of V

  8. DETECTION OF LOW DOSE RADIATION-AND CHEMICALLY-INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAYS

    Science.gov (United States)

    Rapid, sensitive and simple assays for radiation- and chemically-induced DNA damage can be of significant benefit to a number of fields including radiation biology, clinical research, and environmental monitoring. Although temperature-induced DNA strand separation has been use...

  9. Multidrug-resistant tuberculosis: Rapid molecular detection with MTBDRplus® assay in clinical samples

    Directory of Open Access Journals (Sweden)

    Rita Macedo

    2009-05-01

    Full Text Available Nowadays, the greatest concern of tuberculosis control programmes is the appearance of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Rapid determination of drug resistance in clinical samples, with Mycobacterium tuberculosis complex (MTC, is the prerequisite for initiating effective chemotherapy, ensuring successful treatment of the patient and preventing further spread of drugresistant isolates.The aim of our study was to determine the sensitivity of the new MTBDRplus® assay in comparison to culture, identification and classic DST, directly from smear-positive clinical specimens.A total of 68 smear-positive sputum specimens were processed by both the classical mycobacteriological methods and the molecular assay, MTBDRplus®.MTBDRplus® assay allowed an accurate identification of MTC species by detection of the specific band in all samples, from which we also isolated and identified MTC strains by culture methods. In the samples from which we isolated susceptible strains (63.2%, wild type patterns were found using MTBDRplus® assay. The samples from which we isolated resistant strains (36.8% showed specific mutations associated with the correspondent resistant phenotype.Our study indicated that this assay allows rapid detection of resistance, always in agreement with classic methods. Resumo: Uma das principais problematicas no controlo da tuberculose e o aparecimento de casos de tuberculose multirresistente (TB-MR e tuberculose extensivamente resistente (TB-XDR. A deteccao precoce da resistencia a farmacos, directamente a partir de amostras respiratorias, e essencial para que se assegure o tratamento atempado, adequado e eficaz da tuberculose, bem como para prevenir a disseminacao destes casos de especial gravidade.O nosso objectivo foi avaliar a sensibilidade e comparar os resultados obtidos com um metodo de genetica molecular disponivel comercialmente – MTBDRplus® – e o isolamento

  10. Rapid diagnostic tests duo as alternative to conventional serological assays for conclusive Chagas disease diagnosis.

    Science.gov (United States)

    Egüez, Karina E; Alonso-Padilla, Julio; Terán, Carolina; Chipana, Zenobia; García, Wilson; Torrico, Faustino; Gascon, Joaquim; Lozano-Beltran, Daniel-Franz; Pinazo, María-Jesús

    2017-04-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. It affects several million people, mainly in Latin America, and severe cardiac and/or digestive complications occur in ~30% of the chronically infected patients. Disease acute stage is mostly asymptomatic and infection goes undiagnosed. In the chronic phase direct parasite detection is hampered due to its concealed presence and diagnosis is achieved by serological methods, like ELISA or indirect hemagglutination assays. Agreement in at least two tests must be obtained due to parasite wide antigenic variability. These techniques require equipped labs and trained personnel and are not available in distant regions. As a result, many infected people often remain undiagnosed until it is too late, as the two available chemotherapies show diminished efficacy in the advanced chronic stage. Easy-to-use rapid diagnostic tests have been developed to be implemented in remote areas as an alternative to conventional tests. They do not need electricity, nor cold chain, they can return results within an hour and some even work with whole blood as sample, like Chagas Stat-Pak (ChemBio Inc.) and Chagas Detect Plus (InBIOS Inc.). Nonetheless, in order to qualify a rapidly diagnosed positive patient for treatment, conventional serological confirmation is obligatory, which might risk its start. In this study two rapid tests based on distinct antigen sets were used in parallel as a way to obtain a fast and conclusive Chagas disease diagnosis using whole blood samples. Chagas Stat-Pak and Chagas Detect Plus were validated by comparison with three conventional tests yielding 100% sensitivity and 99.3% specificity over 342 patients seeking Chagas disease diagnosis in a reference centre in Sucre (Bolivia). Combined used of RDTs in distant regions could substitute laborious conventional serology, allowing immediate treatment and favouring better adhesion to it.

  11. Assay of ceftazidime and cefepime based on fluorescence quenching of carbon quantum dots.

    Science.gov (United States)

    Huang, Yu; Zhang, Ying; Yan, Zhengyu; Liao, Shenghua

    2015-11-01

    A novel and sensitive method for the determination of ceftazidime and cefepime in an active pharmaceutical ingredient (API) has been developed based on the fluorescence quenching of poly(ethylene glycol) (PEG)2000-capped carbon quantum dots (CQDs) prepared using a chemical oxidation method. The quenching of fluorescence intensity is proportional to the concentration of ceftazidime and cefepime over the range of 0.33-3.30 and 0.24-2.40 µg/mL, respectively. The mode of interaction between PEG2000-capped CQDs and ceftazidime/cefepime in aqueous solutions was investigated using a fluorescence, UV/Vis and Fourier transform infrared spectrometry (FTIR) at physiological pH. UV/Vis and FTIR spectra demonstrated that ground state compounds were formed through hydrophobic interaction the fluorescence quenching of CQDs caused by ceftazidime and cefepime. The quenching constants decreased with increases in temperature, which was consistent with static quenching. Copyright © 2015 John Wiley & Sons, Ltd.

  12. A Low-Cost, High-Performance System for Fluorescence Lateral Flow Assays

    OpenAIRE

    Linda G. Lee; Nordman, Eric S.; Johnson, Martin D.; Mark F. Oldham

    2013-01-01

    We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phyco...

  13. Europium Nanospheres-Based Time-Resolved Fluorescence for Rapid and Ultrasensitive Determination of Total Aflatoxin in Feed.

    Science.gov (United States)

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Ding, Xiaoxia; Zhang, Wen

    2015-12-02

    Immunochromatographic (IC) assays are considered suitable diagnostic tools for the determination of mycotoxins. A europium nanospheres-based time-resolved fluorescence immunoassay (Eu-Nano-TRFIA), based on a monoclonal antibody and a portable TRFIA reader, was developed to determine total aflatoxin (including aflatoxins B1, B2, G1, and G2) levels in feed samples. Under optimized conditions, the Eu-Nano-TRFIA method detected total aflatoxin within 12 min. It showed good linearity (R(2) > 0.985), LOD of 0.16 μg/kg, a wide dynamic range of 0.48-30.0 μg/kg, recovery rates of 83.9-113.9%, and coefficients of variation (CVs) of 3.5-8.8%. In the 397 samples from company and livestock farms throughout China, the detection rate was 78.3%, concentrations were 0.50-145.30 μg/kg, the highest total aflatoxin content was found in cottonseed meal, and corn was found to be the most commonly contaminated feed. This method could be a powerful alternative for the rapid and ultrasensitive determination of total aflatoxin in quality control and meet the required Chinese maximum residue limits.

  14. Enhanced Sensitivity for Detection of HIV-1 p24 Antigen by a Novel Nuclease-Linked Fluorescence Oligonucleotide Assay.

    Directory of Open Access Journals (Sweden)

    Peihu Fan

    Full Text Available The relatively high detection limit of the Enzyme-linked immunosorbent assay (ELISA prevents its application for detection of low concentrations of antigens. To increase the sensitivity for detection of HIV-1 p24 antigen, we developed a highly sensitive nuclease-linked fluorescence oligonucleotide assay (NLFOA. Two major improvements were incorporated in NLFOA to amplify antibody-antigen interaction signals and reduce the signal/noise ratio; a large number of nuclease molecules coupled to the gold nanoparticle/streptavidin complex and fluorescent signals generated from fluorescent-labeled oligonucleotides by the nuclease. The detection limit of p24 by NLFOA was 1 pg/mL, which was 10-fold more sensitive than the conventional ELISA (10 pg/mL. The specificity was 100% and the coefficient of variation (CV was 7.8% at low p24 concentration (1.5 pg/mL with various concentrations of spiked p24 in HIV-1 negative sera. Thus, NLFOA is highly sensitive, specific, reproducible and user-friendly. The more sensitive detection of low p24 concentrations in HIV-1-infected individuals by NLFOA could allow detection of HIV-1 infections that are missed by the conventional ELISA at the window period during acute infection to further reduce the risk for HIV-1 infection due to the undetected HIV-1 in the blood products. Moreover, NLFOA can be easily applied to more sensitive detection of other antigens.

  15. Comparison of a Micro-Neutralization Test with the Rapid Fluorescent Focus Inhibition Test for Measuring Rabies Virus Neutralizing Antibodies

    Directory of Open Access Journals (Sweden)

    Todd G. Smith

    2017-07-01

    Full Text Available The rapid fluorescent focus inhibition test (RFFIT is routinely used in the United States to measure rabies virus neutralizing antibodies (rVNA. RFFIT has a long history of reproducible and reliable results. The test has been modified over the years to use smaller volumes of reagents and samples, but requires a 50 μL minimum volume of test serum. To conduct pathogenesis studies, small laboratory animals such as mice are regularly tested for rVNA, but the minimum volume for a standard RFFIT may be impossible to obtain, particularly in scenarios of repeated sampling. To address this problem, a micro-neutralization test was developed previously. In the current study, the micro-neutralization test was compared to the RFFIT using 129 mouse serum samples from rabies vaccine studies. Using a cut-off value of 0.1 IU/mL, the sensitivity, specificity, and concordance of the micro-neutralization test were 100%, 97.5%, and 98%, respectively. The geometric mean titer of all samples above the cut-off was 2.0 IU/mL using RFFIT and 3.4 IU/mL using the micro-neutralization test, indicating that titers determined using the micro-neutralization test are not equivalent to RFFIT titers. Based on four rVNA-positive hamster serum samples, the intra-assay coefficient of variability was 24% and inter-assay coefficient of variability was 30.4%. These results support continued use of the micro-neutralization test to determine rabies virus neutralizing antibody titers for low-volume serum samples.

  16. Optimization of the structure-switching aptamer-based fluorescence polarization assay for the sensitive tyrosinamide sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhenyu; Schmidt, Thomas; Mahrous, Maroi; Guieu, Valerie; Perrier, Sandrine; Ravelet, Corinne [Departement de Pharmacochimie Moleculaire UMR 5063 CNRS, ICMG FR 2607, Universite Grenoble I, Campus Universitaire, Saint-Martin d' Heres (France); Peyrin, Eric, E-mail: eric.peyrin@ujf-grenoble.fr [Departement de Pharmacochimie Moleculaire UMR 5063 CNRS, ICMG FR 2607, Universite Grenoble I, Campus Universitaire, Saint-Martin d' Heres (France)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer A structure-switching aptamer assay based on a fluorescence polarization (FP) signal transduction approach. Black-Right-Pointing-Pointer Format relied on CS displacement by target. Black-Right-Pointing-Pointer Fluorescence signal generation dependent on the fine interconnection between dye nature and CS length. Black-Right-Pointing-Pointer Impact on assay performances. - Abstract: In this paper, a structure-switching aptamer assay based on a fluorescence polarization (FP) signal transduction approach and dedicated to the L-tyrosinamide sensing was described and optimized. A fluorescently labelled complementary strand (CS) of the aptamer central region was used as a probe. The effects of critical parameters such as buffer composition and pH, temperature, aptamer:CS stoichiometry, nature of the dye (Fluorescein (F) or Texas Red (TR)) and length of the CS (15-, 12-, 9- and 6-mer) on the assay analytical performances were evaluated. Under optimized experimental conditions (10 mM Tris-HCl, 5 mM MgCl{sub 2} and 25 mM NaCl, pH 7.5 temperature of 22 Degree-Sign C and stoichiometry 1:1), the results showed that, for a 12-mer CS, the F dye moderately increased the method sensitivity in comparison to the TR label. The F labelled 9-mer CS, however, did not allow the hybrid formation with the functional nucleic acid, thus emphasizing the importance of the nature of the fluorophore. In contrast, the same 9-mer CS labelled with the TR dye was able to effectively associate with the aptamer and was easily displaced upon target binding as demonstrated by a significant improvement of the sensitivity and a detection limit of 250 nM, comparable to those reported with direct aptasensing methods. The present study demonstrates that not only the CS length but also the nature of the dye played a preponderant role in the performance of the structure-switching aptamer assay, highlighting the importance of interdependently controlling these two factors

  17. Rapid and sensitive screening of some acidic micronutrients in infant foods by HPLC with fluorescent detector.

    Science.gov (United States)

    Li, Guoliang; Kong, Weiheng; Fan, Guangsen; Wang, Wenli; Hu, Na; Chen, Guang; Zhao, Xianen; You, Jinmao

    2016-06-01

    Currently, commercially prepared complementary foods have become an important part of the diet of many infants and toddlers. But the method for simultaneous analysis of different types of micronutrient remains poorly investigated, which hinders the rapid and comprehensive quality control of infant foods. In the presented study, we first tried to employ the fluorescence labeling strategy combined with high-performance liquid chromatography-fluorescence detection for simultaneous determination of some acidic micronutrients including biotin, nicotinic acid, linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, arachidonic acid and linoleic acid in infant foods. 2-(5-Benzoacridine) ethyl-p-toluenesulfonate was used as the fluorescence labeling reagent for simultaneous labeling of the seven components. The labeling conditions were optimized systematically by response surface methodology. The correlation coefficients for the calibration curves of the tested compounds ranged from 0.9991 to 0.9998. Limits of detection were in the range of 1.99-3.05 nmol L(-1) . Relative standard deviation values of retention time and peak area of seven compounds were less than 0.05% and 0.75%, respectively. The intra- and inter-day precision was in the range of 1.81-3.80% and 3.21-4.30%, respectively. When applied to analysis of several infant foods it showed good applicability. The developed method has been proven to be simple, inexpensive, selective, sensitive, accurate and reliable for analysis of some acidic micronutrients in infant foodstuffs. Furthermore, this developed method also has powerful potential in the analysis of many other complementary foodstuffs. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. A FRET-based ratiometric fluorescent aptasensor for rapid and onsite visual detection of ochratoxin A.

    Science.gov (United States)

    Qian, Jing; Wang, Kan; Wang, Chengquan; Hua, Mengjuan; Yang, Zhenting; Liu, Qian; Mao, Hanping; Wang, Kun

    2015-11-07

    A color change observable by the naked eye to indicate the content of an analyte is considered to be the most conceivable way of various sensing protocols. By taking advantage of the Förster resonance energy transfer (FRET) principles, we herein designed a dual-emission ratiometric fluorescent aptasensor for ochratoxin A (OTA) detection via a dual mode of fluorescent sensing and onsite visual screening. Amino group-modified OTA's aptamer was firstly labeled with the green-emitting CdTe quantum dots (gQDs) donor. The red-emitting CdTe QDs (rQDs) which were wrapped in the silica sphere could serve as the reference signal, while the gold nanoparticle (AuNP) acceptors were attached on the silica surface to bind with the thiolated complementary DNA (cDNA). The hybridization reaction between the aptamer and the cDNA brought gQD-AuNP pair close enough, thereby making the FRET occur in the aptasensor fabrication, while the subsequent fluorescence recovery induced by OTA was obtained in the detection procedure. Based on the red background of the wrapped rQDs, the aptasensor in response to increasing OTA displayed a distinguishable color change from red to yellow-green, which could be conveniently readout in solution even by the naked eye. Since the bioconjugations used as the aptasensor can be produced at large scale, this method can be used for in situ, rapid, or high-throughput OTA detection after only an incubation step in a homogeneous mode. We believe that this novel aptasensing strategy provides not only a promising method for OTA detection but also a universal model for detecting diverse targets by changing the corresponding aptamer.

  19. Functional characterisation of human glycine receptors in a fluorescence-based high throughput screening assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.

    2005-01-01

    receptors in this assay were found to be in good agreement with those from electrophysiology studies of the receptors expressed in Xenopus oocytes or mammalian cell lines. Hence, this high throughput screening assay will be of great use in future pharmacological studies of glycine receptors, particular...

  20. Mapping metals in Parkinson's and normal brain using rapid-scanning x-ray fluorescence

    Science.gov (United States)

    Popescu, Bogdan F. Gh; George, Martin J.; Bergmann, Uwe; Garachtchenko, Alex V.; Kelly, Michael E.; McCrea, Richard P. E.; Lüning, Katharina; Devon, Richard M.; George, Graham N.; Hanson, Akela D.; Harder, Sheri M.; Chapman, L. Dean; Pickering, Ingrid J.; Nichol, Helen

    2009-02-01

    Rapid-scanning x-ray fluorescence (RS-XRF) is a synchrotron technology that maps multiple metals in tissues by employing unique hardware and software to increase scanning speed. RS-XRF was validated by mapping and quantifying iron, zinc and copper in brain slices from Parkinson's disease (PD) and unaffected subjects. Regions and structures in the brain were readily identified by their metal complement and each metal had a unique distribution. Many zinc-rich brain regions were low in iron and vice versa. The location and amount of iron in brain regions known to be affected in PD agreed with analyses using other methods. Sample preparation is simple and standard formalin-fixed autopsy slices are suitable. RS-XRF can simultaneously and non-destructively map and quantify multiple metals and holds great promise to reveal metal pathologies associated with PD and other neurodegenerative diseases as well as diseases of metal metabolism.

  1. Simple Screening of Listeria monocytogenes Based on a Fluorescence Assay via a Laminated Lab-On-Paper Chip.

    Science.gov (United States)

    Pisamayarom, Kankanit; Suriyasomboon, Annop; Chaumpluk, Piyasak

    2017-11-28

    Monitoring food safety is essential for protecting the health and safety of consumers. Conventional methods used are time consuming and laborious, requiring anywhere from three to seven days to obtain results. Thus, better monitoring methods are required. In this study, a laminated lab-on-paper chip was developed, and its use for the screening of ready-to-eat seafood was demonstrated. The assay on a chip was based on loop-mediated isothermal DNA amplification (LAMP) of the hly gene of Listeria monocytogenes and fluorescence signal detection via SYBR Gold TM . Overall assay processes were completed in 4.5 h., (including 3.5 h. incubation for the bacteria enrichment, direct DNA amplification with no DNA extraction, and signal detection), without relying on standard laboratory facilities. Only positive samples induced fluorescence signals on chip upon illumination with UV light (λ = 460). The method has a limit of detection of 100 copies of L. monocytogenes DNA per 50 g of sample. No cross-reactivity was observed in samples contaminated with other bacteria. On-site monitoring of the seafood products using this chip revealed that one of 30 products from low sanitation vendors (3.33%) were contaminated, and these agreed with the results of PCR. The results demonstrated a benefit of this chip assay for practical on-site monitoring.

  2. Simple Screening of Listeria monocytogenes Based on a Fluorescence Assay via a Laminated Lab-On-Paper Chip

    Directory of Open Access Journals (Sweden)

    Kankanit Pisamayarom

    2017-11-01

    Full Text Available Monitoring food safety is essential for protecting the health and safety of consumers. Conventional methods used are time consuming and laborious, requiring anywhere from three to seven days to obtain results. Thus, better monitoring methods are required. In this study, a laminated lab-on-paper chip was developed, and its use for the screening of ready-to-eat seafood was demonstrated. The assay on a chip was based on loop-mediated isothermal DNA amplification (LAMP of the hly gene of Listeria monocytogenes and fluorescence signal detection via SYBR GoldTM. Overall assay processes were completed in 4.5 h., (including 3.5 h. incubation for the bacteria enrichment, direct DNA amplification with no DNA extraction, and signal detection, without relying on standard laboratory facilities. Only positive samples induced fluorescence signals on chip upon illumination with UV light (λ = 460. The method has a limit of detection of 100 copies of L. monocytogenes DNA per 50 g of sample. No cross-reactivity was observed in samples contaminated with other bacteria. On-site monitoring of the seafood products using this chip revealed that one of 30 products from low sanitation vendors (3.33% were contaminated, and these agreed with the results of PCR. The results demonstrated a benefit of this chip assay for practical on-site monitoring.

  3. Simultaneous quantification of five bacterial and plant toxins from complex matrices using a multiplexed fluorescent magnetic suspension assay.

    Science.gov (United States)

    Pauly, Diana; Kirchner, Sebastian; Stoermann, Britta; Schreiber, Tanja; Kaulfuss, Stefan; Schade, Rüdiger; Zbinden, Reto; Avondet, Marc-André; Dorner, Martin B; Dorner, Brigitte G

    2009-10-01

    Proteotoxins such as ricin, abrin, botulinum neurotoxins type A and B (BoNT/A, BoNT/B) and staphylococcal enterotoxin B (SEB) are regarded as potential biological warfare agents which could be used for bioterrorism attacks on the food chain. In this study we used a novel immunisation strategy to generate high-affinity monoclonal and polyclonal antibodies against native ricin, BoNT/A, and BoNT/B. The antibodies were used along with antibodies against SEB and abrin to establish a highly sensitive magnetic and fluorescent multiplex bead array with excellent sensitivities between 2 ng/L and 546 ng/L from a minimal sample volume of 50 microL. The assay was validated using 20 different related analytes and the assay precision was determined. Advancing the existing bead array technology, the novel magnetic and fluorescent microbeads proved amenable to enrichment procedures, by further increasing sensitivity to 0.3-85 ng/L, starting from a sample volume of 500 microL. Furthermore, the method was successfully applied for the simultaneous identification of the target toxins spiked into complex food matrices like milk, baby food and yoghurt. On the basis of our results, the assay appears to be a good tool for large-scale screening of samples from the food supply chain.

  4. A Low-Cost, High-Performance System for Fluorescence Lateral Flow Assays

    Science.gov (United States)

    Lee, Linda G.; Nordman, Eric S.; Johnson, Martin D.; Oldham, Mark F.

    2013-01-01

    We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE) to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA) as the analyte. Fluorescence provided linear data over a range of 0.4–4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16–4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG) as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting. PMID:25586412

  5. A Low-Cost, High-Performance System for Fluorescence Lateral Flow Assays

    Directory of Open Access Journals (Sweden)

    Linda G. Lee

    2013-10-01

    Full Text Available We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA as the analyte. Fluorescence provided linear data over a range of 0.4–4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16–4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting.

  6. A near-infrared fluorescence assay method to detect patulin in food.

    Science.gov (United States)

    Pennacchio, Anna; Varriale, Antonio; Esposito, Maria Grazia; Staiano, Maria; D'Auria, Sabato

    2015-07-15

    Patulin (PAT) is a toxic secondary metabolite (mycotoxin) of different fungal species belonging to the genera Penicillium, Aspergillus, and Byssochlamys. They can grow on a large variety of food, including fruits, grains, and cheese. The amount of PAT in apple derivative products is a crucial issue because it is the measure of the quality of both the used raw products and the performed production process. Actually, all current methodologies used for the quantification of PAT are time-consuming and require skilled personnel beyond the sample pretreatment methods (e.g., high-performance liquid chromatography, mass spectrometry, and electrophoresis techniques). In this work, we present a novel fluorescence polarization approach based on the use of emergent near-infrared (NIR) fluorescence probes. The use of these fluorophores coupled to anti-PAT antibodies makes possible the detection of PAT directly in apple juice without any sample pretreatment. This methodology is based on the increase of fluorescence polarization emission of a fluorescence-labeled PAT derivative on binding to specific antibodies. A competition between PAT and the fluorescence-labeled PAT derivative allowed detecting PAT. The limit of detection of the method is 0.06 μg/L, a value that is lower than maximum residue limit of PAT fixed at 50 μg/L from European Union regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Development of an isothermal amplification-based assay for the rapid visual detection of Salmonella bacteria.

    Science.gov (United States)

    Liu, Hai-Bin; Zang, Yu-Xuan; Du, Xin-Jun; Li, Ping; Wang, Shuo

    2017-09-01

    The efficient and timely detection of pathogens is a major concern worldwide. The aim of this study was to establish a rapid detection method for Salmonella bacteria in food samples to facilitate timely treatment. Widely used detection methods currently include culture-based methods and PCR-based methods. The former are time consuming, requiring 2 to 3 d, whereas the latter have higher accuracy but are typically complicated, requiring expertise and expensive instruments. In this study, a sensitive and rapid approach for the visual and point-of-use detection of Salmonella bacteria based on recombinase polymerase amplification (RPA) and a lateral-flow (LF) nucleic acid strip was established. We designed a pair of primers according to the invA gene of Salmonella bacteria: one was modified with digoxin, and the other was modified with biotin. In the presence of the biotin- and digoxin-modified primers and target DNA, the RPA produced a substantial amount of duplex DNA attached to biotin and digoxin. The products were detected using LF strips through immunoreaction: anti-digoxin antibodies on the gold nanoparticles, digoxin on the duplex, streptavidin on the LF test line, and biotin on the duplex. The developed RPA-LF assay allowed detection of Salmonella genomic DNA in less than 20 min with simple water bath equipment or portable thermal equipment. In addition, the RPA-LF assay was highly sensitive, with a detection limit as low as 20 fg of target DNA or 1.05 × 101 cfu of bacteria in pure culture, and highly specific, exhibiting no cross-reaction with Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Shigella, Enterobacter aerogenes, or Campylobacter jejuni. Importantly, Salmonella could be detected in milk and chicken breast at concentrations as low as 1.05 × 100 cfu/mL or 1.05 × 100 cfu/g after enrichment for 2 h and in eggs at 1.05 × 100 cfu/g after enrichment for 4 h. Furthermore, RPA was more sensitive than PCR, which requires a thermal cycling

  8. A rapid, sensitive, simple plate assay for detection of microbial alginate lyase activity.

    Science.gov (United States)

    Sawant, Shailesh S; Salunke, Bipinchandra K; Kim, Beom Soo

    2015-09-01

    worked well for screening and identification of alginate lyase producers and non-producers from environmental samples on common laboratory media. They did this by clearly showing the presence or absence of clearance zones around the microbial colonies grown. This new method is rapid, efficient, and could easily be performed for screening a large number of microbial cultures. This is the first report on the use of Gram's iodine for the detection of alginate lyase production by microorganisms using plate assay. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Optical scatter imaging: a microscopic modality for the rapid morphological assay of living cells

    Science.gov (United States)

    Boustany, Nada N.

    2007-02-01

    Tumors derived from epithelial cells comprise the majority of human tumors and their growth results from the accumulation of multiple mutations affecting cellular processes critical for tissue homeostasis, including cell proliferation and cell death. To understand these processes and address the complexity of cancer cell function, multiple cellular responses to different experimental conditions and specific genetic mutations must be analyzed. Fundamental to this endeavor is the development of rapid cellular assays in genetically defined cells, and in particular, the development of optical imaging methods that allow dynamic observation and real-time monitoring of cellular processes. In this context, we are developing an optical scatter imaging technology that is intended to bridge the gap between light and electron microscopy by rapidly providing morphometric information about the relative size and shape of non-spherical organelles, with sub-wavelength resolution. Our goal is to complement current microscopy techniques used to study cells in-vitro, especially in long-term time-lapse studies of living cells, where exogenous labels can be toxic, and electron microscopy will destroy the sample. The optical measurements are based on Fourier spatial filtering in a standard microscope, and could ultimately be incorporated into existing high-throughput diagnostic platforms for cancer cell research and histopathology of neoplastic tissue arrays. Using an engineered epithelial cell model of tumor formation, we are currently studying how organelle structure and function are altered by defined genetic mutations affecting the propensity for cell death and oncogenic potential, and by environmental conditions promoting tumor growth. This talk will describe our optical scatter imaging technology and present results from our studies on apoptosis, and the function of BCL-2 family proteins.

  10. Aptamer-Based Single-Step Assay by the Fluorescence Enhancement on Electroless Plated Nano Au Substrate.

    Science.gov (United States)

    Nambi Krishnan, Jegatha; Park, Sang-Hwi; Kim, Sang Kyung

    2017-09-07

    A new single-step aptamer-based surface-enhanced fluorescent optical sensor is built, by combining an aptamer-target interaction for target recognition and a fluorophore interaction for signal enhancement. The developed aptasensor is simple, sensitive, specific and stable for the detection of thrombin. A new nanometallic Au structure in the range of 100 nm was constructed through effective electroless plating method on a Cu thin film. Cu⁺ ions act as sacrificial seeds for the reduction of Au 2+/3+ ions to form Au nanolawns. In order to utilize the structure for a fluorescence-based sensor, aptamer conjugated with Cy3 was immobilized on the nanogold substrate through electrostatic attraction. The Au substrate was coated with chitosan (molecular weight 1000 Da). Thrombin binding aptamer (TBA) was applied as a model system demonstrating the aptamer-based fluorescence assay on nanogold substrates. Thrice-enhanced fluorescence emission was achieved with Cy3-conjugated TBA stably immobilized on the chitosan-coated Au substrate. The intensity change was proportional to the concentration of thrombin from 10 μM to 10 pM, whereas the intensity change was ignorable for other proteins such as human serum albumin (HSA). Aptamer-based assay benefited from simple immobilization of receptors and Au nanostructure contributed in building an effective surface enhancing/positively charged substrate was proved. Such an aptasensor holding high utilities for point-of-care devices by incorporating simplicity, sensitivity and selectivity in detection, low-cost for test, small sample volumes has been developed.

  11. Plasmon-enhanced fluorescence imaging with silicon-based silver chips for protein and nucleic acid assay.

    Science.gov (United States)

    Yuan, Bing; Jiang, Xiangxu; Yao, Chu; Bao, Meimei; Liu, Jiaojiao; Dou, Yujiang; Xu, Yinze; He, Yao; Yang, Kai; Ma, Yuqiang

    2017-02-22

    Metal-enhanced fluorescence shows great potential for improving the sensitivity of fluoroscopy, which has been widely used in protein and nucleic acid detection for biosensor and bioassay applications. In comparison with the traditional glass-supported metal nanoparticles (MNPs), the introduction of a silicon substrate has been shown to provide an increased surface-enhanced Raman scattering (SERS) effect due to the coupling between the MNPs and the semiconducting silicon substrate. In this work, we further study the fluorescence-enhanced effect of the silicon-supported silver-island (Ag@Si) plasmonic chips. In particular, we investigate their practical application of improving the traditional immunoassay such as the biotin-streptavidin-based protein assay and the protein-/nucleic acid-labeled cell and tissue samples. The protein assay shows a wavelength-dependent enhancement effect of the Ag@Si chip, with an enhancement factor ranging from 1.2 (at 532 nm) to 57.3 (at 800 nm). Moreover, for the protein- and nucleic acid-labeled cell and tissue samples, the Ag@Si chip provides a fluorescence enhancement factor of 3.0-4.1 (at 800 nm) and a significant improvement in the signal/background ratio for the microscopy images. Such a ready accommodation of the fluorescence-enhanced effect for the immunoassay samples with simple manipulations indicates broad potential for applications of the Ag@Si chip not only in biological studies but also in the clinical field. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Rapid and quantitative detection of Brucella by up-converting phosphor technology-based lateral-flow assay.

    Science.gov (United States)

    Qu, Qing; Zhu, Ziwen; Wang, Yufei; Zhong, Zhijun; Zhao, Jin; Qiao, Feng; Du, Xinying; Wang, Zhoujia; Yang, Ruifu; Huang, Liuyu; Yu, Yaqin; Zhou, Lei; Chen, Zeliang

    2009-10-01

    A rapid and quantitative up-converting phosphor technology-based later-flow assay (UPT-LF assay) was developed for on-site detection of Brucella. Different Brucella species both in pure cultures and in spiked samples could be quantitatively detected. The detection limit for pure culture was 5 x 10(6)CFU/ml and the sensitivity for different spiked samples ranged from 2.0 x 10(3) to 3.9 x 10(5)CFU/mg. The UPT-LF assay showed high specificity, reproducibility and stability, providing great potential for Brucella on-site detection.

  13. Development of a real-time SYBR Green PCR assay for the rapid detection of Dermatophilus congolensis

    OpenAIRE

    García, Alfredo; Martínez, Remigio; Benitez-Medina, José Manuel; Risco, David; García, Waldo Luis; Rey, Joaquín; Alonso, Juan Manuel; de Mendoza, Javier Hermoso

    2013-01-01

    Methods such as real time (RT)-PCR have not been developed for the rapid detection and diagnosis of Dermatophilus (D.) congolensis infection. In the present study, a D. congolensis-specific SYBR Green RT-PCR assay was evaluated. The detection limit of the RT-PCR assay was 1 pg of DNA per PCR reaction. No cross-reaction with nucleic acids extracted from Pseudomonas aeruginosa, Mycobacterium tuberculosis, Staphylococcus aureus, or Austwickia chelonae was observed. Finally, the RT-PCR assay was ...

  14. Development of a Rapid Real-Time PCR Assay for Quantitation of Pneumocystis carinii f. sp. Carinii

    DEFF Research Database (Denmark)

    Larsen, Hans Henrik; Kovacs, Joseph A; Stock, Frida

    2002-01-01

    ) PCR assay for detecting P. carinii f. sp. carinii, the subspecies of P. carinii commonly used in research models of PCP. The assay was based on the single-copy dihydrofolate reductase gene and was able to detect ... axenic cultivation system for P. carinii and confirmed our microscopy findings that no organism multiplication had occurred during culture. For all cultures analyzed, QTD PCR assays showed a decrease in P. carinii DNA that exceeded the expected decrease due to dilution of the inoculum upon transfer....... In conclusion, a rapid, sensitive, and reproducible quantitative PCR assay for P. carinii f. sp. carinii has been developed and is applicable to in vivo as well as in vitro systems. The assay should prove useful for conducting studies in which quantification of organism burden or growth assessment is critical...

  15. Cell-free expression of protein kinase a for rapid activity assays.

    Science.gov (United States)

    Leippe, Donna M; Zhao, Kate Qin; Hsiao, Kevin; Slater, Michael R

    2010-05-19

    Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag((R)) fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  16. Cell-Free Expression of Protein Kinase a for Rapid Activity Assays

    Directory of Open Access Journals (Sweden)

    Donna M. Leippe

    2010-01-01

    Full Text Available Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag ® fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  17. Cell-Free Expression of Protein Kinase A for Rapid Activity Assays

    Directory of Open Access Journals (Sweden)

    Donna M. Leippe

    2010-05-01

    Full Text Available Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag® fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  18. The rapid interphase chromosome assay (RICA implementation: comparison with other PCC methods

    Directory of Open Access Journals (Sweden)

    Sommer Sylwester

    2015-12-01

    Full Text Available A report is presented on the advantages of the rapid interphase chromosome assay (RICA and the difficulties that may be met while implementing this method for application in biological dosimetry. The RICA test can be applied on unstimulated human lymphocytes; this is an advantage in comparison with the dicentric chromosomes or micronucleus tests. In the former two tests, stimulated lymphocytes are examined and hence, 48 h more are needed to obtain cells traversing the cell cycle. Due to the use of unstimulated nondividing cells, higher numbers of cells are available for RICA analysis than for dicentric chromosomes or micronuclei tests. Moreover, the method can be applied after exposure to ionizing radiation doses in excess of 5 Gy. Such doses cause a significant cell cycle delay or result in the loss of G2 phase and mitotic cells because of apoptosis. Therefore, the traditional biodosimetry based on the evaluation of the incidence of damage to chromosomes is very difficult to carry out. This is due to the lack of an adequate number of mitotic cells for analysis. RICA is free of this disadvantage. An automatic microscope can be used to retrieve cell images; automatic image analysis can also be used.

  19. New approach in multipurpose optical diagnostics: fluorescence based assay for simultaneous determination of physicochemical parameters

    OpenAIRE

    Moczko, Ewa

    2009-01-01

    The development of sensors assays for comprehensive characterisation of biological samples and effective minimal-invasive diagnostics is highly prioritised. Last decade this research area has been actively developing due to possibility of simultaneous, real- time, in vivo detection and monitoring of diverse physicochemical parameters and analytes. The new approach which has been introduced in this thesis was to develop and examine an optical diagnostic assay consisting of a ...

  20. Development of a fluorescence-based sensor for rapid diagnosis of cyanide exposure.

    Science.gov (United States)

    Jackson, Randy; Oda, Robert P; Bhandari, Raj K; Mahon, Sari B; Brenner, Matthew; Rockwood, Gary A; Logue, Brian A

    2014-02-04

    Although commonly known as a highly toxic chemical, cyanide is also an essential reagent for many industrial processes in areas such as mining, electroplating, and synthetic fiber production. The "heavy" use of cyanide in these industries, along with its necessary transportation, increases the possibility of human exposure. Because the onset of cyanide toxicity is fast, a rapid, sensitive, and accurate method for the diagnosis of cyanide exposure is necessary. Therefore, a field sensor for the diagnosis of cyanide exposure was developed based on the reaction of naphthalene dialdehyde, taurine, and cyanide, yielding a fluorescent β-isoindole. An integrated cyanide capture "apparatus", consisting of sample and cyanide capture chambers, allowed rapid separation of cyanide from blood samples. Rabbit whole blood was added to the sample chamber, acidified, and the HCN gas evolved was actively transferred through a stainless steel channel to the capture chamber containing a basic solution of naphthalene dialdehyde (NDA) and taurine. The overall analysis time (including the addition of the sample) was cyanide exposure. Most importantly, the sensor was 100% accurate in diagnosing cyanide poisoning for acutely exposed rabbits.

  1. Fluorescence assay for mitochondrial permeability transition in cardiomyocytes cultured in a microtiter plate

    DEFF Research Database (Denmark)

    Christensen, Marie Louise Muff; Braunstein, Thomas Hartig; Treiman, Marek

    2008-01-01

    neonatal cardiomyocytes in a 96-well microtiter plate format. In the presence of mitochondrial membrane potential Delta Psi m, accumulation of rhodamine-123 in mitochondria (40,000 cells/well, 2.6 microM rhodamine-123) caused fluorescence signal quenching. Following substitution of dye-free buffer...

  2. Development and evaluation of loop-mediated isothermal amplification assay for rapid detection of Capripoxvirus

    OpenAIRE

    Kanisht Batra; Aman Kumar; Vinay Kumar; Trilok Nanda; Maan, Narender S.; Sushila Maan

    2015-01-01

    Aim: The present study was undertaken to develop a nucleic acid-based diagnostic assay loop-mediated isothermal amplification assay (LAMP) targeting highly conserved genomic regions of Capripoxvirus (CaPVs) and its comparative evaluation with real-time polymerase chain reaction (PCR). Material and Methods: Lyophilized vaccine strain of sheeppox virus (SPPV) was used for optimization of LAMP assay. The LAMP assay was designed using envelope immunogenic protein (P32) coding gene targeting highl...

  3. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation.

    Science.gov (United States)

    Yaoi, Takuro; Jiang, Xin; Li, Xianqiang

    2006-06-01

    Transcription factors (TFs), which play crucial roles in the regulation of gene expression in the human genome, are highly regulated by a variety of mechanisms. A single extracellular stimulus can trigger multiple signaling pathways, and these in turn can activate multiple TFs to mediate the inducible expression of target genes. Alterations in the activities of TFs are often associated with human diseases, such as altered activating factor 1, estrogen receptor, and p53 function in cancer, nuclear factor kappaB in inflammatory diseases, and peroxisome proliferator-activated receptor gamma in obesity. A systematic assay for profiling the activation of TFs will aid in elucidating the mechanisms of TF activation, reveal altered TFs associated with human diseases, and aid in developing assays for drug discovery. Here, we developed a 24-plex fluorescent microsphere-based TF activation assay system with a 96-well plate format. The assay system enabled high-throughput profiling of the DNA binding activity of TFs in multiple samples with high sensitivity.

  4. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Bräuner-Osborne, Hans

    2004-01-01

    We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential (...

  5. A high throughput solubility assay for drug discovery using microscale shake-flask and rapid UHPLC-UV-CLND quantification.

    Science.gov (United States)

    Lin, Baiwei; Pease, Joseph H

    2016-04-15

    The rapid determination of key physical properties of lead compounds is essential to the drug discovery process. Solubility is one of the most important properties since good solubility is needed not only for obtaining reliable in vitro and in vivo assay results in early discovery but also to ensure sufficient concentration of the drug being in circulation to get the desired therapeutic exposure at the target of interest. In order for medicinal chemists to tune solubility of lead compounds, a rapid assay is needed to provide solubility data that is accurate and predictive so that it can be reliably used for designing the next generation of compounds with improved properties. To ensure speed and data quality, we developed a high throughput solubility assay that utilizes a single calibration UHPLC-UV-CLND method and a 24h shake-flask format for rapid quantification. A set of 46 model compounds was used to demonstrate that the method is accurate, reproducible and predictive. Here we present development of the assay, including evaluation of quantification method, filtration membranes, equilibrium times, DMSO concentrations, and buffer conditions. A comparison of thermodynamic solubility results to our high throughput 24h shake-flask solubility assay results is also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) assay for specific detection of Mycobacterium immunogenum and DNA-FISH assay for analysis of pseudomonads in metalworking fluids and sputum.

    Science.gov (United States)

    Selvaraju, Suresh B; Kapoor, Renuka; Yadav, Jagjit S

    2008-01-01

    Specific and rapid detection and quantification of mycobacteria in contaminated metalworking fluid (MWF) are problematic due to complexity of the matrix and heavy background co-occurring microflora. Furthermore, cross-reactivity among neighboring species of Mycobacterium makes species differentiation difficult for this genus. Here, we report for the first time a species-specific peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) method for Mycobacterium immunogenum, a non-tuberculous Mycobacterium species prevalent in MWF and implicated in occupational lung disease hypersensitivity pneumonitis and pseudo-outbreaks. A novel species-specific 14-bp PNA probe was designed for M. immunogenum based on its 16S rRNA gene sequence and was validated for specificity, by testing against a panel of other phylogenetically closely related rapidly growing mycobacteria and representative species of gram-positive, gram-negative, and acid fast organisms. In addition, a DNA-FISH protocol was optimized for co-detection of Pseudomonas, the most predominantly co-occurring genus in contaminated MWF. Reliable quantification for both the test organisms was achieved at or above a cell density of 10(3)cellsml(-1), a recognized minimum limit for microscopic quantification. The mycobacterial PNA-FISH assay was successfully adapted to human sputum demonstrating its potential for clinical diagnostic applications in addition to industrial MWF monitoring, to assess MWF-associated exposures and pseudo-outbreaks.

  7. [Study of applying fluorescence spectrum imaging to quantitative assay of proteins in bio-chip].

    Science.gov (United States)

    Chao, Ke-Fu; Zhang, You-Lin; Kong, Xiang-Gui; Li, Bing; Zeng, Qing-Hui; Song, Kai; Sun, Ya-Juan

    2008-07-01

    In the present work, the amount and the activity of the goat anti-human IgG, to bind the human IgG labelled with fluorescein isothiocyanate (FITC), immobilized on silicon surfaces modified with APTES and APTES-Glu, respectively, were studied using the fluorescence spectrum imaging (FSI), the results of which were compared with that of ellipsometry. It is shown that the amount of the human IgG labeled with FITC on APTES-Glu measured using FSI is 2.8 times higher than that on APTES, which is nearly coincident with the 2.2 times obtained using ellipsometry, showing that the activity of the goat anti-human IgG on APTES-Glu is higher than that on APTES. It is reasoned that the FSI is used in the fluorescence immunoassay the for measurement of quasi-quantification or quantification.

  8. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2013-01-01

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled...

  9. Rapid detection of fluorescent and chemiluminescent total coliforms and Escherichia coli on membrane filters.

    Science.gov (United States)

    Van Poucke, S O; Nelis, H J

    2000-11-01

    The detection of fluorescent colonies of Escherichia coli/total coliforms (TC) on a membrane filter is currently carried out using 4-methylumbelliferyl-beta-D-glycosides as enzyme substrates and a UV-lamp for visualization. The most rapid procedures based on this approach for the demonstration of these indicator bacteria in water take 6-7.5 h to complete. As part of efforts to further reduce the detection time, an improved two-step procedure for the fluorescence or chemiluminescence labelling of microcolonies of E. coli/TC on a membrane filter has been developed. Essential features of this approach include a separation of the bacterial propagation and target enzyme induction from the actual enzymatic labelling, the use of improved fluorogenic, i.e., 4-trifluoromethylumbelliferyl-beta-D-glycosides and fluorescein-di-beta-D-glycosides, or chemiluminogenic (i.e., phenylglucuronic- or galactose-substituted adamantyl 1,2-dioxetanes) substrates for beta-glucuronidase/beta-galactosidase, of enzyme inducers, of special membrane filters and of polymyxin B to promote the cellular uptake of the substrate. This labelling procedure has been applied in conjunction with different detection devices including a UV-lamp, CCD-cameras, X-ray film and the ChemScan((R)) RDI. Using the former three, microcolonies of pure cultures could be detected within 5.5-6.5 h, but waterborne E. coli/TC may fail to form microcolonies in this short time period, thus yielding poor sensitivity and a high false-negative rate. In contrast, a quantitative enumeration was feasible in less than 4 h with the ChemScan((R)) RDI, owing to its ability to detect both microcolonies and non-dividing single cells.

  10. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    Science.gov (United States)

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  11. Development of a multiplex fluorescence immunological assay for the simultaneous detection of antibodies against Cooperia oncophora, Dictyocaulus viviparus and Fasciola hepatica in cattle.

    Science.gov (United States)

    Karanikola, Sofia N; Krücken, Jürgen; Ramünke, Sabrina; de Waal, Theo; Höglund, Johan; Charlier, Johannes; Weber, Corinna; Müller, Elisabeth; Kowalczyk, Slawomir J; Kaba, Jaroslaw; von Samson-Himmelstjerna, Georg; Demeler, Janina

    2015-06-19

    A major constraint for the effective control and management of helminth parasites is the lack of rapid, high-throughput, routine diagnostic tests to assess the health status of individual animals and herds and to identify the parasite species responsible for these helminthoses. The capability of a multiplex platform for the simultaneous detection of three pasture associated parasite species was evaluated and compared to existing ELISAs. The recombinant antigens 14.2 kDa ES protein for Cooperia oncophora, major sperm protein for Dictyocaulus viviparus and Cathepsin L1 for Fasciola hepatica were recombinantly expressed either in Escherichia coli or Pichia pastoris. Antigens were covalently coupled onto magnetic beads. Optimal concentrations for coupling were determined following the examination of serum samples collected from experimentally mono-infected animals, before and after their infection with the target species. Absence of cross-reactivity was further determined with sera from calves mono-infected with Haemonchus contortus, Ostertagia ostertagi and Trichostrongylus colubriformis. Examination of negative serum samples was characterised by low median fluorescence intensity (MFI). Establishment of the optimal serum dilution of 1:200 was achieved for all three bead sets. Receiver Operating Characteristic analyses were performed to obtain cut-off MFI values for each parasite separately. Sensitivity and specificity at the chosen cut-off values were close to, or 100% for all bead sets. Examination of serum samples collected on different days post infection from different animals showed a high reproducibility of the assays. Serum samples were additionally examined with two already established ELISAs, an in-house ELISA using the recombinant MSP as an antigen and a DRG ELISA using Cathepsin L1 for liver fluke. The results between the assays were compared and kappa tests revealed an overall good agreement. A versatile bead-based assay using fluorescence detection (x

  12. A fluorescent homogeneous assay for myeloperoxidase measurement in biological samples. A positive correlation between myeloperoxidase-generated HOCl level and oxidative status in STZ-diabetic rats.

    Science.gov (United States)

    Stocker, Pierre; Cassien, Mathieu; Vidal, Nicolas; Thétiot-Laurent, Sophie; Pietri, Sylvia

    2017-08-01

    Myeloperoxidase (MPO) is a key enzyme derived from leukocytes which is associated with the initiation and progression of many inflammatory diseases. Increased levels of MPO may contribute to cellular dysfunction and tissues injury by producing highly reactive oxidants such as hypochlorous acid (HOCl). Myeloperoxidase-generated HOCl is therefore considered as a relevant biomarker of oxidative stress-related damage and its quantitation is of great importance to the study of disease progression. In this context, the current study describes a rapid, sensitive and homogeneous fluorescence-based method for detecting the MPO chlorination activity in biological samples. This assay utilizes 7-hydroxy-2-oxo-2H-chromene-8-carbaldehyde oxime as a selective probe for HOCl detection, and is adapted to 96-well microplates to allow high-throughput quantitation of active MPO. The ability of the method to monitor HOCl release was further investigated in hyperglycemic streptozotocin-treated diabetic rats. The data proved that the present assay has a reliable performance when quantitating the active MPO in the plasma of diabetic animals, a feature of inflammatory disease found concomitant with an elevation of protein carbonyls levels and lipid peroxidation and which was negatively correlated with the ratio of reduced-to-oxidized glutathione. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Engineering and exploitation of a fluorescent HIV-1 gp120 for live cell CD4 binding assays.

    Science.gov (United States)

    Costantini, Lindsey M; Irvin, Susan C; Kennedy, Steven C; Guo, Feng; Goldstein, Harris; Herold, Betsy C; Snapp, Erik L

    2015-02-01

    The HIV-1 envelope glycoprotein, gp120, binds the host cell receptor, CD4, in the initial step of HIV viral entry and infection. This process is an appealing target for the development of inhibitory drugs and neutralizing antibodies. To study gp120 binding and intracellular trafficking, we engineered a fluorescent fusion of the humanized gp120 JRFL HIV-1 variant and GFP. Gp120-sfGFP is glycosylated with human sugars, robustly expressed, and secreted from cultured human cells. Protein dynamics, quality control, and trafficking can be visualized in live cells. The fusion protein can be readily modified with different gp120 variants or fluorescent proteins. Finally, secreted gp120-sfGFP enables a sensitive and easy binding assay that can quantitatively screen potential inhibitors of gp120-CD4 binding on live cells via fluorescence imaging or laser scanning cytometry. This adaptable research tool should aid in studies of gp120 cell biology and the development of novel anti-HIV drugs. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Adaptation of Tri-molecular fluorescence complementation allows assaying of regulatory Csr RNA-protein interactions in bacteria.

    Science.gov (United States)

    Gelderman, Grant; Sivakumar, Anusha; Lipp, Sarah; Contreras, Lydia

    2015-02-01

    sRNAs play a significant role in controlling and regulating cellular metabolism. One of the more interesting aspects of certain sRNAs is their ability to make global changes in the cell by interacting with regulatory proteins. In this work, we demonstrate the use of an in vivo Tri-molecular Fluorescence Complementation assay to detect and visualize the central regulatory sRNA-protein interaction of the Carbon Storage Regulatory system in E. coli. The Carbon Storage Regulator consists primarily of an RNA binding protein, CsrA, that alters the activity of mRNA targets and of an sRNA, CsrB, that modulates the activity of CsrA. We describe the construction of a fluorescence complementation system that detects the interactions between CsrB and CsrA. Additionally, we demonstrate that the intensity of the fluorescence of this system is able to detect changes in the affinity of the CsrB-CsrA interaction, as caused by mutations in the protein sequence of CsrA. While previous methods have adopted this technique to study mRNA or RNA localization, this is the first attempt to use this technique to study the sRNA-protein interaction directly in bacteria. This method presents a potentially powerful tool to study complex bacterial RNA protein interactions in vivo. © 2014 Wiley Periodicals, Inc.

  15. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    Science.gov (United States)

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.

  16. Rapid and accurate tumor-target bio-imaging through specific in vivo biosynthesis of a fluorescent europium complex.

    Science.gov (United States)

    Ye, Jing; Wang, Jianling; Li, Qiwei; Dong, Xiawei; Ge, Wei; Chen, Yun; Jiang, Xuerui; Liu, Hongde; Jiang, Hui; Wang, Xuemei

    2016-04-01

    A new and facile method for rapidly and accurately achieving tumor targeting fluorescent images has been explored using a specifically biosynthesized europium (Eu) complex in vivo and in vitro. It demonstrated that a fluorescent Eu complex could be bio-synthesized through a spontaneous molecular process in cancerous cells and tumors, but not prepared in normal cells and tissues. In addition, the proteomics analyses show that some biological pathways of metabolism, especially for NADPH production and glutamine metabolism, are remarkably affected during the relevant biosynthesis process, where molecular precursors of europium ions are reduced to fluorescent europium complexes inside cancerous cells or tumor tissues. These results proved that the specific self-biosynthesis of a fluorescent Eu complex by cancer cells or tumor tissues can provide a new strategy for accurate diagnosis and treatment strategies in the early stages of cancers and thus is beneficial for realizing precise surgical intervention based on the relevant cheap and readily available agents.

  17. Development of a novel multiplex PCR assay for rapid detection of virulence associated genes of Pasteurella multocida from pigs.

    Science.gov (United States)

    Rajkhowa, S

    2015-09-01

    As the pathogenicity of Pasteurella multocida is associated with various virulence factors (VFs), the aim of the study was to develop a novel multiplex PCR (m-PCR) assay for the rapid detection of important virulence associated genes (VAGs) of P. multocida isolates from pigs. The target recognized VFs used in the study were diverse adhesins (ptfA and pfhA), toxins (toxA), siderophores (tonB and hgbA), sialidases (nanB, nanH) and outer membrane proteins (ompA, ompH, oma87 and plpB). The primers for the genes encoding these VFs were designed by primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/) using gene sequences available in Genbank. The detection limit of the developed assay was 10(2)  CFU ml(-1) . The m-PCR did not produce any nonspecific amplification products when tested against Bordetella bronchiseptica which also commonly infects pigs. We applied m-PCR to the field samples, and the results obtained were the same as the single PCR results. The developed assay would be very useful for veterinary diagnostic laboratories and for others interested in the rapid virulence profiling of porcine P. multocida isolates circulating in the piggeries. The study reports the development and evaluation of a novel multiplex PCR assay for the rapid detection of 11 important VAGs of Pasteurella multocida isolates from pigs. Rapid and simultaneous detection of recognized VFs of the organism are essential to know the virulo-types of P. multocida isolates circulating in the piggeries. The developed novel assay will be very useful for the rapid detection of VAGs of P. multocida isolates from pigs. © 2015 The Society for Applied Microbiology.

  18. Development of a Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Trichosporon asahii in Experimental and Clinical Samples

    Science.gov (United States)

    Zhou, Jianfeng; Liao, Yong; Li, Haitao; Lu, Xuelian; Han, Xiufeng; Tian, Yanli; Chen, Shanshan; Yang, Rongya

    2015-01-01

    Invasive trichosporonosis is a deep mycosis found mainly in immunocompromised hosts, and the major pathogen is Trichosporon asahii. We detected the species-specific intergenic spacers (IGS) of rRNA gene of T. asahii using a loop-mediated isothermal amplification (LAMP) assay in 15 isolates with 3 different visualization methods, including SYBR green detection, gel electrophoresis, and turbidimetric methods. The LAMP assay displayed superior rapidity to other traditional methods in the detection time; that is, only 1 h was needed for detection and identification of the pathogen DNA. Furthermore, the detection limit of the LAMP assay was more sensitive than the PCR assay. We also successfully detect the presence of T. asahii in samples from experimentally infected mice and samples from patients with invasive trichosporonosis caused by T. asahii, suggesting that this method may become useful in clinical applications in the near future. PMID:25692144

  19. The function of the milk-clotting enzymes bovine and camel chymosin studied by a fluorescence resonance energy transfer assay.

    Science.gov (United States)

    Jensen, Jesper Langholm; Jacobsen, Jonas; Moss, Marcia L; Rasmussen, Fred; Qvist, Karsten Bruun; Larsen, Sine; van den Brink, Johannes M

    2015-05-01

    Enzymatic coagulation of bovine milk can be divided in 2 steps: an enzymatic step, in which the Phe105-Met106 bond of the milk protein bovine κ-casein is cleaved, and an aggregation step. The aspartic peptidases bovine and camel chymosin (EC 3.4.23.4) are typically used to catalyze the enzymatic step. The most commonly used method to study chymosin activity is the relative milk-clotting activity test that measures the end point of the enzymatic and aggregation step. This method showed that camel chymosin has a 2-fold higher milk-clotting activity toward bovine milk than bovine chymosin. To enable a study of the enzymatic step independent of the aggregation step, a fluorescence resonance energy transfer assay has been developed using a peptide substrate derived from the 98-108 sequence of bovine κ-casein. This assay and Michaelis-Menten kinetics were employed to determine the enzymatic activity of camel and bovine chymosin under milk clotting-like conditions (pH 6.65, ionic strength 80 mM). The results obtained show that the catalytic efficiency of camel chymosin is 3-fold higher than bovine chymosin. The substrate affinity and catalytic activity of bovine and camel chymosin increase at lower pH (6.00 and 5.50). The glycosylation of bovine and camel chymosin did not affect binding of the fluorescence resonance energy transfer substrate, but doubly glycosylated camel chymosin seems to have slightly higher catalytic efficiency. In the characterization of the enzymes, the developed assay is easier and faster to use than the traditionally used relative milk-clotting activity test method. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity.

    Science.gov (United States)

    Tan, Hongliang; Li, Qian; Zhou, Zhengchen; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Wang, Li

    2015-01-26

    Metal-organic frameworks (MOFs) with tunable structures and properties have recently been emerged as very interesting functional materials. However, the catalytic properties of MOFs as enzymatic mimics remain to be further investigated. In this work, we for the first time demonstrated the peroxidase-like activity of copper-based MOFs (HKUST-1) by employing thiamine (TH) as a peroxidase substrate. In the presence of H2O2, HKUST-1 can catalyze efficiently the conversion of non-fluorescent TH to strong fluorescent thiochrome. The catalytic activity of HKUST-1 is highly dependent on the temperature, pH and H2O2 concentrations. As a peroxidase mimic, HKUST-1 not only has the features of low cost, high stability and easy preparation, but also follows Michaelis-Menten behaviors and shows stronger affinity to TH than horseradish peroxidase (HRP). Based on the peroxidase-like activity of HKUST-1, a simple and sensitive fluorescent method for TH detection has been developed. As low as 1 μM TH can be detected with a linear range from 4 to 700 μM. The detection limit for TH is about 50 fold lower than that of HRP-based fluorescent assay. The proposed method was successfully applied to detect TH in tablets and urine samples and showed a satisfactory result. We believed that the present work could improve the understanding of catalytic behaviors of MOFs as enzymatic mimics and find out a wider application in bioanalysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Rapid 2,2'-bicinchoninic-based xylanase assay compatible with high throughput screening

    Science.gov (United States)

    William R. Kenealy; Thomas W. Jeffries

    2003-01-01

    High-throughput screening requires simple assays that give reliable quantitative results. A microplate assay was developed for reducing sugar analysis that uses a 2,2'-bicinchoninic-based protein reagent. Endo-1,4-â-D-xylanase activity against oat spelt xylan was detected at activities of 0.002 to 0.011 IU ml−1. The assay is linear for sugar...

  2. Development of homogeneous binding assays based on fluorescence resonance energy transfer between quantum dots and Alexa Fluor fluorophores.

    Science.gov (United States)

    Nikiforov, Theo T; Beechem, Joseph M

    2006-10-01

    We studied the fluorescence resonance energy transfer (FRET) between quantum dots emitting at 565, 605, and 655 nm as energy donors and Alexa Fluor fluorophores with absorbance maxima at 594, 633, 647, and 680 nm as energy acceptors. As a first step, we prepared covalent conjugates between all three types of quantum dots and each of the Alexa Fluor fluorophores that could act as an energy acceptor. All of these conjugates displayed efficient resonance energy transfer. Then we prepared covalent conjugates of these quantum dots with biotin, fluorescein, and cortisol and established that the binding of these conjugates to suitable Alexa Fluor-labeled antibodies and streptavidin (in the case of biotin) can be efficiently detected by measuring the resonance energy transfer in homogeneous solutions. Finally, based on these observations, competitive binding assays for these three small analytes were developed. The performance of these assays as a function of the degree of labeling of the quantum dots was evaluated. It was found that decreasing the degree of loading of the quantum dots leads to decreases of the limits of detection. The results show the great potential of this FRET system for the development of new homogeneous binding assays.

  3. Imaging inflammation in mouse colon using a rapid stage-scanning confocal fluorescence microscope.

    Science.gov (United States)

    Saldua, Meagan A; Olsovsky, Cory A; Callaway, Evelyn S; Chapkin, Robert S; Maitland, Kristen C

    2012-01-01

    Large area confocal microscopy may provide fast, high-resolution image acquisition for evaluation of tissue in pre-clinical studies with reduced tissue processing in comparison to histology. We present a rapid beam and stage-scanning confocal fluorescence microscope to image cellular and tissue features along the length of the entire excised mouse colon. The beam is scanned at 8,333 lines/sec by a polygon scanning mirror while the specimen is scanned in the orthogonal axis by a motorized translation stage with a maximum speed of 7 mm/sec. A single 1 × 60 mm(2) field of view image spanning the length of the mouse colon is acquired in 10 s. Z-projection images generated from axial image stacks allow high resolution imaging of the surface of non-flat specimens. In contrast to the uniform size, shape, and distribution of colon crypts in confocal images of normal colon, confocal images of chronic bowel inflammation exhibit heterogeneous tissue structure with localized severe crypt distortion.

  4. Development and evaluation of a rapid dipstick assay for serodiagnosis of acute human brucellosis

    NARCIS (Netherlands)

    Smits, H. L.; Basahi, M. A.; Díaz, R.; Marrodan, T.; Douglas, J. T.; Rocha, A.; Veerman, J.; Zheludkov, M. M.; Witte, O. W.; de Jong, J.; Gussenhoven, G. C.; Goris, M. G.; van der Hoorn, M. A.

    1999-01-01

    A dipstick assay for the detection of brucella-specific immunoglobulin M antibodies was evaluated with 707 sera from 247 laboratory-confirmed brucellosis patients and 342 control sera from brucellosis-free individuals. These sera were collected from six different countries. The assay was found to be

  5. Use of the fluorescent micronucleus assay to detect the genotoxic effects of radiation and arsenic exposure in exfoliated human epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.E.; Warner, M.L.; Smith, A.H. [Univ. of California, Berkeley, CA (United States)] [and others

    1996-12-31

    The exfoliated cell micronucleus (MN) assay using fluorescent in situ hybridization (FISH) with a centromeric probe is a rapid method for determining the mechanism of MN formation in epithelial tissues exposed to carcinogenic agents. Here, we describe the use of this assay to detect the presence or absence of centromeric DNA in MN induced in vivo by radiation therapy and chronic arsenic (As) ingestion. We examined the buccal cells of an individual receiving 6,500 rads of photon radiation to the head and neck. Exfoliated cells were collected before, during, and after treatment. After radiation exposure a 16.6-fold increase in buccal cell MN frequency was seen. All induced MN were centromere negative (MN-) resulting from chromosome breakage. This finding is consistent with the clastogenic action of radiation and confirmed the reliability of the method. Three weeks post-therapy, MN frequencies returned to baseline. The assay was used on 18 people chronically exposed to high levels of inorganic arsenic (In-As) in drinking water (average level, 1,312 {mu}g As/L) and 18 matched controls (average level, 16 {mu}g As/L). The combined increase in MN frequency was 1.8-fold (P = 0.001, Fisher`s exact test). Frequencies of micronuclei containing acentric fragments (MN-) and those containing whole chromosomes (MN+) both increased, suggesting that arsenic may have both clastogenic and weak aneuploidogenic properties in vivo. After stratification on sex, the effect was stronger in male than in female bladder cells. In males the MN-frequency increased 2.06-fold (P =0.07) while the frequency of MN+ increased 1.86-fold (P = 0.08). In addition, the frequencies of MN and MN+ were positively associated with urinary arsenic and its metabolites. The association was stronger for micronuclei containing acentric fragments. By using FISH with centromeric probes, the mechanism of chemically induced genotoxicity can not be determined in epithelial tissues. 35 refs., 4 tabs.

  6. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk.

    Science.gov (United States)

    Hou, Juan; Li, Huiyu; Wang, Long; Zhang, Ping; Zhou, Tianyu; Ding, Hong; Ding, Lan

    2016-01-01

    In this paper, a novel, selective and eco-friendly sensor for the detection of tetracycline was developed by grafting imprinted polymers onto the surface of carbon quantum dots. A simple microwave-assisted approach was utilized to fabricate the fluorescent imprinted composites rapidly for the first time, which could shorten the polymerization time and simplify the experimental procedure dramatically. The novel composites not only demonstrated excellent fluorescence stability and special binding sites, but also could selectively accumulate target analytes. Under optimal conditions, the relative fluorescence intensity of the composites decreased linearly with increasing the concentration of tetracycline from 20 nM to 14 µM. The detection limit of tetracycline was 5.48 nM. The precision and reproducibility of the proposed sensor were also acceptable. Significantly, the practicality of this ultrasensitive sensor for tetracycline detection in milk was further validated, revealing the advantages of simplicity, sensitivity, selectivity and low cost. This approach combines the high selective adsorption property of molecular imprinted polymers and the sensitivity of fluorescence detection. It is envisioned that the development of fluorescent molecularly imprinted composites will offer a new way of thinking for rapid analysis in complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Time-Resolved Fluorescent Immunochromatography of Aflatoxin B1 in Soybean Sauce: A Rapid and Sensitive Quantitative Analysis.

    Science.gov (United States)

    Wang, Du; Zhang, Zhaowei; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2016-07-14

    Rapid and quantitative sensing of aflatoxin B1 with high sensitivity and specificity has drawn increased attention of studies investigating soybean sauce. A sensitive and rapid quantitative immunochromatographic sensing method was developed for the detection of aflatoxin B1 based on time-resolved fluorescence. It combines the advantages of time-resolved fluorescent sensing and immunochromatography. The dynamic range of a competitive and portable immunoassay was 0.3-10.0 µg·kg(-1), with a limit of detection (LOD) of 0.1 µg·kg(-1) and recoveries of 87.2%-114.3%, within 10 min. The results showed good correlation (R² > 0.99) between time-resolved fluorescent immunochromatographic strip test and high performance liquid chromatography (HPLC). Soybean sauce samples analyzed using time-resolved fluorescent immunochromatographic strip test revealed that 64.2% of samples contained aflatoxin B1 at levels ranging from 0.31 to 12.5 µg·kg(-1). The strip test is a rapid, sensitive, quantitative, and cost-effective on-site screening technique in food safety analysis.

  8. Rapid fluorescent lateral-flow immunoassay for hepatitis B virus genotyping.

    Science.gov (United States)

    Song, Liu-Wei; Wang, Ying-Bin; Fang, Lin-Lin; Wu, Yong; Yang, Lin; Chen, Jie-Yu; Ge, Sheng-Xiang; Zhang, Jing; Xiong, You-Zheng; Deng, Xiu-Mei; Min, Xiao-Ping; Zhang, Jun; Chen, Pei-Jer; Yuan, Quan; Xia, Ning-Shao

    2015-01-01

    Hepatitis B virus (HBV) genotyping plays an important role in the clinical management of chronic hepatitis B (CHB) patients. However, the current nucleic acid based techniques are expensive, time-consuming, and inconvenient. Here, we developed a novel DNA-independent HBV genotyping tool based on a one-step fluorescent lateral flow immunoassay (LFIA). Epitope-targeting immunization and screening techniques were used to develop HBV genotype specific monoclonal antibodies (mAbs). These mAbs were used to develop a multitest LFIA with a matched scanning luminoscope for HBV genotyping (named the GT-LFIA). The performance of this novel assay was carefully evaluated in well-characterized clinical cohorts. The GT-LFIA, which can specifically differentiate HBV genotypes A, B, C, and D in a pretreatment-free single test, was successfully developed using four genotype specific mAbs. The detection limits of the GT-LFIA for HBV genotypes A, B, C, and D were 2.5-10.0 IU HBV surface antigen/mL, respectively. Among the sera from 456 CHB patients, 439 (96.3%; 95% confidence interval (CI), 94.1-97.8%) were genotype-differentiable by the GT-LFIA and 437 (99.5%; 95% CI, 98.4-99.9%) were consistent with viral genome sequencing. In the 21 patients receiving nucleos(t)ide analogue therapy, for end-of-treatment specimens that were HBV DNA undetectable and were not applicable for DNA-dependent genotyping, the GT-LFIA presented genotyping results that were consistent with those obtained in pretreatment specimens by viral genome sequencing and the GT-LFIA. In conclusion, the novel GT-LFIA is a convenient, fast, and reliable tool for differential HBV genotyping, especially in patients with low or undetectable HBV DNA levels.

  9. Rapid Diagnosis of Trichomonas vaginalis by Testing Vaginal Swabs in an Isothermal Helicase-Dependent AmpliVue Assay.

    Science.gov (United States)

    Gaydos, Charlotte A; Hobbs, Marcia; Marrazzo, Jeanne; Schwebke, Jane; Coleman, Jenell S; Masek, Billie; Dize, Laura; Jang, Dan; Li, Jenny; Chernesky, Max

    2016-06-01

    The AmpliVue Trichomonas Assay (Quidel) is a new Federal Drug Administration-cleared rapid test for qualitative detection of Trichomonas vaginalis (TV) DNA in female vaginal specimens. The assay is based on BioHelix's helicase-dependent amplification isothermal technology in conjunction with a disposable lateral-flow detection device, with a total turnaround time of approximately 45 minutes. The objective of this study was to compare the performance of this new assay to wet preparation and culture as well as to another Federal Drug Administration-cleared nucleic acid amplification assay. Four clinician collected vaginal swabs were obtained from women attending sexually transmitted disease, family planning, and OB/GYN clinics and tested by AmpliVue Trichomonas Assay and comparator tests: saline microscopy, TV culture (InPouch), and Aptima TV. AmpliVue Trichomonas Assay results were compared with a composite positive comparator (CPC) as determined by the results from culture and/or wet mount microscopic examination. At least one of either the wet preparation or culture reference test results was required to be positive to establish CPC. A total of 992 patients, 342 symptomatic and 650 asymptomatic patients, were included in the study. Results for AmpliVue for all women combined compared with saline microscopy and culture as a CPC yielded a sensitivity of 100%. Specificity for all women was 98.2%. Overall percent agreement versus Aptima TV was 97.8%. Sensitivity for AmpliVue compared with Aptima was 90.7% %, whereas specificity was 98.9%. The rapid AmpliVue Trichomonas Assay performed as well as microscopy and culture, and had comparable sensitivity and specificity to another nucleic acid amplification test for the detection of TV. This study provided evidence of new diagnostic options and indicated very good performance of amplified testing for detection of TV in symptomatic and asymptomatic women.

  10. Rapid Diagnosis of Trichomonas vaginalis by Testing Vaginal Swabs in an Isothermal Helicase-Dependent AmpliVue™ Assay

    Science.gov (United States)

    Gaydos, Charlotte A.; Hobbs, Marcia; Marrazzo, Jeanne; Schwebke, Jane; Coleman, Jenell S.; Masek, Billie; Dize, Laura; Jang, Dan; Li, Jenny; Chernesky, Max

    2016-01-01

    Background The AmpliVue™ Trichomonas Assay (Quidel) is a new FDA cleared rapid test for qualitative detection of Trichomonas vaginalis (TV) DNA in female vaginal specimens. The assay is based on BioHelix’s Helicase-Dependent Amplification (HDA) isothermal technology in conjunction with a disposable lateral-flow detection device, with a total turn-around time of approximately 45 minutes. Objective The objective of this study was to compare the performance of this new assay to wet preparation and culture, as well as to another FDA cleared nucleic acid amplification assay. Methods Four clinician collected vaginal swabs were obtained from women attending STD, family planning, and OB/GYN clinics and tested by AmpliVue™ Trichomonas Assay and comparator tests: saline microscopy, TV culture (InPouch™), and Aptima® TV (ATV). AmpliVue™ Trichomonas Assay results were compared to a composite positive comparator (CPC) as determined by the results from culture and/or wet mount microscopic examination. At least one of either the wet preparation or culture reference test results was required to be positive to establish CPC. Results A total of 992 patients, 342 symptomatic and 650 asymptomatic patients, were included in the study. Results for AmpliVue for all women combined compared to saline microscopy and culture as a composite positive comparator yielded a sensitivity of 100%. Specificity for all women was 98.2%. Overall percent agreement versus Aptima® TV was 97.8%. Sensitivity for AmpliVue compared to Aptima® was 90.7% %, while specificity was 98.9%. Conclusions The rapid AmpliVue™ Trichomonas Assay performed as well as microscopy and culture, and had comparable sensitivity and specificity to another NAAT for the detection of TV. This study provided evidence of new diagnostic options and indicated very good performance of amplified testing for detection of TV in symptomatic and asymptomatic women. PMID:27196258

  11. A Fluorescence Displacement Assay for Antidepressant Drug Discovery Based on Ligand-Conjugated Quantum Dots

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jerry [Vanderbilt University; Tomlinson, Ian [Oak Ridge National Laboratory (ORNL); Warnement, Michael [Vanderbilt University; Iwamoto, Hideki [Vanderbilt University

    2011-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) protein plays a central role in terminating 5-HT neurotransmission and is the most important therapeutic target for the treatment of major depression and anxiety disorders. We report an innovative, versatile, and target-selective quantum dot (QD) labeling approach for SERT in single Xenopus oocytes that can be adopted as a drug-screening platform. Our labeling approach employs a custom-made, QD-tagged indoleamine derivative ligand, IDT318, that is structurally similar to 5-HT and accesses the primary binding site with enhanced human SERT selectivity. Incubating QD-labeled oocytes with paroxetine (Paxil), a high-affinity SERT-specific inhibitor, showed a concentration- and time-dependent decrease in QD fluorescence, demonstrating the utility of our approach for the identification of SERT modulators. Furthermore, with the development of ligands aimed at other pharmacologically relevant targets, our approach may potentially form the basis for a multitarget drug discovery platform.

  12. Multiplexed Molecular Assays for Rapid Rule-Out of Foot-and-Mouth Disease

    Energy Technology Data Exchange (ETDEWEB)

    Lenhoff, R; Naraghi-Arani, P; Thissen, J; Olivas, J; Carillo, C; Chinn, C; Rasmussen, M; Messenger, S; Suer, L; Smith, S M; Tammero, L; Vitalis, E; Slezak, T R; Hullinger, P J; Hindson, B J; Hietala, S; Crossley, B; Mcbride, M

    2007-06-26

    A nucleic acid-based multiplexed assay was developed that combines detection of foot-and-mouth disease virus (FMDV) with rule-out assays for two other foreign animal diseases and four domestic animal diseases that cause vesicular or ulcerative lesions indistinguishable from FMDV infection in cattle, sheep and swine. The FMDV 'look-alike' diagnostic assay panel contains five PCR and twelve reverse transcriptase PCR (RT-PCR) signatures for a total of seventeen simultaneous PCR amplifications for seven diseases plus incorporating four internal assay controls. It was developed and optimized to amplify both DNA and RNA viruses simultaneously in a single tube and employs Luminex{trademark} liquid array technology. Assay development including selection of appropriate controls, a comparison of signature performance in single and multiplex testing against target nucleic acids, as well of limits of detection for each of the individual signatures is presented. While this assay is a prototype and by no means a comprehensive test for FMDV 'look-alike' viruses, an assay of this type is envisioned to have benefit to a laboratory network in routine surveillance and possibly for post-outbreak proof of freedom from foot-and-mouth disease.

  13. Development and evaluation of loop-mediated isothermal amplification assay for rapid detection of Capripoxvirus

    Directory of Open Access Journals (Sweden)

    Kanisht Batra

    2015-11-01

    Full Text Available Aim: The present study was undertaken to develop a nucleic acid-based diagnostic assay loop-mediated isothermal amplification assay (LAMP targeting highly conserved genomic regions of Capripoxvirus (CaPVs and its comparative evaluation with real-time polymerase chain reaction (PCR. Material and Methods: Lyophilized vaccine strain of sheeppox virus (SPPV was used for optimization of LAMP assay. The LAMP assay was designed using envelope immunogenic protein (P32 coding gene targeting highly conserved genomic regions of CaPV responsible for causing sheep pox, goat pox, and lumpy skin disease in sheep, goat and cattle respectively. Serial tenfold dilution of SPPV recombinant plasmid DNA was used for a calculating limit of detection. Analytical sensitivity and specificity were performed. Results: The test described is quick (30 min, sensitive and specific for detection of CaPVs. The described assay did not show any cross-reactivity to other related viruses that cause apparently similar clinical signs. It was found to be ten times more sensitive than conventional PCR however, 100 times less sensitive than quantitative PCR (qPCR. LAMP assay results were monitored by color change method using picogreen dye and agarose gel electrophoresis. Conclusion: LAMP assay can be a very good alternative for CaPV detection to other molecular techniques requiring sophisticated equipments.

  14. Development and evaluation of loop-mediated isothermal amplification assay for rapid detection of Capripoxvirus.

    Science.gov (United States)

    Batra, Kanisht; Kumar, Aman; Kumar, Vinay; Nanda, Trilok; Maan, Narender S; Maan, Sushila

    2015-11-01

    The present study was undertaken to develop a nucleic acid-based diagnostic assay loop-mediated isothermal amplification assay (LAMP) targeting highly conserved genomic regions of Capripoxvirus (CaPVs) and its comparative evaluation with real-time polymerase chain reaction (PCR). Lyophilized vaccine strain of sheeppox virus (SPPV) was used for optimization of LAMP assay. The LAMP assay was designed using envelope immunogenic protein (P32) coding gene targeting highly conserved genomic regions of CaPV responsible for causing sheep pox, goat pox, and lumpy skin disease in sheep, goat and cattle respectively. Serial tenfold dilution of SPPV recombinant plasmid DNA was used for a calculating limit of detection. Analytical sensitivity and specificity were performed. The test described is quick (30 min), sensitive and specific for detection of CaPVs. The described assay did not show any cross-reactivity to other related viruses that cause apparently similar clinical signs. It was found to be ten times more sensitive than conventional PCR however, 100 times less sensitive than quantitative PCR (qPCR). LAMP assay results were monitored by color change method using picogreen dye and agarose gel electrophoresis. LAMP assay can be a very good alternative for CaPV detection to other molecular techniques requiring sophisticated equipments.

  15. Rapid diagnosis of childhood pulmonary tuberculosis by Xpert MTB/RIF assay using bronchoalveolar lavage fluid.

    Science.gov (United States)

    Yin, Qing-Qin; Jiao, Wei-Wei; Han, Rui; Jiao, An-Xia; Sun, Lin; Tian, Jian-Ling; Ma, Yu-Yan; Rao, Xiao-Chun; Shen, Chen; Li, Qin-Jing; Shen, A-Dong

    2014-01-01

    In order to evaluate the diagnostic accuracy of the Xpert MTB/RIF assay on childhood pulmonary tuberculosis (PTB) using bronchoalveolar lavage fluid (BALF), we evaluated the sensitivity, specificity, positive predictive value, and negative predictive value of Xpert MTB/RIF assay using BALF in comparison with acid-fast bacilli (AFB) microscopy and Mycobacterium tuberculosis (MTB) culture for diagnosing childhood PTB using Chinese "composite clinical reference standard" (CCRS) as reference standard. Two hundred fifty-five children with suspected PTB were enrolled at Beijing Children's Hospital from September 2010 to July 2013. Compared with Chinese CCRS, the sensitivity of AFB microscopy, MTB culture, and Xpert MTB/RIF assay was 8.4%, 28.9%, and 53.0%, respectively. The specificity of three assays was all 100%. Xpert MTB/RIF assay could detect 33.9% of cases with negative MTB culture, and 48.7% of cases with negative AFB microscopy. Younger age (MTB/RIF assay. In conclusion, Xpert MTB/RIF assay using BALF can assist in diagnosing childhood PTB much faster when fiberoptic bronchoscopy is necessary according to the chest radiograph.

  16. Rapid and quantitative detection of Fusarium oxysporum f. sp. cubense race 4 in soil by real-time fluorescence loop-mediated isothermal amplification.

    Science.gov (United States)

    Peng, Jun; Zhang, He; Chen, Fengping; Zhang, Xin; Xie, Yixian; Hou, Xianwen; Li, Guangyi; Pu, Jinji

    2014-12-01

    In this study, a real-time fluorescence loop-mediated isothermal amplification (RealAmp) was developed and evaluated for the rapid and quantitative detection of Fusarium oxysporum f. sp. cubense race 4 (R4) in soil. The LAMP primer set was designed based on previously verified RAPD marker sequences, and the RealAmp assay could specifically detect and distinguish R4 isolates from other related species. The detection sensitivity of the RealAmp assay was approx. 3·82 × 10(3) copies of plasmid DNA or 10(3) of spores per gram in artificially infested soil, indicating that the method is highly tolerant to inhibitor substances in soil compared to real-time PCR. Combining previously published TR4-specific detection methods with the newly established R4-specific RealAmp assay, an indirect approach to detect and differentiate ST4 isolates was achieved by comparing the detection results of R4 and TR4 simultaneously. The existence of ST4 isolates in China was subsequently confirmed through the developed approach. The developed RealAmp assay has been confirmed to be a simple, rapid and effective method to detect R4 in soil, which facilitates to further identify and distinguish ST4 isolates through the comparative analysis of detection results between TR4 and R4 simultaneously. The technique is an alternative quantitative detection method, which will be used for a routine detection service for the soil-borne pathogen in China. © 2014 The Society for Applied Microbiology.

  17. Two Variants of a High-Throughput Fluorescent Microplate Assay of Polysaccharide Endotransglycosylases.

    Science.gov (United States)

    Kováčová, Kristína; Farkaš, Vladimír

    2016-04-01

    Polysaccharide endotransglycosylases (PETs) are the cell wall-modifying enzymes of fungi and plants. They catalyze random endo-splitting of the polysaccharide donor molecule and transfer of the newly formed reducing sugar residue to the nonreducing end of an acceptor molecule which can be a polysaccharide or an oligosaccharide. Owing to their important role in the cell wall formation, the inhibition of PETs represents an attractive strategy in the fight against fungal infections. We have elaborated two variants of a versatile high-throughput microplate fluorimetric assay that could be used for effective identification of PETs and screening of their inhibitors. Both assays use the respective polysaccharides as the donors and sulforhodamine-labeled oligosaccharides as the acceptors but differ from each other by mode of how the labeled polysaccharide products of transglycosylation are separated from the unreacted oligosaccharide acceptors. In the first variant, the reactions take place in a layer of agar gel laid on the bottoms of the wells of a microtitration plate. After the reaction, the high-Mr transglycosylation products are precipitated with 66 % ethanol and retained within the gel while the low-Mr products and the unreacted acceptors are washed out. In the second variant, the donor polysaccharides are adsorbed to the surface of a microplate well and remain adsorbed there also after becoming labeled in the course of the transglycosylation reaction whereas the unused low-Mr acceptors are washed out. As a proof of versatility, assays of heterologously expressed transglycosylases ScGas1, ScCrh1, and ScCrh2 from the yeast Saccharomyces cerevisiae, CaPhr1 and CaPhr2 from Candida albicans, and of a plant xyloglucan endotransglycosylase (XET) are demonstrated.

  18. Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles.

    Science.gov (United States)

    Liu, Cheng-Hao; Yu, Cheng-Ju; Tseng, Wei-Lung

    2012-10-01

    We report a fluorescence approach for the highly selective and sensitive detection of catecholamines using magnetite nanoparticles (Fe(3)O(4) NPs) in the presence of Amplex UltraRed (AUR) and H(2)O(2). Fe(3)O(4) NPs catalyze H(2)O(2)-mediated oxidation of AUR. The resulting product fluoresces (excitation/emission maxima, ca. 568/587nm) more strongly, relative to AUR. When catecholamines bind to Fe(3)O(4), the complexes that are formed induce decreased activity of Fe(3)O(4) NPs, mediated through the coordination between Fe(3+) on the NP surface and the catechol moiety of catecholamines. As a result, Fe(3)O(4) NPs-catalyzed H(2)O(2)-mediated oxidation of AUR is inhibited by catecholamines. The limits of detection for dopamine (DA), L-DOPA, norepinephrine, and epinephrine were 3 nM, 3 nM, 3 nM, and 6 nM, respectively. The Fe(3)O(4) NPs-H(2)O(2)-AUR probe exhibited high selectivity (>1000-fold) toward catecholamines over other tested biomolecules that commonly exist in urine. Four catecholamines had similar sensitivity because the inhibition of the Fe(3)O(4) NPs activity relies on the presence of the catechol moiety. This approach also allowed the determination of tyrosinase activity because tyrosinase catalyzes the conversion of l-tyrosine to L-DOPA. We validated the practicality of the use of the Fe(3)O(4) NPs-H(2)O(2)-AUR probe for the determination of the concentrations of DA in urine samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen [University of Chicago

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  20. Development of a rapid loop-mediated isothermal amplification assay for diagnosis and assessment of cure of Leishmania infection.

    Science.gov (United States)

    Verma, Sandeep; Singh, Ruchi; Sharma, Vanila; Bumb, Ram Avtar; Negi, Narendra Singh; Ramesh, V; Salotra, Poonam

    2017-03-23

    Leishmaniasis is a spectrum of diseases with great relevance to public health. Conventional diagnostic methods are time consuming, needing trained personnel. A robust, rapid and cost effective diagnostic test is warranted for on-time diagnosis and field application. We have developed a loop mediated isothermal amplification (LAMP) assay with primers (n = 6) based on Leishmania donovani kDNA for detection of Leishmania infection, using a closed tube to prevent cross-contamination. The assay was used to detect Leishmania infection in biological samples obtained from patients of visceral leishmaniasis (VL), post kala-azar dermal leishmaniasis (PKDL) and cutaneous leishmaniasis (CL). The assay was positive for L. donovani, L. tropica and L. major parasites, with the highest sensitivity towards L. donovani (1 fg DNA). The high sensitivity of the assay for detection of L. donovani was reflected in its ability to detect parasite DNA within 30 min of amplification time with a threshold detection limit of ≥25 copies per reaction. The assay detected parasite in 64 of 66 VL blood samples (sensitivity, 96.9%; 95% CI: 89.6-99.2%), 15 of 15 VL bone marrow aspirate samples (sensitivity, 100%; 95% CI:79.6-100%), 65 of 67 PKDL tissue biopsy samples (sensitivity, 97%; 95% CI:89.7-99.2%). The assay was evaluated in a few cases of CL wherein it was found positive in 8 of 10 tissue biopsies (sensitivity, 80%; 95% CI: 49-94.3%). The assay was negative in all control blood (n = 76) and tissue biopsy (n = 24) samples (specificity, 100%; 95% CI: 96.3-100%). Further, the assay was evaluated for its utility in assessment of cure in treated VL and PKDL patients. The assay detected parasite DNA in 2 of 20VL blood samples and 2 of 21 PKDL tissue samples. Out of 4 cases that were positive for parasite DNA at post treatment stage, 2 patients (1VL and 1 PKDL) returned with relapse. The study demonstrated a Leishmania genus specific closed tube LAMP assay for reliable and rapid

  1. A One-Step, Real-Time PCR Assay for Rapid Detection of Rhinovirus

    Science.gov (United States)

    Do, Duc H.; Laus, Stella; Leber, Amy; Marcon, Mario J.; Jordan, Jeanne A.; Martin, Judith M.; Wadowsky, Robert M.

    2010-01-01

    One-step, real-time PCR assays for rhinovirus have been developed for a limited number of PCR amplification platforms and chemistries, and some exhibit cross-reactivity with genetically similar enteroviruses. We developed a one-step, real-time PCR assay for rhinovirus by using a sequence detection system (Applied Biosystems; Foster City, CA). The primers were designed to amplify a 120-base target in the noncoding region of picornavirus RNA, and a TaqMan (Applied Biosystems) degenerate probe was designed for the specific detection of rhinovirus amplicons. The PCR assay had no cross-reactivity with a panel of 76 nontarget nucleic acids, which included RNAs from 43 enterovirus strains. Excellent lower limits of detection relative to viral culture were observed for the PCR assay by using 38 of 40 rhinovirus reference strains representing different serotypes, which could reproducibly detect rhinovirus serotype 2 in viral transport medium containing 10 to 10,000 TCID50 (50% tissue culture infectious dose endpoint) units/ml of the virus. However, for rhinovirus serotypes 59 and 69, the PCR assay was less sensitive than culture. Testing of 48 clinical specimens from children with cold-like illnesses for rhinovirus by the PCR and culture assays yielded detection rates of 16.7% and 6.3%, respectively. For a batch of 10 specimens, the entire assay was completed in 4.5 hours. This real-time PCR assay enables detection of many rhinovirus serotypes with the Applied Biosystems reagent-instrument platform. PMID:19948820

  2. A single nucleotide polymorphism melt curve assay employing an intercalating dye probe fluorescence resonance energy transfer for forensic analysis.

    Science.gov (United States)

    Halpern, Micah D; Ballantyne, Jack

    2009-08-01

    The characterization and use of DNA sequence polymorphisms are an important aspect of forensic analysis. A number of approaches are being explored for single nucleotide polymorphism (SNP) genotyping, but current detection methods are subject to limitations that adversely impact their utility for forensic analysis. We have developed a novel method for genotyping both single and multiple SNPs that uses an intercalating dye and a probe labeled with a single fluorophore to affect a fluorescence energy transfer. Melting curve analysis is then used to distinguish true alleles from mismatched alleles. We term the new method dye probe fluorescence resonance energy transfer (dpFRET). In the current work, development proceeded at first with synthetic DNA template testing to establish proof of concept for the chemistry involved, followed by the design of polymerase chain reaction (PCR)-based genomic DNA assays to demonstrate potential forensic applications. The loci chosen for testing included both nuclear (MHC DRB) and mitochondrial DNA (cytochrome b) genes. A preliminary assessment of the sensitivity limits of the technology indicated that dpFRET was capable of accurately genotyping DNA from one single diploid cell equivalent. This technology could also potentially impact a wide range of nonforensic disciplines to aid in discovery, screening, and association of DNA sequence polymorphisms.

  3. A rapid method for the determination of microbial susceptibility using the firefly luciferase assay for adenosine triphosphate (ATP)

    Science.gov (United States)

    Vellend, H.; Tuttle, S. A.; Barza, M.; Weinstein, L.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was optimized for pure bacteria in broth in order to evaluate if changes in bacterial ATP content could be used as a rapid measure of antibiotic effect on microorganisms. Broth cultures of log phase bacteria were incubated at 310 K (37 C) for 2.5 hours at antimicrobial concentrations which resulted in the best discrimination between sensitive and resistant strains. Eighty-seven strains of 11 bacterial species were studied for their susceptibility to 12 commonly used antimicrobial agents: ampicillin, Penicillin G, nafcillin, carbenicillin, cephalothin, tetracycline, erythromycin, clindamycin, gentamicin, nitrofurantoin, colistin, and chloramplenicol. The major advantage of the ATP system over existing methods of rapid microbial susceptibility testing is that the assay can be made specific for bacterial ATP.

  4. Development of a lateral flow immunochromatographic assay for rapid detection of Mycoplasma pneumoniae-specific IgM in human serum specimens.

    Science.gov (United States)

    Ou, Liming; Lv, Qingyu; Wu, Canjun; Hao, Huaijie; Zheng, Yuling; Jiang, Yongqiang

    2016-05-01

    Early diagnosis of Mycoplasma pneumoniae (MP) infection is crucial for prompt treatment and good patient outcome. However, serological tests to detect MP rapidly and conveniently are still lacking. This study aimed to use the fluorescent dye Alexa Fluor® 647 as the detection marker to develop a lateral flow immunochromatographic assay (LFIA) for detection of MP-specific IgM in serum specimen. Monoclonal mouse antibody against human IgM (μ-chain specific) and goat anti-rabbit IgG were labeled with Alexa Fluor® 647 (anti-IgM-AF647 and anti-IgG-AF647). A mixture of natural MP antigen and recombinant P1 antigen was coated as the test line (T line) and rabbit IgG was coated as the control line (C line) on a nitrocellulose (NC) membrane. The MP antigens captured IgM-anti-IgM-AF647 complex on the T line. Rabbit IgG captured anti-IgG-AF647 on the C line. The fluorescence intensity on the T line and C line was measured. Sartorius CN140 NC membrane showed higher sensitivity than CN95. The optimal reaction time for the LFIA was 10min. The area under the receiver operating characteristic curve based on 34 MP positive and 166 MP negative serum samples was 0.986 (pLFIA strips did not react with serum from patients infected with non-MP pathogens including influenza viruses and bacteria causing respiratory tract infection. The intra-assay and inter-assay coefficients of variation were between 3.28% and 10.14%. The shelf life was calculated to be 2years at room temperature. The LFIA strips and the commercial EUROIMMUN kit showed consistent results on 372 serum specimens. The overall consistency rate was 96.37% with a Kappa value of 0.842 (pLFIA in the current study may be a sensitive and specific approach to detect early MP infection rapidly and conveniently. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera

    Science.gov (United States)

    Zhang, Qing-Chun; Liu, Qing; Kang, Zhen-Jun; Yu, Ren-Cheng; Yan, Tian; Zhou, Ming-Jiang

    2015-09-01

    Large-scale green tides have occurred consecutively since 2007 in the Yellow Sea (YS), China. The dominant causative species of the green tides has been identified as Ulva prolifera. The origin of green tides in the YS has been traced back to the Subei Shoal based on the results of remote-sensing, numerical simulations and field investigations. However, it is difficult to study the early development of green tides in the Subei Shoal because of the mixture of multiple green algae and the morphological diversity of U. prolifera when under variable environmental conditions. In this study, a rapid and accurate fluorescence in situ hybridization (FISH) method was developed to detect U. prolifera from the community of green algae targeting the 5S rDNA spacer region of U. prolifera. Two specific probes, 5S-1 and 5S-2, were designed based on the sequences of the 5S rDNA spacer regions of U. prolifera, Ulva linza and Ulva flexuosa. Specificity of the FISH method was tested using the six species of green algae commonly occurring in the Subei Shoal, including U. prolifera, U. linza, U. flexuosa, Ulva compressa, Ulva pertusa and Blidingia sp. The results showed that only U. prolifera could be labeled with both probes. Probe 5S-1, which showed a much higher labeling efficiency on U. prolifera, was ultimately selected as the probe for the FISH detection. The sample preparation method was optimized, particularly for the mature green algae, by the addition of cellulase and proteinase K in the pre-hybridization solution. Labeling efficiency with the probe 5S-1 reached 96% on average under the optimized conditions. The successful development of the FISH method has been applied to qualitative and quantitative analysis of field samples collected from the YS, and the results indicate a potential use in future green algae studies.

  6. A rapid PCR-SSP assay for the hemochromatosis-associated Tyr250Stop mutation in the TFR2 gene.

    Science.gov (United States)

    Rivers, C A; Barton, J C; Acton, R T

    2001-01-01

    Several genes associated with hemochromatosis and primary iron overload have been identified. Mutations in the HFE gene have been detected in 60-100% of hemochromatosis patients of northern, central, and western European descent, although the frequencies of these mutations vary among racial and ethnic groups. Recently, a mutation in the gene encoding transferrin receptor-2 (exon 6, nucleotide 750 C --> G; Y250X) was detected by a PCR-restriction fragment length polymorphism (RFLP) method in Sicilians with hemochromatosis. We describe a modification of the original assay in which the sequence-specific priming PCR assay does not require the use of restriction endonuclease. The modified assay is robust and cost-efficient, and may be more useful for large-scale population studies because it can be performed rapidly on DNA extracted from buccal swabs.

  7. Development of a loop-mediated isothermal amplification assay for rapid, sensitive detection of Campylobacter jejuni in cattle farm samples.

    Science.gov (United States)

    Dong, Hee-Jin; Cho, Ae-Ri; Hahn, Tae-Wook; Cho, Seongbeom

    2014-09-01

    Campylobacter jejuni is a leading cause of bacterial foodborne disease worldwide. The detection of this organism in cattle and their environment is important for the control of C. jejuni transmission and the prevention of campylobacteriosis. Here, we describe the development of a rapid and sensitive method for the detection of C. jejuni in naturally contaminated cattle farm samples, based on real-time loop-mediated isothermal amplification (LAMP) of the hipO gene. The LAMP assay was specific (100% inclusivity and exclusivity for 84 C. jejuni and 41 non-C. jejuni strains, respectively), sensitive (detection limit of 100 fg/μl), and quantifiable (R(2) = 0.9133). The sensitivity of the LAMP assay was then evaluated for its application to the naturally contaminated cattle farm samples. C. jejuni strains were isolated from 51 (20.7%) of 246 cattle farm samples, and the presence of the hipO gene was tested using the LAMP assay. Amplification of the hipO gene by LAMP within 30 min (mean ~10.8 min) in all C. jejuni isolates (n = 51) demonstrated its rapidity and accuracy. Next, template DNA was prepared from a total of 186 enrichment broth cultures of cattle farm samples either by boiling or using a commercial kit, and the sensitivity of detection of C. jejuni was compared between the LAMP and PCR assays. In DNA samples prepared by boiling, the higher sensitivity of the LAMP assay (84.4%) compared with the PCR assay (35.5%) indicates that it is less susceptible to the existence of inhibitors in sample material. In DNA samples prepared using a commercial kit, both the LAMP and PCR assays showed 100% sensitivity. We anticipate that the use of this rapid, sensitive, and simple LAMP assay, which is the first of its kind for the identification and screening of C. jejuni in cattle farm samples, may play an important role in the prevention of C. jejuni contamination in the food chain, thereby reducing the risk of human campylobacteriosis.

  8. Microscopic Observation Drug Susceptibility Assay for Rapid Diagnosis of Lymph Node Tuberculosis and Detection of Drug Resistance.

    Science.gov (United States)

    Kirwan, Daniela E; Ugarte-Gil, Cesar; Gilman, Robert H; Caviedes, Luz; Rizvi, Hasan; Ticona, Eduardo; Chavez, Gonzalo; Cabrera, José Luis; Matos, Eduardo D; Evans, Carlton A; Moore, David A J; Friedland, Jon S

    2016-01-01

    In this study, 132 patients with lymphadenopathy were investigated. Fifty-two (39.4%) were diagnosed with tuberculosis (TB). The microscopic observation drug susceptibility (MODS) assay provided rapid (13 days), accurate diagnosis (sensitivity, 65.4%) and reliable drug susceptibility testing (DST). Despite its lower sensitivity than that of other methods, its faster results and simultaneous DST are advantageous in resource-poor settings, supporting the incorporation of MODS into diagnostic algorithms for extrapulmonary TB. Copyright © 2015 Kirwan et al.

  9. Rapid Detection/pathotyping of Newcastle disease virus isolates in clinical samples using real time polymerase chain reaction assay

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Abdul Wajid, Muhammad Wasim, Tahir Yaqub, Shafqat F Rehmani, Tasra Bibi, Nadia Mukhtar, Javed Muhammad, Umar Bacha, Suliman Qadir Afridi, Muhammad Nauman Zahid, Zia u ddin, Muhammad Zubair Shabbir, Kamran Abbas & Muneer Ahmad ### Abstract In the present protocol we describe the real time reverse transcription polymerase chain reaction (rRT-PCR) assay for the rapid detection/pathotyping of Newcastle disease virus (NDV) isoaltes in clinical samples. Fusion gene and matrix gene...

  10. A new competitive fluorescence assay for the detection of patulin toxin.

    Science.gov (United States)

    de Champdoré, Marcella; Bazzicalupo, Paolo; De Napoli, Lorenzo; Montesarchio, Daniela; Di Fabio, Giovanni; Cocozza, Immacolata; Parracino, Antonietta; Rossi, Mose'; D'Auria, Sabato

    2007-01-15

    Patulin is a toxic secondary metabolite of a number of fungal species belonging to the genera Penicillum and Aspergillus. It has been mainly isolated from apples and apple products contaminated with the common storage-rot fungus of apples, Penicillum expansum, but it has also been extracted from rotten fruits, moldy feeds, and stored cheese. Human exposure to patulin can lead to serious health problems, and according to a long-term investigation in rats, the World Health Organization has set a tolerable weekly intake of 7 ppb body weight. The content of patulin in foods has been restricted to 50 ppb in many countries. Conventional analytical detection methods involve chromatographic analyses, such as HPLC, GC, and, more recently, techniques such as LC/MS and GC/MS. However, extensive protocols of sample cleanup are required prior to the analysis, and to accomplish it, expensive analytical instrumentation is necessary. An immunochemical analytical method, based on highly specific antigen-antibody interactions, would be desirable, offering several advantages compared to conventional techniques, i.e., low cost per sample, high selectivity, high sensitivity, and high throughput. In this paper, the synthesis of two new derivatives of patulin is described, along with their conjugation to the bovine serum albumin for the production of polyclonal antibodies. Finally, a fluorescence competitive immunoassay was developed for the on-line detection of patulin.

  11. Development and Validation of a Real-Time PCR Assay for Rapid Detection of Candida auris from Surveillance Samples.

    Science.gov (United States)

    Leach, L; Zhu, Y; Chaturvedi, S

    2018-02-01

    Candida auris is an emerging multidrug-resistant yeast causing invasive health care-associated infection with high mortality worldwide. Rapid identification of C. auris is of primary importance for the implementation of public health measures to control the spread of infection. To achieve these goals, we developed and validated a TaqMan-based real-time PCR assay targeting the internal transcribed spacer 2 ( ITS 2) region of the ribosomal gene. The assay was highly specific, reproducible, and sensitive, with the detection limit of 1 C. auris CFU/PCR. The performance of the C. auris real-time PCR assay was evaluated by using 623 surveillance samples, including 365 patient swabs and 258 environmental sponges. Real-time PCR yielded positive results from 49 swab and 58 sponge samples, with 89% and 100% clinical sensitivity with regard to their respective culture-positive results. The real-time PCR also detected C. auris DNA from 1% and 12% of swab and sponge samples with culture-negative results, indicating the presence of dead or culture-impaired C. auris The real-time PCR yielded results within 4 h of sample processing, compared to 4 to 14 days for culture, reducing turnaround time significantly. The new real-time PCR assay allows for accurate and rapid screening of C. auris and can increase effective control and prevention of this emerging multidrug-resistant fungal pathogen in health care facilities. Copyright © 2018 Leach et al.

  12. Development of microLIPS (Luciferase Immunoprecipitation Systems): a novel microfluidic assay for rapid serum antibody detection

    Science.gov (United States)

    Chandrangsu, Matt; Burbelo, Peter D.; Iadarola, Michael J.; Smith, Paul D.; Morgan, Nicole Y.

    2012-06-01

    There is considerable interest in the development of rapid, point-of-care antibody detection for the diagnosis of infectious and auto-immune diseases. In this paper, we present work on the development of a self-contained microfluidic format for the Luciferase Immunoprecipitation Systems (LIPS) assay. Whereas the majority of immunoassays for antigen-specific antibodies employ either bacteria- or yeast-expressed proteins and require the use of secondary antibodies, the LIPS technique uses a fusion protein comprised of a Renilla luciferase reporter and the antigen of interest produced via mammalian cell culture, ensuring the addition of mammalian post-translational modifications. Patient serum is mixed with the fusion protein and passed over immobilized Protein A/G; after washing, the only remaining luciferase-tagged antigens are those retained by specific antibodies. These can be quantitatively measured using chemiluminescence upon the introduction of coelenterazine. The assay has been successfully employed for a wide variety of diseases in a microwell format. We report on a recent demonstration of rapid HSV-2 diagnosis with the LIPS assay in a microfluidic format, using one microliter of serum and obtaining results in under ten minutes. We will also discuss recent progress on two fronts, both aimed at the deployment of this technology in the field: first, simplifying assay operation through the automation of flow control using power-free means; and second, efforts to increase signal levels, primarily through strategies to increase antibody binding capacity, in order to move towards portable battery powered electronics.

  13. Colloidal Gold Probe-Based Immunochromatographic Strip Assay for the Rapid Detection of Microbial Transglutaminase in Frozen Surimi

    Directory of Open Access Journals (Sweden)

    Daming Fan

    2016-01-01

    Full Text Available Adding microbial transglutaminase (MTGase to frozen surimi to enable the surimi to be sold as a higher-grade product at a higher price defrauds surimi product manufacturers and undercuts legitimate industry prices. Therefore, it is important to develop an accurate method of detecting the presence of MTGase in surimi. In this study, an immunochromatographic strip assay with a colloidal gold antibody probe was successfully developed and used to rapidly and qualitatively detect MTGase in surimi samples. The results were obtained in less than 10 min. The limit for the qualitative detection of MTGase using the immunochromatographic strip assay was identified as 1.0 μg/mL. The results of the immunochromatographic strip analysis of frozen surimi samples were verified by comparison with the results of a sandwich enzyme-linked immunosorbent assay. The colloidal gold probe-based immunochromatographic strip assay was thus found to be a rapid, economical, and user friendly method of detecting MTGase in surimi.

  14. Development of loop-mediated isothermal amplification (LAMP assay for rapid and sensitive identification of ostrich meat.

    Directory of Open Access Journals (Sweden)

    Amir Abdulmawjood

    Full Text Available Animal species identification is one of the primary duties of official food control. Since ostrich meat is difficult to be differentiated macroscopically from beef, therefore new analytical methods are needed. To enforce labeling regulations for the authentication of ostrich meat, it might be of importance to develop and evaluate a rapid and reliable assay. In the present study, a loop-mediated isothermal amplification (LAMP assay based on the cytochrome b gene of the mitochondrial DNA of the species Struthio camelus was developed. The LAMP assay was used in combination with a real-time fluorometer. The developed system allowed the detection of 0.01% ostrich meat products. In parallel, a direct swab method without nucleic acid extraction using the HYPLEX LPTV buffer was also evaluated. This rapid processing method allowed detection of ostrich meat without major incubation steps. In summary, the LAMP assay had excellent sensitivity and specificity for detecting ostrich meat and could provide a sampling-to-result identification-time of 15 to 20 minutes.

  15. Development of a rapid serological assay for the diagnosis of strongyloidiasis using a novel diffraction-based biosensor technology.

    Directory of Open Access Journals (Sweden)

    Brian J Pak

    2014-08-01

    Full Text Available Strongyloidiasis is a persistent human parasitic infection caused by the intestinal nematode, Strongyloides stercoralis. The parasite has a world-wide distribution, particularly in tropical and subtropical regions with poor sanitary conditions. Since individuals with strongyloidiasis are typically asymptomatic, the infection can persist for decades without detection. Problems arise when individuals with unrecognized S. stercoralis infection are immunosuppressed, which can lead to hyper-infection syndrome and disseminated disease with an associated high mortality if untreated. Therefore a rapid, sensitive and easy to use method of diagnosing Strongyloides infection may improve the clinical management of this disease.An immunological assay for diagnosing strongyloidiasis was developed on a novel diffraction-based optical bionsensor technology. The test employs a 31-kDa recombinant antigen called NIE derived from Strongyloides stercoralis L3-stage larvae. Assay performance was tested using retrospectively collected sera from patients with parasitologically confirmed strongyloidiasis and control sera from healthy individuals or those with other parasitoses including schistosomiasis, trichinosis, echinococcosis or amebiasis who were seronegative using the NIE ELISA assay. If we consider the control group as the true negative group, the assay readily differentiated S. stercoralis-infected patients from controls detecting 96.3% of the positive cases, and with no cross reactivity observed in the control group These results were in excellent agreement (κ = 0.98 with results obtained by an NIE-based enzyme-linked immunosorbent assay (ELISA. A further 44 sera from patients with suspected S. stercoralis infection were analyzed and showed 91% agreement with the NIE ELISA.In summary, this test provides high sensitivity detection of serum IgG against the NIE Strongyloides antigen. The assay is easy to perform and provides results in less than 30 minutes

  16. A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction.

    Science.gov (United States)

    Knight, Stephen M G; Umezawa, Naoki; Lee, Hee-Seung; Gellman, Samuel H; Kay, Brian K

    2002-01-15

    Improper function of the tumor suppressor protein p53 is a contributing factor in many human cancers. In normal cells, p53 acts to arrest the cell cycle in response to DNA damage or nucleotide depletion. One mechanism of regulating the amount of p53 in the cell is through the action of the Double Minute 2 protein, DM2 (also known as MDM2), which ubiquitinates p53 and targets it for proteosomal degradation. In a number of human cancers, the DM2 gene is amplified or overexpressed, leading to inadequate levels of p53 for cell cycle arrest or apoptosis. With the goal of restoring p53 function in cancers that overexpress DM2, we are developing inhibitors of the p53-DM2 protein-protein interaction that structurally mimic the N-terminal segment of p53 that binds to DM2. To assist this effort, we have devised a fluorescence polarization assay that quantifies the interaction between the N-terminal regions of both proteins in 384-well microtiter plates. Using this assay, we have demonstrated that a peptide with a nonhydrolyzable beta-amino acid substitution binds DM2 with an affinity comparable to a p53 peptide that is composed of only alpha-amino acids. (c)2001 Elsevier Science.

  17. Plasmid transfection in bovine cells: Optimization using a realtime monitoring of green fluorescent protein and effect on gene reporter assay.

    Science.gov (United States)

    Osorio, Johan S; Bionaz, Massimo

    2017-08-30

    Gene reporter technology (GRT) has opened several new avenues for monitoring biological events including the activation of transcription factors, which are central to the study of nutrigenomics. However, this technology relies heavily on the insertion of foreign plasmid DNA into the nuclei of cells (i.e., transfection), which can be very challenging and highly variable among cell types. The objective of this study was to investigate the optimal conditions to generate reliable GRT assay data on bovine immortalized cell lines, Madin Darby Bovine Kidney (MDBK) and bovine mammary epithelial alveolar (MACT) cells. Results are reported for two experiments. In Experiment 1, using 96 well-plate and a robotic inverted fluorescent microscope, we compared transfection efficiency among commercially available transfection reagents (TR) Lipofectamine® 3000 (Lipo3), Lipofectamine® LTX (LipoLTX), and TransIT-X2® (TransX2), three doses of TR (i.e., 0.15, 0.3, and 0.4μL/well), and three doses of Green Fluorescent Protein plasmid DNA (i.e., 10, 25, and 50ng/well). Transfection efficiency and mortality rate were analyzed using CellProfiler software. Transfection efficiency increased until the end of the experiment (20h post-transfection) at which point MACT had greater transfection than MDBK cells (16.3% vs. 2.2%). It is unclear the reason for the low transfection in MDBK cells. Maximal transfection efficiency was obtained with 0.3μL/well of LipoLTX plus 25ng/well of plasmid DNA (ca. 29.5±1.9%) and 0.15μL/well of LipoLTX plus 25ng/well of plasmid DNA (ca. 4.0±0.4%) for MACT and MDBK cells, respectively. The higher amount of TR and DNA was generally associated with higher cell mortality. Using high, medium, and low transfection efficiency conditions determined in Experiment 1, we performed a GRT assay for peroxisome proliferator-activated response element (PPRE) luciferase in MACT and MDBK cells treated with 10nM or 100nM of synthetic Peroxisome Proliferator-activated Receptor

  18. A Lateral Flow Protein Microarray for Rapid and Sensitive Antibody Assays

    Directory of Open Access Journals (Sweden)

    Helene Andersson-Svahn

    2011-11-01

    Full Text Available Protein microarrays are useful tools for highly multiplexed determination of presence or levels of clinically relevant biomarkers in human tissues and biofluids. However, such tools have thus far been restricted to laboratory environments. Here, we present a novel 384-plexed easy to use lateral flow protein microarray device capable of sensitive (< 30 ng/mL determination of antigen-specific antibodies in ten minutes of total assay time. Results were developed with gold nanobeads and could be recorded by a cell-phone camera or table top scanner. Excellent accuracy with an area under curve (AUC of 98% was achieved in comparison with an established glass microarray assay for 26 antigen-specific antibodies. We propose that the presented framework could find use in convenient and cost-efficient quality control of antibody production, as well as in providing a platform for multiplexed affinity-based assays in low-resource or mobile settings.

  19. Rapid Assay for Simultaneous Detection and Differentiation of Immunoglobulin G Antibodies to Human Immunodeficiency Virus Type 1 (HIV-1) Group M, HIV-1 Group O, and HIV-2

    OpenAIRE

    Vallari, Ana S.; Hickman, Robert K.; Hackett, John R.; Brennan, Catherine A.; Varitek, Vincent A.; Devare, Sushil G.

    1998-01-01

    A rapid immunodiagnostic test that detects and discriminates human immunodeficiency virus (HIV) infections on the basis of viral type, HIV type 1 (HIV-1) group M, HIV-1 group O, or HIV-2, was developed. The rapid assay for the detection of HIV (HIV rapid assay) was designed as an instrument-free chromatographic immunoassay that detects immunoglobulin G (IgG) antibodies to HIV. To assess the performance of the HIV rapid assay, 470 HIV-positive plasma samples were tested by PCR and/or Western b...

  20. Lateral flow assay with pressure meter readout for rapid point-of-care detection of disease-associated protein.

    Science.gov (United States)

    Lin, Bingqian; Guan, Zhichao; Song, Yanling; Song, Eunyeong; Lu, Zifei; Liu, Dan; An, Yuan; Zhu, Zhi; Zhou, Leiji; Yang, Chaoyong

    2018-02-26

    Paper-based assays such as lateral flow assays are good candidates for portable diagnostics owing to their user-friendly format and low cost. In terms of analytical detection, lateral flow assays usually require dedicated instruments to obtain quantitative results. Here we demonstrate a lateral flow assay with handheld pressure meter readout for the rapid detection of disease-related protein with high sensitivity and selectivity. Based on the pressure change produced by the catalytic reaction of Pt nanoparticles related to the concentration of the target, a quantitative reaction platform was established. During the lateral flow assay, the Pt nanoparticles are aggregated in the test line to form a gray band by biomolecular recognition and finally convert the recognition signal into highly sensitive pressure readout for quantitative analysis. Without sophisticated instrumentation and complicated operations, the whole detection process can be completed within 20 minutes. The limit of detection for myoglobin (2.9 ng mL -1 in diluted serum samples) meets the requirements of clinical monitoring. With the advantages of low cost, ease of operation, high sensitivity and selectivity, the method represents a versatile platform for point-of-care testing of disease biomarkers.

  1. Immunochromatographic strip assay for the rapid and sensitive detection of Salmonella Typhimurium in artificially contaminated tomato samples.

    Science.gov (United States)

    Shukla, Shruti; Leem, Hyerim; Lee, Jong-Suk; Kim, Myunghee

    2014-06-01

    This study was designed to confirm the applicability of a liposome-based immunochromatographic assay for the rapid detection of Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) in artificially contaminated tomato samples. To determine the detection limit and pre-enrichment incubation time (10, 12, and 18 h pre-enrichment in 1% buffered peptone water), the tests were performed with different cell numbers of Salmonella Typhimurium (3 × 10(0), 3 × 10(1), 3 × 10(2), and 3 × 10(3) CFU·mL(-1)) inoculated into 25 g of crushed tomato samples. The assay was able to detect as few as 30 Salmonella Typhimurium cells per 25 g of tomato samples (1.2 cells·g(-1)) after 12 h pre-enrichment incubation. Moreover, when the developed assay was compared with traditional morphological and biochemical culture-based methods as well as colloidal gold nanoparticle-based commercial test strips, the developed assay yielded positive results for the detection of Salmonella Typhimurium within a shorter period time. These findings confirm that the developed assay may have practical application for the sensitive detection of Salmonella Typhimurium in various food samples, including raw vegetables, with a relatively low detection limit and shorter analysis time.

  2. Multiplex real-time PCR assay for rapid detection of methicillin-resistant staphylococci directly from positive blood cultures.

    Science.gov (United States)

    Wang, Hye-Young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok; Uh, Young; Lee, Hyeyoung

    2014-06-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 10(3) CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Multiplex Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococci Directly from Positive Blood Cultures

    Science.gov (United States)

    Wang, Hye-young; Kim, Sunghyun; Kim, Jungho; Park, Soon-Deok

    2014-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene. PMID:24648566

  4. Rapid and reliable determination of p-nitroaniline in wastewater by molecularly imprinted fluorescent polymeric ionic liquid microspheres.

    Science.gov (United States)

    Lu, Xing; Yang, Yiwen; Zeng, Yanbo; Li, Lei; Wu, Xiaohua

    2018-01-15

    Rapid and efficient detecting trace amount of environmental p-nitroaniline (p-NA) is in urgent need for security concerns and pollution supervision. In this work we report the use of molecularly imprinted polymeric ionic liquid (MIPIL) microspheres to construct recognizable surfaces for detection of p-NA through fluorescence quenching. The p-NA imprinted microspheres are synthesized by precipitation polymerization upon co-polymerization of 3-(anthracen-9-ylmethyl)-1-vinyl-1H-imidazol-3-ium chloride (Fluorescent IL monomer) with ethyleneglycol dimethacrylate (EGDMA). The electron-rich group alkenyl imidazole in IL functional monomer can dramatically improve the emission of anthracene fluorophore and the π-π stacking, electronic, and hydrogen bond between p-NA and MIPIL can efficiently enhance the selective recognition force. The as-synthesized MIPIL microspheres present spherical shape, high fluorescence emission intensity and specific recognition, which showed rapid detection rate (1min), stable reusable property (at least 4 time recycles), wonderful selectivity over several structural analogs, wide linear range (10nM to 10M) with a correlation coefficient of 0.992, and excellent sensitivity (LOD, 9nM). As synthesis and surface functionalization of MIPIL microspheres are well established, the methods reported in this work are facile, rapid and efficient for monitoring p-NA in environmental wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Rapid and ultrasensitive detection of active thrombin based on the Vmh2 hydrophobin fused to a Green Fluorescent Protein.

    Science.gov (United States)

    Piscitelli, Alessandra; Pennacchio, Anna; Cicatiello, Paola; Politi, Jane; De Stefano, Luca; Giardina, Paola

    2017-01-15

    A fusion protein designed in order to combine the fluorescence emission of the Green Fluorescent Protein (GFP) with the adhesion ability of the class I hydrophobin Vmh2 was heterologously produced in the yeast Pichia pastoris. The Vmh2-GFP fusion protein has proven to be a smart and effective tool for the study of Vmh2 self-assembling. Since the two proteins were linked by the specific cutting site of the thrombin, the fusion protein was used as the active biological element in the realization of a thrombin biosensor. When the thrombin present in the target solution specifically hydrolyzed its cleavage sequence, a consequent decrease in the fluorescence intensity of the sample could be observed. The Vmh2-GFP based assay allowed quantification of thrombin in solution with a detection limit of 2.27aM. The specificity of the assay with respect to other proteases and proteins granted the measurement of thrombin added to healthy human plasma with same high sensitivity and a limit of detection of 2.3aM. Further advantages of the developed biosensor are the simplicity of its design and preparation, and the low requirements in terms of samples, reagents and time. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Application of the proximity-dependent assay and fluorescence imaging approaches to study viral entry pathways.

    Science.gov (United States)

    Lipovsky, Alex; Zhang, Wei; Iwasaki, Akiko; DiMaio, Daniel

    2015-01-01

    Virus entry into cells is a complex, multistep process that requires the coordinated activities of a large number of cellular factors and multiple membrane compartments. Because viruses can enter cells via one or more of a large number of preexisting pathways, understanding the mechanism of virus entry and transport between various intracellular compartments is a challenging task. The arrival of "omics" technologies such as genome-wide RNA interference screens has greatly advanced our ability to study the molecular intricacies of viral entry. Bioinformatics analyses of high-throughput screen data can identify enriched gene categories and specific individual genes required for infection, which can yield important insights into the cellular compartments that viruses traverse during infection. Although there are a variety of well-established genetic and biochemical approaches to validate genome-wide screen findings, confirmation of phenotypes obtained from RNA interference studies remains an important challenge. Imaging techniques commonly used to visualize virus localization to cellular organelles are often prone to artifacts that result from the necessity of using a high multiplicity of infection. Fortunately, recent advances in microscopy-based methods for studying protein location have improved our ability to accurately pinpoint virus localization within its host cell. Here we describe in detail one such technique-the proximity ligation assay (PLA)-as a tool to validate findings from a genome-wide loss-of-function genetic screen. In addition, we discuss a number of important considerations for the utilization of immunofluorescence microscopy and RNA interference to investigate the molecular mechanisms of virus entry.

  7. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    Science.gov (United States)

    Macedo, Maíra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB. PMID:24031916

  8. Nitrate reductase assay using sodium nitrate for rapid detection of multidrug resistant tuberculosis

    OpenAIRE

    Macedo, Ma?ra Bidart; Groll, Andrea Von; Fissette, Krista; Palomino, Juan Carlos; da Silva, Pedro Eduardo Almeida; Martin, Anandi

    2012-01-01

    We validated the nitrate reductase assay (NRA) for the detection of multidrug-resistant Mycobacterium tuberculosis (MDR-TB) using sodium nitrate (NaNO3) in replacement of potassium nitrate (KNO3) as nitrate source. NaNO3 is cheaper than KNO3 and has no restriction on use which facilitates the implementation of NRA to detect MDR-TB.

  9. Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices.

    Directory of Open Access Journals (Sweden)

    Diana Pauly

    Full Text Available BACKGROUND: In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. METHODOLOGY/FINDINGS: This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index-time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed. Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. CONCLUSIONS/SIGNIFICANCE: The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex

  10. Real-time cytotoxicity assay for rapid and sensitive detection of ricin from complex matrices.

    Science.gov (United States)

    Pauly, Diana; Worbs, Sylvia; Kirchner, Sebastian; Shatohina, Olena; Dorner, Martin B; Dorner, Brigitte G

    2012-01-01

    In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index-time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices.

  11. A Label-Free Aptamer-Based Fluorescent Assay for Cadmium Detection

    Directory of Open Access Journals (Sweden)

    Yunxia Luan

    2016-12-01

    Full Text Available Selective detection of ultratrace amounts of cadmium (Cd2+ is extremely important for food safety and environmental monitoring because of its toxicity and widespread use. In this work, we developed a facile, rapid, sensitive, and highly selective method for the detection of Cd2+ based on a label-free aptasensor using an unmodified double-stranded deoxyribonucleic acid-specific dye (PicoGreen. The linear range was 0.10–100 µg/mL, and the detection limit (0.038 ng/mL was lower than the guideline from the World Health Organization for Cd2+ in drinking water (3 ng/mL. The sensor exhibited excellent selectivity towards Cd2+ ions. We tested the aptasensor in application to a series of real water samples spiked with different concentrations of Cd2+. Compared with atomic absorption spectrometry, the results showed good tolerance to the matrix effect. The developed approach shows great potential for on-site and high-throughput analysis in routine monitoring.

  12. Rapid detection of Salmonella in food and feed by coupling loop-mediated isothermal amplification with bioluminescent assay in real-time

    OpenAIRE

    Yang, Qianru; Domesle, Kelly J; Wang, Fei; Ge, Beilei

    2016-01-01

    Background Salmonella is among the most significant pathogens causing food and feed safety concerns. This study examined the rapid detection of Salmonella in various types of food and feed samples by coupling loop-mediated isothermal amplification (LAMP) with a novel reporter, bioluminescent assay in real-time (BART). Performance of the LAMP-BART assay was compared to a conventional LAMP and the commercially available 3M Molecular Detection Assay (MDA) Salmonella. Results The LAMP-BART assay ...

  13. A ratiometric fluorescent probe for rapid and sensitive detection of biothiols in fetal bovine serum.

    Science.gov (United States)

    Wang, Fengyang; Feng, Chongchong; Lu, Linlin; Xu, Zhiai; Zhang, Wen

    2017-07-01

    Herein, a ratiometric turn-on fluorescent probe for sensitive detection of biothiols was designed. The probe consisted of two parts: one was rhodamine B serving as a fluorescence reference, and the other was coumarin derivative as the responsive fluorophore with an acrylate group for biothiols recognition. The response was based on the mechanism of Michael addition and intramolecular cyclization reaction, and the probe showed ratiometric and sensitive response to biothiols. Especially, the detection limit of this probe for cysteine was found to be 0.13μΜ. More importantly, the probe showed the advantage of fast response, of which the fluorescence intensity can reach the maximum within 10min. The ratiometric fluorescent probe has been successfully applied for the determination of biothiols in fetal bovine serum samples and the result was in good agreement with that tested by Ellman method. Copyright © 2017. Published by Elsevier B.V.

  14. A Comparative Study Of The Indirect Fluorescent Antibody Assay And Culture Method In Symptomatic Pulmonary Nocardiosis

    Directory of Open Access Journals (Sweden)

    Eshraghi S

    2004-09-01

    Full Text Available Background: Pulmonary Nocardiosis is an infrequent infection whose incidence seems to be on the rise due to a higher degree of clinical suspicion and to an increasing number of immunosuppressive factors. The present investigation was carried out to detect Nocardiosis in immunocompromised patients confined in the pulmonary ward of Tehran’s Shariati Training Hospital through the use of indirect immunofluorescence assay (IFA and bacterial culture methods. The comparison of the two methods and the correlation between the antibody titer and the statistical and epidemiological data were also investigated. Materials and Methods: 101 patients with advanced symptomatic pulmonary infection were studied in the course of a twenty-month period. Individual patients’ sputum, BAL (bronchoalveolar lavage and blood sera were tested. From each sample three thin smears were prepared for microscopic observations. The samples were cultured in Sabouraud’s dextrose, blood and paraffin agar. The detection of antibody against Nocardia asteroides was carried out in all study groups, using the IFA method. The medical history of patients was also obtained through questionnaires for further analysis. Results: Nocardia asteroides was isolated from only one patient suffering from Wagner vasculitis with an antibody titer of in serum. The 41 patients suspected for Nocardiosis with an antibody titer ranging from to , detected by IFA method, included 26 (63.4% men and 15 (14.8% women. The age of the patients varied from 7-80 years. Those with reasonable antibody titers included 15 (36.5% housewives and 9 (21.9% workers. Furthermore, in-vitro investigation for the differentiation of the isolates was performed and confirmed the notion that the organism which grew on the primary media was, indeed, the Nocardia asteroids complex. Conclusion: Our results revealed that the broncho-pulmonary infections, which occur in high-risk patients -T-cell deficiencies, long term

  15. Photo- and Bio-physical Studies of Lectin-Conjugated Fluorescent Nanoparticles: Reduced Sensitivity in High Density Assays

    Science.gov (United States)

    Wang, Yaqi; Gildersleeve, Jeffrey C.; Basu, Amit

    2010-01-01

    Lectin conjugated, fluorescent silica nanoparticles (fNP) have been developed for carbohydrate based histopathology evaluations of epithelial tissue biopsies. The fNP platform was selected for its enhanced emissive brightness compared to direct dye labeling. Carbohydrate microarray studies were performed to compare the carbohydrate selectivity of the mannose recognizing lectin Concanavalin A (ConA) before and after conjugation to fluorescent silica nanoparticles (ConA-fNP). These studies revealed surprisingly low emission intensities upon staining with ConA-fNP compared to biotin-ConA / Cy3-strepavidin staining. A series of photophysical and biophysical characterizations of the fNP and ConA-fNP conjugates were performed to probe the low sensitivity from fNP in the microarray assays. Up to 1200 fluorescein (FL) and 80 tetramethylrhodamine (TR) dye molecules were incorporated into 46 nm diameter fNP, yielding emissive brightness’ 400 and 35 times larger than the individual dye molecules, respectively. ConA lectin conjugated to carboxylic acid surface modified nanoparticles covers 15–30% of the fNP surface. The CD spectra and mannose substrate selectivity of ConA conjugated to the fNP differed slightly compared to soluble ConA. Although, the high emissive brightness of fNP enhances detection sensitivity for samples with low analyte densities, large fNP diameters limit fNP recruitment and binding to samples with high analyte densities. The high analyte density and nearly two-dimensional target format of carbohydrate microarrays make probe size a critical parameter. In this application, fNP labels afford minimal sensitivity advantage compared to direct dye labeling. PMID:20496897

  16. A Lateral Flow Protein Microarray for Rapid and Sensitive Antibody Assays

    Science.gov (United States)

    Gantelius, Jesper; Bass, Tarek; Sjöberg, Ronald; Nilsson, Peter; Andersson-Svahn, Helene

    2011-01-01

    Protein microarrays are useful tools for highly multiplexed determination of presence or levels of clinically relevant biomarkers in human tissues and biofluids. However, such tools have thus far been restricted to laboratory environments. Here, we present a novel 384-plexed easy to use lateral flow protein microarray device capable of sensitive (gold nanobeads and could be recorded by a cell-phone camera or table top scanner. Excellent accuracy with an area under curve (AUC of 98% was achieved in comparison with an established glass microarray assay for 26 antigen-specific antibodies. We propose that the presented framework could find use in convenient and cost-efficient quality control of antibody production, as well as in providing a platform for multiplexed affinity-based assays in low-resource or mobile settings. PMID:22174629

  17. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.

    Science.gov (United States)

    Altevogt, Dominik; Hrenn, Andrea; Kern, Claudia; Clima, Lilia; Bannwarth, Willi; Merfort, Irmgard

    2009-10-07

    Herein we report a feasibility study for a new concept to detect DNA binding protein NF-kappaB based on a DNA triple helix formation in combination with a fluorescence resonance energy transfer (FRET). The new principle avoids expensive antibodies and radioactivity and might have implications for assays of other DNA binding proteins.

  18. SPONTANEOUS AND MNNG-INDUCED REVERSION OF AN EGFP CONSTRUCT IN HELA CELLS: AN ASSAY FOR OBSERVING MUTATIONS IN LIVING CELLS BY FLUORESCENT MICROSCOPY

    Science.gov (United States)

    A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...

  19. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay

    OpenAIRE

    Mondal, Dinesh; Ghosh, Prakash; Khan, Md. Anik; Hossain, Faria; Böhlken-Fascher, Susanne; Matlashewski, Greg; Kroeger, Axel; Olliaro, Piero; Abd El Wahed, Ahmed

    2016-01-01

    Background Leishmania donovani (LD) is a protozoan parasite transmitted to humans from sand flies, which causes Visceral Leishmaniasis (VL). Currently, the diagnosis is based on presence of the anti-LD antibodies and clinical symptoms. Molecular diagnosis would require real-time PCR, which is not easy to implement at field settings. In this study, we report on the development and testing of a recombinase polymerase amplification (RPA) assay for the detection of LD. Methods A genomic DNA sampl...

  20. A loop-mediated isothermal amplification (LAMP) assay for Strongyloides stercoralis in stool that uses a visual detection method with SYTO-82 fluorescent dye.

    Science.gov (United States)

    Watts, Matthew R; James, Gregory; Sultana, Yasmin; Ginn, Andrew N; Outhred, Alexander C; Kong, Fanrong; Verweij, Jaco J; Iredell, Jonathan R; Chen, Sharon C-A; Lee, Rogan

    2014-02-01

    An assay to detect Strongyloides stercoralis in stool specimens was developed using the loop-mediated isothermal amplification (LAMP) method. Primers were based on the 28S ribosomal subunit gene. The reaction conditions were optimized and SYTO-82 fluorescent dye was used to allow real-time and visual detection of the product. The product identity was confirmed with restriction enzyme digestion, cloning, and sequence analysis. The assay was specific when tested against DNA from bacteria, fungi and parasites, and 30 normal stool samples. Analytical sensitivity was to LAMP method. On the basis of these findings, the assay warrants further clinical validation.

  1. Rapid identification of drug-type strains in Cannabis sativa using loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2017-01-01

    In Cannabis sativa L., tetrahydrocannabinol (THC) is the primary psychoactive compound and exists as the carboxylated form, tetrahydrocannabinolic acid (THCA). C. sativa is divided into two strains based on THCA content-THCA-rich (drug-type) strains and THCA-poor (fiber-type) strains. Both strains are prohibited by law in many countries including Japan, whereas the drug-type strains are regulated in Canada and some European countries. As the two strains cannot be discriminated by morphological analysis, a simple method for identifying the drug-type strains is required for quality control in legal cultivation and forensic investigation. We have developed a novel loop-mediated isothermal amplification (LAMP) assay for identifying the drug-type strains of C. sativa. We designed two selective LAMP primer sets for on-site or laboratory use, which target the drug-type THCA synthase gene. The LAMP assay was accomplished within approximately 40 min. The assay showed high specificity for the drug-type strains and its sensitivity was the same as or higher than that of conventional polymerase chain reaction. We also showed the effectiveness of melting curve analysis that was conducted after the LAMP assay. The melting temperature values of the drug-type strains corresponded to those of the cloned drug-type THCA synthase gene, and were clearly different from those of the cloned fiber-type THCA synthase gene. Moreover, the LAMP assay with simple sample preparation could be accomplished within 1 h from sample treatment to identification without the need for special devices or techniques. Our rapid, sensitive, specific, and simple assay is expected to be applicable to laboratory and on-site detection.

  2. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases.

    Directory of Open Access Journals (Sweden)

    Hanae Takatsuki

    Full Text Available The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt-Jakob disease patients demonstrated that 50% seeding dose (SD50 is reached approximately 10(10/g brain (values varies 10(8.79-10.63/g. A genetic case (GSS-P102L yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6-5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06-0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission.

  3. A high-throughput-compatible fluorescence anisotropy-based assay for competitive inhibitors of Escherichia coli UDP-N-acetylglucosamine acyltransferase (LpxA).

    Science.gov (United States)

    Shapiro, Adam B; Ross, Philip L; Gao, Ning; Livchak, Stephania; Kern, Gunther; Yang, Wei; Andrews, Beth; Thresher, Jason

    2013-03-01

    LpxA, the first enzyme in the biosynthetic pathway for the Lipid A component of the outer membrane lipopolysaccharide in Gram-negative bacteria, is a potential target for novel antibacterial drug discovery. A fluorescence polarization assay was developed to facilitate high-throughput screening for competitive inhibitors of LpxA. The assay detects displacement of a fluorescently labeled peptide inhibitor, based on the previously reported inhibitor peptide 920, by active site ligands. The affinity of the fluorescent ligand was increased ~10-fold by acyl carrier protein (ACP). Competition with peptide binding was observed with UDP-N-acetylglucosamine (IC(50) ~6 mM), UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine (IC(50) ~200 nM), and DL-3-hydroxymyristic acid (IC(50) ~50 µM) and peptide 920 (IC(50) ~600 nM). The IC(50)s were not significantly affected by the presence of ACP.

  4. A label-free fluorescent assay for deoxyribonuclease I activity based on DNA-templated silver nanocluster/graphene oxide nanocomposite.

    Science.gov (United States)

    Lee, Chang Yeol; Park, Ki Soo; Jung, Yun Kyung; Park, Hyun Gyu

    2017-07-15

    A novel label-free system for the sensitive fluorescent detection of deoxyribonuclease I (DNase I) activity has been developed by utilizing DNA-templated silver nanocluster/graphene oxide (DNA-AgNC/GO) nanocomposite. AgNC is first synthesized around C-rich template DNA and the resulting DNA-AgNC binds to GO through the interaction between the extension DNA and GO. The resulting DNA-AgNC/GO would show quite reduced fluorescence signal because the fluorescence from DNA-AgNCs is quenched by GO. In the presence of DNase I, however, it degrades the DNA strand within DNA/RNA hybrid duplex probe employed in this study, consequently releasing RNA which is complementary to the extension DNA. The released free RNA then extracts DNA-AgNC from GO by hybridizing with the extension DNA bound to GO. This process would restore the quenched fluorescence, emitting highly enhanced fluorescence signal. By employing this assay principle, DNase I activity was reliably identified with a detection limit of 0.10U/ml which is lower than those from previous fluorescence-based methods. Finally, the practical capability of this assay system was successfully demonstrated by its use to determine DNase I activity in bovine urine. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Rapid and selective detection of experimental snake envenomation - Use of gold nanoparticle based lateral flow assay.

    Science.gov (United States)

    Pawade, Balasaheb S; Salvi, Nitin C; Shaikh, Innus K; Waghmare, Arun B; Jadhav, Nitin D; Wagh, Vishal B; Pawade, Abhilasha S; Waykar, Indrasen G; Potnis-Lele, Mugdha

    2016-09-01

    In this study, we have developed a gold nanoparticle based simple, rapid lateral flow assay (LFA) for detection of Indian Cobra venom (CV) and Russell's viper venom (RV). Presently, there is no rapid, reliable, and field diagnostic test available in India, where snake bite cases are rampant. Therefore, this test has an immense potential from the public health point of view. The test is based on the principle of the paper immunochromatography assay for detection of two snake venom species using polyvalent antisnake venom antibodies (ASVA) raised in equines and species-specific antibodies (SSAbs) against venoms raised in rabbits for conjugation and impregnation respectively. The developed, snake envenomation detection immunoassay (SEDIA) was rapid, selective, and sensitive to detect venom concentrations up to 0.1 ng/ml. The functionality of SEDIA strips was confirmed by experimental envenomation in mice and the results obtained were specific for the corresponding venom. The SEDIA has a potential to be a field diagnostic test to detect snake envenomation and assist in saving lives of snakebite victims. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. [Prediction of the side-cut product yield of atmospheric/vacuum distillation unit by NIR crude oil rapid assay].

    Science.gov (United States)

    Wang, Yan-Bin; Hu, Yu-Zhong; Li, Wen-Le; Zhang, Wei-Song; Zhou, Feng; Luo, Zhi

    2014-10-01

    In the present paper, based on the fast evaluation technique of near infrared, a method to predict the yield of atmos- pheric and vacuum line was developed, combined with H/CAMS software. Firstly, the near-infrared (NIR) spectroscopy method for rapidly determining the true boiling point of crude oil was developed. With commercially available crude oil spectroscopy da- tabase and experiments test from Guangxi Petrochemical Company, calibration model was established and a topological method was used as the calibration. The model can be employed to predict the true boiling point of crude oil. Secondly, the true boiling point based on NIR rapid assay was converted to the side-cut product yield of atmospheric/vacuum distillation unit by H/CAMS software. The predicted yield and the actual yield of distillation product for naphtha, diesel, wax and residual oil were compared in a 7-month period. The result showed that the NIR rapid crude assay can predict the side-cut product yield accurately. The near infrared analytic method for predicting yield has the advantages of fast analysis, reliable results, and being easy to online operate, and it can provide elementary data for refinery planning optimization and crude oil blending.

  7. Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay.

    Science.gov (United States)

    Binet, Rachel; Deer, Deanne M; Uhlfelder, Samantha J

    2014-06-01

    Faster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 × 10(3)Shigella CFU/ml post-enrichment, requiring ∼18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen. Published by Elsevier Ltd.

  8. Novel migrating mouse neural crest cell assay system utilizing P0-Cre/EGFP fluorescent time-lapse imaging

    Directory of Open Access Journals (Sweden)

    Kawakami Minoru

    2011-11-01

    Full Text Available Abstract Background Neural crest cells (NCCs are embryonic, multipotent stem cells. Their long-range and precision-guided migration is one of their most striking characteristics. We previously reported that P0-Cre/CAG-CAT-lacZ double-transgenic mice showed significant lacZ expression in tissues derived from NCCs. Results In this study, by embedding a P0-Cre/CAG-CAT-EGFP embryo at E9.5 in collagen gel inside a culture glass slide, we were able to keep the embryo developing ex vivo for more than 24 hours; this development was with enough NCC fluorescent signal intensity to enable single-cell resolution analysis, with the accompanying NCC migration potential intact and with the appropriate NCC response to the extracellular signal maintained. By implantation of beads with absorbed platelet-derived growth factor-AA (PDGF-AA, we demonstrated that PDGF-AA acts as an NCC-attractant in embryos. We also performed assays with NCCs isolated from P0-Cre/CAG-CAT-EGFP embryos on culture plates. The neuromediator 5-hydroxytryptamine (5-HT has been known to regulate NCC migration. We newly demonstrated that dopamine, in addition to 5-HT, stimulated NCC migration in vitro. Two NCC populations, with different axial levels of origins, showed unique distribution patterns regarding migration velocity and different dose-response patterns to both 5-HT and dopamine. Conclusions Although avian species predominated over the other species in the NCC study, our novel system should enable us to use mice to assay many different aspects of NCCs in embryos or on culture plates, such as migration, division, differentiation, and apoptosis.

  9. Development and evaluation of rapid novel isothermal amplification assays for important veterinary pathogens: Chlamydia psittaci and Chlamydia pecorum

    Directory of Open Access Journals (Sweden)

    Martina Jelocnik

    2017-09-01

    Full Text Available Background Chlamydia psittaci and Chlamydia pecorum are important veterinary pathogens, with the former also being responsible for zoonoses, and the latter adversely affecting koala populations in Australia and livestock globally. The rapid detection of these organisms is still challenging, particularly at the point-of-care (POC. In the present study, we developed and evaluated rapid, sensitive and robust C. psittaci-specific and C. pecorum-specific Loop Mediated Isothermal Amplification (LAMP assays for detection of these pathogens. Methods and Materials The LAMP assays, performed in a Genie III real-time fluorometer, targeted a 263 bp region of the C. psittaci-specific Cps_0607 gene or a 209 bp region of a C. pecorum-specific conserved gene CpecG_0573, and were evaluated using a range of samples previously screened using species-specific quantitative PCRs (qPCRs. Species-specificity for C. psittaci and C. pecorum LAMP targets was tested against DNA samples from related chlamydial species and a range of other bacteria. In order to evaluate pathogen detection in clinical samples, C. psittaci LAMP was evaluated using a total of 26 DNA extracts from clinical samples from equine and avian hosts, while for C. pecorum LAMP, we tested a total of 63 DNA extracts from clinical samples from koala, sheep and cattle hosts. A subset of 36 C. pecorum samples was also tested in a thermal cycler (instead of a real-time fluorometer using newly developed LAMP and results were determined as an end point detection. We also evaluated rapid swab processing (without DNA extraction to assess the robustness of these assays. Results Both LAMP assays were demonstrated to species-specific, highly reproducible and to be able to detect as little as 10 genome copy number/reaction, with a mean amplification time of 14 and 24 min for C. psittaci and C. pecorum, respectively. When testing clinical samples, the overall congruence between the newly developed LAMP assays and q

  10. Development and evaluation of rapid novel isothermal amplification assays for important veterinary pathogens: Chlamydia psittaci and Chlamydia pecorum.

    Science.gov (United States)

    Jelocnik, Martina; Islam, Md Mominul; Madden, Danielle; Jenkins, Cheryl; Branley, James; Carver, Scott; Polkinghorne, Adam

    2017-01-01

    Chlamydia psittaci and Chlamydia pecorum are important veterinary pathogens, with the former also being responsible for zoonoses, and the latter adversely affecting koala populations in Australia and livestock globally. The rapid detection of these organisms is still challenging, particularly at the point-of-care (POC). In the present study, we developed and evaluated rapid, sensitive and robust C. psittaci-specific and C. pecorum-specific Loop Mediated Isothermal Amplification (LAMP) assays for detection of these pathogens. The LAMP assays, performed in a Genie III real-time fluorometer, targeted a 263 bp region of the C. psittaci-specific Cps_0607 gene or a 209 bp region of a C. pecorum-specific conserved gene CpecG_0573, and were evaluated using a range of samples previously screened using species-specific quantitative PCRs (qPCRs). Species-specificity for C. psittaci and C. pecorum LAMP targets was tested against DNA samples from related chlamydial species and a range of other bacteria. In order to evaluate pathogen detection in clinical samples, C. psittaci LAMP was evaluated using a total of 26 DNA extracts from clinical samples from equine and avian hosts, while for C. pecorum LAMP, we tested a total of 63 DNA extracts from clinical samples from koala, sheep and cattle hosts. A subset of 36 C. pecorum samples was also tested in a thermal cycler (instead of a real-time fluorometer) using newly developed LAMP and results were determined as an end point detection. We also evaluated rapid swab processing (without DNA extraction) to assess the robustness of these assays. Both LAMP assays were demonstrated to species-specific, highly reproducible and to be able to detect as little as 10 genome copy number/reaction, with a mean amplification time of 14 and 24 min for C. psittaci and C. pecorum, respectively. When testing clinical samples, the overall congruence between the newly developed LAMP assays and qPCR was 92.3% for C. psittaci (91.7% sensitivity and 92

  11. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus.

    Science.gov (United States)

    Shangguan, Jingfang; Li, Yuhong; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Zou, Zhen; Shi, Hui

    2015-07-07

    Staphylococcus aureus (S. aureus) is an important human pathogen that causes several diseases ranging from superficial skin infections to life-threatening diseases. Here, a method combining positive dielectrophoresis (pDEP) driven on-line enrichment and aptamer-fluorescent silica nanoparticle label has been developed for the rapid and sensitive detection of S. aureus in microfluidic channels. An aptamer, having high affinity to S. aureus, is used as the molecular recognition tool and immobilized onto chloropropyl functionalized fluorescent silica nanoparticles through a click chemistry approach to obtain S. aureus aptamer-nanoparticle bioconjugates (Apt(S.aureus)/FNPs). The pDEP driven on-line enrichment technology was used for accumulating the Apt(S.aureus)/FNP labeled S. aureus. After incubating with S. aureus, the mixture of Apt(S.aureus)/FNP labeled S. aureus and Apt(S.aureus)/FNPs was directly introduced into the pDEP-based microfluidic system. By applying an AC voltage in a pDEP frequency region, the Apt(S.aureus)/FNP labelled S. aureus moved to the electrodes and accumulated in the electrode gap, while the free Apt(S.aureus)/FNPs flowed away. The signal that came from the Apt(S.aureus)/FNP labelled S. aureus in the focused detection areas was then detected. Profiting from the specificity of aptamer, signal amplification of FNP label and pDEP on-line enrichment, this assay can detect as low as 93 and 270 cfu mL(-1)S. aureus in deionized water and spiked water samples, respectively, with higher sensitivities than our previously reported Apt(S.aureus)/FNP based flow cytometry. Moreover, without the need for separation and washing steps usually required for FNP label involved bioassays, the total assay time including sample pretreatment was within 2 h.

  12. Evaluation of the MeltPro TB/STR assay for rapid detection of streptomycin resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhang, Ting; Hu, Siyu; Li, Guoli; Li, Hui; Liu, Xiaoli; Niu, Jianjun; Wang, Feng; Wen, Huixin; Xu, Ye; Li, Qingge

    2015-03-01

    Rapid and comprehensive detection of drug-resistance is essential for the control of tuberculosis, which has facilitated the development of molecular assays for the detection of drug-resistant mutations in Mycobacterium tuberculosis. We hereby assessed the analytical and clinical performance of an assay for streptomycin-resistant mutations. MeltPro TB/STR is a closed-tube, dual-color, melting curve analysis-based, real-time PCR test designed to detect 15 streptomycin-resistant mutations in rpsL 43, rpsL 88, rrs 513, rrs 514, rrs 517, and rrs 905-908 of M. tuberculosis. Analytical studies showed that the accuracy was 100%, the limit of detection was 50-500 bacilli per reaction, the reproducibility in the form of Tm variation was within 1.0 °C, and we could detect 20% STR resistance in mixed bacterial samples. The cross-platform study demonstrated that the assay could be performed on six models of real-time PCR instruments. A multicenter clinical study was conducted using 1056 clinical isolates, which were collected from three geographically different healthcare units, including 709 STR-susceptible and 347 STR-resistant isolates characterized on Löwenstein-Jensen solid medium by traditional drug susceptibility testing. The results showed that the clinical sensitivity and specificity of the MeltPro TB/STR was 88.8% and 95.8%, respectively. Sequencing analysis confirmed the accuracy of the mutation types. Among all the 8 mutation types detected, rpsL K43R (AAG → AGG), rpsL K88R (AAG → AGG) and rrs 514 A → C accounted for more than 90%. We concluded that MeltPro TB/STR represents a rapid and reliable assay for the detection of STR resistance in clinical isolates. Copyright © 2014. Published by Elsevier Ltd.

  13. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions

    Directory of Open Access Journals (Sweden)

    Uppalapati Srinivasa R

    2011-10-01

    Full Text Available Abstract Background The Arabidopsis thaliana-Pseudomonas syringae model pathosystem is one of the most widely used systems to understand the mechanisms of microbial pathogenesis and plant innate immunity. Several inoculation methods have been used to study plant-pathogen interactions in this model system. However, none of the methods reported to date are similar to those occurring in nature and amicable to large-scale mutant screens. Results In this study, we developed a rapid and reliable seedling flood-inoculation method based on young Arabidopsis seedlings grown on MS medium. This method has several advantages over conventional soil-grown plant inoculation assays, including a shorter growth and incubation period, ease of inoculation and handling, uniform infection and disease development, requires less growth chamber space and is suitable for high-throughput screens. In this study we demonstrated the efficacy of the Arabidopsis seedling assay to study 1 the virulence factors of P. syringae pv. tomato DC3000, including type III protein secretion system (TTSS and phytotoxin coronatine (COR; 2 the effector-triggered immunity; and 3 Arabidopsis mutants affected in salicylic acid (SA- and pathogen-associated molecular pattern (PAMPs-mediated pathways. Furthermore, we applied this technique to study nonhost resistance (NHR responses in Arabidopsis using nonhost pathogens, such as P. syringae pv. tabaci, pv. glycinea and pv. tomato T1, and confirmed the functional role of FLAGELLIN-SENSING 2 (FLS2 in NHR. Conclusions The Arabidopsis seedling flood-inoculation assay provides a rapid, efficient and economical method for studying Arabidopsis-Pseudomonas interactions with minimal growth chamber space and time. This assay could also provide an excellent system for investigating the virulence mechanisms of P. syringae. Using this method, we demonstrated that FLS2 plays a critical role in conferring NHR against nonhost pathovars of P. syringae, but not to

  14. Nile Red fluorescence spectrum decomposition enables rapid screening of large protein aggregates in complex biopharmaceutical formulations like influenza vaccines.

    Science.gov (United States)

    Sahin, Ziya; Akkoc, Senem; Neeleman, Ronald; Haines, Jonathan; Kayser, Veysel

    2017-05-25

    The extensive presence of large (high molecular weight) protein aggregates in biopharmaceutical formulations is a concern for formulation stability and possibly safety. Tests to screen large aggregate content in such bioformulations are therefore needed for rapid and reliable quality control in industrial settings. Herein, non-commercial seasonal influenza split-virus vaccine samples, produced using various strains and extracted from selected industrial processing steps, were used as model complex bioformulations. Orthogonal characterization through transmission electron microscopy, UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, high-performance liquid chromatography and single-radial immunodiffusion revealed that large, amorphous protein aggregates are formed after virus splitting and their presence is linked mainly, albeit not only, to surfactant (Triton X-100) content in a sample. Importantly, the presence of large virus aggregates in purified whole virus samples and large protein aggregates in vaccine samples was found to correlate with broadening/shouldering in Nile Red fluorescence spectra. Accordingly, decomposition of Nile Red spectra into components allowed the development of a novel, rapid, reliable and user-friendly test with high-throughput potential for screening large aggregate content in influenza split-virus vaccines. The test can be adapted for screening other complex biopharmaceutical formulations, provided relevant controls are done for informed decomposition of fluorescence spectra into their components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Toxicant induced changes on delayed fluorescence decay kinetics of cyanobacteria and green algae: a rapid and sensitive biotest.

    Directory of Open Access Journals (Sweden)

    Franziska Leunert

    Full Text Available Algal tests have developed into routine tools for testing toxicity of pollutants in aquatic environments. Meanwhile, in addition to algal growth rates, an increasing number of fluorescence based methods are used for rapid and sensitive toxicity measures. The present study stresses the suitability of delayed fluorescence (DF as a promising parameter for biotests. DF is based on the recombination fluorescence at the reaction centre of photosystem II, which is emitted only by photosynthetically active cells. We analyzed the effects of three chemicals (3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU, 3,5 Dichlorophenol (3,5 DCP and copper on the shape of the DF decay kinetics for potential use in phytoplankton toxicity tests. The short incubation tests were done with four phytoplankton species, with special emphasis on the cyanobacterium Microcystis aeruginosa. All species exhibited a high sensitivity to DCMU, but cyanobacteria were more affected by copper and less by 3,5 DCP than the tested green algae. Analyses of changes in the DF decay curve in response to the added chemicals indicated the feasibility of the DF decay approach as a rapid and sensitive testing tool.

  16. Comparison of peptide nucleic acid fluorescence in situ hybridization assays with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry for the identification of bacteria and yeasts from blood cultures and cerebrospinal fluid cultures.

    Science.gov (United States)

    Calderaro, A; Martinelli, M; Motta, F; Larini, S; Arcangeletti, M C; Medici, M C; Chezzi, C; De Conto, F

    2014-08-01

    Peptide nucleic acid fluorescence in situ hybridization (PNA FISH) is a molecular diagnostic tool for the rapid detection of pathogens directly from liquid media. The aim of this study was to prospectively evaluate PNA FISH assays in comparison with culture-based matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) identification, as a reference method, for both blood and cerebrospinal fluid (CSF) cultures, during a 1-year investigation. On the basis of the Gram stain microscopy results, four different PNA FISH commercially available assays were used ('Staphylococcus aureus/CNS', 'Enterococcus faecalis/OE', 'GNR Traffic Light' and 'Yeasts Traffic Light' PNA FISH assays, AdvanDx). The four PNA FISH assays were applied to 956 positive blood cultures (921 for bacteria and 35 for yeasts) and 11 CSF cultures. Among the 921 blood samples positive for bacteria, PNA FISH gave concordant results with MALDI-TOF MS in 908/921 (98.64%) samples, showing an agreement of 99.4% in the case of monomicrobial infections. As regards yeasts, the PNA FISH assay showed a 100% agreement with the result obtained by MALDI-TOF MS. When PNA FISH assays were tested on the 11 CSF cultures, the results agreed with the reference method in all cases (100%). PNA FISH assays provided species identification at least one work-day before the MALDI-TOF MS culture-based identification. PNA FISH assays showed an excellent efficacy in the prompt identification of main pathogens, yielding a significant reduction in reporting time and leading to more appropriate patient management and therapy in cases of sepsis and severe infections. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  17. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Science.gov (United States)

    Zhang, Yingwei; Luo, Yonglan; Tian, Jingqi; Asiri, Abdullah M; Al-Youbi, Abdulrahman O; Sun, Xuping

    2012-01-01

    In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs) assembled from Cu(II) and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1) RCPN binds dye-labeled single-stranded DNA (ssDNA) probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2) Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA) which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  18. A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction

    Directory of Open Access Journals (Sweden)

    Jakobsdottir Klara B

    2002-06-01

    Full Text Available Abstract Background The jellyfish green fluorescent protein (GFP can be inserted into the middle of another protein to produce a functional, fluorescent fusion protein. Finding permissive sites for insertion, however, can be difficult. Here we describe a transposon-based approach for rapidly creating libraries of GFP fusion proteins. Results We tested our approach on the glutamate receptor subunit, GluR1, and the G protein subunit, αs. All of the in-frame GFP insertions produced a fluorescent protein, consistent with the idea that GFP will fold and form a fluorophore when inserted into virtually any domain of another protein. Some of the proteins retained their signaling function, and the random nature of the transposition process revealed permissive sites for insertion that would not have been predicted on the basis of structural or functional models of how that protein works. Conclusion This technique should greatly speed the discovery of functional fusion proteins, genetically encodable sensors, and optimized fluorescence resonance energy transfer pairs.

  19. PARAFAC modeling of fluorescence excitation-emission spectra of fish bile for rapid en route screening of PAC exposure.

    Science.gov (United States)

    Christensen, Jan H; Tomasi, Giorgio; Strand, Jakob; Andersen, Ole

    2009-06-15

    Polycyclic aromatic compound (PAC) metabolites in fish bile can be used as biomarkers for recent environmental exposure to PACs. Here, a novel method for rapid screening of nonhydrolyzed fish bile is presented. The method is based on excitation-emission fluorescence spectroscopy combined with parallel factor analysis (PARAFAC) and may constitute an alternative to fixed wavelength fluorescence and synchronous fluorescence spectroscopy (SFS). PARAFAC was applied to excitation-emission matrices (EEMs) of bile samples of shorthorn sculpins and European eels collected in Greenland and Denmark. The EEMs were decomposed into a four-factor PARAFAC model. The comparison of the PARAFAC factors with the EEMs of PAC metabolites and amino acids suggests that two factors are related to PAC metabolites and two correspond to fluorescent residues of tryptophan and tyrosine in bile proteins. A new standardization procedure based on the mean of the scores for the biological factors was used to correct for feeding status and sample dilution and, upon such normalization, the score plots of PARAFAC factors showed a clear distinction between exposed and nonexposed fish. A good correlation was found between the factor scores and 1-hydroxypyrene equivalents determined by SFS for high contamination levels, whereas the sensitivity was better for the EEM method.

  20. Radioiododestannylation. Convenient synthesis of a stable penicillin derivative for rapid penicillin binding protein (PBP) assay

    Energy Technology Data Exchange (ETDEWEB)

    Blaszczak, L.C.; Halligan, N.G. (Lilly (Eli) and Co., Indianapolis, IN (USA). Lilly Research Labs.); Seitz, D.E. (Indiana Univ.-Purdue Univ., Indianapolis, IN (USA). School of Medicine)

    1989-04-01

    Radioiodination of p-(trimethylstannyl)penicillin V with ({sup 125}I)Na using a modification of the chloramine-T method is simple, high yielding, and site-specific. The structure and penicillin binding protein (PBP) affinity of p-({sup 125}I)-penicillin V (IPV) are similar to penicillin G and the product can be used directly without purification in the PBP assay. Because of the high degree of stability toward autoradiolysis and equivalent PBP binding affinity, IPV can be used in place of ({sup 3}H)-penicillin G or ({sup 14}C)-penicillin G for these experiments. (author).

  1. Establishing a cellular FRET-based fluorescence plate reader assay to monitor proNGF-induced cross-linking of sortilin and the neurotrophin receptor p75(NTR)

    DEFF Research Database (Denmark)

    Skeldal, Sune; Kjaergaard, Maj M; Alwasel, Saleh

    2015-01-01

    the vps10p domain receptor sortilin and the neurotrophin receptor p75(NTR). However, proNGF-induced receptor complex formation has been difficult to directly assess other than by western blotting. We here describe a fluorescence resonance energy transfer (FRET) based fluorescence plate reader assay...... to monitor the interaction between fluorescently tagged sortilin and p75(NTR) in live cells. The method is based on a standard fluorescent plate reader found in many biochemical laboratories and the results are evaluated using a microscopy-based quantified sensitized acceptor emission FRET approach making...... use of a pair of FRET standard constructs. As a result, the effect of proNGF on the interaction between sortilin and p75(NTR) can be evaluated in live cells allowing for screening and selection of therapeutic compounds interfering with proNGF-induced cell death....

  2. Rapid fluorescence lifetime estimation with modified phasor approach and Laguerre deconvolution: a comparative study

    Science.gov (United States)

    Fereidouni, Farzad; Gorpas, Dimitris; Ma, Dinglong; Fatakdawala, Hussain; Marcu, Laura

    2017-09-01

    Fluorescence lifetime imaging has been shown to serve as a valuable tool for interrogating and diagnosis of biological tissue at a mesoscopic level. The ability to analyze fluorescence decay curves to extract lifetime values in real-time is crucial for clinical translation and applications such as tumor margin delineation or intracoronary imaging of atherosclerotic plaques. In this work, we compare the performance of two popular non-parametric (fit-free) methods for determining lifetime values from fluorescence decays in real-time—the Phasor approach and Laguerre deconvolution. We demonstrate results from simulated and experimental data to compare the accuracy and speed of both methods and their dependence on noise and model parameters.

  3. Evaluation of an automated enzyme-linked fluorescent assay for thyroxine measurement in cat and dog sera.

    Science.gov (United States)

    Anderson, Rouven; Mueller, Ralf; Reese, Sven; Wehner, Astrid

    2017-05-01

    Measurement of total thyroxine (T4) is the first testing step in the work-up of thyroid disease in small animals. We evaluated an enzyme-linked fluorescent assay (ELFA) as an in-house method to measure T4 in cats and dogs. We compared the T4 concentration in sera of 122 cats and 176 dogs measured by the ELFA with an enzyme immunoassay (EIA) to assess the concordance of the 2 methods. Bias of the ELFA in cats was -11.4% and in dogs 1.4%. Using Bland-Altman plots, limits of agreement were -81.5 to 58.7% in cats and -71.4 to 74.4% in dogs. Imprecision was calculated for both methods. Intra- and interassay coefficients of variation (CVs) of the ELFA in feline sera were 0.7 and 3.4% and of the EIA 7.6 and 15.7%, respectively. Intra- and interassay CVs of both ELFA and EIA in canine sera were dogs. Accuracy of the EIA and ELFA was scored by assessing if the measured T4 value would identify the expected T4 range (low, normal, or elevated) of patients, based on history, clinical presentation, other diagnostic means, and response to therapy. This was possible for 75 cats and 50 dogs. Both methods yielded acceptable results, but the EIA was more accurate compared to the ELFA (percentage of true-positives in cats and dogs: EIA: 97% and 100%; ELFA: 92% and 94%).

  4. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome.

    Science.gov (United States)

    Zhang, Kaihui; Liu, Shu; Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis.

  5. Clinical Application of an Innovative Multiplex-Fluorescent-Labeled STRs Assay for Prader-Willi Syndrome and Angelman Syndrome

    Science.gov (United States)

    Feng, Bing; Yang, Yali; Zhang, Haiyan; Dong, Rui; Liu, Yi; Gai, Zhongtao

    2016-01-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two clinically distinct neurodevelopmental disorders caused by absence of paternally or maternally expressed imprinted genes on chr15q11.2-q13.3. Three mechanisms are known to be involved in the pathogenesis: microdeletions, uniparental disomy (UPD) and imprinting defects. Both disorders are difficult to be definitely diagnosed at early age if no available molecular cytogenetic tests. In this study, we identified 5 AS patients with the maternal deletion and 26 PWS patients with paternal deletion on chr15q11-q13 by using an innovative multiplex-fluorescent-labeled short tandem repeats (STRs) assay based on linkage analysis, and validated by the methylation-specific PCR and array comparative genomic hybridization techniques. More interesting, one of these PWS patients was confirmed as maternal uniparental isodisomy by the STR linkage analysis. The phenotypic and genotypic characteristics of these individuals were also presented. Our results indicate that the new linkage analysis is much faster and easier for large-scale screening deletion and uniparental disomy, thus providing a valuable method for early diagnosis of PWS/AS patients, which is critical for genetic diagnosis, management and improvement of prognosis. PMID:26841067

  6. Development of a high-throughput fluorescence polarization assay for the discovery of EZH2-EED interaction inhibitors.

    Science.gov (United States)

    Zhu, Mao-Rong; Du, Dao-Hai; Hu, Jun-Chi; Li, Lian-Chun; Liu, Jing-Qiu; Ding, Hong; Kong, Xiang-Qian; Jiang, Hua-Liang; Chen, Kai-Xian; Luo, Cheng

    2017-08-31

    Aberrant activity of enhancer of zeste homolog 2 (EZH2) is associated with a wide range of human cancers. The interaction of EZH2 with embryonic ectoderm development (EED) is required for EZH2's catalytic activity. Inhibition of the EZH2-EED complex thus represents a novel strategy for interfering with the oncogenic potentials of EZH2 by targeting both its catalytic and non-catalytic functions. To date, there have been no reported high-throughput screening (HTS) assays for inhibitors acting at the EZH2-EED interface. In this study, we developed a fluorescence polarization (FP)-based HTS system for the discovery of EZH2-EED interaction inhibitors. The tracer peptide sequences, positions of fluorescein labeling, and a variety of physicochemical conditions were optimized. The high Z' factors (>0.9) at a variety of DMSO concentrations suggested that this system is robust and suitable for HTS. The minimal sequence requirement for the EZH2-EED interaction was determined by using this system. A pilot screening of an in-house compound library containing 1600 FDA-approved drugs identified four compounds (apomorphine hydrochloride, oxyphenbutazone, nifedipine and ergonovine maleate) as potential EZH2-EED interaction inhibitors.

  7. Application of green fluorescent protein-labeled assay for the study of subcellular localization of Newcastle disease virus matrix protein.

    Science.gov (United States)

    Duan, Zhiqiang; Li, Qunhui; He, Liang; Zhao, Guo; Chen, Jian; Hu, Shunlin; Liu, Xiufan

    2013-12-01

    Green fluorescent protein (GFP) used as a powerful marker of gene expression in vivo has so far been applied widely in studying the localizations and functions of protein in living cells. In this study, GFP-labeled assay was used to investigate the subcellular localization of matrix (M) protein of different virulence and genotype Newcastle disease virus (NDV) strains. The M protein of ten NDV strains fused with GFP (GFP-M) all showed nuclear-and-nucleolar localization throughout transfection, whereas that of the other two strains were observed in the nucleus and nucleolus early in transfection but in the cytoplasm late in transfection. In addition, mutations to the previously defined nuclear localization signal in the GFP-M fusion protein were studied as well. Single changes at positions 262 and 263 did not affect nuclear localization of M, while changing both of these arginine residues to asparagine caused re-localization of M mainly to the cytoplasm. The GFP-M was validated as a suitable system for studying the subcellular localization of M protein and could be used to assist us in further identifying the signal sequences responsible for the nucleolar localization and cytoplasmic localization of M protein. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The use of enzyme linked immunosorbent assay (ELISA) and direct fluorescent antibody (DFA) methods for diagnosis of Giardia intestinalis.

    Science.gov (United States)

    Al, Funda Doğruman; Kuştimur, Semra; Ozekinci, Tuncer; Balaban, Neriman; Ilhan, Mustafa Necmi

    2006-01-01

    The aim of this study was to evaluate the value of the direct fluorescent antibody (DFA) techniques reported to have high sensitivity and specificity and the enzyme linked immunosorbent assay (ELISA) test used to determine antigens in stool samples in the routine diagnosis of Giardia intestinalis. When 44 stool samples in which G. intestinalis cysts and/or trophozoites had been seen during native Lugol examination were investigated, positivity detected with the trichrome staining method, monoclonal ELISA method and monoclonal DFA method was found to be 37 (84.0%), 39 (88.6%) and 35 (79.5%) respectively. DFA detected Crytosporidium parvum cysts in addition to G. intestinalis in one sample. Twenty-seven (61.4%) of the samples were positive with all three methods. When compared with the DFA method, the ELISA method had a sensitivity of 88.6%, a specificity of 88.8%, a positive predictive value of 79.5% and a negative predictive value of 20.0% while the trichrome staining method had a sensitivity of 85.7%, a specificity of 77.8%, a positive predictive value of 81.1% and a negative predictive value of 22.2%. There was no statistically significant difference between the DFA and ELISA tests and between the DFA test and the trichrome staining method for diagnosing G. intestinalis (p > 0.05).

  9. Novel Alexa Fluor-488 Labeled Antagonist of the A2A Adenosine Receptor: Application to a Fluorescence Polarization-Based Receptor Binding Assay

    Science.gov (United States)

    Kecskés, Miklós; Kumar, T. Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A.

    2010-01-01

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A2A adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A2AAR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a Ki value of 111±16 nM in radioligand binding using [3H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A2AAR. In a cyclic AMP functional assay, MRS5346 was shown to be an A2AAR antagonist. MRS5346 did not show any effect on A1 and A3 ARs in binding or the A2BAR in a cyclic AMP assay at 10 μM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A2AAR binding. The FP signal was optimal with 20 nM MRS5346 and 150 μg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The Kdvalue of MRS5346 calculated from kinetic parameters was 16.5 ± 4.7 nM. In FP competition binding experiments using MRS5346 as a tracer, Ki values of known AR agonists and antagonists consistently agreed with Ki values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs. PMID:20438717

  10. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    Science.gov (United States)

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs. Published by Elsevier Inc.

  11. A Rapid and Sensitive Assay for the Detection of Benzylpenicillin (PenG in Milk.

    Directory of Open Access Journals (Sweden)

    Anna Pennacchio

    Full Text Available Antibiotics, such as benzyl-penicillin (PenG and cephalosporin, are the most common compounds used in animal therapy. Their massive and illegal use in animal therapy and prophylaxis inevitably causes the presence of traces in foods of animal origin (milk and meat, which creates several problems for human health. With the aim to prevent the negative impact of β-lactam and, in particular, PenG residues present in the milk on customer health, many countries have established maximum residue limits (MRLs. To cope with this problem here, we propose an effective alternative, compared to the analytical methods actually employed, to quantify the presence of penicillin G using the surface plasmon resonance (SPR method. In particular, the PenG molecule was conjugated to a protein carrier to immunize a rabbit and produce polyclonal antibodies (anti-PenG. The produced antibodies were used as molecular recognition elements for the design of a competitive immune-assay for the detection of PenG by SPR experiments. The detection limit of the developed assay was found to be 8.0 pM, a value much lower than the MRL of the EU regulation limit that is fixed at 12 nM. Thus, our results clearly show that this system could be successfully suitable for the accurate and easy determination of PenG.

  12. A Rapid and Sensitive Assay for the Detection of Benzylpenicillin (PenG) in Milk.

    Science.gov (United States)

    Pennacchio, Anna; Varriale, Antonio; Esposito, Maria Grazia; Scala, Andrea; Marzullo, Vincenzo Manuel; Staiano, Maria; D'Auria, Sabato

    2015-01-01

    Antibiotics, such as benzyl-penicillin (PenG) and cephalosporin, are the most common compounds used in animal therapy. Their massive and illegal use in animal therapy and prophylaxis inevitably causes the presence of traces in foods of animal origin (milk and meat), which creates several problems for human health. With the aim to prevent the negative impact of β-lactam and, in particular, PenG residues present in the milk on customer health, many countries have established maximum residue limits (MRLs). To cope with this problem here, we propose an effective alternative, compared to the analytical methods actually employed, to quantify the presence of penicillin G using the surface plasmon resonance (SPR) method. In particular, the PenG molecule was conjugated to a protein carrier to immunize a rabbit and produce polyclonal antibodies (anti-PenG). The produced antibodies were used as molecular recognition elements for the design of a competitive immune-assay for the detection of PenG by SPR experiments. The detection limit of the developed assay was found to be 8.0 pM, a value much lower than the MRL of the EU regulation limit that is fixed at 12 nM. Thus, our results clearly show that this system could be successfully suitable for the accurate and easy determination of PenG.

  13. Evaluation of a rapid and completely automated real-time reverse transcriptase PCR assay for diagnosis of enteroviral meningitis.

    Science.gov (United States)

    Nolte, Frederick S; Rogers, Beverly B; Tang, Yi-Wei; Oberste, M Steven; Robinson, Christine C; Kehl, K Sue; Rand, Kenneth A; Rotbart, Harley A; Romero, Jose R; Nyquist, Ann-Christine; Persing, David H

    2011-02-01

    Nucleic acid amplification tests (NAATs) for enterovirus RNA in cerebrospinal fluid (CSF) have emerged as the new gold standard for diagnosis of enteroviral meningitis, and their use can improve