WorldWideScience

Sample records for rapid flight maneuvers

  1. Multidisciplinary Investigation of Unsteady Aerodynamics and Flight Dynamics in Rapidly Maneuvering Micro Air Vehicles: Theory, Laboratory and Flight Experiments

    Science.gov (United States)

    2013-11-13

    2.22]. These experiments were simulated by the IMDV as well. Numerical time histories for drag and lift coefficients [2.20] were found to be in a...effective operation in cluttered environments and even indoors . Stealthy “low-and-slow” flight capability makes ornithopters ideal for discreet...flying, walking, crawling, swimming, hopping, jumping, climbing , etc.) and may fold-up or wrap-up their wings when not in use, like birds and bats

  2. Development Of Maneuvering Autopilot For Flight Tests

    Science.gov (United States)

    Menon, P. K. A.; Walker, R. A.

    1992-01-01

    Report describes recent efforts to develop automatic control system operating under supervision of pilot and making airplane follow prescribed trajectories during flight tests. Report represents additional progress on this project. Gives background information on technology of control of test-flight trajectories; presents mathematical models of airframe, engine and command-augmentation system; focuses on mathematical modeling of maneuvers; addresses design of autopilots for maneuvers; discusses numerical simulation and evaluation of results of simulation of eight maneuvers under control of simulated autopilot; and presents summary and discussion of future work.

  3. The aerodynamics of free-flight maneuvers in Drosophila.

    Science.gov (United States)

    Fry, Steven N; Sayaman, Rosalyn; Dickinson, Michael H

    2003-04-18

    Using three-dimensional infrared high-speed video, we captured the wing and body kinematics of free-flying fruit flies as they performed rapid flight maneuvers. We then "replayed" the wing kinematics on a dynamically scaled robotic model to measure the aerodynamic forces produced by the wings. The results show that a fly generates rapid turns with surprisingly subtle modifications in wing motion, which nonetheless generate sufficient torque for the fly to rotate its body through each turn. The magnitude and time course of the torque and body motion during rapid turns indicate that inertia, not friction, dominates the flight dynamics of insects.

  4. Vibration Characteristics of Squeeze Film Damper during Maneuver Flight

    Science.gov (United States)

    Wang, Siji; Liao, Mingfu; Li, Wei

    2015-05-01

    The rotor systems of an aero engine will endure additional centrifugal force and gyroscopic moment during maneuver flight. A maneuver fly mechanical simulator is designed and experimental investigations on dynamics of squeeze film damper (SFD) under the different additional centrifugal force and gyroscopic moment are carried out. The results show that the maneuver flight weaken effectiveness of the SFD, the additional centrifugal force and gyroscopic moment caused by maneuver flight will change film damping, film stiffness. And the influence of maneuver flight can be effective relieved by increasing the film clearance.

  5. Identification and standardization of maneuvers based upon operational flight data

    Directory of Open Access Journals (Sweden)

    Yongjun Wang

    2015-02-01

    Full Text Available To find a way of loads analysis from operational flight data for advanced aircraft, maneuver identification and standardization jobs are conducted in this paper. For thousands of sorties from one aircraft, after studying the flight attitude when performing actions, the start and end time of the maneuvers can be determined. According to those time points, various types of maneuvers during the flight are extracted in the form of multi-parameters time histories. By analyzing the numerical range and curve shape of those parameters, a characteristic data library is established to model all types of maneuvers. Based on this library, a computer procedure using pattern-recognition theory is programmed to conduct automatic maneuver identification with high accuracy. In that way, operational loads are classified according to maneuver type. For a group of identified maneuvers of the same type, after the processes of time normalization, trace shifting, as well as averaging and smoothing, the idealization standard time history of each maneuver type is established. Finally, the typical load statuses are determined successfully based on standard maneuvers. The proposed method of maneuver identification and standardization is able to derive operational loads effectively, and might be applied to monitoring loads in Individual Aircraft Tracking Program (IATP.

  6. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    Science.gov (United States)

    Brandon, Jay M.; Morelli, Eugene A.

    2012-01-01

    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  7. Real-Time, Maneuvering Flight Noise Prediction for Rotorcraft Flight Simulations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a plan for developing new technology to provide accurate real-time noise prediction for rotorcraft in steady and maneuvering flight. Main...

  8. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    Science.gov (United States)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight

  9. Development of a flight test maneuver autopilot for an F-15 aircraft

    Science.gov (United States)

    Alag, G. S.; Duke, E. L.

    1985-01-01

    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. This paper presents the development of control laws for a flight test maneuver autopilot for an F-15 aircraft. A linear quadratic regulator approach is used to develop the control laws within the context of flight test maneuver requirements by treating the maneuver as a finite time tracking problem with regulation of state rates. Results are presented to show the effectiveness of the controller in insuring acceptable aircraft performance during a maneuver.

  10. A Semi-Empirical Noise Modeling Method for Helicopter Maneuvering Flight Operations

    Science.gov (United States)

    Greenwood, Eric; Schmitz, Fredric; Sickenberger, Richard D.

    2012-01-01

    A new model for Blade-Vortex Interaction noise generation during maneuvering flight is developed in this paper. Acoustic and performance data from both flight and wind tunnels are used to derive a non-dimensional and analytical performance/acoustic model that describes BVI noise in steady flight. The model is extended to transient maneuvering flight (pure pitch and roll transients) by using quasisteady assumptions throughout the prescribed maneuvers. Ground noise measurements, taken during maneuvering flight of a Bell 206B helicopter, show that many of the noise radiation details are captured. The result is a computationally efficient Blade-Vortex Interaction noise model with sufficient accuracy to account for transient maneuvering flight. The code can be run in real time to predict transient maneuver noise and is suitable for use in an acoustic mission-planning tool.

  11. How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization.

    Directory of Open Access Journals (Sweden)

    Daniel Kress

    Full Text Available Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones.

  12. How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization

    Science.gov (United States)

    Kress, Daniel; van Bokhorst, Evelien; Lentink, David

    2015-01-01

    Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow) that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones. PMID:26107413

  13. How Lovebirds Maneuver Rapidly Using Super-Fast Head Saccades and Image Feature Stabilization.

    Science.gov (United States)

    Kress, Daniel; van Bokhorst, Evelien; Lentink, David

    2015-01-01

    Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow) that is primarily induced by motion of their head. It is unclear what gaze behaviors birds perform to support visuomotor control during rapid maneuvering flight in which they continuously switch between flight modes. To analyze this, we measured the gaze behavior of rapidly turning lovebirds in a goal-directed task: take-off and fly away from a perch, turn on a dime, and fly back and land on the same perch. High-speed flight recordings revealed that rapidly turning lovebirds perform a remarkable stereotypical gaze behavior with peak saccadic head turns up to 2700 degrees per second, as fast as insects, enabled by fast neck muscles. In between saccades, gaze orientation is held constant. By comparing saccade and wingbeat phase, we find that these super-fast saccades are coordinated with the downstroke when the lateral visual field is occluded by the wings. Lovebirds thus maximize visual perception by overlying behaviors that impair vision, which helps coordinate maneuvers. Before the turn, lovebirds keep a high contrast edge in their visual midline. Similarly, before landing, the lovebirds stabilize the center of the perch in their visual midline. The perch on which the birds land swings, like a branch in the wind, and we find that retinal size of the perch is the most parsimonious visual cue to initiate landing. Our observations show that rapidly maneuvering birds use precisely timed stereotypic gaze behaviors consisting of rapid head turns and frontal feature stabilization, which facilitates optical flow based flight control. Similar gaze behaviors have been reported for visually navigating humans. This finding can inspire more effective vision-based autopilots for drones.

  14. Helicopter Acoustic Flight Test with Altitude Variation and Maneuvers

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Sim, Ben; Stephenson, James; Smith, Charles D.

    2016-01-01

    A cooperative flight test campaign between NASA and the U.S. Army was performed from September 2014 to February 2015. The purposes of the testing were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. This test was performed at three test sites (0, 4000, and 7000 feet above mean sea level) with two aircraft (AS350 SD1 and EH-60L) tested at each site. This report provides an overview of the test, documents the data acquired and describes the formats of the stored data.

  15. A general method for closed-loop inverse simulation of helicopter maneuver flight

    Directory of Open Access Journals (Sweden)

    Wei WU

    2017-12-01

    Full Text Available Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provide mathematical descriptions of different kinds of maneuvers. A comprehensive control solver based on the optimal linear quadratic regulator theory is developed to calculate the pilot controls of different maneuvers. The coupling problem between pilot controls and flight control system outputs is well solved by taking the flight control system model into the control solver. Inverse simulation of three different kinds of maneuvers with different agility requirements defined in the ADS-33E-PRF is implemented based on the developed method for a UH-60 helicopter. The results show that the method developed in this paper can solve the closed-loop inverse simulation problem of helicopter maneuver flight with high reliability as well as efficiency. Keywords: Closed-loop, Flying quality, Helicopters, Inverse simulation, Maneuver flight

  16. Development of control laws for a flight test maneuver autopilot for an F-15 aircraft

    Science.gov (United States)

    Alag, G. S.; Duke, E. L.

    1985-01-01

    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. The development of control laws within the context of flight test maneuver requirements is discussed. The control laws are developed using eigensystem assignment and command generator tracking. The eigenvalues and eigenvectors are chosen to provide the necessary handling qualities, while the command generator tracking enables the tracking of a specified state during the maneuver. The effectiveness of the control laws is illustrated by their application to an F-15 aircraft to ensure acceptable aircraft performance during a maneuver.

  17. Application of hybrid methodology to rotors in steady and maneuvering flight

    Science.gov (United States)

    Rajmohan, Nischint

    Helicopters are versatile flying machines that have capabilities that are unparalleled by fixed wing aircraft, such as operating in hover, performing vertical takeoff and landing on unprepared sites. This makes their use especially desirable in military and search-and-rescue operations. However, modern helicopters still suffer from high levels of noise and vibration caused by the physical phenomena occurring in the vicinity of the rotor blades. Therefore, improvement in rotorcraft design to reduce the noise and vibration levels requires understanding of the underlying physical phenomena, and accurate prediction capabilities of the resulting rotorcraft aeromechanics. The goal of this research is to study the aeromechanics of rotors in steady and maneuvering flight using hybrid Computational Fluid Dynamics (CFD) methodology. The hybrid CFD methodology uses the Navier-Stokes equations to solve the flow near the blade surface but the effect of the far wake is computed through the wake model. The hybrid CFD methodology is computationally efficient and its wake modeling approach is nondissipative making it an attractive tool to study rotorcraft aeromechanics. Several enhancements were made to the CFD methodology and it was coupled to a Computational Structural Dynamics (CSD) methodology to perform a trimmed aeroelastic analysis of a rotor in forward flight. The coupling analyses, both loose and tight were used to identify the key physical phenomena that affect rotors in different steady flight regimes. The modeling enhancements improved the airloads predictions for a variety of flight conditions. It was found that the tightly coupled method did not impact the loads significantly for steady flight conditions compared to the loosely coupled method. The coupling methodology was extended to maneuvering flight analysis by enhancing the computational and structural models to handle non-periodic flight conditions and vehicle motions in time accurate mode. The flight test

  18. Perception model analysis of flight simulator motion for a decrab maneuver

    NARCIS (Netherlands)

    Groen, E.L.; Smaïli, M.H.; Hosman, R.J.A.W.

    2007-01-01

    In this flight simulator study, eleven pilots rated their motion perception during a series of decrab maneuvers of a twin-engine passenger aircraft. Simulator yaw, sway, and roll motion were varied independently to examine their relative contribution to the pilots’ judgments. In one set of

  19. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    Science.gov (United States)

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla

    2017-09-01

    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  20. A manned maneuvering unit proximity operations planning and flight guidance display and control system

    Science.gov (United States)

    Gershzohn, Gary R.; Sirko, Robert J.; Zimmerman, K.; Jones, A. D.

    1990-01-01

    This task concerns the design, development, testing, and evaluation of a new proximity operations planning and flight guidance display and control system for manned space operations. A forecast, derivative manned maneuvering unit (MMU) was identified as a candidate for the application of a color, highway-in-the-sky display format for the presentation of flight guidance information. A silicon graphics 4D/20-based simulation is being developed to design and test display formats and operations concepts. The simulation includes the following: (1) real-time color graphics generation to provide realistic, dynamic flight guidance displays and control characteristics; (2) real-time graphics generation of spacecraft trajectories; (3) MMU flight dynamics and control characteristics; (4) control algorithms for rotational and translational hand controllers; (5) orbital mechanics effects for rendezvous and chase spacecraft; (6) inclusion of appropriate navigation aids; and (7) measurement of subject performance. The flight planning system under development provides for: (1) selection of appropriate operational modes, including minimum cost, optimum cost, minimum time, and specified ETA; (2) automatic calculation of rendezvous trajectories, en route times, and fuel requirements; (3) and provisions for manual override. Man/machine function allocations in planning and en route flight segments are being evaluated. Planning and en route data are presented on one screen composed of two windows: (1) a map display presenting a view perpendicular to the orbital plane, depicting flight planning trajectory and time data attitude display presenting attitude and course data for use en route; and (2) an attitude display presenting local vertical-local horizontal attitude data superimposed on a highway-in-the-sky or flight channel representation of the flight planned course. Both display formats are presented while the MMU is en route. In addition to these displays, several original display

  1. Piloted Simulator Evaluation of Maneuvering Envelope Information for Flight Crew Awareness

    Science.gov (United States)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John; Shish, Kimberlee; Martin, Lynne

    2015-01-01

    The implementation and evaluation of an efficient method for estimating safe aircraft maneuvering envelopes are discussed. A Bayesian approach is used to produce a deterministic algorithm for estimating aerodynamic system parameters from existing noisy sensor measurements, which are then used to estimate the trim envelope through efficient high- fidelity model-based computations of attainable equilibrium sets. The safe maneuverability limitations are extended beyond the trim envelope through a robust reachability analysis derived from an optimal control formulation. The trim and maneuvering envelope limits are then conveyed to pilots through three axes on the primary flight display. To evaluate the new display features, commercial airline crews flew multiple challenging approach and landing scenarios in the full motion Advanced Concepts Flight Simulator at NASA Ames Research Center, as part of a larger research initiative to investigate the impact on the energy state awareness of the crew. Results show that the additional display features have the potential to significantly improve situational awareness of the flight crew.

  2. A new theory for rapid calculation of the ground pattern of the incident sound intensity produced by a maneuvering jet airplane

    Science.gov (United States)

    Barger, R. L.

    1980-01-01

    An approximate method for computing the jet noise pattern of a maneuvering airplane is described. The method permits one to relate the noise pattern individually to the influences of airplane speed and acceleration, jet velocity and acceleration, and the flight path curvature. The analytic formulation determines the ground pattern directly without interpolation and runs rapidly on a minicomputer. Calculated examples including a climbing turn and a simple climb pattern with a gradual throttling back are presented.

  3. Pressure applied by the healthcare staff on a cricoids cartilage simulator during Sellick's maneuver in rapid sequence intubation

    NARCIS (Netherlands)

    J.A. Calvache (Jose Andrés); L.C.B. Sandoval (Luz); W.A. Vargas (William Andres)

    2013-01-01

    textabstractBackground: Sellick's maneuver or cricoid pressure is a strategy used to prevent bronchoaspiration during the rapid intubation sequence. Several studies have described that the force required for an adequate maneuver is of 2.5-3.5 kg. The purpose of this paper was to determine the force

  4. Techniques to improve maneuver stability characteristics of a nonlinear wide-body transport airplane in cruise flight

    Science.gov (United States)

    Grantham, William D.; Person, Lee H., Jr.; Bailey, Melvin L.; Tingas, Stephen A.

    1994-01-01

    The maneuver control stability characteristics of an aircraft are a flying qualities parameter of critical importance, to ensure structural protection as well as adequate predictability to the pilot. Currently, however, maneuver stability characteristics are not uniquely addressed in the Federal Aviation Regulations (FAR) Part 25, for transport aircraft. In past transport category certification programs, the Federal Aviation Administration (FAA) has used a combination of requirements (longitudinal control, vibration and buffeting, high-speed characteristics, and out-of-trim characteristics) to ensure safe and controllable maneuver stability characteristics over a range of flight conditions and airplane configurations. Controversies exist regarding each of these regulations, however, and considerable expenditures in terms of design studies and testing time have resulted from the requirements. It is also recognized that additional engineering guidance is needed for identifying acceptable nonlinear maneuver stability characteristics, particularly as they relate to relaxed stability, highly augmented transport configurations. The current trend in large aircraft design is toward relaxed, or even negative, static margins for improved fuel efficiency. The advanced flight control systems developed for these aircraft, in many instances, have rendered current aforementioned maneuver stability criteria either too stringent or of little practical use. Current design requirements do not account for these advanced designs. The objective was to evaluate a broad spectrum of linear and nonlinear longitudinal stability characteristics to generate data for defining satisfactory and unacceptable maneuver characteristics, as defined by pilot opinion. Primary emphasis was placed on two techniques of varying column force per normal acceleration. This study was a joint venture with four pilots participating; one from NASA, one from the FAA, and two from industry.

  5. Cassini Orbit Trim Maneuvers at Saturn - Overview of Attitude Control Flight Operations

    Science.gov (United States)

    Burk, Thomas A.

    2011-01-01

    The Cassini spacecraft has been in orbit around Saturn since July 1, 2004. To remain on the planned trajectory which maximizes science data return, Cassini must perform orbit trim maneuvers using either its main engine or its reaction control system thrusters. Over 200 maneuvers have been executed on the spacecraft since arrival at Saturn. To improve performance and maintain spacecraft health, changes have been made in maneuver design command placement, in accelerometer scale factor, and in the pre-aim vector used to align the engine gimbal actuator prior to main engine burn ignition. These and other changes have improved maneuver performance execution errors significantly since 2004. A strategy has been developed to decide whether a main engine maneuver should be performed, or whether the maneuver can be executed using the reaction control system.

  6. System identification and sensorimotor determinants of flight maneuvers in an insect

    Science.gov (United States)

    Sponberg, Simon; Hall, Robert; Roth, Eatai

    Locomotor maneuvers are inherently closed-loop processes. They are generally characterized by the integration of multiple sensory inputs and adaptation or learning over time. To probe sensorimotor processing we take a system identification approach treating the underlying physiological systems as dynamic processes and altering the feedback topology in experiment and analysis. As a model system, we use agile hawk moths (Manduca sexta), which feed from real and robotic flowers while hovering in mid air. Moths rely on vision and mechanosensation to track floral targets and can do so at exceptionally low luminance levels despite hovering being a mechanically unstable behavior that requires neural feedback to stabilize. By altering the sensory environment and placing mechanical and visual signals in conflict we show a surprisingly simple linear summation of visual and mechanosensation produces a generative prediction of behavior to novel stimuli. Tracking performance is also limited more by the mechanics of flight than the magnitude of the sensory cue. A feedback systems approach to locomotor control results in new insights into how behavior emerges from the interaction of nonlinear physiological systems.

  7. Development of a Smooth Trajectory Maneuver Method to Accommodate the Ares I Flight Control Constraints

    Science.gov (United States)

    Pinson, Robin M.; Schmitt, Terri L.; Hanson, John M.

    2008-01-01

    Six degree-of-freedom (DOF) launch vehicle trajectories are designed to follow an optimized 3-DOF reference trajectory. A vehicle has a finite amount of control power that it can allocate to performing maneuvers. Therefore, the 3-DOF trajectory must be designed to refrain from using 100% of the allowable control capability to perform maneuvers, saving control power for handling off-nominal conditions, wind gusts and other perturbations. During the Ares I trajectory analysis, two maneuvers were found to be hard for the control system to implement; a roll maneuver prior to the gravity turn and an angle of attack maneuver immediately after the J-2X engine start-up. It was decided to develop an approach for creating smooth maneuvers in the optimized reference trajectories that accounts for the thrust available from the engines. A feature of this method is that no additional angular velocity in the direction of the maneuver has been added to the vehicle after the maneuver completion. This paper discusses the equations behind these new maneuvers and their implementation into the Ares I trajectory design cycle. Also discussed is a possible extension to adjusting closed-loop guidance.

  8. A comparison of landing maneuver piloting technique based on measurements made in an airline training simulator and in actual flight

    Science.gov (United States)

    Heffley, R. K.; Schulman, T. M.

    1981-01-01

    An emphasis is placed on developing a mathematical model in order to identify useful metrics, quantify piloting technique, and define simulator fidelity. On the basis of DC-10 flight measurements recorded for 32 pilots, 13 flight-trained and the remainder simulator trained, a revised model of the landing flare is hypothesized which accounts for reduction of sink rate and perference for touchdown point along the runway. The flare maneuver and touchdown point adjustment can be described by a pitch attitude command pilot guidance law consisting of altitude and vertical velocity feedbacks. In flight pilots exhibit a significant vertical velocity feedback which is essential for well controlled sink rate reduction at the desired level of response (bandwidth). In the simulator, however, the vertical velocity feedback appears ineffectual and leads to substantially inferior landing performance.

  9. Effects of Self-Instructional Methods and Above Real Time Training (ARTT) for Maneuvering Tasks on a Flight Simulator

    Science.gov (United States)

    Ali, Syed Firasat; Khan, Javed Khan; Rossi, Marcia J.; Crane, Peter; Heath, Bruce E.; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    Personal computer based flight simulators are expanding opportunities for providing low-cost pilot training. One advantage of these devices is the opportunity to incorporate instructional features into training scenarios that might not be cost effective with earlier systems. Research was conducted to evaluate the utility of different instructional features using a coordinated level turn as an aircraft maneuvering task. In study I, a comparison was made between automated computer grades of performance with certified flight instructors grades. Every one of the six student volunteers conducted a flight with level turns at two different bank angles. The automated computer grades were based on prescribed tolerances on bank angle, airspeed and altitude. Two certified flight instructors independently examined the video tapes of heads up and instrument displays of the flights and graded them. The comparison of automated grades with the instructors grades was based on correlations between them. In study II, a 2x2 between subjects factorial design was used to devise and conduct an experiment. Comparison was made between real time training and above real time training and between feedback and no feedback in training. The performance measure to monitor progress in training was based on deviations in bank angle and altitude. The performance measure was developed after completion of the experiment including the training and test flights. It was not envisaged before the experiment. The experiment did not include self- instructions as it was originally planned, although feedback by experimenter to the trainee was included in the study.

  10. Maneuver Acoustic Flight Test of the Bell 430 Helicopter Data Report

    Science.gov (United States)

    Watts, Michael E.; Greenwood, Eric; Smith, Charles D.; Snider, Royce; Conner, David A.

    2014-01-01

    A cooperative ight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 test points over 10 test days and compiled an extensive database of dynamic maneuver measurements. Three microphone arrays with up to 31 microphon. es in each were used to acquire acoustic data. Aircraft data included Differential Global Positioning System, aircraft state and rotor state information. This paper provides an overview of the test and documents the data acquired.

  11. 14 CFR 25.331 - Symmetric maneuvering conditions.

    Science.gov (United States)

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Flight Maneuver and Gust Conditions § 25.331 Symmetric maneuvering conditions. (a) Procedure. For the analysis of the maneuvering...

  12. The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis. [maneuver control and gust alleviators

    Science.gov (United States)

    Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.

    1978-01-01

    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.

  13. I-FORCAST: Rapid Flight Planning Tool

    Science.gov (United States)

    Oaida, Bogdan; Khan, Mohammed; Mercury, Michael B.

    2012-01-01

    I-FORCAST (Instrument - Field of Regard Coverage Analysis and Simulation Tool) is a flight planning tool specifically designed for quickly verifying the feasibility and estimating the cost of airborne remote sensing campaigns (see figure). Flights are simulated by being broken into three predefined routing algorithms as necessary: mapping in a snaking pattern, mapping the area around a point target (like a volcano) with a star pattern, and mapping the area between a list of points. The tool has been used to plan missions for radar, lidar, and in-situ atmospheric measuring instruments for a variety of aircraft. It has also been used for global and regional scale campaigns and automatically includes landings when refueling is required. The software has been compared to the flight times of known commercial aircraft route travel times, as well as a UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) campaign, and was within 15% of the actual flight time. Most of the discrepancy is due to non-optimal flight paths taken by actual aircraft to avoid restricted airspace and used to follow landing and take-off corridors.

  14. Additive Manufacturing: From Rapid Prototyping to Flight

    Science.gov (United States)

    Prater, Tracie

    2015-01-01

    Additive manufacturing (AM) offers tremendous promise for the rocket propulsion community. Foundational work must be performed to ensure the safe performance of AM parts. Government, industry, and academia must collaborate in the characterization, design, modeling, and process control to accelerate the certification of AM parts for human-rated flight.

  15. Modular Infrastructure for Rapid Flight Software Development

    Science.gov (United States)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  16. FORECAST OF FLIGHT SEVERITY SITUATION WITH AN ENGINE FAILURE ON THE ASCENDING MANEUVERS BASED ON COMPUTATIONAL-EXPERIMENTAL DATA AND EXPERT JUDGMENT

    Directory of Open Access Journals (Sweden)

    D. V. Tikhonov

    2015-01-01

    Full Text Available The article is devoted to an assessment of danger degree of a flight situation with the engine failure on the ascending maneuvers using natural- model approach and expert evaluation in the absence of the possibility of using a pilotage stand.

  17. Proportional Plus Integral Control of Aircraft for Automated Maneuvering Formation Flight

    Science.gov (United States)

    1991-12-01

    375.5 374-- --- - ------- - - 373.5 0 10 20 30 40 50 60 70 80 90 100 tin. (seconds) 50001 4 0 0 0...4 0-- --- 6 0--- --- - 0--- -1 0-- --- - ISO ~ ~ ~ tm (se---- ----------------- --d ---: ---)--- Figur A-- Time -- Repos and---- Flight

  18. How lovebirds maneuver rapidly using super-fast head saccades and image feature stabilization

    NARCIS (Netherlands)

    Kress, Daniel; Bokhorst, Van Evelien; Lentink, David

    2015-01-01

    Diurnal flying animals such as birds depend primarily on vision to coordinate their flight path during goal-directed flight tasks. To extract the spatial structure of the surrounding environment, birds are thought to use retinal image motion (optical flow) that is primarily induced by motion of

  19. Development and Assessment of a Novel Training Package for Basic Maneuvering Tasks on a Flight Simulator Using Self Instruction Methods and Above Real Time Training (ARTT)

    Science.gov (United States)

    Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Heath, Bruce e.; Crane, Peter; Ward, Marcus; Crier, Tomyka; Knighten, Tremaine; Culpepper, Christi

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot performance similar to that of a CFI. The 'intelligent' flight simulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the simulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reports on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight simulator and the robustness and accuracy of calculated performance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed

  20. Nonlinear Maneuver Autopilot

    Science.gov (United States)

    Menon, P. K. A.; Badgett, M. E.; Walker, R. A.

    1992-01-01

    Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.

  1. The Wallops Flight Facility Rapid Response Range Operations Initiative

    Science.gov (United States)

    Underwood, Bruce E.; Kremer, Steven E.

    2004-01-01

    becomes how can a launch site provide acceptably responsive mission services to a particular customer without dedicating extensive resources and while continuing to serve other projects? NASA's Wallops Flight Facility (WFF) is pursuing solutions to exactly this challenge. NASA, in partnership with the Virginia Commercial Space Flight Authority, has initiated the Rapid Response Range Operations Initiative (R3Ops). R3Ops is a multi-phased effort to incrementally establish and demonstrate increasingly responsive launch operations, with an ultimate goal of providing ELV-class services in a maximum of 7-10 days from initial notification routinely, and shorter schedules possible with committed resources. This target will be pursued within the reality of simultaneous concurrent programs, and ideally, largely independent of specialized flight system configurations. WFF has recently completed Phase 1 of R3Ops, an in-depth collection (through extensive expert interviews) and software modeling of individual steps by various range disciplines. This modeling is now being used to identify existing inefficiencies in current procedures, to identify bottlenecks, and show interdependencies. Existing practices are being tracked to provide a baseline to benchmark against as new procedures are implemented. This paper will describe in detail the philosophies behind WFF's R3Ops, the data collected and modeled in Phase 1, and strategies for meeting responsive launch requirements in a multi-user range environment planned for subsequent phases of this initiative.

  2. Short-term weightlessness produced by parabolic flight maneuvers altered gene expression patterns in human endothelial cells

    NARCIS (Netherlands)

    Grosse, J.; Wehland, M.; Pietsch, J.; Ma, X.; Ulbrich, C.; Schulz, H.; Saar, K.; Hübner, N.; Hauslage, J.; Hemmersbach, R.; Braun, M.; van Loon, J.; Vagt, N.; Infanger, M.; Eilles, C.; Egli, M.; Richter, P.; Baltz, T.; Einspanier, R.; Sharbati, S.; Grimm, D.

    2012-01-01

    This study focused on the effects of short-term microgravity (22 s) on the gene expression and morphology of endothelial cells (ECs) and evaluated gravisensitive signaling elements. ECs were investigated during four German Space Agency (Deutsches Zentrum für Luft- und Raumfahrt) parabolic flight

  3. Synthetic Imaging Maneuver Optimization (SIMO) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences (AFS), in collaboration with the MIT Space Systems Laboratory (MIT-SSL), proposed the Synthetic Imaging Maneuver Optimization (SIMO) program...

  4. Maneuvers during legged locomotion

    Science.gov (United States)

    Jindrich, Devin L.; Qiao, Mu

    2009-06-01

    Maneuverability is essential for locomotion. For animals in the environment, maneuverability is directly related to survival. For humans, maneuvers such as turning are associated with increased risk for injury, either directly through tissue loading or indirectly through destabilization. Consequently, understanding the mechanics and motor control of maneuverability is a critical part of locomotion research. We briefly review the literature on maneuvering during locomotion with a focus on turning in bipeds. Walking turns can use one of several different strategies. Anticipation can be important to adjust kinematics and dynamics for smooth and stable maneuvers. During running, turns may be substantially constrained by the requirement for body orientation to match movement direction at the end of a turn. A simple mathematical model based on the requirement for rotation to match direction can describe leg forces used by bipeds (humans and ostriches). During running turns, both humans and ostriches control body rotation by generating fore-aft forces. However, whereas humans must generate large braking forces to prevent body over-rotation, ostriches do not. For ostriches, generating the lateral forces necessary to change movement direction results in appropriate body rotation. Although ostriches required smaller braking forces due in part to increased rotational inertia relative to body mass, other movement parameters also played a role. Turning performance resulted from the coordinated behavior of an integrated biomechanical system. Results from preliminary experiments on horizontal-plane stabilization support the hypothesis that controlling body rotation is an important aspect of stable maneuvers. In humans, body orientation relative to movement direction is rapidly stabilized during running turns within the minimum of two steps theoretically required to complete analogous maneuvers. During straight running and cutting turns, humans exhibit spring-mass behavior in the

  5. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Nuclear Reactor Lab.)

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.

  6. Aircraft agility maneuvers

    Science.gov (United States)

    Cliff, Eugene M.; Thompson, Brian G.

    1992-01-01

    A new dynamic model for aircraft motions is presented. This model can be viewed as intermediate between a point-mass model, in which the body attitude angles are control-like, and a rigid-body model, in which the body-attitude angles evolve according to Newton's Laws. Specifically, consideration is given to the case of symmetric flight, and a model is constructed in which the body roll-rate and the body pitch-rate are the controls. In terms of this body-rate model a minimum-time heading change maneuver is formulated. When the bounds on the body-rates are large the results are similar to the point-mass model in that the model can very quickly change the applied forces and produce an acceleration to turn the vehicle. With finite bounds on these rates, the forces change in a smooth way. This leads to a measurable effect of agility.

  7. Global Aerodynamic Modeling for Stall/Upset Recovery Training Using Efficient Piloted Flight Test Techniques

    Science.gov (United States)

    Morelli, Eugene A.; Cunningham, Kevin; Hill, Melissa A.

    2013-01-01

    Flight test and modeling techniques were developed for efficiently identifying global aerodynamic models that can be used to accurately simulate stall, upset, and recovery on large transport airplanes. The techniques were developed and validated in a high-fidelity fixed-base flight simulator using a wind-tunnel aerodynamic database, realistic sensor characteristics, and a realistic flight deck representative of a large transport aircraft. Results demonstrated that aerodynamic models for stall, upset, and recovery can be identified rapidly and accurately using relatively simple piloted flight test maneuvers. Stall maneuver predictions and comparisons of identified aerodynamic models with data from the underlying simulation aerodynamic database were used to validate the techniques.

  8. Maneuver Automation Software

    Science.gov (United States)

    Uffelman, Hal; Goodson, Troy; Pellegrin, Michael; Stavert, Lynn; Burk, Thomas; Beach, David; Signorelli, Joel; Jones, Jeremy; Hahn, Yungsun; Attiyah, Ahlam; hide

    2009-01-01

    The Maneuver Automation Software (MAS) automates the process of generating commands for maneuvers to keep the spacecraft of the Cassini-Huygens mission on a predetermined prime mission trajectory. Before MAS became available, a team of approximately 10 members had to work about two weeks to design, test, and implement each maneuver in a process that involved running many maneuver-related application programs and then serially handing off data products to other parts of the team. MAS enables a three-member team to design, test, and implement a maneuver in about one-half hour after Navigation has process-tracking data. MAS accepts more than 60 parameters and 22 files as input directly from users. MAS consists of Practical Extraction and Reporting Language (PERL) scripts that link, sequence, and execute the maneuver- related application programs: "Pushing a single button" on a graphical user interface causes MAS to run navigation programs that design a maneuver; programs that create sequences of commands to execute the maneuver on the spacecraft; and a program that generates predictions about maneuver performance and generates reports and other files that enable users to quickly review and verify the maneuver design. MAS can also generate presentation materials, initiate electronic command request forms, and archive all data products for future reference.

  9. Development of an intelligent neuro-fuzzy maneuver identification system for autonomous aircraft

    Science.gov (United States)

    Krishnamurthy, Karthik

    2000-10-01

    This dissertation reports an investigation of the design of intelligent systems for the high-level control of autonomous aircraft. In a departure from recent work in this field, an attempt has been made to synthesize a high-level control architecture that emulates a human pilot's reasoning capabilities. The system architecture uses pilot-type classifications of aircraft modes (the various maneuvers that pilots are trained to execute) within all decision-making and reasoning processes. A flight control system structured in terms of these modes offers scope for efficient combination of concepts from artificial intelligence, control theory and aviation practice. A critical component of this intelligent flight controller is an automated mode inference system. This innovative system extracts high-level knowledge of the current maneuver (or segment of the overall mission) from sensed measurements of dynamic state variables. Using a blend of soft computing approaches, this inference engine consistently identifies the correct maneuver being flown, even in the presence of moderate sensor noise and data ambiguities. In the process of creating this inference engine, a novel scheme to generate training data sets for neural networks has been developed. This data generation scheme permits complete coverage of the aircraft's capability envelope; this coverage is achieved without recourse to the voluminous flight data (actual or simulated) normally required to train neural networks. The data generation scheme thus significantly reduces developmental effort. Apart from this innovation, pilot-like techniques to cope with the phenomenon of chatter (where identification rapidly switches back-and-forth between modes) have been developed and implemented within the inference system. This dissertation also discusses the development of logic to interpret and implement commands from remote operators, using high-level knowledge of the current mission segment. This knowledge is used to

  10. Nonlinear maneuver autopilot for the F-15 aircraft

    Science.gov (United States)

    Menon, P. K. A.; Badgett, M. E.; Walker, R. A.

    1989-01-01

    A methodology is described for the development of flight test trajectory control laws based on singular perturbation methodology and nonlinear dynamic modeling. The control design methodology is applied to a detailed nonlinear six degree-of-freedom simulation of the F-15 and results for a level accelerations, pushover/pullup maneuver, zoom and pushover maneuver, excess thrust windup turn, constant thrust windup turn, and a constant dynamic pressure/constant load factor trajectory are presented.

  11. Aerodynamic and Propulsion Assisted Maneuvering for Waverider Vehicles

    Science.gov (United States)

    Jolley, Patrick

    2006-10-01

    Waveriders have long been sought after as the ideal space vehicle for space based aero assist maneuvers. Theoretically, waveriders can significantly increase gravity assist missions by performing an aero assist maneuver. These maneuvers are possible due to their high lift over drag ratio. However, implementing the theory is more difficult when considering the actual flight aerodynamics and heating problems that will be encountered. An aerodynamic database was generated using hypersonic incidence angle analysis tools with a viscous skin-drag correction. A performance analysis is performed and analyzes stagnation point heating, handling qualities, and controllability, etc. Finally, a simulation is being built to analyze various trajectories and possible mission scenarios.

  12. Rapid Detection of OXA-48-Producing Enterobacteriaceae by Matrix-Assisted Laser Desorption Ionization−Time of Flight Mass Spectrometry

    Science.gov (United States)

    Oviaño, Marina; Barba, Maria José; Fernández, Begoña; Ortega, Adriana; Aracil, Belén; Oteo, Jesús; Campos, José

    2015-01-01

    A rapid and sensitive (100%) matrix-assisted laser desorption ionization−time of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect OXA-48-type producers, using 161 previously characterized clinical isolates. Ertapenem was monitored to detect carbapenem resistance, and temocillin was included in the assay as a marker for OXA-48-producers. Structural analysis of temocillin is described. Data are obtained within 60 min. PMID:26677247

  13. A fixed H-infinity controller for a supermaneuverable fighter performing the Herbst maneuver

    Science.gov (United States)

    Chiang, R. Y.; Safonov, M. G.; Haiges, K.; Madden, K.; Tekawy, J.

    1993-01-01

    This paper presents an H-infinity flight control system design case study for a supermaneuverable fighter flying the Herbst maneuver. The Herbst maneuver presents an especially challenging flight control problem because of its large ranges of airspeed, angle of attack and angular rates. A fixed H-infinity controller has been developed via the mixed-sensitivity problem formulation for 20 linearized models representing the maneuver. Both linear and nonlinear full model evaluations indicate that this single H-infinity controller together with a fixed LQR inner loop feedback have achieved 'robust stability' and 'robust performance' for the entire maneuver without gain scheduling.

  14. Rapid Development of Guidance, Navigation, and Control Core Flight System Software Applications Using Simulink Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We will demonstrate the usefulness of SIL for GSFC missions by attempting to compile the SIL source code with an autocoded sample GNC application flight software....

  15. Strategic maneuvering with dissociation

    NARCIS (Netherlands)

    van Rees, M.A.

    2006-01-01

    This paper explores the possibilities for strategic maneuvering of the argumentative technique that Perelman and Olbrechts-Tyteca (The New Rhetoric. A Treatise on Argumentation, University of Notre Dame Press, Notre Dame/London, 1969) called dissociation. After an exploration of the general

  16. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  17. Review of Tracktable for Satellite Maneuver Detection

    Energy Technology Data Exchange (ETDEWEB)

    Acquesta, Erin C.S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Valicka, Christopher G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hinga, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ehn, Carollan Beret [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    As a tool developed to translate geospatial data into geometrical descriptors, Tracktable offers a highly efficient means to detect anomalous flight and maritime behavior. Following the success of using geometrical descriptors for detecting anomalous trajectory behavior, the question of whether Tracktable could be used to detect satellite maneuvers arose. In answering this question, this re- port will introduce a brief description of how Tracktable has been used in the past, along with an introduction to the fundamental properties of astrodynamics for satellite trajectories. This will then allow us to compare the two problem spaces, addressing how easily the methods used by Tracktable will translate to orbital mechanics. Based on these results, we will then be able to out- line the current limitations as well as possible path forward for using Tracktable to detect satellite maneuvers.

  18. Biomechanics of bird flight.

    Science.gov (United States)

    Tobalske, Bret W

    2007-09-01

    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context.

  19. Reducing Pointing Errors During Cassini Reaction Control System Orbit Trim Maneuvers

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    The effect of altering a gain parameter in the Cassini reaction control system (RCS) delta-V controller on the maneuver execution errors during orbit trim maneuvers (OTMs) is explored. Cassini consists of two reaction control thruster branches (A & B) each with eight thrusters. Currently, the B-branch is operational while the A-branch serves as a back-up. The four Z-thrusters control the X and Y-axes, while the four Y-thrusters control the Z-axis. During an OTM, the Z-thrusters fire to maintain the X and Y-axes pointing within an attitude control dead-zone (-10 to 10 milliradians). The errors do not remain at zero due to pointing error sources such as spacecraft center of mass offset from the geometric center of the Z-facing thrusters, and variability in the thruster forces due to the thruster hardware differences. The delta-V reaction control system (RCS) controller ensures that the attitude error remains within this dead-zone. Gain parameters within the RCS delta-V controller affect the maneuver execution errors. Different parameter values are used to explore effect on these errors. It is found that pointing error decreases and magnitude error increases rapidly for gain parameters 10 times greater than the current parameter values used in the flight software.

  20. A Rapid Aeroelastic/Aeroservoelastic Modeling, Analysis and Optimization System for Advanced Flight Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Dynamics Inc and the University of Washington propose to develop a MATLAB toolbox for rapid aeroelastic (AE) and aeroservoelastic (ASE) modeling, analysis...

  1. Valsalva maneuver in phlebologic practice.

    Science.gov (United States)

    Ricci, Stefano; Moro, Leo; Minotti, Girolamo C; Incalzi, Raffaele A; De Maeseneer, Marianne

    2017-01-01

    Forced expiration against an airway obstruction was originally described as a method for inflating the Eustachian tubes and is accredited to Antonio Maria Valsalva (1666-1723). The Valsalva maneuver is commonly applied for different diagnostic purposes. Its use for phlebologic diagnosis is the object this review. Venous reflux is the most frequent pathophysiologic mechanism in chronic venous disease. Reflux is easily visualized by duplex ultrasound when properly elicited, in standing position. A simple way to elicit reflux is the so-called "compression-release maneuver": by emptying the muscle reservoir, it determines a centrifugal gradient, dependent on hydrostatic pressure, creating an aspiration system from the superficial to the deep system. The same results are obtained with dynamics tests activating calf muscles. The Valsalva maneuver elicits reflux by a different mechanism, increasing the downstream pressure and, thus, highlighting any connection between the source of reflux and the refluxing vessel. The Valsalva maneuver is typically used to investigate the saphenofemoral junction. When the maneuver is performed correctly, it is very useful to analyse several conditions and different hemodynamic behaviours of the valvular system at the saphenofemoral junction. Negative Valsalva maneuver always indicates valvular competence at the saphenofemoral junction. Reverse flow lasting during the whole strain (positive Valsalva maneuver) indicates incompetence or absence of proximal valves. Coupling Valsalva maneuver to compression-release maneuver, with the sample volume in different saphenofemoral junction sections, may reveal different hemodynamic situations at the saphenofemoral junction, which can be analysed in detail.

  2. Control integration concept for hypersonic cruise-turn maneuvers

    Science.gov (United States)

    Raney, David L.; Lallman, Frederick J.

    1992-01-01

    Piloting difficulties associated with conducting aircraft maneuvers in hypersonic flight are caused in part by the nonintuitive nature of the aircraft response and the stringent constraints anticipated on allowable angle of attack and dynamic pressure variations. An approach is documented that provides precise, coordinated maneuver control during excursions from a hypersonic cruise flight path and the necessary flight condition constraints. The approach is to achieve specified guidance commands by resolving altitude and cross range errors into a load factor and bank angle command by using a coordinate transformation that acts as an interface between outer and inner loop flight controls. This interface, referred to as a 'resolver', applies constraints on angle of attack and dynamic pressure perturbations while prioritizing altitude regulation over cross range. An unpiloted test simulation, in which the resolver was used to drive inner loop flight controls, produced time histories of responses to guidance commands and atmospheric disturbances at Mach numbers of 6, 10, 15, and 20. Angle of attack and throttle perturbation constraints, combined with high speed flight effects and the desire to maintain constant dynamic pressure, significantly impact the maneuver envelope for a hypersonic vehicle.

  3. Improved Maneuver Criteria Evaluation Program

    Science.gov (United States)

    1979-11-01

    development of maneuver requirements.- DD 10ý 3 tD ~o-non r lMov 66 16oegaLETr Unclassified SEcumrIy CLASSMFICATIOX OF 11413 PAGE (VW" WW* 8014060...Qmax)!a alHPENG - 55m (8) where Q = torque at instantaneous value of rpm Qmax = maximum. transmission torque 11i DESCRIPTION OF NEW MCEP MANEUVERS

  4. Rapid Quadrupole-Time-of-Flight Mass Spectrometry Method Quantifies Oxygen-Rich Lignin Compound in Complex Mixtures

    Science.gov (United States)

    Boes, Kelsey S.; Roberts, Michael S.; Vinueza, Nelson R.

    2017-12-01

    Complex mixture analysis is a costly and time-consuming task facing researchers with foci as varied as food science and fuel analysis. When faced with the task of quantifying oxygen-rich bio-oil molecules in a complex diesel mixture, we asked whether complex mixtures could be qualitatively and quantitatively analyzed on a single mass spectrometer with mid-range resolving power without the use of lengthy separations. To answer this question, we developed and evaluated a quantitation method that eliminated chromatography steps and expanded the use of quadrupole-time-of-flight mass spectrometry from primarily qualitative to quantitative as well. To account for mixture complexity, the method employed an ionization dopant, targeted tandem mass spectrometry, and an internal standard. This combination of three techniques achieved reliable quantitation of oxygen-rich eugenol in diesel from 300 to 2500 ng/mL with sufficient linearity (R2 = 0.97 ± 0.01) and excellent accuracy (percent error = 0% ± 5). To understand the limitations of the method, it was compared to quantitation attained on a triple quadrupole mass spectrometer, the gold standard for quantitation. The triple quadrupole quantified eugenol from 50 to 2500 ng/mL with stronger linearity (R2 = 0.996 ± 0.003) than the quadrupole-time-of-flight and comparable accuracy (percent error = 4% ± 5). This demonstrates that a quadrupole-time-of-flight can be used for not only qualitative analysis but also targeted quantitation of oxygen-rich lignin molecules in complex mixtures without extensive sample preparation. The rapid and cost-effective method presented here offers new possibilities for bio-oil research, including: (1) allowing for bio-oil studies that demand repetitive analysis as process parameters are changed and (2) making this research accessible to more laboratories. [Figure not available: see fulltext.

  5. Somatosensory Substrates of Flight Control in Bats

    Directory of Open Access Journals (Sweden)

    Kara L. Marshall

    2015-05-01

    Full Text Available Flight maneuvers require rapid sensory integration to generate adaptive motor output. Bats achieve remarkable agility with modified forelimbs that serve as airfoils while retaining capacity for object manipulation. Wing sensory inputs provide behaviorally relevant information to guide flight; however, components of wing sensory-motor circuits have not been analyzed. Here, we elucidate the organization of wing innervation in an insectivore, the big brown bat, Eptesicus fuscus. We demonstrate that wing sensory innervation differs from other vertebrate forelimbs, revealing a peripheral basis for the atypical topographic organization reported for bat somatosensory nuclei. Furthermore, the wing is innervated by an unusual complement of sensory neurons poised to report airflow and touch. Finally, we report that cortical neurons encode tactile and airflow inputs with sparse activity patterns. Together, our findings identify neural substrates of somatosensation in the bat wing and imply that evolutionary pressures giving rise to mammalian flight led to unusual sensorimotor projections.

  6. Numerical Analysis of Maneuvering Rotorcraft Using Moving Overlapped Grid Method

    Science.gov (United States)

    Yang, Choongmo; Aoyama, Takashi

    In transient flight, rotor wakes and tip vortex generated by unsteady blade air-loads and blade motions are fully unsteady and 3-dimensionally-aperiodic, giving rise to significant complicity in accurate analysis compared to steady flight. We propose a hybrid approach by splitting the motions of a maneuvering helicopter into translation and rotation. Translation is simulated using a non-inertial moving (translating) coordinate for which new governing equations are derived, and rotations are simulated by moving each grid in the frame. A flow simulation (CFD) code is constructed by using the hybrid approach, then two simple cases (accelerating/decelerating flight and right-turn flight) for maneuvering helicopter are calculated using the moving overlapped grid method, which is now one of the most advanced techniques for tip-vortex capture. The vortex bundling phenomena, which is a main characteristic of right-turn flight, is well captured by the simulation code. The results of the present study provide better understanding of the characteristics for maneuvering rotorcraft, which can be valuable in full helicopter design.

  7. Turns and maneuvers during swimming

    Science.gov (United States)

    Bhalla, Amneet; Mosberg, Noah; Bale, Rahul; Patankar, Neelesh

    2011-11-01

    In this work we use fully resolved fluid dynamics computations based on an immersed body approach to study fish turns and maneuvers. We present a numerical method to control the trajectory of fish during turns and maneuvers. Fish tracking a prey is presented as an example case. Numerical simulations are carried out on spatially adaptive grid for speed and accuracy. The effect of deformation kinematics and Reynolds number (Re), on the turn radius of an undulatory swimmer, is studied. Power spent during turning at different turn radii and Re is also reported. These results can be used to quantify the cost of various maneuvers and to identify efficient maneuvers to attain the same objective, e.g., reaching a target location during prey tracking. NSF support is gratefully acknowledged.

  8. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    Science.gov (United States)

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  9. Controlled flight of a biologically inspired, insect-scale robot.

    Science.gov (United States)

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J

    2013-05-03

    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight.

  10. Rapid assignment of malting barley varieties by matrix-assisted laser desorption-ionisation - Time-of-flight mass spectrometry.

    Science.gov (United States)

    Šedo, Ondrej; Kořán, Michal; Jakešová, Michaela; Mikulíková, Renata; Boháč, Michal; Zdráhal, Zbyněk

    2016-09-01

    A method for discriminating malting barley varieties based on direct matrix-assisted laser desorption-ionisation - time-of-flight mass spectrometry (MALDI-TOF MS) fingerprinting of proteins was developed. Signals corresponding to hordeins were obtained by simple mixing of powdered barley grain with a MALDI matrix solution containing 12.5mgmL(-1) of ferulic acid in an acetonitrile:water:formic acid 50:33:17 v/v/v mixture. Compared to previous attempts at MALDI-TOF mass spectrometric analysis of barley proteins, the extraction and fractionation steps were practically omitted, resulting in a significant reduction in analytical time and costs. The discriminatory power was examined on twenty malting barley varieties and the practicability of the method was tested on sixty barley samples acquired from Pilsner Urquell Brewery. The method is proposed as a rapid tool for variety assignment and purity determination of malting barley that may replace gel electrophoresis currently used for this purpose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. AIRCRAFT CONFLICTS RESOLUTION BY COURSE MANEUVERING

    Directory of Open Access Journals (Sweden)

    В. Харченко

    2011-02-01

    Full Text Available Enhancement of requirements for air traffic efficiency at increasing of flights intensity determines the necessity of development of new optimization methods for aircraft conflict resolutions. The statement of problem of optimal conflict resolutions at Cooperative Air Traffic Management was done. The method for optimal aircraft conflict  resolution by course maneuvering has been  developed. The method using dynamic programming provides planning of aircraft conflict-free trajectory with minimum length. The decomposition of conflict resolution process on phases and stages, definition of states, controls and recursive  equations for generation of optimal course control program were done. Computer modeling of aircraft conflict resolution by developed method was done

  12. Flight Control of Flexible Aircraft

    Science.gov (United States)

    Nguyen, Nhan T.

    2017-01-01

    This presentation presents an overview of flight control research for flexible high aspect wing aircraft in support of the NASA ARMD Advanced Air Transport Technology (AATT) project. It summarizes multi-objective flight control technology being developed for drag optimization, flutter suppression, and maneuver and gust load alleviation.

  13. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid identification of fungal rhinosinusitis pathogens.

    Science.gov (United States)

    Huang, Yanfei; Wang, Jinglin; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Lu, Xinxin

    2017-03-01

    Filamentous fungi are among the most important pathogens, causing fungal rhinosinusitis (FRS). Current laboratory diagnosis of FRS pathogens mainly relies on phenotypic identification by culture and microscopic examination, which is time consuming and expertise dependent. Although matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS has been employed to identify various fungi, its efficacy in the identification of FRS fungi is less clear. A total of 153 FRS isolates obtained from patients were analysed at the Clinical Laboratory at the Beijing Tongren Hospital affiliated to the Capital Medical University, between January 2014 and December 2015. They were identified by traditional phenotypic methods and Bruker MALDI-TOF MS (Bruker, Biotyper version 3.1), respectively. Discrepancies between the two methods were further validated by sequencing. Among the 153 isolates, 151 had correct species identification using MALDI-TOF MS (Bruker, Biot 3.1, score ≥2.0 or 2.3). MALDI-TOF MS enabled identification of some very closely related species that were indistinguishable by conventional phenotypic methods, including 1/10 Aspergillus versicolor, 3/20 Aspergillus flavus, 2/30 Aspergillus fumigatus and 1/20 Aspergillus terreus, which were misidentified by conventional phenotypic methods as Aspergillus nidulans, Aspergillus oryzae, Aspergillus japonicus and Aspergillus nidulans, respectively. In addition, 2/2 Rhizopus oryzae and 1/1 Rhizopus stolonifer that were identified only to the genus level by the phenotypic method were correctly identified by MALDI-TOF MS. MALDI-TOF MS is a rapid and accurate technique, and could replace the conventional phenotypic method for routine identification of FRS fungi in clinical microbiology laboratories.

  14. Recruitment Maneuvers and PEEP Titration.

    Science.gov (United States)

    Hess, Dean R

    2015-11-01

    The injurious effects of alveolar overdistention are well accepted, and there is little debate regarding the importance of pressure and volume limitation during mechanical ventilation. The role of recruitment maneuvers is more controversial. Alveolar recruitment is desirable if it can be achieved, but the potential for recruitment is variable among patients with ARDS. A stepwise recruitment maneuver, similar to an incremental PEEP titration, is favored over sustained inflation recruitment maneuvers. Many approaches to PEEP titration have been proposed, and the best method to choose the most appropriate level for an individual patient is unclear. A PEEP level should be selected that balances alveolar recruitment against overdistention. The easiest approach to select PEEP might be according to the severity of the disease: 5-10 cm H2O PEEP in mild ARDS, 10-15 cm H2O PEEP in moderate ARDS, and 15-20 cm H2O PEEP in severe ARDS. Recruitment maneuvers and PEEP should be used within the context of lung protection and not just as a means of improving oxygenation. Copyright © 2015 by Daedalus Enterprises.

  15. Glider Flight Instructor Written Test Guide.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The purposes of the test guide are threefold. First, it is intended to outline the scope of the basic aeronautical knowledge requirements for a glider flight instructor. This includes fundamentals of flight instruction and performance and analysis of flight training maneuvers. Secondly, it is intended to acquaint the applicant with source material…

  16. 33 CFR 84.23 - Maneuvering light.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Maneuvering light. 84.23 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.23 Maneuvering light. Notwithstanding the provisions of § 84.03(f), the maneuvering light described in Rule 34(b) shall be placed...

  17. Time-optimal spacecraft attitude maneuver path planning under boundary and pointing constraints

    Science.gov (United States)

    Wu, Changqing; Xu, Rui; Zhu, Shengying; Cui, Pingyuan

    2017-08-01

    The rapid large angle attitude maneuver capability of spacecraft is required during many space missions. This paper addresses the challenge of time-optimal spacecraft attitude maneuver under boundary and pointing constraints. From the perspective of the optimal time, the constrained attitude maneuver problem is summarized as an optimum path-planning problem. To address this problem, a metaheuristic maneuver path planning method is proposed, Angular velocity-Time Coding Differential Evolution (ATDE). In the ATDE method, the angular velocity and time are coded for attitude maneuver modeling, which increases the number of variables and results in a high-dimensional problem. In order to deal with this problem, differential evolution is employed to perform variation and evolution. The boundary and pointing constraints are constructed into the fitness function for path evaluation. Finally, numerical simulations for the different cases were performed to validate the feasibility and effectiveness of the proposed method.

  18. Modeling Helicopter Near-Horizon Harmonic Noise Due to Transient Maneuvers

    Science.gov (United States)

    2013-01-01

    2.30. At the top of each figure is the total acoustic time history over the maneuver. This top frame also features six shaded regions corresponding to...details of the shaded regions appear below the total time history. The right frame of each detail is a top view of the tip-path plane indicating the...Aeroacoustic Flight Tests including Maneuver Flights,” American Helicopter Society 61 st Annual Forum, Grapevine , TX, Jun. 1-3, 3005. [30] Schmitz, F. H

  19. Optimal autonomous spacecraft resiliency maneuvers using metaheuristics

    Science.gov (United States)

    Showalter, Daniel J.

    The growing congestion in space has increased the need for spacecraft to develop resilience capabilities in response to natural and man-made hazards. Equipping satellites with increased maneuvering capability has the potential to enhance resilience by altering their arrival conditions as they enter potentially hazardous regions. The propellant expenditure corresponding to increased maneuverability requires these maneuvers be optimized to minimize fuel expenditure and to the extent which resiliency can be preserved. This research introduces maneuvers to enhance resiliency and investigates the viability of metaheuristics to enable their autonomous optimization. Techniques are developed to optimize impulsive and continuous-thrust resiliency maneuvers. The results demonstrate that impulsive and low-thrust resiliency maneuvers require only meters per second of delta-velocity. Additionally, bi-level evolutionary algorithms are explored in the optimization of resiliency maneuvers which require a maneuvering spacecraft to perform an inspection of one of several target satellites while en-route to geostationary orbit. The methods developed are shown to consistently produce optimal and near-optimal results for the problems investigated and can be applied to future classes of resiliency maneuvers yet to be defined. Results indicate that the inspection requires an increase of only five percent of the propellant needed to transfer from low Earth orbit to geostationary orbit. The maneuvers and optimization techniques developed throughout this dissertation demonstrate the viability of the autonomous optimization of spacecraft resiliency maneuvers and can be utilized to optimize future classes of resiliency maneuvers.

  20. Capabilities of Small Stature Women to Perform Operational Flight Tasks During G-Stress

    National Research Council Canada - National Science Library

    Shender, Barry

    1999-01-01

    .... In particular this study addresses whether these females possess the upper body muscular endurance to perform high performance flight maneuvers such as those experienced in training, air combat...

  1. Plotting Orbital Trajectories For Maneuvers

    Science.gov (United States)

    Brody, Adam R.

    1991-01-01

    Interactive Orbital Trajectory Planning Tool (EIVAN) computer program is forward-looking interactive orbit-trajectory-plotting software tool for use with proximity operations (operations occurring within 1-km sphere of space station) and other maneuvers. Developed to plot resulting trajectories, to provide better comprehension of effects of orbital mechanics, and to help user develop heuristics for planning missions on orbit. Program runs with Microsoft's Excel for execution on MacIntosh computer running MacIntosh OS.

  2. Effects of maneuver dynamics on drag polars of the X-29A forward-swept-wing aircraft with automatic wing camber control

    Science.gov (United States)

    Hicks, John W.; Moulton, Bryan J.

    1988-01-01

    The camber control loop of the X-29A FSW aircraft was designed to furnish the optimum L/D for trimmed, stabilized flight. A marked difference was noted between automatic wing camber control loop behavior in dynamic maneuvers and in stabilized flight conditions, which in turn affected subsonic aerodynamic performance. The degree of drag level increase was a direct function of maneuver rate. Attention is given to the aircraft flight drag polar effects of maneuver dynamics in light of wing camber control loop schedule. The effect of changing camber scheduling to better track the optimum automatic camber control L/D schedule is discussed.

  3. On the synthesis of sliding mode controller for the autopilot design of free flight system

    Science.gov (United States)

    Devika K., B.; Thomas, Susy

    2017-01-01

    Today's rapid growth in air transportation demand leads to the problem of congestion in air traffic routes. In recent years, free flight concept is widely discussed as the solution to this problem. Free flight is a decentralized method of air traffic management, in which each aircraft has the freedom to self optimize its own route. Conflict detection and its subsequent resolution are the major challenges in the realization of this concept. Today's modern navigation and surveillance equipment can ensure accurate conflict predictions. Once a conflict is detected, it should be avoided through suitable conflict avoidance maneuvers. An autopilot capable of initiating these conflict free maneuvers should be a necessary part of any aircraft in free flight to ensure conflict avoided flight. Controller design based on Sliding Mode Control (SMC) strategy is presented in this paper for the purpose of free flight autopilot implementation. Since SMC has the inherent property of robustness in sliding mode, it can ensure a highly efficient autopilot design. Conventional and reaching law approaches of SMC design are considered here for controller design. Conventional SMC technique usually exhibits an unacceptable phenomenon, viz., chattering. Reaching law approaches for SMC design are being investigated here so as to identify an appropriate strategy that can ensure near chattering free operation. Considering typical free flight conflict avoidance modes of operation, the performance of all the considered SMC strategies are compared through simulation studies. The comparison is based on their ability to reduce chattering and the effectiveness in ensuring quick conflict resolution maneuvers, so that an efficient controller for free flight autopilot system can be recommended.

  4. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    Science.gov (United States)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  5. Biologically inspired force enhancement for maritime propulsion and maneuvering

    CERN Document Server

    Weymouth, G D

    2016-01-01

    The move to high performance applications greatly increases the demand to produce large instantaneous fluid forces for high-speed maneuvering and improved power efficiency for sustained propulsion. Animals achieve remarkable feats of maneuvering and efficiency by changing their body shape to generate unsteady fluid forces. Inspired by this, we have studied a range of immersed bodies which drastically change their shape to produce fluid forces. These include relatively simple shape- changes, such as quickly changing the angle of attack of a foil to induce emergency stops and the use of tandem flapping foils to generate three times the average propulsive force of a single flapping foil. They also include more unconventional shape-changes such as high-speed retracting foil sections to power roll and dive maneuvers and the use of soft robotics to rapidly shrink the frontal area of an ellipsoid to power 68% efficient fast-start maneuvers or even completely cancel the drag force with 91% quasi-propulsive efficiency...

  6. The maneuver search and the maneuver search trajectory framework of search heavy torpedo

    Science.gov (United States)

    Yin, Wenjin; Zhang, Jingyuan; Li, Jitao

    2016-01-01

    With the development of technology capability of submarine launching heavy torpedo and the demand of intellectualized combat, the paper raises the concept of torpedo maneuver search and analyses maneuver search opportunity. It is necessary to realize the long range heavy torpedo's maneuver search that heavy torpedo's maneuver search can cover the target's location error which results from launching platform's position precision and the target's intentional maneuver when the torpedo is launched. The technology framework of the heavy torpedo's maneuver search trajectory is set up.

  7. Flight Test Results of a GPS-Based Pitot-Static Calibration Method Using Output-Error Optimization for a Light Twin-Engine Airplane

    Science.gov (United States)

    Martos, Borja; Kiszely, Paul; Foster, John V.

    2011-01-01

    As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.

  8. Rapid Screening of Multiclass Syrup Adulterants in Honey by Ultrahigh-Performance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry.

    Science.gov (United States)

    Du, Bing; Wu, Liming; Xue, Xiaofeng; Chen, Lanzhen; Li, Yi; Zhao, Jing; Cao, Wei

    2015-07-29

    Honey adulteration with sugar syrups is a widespread problem. Several types of syrups have been used in honey adulteration, and there is no available method that can simultaneously detect all of these adulterants. In this study, we generated a small-scale database containing the specific chromatographic and mass spectrometry information on sugar syrup markers and developed a simple, rapid, and effective ultrahigh-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) method for the detection of adulterated honey. Corn syrup, high-fructose corn syrup, inverted syrup, and rice syrup were used as honey adulterants; polysaccharides, difructose anhydrides, and 2-acetylfuran-3-glucopyranoside were used as detection markers. The presence of 10% sugar syrup in honey could be easily detected in <30 min using the developed method. The results revealed that UHPLC/Q-TOF-MS was simple and rapid.

  9. Direct lateral maneuvers in hawkmoths

    Science.gov (United States)

    Greeter, Jeremy S. M.; Hedrick, Tyson L.

    2016-01-01

    ABSTRACT We used videography to investigate direct lateral maneuvers, i.e. ‘sideslips’, of the hawkmoth Manduca sexta. M. sexta sideslip by rolling their entire body and wings to reorient their net force vector. During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both wing elevation and sweep), allowing them to continue to support body weight while rolled. To execute the roll maneuver we observed in sideslips, they use an asymmetric wing stroke; increasing the pitch of the roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair. They also increase the wing sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the ipsilateral pair. The roll maneuver unfolds in a stairstep manner, with orientation changing more during downstroke than upstroke. This is due to smaller upstroke wing pitch angle asymmetries as well as increased upstroke flapping counter-torque from left-right differences in global reference frame wing velocity about the moth's roll axis. Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, such that rightward roll velocity will be opposed by rightward motion. Computational modeling using blade-element approaches confirm the plausibility of a causal linkage between the previously mentioned wing kinematics and roll/sideslip. Model results also predict high degrees of axial and lateral damping. On the time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not second, derivative of roll. Collectively, these results strongly support a roll-based sideslip with a high degree of roll damping in M. sexta. PMID:26740573

  10. Optic flow cues guide flight in birds.

    Science.gov (United States)

    Bhagavatula, Partha S; Claudianos, Charles; Ibbotson, Michael R; Srinivasan, Mandyam V

    2011-11-08

    Although considerable effort has been devoted to investigating how birds migrate over large distances, surprisingly little is known about how they tackle so successfully the moment-to-moment challenges of rapid flight through cluttered environments [1]. It has been suggested that birds detect and avoid obstacles [2] and control landing maneuvers [3-5] by using cues derived from the image motion that is generated in the eyes during flight. Here we investigate the ability of budgerigars to fly through narrow passages in a collision-free manner, by filming their trajectories during flight in a corridor where the walls are decorated with various visual patterns. The results demonstrate, unequivocally and for the first time, that birds negotiate narrow gaps safely by balancing the speeds of image motion that are experienced by the two eyes and that the speed of flight is regulated by monitoring the speed of image motion that is experienced by the two eyes. These findings have close parallels with those previously reported for flying insects [6-13], suggesting that some principles of visual guidance may be shared by all diurnal, flying animals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Orbital maneuvers and space rendezvous

    Science.gov (United States)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  12. Optimization of Space Debris Collision Avoidance Maneuver for Formation Flying Satellites

    Directory of Open Access Journals (Sweden)

    Jae-Dong Seong

    2013-12-01

    Full Text Available The concept of the satellite formation flight is area where it is actively study with expandability and safety compare to existing satellite. For execution of duty with more safety issue, it needs to consider hot topic of space debris for operation of formation flight. In this paper, it suggests heuristic algorithm to have avoidance maneuver for space debris towards operating flight formation. Indeed it covers, using common software, operating simulation to nearest space environment and not only to have goal of avoidance but also minimizing the usage of fuel and finding optimization for maximizing cycle of formation flight. For improvement on convergence speed of existing heuristic algorithm, it substitute to hybrid heuristic algorithm, PSOGSA, and the result of simulation, it represents the satisfaction of minimum range for successful avoidance maneuver and compare to not using avoidance maneuver, it keeps more than three times of formation maintenance performance. From these, it is meaningful results of showing several success goals like simple avoidance collision and fuel usage and decreasing number of times of maintaining formation maneuver.

  13. Rapid identification of Mycobacterium avium clinical isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Lin, Chuan-Sheng; Su, Chih-Cheng; Hsieh, Shang-Chen; Lu, Chia-Chen; Wu, Tsu-Lan; Jia, Ju-Hsin; Wu, Ting-Shu; Han, Chau-Chung; Tsai, Wen-Cherng; Lu, Jang-Jih; Lai, Hsin-Chih

    2015-04-01

    Rapid and accurate discrimination of Mycobacterium avium from other mycobacteria is essential for appropriate therapeutic management and timely intervention for infection control. However, routine clinical identification methods for M. avium are both time consuming and labor intensive. In the present study, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to identify specific cellular protein pattern for rapid identification of M. avium isolates. A total of 40 clinically relevant Mycobacterium strains comprising 13 distinct species were enrolled for the MALDI-TOF MS identification. A 10-minute extraction-free examination procedure was set up to obtain mass spectral fingerprints from whole bacterial cells. The characteristic mass spectral peak patterns in the m/z (mass/charge ratio) range of 5-20 kDa can be obtained within 10 minutes. The species-specific mass spectra for M. avium is identified and can be differentiated from as Mycobacterium strains. This technique shortens and simplifies the identification procedure of MALDI-TOF MS and may further extend the mycobacterial MALDI-TOF MS database. Simplicity and rapidity of identification procedures make MALDI-TOF MS an attractive platform in routine identification of mycobacteria. MALDI-TOF MS is applicable for rapid discrimination of M. avium from other Mycobacterium species, and shows its potential for clinical application. Copyright © 2013. Published by Elsevier B.V.

  14. Flight Test Results of an Angle of Attack and Angle of Sideslip Calibration Method Using Output-Error Optimization

    Science.gov (United States)

    Siu, Marie-Michele; Martos, Borja; Foster, John V.

    2013-01-01

    As part of a joint partnership between the NASA Aviation Safety Program (AvSP) and the University of Tennessee Space Institute (UTSI), research on advanced air data calibration methods has been in progress. This research was initiated to expand a novel pitot-static calibration method that was developed to allow rapid in-flight calibration for the NASA Airborne Subscale Transport Aircraft Research (AirSTAR) facility. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. Subscale flight tests demonstrated small 2-s error bounds with significant reduction in test time compared to other methods. Recent UTSI full scale flight tests have shown airspeed calibrations with the same accuracy or better as the Federal Aviation Administration (FAA) accepted GPS 'four-leg' method in a smaller test area and in less time. The current research was motivated by the desire to extend this method for inflight calibration of angle of attack (AOA) and angle of sideslip (AOS) flow vanes. An instrumented Piper Saratoga research aircraft from the UTSI was used to collect the flight test data and evaluate flight test maneuvers. Results showed that the output-error approach produces good results for flow vane calibration. In addition, maneuvers for pitot-static and flow vane calibration can be integrated to enable simultaneous and efficient testing of each system.

  15. Biologically inspired impulsive starting and maneuvering for solitary and aggregate systems

    Science.gov (United States)

    Techet, Alexandra

    2009-11-01

    Fast starting and maneuvering in the aquatic realm typically involve the formation of distinct vortex rings that deliver an impulsive change in the animal's momentum. This enables these aquatic animals to maneuver in smaller spaces than that required by conventional underwater vehicles. PIV and dye visualization results from fast-starting and jumping fish, as well as impulsively starting flapping foils and propellers will be compared with unsteady propulsion by salps. Salps, or pelagic tunicates, are common gelatinous organisms in oceanic waters, which swim and maneuver by jet propulsion. Inspecting the wake generated by a rapidly maneuvering fish, foil or propeller offers insight into the impulse imparted on the system during the maneuver. Modeling the wake of maneuvering systems as a series of vortex ring impulses, with considerations taken for added mass effects, allows for relatively straightforward analysis. The swimming and maneuvering of aggregate swimmers, e.g. those chained together in series or parallel, can be modeled using a series of distinct vortex rings generated by each individual in the chain, with some phase shift between each individual.

  16. A Novel Method for Satellite Maneuver Prediction

    Science.gov (United States)

    Shabarekh, C.; Kent-Bryant, J.; Keselman, G.; Mitidis, A.

    2016-09-01

    A space operations tradecraft consisting of detect-track-characterize-catalog is insufficient for maintaining Space Situational Awareness (SSA) as space becomes increasingly congested and contested. In this paper, we apply analytical methodology from the Geospatial-Intelligence (GEOINT) community to a key challenge in SSA: predicting where and when a satellite may maneuver in the future. We developed a machine learning approach to probabilistically characterize Patterns of Life (PoL) for geosynchronous (GEO) satellites. PoL are repeatable, predictable behaviors that an object exhibits within a context and is driven by spatio-temporal, relational, environmental and physical constraints. An example of PoL are station-keeping maneuvers in GEO which become generally predictable as the satellite re-positions itself to account for orbital perturbations. In an earlier publication, we demonstrated the ability to probabilistically predict maneuvers of the Galaxy 15 (NORAD ID: 28884) satellite with high confidence eight days in advance of the actual maneuver. Additionally, we were able to detect deviations from expected PoL within hours of the predicted maneuver [6]. This was done with a custom unsupervised machine learning algorithm, the Interval Similarity Model (ISM), which learns repeating intervals of maneuver patterns from unlabeled historical observations and then predicts future maneuvers. In this paper, we introduce a supervised machine learning algorithm that works in conjunction with the ISM to produce a probabilistic distribution of when future maneuvers will occur. The supervised approach uses a Support Vector Machine (SVM) to process the orbit state whereas the ISM processes the temporal intervals between maneuvers and the physics-based characteristics of the maneuvers. This multiple model approach capitalizes on the mathematical strengths of each respective algorithm while incorporating multiple features and inputs. Initial findings indicate that the combined

  17. Visual display aid for orbital maneuvering - Design considerations

    Science.gov (United States)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1993-01-01

    This paper describes the development of an interactive proximity operations planning system that allows on-site planning of fuel-efficient multiburn maneuvers in a potential multispacecraft environment. Although this display system most directly assists planning by providing visual feedback to aid visualization of the trajectories and constraints, its most significant features include: (1) the use of an 'inverse dynamics' algorithm that removes control nonlinearities facing the operator, and (2) a trajectory planning technique that separates, through a 'geometric spreadsheet', the normally coupled complex problems of planning orbital maneuvers and allows solution by an iterative sequence of simple independent actions. The visual feedback of trajectory shapes and operational constraints, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool provides an example of operator-assisted optimization of nonlinear cost functions.

  18. Analysis of a turning point problem in flight trajectory optimization

    Science.gov (United States)

    Gracey, C.

    1989-01-01

    The optimal control policy for the aeroglide portion of the minimum fuel, orbital plane change problem for maneuvering entry vehicles is reduced to the solution of a turning point problem for the bank angle control. For this problem a turning point occurs at the minimum altitude of the flight, when the flight path angle equals zero. The turning point separates the bank angle control into two outer solutions that are valid away from the turning point. In a neighborhood of the turning point, where the bank angle changes rapidly, an inner solution is developed and matched with the two outer solutions. An asymptotic analysis of the turning point problem is given, and an analytic example is provided to illustrate the construction of the bank angle control.

  19. 46 CFR 109.564 - Maneuvering characteristics.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Maneuvering characteristics. 109.564 Section 109.564 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Miscellaneous § 109.564 Maneuvering characteristics. (a) The master or person in charge of each...

  20. Rapid discrimination of environmental Vibrio by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Eddabra, Rkia; Prévost, Gilles; Scheftel, Jean-Michel

    2012-04-20

    The aim of this study was to discriminate 30 Vibrio strains isolated from two wastewater treatment plants from Agadir, Morocco by two molecular typing methods, pulsed-field gel electrophoresis (PFGE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Out of the 30 strains of Vibrio examined in this study, 5 isolates could not be typed by PFGE and consistently appeared as a smear on the gel. In general, high genetic biodiversity among the Vibrio strains was found regardless to the isolation source. The results of MALDI TOF analysis show a high congruence of strain grouping demonstrating the accuracy and reliability of MALDI-TOF MS. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures.

  2. Rapid Characterization of Microalgae and Microalgae Mixtures Using Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS)

    Science.gov (United States)

    Barbano, Duane; Diaz, Regina; Zhang, Lin; Sandrin, Todd; Gerken, Henri; Dempster, Thomas

    2015-01-01

    Current molecular methods to characterize microalgae are time-intensive and expensive. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) may represent a rapid and economical alternative approach. The objectives of this study were to determine whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels and 2) characterize simple microalgal mixtures. A common protein extraction sample preparation method was used to facilitate rapid mass spectrometry-based analysis of 31 microalgae. Each yielded spectra containing between 6 and 56 peaks in the m/z 2,000 to 20,000 range. The taxonomic resolution of this approach appeared higher than that of 18S rDNA sequence analysis. For example, two strains of Scenedesmus acutus differed only by two 18S rDNA nucleotides, but yielded distinct MALDI-TOF mass spectra. Mixtures of two and three microalgae yielded relatively complex spectra that contained peaks associated with members of each mixture. Interestingly, though, mixture-specific peaks were observed at m/z 11,048 and 11,230. Our results suggest that MALDI-TOF MS affords rapid characterization of individual microalgae and simple microalgal mixtures. PMID:26271045

  3. Rapid detection of GM1 ganglioside in cerebrospinal fluid in dogs with GM1 gangliosidosis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Satoh, Hiroyuki; Yamauchi, Toyofumi; Yamasaki, Masahiro; Maede, Yoshimitsu; Yabuki, Akira; Chang, Hye-Sook; Asanuma, Taketoshi; Yamato, Osamu

    2011-11-01

    The concentration of GM1 (monosialotetrahexosyl ganglioside) in cerebrospinal fluid (CSF) is markedly increased in dogs with GM1 gangliosidosis due to GM1 accumulation in the central nervous system and leakage to the CSF. The present study established a rapid and simple method for detection of accumulated GM1 in the CSF in dogs with GM1 gangliosidosis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF MS) and discusses the usefulness of this method for the rapid diagnosis and/or high-risk screening of this disease in domestic animals. Cerebrospinal fluid was collected from normal dogs and 4- to 11-month-old Shiba dogs with GM1 gangliosidosis. The MALDI TOF MS analysis was carried out in combination with a special sample plate and a simple desalting step on the plate. Specific signs of GM1 could be detected in the standard GM1 solutions at concentrations of 50 nmol/l or more. The signs were also clearly detected in CSF (131-618 nmol/l) in affected dogs, but not in normal canine CSF (12 ± 5 nmol/l, mean ± standard deviation). The results demonstrated that MALDI TOF MS can detect GM1 accumulated in canine CSF even in the early stage of the disease. In conclusion, the rapid detection of increased CSF GM1 using MALDI TOF MS is a useful method for diagnosis and/or screening for canine GM1 gangliosidosis.

  4. Control of a high beta maneuvering reentry vehicle using dynamic inversion.

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Alfred Chapman

    2005-05-01

    The design of flight control systems for high performance maneuvering reentry vehicles presents a significant challenge to the control systems designer. These vehicles typically have a much higher ballistic coefficient than crewed vehicles like as the Space Shuttle or proposed crew return vehicles such as the X-38. Moreover, the missions of high performance vehicles usually require a steeper reentry flight path angle, followed by a pull-out into level flight. These vehicles then must transit the entire atmosphere and robustly perform the maneuvers required for the mission. The vehicles must also be flown with small static margins in order to perform the required maneuvers, which can result in highly nonlinear aerodynamic characteristics that frequently transition from being aerodynamically stable to unstable as angle of attack increases. The control system design technique of dynamic inversion has been applied successfully to both high performance aircraft and low beta reentry vehicles. The objective of this study was to explore the application of this technique to high performance maneuvering reentry vehicles, including the basic derivation of the dynamic inversion technique, followed by the extension of that technique to the use of tabular trim aerodynamic models in the controller. The dynamic inversion equations are developed for high performance vehicles and augmented to allow the selection of a desired response for the control system. A six degree of freedom simulation is used to evaluate the performance of the dynamic inversion approach, and results for both nominal and off nominal aerodynamic characteristics are presented.

  5. Conflict Resolution Performance in an Experimental Study of En Route Free Maneuvering Operations

    Science.gov (United States)

    Doble, Nathan A.; Barhydt, Richard; Hitt, James M., II

    2005-01-01

    NASA has developed a far-term air traffic management concept, termed Distributed Air/Ground Traffic Management (DAG-TM). One component of DAG-TM, En Route Free Maneuvering, allows properly trained flight crews of equipped autonomous aircraft to assume responsibility for separation from other autonomous aircraft and from Instrument Flight Rules (IFR) aircraft. Ground-based air traffic controllers continue to separate IFR traffic and issue flow management constraints to all aircraft. To examine En Route Free Maneuvering operations, a joint human-in-the-loop experiment was conducted in summer 2004 at the NASA Ames and Langley Research Centers. Test subject pilots used desktop flight simulators to resolve traffic conflicts and adhere to air traffic flow constraints issued by subject controllers. The experimental airspace integrated both autonomous and IFR aircraft at varying traffic densities. This paper presents a subset of the En Route Free Maneuvering experimental results, focusing on airborne and ground-based conflict resolution, and the effects of increased traffic levels on the ability of pilots and air traffic controllers to perform this task. The results show that, in general, increases in autonomous traffic do not significantly impact conflict resolution performance. In addition, pilot acceptability of autonomous operations remains high throughout the range of traffic densities studied. Together with previously reported findings, these results continue to support the feasibility of the En Route Free Maneuvering component of DAG-TM.

  6. Rapid characterisation and identification of compounds in Saposhnikoviae Radix by high-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Chen, Luxiao; Chen, Xiangyang; Su, Lei; Jiang, Yanyan; Liu, Bin

    2017-08-18

    Saposhnikoviae Radix (SR), the dried root of Saposhnikovia divaricata (Turcz.) Schischk. (Umbelliferae), is commonly used as a traditional Chinese medicine. In this study, a rapid and accurate method was firstly, developed for the qualitative analysis of SR by high-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight mass spectrometry (HPLC-ESI-Q-TOF-MS/MS). A total of 45 compounds were identified or tentatively characterised, including 13 chromones, 28 coumarins and four others. Among them, 16 compounds were identified from SR for the first time. In addition, six chromones reference standards, including two isolated compounds of 3'-O-angeloylhamaudol and norcimifugin from the extraction of SR, were used to study the fragmentation pathways of chromones. The developed method was effective for characterising the compounds of SR, and the results of the study enriched the understanding of the chemical connotation.

  7. Evolutionary flight and enabling smart actuator devices

    Science.gov (United States)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  8. Helicopter Flight Procedures for Community Noise Reduction

    Science.gov (United States)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.

  9. Fight or flight? Dream content during sleepwalking/sleep terrors vs. rapid eye movement sleep behavior disorder.

    Science.gov (United States)

    Uguccioni, Ginevra; Golmard, Jean-Louis; de Fontréaux, Alix Noël; Leu-Semenescu, Smaranda; Brion, Agnès; Arnulf, Isabelle

    2013-05-01

    Dreams enacted during sleepwalking or sleep terrors (SW/ST) may differ from those enacted during rapid eye movement sleep behavior disorder (RBD). Subjects completed aggression, depression, and anxiety questionnaires. The mentations associated with SW/ST and RBD behaviors were collected over their lifetime and on the morning after video polysomnography (PSG). The reports were analyzed for complexity, length, content, setting, bizarreness, and threat. Ninety-one percent of 32 subjects with SW/ST and 87.5% of 24 subjects with RBD remembered an enacted dream (121 dreams in a lifetime and 41 dreams recalled on the morning). These dreams were more complex and less bizarre, with a higher level of aggression in the RBD than in SW/ST subjects. In contrast, we found low aggression, anxiety, and depression scores during the daytime in both groups. As many as 70% of enacted dreams in SW/ST and 60% in RBD involved a threat, but there were more misfortunes and disasters in the SW/ST dreams and more human and animal aggressions in the RBD dreams. The response to these threats differed, as the sleepwalkers mostly fled from a disaster (and 25% fought back when attacked), while 75% of RBD subjects counterattacked when assaulted. The dreams setting included their bedrooms in 42% SW/ST dreams, though this finding was exceptional in the RBD dreams. Different threat simulations and modes of defense seem to play a role during dream-enacted behaviors (e.g., fleeing a disaster during SW/ST, counterattacking a human or animal assault during RBD), paralleling and exacerbating the differences observed between normal dreaming in nonrapid eye movement (NREM) vs rapid eye movement (REM) sleep. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Rapid "breath-print" of liver cirrhosis by proton transfer reaction time-of-flight mass spectrometry. A pilot study.

    Directory of Open Access Journals (Sweden)

    Filomena Morisco

    Full Text Available UNLABELLED: The aim of the present work was to test the potential of Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS in the diagnosis of liver cirrhosis and the assessment of disease severity by direct analysis of exhaled breath. Twenty-six volunteers have been enrolled in this study: 12 patients (M/F 8/4, mean age 70.5 years, min-max 42-80 years with liver cirrhosis of different etiologies and at different severity of disease and 14 healthy subjects (M/F 5/9, mean age 52.3 years, min-max 35-77 years. Real time breath analysis was performed on fasting subjects using a buffered end-tidal on-line sampler directly coupled to a PTR-ToF-MS. Twelve volatile organic compounds (VOCs resulted significantly differently in cirrhotic patients (CP compared to healthy controls (CTRL: four ketones (2-butanone, 2- or 3- pentanone, C8-ketone, C9-ketone, two terpenes (monoterpene, monoterpene related, four sulphur or nitrogen compounds (sulfoxide-compound, S-compound, NS-compound, N-compound and two alcohols (heptadienol, methanol. Seven VOCs (2-butanone, C8-ketone, a monoterpene, 2,4-heptadienol and three compounds containing N, S or NS resulted significantly differently in compensate cirrhotic patients (Child-Pugh A; CP-A and decompensated cirrhotic subjects (Child-Pugh B+C; CP-B+C. ROC (Receiver Operating Characteristic analysis was performed considering three contrast groups: CP vs CTRL, CP-A vs CTRL and CP-A vs CP-B+C. In these comparisons monoterpene and N-compound showed the best diagnostic performance. CONCLUSIONS: Breath analysis by PTR-ToF-MS was able to distinguish cirrhotic patients from healthy subjects and to discriminate those with well compensated liver disease from those at more advanced severity stage. A breath-print of liver cirrhosis was assessed for the first time.

  11. Ground Track Acquisition and Maintenance Maneuver Modeling for Low-Earth Orbit Satellite

    Directory of Open Access Journals (Sweden)

    Byoung-Sun Lee

    1997-12-01

    Full Text Available This paper presents a comprehensive analytical approach for determining key maneuver parameters associated with the acquisition and maintenance of the ground track for a low-earth orbit. A livearized model relating changes in the drift rate of the ground track directly to changes in the orbital semi-major axis is also developed. The effect of terrestrial atmospheric drag on the semi-major axis is also explored, being quantified through an analytical expression for the decay rate as a function of density. The non-singular Lagrange planetary equations, further simplified for nearly circular orbits, provide the desired relationships between the corrective in-plane impulsive velocity increments and the corresponding effects on the orbit elements. The resulting solution strategy offers excellent insight into the dynamics affecting the timing, magnitude, and frequency of these maneuvers. Simulations are executed for the ground track acquisition and maintenance maneuver as a pre-flight planning and analysis.

  12. Analysis of the operating load of the turbine engine during deceleration to dash maneuver

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2016-12-01

    Full Text Available The article presents the analysis of the loads on the gas generator of turbine engine power of unmanned helicopter. The analysis was performed for deceleration to dash maneuver. Particular attention was paid to loads of bearing assembly in gas generator of turbine engine. The analysis was based on the timelines of changes in velocity of manned helicopter PZL W3-Falcon. The dependence of velocity changes during the flight was made as approximation by the least squares method and then determined for its change in acceleration. On this basis, the forces acting on the bearing gas generator assembly in static and dynamic conditions were determined. These values were compared with values obtained during maneuvers such as "jump up and jump down" and "acceleration and deceleration maneuver".

  13. A simple method for rapid microbial identification from positive monomicrobial blood culture bottles through matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Lin, Jung-Fu; Ge, Mao-Cheng; Liu, Tsui-Ping; Chang, Shih-Cheng; Lu, Jang-Jih

    2017-06-30

    Rapid identification of microbes in the bloodstream is crucial in managing septicemia because of its high disease severity, and direct identification from positive blood culture bottles through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can shorten the turnaround time. Therefore, we developed a simple method for rapid microbiological identification from positive blood cultures by using MALDI-TOF MS. We modified previously developed methods to propose a faster, simpler and more economical method, which includes centrifugation and hemolysis. Specifically, our method comprises two-stage centrifugation with gravitational acceleration (g) at 600g and 3000g, followed by the addition of a lysis buffer and another 3000g centrifugation. In total, 324 monomicrobial bacterial cultures were identified. The success rate of species identification was 81.8%, which is comparable with other complex methods. The identification success rate was the highest for Gram-negative aerobes (85%), followed by Gram-positive aerobes (78.2%) and anaerobes (67%). The proposed method requires less than 10 min, costs less than US$0.2 per usage, and facilitates batch processing. We conclude that this method is feasible for clinical use in microbiology laboratories, and can serve as a reference for treatments or further complementary diagnostic testing. Copyright © 2017. Published by Elsevier B.V.

  14. A rapid isotope ratio analysis protocol for nuclear solid materials using nano-second laser-ablation time-of-flight ICP-MS.

    Science.gov (United States)

    Bürger, S; Riciputi, L R

    2009-11-01

    The analysis of the isotopic composition of nuclear or non-nuclear solid materials is performed in a variety of fields, e.g., for quality assurance in the production of nuclear fuels, as signatures in forensics, nuclear safeguards, and non-proliferation control, in material characterization, geology, and archeology. We have investigated the capability of laser ablation (New Wave Research, 213 nm) coupled to time-of-flight (TOF) ICP-MS (GBC OptiMass 8000) as a rapid analytical protocol for multi-isotope screening of nuclear and non-nuclear solid samples. This includes natural and non-natural isotopic compositions for elements including Cu, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, Pb, and U, in pure metals, alloys, and glasses. Without correcting for mass bias (mass fractionation), an overall precision and accuracy of about 4% (1 sigma) can be achieved by minimizing the deposited laser power and thus fractionation (mass removal based on thermal properties). The precision and accuracy in combination with literally no or minimized sample preparation enables a rapid isotope screening of solid samples that is of particular interest to support nuclear forensic and safeguard analysis.

  15. Rapid identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Panda, A; Kurapati, S; Samantaray, J C; Myneedu, V P; Verma, A; Srinivasan, A; Ahmad, H; Behera, D; Singh, U B

    2013-01-01

    The purpose of this study was to evaluate the identification of Mycobacterium tuberculosis which is often plagued with ambiguity. It is a time consuming process requiring 4-8 weeks after culture positivity, thereby delaying therapeutic intervention. For a successful treatment and disease management, timely diagnosis is imperative. We evaluated a rapid, proteomic based technique for identification of clinical mycobacterial isolates by protein profiling using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Freshly grown mycobacterial isolates were used. Acetonitrile/trifluoroacetic acid extraction procedure was carried out, following which cinnamic acid charged plates were subjected to identification by MALDI-TOF MS. A comparative analysis of 42 clinical mycobacterial isolates using the MALDI-TOF MS and conventional techniques was carried out. Among these, 97.61% were found to corroborate with the standard methods at genus level and 85.36% were accurate till the species level. One out of 42 was not in accord with the conventional assays because MALDI-TOF MS established it as Mycobacterium tuberculosis (log (score)>2.0) and conventional methods established it to be non-tuberculous Mycobacterium. MALDI-TOF MS was found to be an accurate, rapid, cost effective and robust system for identification of mycobacterial species. This innovative approach holds promise for early therapeutic intervention leading to better patient care.

  16. Rapid detection of porins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry

    Directory of Open Access Journals (Sweden)

    Yanyan eHU

    2015-08-01

    Full Text Available The rapid and cost-efficient determination of carbapenem resistance is an important prerequisite for the choice of an adequate antibiotic therapy. A MALDI-TOF MS-based assay was set up to detect porins in the current study. A loss of the components of porin alone such as OmpK35/OmpK36 or together with the production of carbapenemases will augment the carbapenem resistance. Ten strains of E. coli and eight strains of K. pneumoniae were conducted for both SDS-PAGE and MALDI-TOF MS analysis. MALDI-TOF/TOF MS analysis was then performed to verify the corrospondence of proteins between SDS-PAGE and MALDI-TOF MS. The results indicated that the mass spectrum of ca. 35,000-m/z, 37,000-m/z and 38,000-m/z peaks of E. coli ATCC 25922 corresponded to OmpA, OmpC and OmpF with molecular weight of approximately ca. 38 kDa, 40 kDa and 41 kDa in SDS-PAGE gel, respectively. The band of OmpC and OmpF porins were unable to be distinguished by SDS-PAGE, whereas it was easy to be differentiated by MALDI-TOF MS. As for K. pneumoniae isolates, the mass spectrum of ca. 36,000-m/z and 38,600-m/z peaks was observed corresponding to OmpA and OmpK36 with molecular weight of approximately ca. 40 kDa and 42 kDa in SDS-PAGE gel, respectively. Porin OmpK35 was not observed in the current SDS-PAGE, while a 37,000-m/z peak was found in K. pneumoniae ATCC 13883 and carbapenem-susceptible strains by MALDI-TOF MS which was presumed to be the characteristic peak of the OmpK35 porin. Compared with SDS-PAGE, MALDI-TOF MS is able to rapidly identify the porin-deficient strains within half an hour with better sensitivity, less cost, and is easier to operate and has less interference.

  17. Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS).

    Science.gov (United States)

    Del Pulgar, José Sánchez; Soukoulis, Christos; Biasioli, Franco; Cappellin, Luca; García, Carmen; Gasperi, Flavia; Granitto, Pablo; Märk, Tilmann D; Piasentier, Edi; Schuhfried, Erna

    2011-07-15

    In the present study, the recently developed proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS) technique was used for the rapid characterization of dry cured hams produced according to 4 of the most important Protected Designations of Origin (PDOs): an Iberian one (Dehesa de Extremadura) and three Italian ones (Prosciutto di San Daniele, Prosciutto di Parma and Prosciutto Toscano). In total, the headspace composition and respective concentration for nine Spanish and 37 Italian dry cured ham samples were analyzed by direct injection without any pre-treatment or pre-concentration. Firstly, we show that the rapid PTR-ToF-MS fingerprinting in conjunction with chemometrics (Principal Components Analysis) indicates a good separation of the dry cured ham samples according to their production process and that it is possible to set up, using data mining methods, classification models with a high success rate in cross validation. Secondly, we exploited the higher mass resolution of the new PTR-ToF-MS, as compared with standard quadrupole based versions, for the identification of the exact sum formula of the mass spectrometric peaks providing analytical information on the observed differences. The work indicates that PTR-ToF-MS can be used as a rapid method for the identification of differences among dry cured hams produced following the indications of different PDOs and that it provides information on some of the major volatile compounds and their link with the implemented manufacturing practices such as rearing system, salting and curing process, manufacturing practices that seem to strongly affect the final volatile organic profile and thus the perceived quality of dry cured ham. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Methods for conducting an introductory flight test engineering course

    Science.gov (United States)

    Shelton, Gentry

    This thesis serves as a guide to teaching an introductory flight test engineering course. There are several references pertaining to this area of study, but they are limited in their discussion of the details in how the professor can teach the course, how the professor can handle the logistics of the course, how the students can record and reduce the data and how the pilot can perform the flight test maneuvers. As such, this thesis, along with the materials developed therein, serves the reader as a guide to developing and conducting an introductory flight test engineering course. Materials were developed for the parties involved with an introductory flight test engineering course. Lesson plans and background theory is developed for the professor of the course. In-flight videos and flight maneuver manuals were developed to assist the pilot with flying the maneuvers. In-flight videos, a workbook and in-flight data collection manuals were developed to teach the students the basics of flight test engineering. A chapter is also dedicated to the logistics of the course for the professor. With these materials, any university interested in teaching the basics of flight test engineering will have a foundation to build upon. They will also be guided in the selection of a pilot who can perform the flight test maneuvers required of this course.

  19. A temperature programmed reaction/single-photon ionization time-of-flight mass spectrometry system for rapid investigation of gas-solid heterogeneous catalytic reactions under realistic reaction conditions

    NARCIS (Netherlands)

    He, Songbo; Cui, Huapeng; Lai, Yulong; Sun, Chenglin; Luo, Sha; Li, Haiyang; Seshan, Kulathuiyer

    2015-01-01

    A Temperature-Programmed Reaction (TPRn)/Single-Photon Ionization Time-of-Flight Mass Spectrometry (SPI-TOF-MS) system is described. The TPRn/SPI-TOF-MS system allows rapid characterization of heterogeneous catalytic reactions under realistic reaction conditions and at the same time allows for the

  20. [Rapid screening of fipronil and its metabolites in egg and egg products by solid phase extraction-liquid chromatography-quadrupole time-of-flight mass spectrometry].

    Science.gov (United States)

    Guo, Dehua; Shi, Yiyin; Li, You; Yi, Xionghai; Deng, Xiaojun; Xiao, Wenqing; Wang, Jian; Li, Xiao; Liu, Han; Shen, Weijian

    2017-12-08

    A method for rapid screening of fipronil and its metabolites in egg and egg products was developed by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF MS). The samples were extracted by acid-acetonitrile, cleaned up by PRiME HLB SPE. The separation was performed on a Poroshell 120 EC C18 column (150 mm×3 mm, 2.7 μm) with gradient elution using water and acetonitrile as mobile phases. The target compounds were monitored under negative ionization mode with electrospray ionization (ESI) source and two databases of accurate mass and fragment ions were created. The matrix effects in four kinds of egg and egg products were considered and the quantification was carried out by internal standard method. The results demonstrated that the linear ranges were from 0.1 to 5 μg/L with good correlation coefficients (r2>0.99). The limits of detection (LODs, S/N>3) and limits of quantitation (LOQs, S/N>10) were 0.2 μg/kg and 1 μg/kg, respectively. The recoveries of fipronil and its metabolites in different matrixes spiked with 1, 2 and 5 μg/kg varied from 82.6%-98.1%, and the relative standard deviations (RSDs) were between 3.8%-9.9% (n=6). The method can effectively correct the ionization suppression. It is sensitive, accurate and suitable for the rapid screening of fipronil, fipronil sulfide, fipronil sulfone and fipronil desulfinyl in egg, egg noodle, cake and mayonnaise.

  1. Matrix-assisted laser desorption/ionisation-time of flight mass spectrometry: rapid identification of bacteria isolated from patients with cystic fibrosis.

    Science.gov (United States)

    Baillie, S; Ireland, K; Warwick, S; Wareham, D; Wilks, M

    2013-01-01

    Despite extensive research into the diagnosis and management of cystic fibrosis (CF) over the past decades, sufferers still have a median life expectancy of less than 37 years. Respiratory tract infections have a significant role in increasing the morbidity and mortality of patients with CF via a progressive decline in lung function. Rapid identification of organisms recovered from CF sputum is necessary for effective management of respiratory tract infections; however, standard techniques of identification are slow, technically demanding and expensive. The aim of this study is to asses the suitability of matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS) in identifying bacteria isolated from the respiratory tract of patients with CF, and is assessed by testing the accuracy of MALDI-TOF MS in identifying samples from a reference collection of rare CF strains in conjunction with comparing MALDI-TOF MS and standard techniques in identifying clinical isolates from sputum samples of CF patients. MALDI-TOF MS accurately identified 100% of isolates from the reference collection of rare CF pathogens (EuroCare CF collection). The isolate identification given by MALDI-TOF MS agreed with that given by standard techniques for 479/481 (99.6%) clinical isolates obtained from respiratory samples provided by patients with CE In two (0.4%) of 481 samples there was a discrepancy in identification between MALDI-TOF MS and standard techniques. One organism was identified as Pseudomonas aeruginosa by MALDI-TOF but could only be identified by the laboratory's standard methods as of the Pseudomonas genus. The second organism was identified as P. beteli by MALDI-TOF MS and Stenotrophomonas maltophilia by standard methods. This study shows that MALDI-TOF MS is superior to standard techniques in providing cheap, rapid and accurate identification of CF sputum isolates.

  2. Fast Adaptive Maneuvering Experiment (Fame)

    Science.gov (United States)

    1992-03-29

    flrir and an area cleared to insure unimpeded flight of the helicopter. If a permanent mounting cannot be made, two or more 25 lb bags of lead shot have...DecoueAndStoreServoString(void); void InitServos(void); void SendPuleePA PS(int OCnum, int PAnum , int PBnum); void OC3_ISR(void); void OC4_ISR(void); void 0C5 ISR(void...optional RAM is installed, then modify the limits accordingly SFAMEIAFOSR Hintz. March 29, 1992 check endof(.heap) >- Oxlfff fatal ",C:!e area tco large

  3. Cassini's Maneuver Automation Software (MAS) Process: How to Successfully Command 200 Navigation Maneuvers

    Science.gov (United States)

    Yang, Genevie Velarde; Mohr, David; Kirby, Charles E.

    2008-01-01

    To keep Cassini on its complex trajectory, more than 200 orbit trim maneuvers (OTMs) have been planned from July 2004 to July 2010. With only a few days between many of these OTMs, the operations process of planning and executing the necessary commands had to be automated. The resulting Maneuver Automation Software (MAS) process minimizes the workforce required for, and maximizes the efficiency of, the maneuver design and uplink activities. The MAS process is a well-organized and logically constructed interface between Cassini's Navigation (NAV), Spacecraft Operations (SCO), and Ground Software teams. Upon delivery of an orbit determination (OD) from NAV, the MAS process can generate a maneuver design and all related uplink and verification products within 30 minutes. To date, all 112 OTMs executed by the Cassini spacecraft have been successful. MAS was even used to successfully design and execute a maneuver while the spacecraft was in safe mode.

  4. The mechanics and behavior of cliff swallows during tandem flights.

    Science.gov (United States)

    Shelton, Ryan M; Jackson, Brandon E; Hedrick, Tyson L

    2014-08-01

    Cliff swallows (Petrochelidon pyrrhonota) are highly maneuverable social birds that often forage and fly in large open spaces. Here we used multi-camera videography to measure the three-dimensional kinematics of their natural flight maneuvers in the field. Specifically, we collected data on tandem flights, defined as two birds maneuvering together. These data permit us to evaluate several hypotheses on the high-speed maneuvering flight performance of birds. We found that high-speed turns are roll-based, but that the magnitude of the centripetal force created in typical maneuvers varied only slightly with flight speed, typically reaching a peak of ~2 body weights. Turning maneuvers typically involved active flapping rather than gliding. In tandem flights the following bird copied the flight path and wingbeat frequency (~12.3 Hz) of the lead bird while maintaining position slightly above the leader. The lead bird turned in a direction away from the lateral position of the following bird 65% of the time on average. Tandem flights vary widely in instantaneous speed (1.0 to 15.6 m s(-1)) and duration (0.72 to 4.71 s), and no single tracking strategy appeared to explain the course taken by the following bird. © 2014. Published by The Company of Biologists Ltd.

  5. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry rapid detection of carbapenamase activity in Acinetobacter baumannii isolates.

    Science.gov (United States)

    Abouseada, Noha; Raouf, May; El-Attar, Eman; Moez, Pacinte

    2017-01-01

    Carbapenamase-producing Acinetobacter baumannii are an increasing threat in hospitals and Intensive Care Units. Accurate and rapid detection of carbapenamase producers has a great impact on patient improvement and aids in implementation of infection control measures. In this study, we describe the use of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF MS) to identify carbapenamase-producing A. baumannii isolates in up to 3 h. Isolates and Methods: A total of 50 A. baumannii isolates (of which 39 were carabapenamase producers) were tested using MALDI TOF MS. Isolates were incubated for 3 h with 0.25 mg/ml up to 2 mg/ml of imipenem (IMP) at 37°C. Supernatants were analysed by MALDI TOF to analyse peaks corresponding to IMP (300 Da) and an IMP metabolite (254 Da) using UltrafleXtreme (Bruker Daltonics, Bremen, Germany). All carbapenamase-producing isolates were evidenced by the disappearance or reduction in intensity of the 300 Da peak of IPM and the appearance of a 254 Da peak of the IPM metabolite. In isolates that did not produce carbapenamase, the IPM 300 Da peak remained intact. MALDI TOF is a promising tool in the field of diagnostic microbiology that has the ability to transfer identification and antimicrobial susceptibility testing time from days to hours.

  6. Mass fingerprint analysis of spider mites (Acari) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid discrimination.

    Science.gov (United States)

    Kajiwara, Hideyuki; Hinomoto, Norihide; Gotoh, Tetsuo

    2016-04-30

    Discrimination of spider mite species is still performed using morphological information, although DNA and other biological approaches have been attempted for identification purposes. These techniques need much time, are expensive, and require specialist staff. As an alternative, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) analysis is applied for rapid discrimination of spider mite species. Spider mites were analyzed using MALDI-TOFMS after extraction with 70% formic acid and acetonitrile. A single spider mite was also analyzed directly on double-sided carbon tape. A dendrogram was compiled from the MS data. Evolutionarily close and morphologically similar spider mites, the Kanzawa (Tetranychus kanzawai) and the two-spotted (T. urticae) spider mites, as well as three other related species of spider mites, could be discriminated by mass fingerprints. Although female adults were mainly used in this report, male adults and nymphs showed almost the same mass fingerprints and were not considered to affect discrimination capability. A single spider mite on double-sided carbon tape was analyzed directly by MALDI-TOFMS. Spider mites could be analyzed directly by MALDI-TOFMS, with evolutionarily and morphologically closely related spider mites showing different mass fingerprints, allowing for their identification. Copyright © 2016 John Wiley & Sons, Ltd.

  7. An adaptive maneuvering logic computer program for the simulation of one-on-one air-to-air combat. Volume 1: General description

    Science.gov (United States)

    Burgin, G. H.; Fogel, L. J.; Phelps, J. P.

    1975-01-01

    A technique for computer simulation of air combat is described. Volume 1 decribes the computer program and its development in general terms. Two versions of the program exist. Both incorporate a logic for selecting and executing air combat maneuvers with performance models of specific fighter aircraft. In the batch processing version the flight paths of two aircraft engaged in interactive aerial combat and controlled by the same logic are computed. The realtime version permits human pilots to fly air-to-air combat against the adaptive maneuvering logic (AML) in Langley Differential Maneuvering Simulator (DMS). Volume 2 consists of a detailed description of the computer programs.

  8. Analysis, Validation, Prediction And Fundamental Understanding Of Rotor Blade Loads In An Unsteady Maneuver

    Science.gov (United States)

    Abhishek, Abhishek

    This study predicts, analyzes, and isolates the mechanisms of main rotor airloads, structural loads, and swashplate servo loads in a severe unsteady maneuver. The objective is, to develop a comprehensive transient rotor analysis for predicting maneuver loads. The main rotor structural loads encountered during unsteady maneuvers are important to size different critical components of the rotor system, particularly for advanced combat helicopters. These include the blade structural loads, control/pitch-link loads, and swashplate servo loads. Accurate and consistent prediction of maneuver loads is necessary to reduce the risks and costs associated with use of prior flight test data as a basis for design. The mechanism of rotor loads in different level flight regimes is well understood -- transonic shock in high speed flight, inter-twinning of blade tip vortices below the rotor disk at low speed transonic flight, and two dynamic stall cycles on retreating blade during high altitude dynamic stall flight. All these physical phenomena can occur simultaneously during a maneuver. The goal is to understand the key mechanisms involved in maneuver and model them accurately. To achieve this, the aerodynamics and structural dynamics of UH-60A rotor in unsteady maneuvering flight is studied separately. For identification of prediction deficiencies in each, first, the measured lift, drag, pitching moment and damper force from the UH-60A Flight Test Program for UTTAS pull-up maneuver (C11029: 2.16g pull-up maneuver) are used to obtain an accurate set of deformations. A multibody finite element blade model, developed for this purpose, is used to perform measured airloads analysis. Next, the resultant blade deformations are used to predict the airloads using lifting-line and RANS CFD aerodynamic models. Both lifting-line as well as CFD analyses predict all three stall cycles with prescribed deformations. From the airloads predicted using prescribed deformations, it is established that

  9. Techniques for Improving the Performance of Future EVA Maneuvering Systems

    Science.gov (United States)

    Williams, Trevor W.

    1995-01-01

    The Simplified Aid for EVA Rescue (SAFER) is a small propulsive backpack that was developed as an in-house effort at Johnson Space Center; it is a lightweight system which attaches to the underside of the Primary Life Support Subsystem (PLSS) backpack of the Extravehicular Mobility Unit (EMU). SAFER provides full six-axis control, as well as Automatic Attitude Hold (AAH), by means of a set of cold-gas nitrogen thrusters and a rate sensor-based control system. For compactness, a single hand controller is used, together with mode switching, to command all six axes. SAFER was successfully test-flown on the STS-64 mission in September 1994 as a Development Test Objective (DTO); development of an operational version is now proceeding. This version will be available for EVA self-rescue on the International Space Station and Mir, starting with the STS-86/Mir-7 mission in September 1997. The DTO SAFER was heavily instrumented, and produced in-flight data that was stored in a 12 MB computer memory on-board. This has allowed post-flight analysis to yield good estimates for the actual mass properties (moments and products of inertia and center of mass location) encountered on-orbit. By contrast, Manned Maneuvering Unit (MMU) post-flight results were generated mainly from analysis of video images, and so were not very accurate. The main goal of the research reported here was to use the detailed SAFER on-orbit mass properties data to optimize the design of future EVA maneuvering systems, with the aim being to improve flying qualities and/or reduce propellant consumption. The Automation, Robotics and Simulation Division Virtual Reality (VR) Laboratory proved to be a valuable research tool for such studies. A second objective of the grant was to generate an accurate dynamics model in support of the reflight of the DTO SAFER on STS-76/Mir-3. One complicating factor was the fact that a hand controller stowage box was added to the underside of SAFER on this flight; the position of

  10. Computing and Visualizing Reachable Volumes for Maneuvering Satellites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, M; de Vries, W H; Pertica, A J; Olivier, S S

    2011-09-11

    Detecting and predicting maneuvering satellites is an important problem for Space Situational Awareness. The spatial envelope of all possible locations within reach of such a maneuvering satellite is known as the Reachable Volume (RV). As soon as custody of a satellite is lost, calculating the RV and its subsequent time evolution is a critical component in the rapid recovery of the satellite. In this paper, we present a Monte Carlo approach to computing the RV for a given object. Essentially, our approach samples all possible trajectories by randomizing thrust-vectors, thrust magnitudes and time of burn. At any given instance, the distribution of the 'point-cloud' of the virtual particles defines the RV. For short orbital time-scales, the temporal evolution of the point-cloud can result in complex, multi-reentrant manifolds. Visualization plays an important role in gaining insight and understanding into this complex and evolving manifold. In the second part of this paper, we focus on how to effectively visualize the large number of virtual trajectories and the computed RV. We present a real-time out-of-core rendering technique for visualizing the large number of virtual trajectories. We also examine different techniques for visualizing the computed volume of probability density distribution, including volume slicing, convex hull and isosurfacing. We compare and contrast these techniques in terms of computational cost and visualization effectiveness, and describe the main implementation issues encountered during our development process. Finally, we will present some of the results from our end-to-end system for computing and visualizing RVs using examples of maneuvering satellites.

  11. Fully automatic guidance and control for rotorcraft nap-of-the-Earth flight following planned profiles. Volume 1: Real-time piloted simulation

    Science.gov (United States)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  12. Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory.

    Science.gov (United States)

    Wattal, C; Oberoi, J K; Goel, N; Raveendran, R; Khanna, S

    2017-05-01

    The study evaluates the utility of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) Vitek MS for identification of microorganisms in the routine clinical microbiology laboratory. From May 2013 to April 2014, microbial isolates recovered from various clinical samples were identified by Vitek MS. In case of failure to identify by Vitek MS, the isolate was identified using the Vitek 2 system (bioMerieux, France) and serotyping wherever applicable or otherwise by nucleic acid-mediated methods. All the moulds were identified by Lactophenol blue mounts, and mycobacterial isolates were identified by molecular identification systems including AccuProbe (bioMerieux, France) or GenoType Mycobacterium CM (Hain Lifescience, Germany). Out of the 12,003 isolates, the Vitek MS gave a good overall ID at the genus and or species level up to 97.7% for bacterial isolates, 92.8% for yeasts and 80% for filamentous fungi. Of the 26 mycobacteria tested, only 42.3% could be identified using the Saramis RUO (Research Use Only) database. VITEK MS could not identify 34 of the 35 yeast isolates identified as C. haemulonii by Vitek 2. Subsequently, 17 of these isolates were identified as Candida auris (not present in the Vitek MS database) by 18S rRNA sequencing. Using these strains, an in-house superspectrum of C. auris was created in the VITEK MS database. Use of MALDI-TOF MS allows a rapid identification of aerobic bacteria and yeasts in clinical practice. However, improved sample extraction protocols and database upgrades with inclusion of locally representative strains is required, especially for moulds.

  13. Rapid and sensitive serum glucose determination using chemical labeling coupled with black phosphorus-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Wang, Qing; Yu, Lei; Qi, Chu-Bo; Ding, Jun; He, Xiao-Mei; Wang, Ren-Qi; Feng, Yu-Qi

    2018-01-01

    Monitoring the concentration of blood glucose in patients is a key component of good medical diagnoses. Therefore, developing an accurate, rapid and sensitive strategy for monitoring blood glucose is of vital importance. We proposed a strategy for serum glucose determination combining 2-(4-boronobenzyl) isoquinolin-2-ium bromide chemical labeling with black phosphorus assisted laser desorption ionization-time of flight mass spectrometry (CL-BP/ALDI-TOF MS). The entire analytical process consisted of 1min of protein precipitation and 3min of chemical labeling in a microwave oven prior to the BP/ALDI-TOF MS analysis. The analysis can be completed in 5min with high throughput and extremely low sample consumption. Good linearity for glucose was obtained with a correlation coefficient (R) of 0.9986. The limit of detection (LOD) and limit of quantification (LOQ) were 11.5 fmol and 37.5 fmol, respectively. Satisfied reproducibility and reliability were gained by evaluation of the intra- and inter-day precisions with relative standard deviations (RSDs) less than 7.2% and relative recoveries ranging from 87.1% to 108.1%, respectively. The proposed strategy was also applied for the analysis of endogenous glucose in various serum samples and the results were consistent with those obtained using the hexokinase method in a clinical laboratory. Considering the results, the proposed CL-BP/ALDI-TOF MS strategy has proven to be reliable, fast, and sensitive for quantitative analysis of serum glucose. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Reliable and reproducible method for rapid identification of Nocardia species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Toyokawa, Masahiro; Kimura, Keigo; Nishi, Isao; Sunada, Atsuko; Ueda, Akiko; Sakata, Tomomi; Asari, Seishi

    2013-01-01

    Recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been challenged for the identification of Nocardia species. However, the standard ethanol-formic acid extraction alone is insufficient in allowing the membrane proteins of Nocardia species to be ionized by the matrix. We therefore aimed to establish our new extraction method for the MALDI-TOF MS-based identification of Nocardia species isolates. Our modified extraction procedure is through dissociation in 0.5% Tween-20 followed by bacterial heat-inactivation, mechanical breaking of the cell wall by acid-washed glass beads and protein extraction with formic acid and acetonitrile. As reference methods for species identification, full-length 16S rRNA gene sequencing and some phenotypical tests were used. In a first step, we made our own Nocardia database by analyzing 13 strains (13 different species including N. elegans, N. otitidiscaviarum, N. asiatica, N. abscessus, N. brasiliensis, N. thailandica, N. farcinica, N. nova, N. mikamii, N. cyriacigeorgica, N. asteroids, Nocardiopsis alba, and Micromonospora sp.) and registered to the MALDI BioTyper database. Then we established our database. The analysis of 12 challenge strains using the our database gave a 100% correct identification, including 8 strains identified to the species level and 4 strains to the genus level (N. elegans, N. nova, N. farcinica, Micromonospora sp.) according to the manufacture's log score specifications. In the estimation of reproducibility of our method intended for 4 strains, both within-run and between-run reproducibility were excellent. These data indicates that our method for rapid identification of Nocardia species is with reliability, reproducibility and cost effective.

  15. Impact of rapid microbial identification directly from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on patient management.

    Science.gov (United States)

    Martiny, D; Debaugnies, F; Gateff, D; Gérard, M; Aoun, M; Martin, C; Konopnicki, D; Loizidou, A; Georgala, A; Hainaut, M; Chantrenne, M; Dediste, A; Vandenberg, O; Van Praet, S

    2013-12-01

    For septic patients, delaying the initiation of antimicrobial therapy or choosing an inappropriate antibiotic can considerably worsen their prognosis. This study evaluated the impact of rapid microbial identification (RMI) from positive blood cultures on the management of patients with suspected sepsis. During a 6-month period, RMI by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was performed for all new episodes of bacteraemia. For each patient, the infectious disease specialist was contacted and questioned about his therapeutic decisions made based on the Gram staining and the RMI. This information was collected to evaluate the number of RMIs that led to a therapeutic change or to a modification of the patient's general management (e.g. fast removal of infected catheters). During the study period, 277 new episodes of bacteraemia were recorded. In 71.12% of the cases, MALDI-TOF MS resulted in a successful RMI (197/277). For adult and paediatric patients, 13.38% (21/157) and 2.50% (1/40) of the RMIs, respectively, resulted in modification of the treatment regimen, according to the survey. In many other cases, the MALDI-TOF MS was a helpful tool for infectious disease specialists because it confirmed suspected cases of contamination, especially in the paediatric population (15/40 RMIs, 37.50%), or suggested complementary diagnostic testing. This study emphasizes the benefits of RMI from positive blood cultures. Although the use of this technique represents an extra cost for the laboratory, RMI using MALDI-TOF MS has been implemented in our daily practice. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  16. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  17. Optimal Orbit Maneuvers with Electrodynamic Tethers

    Science.gov (United States)

    2006-06-01

    materials ( Dyneema , T T pecially with regard to the feasible set of maneuve 42 Eric L. M. Lanoix, Arun...Kevlar and Dyneema suffered 3-5 mm penetrations. The 1 mm strands of Kevlar and Dyneema would lasts only days in orbit, while the 0.3 mm strands of e

  18. A simplex method for the orbit determination of maneuvering satellites

    Science.gov (United States)

    Chen, JianRong; Li, JunFeng; Wang, XiJing; Zhu, Jun; Wang, DanNa

    2018-02-01

    A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0 m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.

  19. Experimental Analysis of Steady-State Maneuvering Effects on Transmission Vibration Patterns Recorded in an AH-1 Cobra Helicopter

    Science.gov (United States)

    Huff, Edward M.; Dzwonczyk, Mark; Norvig, Peter (Technical Monitor)

    2000-01-01

    Flight experiment was designed primarily to determine the extent to which steady-state maneuvers influence characteristic vibration patterns measured at the input pinion and output annulus gear locations of the main transmission. If results were to indicate that maneuvers systematically influence vibration patterns, more extensive studies would be planned to explore the response surface. It was also designed to collect baseline data for comparison with experimental data to be recorded at a later date from test stands at Glenn Research Center. Finally, because this was the first vibration flight study on the Cobra aircraft, considerable energy was invested in developing an in-flight recording apparatus, as well as exploring acceleration mounting methods, and generally learning about the overall vibratory characteristics of the aircraft itself.

  20. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators

    Science.gov (United States)

    Onal, Cagdas D.; Rus, Daniela

    2014-01-01

    Abstract In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input–output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion. PMID:27625912

  1. Colisional Cloud Debris and Propelled Evasive Maneuvers

    Science.gov (United States)

    Ferreira, L. S.; Jesus, A. D. C.; Carvalho, T. C. F.; Sousa, R. R.

    2017-10-01

    Space debris clouds exist at various altitudes in the environment outside the Earth. Fragmentation of debris and/or collision between the debris of a cloud increases the amount of debris, producing smaller debris. This event also increases significantly the chances of collision with operational vehicles in orbit. In this work we study clouds of debris that are close to a spacecraft in relation to its distance from the center of the Earth. The results show several layers of colliding debris depending on their size over time of evasive maneuvers of the vehicle. In addition, we have tested such maneuvers for propulsion systems with a linear and exponential mass variation model. The results show that the linear propulsion system is more efficient.

  2. Concept of a Maneuvering Load Control System and Effect on the Fatigue Life Extension

    Directory of Open Access Journals (Sweden)

    N. Paletta

    Full Text Available Abstract This paper presents a methodology for the conceptual design of a Maneuver Load Control system taking into account the airframe flexibility. The system, when switched on, is able to minimize the bending moment augmentation at a wing station near the wing root during an unsteady longitudinal maneuver. The reduction of the incremental wing bending moment due to maneuvers can lead to benefits such as improved pay-loads/gross weight capabilities and/or extended structural fatigue life. The maneuver is performed by following a desired vertical load factor law with elevators deflections, starting from the trim equilibrium in level flight. The system observes load factor and structural bending through accelerometers and calibrated strain sensors and then sends signals to a computer that symmetrically actuates ailerons for reducing the structural bending and elevators for compensating the perturbation to the longitudinal equilibrium. The major limit of this kind of systems appears when it has to be installed on commercial transport aircraft for reduced OEW or augmented wing aspect-ratio. In this case extensive RAMS analyses and high redundancy of the MLC related sub-systems are required by the Certification Authority. Otherwise the structural design must be performed at system off. Thus the unique actual benefit to be gained from the adoption of a MLC system on a commercial transport is the fatigue life extension. An application to a business aircraft responding to the EASA Certification Specifications, Part 25, has been performed. The aircraft used for the numerical application is considered only as a test case-study. Most of design and analysis considerations are applicable also to other aircraft, such as unmanned or military ones, although some design requirements can be clearly different. The estimation of the fatigue life extension of a structural joint (wing lower skin-stringer, located close to the wing root, has been estimated by showing

  3. Operational Implications of Pivots of Maneuver,

    Science.gov (United States)

    1991-09-05

    Year, Month, Day) 15. PAGE COUNT Vlonograph I FROM TO -q/0q/q1 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if...maneuver ABSTRACT (Continue on reverse if necessary and identify by block number) 1his monograph examines the concpt of pivots of milaneuver from the...achieve decisive victory against the enem. The focus of logistcal and lomnt operations was on the pivots of ,,n,e,𔄂-4 . established by the operationa

  4. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    Science.gov (United States)

    Song, Young-Joo; Bae, Jonghee; Kim, Young-Rok; Kim, Bang-Yeop

    2016-12-01

    In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center

  5. Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2016-12-01

    Full Text Available In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the 1st lunar orbit insertion (LOI maneuver of the Korea Pathfinder Lunar Orbiter (KPLO mission. During the early design phase of the system, associate analysis is an essential design factor as the 1st LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the 1st LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the 1st elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground

  6. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    Science.gov (United States)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  7. Optimization of dynamic soaring maneuvers to enhance endurance of a versatile UAV

    Science.gov (United States)

    Mir, Imran; Maqsood, Adnan; Akhtar, Suhail

    2017-06-01

    Dynamic soaring is a process of acquiring energy available in atmospheric wind shears and is commonly exhibited by soaring birds to perform long distance flights. This paper aims to demonstrate a viable algorithm which can be implemented in near real time environment to formulate optimal trajectories for dynamic soaring maneuvers for a small scale Unmanned Aerial Vehicle (UAV). The objective is to harness maximum energy from atmosphere wind shear to improve loiter time for Intelligence, Surveillance and Reconnaissance (ISR) missions. Three-dimensional point-mass UAV equations of motion and linear wind gradient profile are used to model flight dynamics. Utilizing UAV states, controls, operational constraints, initial and terminal conditions that enforce a periodic flight, dynamic soaring problem is formulated as an optimal control problem. Optimized trajectories of the maneuver are subsequently generated employing pseudo spectral techniques against distant UAV performance parameters. The discussion also encompasses the requirement for generation of optimal trajectories for dynamic soaring in real time environment and the ability of the proposed algorithm for speedy solution generation. Coupled with the fact that dynamic soaring is all about immediately utilizing the available energy from the wind shear encountered, the proposed algorithm promises its viability for practical on board implementations requiring computation of trajectories in near real time.

  8. Rapid identification of bacillus anthracis spores in suspicious powder samples by using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)

    NARCIS (Netherlands)

    Dybwad, M.; Laaken, A.L. van der; Blatny, J.M.; Paauw, A.

    2013-01-01

    Rapid and reliable identification of Bacillus anthracis spores in suspicious powders is important to mitigate the safety risks and economic burdens associated with such incidents. The aim of this study was to develop and validate a rapid and reliable laboratory- based matrix-assisted laser

  9. Aqua/Aura Updated Inclination Adjust Maneuver Performance Prediction Model

    Science.gov (United States)

    Boone, Spencer

    2017-01-01

    This presentation will discuss the updated Inclination Adjust Maneuver (IAM) performance prediction model that was developed for Aqua and Aura following the 2017 IAM series. This updated model uses statistical regression methods to identify potential long-term trends in maneuver parameters, yielding improved predictions when re-planning past maneuvers. The presentation has been reviewed and approved by Eric Moyer, ESMO Deputy Project Manager.

  10. Orbit Estimation of Non-Cooperative Maneuvering Spacecraft

    Science.gov (United States)

    2015-06-01

    Circular-to- Elliptical Maneuvers . . . . . . . . . . . . . . . . . . . . . . . 83 5.4 Elliptical -to- Elliptical Maneuvers...Error for the Bad-Bad Configuration Circular-to- Elliptical Maneuver . 103 5.7 Reconstruction After Third Pass Errors Compared to the Adaptive Filter...the next observation: ti, yi,Ri 4 Propagate reference trajectory xre f ,i−1 to ti and calculate xre f ,i and Φ(ti, t0) Initial condition: xre f ,i−1

  11. Development of a Rapid and Accurate Identification Method for Citrobacter Species Isolated from Pork Products Using a Matrix-Assisted Laser-Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Kwak, Hye-Lim; Han, Sun-Kyung; Park, Sunghoon; Park, Si Hong; Shim, Jae-Yong; Oh, Mihwa; Ricke, Steven C; Kim, Hae-Yeong

    2015-09-01

    Previous detection methods for Citrobacter are considered time consuming and laborious. In this study, we have developed a rapid and accurate detection method for Citrobacter species in pork products, using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). A total of 35 Citrobacter strains were isolated from 30 pork products and identified by both MALDI-TOF MS and 16S rRNA gene sequencing approaches. All isolates were identified to the species level by the MALDI-TOF MS, while 16S rRNA gene sequencing results could not discriminate them clearly. These results confirmed that MALDI-TOF MS is a more accurate and rapid detection method for the identification of Citrobacter species.

  12. Enhanced performance for the manned maneuvering unit

    Science.gov (United States)

    Bingham, Paul E.

    We have all seen the Manned Maneuvering Unit (MMU) on television, in the newspaper, magazines and any number of other places. It is probably one of the most widely recognized articles ever put into orbit. This paper briefly describes the MMU. The description includes an overview of the controls and physical features and a discussion of the propulsion and electrical systems. Operational experience to date is briefly covered. The MMU was first used on STS 41-B for the first untethered space walk on February 7, 1984. Next usage was for the Solar Max mission on STS 41-C, followed by the retrieval of the Westar and Palapa communication satellites on mission STS 51-A in November, 1984. One of the "lessons learned" during these space operations was the need for enhanced performance by the MMU, and leads into a discussion of how that increased performance capability will be provided. Current work on a Propellant Tank Kit (PTK), which will provide enhanced performance, is shown. The PTK will provide sufficient propellant storage capability such that the MMU with PTK will have twice the previous delta velocity capability; i.e., double the MMU's maneuvering ability. Results of development testing in the NASA/JSC Weightless Environment Test Facility are included. Current status of PTK development is presented. This paper ends with a brief discussion of proposed space operations using the enhanced MMU performance in erecting space structures from the Space Shuttle, assembling and maintaining Space Station, rescue-transfer of astronauts and other space operations.

  13. Evaluation of the Trade Space Between UAS Maneuver Performance and SAA System Performance Requirements

    Science.gov (United States)

    Jack, Devin P.; Hoffler, Keith D.; Johnson, Sally C.

    2014-01-01

    to know in which group an aircraft belongs for a given flight condition and encounter is included. The groups are specific to airplane, flight condition, and encounter, rather than airplane-only specific. Results and methodology for developing UAS maneuver performance requirements are presented for each maneuver as well. Results for the vertical maneuver indicate that a minimum specific excess power value can assure a minimum CPA for a given time-to-go prediction. However, smaller values of specific excess power may achieve or exceed the same CPA if the UAS has sufficient speed to trade for altitude. Level turn results are less impacted by specific excess power and are presented as a function of turn rate. The effect of altitude is also discussed for the turns. Next steps and future work are discussed. Future studies will lead to better quantification of the preliminary results and cover the remainder of the proposed test matrix. It is anticipated that this will be done in conjunction with RTCA SC-228 over the next few months.

  14. An electrospray/inductively coupled plasma dual-source time-of-flight mass spectrometer for rapid metallomic and speciation analysis. Part 1. Molecular channel characterization.

    Science.gov (United States)

    Rogers, Duane A; Ray, Steven J; Hieftje, Gary M

    2010-04-01

    A new time-of-flight mass spectrometer has been developed that uses an electrospray source and an inductively coupled plasma to extract molecular, atomic, and isotopic information simultaneously from a single sample. This paper will focus on characterization of the ESI channel. Sensitivities are reported for hexadecyltrimethylammonium, tetrahexylammonium, tetraoctylammonium, myoglobin, insulin, cyanocobalamin, leucine enkephalin, and alcohol dehydrogenase. Skimmer-nozzle collisionally induced dissociation is explored for adduct removal and analyte fragmentation on the ESI channel for tetraoctylammonium ion and leucine enkephalin. Long-term and short-term spray stability is also examined.

  15. Rapid identification of positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry using prewarmed agar plates.

    Science.gov (United States)

    Bhatti, M M; Boonlayangoor, S; Beavis, K G; Tesic, V

    2014-12-01

    This study describes an inexpensive and straightforward method for identifying bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) directly from positive blood cultures using prewarmed agar plates. Different inoculation methods and incubation times were evaluated to determine the optimal conditions. The two methods using pelleted material from positive culture bottles performed best. In particular, the pellet streak method correctly identified 94% of the Gram negatives following 4 h of incubation and 98% of the Gram positives following 6 h of incubation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    Science.gov (United States)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  17. 14 CFR 23.155 - Elevator control force in maneuvers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Elevator control force in maneuvers. 23.155 Section 23.155 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Controllability and Maneuverability § 23.155 Elevator control force in maneuvers. (a) The elevator control force...

  18. Safety analysis of passing maneuvers using extreme value theory

    Directory of Open Access Journals (Sweden)

    Haneen Farah

    2017-04-01

    The results indicate that this is a promising approach for safety evaluation. On-going work of the authors will attempt to generalize this method to other safety measures related to passing maneuvers, test it for the detailed analysis of the effect of demographic factors on passing maneuvers' crash probability and for its usefulness in a traffic simulation environment.

  19. Art concept of Astronaut in Maneuvering Unit during EVA

    Science.gov (United States)

    1966-01-01

    This artist concept of a Gemini astronaut, wearing an Astronaut Maneuvering Unit, during extravehicular activity. An umbilical tether secures the astronaut to the Gemini spacecraft (upper left). The Agena Target Vehicle (lower right) is used for Gemini rendezvous and docking maneuvers.

  20. Braking news: link between crash severity and crash avoidance maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    crash avoidance maneuvers and crash severity, with differences emerging for different critical events. Moreover, results showed two trends:(a) most drivers failed to act when facing critical events and (b) drivers rarely performed crash avoidance maneuvers that were correlated with a higher probability...

  1. Linking spatial and dynamic models for traffic maneuvers

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter; Wisniewski, Rafal

    2015-01-01

    For traffic maneuvers of multiple vehicles on highways we build an abstract spatial and a concrete dynamic model. In the spatial model we show the safety (collision freedom) of lane-change maneuvers. By linking the spatial and dynamic model via suitable refinements of the spatial atoms to distance...... measures, the safety carries over to the concrete model....

  2. Rendezvous and Quasi-Rendezvous Maneuvers With Space Debris

    Science.gov (United States)

    Carvalho, T. C. F.; Jesus, A. D. C.; Ferreira, L. S.; Sousa, R. R.

    2017-10-01

    Rendezvous maneuvers are very useful in space missions operations. The encounters between spacecraft, between a spacecraft and a space debris, between a probe and a celestial body, between a spacecraft and a nearby object (NEO) as a mitigation measure to protect the Earth against collision and other applications, make use of these maneuvers. We define Quasi-Rendezvous maneuvers as those performed at low velocity, such that damage to the spacecraft is negligible. In this work, we study the distribution of these maneuvers as a function of the final relative velocities between a spacecraft and a spatial debris. The results were divided into two types: the first, for the dynamics subject only to the terrestrial gravitational force and the second, including the propulsion force acting on the vehicle. They show that the maneuvers propelled can approach the objects, overcoming the effect of the gravity of the earth for very small speeds.

  3. Planar reorientation maneuvers of space multibody systems using internal controls

    Science.gov (United States)

    Reyhanoglu, Mahmut; Mcclamroch, N. H.

    1992-01-01

    In this paper a reorientation maneuvering strategy for an interconnection of planar rigid bodies in space is developed. It is assumed that there are no exogeneous torques, and torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero in this paper. The maneuver strategy uses the nonintegrability of the expression for the angular momentum. We demonstrate that large-angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is briefly summarized. Specifications and computer simulations of a specific reorientation maneuver, and the corresponding control strategies, are described.

  4. Study of turning takeoff maneuver in free-flying dragonflies: effect of dynamic coupling

    CERN Document Server

    Zeyghami, Samane

    2015-01-01

    Turning takeoff flights of several dragonflies were recorded during which a dragonfly takes off while changing the flight direction at the same time. Center of mass was elevated about 1-2 body lengths. Five of these maneuvers were selected for 3D body surface reconstruction and the body orientation measurement. In oppose to conventional banked turn model, which neglects interactions between the rotational motions, in this study we investigated the strength of the dynamic coupling by dividing pitch, roll and yaw angular accelerations into two contributions: one from aerodynamic torque and one from dynamic coupling effect. The latter term is referred to as Dynamic Coupling Acceleration (DCA). The DCA term can be measured directly from instantaneous rotational velocities of the insect. We found a strong correlation between pitch and yaw velocities at the end of each wingbeat and the time integral of the corresponding DCA term. Generation of pitch, roll and yaw torques requires different aerodynamic mechanisms an...

  5. Singular trajectories for time-optimal half-loop maneuvers of a high alpha fighter aircraft

    Science.gov (United States)

    Hoffman, Eric; Stalford, Harold

    1989-01-01

    Consideration is given to the problem of deriving a time-optimal open-loop control for the half-loop maneuver of a high-alpha aircraft, with initial conditions Mach 0.6 and 15,000 feet. Pontriagin's maximum principle is used to derive candidate optimal solutions. Using the two-point boundary-value algorithm, the flight path angle is maximized for various increasing specified final times until a final time of 13.6 sec yields a 180-deg flight-path angle. As the final time increased from 0.0 to 13.6 sec, the optimization process revealed 13 distinct switching structures of the control law, of which 11 contained singular arcs, and two had double singular arcs.

  6. Space shuttle orbital maneuvering system failure detection and identification software requirements (uncontrolled)

    Science.gov (United States)

    Damario, L. A.; Vullo, J. P.

    1976-01-01

    Candidate designs and their software implementation are presented for the Orbital Maneuvering System (OMS) Failure Detection and Identification (FDI) algorithms in the Redundance Management (RM) module of the Space Shuttle Guidance, Navigation, and Control (GN&C) software. The OMS engine FDI algorithm monitors OMS engine thrust performance, and the OMS actuator FDI algorithm monitors OMS gimbal actuator performance. The software functional requirements of the algorithms are described along with the objective of each algorithm. A list of the assumptions which have governed its design, input/output requirements, a functional description of the algorithm (including a functional block diagram), and input interface requirements are given. The HAL (the language of the space shuttle flight computer) software formulation of the algorithms is considered including structured flowcharts of the procedures, estimates of flight computer core storage and CPU time, and processing requirements. A glossary of the symbols used to define the software requirements and formulations is included.

  7. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    Science.gov (United States)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  8. Electromagnetic investigation at the Combat Maneuver Training Center, Hohenfels, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.D.; Benson, M.A.; McGinnis, L.D.; Glennon, M.A. [Argonne National Lab., IL (United States)] [and others

    1997-10-01

    Electromagnetic surveys were conducted at the Combat Maneuver Training Center (CMTC), Hohenfels, Germany to detect zones where solution cavities develop within lowland areas of the karst valley systems. Geologic models indicate that solution activity occurs at the loess-bedrock interface, and is concentrated along loess-filled fracture trends within the underlying carbonate bedrock. Soil arches that develop along these fracture trends have the potential to fail catastrophically, posing a considerable degree of danger to current training activities. Rapid, continuously recording electromagnetic instruments provide an economical solution for locating zones of high conductivity associated with loess-filled fractures. The electromagnetic surveys delineated high-conductivity trends interpreted to be fracture-controlled. In many instances dolines were observed either along or immediately adjacent to these conductivity lineaments. Analysis of anomaly maps indicate that high-conductivity lineaments are aligned subparallel to fracture and joint orientations measured in nearby outcrops. These associations are the basis for predicting locations where solution cavity collapse and doline development will occur in the future. Information derived from the EM data can be extended directly to hydrologic modeling and to safety programs for military training at the CMTC.

  9. Rapid detection of meticillin-resistant Staphylococcus aureus bacteraemia using combined three-hour short-incubation matrix-assisted laser desorption/ionization time-of-flight MS identification and Alere Culture Colony PBP2a detection test.

    Science.gov (United States)

    Delport, Johannes Andries; Mohorovic, Ivor; Burn, Sandi; McCormick, John Kenneth; Schaus, David; Lannigan, Robert; John, Michael

    2016-07-01

    Meticillin-resistant Staphylococcus aureus (MRSA) bloodstream infection is responsible for significant morbidity, with mortality rates as high as 60 % if not treated appropriately. We describe a rapid method to detect MRSA in blood cultures using a combined three-hour short-incubation BRUKER matrix-assisted laser desorption/ionization time-of-flight MS BioTyper protocol and a qualitative immunochromatographic assay, the Alere Culture Colony Test PBP2a detection test. We compared this combined method with a molecular method detecting the nuc and mecA genes currently performed in our laboratory. One hundred and seventeen S. aureus blood cultures were tested of which 35 were MRSA and 82 were meticillin-sensitive S. aureus (MSSA). The rapid combined test correctly identified 100 % (82/82) of the MSSA and 85.7 % (30/35) of the MRSA after 3 h. There were five false negative results where the isolates were correctly identified as S. aureus, but PBP2a was not detected by the Culture Colony Test. The combined method has a sensitivity of 87.5 %, specificity of 100 %, a positive predictive value of 100 % and a negative predictive value of 94.3 % with the prevalence of MRSA in our S. aureus blood cultures. The combined rapid method offers a significant benefit to early detection of MRSA in positive blood cultures.

  10. Private and Commercial Pilot: Gyroplane. Flight Test Guide, Part 61 Revised 1973, AC 61-60.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide assists the applicant and his instructor in preparing for the Private or Commercial Pilot Rotocraft Certificate with Gyroplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for these…

  11. Private and Commercial Pilot: Glider. Flight Test Guide, Part 61 Revised, AC 61-61.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide assists the applicant and his instructor in preparing for the Private or Commercial Pilot Certificate with Glider Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test required for that…

  12. Commercial Pilot; Airplane. Flight Test Guide, Part 61 Revised, AC 61-55.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide assists the applicant and his instructor in preparing for the Commercial Pilot Certificate with Airplane Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information concerning pilot operations, procedures, and maneuvers relevant to the flight test required for the certificate. Preflight duties,…

  13. Private and Commercial Pilot; Heliocoptor. Flight Test Guide, Part 61 Revised, AC 61-59.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    This flight test guide assists the applicant and his instructor in preparing for the Private or Commercial Pilot Rotocraft Certificate with Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test required…

  14. Private and Commercial Pilot: Free Balloon: Flight Test Guide (Part 61 Revised).

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The flight test guide has been prepared to assist the applicant and his instructor in preparing for the private pilot or commercial pilot certificate with a lighter-than-air category and free balloon class rating. It contains information and guidance concerning the pilot operations, procedures, and maneuvers relevant to the flight test: layout and…

  15. Ship maneuvering digital simulator; Simulador digital de manobras de navios

    Energy Technology Data Exchange (ETDEWEB)

    Souza Junior, Jesse Rebello; Tannuri, Eduardo Aoun; Oshiro, Anderson Takehiro [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Naval e Oceanica

    2008-07-01

    This paper reports on two case studies making use of a digital simulator to investigate the maneuvering motions of ships in canals with shallow and restricted waters. The first case study corresponds to a maneuvering analysis conducted for the Port of Rio Grande (RS - Brazil), whose aim was to assess the potential impact upon maneuvers of the presence of a large offshore platform (the PETROBRAS P-53) which is to remain docked for several months at the Port to complete its construction. The second study made use of the simulator to evaluate the maneuvering conditions along the approach route and maneuvering basin of the Port of Ponta do Felix (PR - Brazil). The simulator includes a complete mathematical model of the ship dynamics in the horizontal plane when subjected to wind and current forces. It also comprises detailed models for the action of thrusters and propellers, both fixed and azimuth, employed to control maneuvers and dynamically position ships, as well as rudders and tugboats. He models used by the simulator allow for the effects of shallow and restricted waters, including the increase in resistance and lateral forces, increase in additional mass and the appearance of lateral and vertical suction (squatting). The simulator is implemented via an interactive interface through which the user is able to apply control actions (rudder angle, main engine, thrusters and tugboats) in real time during maneuvers, thereby reproducing to some extent the action of a pilot. (author)

  16. Prediction of Ship Unsteady Maneuvering in Calm Water by a Fully Nonlinear Ship Motion Model

    Directory of Open Access Journals (Sweden)

    Ray-Qing Lin

    2012-01-01

    Full Text Available This is the continuation of our research on development of a fully nonlinear, dynamically consistent, numerical ship motion model (DiSSEL. In this study we will report our results in predicting ship motions in unsteady maneuvering in calm water. During the unsteady maneuvering, both the rudder angle, and ship forward speed vary with time. Therefore, not only surge, sway, and yaw motions occur, but roll, pitch and heave motions will also occur even in calm water as heel, trim, and sinkage, respectively. When the rudder angles and ship forward speed vary rapidly with time, the six degrees-of-freedom ship motions and their interactions become strong. To accurately predict the six degrees-of-freedom ship motions in unsteady maneuvering, a universal method for arbitrary ship hull requires physics-based fully-nonlinear models for ship motion and for rudder forces and moments. The numerical simulations will be benchmarked by experimental data of the Pre-Contract DDG51 design and an Experimental Hull Form. The benchmarking shows a good agreement between numerical simulations by the enhancement DiSSEL and experimental data. No empirical parameterization is used, except for the influence of the propeller slipstream on the rudder, which is included using a flow acceleration factor.

  17. Can the hamstring muscles protect the anterior cruciate ligament during a side-cutting maneuver?

    Science.gov (United States)

    Simonsen, E B; Magnusson, S P; Bencke, J; Naesborg, H; Havkrog, M; Ebstrup, J F; Sørensen, H

    2000-04-01

    Because anterior cruciate ligament (ACL) injuries are common in European handball the present study assessed knee joint shear forces to estimate ACL loading in six elite female handball players during a side-cutting maneuver. A pilot investigation in three dimensions showed that peak moments occurred in the sagittal plane at a high velocity. Therefore, analysis of the movement was performed in two dimensions using high-speed cinematography, ground reaction forces, and electromyography (EMG). Film and force plate data allowed for calculation of net joint moments (inverse dynamics), estimates of instantaneous muscle-tendon lengths, contraction velocities, and peak loading of the ACL. During the breaking phase of the maneuver the peak knee joint moment was 239 Nm (99-309), which yielded an ACL-load of 520 N (215-673). The corresponding peak EMG amplitudes for the hamstring muscles were 34-39% of maximum EMG. During the breaking phase the quadriceps muscle contracted eccentrically with a velocity of 216-253% fiber length/s. In contrast, the hamstring muscles contracted concentrically with a velocity of 222-427% fiber length/s. These results suggest that a side-cutting maneuver produces loads that are insufficient to rupture the ACL. Furthermore, the rapid concentric hamstring contraction suggests that even during maximal activation, the ability of the hamstrings to reduce the ACL load is marginal.

  18. Constellation Mission Operation Working Group: ESMO Maneuver Planning Process Review

    Science.gov (United States)

    Moyer, Eric

    2015-01-01

    The Earth Science Mission Operation (ESMO) Project created an Independent Review Board to review our Conjunction Risk evaluation process and Maneuver Planning Process to identify improvements that safely manages mission conjunction risks, maintains ground track science requirements, and minimizes overall hours expended on High Interest Events (HIE). The Review Board is evaluating the current maneuver process which requires support by multiple groups. In the past year, there have been several changes to the processes although many prior and new concerns exist. This presentation will discuss maneuver process reviews and Board comments, ESMO assessment and path foward, ESMO future plans, recent changes and concerns.

  19. Early Mission Maneuver Operations for the Deep Space Climate Observatory

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John

    2015-01-01

    DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth). Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line. Spacecraft should never be less than 4 degrees from solar center as seen from Earth. Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ. Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ. Station keeping maneuvers should take no more than 15 minutes

  20. Rapidly differentiating grape seeds from different sources based on characteristic fingerprints using direct analysis in real time coupled with time-of-flight mass spectrometry combined with chemometrics.

    Science.gov (United States)

    Song, Yuqiao; Liao, Jie; Dong, Junxing; Chen, Li

    2015-09-01

    The seeds of grapevine (Vitis vinifera) are a byproduct of wine production. To examine the potential value of grape seeds, grape seeds from seven sources were subjected to fingerprinting using direct analysis in real time coupled with time-of-flight mass spectrometry combined with chemometrics. Firstly, we listed all reported components (56 components) from grape seeds and calculated the precise m/z values of the deprotonated ions [M-H](-) . Secondly, the experimental conditions were systematically optimized based on the peak areas of total ion chromatograms of the samples. Thirdly, the seven grape seed samples were examined using the optimized method. Information about 20 grape seed components was utilized to represent characteristic fingerprints. Finally, hierarchical clustering analysis and principal component analysis were performed to analyze the data. Grape seeds from seven different sources were classified into two clusters; hierarchical clustering analysis and principal component analysis yielded similar results. The results of this study lay the foundation for appropriate utilization and exploitation of grape seed samples. Due to the absence of complicated sample preparation methods and chromatographic separation, the method developed in this study represents one of the simplest and least time-consuming methods for grape seed fingerprinting. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Rapid identification of pathogens directly from blood culture bottles by Bruker matrix-assisted laser desorption laser ionization-time of flight mass spectrometry versus routine methods.

    Science.gov (United States)

    Jamal, Wafaa; Saleem, Rola; Rotimi, Vincent O

    2013-08-01

    The use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identification of microorganisms directly from blood culture is an exciting dimension to the microbiologists. We evaluated the performance of Bruker SepsiTyper kit™ (STK) for direct identification of bacteria from positive blood culture. This was done in parallel with conventional methods. Nonrepetitive positive blood cultures from 160 consecutive patients were prospectively evaluated by both methods. Of 160 positive blood cultures, the STK identified 114 (75.6%) isolates and routine conventional method 150 (93%). Thirty-six isolates were misidentified or not identified by the kit. Of these, 5 had score of >2.000 and 31 had an unreliable low score of time using the STK was 35 min, including extraction steps and 30:12 to 36:12 h with routine method. The STK holds promise for timely management of bacteremic patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria.

    Science.gov (United States)

    Konrad, R; Berger, A; Huber, I; Boschert, V; Hörmansdorfer, S; Busch, U; Hogardt, M; Schubert, S; Sing, A

    2010-10-28

    The rapid identification of the potentially toxigenic Corynebacterium species, C. diphtheriae, C. ulcerans and C. pseudotuberculosis is essential for diagnosis and treatment of diphtheria and diphtheria-like diseases. We used matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDIT-OF MS) in comparison with classical microbiological and molecular methods on 116 Corynebacterium strains. All 90 potentially toxigenic Corynebacterium strains collected by the German National Consiliary Laboratory on Diphtheria in a period of more than ten years were correctly identified by MALDI-TOF MS. We propose an algorithm for fast and reliable diagnosis of diphtheria incorporating MALDI-TOF MS, real-time tox PCR and Elek testing.

  3. Cerebral near-infrared spectroscopy to evaluate anti-G straining maneuvers in centrifuge training.

    Science.gov (United States)

    Kobayashi, Asao; Kikukawa, Azusa; Kimura, Mikihiko; Inui, Takuo; Miyamoto, Yoshinori

    2012-08-01

    Over the past decade, near-infrared spectroscopy (NIRS) has emerged as an easily manageable noninvasive method for the continuous monitoring of cerebral cortical oxygenation during +Gz exposure. NIRS is also used to evaluate pilot trainees' ability to adequately perform anti-G straining maneuvers in the course of centrifuge training. This study aimed to determine the general patterns and individual differences in NIRS recordings during +Gz exposure. There were 22 healthy male cadets who participated in the study. The centrifuge training profiles included a gradual onset run (GOR, onset rate of 0.1 Gz x s(-1)) and short-term repeated exposures, with Gz levels from 4 to 7 Gz at an onset rate of 1.0 Gz x s(-1) (rapid onset run, ROR). Cortical tissue hemoglobin saturation (tissue oxygenation index, TOI) and changes in the concentration of oxygenated hemoglobin (O2Hb) were recorded from the right forehead during the period of Gz exposure. Most of the subjects successfully performed an anti-G straining maneuver and maintained or increased the cerebral oxygenation level during Gz exposure. In four subjects, however, oxygenation decline was observed at levels over 4 Gz, even though their anti-G systems were functioning. In contrast to the O2Hb response, TOI, which reflects intracranial oxygenation changes, was decreased during the anti-G straining maneuver at Gz onset or during the countdown to a ROR exposure. Although NIRS is an effective tool for monitoring anti-G straining maneuver performance, it should be carefully evaluated in terms of intracranial oxygenation results.

  4. Rapid identification of Enterobacteriaceae in milk and dairy products with the Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Miroslava Kačániová

    2017-11-01

    Full Text Available Identification of microorganisms by MALDI-TOF MS Biotyper has been demonstrated to be accurate, rapid and lower cost than conventional food investigation methods. Rapid identification of pathogenic and spoilage microorganisms is crucial for dairy industry to ensure the quality and safety of milk and milk products. In this study, the bacterial species representing the Enterobacteriaceae family were identified in raw milk and milk products using the MALDI-TOF MS mass spectrometry. Altogether, 20 samples of Slovak milk and milk products were examined. Samples were cultured on VRBG agar at 37 °C for 24-48 h. Typical bacterial colonies were selected for identification with MALDI-TOF MS Biotyper. Escherichia coli and Enterobacter sp. were the most abundant  Enterobacteriaceae family representatives identified. E. coli was found in nine  and Enterobacter sp. in eight samples. Enterobacter sp. comprised 49 % and Escherichia coli 23 % of all bacterial isolates. The study shows that MALDI-TOF MS Biotyper was reliable identification method of Enterobacteriaceae in milk and dairy products. This method was helpful in evaluation of bacterial contamination of milk.

  5. Bacterial rapid identification with matrix assisted laser desorption/ionization time-of-flight mass spectrometry: development of an 'in-house method' and comparison with Bruker Sepsityper(®) kit.

    Science.gov (United States)

    Frédéric Ric, S; Antoine, M; Bodson, A; Lissoir, B

    2015-10-01

    The objective of this study was to compare an in-house matrix-assisted laser desorption ionization with time of flight (MALDI-TOF) method and a commercial MALDI-TOF kit (Sepsityper(®) kit) for direct bacterial identification in positive blood cultures. We also evaluated the time saved and the cost associated with the rapid identification techniques. We used the BACTEC(®) automated system for detecting positive blood cultures. Direct identification using Sepsityper kit and the in-house method were compared with conventional identification by MALDI-TOF using pure bacterial culture on the solid phase. We also evaluated different cut-off scores for rapid bacterial identification. In total, 127 positive blood vials were selected. The rate of rapid identification with the MALDI Sepsityper kit was 25.2% with the standard cut-off and 33.9% with the enlarged cut-off, while the results for the in-house method were 44.1 and 61.4%, respectively. Error rates with the enlarged cut-off were 6.98 (n = 3) and 2.56% (n = 2) for Sepsityper and the in-house method, respectively. Identification rates were higher for gram-negative bacteria. Direct bacterial identification succeeded in supplying rapid identification of the causative organism in cases of sepsis. The time taken to obtain a result was nearly 24  hours shorter for the direct bacterial identification methods than for conventional MALDI-TOF on solid phase culture. Compared with the Sepsityper kit, the in-house method offered better results and fewer errors, was more cost-effective and easier to use.

  6. Development and validation of an ultra-performance liquid chromatography quadrupole time of flight mass spectrometry method for rapid quantification of free amino acids in human urine.

    Science.gov (United States)

    Joyce, Richard; Kuziene, Viktorija; Zou, Xin; Wang, Xueting; Pullen, Frank; Loo, Ruey Leng

    2016-01-01

    An ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-qTOF-MS) method using hydrophilic interaction liquid chromatography was developed and validated for simultaneous quantification of 18 free amino acids in urine with a total acquisition time including the column re-equilibration of less than 18 min per sample. This method involves simple sample preparation steps which consisted of 15 times dilution with acetonitrile to give a final composition of 25 % aqueous and 75 % acetonitrile without the need of any derivatization. The dynamic range for our calibration curve is approximately two orders of magnitude (120-fold from the lowest calibration curve point) with good linearity (r (2) ≥ 0.995 for all amino acids). Good separation of all amino acids as well as good intra- and inter-day accuracy (amino acids in the prepared urine samples was found to be stable for 72 h at 4 °C, after one freeze thaw cycle and for up to 4 weeks at -80 °C. We have applied this method to quantify the content of 18 free amino acids in 646 urine samples from a dietary intervention study. We were able to quantify all 18 free amino acids in these urine samples, if they were present at a level above the LOD. We found our method to be reproducible (accuracy and precision were typically <10 % for QCL, QCM and QCH) and the relatively high sample throughput nature of this method potentially makes it a suitable alternative for the analysis of urine samples in clinical setting.

  7. Improvements to the adaptive maneuvering logic program

    Science.gov (United States)

    Burgin, George H.

    1986-01-01

    The Adaptive Maneuvering Logic (AML) computer program simulates close-in, one-on-one air-to-air combat between two fighter aircraft. Three important improvements are described. First, the previously available versions of AML were examined for their suitability as a baseline program. The selected program was then revised to eliminate some programming bugs which were uncovered over the years. A listing of this baseline program is included. Second, the equations governing the motion of the aircraft were completely revised. This resulted in a model with substantially higher fidelity than the original equations of motion provided. It also completely eliminated the over-the-top problem, which occurred in the older versions when the AML-driven aircraft attempted a vertical or near vertical loop. Third, the requirements for a versatile generic, yet realistic, aircraft model were studied and implemented in the program. The report contains detailed tables which make the generic aircraft to be either a modern, high performance aircraft, an older high performance aircraft, or a previous generation jet fighter.

  8. Maintain and Regain Well Clear: Maneuver Guidance Designs for Pilots Performing the Detect-and-Avoid Task

    Science.gov (United States)

    Monk, Kevin J.; Roberts, Zachary

    2017-01-01

    In order to support the future expansion and integration of Unmanned Aircraft Systems (UAS), ongoing research efforts have sought to produce findings that inform the minimum display information elements required for acceptable UAS pilot response times and traffic avoidance. Previous simulations have revealed performance benefits associated with DAA displays containing predictive information and suggestive maneuver guidance tools in the form of banding. The present study investigated the impact of various maneuver guidance display configurations on detect-and-avoid (DAA) task performance in a simulated airspace environment. UAS pilots ability to maintain DAA well clear was compared between displays with either the presence or absence of green DAA bands, which indicated conflict-free flight regions. Additional display comparisons assessed pilots ability to regain DAA well clear with two different guidance presentations designed to aid in DAA well clear recovery during critical encounters. Performance implications and display considerations for future UAS DAA systems are discussed.

  9. Integrated Approach to the Dynamics and Control of Maneuvering Flexible Aircraft

    Science.gov (United States)

    Waszak, Martin R. (Technical Monitor); Meirovitch, Leonard; Tuzcu, Ilhan

    2003-01-01

    This work uses a fundamental approach to the problem of simulating the flight of flexible aircraft. To this end, it integrates into a single formulation the pertinent disciplines, namely, analytical dynamics, structural dynamics, aerodynamics, and controls. It considers both the rigid body motions of the aircraft, three translations (forward motion, sideslip and plunge) and three rotations (roll, pitch and yaw), and the elastic deformations of every point of the aircraft, as well as the aerodynamic, propulsion, gravity and control forces. The equations of motion are expressed in a form ideally suited for computer processing. A perturbation approach yields a flight dynamics problem for the motions of a quasi-rigid aircraft and an 'extended aeroelasticity' problem for the elastic deformations and perturbations in the rigid body motions, with the solution of the first problem entering as an input into the second problem. The control forces for the flight dynamics problem are obtained by an 'inverse' process and the feedback controls for the extended aeroservoelasticity problem are determined by the LQG theory. A numerical example presents time simulations of rigid body perturbations and elastic deformations about 1) a steady level flight and 2) a level steady turn maneuver.

  10. Aqua/Aura Spring 2017 Inclination Adjust Maneuver Series

    Science.gov (United States)

    Noyes, Thomas; Stezelberger, Shane

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting June 13-15, 2017 to discuss the AquaAura Spring 2017 Inclination Adjust Maneuver series.

  11. Tongue-Driven Wheelchair Out-Maneuvers the Competition

    Science.gov (United States)

    ... to other assistive devices used by individuals with tetraplegia. In a small clinical trial, the researchers showed for the first time that individuals with tetraplegia can maneuver a wheelchair three times faster using ...

  12. THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS

    Directory of Open Access Journals (Sweden)

    Petr Váňa

    2016-11-01

    Full Text Available In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM. In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments.

  13. Adaptive internal model guidance law for weaving maneuvering target.

    Science.gov (United States)

    Deng, Xiangfei; Liu, Xiangbin

    2017-09-01

    For the terminal phase guidance problem of the missile intercepting weaving maneuvering target, an adaptive internal model guidance laws in the three-dimensional (3-D) engagement space is proposed in this paper. The guidance law adopts the disturbance rejection theory by treating the target weaving maneuvering accelerations as external disturbance, which comprises of nominal part and adaptive part. The nominal part based on feedback linearization method ensures the whole guidance system stable and the adaptive part based on internal model principle is used to recover the disturbance signals on-line to reject the target maneuver asymptotically. The algorithm guarantees the whole guidance system with satisfying performance both in transient and steady state on the effect of target maneuver on guidance system. The stability analyses and theory proof are provided in this paper. At last, numerical simulations are carried out to illustrate the effectiveness of the proposed guidance law. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  15. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the Phase I program we successfully demonstrated the feasibility of the Pulsed ElectroGasdynamic (PEG) thruster for attitude control and orbital maneuvering. In...

  16. Maneuvering a pilot implementation to align agendas across sectors

    DEFF Research Database (Denmark)

    Mønsted, Troels; Hertzum, Morten; Søndergaard, Jens

    2017-01-01

    A prerequisite for pilot implementations in complex organizational settings is that the agendas of the stakeholders of the system are maneuvered into alignment. In this paper we present a study of the pilot implementation of the IT-supported, preventive intervention TOF (Tidlig Opsporing og...... offers at the GP and at municipal health centers. We find that TOF succeeded in maneuvering the agendas of the involved stakeholders by gaining the foothold, legitimacy, and GP motivation required to carry out the pilot implementation....

  17. Rapid determination of polycyclic aromatic hydrocarbons (PAHs) in tea using two-dimensional gas chromatography coupled with time of flight mass spectrometry.

    Science.gov (United States)

    Drabova, Lucie; Pulkrabova, Jana; Kalachova, Kamila; Tomaniova, Monika; Kocourek, Vladimir; Hajslova, Jana

    2012-10-15

    A simple, fast, and cost effective sample preparation procedure has been developed and validated for the determination of 15+1 European Union Polycyclic Aromatic Hydrocarbons (15+1 EU PAHs) in dried tea leave samples. Based on a critical assessment of several sample extraction/clean-up approaches, the method based on the ethyl acetate extraction followed by the use of PAHs dedicated cartridges with molecularly imprinted polymers (MIPs) has been found as an optimal alternative in terms of time demands and obtained good extract purity. For the final identification/quantification of target PAHs, two dimensional gas chromatography coupled to a time-of-flight mass spectrometry (GC×GC-TOFMS) was used. The performance characteristics of the overall analytical method for individual PAHs determined at three spiking levels (0.5, 2.5 and 5 μg kg(-1)) were in following ranges: limits of quantitation (LOQs) 0.05-0.2 μg kg(-1), repeatabilities 2-9%, and recoveries 73-103%. The recoveries achieved by the newly developed sample preparation procedure when employed for naturally contaminated sample ("incurred" PAHs) were comparable to those obtained by other routinely used approaches employing sonication and/or pressurised liquid extraction for sample analytes isolation. The validated method was subsequently used for the determination of selected genotoxic PAHs in 36 samples of black and green tea obtained from the Czech retail market. The levels of ΣPAH4 (sum of benzo[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbFA) and benzo[a]pyrene (BaP)) in black and green tea leaves ranged from 7.4 to 700 μg kg(-1) and from 4.5 to 102 μg kg(-1), respectively. Contamination of tested tea samples by BaP was in the range of 0.2-152 μg kg(-1). Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans.

    Science.gov (United States)

    Sato, Jun; Nakayama, Motokazu; Tomita, Ayumi; Sonoda, Takumi; Hasumi, Motomitsu; Miyamoto, Takahisa

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and repetitive-PCR (rep-PCR) were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  19. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS for rapid strain typing of Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Jun Sato

    Full Text Available In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS and repetitive-PCR (rep-PCR were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  20. Maintaining Aura's Orbit Requirements Under New Maneuver Operations

    Science.gov (United States)

    Johnson, Megan; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Auras Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Auras frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under no-slew operations

  1. Rapid and reliable species identification of wild mushrooms by matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Sugawara, Ryota; Yamada, Sayumi; Tu, Zhihao; Sugawara, Akiko; Suzuki, Kousuke; Hoshiba, Toshihiro; Eisaka, Sadao; Yamaguchi, Akihiro

    2016-08-31

    Mushrooms are a favourite natural food in many countries. However, some wild species cause food poisoning, sometimes lethal, due to misidentification caused by confusing fruiting bodies similar to those of edible species. The morphological inspection of mycelia, spores and fruiting bodies have been traditionally used for the identification of mushrooms. More recently, DNA sequencing analysis has been successfully applied to mushrooms and to many other species. This study focuses on a simpler and more rapid methodology for the identification of wild mushrooms via protein profiling based on matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). A preliminary study using 6 commercially available cultivated mushrooms suggested that a more reproducible spectrum was obtained from a portion of the cap than from the stem of a fruiting body by the extraction of proteins with a formic acid-acetonitrile mixture (1 + 1). We used 157 wild mushroom-fruiting bodies collected in the centre of Hokkaido from June to November 2014. Sequencing analysis of a portion of the ribosomal RNA gene provided 134 identifications of mushrooms by genus or species, however 23 samples containing 10 unknown species that had lower concordance rate of the nucleotide sequences in a BLAST search (less than 97%) and 13 samples that had unidentifiable poor or mixed sequencing signals remained unknown. MALDI-TOF MS analysis yielded a reproducible spectrum (frequency of matching score ≥ 2.0 was ≥6 spectra from 12 spectra measurements) for 114 of 157 samples. Profiling scores that matched each other within the database gave correct species identification (with scores of ≥2.0) for 110 samples (96%). An in-house prepared database was constructed from 106 independent species, except for overlapping identifications. We used 48 wild mushrooms that were collected in autumn 2015 to validate the in-house database. As a result, 21 mushrooms were identified at the species level with

  2. Rapid Analysis of Ingredients in Cream Using Ultrasonic Mist-Direct Analysis in Real-Time Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    Shimada, Haruo; Maeno, Katsuyuki; Kinoshita, Kazumasa; Shida, Yasuo

    2017-07-01

    A novel method for the simultaneous detection of ingredients in pharmaceutical applications such as creams and lotions was developed. An ultrasonic atomizer has been used to produce a mist containing ingredients. The analyte molecules in the mist can be ionized by using direct analysis in real time (DART) at lower temperature than traditionally used, and we thus solved the problem of normal DART-MS measurement using a high-temperature gas. Thereby, molecular-related ions of heat-unstable components and nonvolatile components became detectable. The deprotonated molecular ion of glycyrrhizic acid (m/z 821), which is unstable at high temperatures, was detected without pyrolysis by ultrasonic mist-DART-MS using unheated helium gas, although it was not detected by normal DART-MS using heated helium gas. The cationized molecular ions of derivatives of polyethylene glycol fatty acid monoesters, which are nonvolatile compounds, were also detected as m/z peaks observed from 800 to 2300. Although the protonated molecular ion of tocopherol acetate was not detected in ionization by ultrasonic mist, it was detected by ultrasonic mist-DART-MS even in the emulsion. It was not necessary to dissolve a sample completely to detect its ions. This method enabled us to obtain the composition of pharmaceutical applications simply and rapidly.

  3. Rapid and Efficient Desulfonation Method for the Analysis of Glucosinolates by High-Resolution Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry.

    Science.gov (United States)

    Singh, Jashbir; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimanagouda S

    2017-12-20

    The goal of our present research was to develop a simple and rapid method for the quantitation of desulfoglucosinolates (desulfoGLS) without using column chromatography. The proposed method involves extraction, concentration, incubation of glucosinolates with a sulfatase enzyme, and HPLC analysis. Identification of desulfoGLS in green kohlrabi was performed by LC-HR-ESI-QTOF-MS in positive-ionization mode. A total of 11 desulfoGLS were identified with neoglucobrassicin (3.32 ± 0.05 μmol/g DW) as the predominant indolyl, whereas progoitrin and sinigrin were the major aliphatic desulfoGLS. The levels of the aliphatic desulfoGLS glucoiberin, progoitrin, and glucoerucin at 7 h were found to be 3.6-, 1.9-, and 1.6-fold higher, respectively, than those produced through the conventional method. This technique was successfully applied in the identification of desulfoGLS from cabbage. The developed method has fewer unit operations, has maximum recovery, and is reproducible in the determination of desulfoGLS in a large number of Brassicaceae samples in a short time.

  4. Use of Alleviating Maneuvers for Periocular Facial Dystonias.

    Science.gov (United States)

    Kilduff, Caroline L S; Casswell, Edward J; Salam, Tahrina; Hersh, Dov; Ortiz-Perez, Santiago; Ezra, Daniel

    2016-11-01

    Patients with benign essential blepharospasm or hemifacial spasm are known to use botulinum toxin injections and alleviating maneuvers to help control their symptoms. The clinical correlates between the use of botulinum toxin injections and the use of alleviating maneuvers are not well established. To determine whether the use of alleviating maneuvers for benign essential blepharospasm or hemifacial spasm correlates with disease severity or botulinum toxin treatment. A prospective cross-sectional observational study (designed in September 2013) of 74 patients with benign essential blepharospasm and 56 patients with hemifacial spasm who were consecutively recruited from adnexal clinics at Moorfields Eye Hospital (January-June 2014) to complete a questionnaire and undergo a clinical review. Data analysis was performed in December 2015. Prevalence and type of alleviating maneuvers used for blepharospasm and hemifacial spasm, dystonia severity, and dose and frequency of botulinum toxin injections. Of the 74 patients with blepharospasm, 39 (52.7%) used alleviating maneuvers (mean [SD] age, 70.4 [9.1] years); of the 56 patients with hemifacial spasm, 25 (44.6%) used alleviating maneuvers (mean [SD] age, 66.5 [12.7] years). The most commonly used maneuver was the touching of facial areas (35 of 64 patients [54.7%]); other maneuvers included covering the eyes (6 of 64 patients [9.4%]), singing (5 of 64 patients [7.8%]), and yawning (5 of 64 patients [7.8%]). Patients with blepharospasm who used alleviating maneuvers scored higher on the Jankovic Rating Scale (median score, 5 vs 4; Hodges-Lehmann median difference, 1 [95% CI, 0-2]; P = .01) and the Blepharospasm Disability Index severity score (median score, 11 vs 4; Hodges-Lehmann median difference, 4 [95% CI, 1-7]; P = .01) than patients with blepharospasm who did not use alleviating maneuvers. Patients with hemifacial spasm who used alleviating maneuvers scored higher on the 7-item Hemifacial Spasm Quality of

  5. Gram-stain plus MALDI-TOF MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for a rapid diagnosis of urinary tract infection.

    Directory of Open Access Journals (Sweden)

    Almudena Burillo

    Full Text Available Microbiological confirmation of a urinary tract infection (UTI takes 24-48 h. In the meantime, patients are usually given empirical antibiotics, sometimes inappropriately. We assessed the feasibility of sequentially performing a Gram stain and MALDI-TOF MS mass spectrometry (MS on urine samples to anticipate clinically useful information. In May-June 2012, we randomly selected 1000 urine samples from patients with suspected UTI. All were Gram stained and those yielding bacteria of a single morphotype were processed for MALDI-TOF MS. Our sequential algorithm was correlated with the standard semiquantitative urine culture result as follows: Match, the information provided was anticipative of culture result; Minor error, the information provided was partially anticipative of culture result; Major error, the information provided was incorrect, potentially leading to inappropriate changes in antimicrobial therapy. A positive culture was obtained in 242/1000 samples. The Gram stain revealed a single morphotype in 207 samples, which were subjected to MALDI-TOF MS. The diagnostic performance of the Gram stain was: sensitivity (Se 81.3%, specificity (Sp 93.2%, positive predictive value (PPV 81.3%, negative predictive value (NPV 93.2%, positive likelihood ratio (+LR 11.91, negative likelihood ratio (-LR 0.20 and accuracy 90.0% while that of MALDI-TOF MS was: Se 79.2%, Sp 73.5, +LR 2.99, -LR 0.28 and accuracy 78.3%. The use of both techniques provided information anticipative of the culture result in 82.7% of cases, information with minor errors in 13.4% and information with major errors in 3.9%. Results were available within 1 h. Our serial algorithm provided information that was consistent or showed minor errors for 96.1% of urine samples from patients with suspected UTI. The clinical impacts of this rapid UTI diagnosis strategy need to be assessed through indicators of adequacy of treatment such as a reduced time to appropriate empirical treatment or

  6. Multiobjective Simulated Annealing for Collision Avoidance in ATM Accounting for Three Admissible Maneuvers

    Directory of Open Access Journals (Sweden)

    A. Mateos

    2016-01-01

    Full Text Available Technological advances are required to accommodate air traffic control systems for the future growth of air traffic. Particularly, detection and resolution of conflicts between aircrafts is a problem that has attracted much attention in the last decade becoming vital to improve the safety standards in free flight unstructured environments. We propose using the archive simulated annealing-based multiobjective optimization algorithm to deal with such a problem, accounting for three admissible maneuvers (velocity, turn, and altitude changes in a multiobjective context. The minimization of the maneuver number and magnitude, time delays, or deviations in the leaving points are considered for analysis. The optimal values for the algorithm parameter set are identified in the more complex instance in which all aircrafts have conflicts between each other accounting for 5, 10, and 20 aircrafts. Moreover, the performance of the proposed approach is analyzed by means of a comparison with the Pareto front, computed using brute force for 5 aircrafts and the algorithm is also illustrated with a random instance with 20 aircrafts.

  7. An overview of Suomi NPP VIIRS calibration maneuvers

    Science.gov (United States)

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu

    2012-09-01

    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). Onorbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multiorbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper provides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow

  8. Orbital maneuvers around irregular shaped bodies

    Science.gov (United States)

    Venditti, Flaviane; Rocco, E. M.; Almeida Prado, A. B.

    2013-05-01

    Abstract (2,250 Maximum Characters): In the solar system there are many small bodies called asteroids. The large majority of these bodies are located in the asteroid belt, between the orbits of the planets Mars and Jupiter. The Near- Earth Objects, or NEOs, are objects with perihelion below 1.3AU, which include comets and asteroids. The NEOs are considered to have orbits passing close to the Earth’s orbit and, in the case of asteroids, are called Near-Earth Asteroids (NEAs). Among the NEAs there are bodies considered potentially hazardous asteroids (PHAs), whose minimum orbit intersection distance with Earth is 0.05AU and that have absolute magnitude (H) of 22, which would mean an asteroid of at least 110-240 meters, depending on its albedo. One of the major characteristic of the asteroids is the irregular shape, causing the dynamics of orbits around these bodies to be different from a spherical shaped one. The fact that an object is not spherical generates a perturbation on the gravitational field. The disturbing force can be determined considering the shape of the specific body. A satellite orbiting this body would suffer the effects of this perturbation, but knowing the disturbing force, it’s possible to correct and control the orbit according to the desired mission. The polyhedron method is a traditional way to model an asteroid by dividing the object into smaller parts. The data used on this work are composed by a combination of triangular faces. The total disturbing force is a sum of the force on each piece of the model. Therefore, after the simulations are obtained, it’s possible to apply the desired corrections of the perturbation using continuous low thrust in closed loop, making it possible to perform maneuvers near these bodies. One of the important applications of the study shown above is in the ASTER mission, that is under study by INPE and several other Brazilian academic institutions, which goal is to send a spacecraft to an asteroid and then

  9. Ultra-fast escape maneuver of an octopus-inspired robot.

    Science.gov (United States)

    Weymouth, G D; Subramaniam, V; Triantafyllou, M S

    2015-02-02

    We design and test an octopus-inspired flexible hull robot that demonstrates outstanding fast-starting performance. The robot is hyper-inflated with water, and then rapidly deflates to expel the fluid so as to power the escape maneuver. Using this robot we verify for the first time in laboratory testing that rapid size-change can substantially reduce separation in bluff bodies traveling several body lengths, and recover fluid energy which can be employed to improve the propulsive performance. The robot is found to experience speeds over ten body lengths per second, exceeding that of a similarly propelled optimally streamlined rigid rocket. The peak net thrust force on the robot is more than 2.6 times that on an optimal rigid body performing the same maneuver, experimentally demonstrating large energy recovery and enabling acceleration greater than 14 body lengths per second squared. Finally, over 53% of the available energy is converted into payload kinetic energy, a performance that exceeds the estimated energy conversion efficiency of fast-starting fish. The Reynolds number based on final speed and robot length is [Formula: see text]. We use the experimental data to establish a fundamental deflation scaling parameter [Formula: see text] which characterizes the mechanisms of flow control via shape change. Based on this scaling parameter, we find that the fast-starting performance improves with increasing size.

  10. On Choosing a Rational Flight Trajectory to the Moon

    Science.gov (United States)

    Gordienko, E. S.; Khudorozhkov, P. A.

    2017-12-01

    The algorithm for choosing a trajectory of spacecraft flight to the Moon is discussed. The characteristic velocity values needed for correcting the flight trajectory and a braking maneuver are estimated using the Monte Carlo method. The profile of insertion and flight to a near-circular polar orbit with an altitude of 100 km of an artificial lunar satellite (ALS) is given. The case of two corrections applied during the flight and braking phases is considered. The flight to an ALS orbit is modeled in the geocentric geoequatorial nonrotating coordinate system with the influence of perturbations from the Earth, the Sun, and the Moon factored in. The characteristic correction costs corresponding to corrections performed at different time points are examined. Insertion phase errors, the errors of performing the needed corrections, and the errors of determining the flight trajectory parameters are taken into account.

  11. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  12. Dynamics and Control of Three-Dimensional Perching Maneuver under Dynamic Stall Influence

    Science.gov (United States)

    Feroskhan, Mir Alikhan Bin Mohammad

    Perching is a type of aggressive maneuver performed by the class 'Aves' species to attain precision point landing with a generally short landing distance. Perching capability is desirable on unmanned aerial vehicles (UAVs) due to its efficient deceleration process that potentially expands the functionality and flight envelope of the aircraft. This dissertation extends the previous works on perching, which is mostly limited to two-dimensional (2D) cases, to its state-of-the-art threedimensional (3D) variety. This dissertation presents the aerodynamic modeling and optimization framework adopted to generate unprecedented variants of the 3D perching maneuver that include the sideslip perching trajectory, which ameliorates the existing 2D perching concept by eliminating the undesirable undershoot and reliance on gravity. The sideslip perching technique methodically utilizes the lateral and longitudinal drag mechanisms through consecutive phases of yawing and pitching-up motion. Since perching maneuver involves high rates of change in the angles of attack and large turn rates, introduction of three internal variables thus becomes necessary for addressing the influence of dynamic stall delay on the UAV's transient post-stall behavior. These variables are then integrated into a static nonlinear aerodynamic model, developed using empirical and analytical methods, and into an optimization framework that generates a trajectory of sideslip perching maneuver, acquiring over 70% velocity reduction. An impact study of the dynamic stall influence on the optimal perching trajectories suggests that consideration of dynamic stall delay is essential due to the significant discrepancies in the corresponding control inputs required. A comparative study between 2D and 3D perching is also conducted to examine the different drag mechanisms employed by 2D and 3D perching respectively. 3D perching is presented as a more efficient deceleration technique with respect to spatial costs and

  13. Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver.

    Directory of Open Access Journals (Sweden)

    Ricardo C Nogueira

    Full Text Available PURPOSE: We investigated the effect of handgrip (HG maneuver on time-varying estimates of dynamic cerebral autoregulation (CA using the autoregressive moving average technique. METHODS: Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO₂ pressure (PETCO₂, and noninvasive arterial blood pressure (ABP were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP, resistance area-product (RAP, and time-varying autoregulation index (ARI were obtained. RESULTS: PETCO₂ did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005, which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. CONCLUSION: Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism.

  14. Design and Flight Test of a Cable Angle Feedback Control System for Improving Helicopter Slung Load Operations at Low Speed

    Science.gov (United States)

    2014-04-01

    to your library of slung load references. The RASCAL group was critical to making the flight tests for this research happen. Thanks to Jay Fletcher...94 Figure 8-1. RASCAL 1553 muxbus extension...maneuver in flight (5K, 56ft sling). .. 107 Figure 8-8. RASCAL software-in-the-loop development facility

  15. [Efficacy of quick repositioning maneuver for posterior semicircular canal benign paroxysmal positional vertigo in different age groups].

    Science.gov (United States)

    Zhang, Hao; Li, Jinrang; Guo, Pengfei; Tian, Shiyu; Li, Keliang

    2015-12-01

    To observe the short and long-term efficacy of quick repositioning maneuver for posterior semicircular canal benign paroxysmal positional vertigo (PC-BPPV) in different age groups. The clinical data of 113 adult patients with single PC-BPPV who underwent quick repositioning maneuver from July 2009 to February 2015 were retrospectively analyzed. The quick repositioning maneuver was to roll the patient from involved side to healthy side in the coronal plane for 180° as quickly as possible. The patients were divided into 3 groups according to different ages: young group (age group (45 ≤ age group (≥ 60 years). The short and long term outcomes of the three groups were observed. The left ear was involved in 58 cases (51.3%) and the right ear in 55 cases (48.7%). The short term improvement rates of the young, middle-age and the old groups were 92.5%, 93.6% and 92.3% respectively, and the long term improvement rate was 90.0%, 85.1% and 73.1% respectively. There was no significant difference among the three groups in short and long term outcomes (P > 0.05). The recurrence rate of the three groups was 5.0%, 6.4% and 15.4% respectively, also no significant difference (P > 0.05). The quick repositioning maneuver along the coronal plane for PC-BPPV has a definite effect for every age groups. The method is simple, rapid and easy to master, and the patients are tolerated the maneuver well without evident side effect.

  16. Rapid wide-scope screening of drugs of abuse, prescription drugs with potential for abuse and their metabolites in influent and effluent urban wastewater by ultrahigh pressure liquid chromatography-quadrupole-time-of-flight-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Felix, E-mail: felix.hernandez@qfa.uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellon (Spain); Bijlsma, Lubertus, E-mail: bijlsma@guest.uji.es [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellon (Spain); Sancho, Juan V.; Diaz, Ramon; Ibanez, Maria [Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellon (Spain)

    2011-01-17

    This work illustrates the potential of hybrid quadrupole-time-of-flight mass spectrometry (QTOF MS) coupled to ultrahigh pressure liquid chromatography (UHPLC) to investigate the presence of drugs of abuse in wastewater. After solid-phase extraction with Oasis MCX cartridges, seventy-six illicit drugs, prescription drugs with potential for abuse, and metabolites were investigated in the samples by TOF MS using electrospray interface under positive ionization mode, with MS data acquired over an m/z range of 50-1000 Da. For 11 compounds, reference standards were available, and experimental data (e.g., retention time and fragmentation data) could be obtained, facilitating a more confident identification. The use of a QTOF instrument enabled the simultaneous application of two acquisition functions with different collision energies: a low energy (LE) function, where none or poor fragmentation took place, and a high energy (HE) function, where fragmentation in the collision cell was promoted. This approach, known as MS{sup E}, enabled the simultaneous acquisition of full-spectrum accurate mass data of both protonated molecules and fragment ions in a single injection, providing relevant information that facilitates the rapid detection and reliable identification of these emerging contaminants in the sample matrices analyzed. In addition, isomeric compounds, like the opiates, morphine and norcodeine, could be discriminated by their specific fragments observed in HE TOF MS spectra, without the need of reference standards. UHPLC-QTOF MS was proven to be a powerful and efficient technique for rapid wide-scope screening and identification of many relevant drugs in complex matrices, such as influent and effluent urban wastewater.

  17. Flight Dynamics Analysis Branch 2005 Technical Highlights

    Science.gov (United States)

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  18. A nonlinear trajectory command generator for a digital flight-control system

    Science.gov (United States)

    Cicolani, L. S.; Weissenberger, S.

    1978-01-01

    Operational application of the command generator (CG) was examined in detail in a simulation of a flight control system with the augmentor wing jet STOL research aircraft. The basic repertoire of single axis maneuvers and operational constraints are discussed, and the system behavior is tested on a rigorous STOL approach path and as affected by various approximations in the CG synthesis and types of disturbances found in the operational environment. The simulation results indicate that a satisfactory nonlinear system with general maneuvering capabilities throughout the flight envelope was developed which satisfies the basic design objectives while maintaining a practicable degree of simplicity.

  19. The Profiling and Identification of the Absorbed Constituents and Metabolites of Guizhi Decoction in Rat Plasma and Urine by Rapid Resolution Liquid Chromatography Combined with Quadrupole-Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Hongjun Xiang

    2016-09-01

    Full Text Available Guizhi decoction (GZD, a well-known traditional Chinese medicine (TCM prescription consisting of Ramulus Cinnamomi, Radix Paeoniae Alba, Radix Glycyrrhizae, Fructus Jujubae and Rhizoma Zingiberis Recens, is usually used for the treatment of common colds, influenza, and other pyretic conditions in the clinic. However, the absorbed ingredients and metabolic compounds of GZD have not been reported. In this paper, a method incorporating rapid resolution liquid chromatography (RRLC with quadrupole-time-of-flight mass spectrometry (Q-TOF-MS was used to identify ingredients after oral administration of GZD. Identification of the primary components in GZD, drug-containing serum and urine samples was carried out in order to investigate the assimilation and metabolites of the decoction in vivo. By comparing the total ion chromatograms (TICs of GZD, a total of 71 constituents were detected or characterized. By comparing TICs of blank and dosed rat plasma, a total of 15 constituents were detected and identified as prototypes according to their retention time (tR and MS, MS/MS data. Based on this, neutral loss scans of 80 and 176 Da in samples of rat plasma and urine helped us to identify most of the metabolites. Results showed that the predominant metabolic pathways of (epi catechin and gallic acid were sulfation, methylation, glucuronidation and dehydroxylation; the major metabolic pathways of flavone were hydrolysis, sulfation and glucuronidation. Furthermore, degradation, oxidation and ring fission were found to often occur in the metabolism process of GZD in vivo.

  20. Development of a 'chronotron' for time of flight fast neutron spectrometer; Realisation d'un chronotron pour spectrometre a neutrons rapides par temps de vol

    Energy Technology Data Exchange (ETDEWEB)

    Duclos, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-10-15

    A chronotron using storage circuits of a 100 channels amplitude analyser has been developed in order to measure the time of flight of fast neutrons. A time dilatation is obtained by a distribution of 20 6BN6 tubes. The width at half maximum of prompt coincidences curve is 1,6.10{sup -9} s for {beta}-{gamma} coincidences from An{sup 198} and 2.10{sup -9} s for n-{alpha} coincidences from (d, t) reaction. (author) [French] En vue de realiser un spectrometre a neutrons rapides par temps de vol, un chronotron utilisant les circuits d'enregistrement d'un selecteur d'amplitude de 100 canaux a ete construit. Une dilatation du temps est obtenue a l'aide d'une distribution de 20 lampes 6BN6. La largeur a mi-hauteur de la courbe de resolution est 1,6.10{sup -9} s pour les coincidences {beta}-{gamma} de Au{sup 198} et 2.10{sup -9} s pour les coincidences n-{alpha} de la reaction (d, t). (auteur)

  1. On spacecraft maneuvers control subject to propellant engine modes.

    Science.gov (United States)

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Space Objects Maneuvering Detection and Prediction via Inverse Reinforcement Learning

    Science.gov (United States)

    Linares, R.; Furfaro, R.

    This paper determines the behavior of Space Objects (SOs) using inverse Reinforcement Learning (RL) to estimate the reward function that each SO is using for control. The approach discussed in this work can be used to analyze maneuvering of SOs from observational data. The inverse RL problem is solved using the Feature Matching approach. This approach determines the optimal reward function that a SO is using while maneuvering by assuming that the observed trajectories are optimal with respect to the SO's own reward function. This paper uses estimated orbital elements data to determine the behavior of SOs in a data-driven fashion.

  3. Virtual simulation of maneuvering captive tests for a surface vessel

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2015-09-01

    Full Text Available Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zigzag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

  4. STS-114 Flight Day 3 Highlights

    Science.gov (United States)

    2005-01-01

    Video coverage of Day 3 includes highlights of STS-114 during the approach and docking of Discovery with the International Space Station (ISS). The Return to Flight continues with space shuttle crew members (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) seen in onboard activities on the fore and aft portions of the flight deck during the orbiter's approach. Camarda sends a greeting to his family, and Collins maneuvers Discovery as the ISS appears steadily closer in sequential still video from the centerline camera of the Orbiter Docking System. The approach includes video of Discovery from the ISS during the orbiter's Rendezvous Pitch Maneuver, giving the ISS a clear view of the thermal protection systems underneath the orbiter. Discovery docks with the Destiny Laboratory of the ISS, and the shuttle crew greets the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS onboard the station. Finally, the Space Station Remote Manipulator System hands the Orbiter Boom Sensor System to its counterpart, the Shuttle Remote Manipulator System.

  5. An Overview of Flight Test Results for a Formation Flight Autopilot

    Science.gov (United States)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  6. Intermediate Maneuver Induced Rollover Simulation (IMIRS) and Sensitivity Analysis. Final Report

    Science.gov (United States)

    1991-02-01

    This report describes the development of the Intermediate Maneuver Induced Rollover Simulation (IMIRS) which can be used to investigate the phenomenon of maneuver induced rollover of light vehicles. The IMIRS represents an enhancement of the existing...

  7. Transient Structured Distance as a Maneuver in Marital Therapy

    Science.gov (United States)

    Greene, Bernard L.; And Others

    1973-01-01

    Experience with 73 cases has shown the value of Transient Structured Distance as a maneuver in marriage therapy. While the TSD is a radical form of intervention with risks of anxiety reactions, homosexual panic, or divorce, it has proved effective with difficult forms of acute or chronic marital disharmony. (Author)

  8. Unsteady Aerodynamic Modeling of A Maneuvering Aircraft Using Indicial Functions

    Science.gov (United States)

    2016-03-30

    Paper Undergraduate Student Paper Postgraduate Student Paper █ Unsteady Aerodynamic Modeling of A Maneuvering Aircraft Using Indicial Functions...nonlinear aerodynamic loads is investigated. This approach is based on Duhamel’s superposition integral using indicial response functions. The...method can produce accurate predictions for unsteady aerodynamic loads, along with the advantage that the model predictions require orders of

  9. Volunteer kinematics and reaction in lateral emergency maneuver tests

    NARCIS (Netherlands)

    Rooij, L. van; Elrofai, H.B.H.; Philippens, M.M.G.M.; Daanen, H.A.M.

    2013-01-01

    It is important to understand human kinematics and muscle activation patterns in emergency maneuvers for the design of safety systems and for the further development of human models. The objective of this study was to quantify kinematic behavior and muscle activation in simulated steering tests in

  10. Aqua/Aura Inclination Adjust Maneuver Series Spring 2018 Planning

    Science.gov (United States)

    Trenholme, Elena; Boone, Spencer

    2017-01-01

    This will be presented at the International Earth Science Constellation Mission Operations Working Group meeting on December 6-8, 2017 to discuss the Aqua/Aura Spring 2018 Inclination Adjust Maneuver series planning. Presentation has been reviewed and approved by Eric Moyer, ESMO (Earth Science Mission Operations) Deputy Project Manager.

  11. Volunteer kinematics and reaction in lateral emergency maneuver tests.

    NARCIS (Netherlands)

    Van Rooij, L.; Elrofai, H.; Philippens, M.M.G.M.; Daanen, H. A.

    2013-01-01

    It is important to understand human kinematics and muscle activation patterns in emergency maneuvers for the design of safety systems and for the further development of human models. The objective of this study was to quantify kinematic behavior and muscle activation in simulated steering tests in

  12. Maneuvering and stability performance of a robotic tuna.

    Science.gov (United States)

    Anderson, Jamie M; Chhabra, Narender K

    2002-02-01

    The Draper Laboratory Vorticity Control Unmanned Undersea Vehicle (VCUUV) is the first mission-scale, autonomous underwater vehicle that uses vorticity control propulsion and maneuvering. Built as a research platform with which to study the energetics and maneuvering performance of fish-swimming propulsion, the VCUUV is a self-contained free swimming research vehicle which follows the morphology and kinematics of a yellowfin tuna. The forward half of the vehicle is comprised of a rigid hull which houses batteries, electronics, ballast and hydraulic power unit. The aft section is a freely flooded articulated robot tail which is terminated with a lunate caudal fin. Utilizing experimentally optimized body and tail kinematics from the MIT RoboTuna, the VCUUV has demonstrated stable steady swimming speeds up to 1.2 m/sec and aggressive maneuvering trajectories with turning rates up to 75 degrees per second. This paper summarizes the vehicle maneuvering and stability performance observed in field trials and compares the results to predicted performance using theoretical and empirical techniques.

  13. EOS Terra Terra Constellation Exit/Future Maneuver Plans Update

    Science.gov (United States)

    Mantziaras, Dimitrios

    2016-01-01

    This EOS Terra Constellation Exit/Future Maneuver Plans Update presentation will discuss brief history of Terra EOM work; lifetime fuel estimates; baseline vs. proposed plan origin; resultant exit orbit; baseline vs. proposed exit plan; long term orbit altitude; revised lifetime proposal and fallback options.

  14. Real-Time Flight Planning Solution of Unmanned Aerial Vehicle Spatial Trajectory in Complex Terrain

    Directory of Open Access Journals (Sweden)

    L. Tan’

    2015-01-01

    Full Text Available Currently, there is a tendency in the world that the unmanned aerial vehicles (UAVs are beginning to be widely used in civilian areas. With the rapid development of the UAV, capable of moving in complicated terrain, the task of planning a real-time flight route is becoming more relevant and attractive.Combining control methods of predictive models with and mixed integer linear programming can improve the efficiency of solving the problem of flight route planning in real time. In order to plan the optimal spatial trajectory of UAV when flying in difficult terrain (houses, mountains, etc., in this paper, a novel approach to real-time three-dimensional trajectory planning for unmanned aerial vehicles (UAV was represented under conditions of complex mountainous terrain, which can be built on the model of predictive control (MPC. Local terrain around UAV, which was modeled by triangulated irregular network (TIN method as well as logical and continuous variables describing obstacle-avoidance are known within the limit detection radius.However, taking into account the functional characteristics of the UAV, it is necessary to further treat smooth trajectory in its true time to receive the real-time permissible threedimensional trajectory. This article has been selected an algorithm for the serial connection of radius segments to smooth the planned route of flight of the UAV.In the final part through the simulation results of the algorithm we have shown, using this algorithm, that the UAV successfully avoids all obstacles in real-time. This algorithm fully takes into account the limits on the maneuvering capabilities of the UAV, and it is proved that our algorithm is efficiently applied when the UAV moves in unknown environments, or in a situation of gradual obstacle detection in real flight.

  15. Multi-Agent Flight Simulation with Robust Situation Generation

    Science.gov (United States)

    Johnson, Eric N.; Hansman, R. John, Jr.

    1994-01-01

    A robust situation generation architecture has been developed that generates multi-agent situations for human subjects. An implementation of this architecture was developed to support flight simulation tests of air transport cockpit systems. This system maneuvers pseudo-aircraft relative to the human subject's aircraft, generating specific situations for the subject to respond to. These pseudo-aircraft maneuver within reasonable performance constraints, interact in a realistic manner, and make pre-recorded voice radio communications. Use of this system minimizes the need for human experimenters to control the pseudo-agents and provides consistent interactions between the subject and the pseudo-agents. The achieved robustness of this system to typical variations in the subject's flight path was explored. It was found to successfully generate specific situations within the performance limitations of the subject-aircraft, pseudo-aircraft, and the script used.

  16. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) directly from positive blood culture flasks allows rapid identification of bloodstream infections in immunosuppressed hosts.

    Science.gov (United States)

    Egli, A; Osthoff, M; Goldenberger, D; Halter, J; Schaub, S; Steiger, J; Weisser, M; Frei, R

    2015-06-01

    In immunosuppressed hosts, rapid identification of microorganisms of bloodstream infections is crucial to ensuring effective antimicrobial therapy. Conventional culture requires up to 72 h from sample collection to pathogen identification. We used the SepsiTyper Kit and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF; Microflex, Bruker) directly from positive blood culture (BacT/ALERT 3D, FN/FA vials; bioMérieux) in comparison to standard culture methodology (VITEK 2; bioMérieux) for species identification. A total of 62 consecutive positive blood cultures from immunosuppressed patients (solid organ or hematopoietic transplant recipients, or with febrile neutropenia) were analyzed. Culture yielded gram-negative bacteria (GNB) in 27/62 (43.5%) and gram-positive (GPB) in 35/62 (56.5%) vials. For GNB, the predominant species identified by MALDI-TOF and confirmed by VITEK were Escherichia coli (16/16 correctly identified) and Enterobacter cloacae (4/4), with a sensitivity and specificity of 92.6% and 100%, respectively. For GPB, predominant species were Staphylococcus aureus (3/3), coagulase-negative staphylococci (12/24), and Enterococcus faecium (6/6) with a sensitivity of 100%, 60%, and 100%, respectively. The median time from blood collection to species identification was 27.4 h with MALDI-TOF identification and 46.6 h with conventional methodology. Using MALDI-TOF directly from positive blood cultures allowed a shorter time to identification with high sensitivity and specificity in immunosuppressed patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Universal protocol for the rapid automated detection of carbapenem-resistant Gram-negative bacilli directly from blood cultures by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS).

    Science.gov (United States)

    Oviaño, Marina; Sparbier, Katrin; Barba, Maria José; Kostrzewa, Markus; Bou, Germán

    2016-12-01

    Detection of carbapenemase-producing bacteria directly from blood cultures is a major challenge, as patients with bacteraemia are critically ill. Early detection can be helpful for selection of the most appropriate antibiotic therapy as well as adequate control of outbreaks. In the current study, a novel matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF)-based method was developed for the rapid, automated detection of carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii directly from blood cultures. Carbapenemase activity was determined in 30 min by measuring hydrolysis of imipenem (0.31 mg/mL) in blood cultures spiked with a series of 119 previously characterised isolates, 81 of which carried a carbapenemase enzyme (10 blaKPC, 10 blaVIM, 10 blaNDM, 10 blaIMP, 26 blaOXA-48-type, 9 blaOXA-23, 1 blaOXA-237, 3 blaOXA-24 and 2 blaOXA-58). Twenty blood cultures obtained from bacteraemic patients carrying blaOXA-48-producing isolates were also analysed using the same protocol. Analysis was performed using MALDI-TOF Biotyper® Compass software, which automatically provides a result of sensitivity or resistance, calculated as the logRQ or ratio of hydrolysis of the antibiotic. This assay is simple to perform, inexpensive, time saving, universal for Gram-negative bacilli, and highly reliable (overall sensitivity and specificity of 98% and 100%, respectively). Moreover, the protocol could be established as a standardised method in clinical laboratories as it does not require specialised training in mass spectrometry. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  18. Flight Performance Handbook for Orbital Operations: Orbital Mechanics and Astrodynamics Formulae, Theorems, Techniques, and Applications

    Science.gov (United States)

    Ambrosio, Alphonso; Blitzer, Leon; Conte, S.D.; Cooper, Donald H.; Dergarabedian, P.; Dethlefsen, D.G.; Lunn, Richard L.; Ireland, Richard O.; Jensen, Arnold A.; Kang, Garfield; hide

    1961-01-01

    This handbook provides parametric data useful both to the space vehicle designer and mission analyst. It provides numerical and analytical relationships between missions and gross vehicle characteristics as a function of performance parameters. The effects of missile constraints and gross guidance limitations plus operational constraints such as launch site location, tracking net location, orbit visibility and mission on trajectory and orbit design parameters are exhibited. The influence of state-of- the-art applications of solar power as compared to future applications of nuclear power on orbit design parameters, such as eclipse time, are among the parameters included in the study. The principal aim, however, is in providing the analyst with useful parametric design information to cover the general area of earth satellite missions in the region of near-earth to cislunar space and beyond and from injection to atmospheric entry and controlled descent. The chapters are organized around the central idea of orbital operations in the 1961-1969 era with emphasis on parametric flight mechanics studies for ascent phase and parking orbits, transfer maneuvers, rendezvous maneuver, operational orbit considerations, and operational orbit control. The results are based almost entirely on the principles of flight and celestial mechanics. Numerous practical examples have been worked out in detail. This is especially important where it has been difficult or impossible to represent all possible variations of the parameters. The handbook contains analytical formulae and sufficient textual material to permit their proper use. The analytic methods consist of both exact and rapid, approximate methods. Scores of tables, working graphs and illustrations amplify the mathematical models which, together with important facts and data, cover the engineering and scientific applications of orbital mechanics. Each of the five major chapters are arranged to provide a rapid review of an entire

  19. Dynamic Flight Maneuvering Using Virtual Control Surfaces Generated by Trapped Vorticity

    Science.gov (United States)

    2010-12-01

    Ancillary Information IX.1 Personnel Supported Avishek Aiyar, Graduate Research Assistant, Chemical and Biomolecular Engineering , Georgia Tech...produces an obvious response in the AOA of the airfoil. A simulation of the model was created in MATLAB Simulink , accounting for the airfoil...we typically do not know the details (and sometimes not even the structure) of the right-hand side (RHS) of (1). For example, much of chemical

  20. Real-Time Noise Prediction of V/STOL Aircraft in Maneuvering Flight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a plan for enhancing and integrating new breakthrough technologies to provide accurate real-time noise prediction of V/STOL aircraft in...

  1. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach.

    Science.gov (United States)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. The analysis is conducted by means of a mixed logit model that represents the selection among 5 emergency lateral and speed control maneuvers (i.e., "no avoidance maneuvers," "braking," "steering," "braking and steering," and "other maneuvers) while accommodating correlations across maneuvers and heteroscedasticity. Data for the analysis were retrieved from the General Estimates System (GES) crash database for the year 2009 by considering drivers for which crash avoidance maneuvers are known. The results show that (1) the nature of the critical event that made the crash imminent greatly influences the choice of crash avoidance maneuvers, (2) women and elderly have a relatively lower propensity to conduct crash avoidance maneuvers, (3) drowsiness and fatigue have a greater negative marginal effect on the tendency to engage in crash avoidance maneuvers than alcohol and drug consumption, (4) difficult road conditions increase the propensity to perform crash avoidance maneuvers, and (5) visual obstruction and artificial illumination decrease the probability to carry out crash avoidance maneuvers. The results emphasize the need for public awareness campaigns to promote safe driving style for senior drivers and warning about the risks of driving under fatigue and distraction being comparable to the risks of driving under the influence of alcohol and drugs. Moreover, the results suggest the need to educate drivers about hazard perception, designing

  2. Application of the H∞ filter in high speed turn maneuvering target tracking algorithm

    Science.gov (United States)

    Lei, Zhenda; Ma, Chuncao; Sun, Hongwei; Han, Yu

    2016-04-01

    High speed, low flying and high Maneuvering, Good methods are needed in high speed Turn maneuvering tracking algorithm. An adaptive version of the H∞ filter which has a practical real-time implementations developed in the paper and it is demonstrated that it has superior worst case performance when compared with the standard Kaman filter to target tracking. when used in turn maneuvering tracking algorithm, the new filter yields improved worst-case performance in the case of model uncertainties. The simulation results indicate that the real-tine maneuvering target turn tracking algorithm can maintain track under severe correlates maneuvers.

  3. Maneuver Performance Assessment of the Cassini Spacecraft Through Execution-Error Modeling and Analysis

    Science.gov (United States)

    Wagner, Sean

    2014-01-01

    The Cassini spacecraft has executed nearly 300 maneuvers since 1997, providing ample data for execution-error model updates. With maneuvers through 2017, opportunities remain to improve on the models and remove biases identified in maneuver executions. This manuscript focuses on how execution-error models can be used to judge maneuver performance, while providing a means for detecting performance degradation. Additionally, this paper describes Cassini's execution-error model updates in August 2012. An assessment of Cassini's maneuver performance through OTM-368 on January 5, 2014 is also presented.

  4. Cassini Maneuver Experience for the Fourth Year of the Solstice Mission

    Science.gov (United States)

    Vaquero, Mar; Hahn, Yungsun; Stumpf, Paul; Valerino, Powtawche; Wagner, Sean; Wong, Mau

    2014-01-01

    After sixteen years of successful mission operations and invaluable scientific discoveries, the Cassini orbiter continues to tour Saturn on the most complex gravity-assist trajectory ever flown. To ensure that the end-of-mission target of September 2017 is achieved, propellant preservation is highly prioritized over maneuver cycle minimization. Thus, the maneuver decision process, which includes determining whether a maneuver is performed or canceled, designing a targeting strategy and selecting the engine for execution, is being continuously re-evaluated. This paper summarizes the maneuver experience throughout the fourth year of the Solstice Mission highlighting 27 maneuvers targeted to nine Titan flybys.

  5. Evasive Maneuvers in Space Debris Environment and Technological Parameters

    Directory of Open Access Journals (Sweden)

    Antônio D. C. Jesus

    2012-01-01

    Full Text Available We present a study of collisional dynamics between space debris and an operational vehicle in LEO. We adopted an approach based on the relative dynamics between the objects on a collisional course and with a short warning time and established a semianalytical solution for the final trajectories of these objects. Our results show that there are angular ranges in 3D, in addition to the initial conditions, that favor the collisions. These results allowed the investigation of a range of technological parameters for the spacecraft (e.g., fuel reserve that allow a safe evasive maneuver (e.g., time available for the maneuver. The numerical model was tested for different values of the impact velocity and relative distance between the approaching objects.

  6. Novel Fractional Order Calculus Extended PN for Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Jikun Ye

    2017-01-01

    Full Text Available Based on the theory of fractional order calculus (FOC, a novel extended proportional guidance (EPN law for intercepting the maneuvering target is proposed. In the first part, considering the memory function and filter characteristic of FOC, the novel extended PN guidance algorithm is developed based on the conventional PN after introducing the properties and operation rules of FOC. Further, with the help of FOC theory, the average load and ballistics characteristics of proposed guidance law are analyzed. Then, using the small offset kinematic model, the robustness of the new guidance law against autopilot parameters is studied theoretically by analyzing the sensitivity of the closed loop guidance system. At last, representative numerical results show that the designed guidance law obtains a better performance than the traditional PN for maneuvering target.

  7. Flight performance using a hyperstereo helmet-mounted display: post-flight debriefing questionnaire

    Science.gov (United States)

    Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.; Jennings, Sion; Craig, Gregory; Stuart, Geoffrey W.

    2009-05-01

    Helmet-mounted display (HMD) designs have faced persistent head-supported mass and center of mass (CM) problems, especially HMD designs like night vision goggles (NVG) that utilize image intensification (I2) sensors mounted forward in front of the user's eyes. Relocating I2 sensors from the front to the sides of the helmet, at or below the transverse plane through the user's head CM, can resolve most of the CM problems. However, the resulting increase in the separation between the two I2 channels effectively increases the user's interpupillary distance (IPD). This HMD design is referred to as a hyperstero design and introduces the phenomenon of hyperstereopsis, a type of visual distortion where stereoscopic depth perception is exaggerated, particularly at distances under 200 feet (~60 meters). The presence of hyperstereopsis has been a concern regarding implementation of hyperstereo HMDs for rotary-wing aircraft. To address this concern, a flight study was conducted to assess the impact of hyperstereopsis on aircraft handling proficiency and pilot acceptance. Three rated aviators with differing levels of I2 and hyperstereo HMD experience conducted a series of flights that concentrated on low-level maneuvers over a two-week period. Initial and final flights were flown with a standard issue I2 device and a production hyperstereo design HMD. Interim flights were flown only with the hyperstereo HMD. Two aviators accumulated 8 hours of flight time with the hyperstereo HMD, while the third accumulated 6.9 hours. This paper presents data collected via written questionnaires completed by the aviators during the post-flight debriefings. These data are compared to questionnaire data from a previous flight investigation in which aviators in a copilot capacity, hands not on the flight controls, accumulated 8 flight hours of flight time using a hyperstereo HMD.

  8. Aircraft digital flight control technical review

    Science.gov (United States)

    Davenport, Otha B.; Leggett, David B.

    1993-01-01

    The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.

  9. CFD investigations of the aerodynamics of vehicle overtaking maneuvers

    Science.gov (United States)

    Uddin, Mesbah; Chellaram, Arune Dhiren; Robinson, Austin Clay

    2017-06-01

    When two vehicle bodies are involved in a passing maneuver, interesting and intricate aerodynamic interactions occur between them. Such passing maneuvers are very important in racing and have been an area of active interest in motorsports for quite some time. The existing literature shows only a few studies in this area, and, as such, very little is known about the complex aerodynamics of racing in proximity. This paper presents a Computational Fluid Dynamics (CFD) methodology capable of describing the transient effects that occur in this scenario. This is achieved by simulating two tandem simplified vehicle bodies, the Ahmed body, which were placed in a virtual wind tunnel. One Ahmed body was kept stationary, while the other was allowed to move in the longitudinal direction with a relatively low velocity. In order to achieve reliable CFD results when one of the solid objects is moving, a new meshing methodology, called the overset mesh model, was implemented in the CFD process. The simulations were run using Star CCM+, a commercial finite-volume CFD program, in which the unsteady Reynolds Averaged Navier-Stokes (URANS) solver was applied. The CFD results are compared against fully transient and quasi-steady-state experimental results where encouraging correlations between the CFD and experiments are observed. The veracity of the CFD work presented in this paper provides significant insight into the complex aerodynamics of a passing maneuver, and lays the foundation for further analysis in this area using more complex vehicle shapes and more complex tandem racing or passing maneuvers at a yaw angle.

  10. Maintenance Maneuver Automation for an Adapted Cylindrical Shape TEC

    Directory of Open Access Journals (Sweden)

    Rafael Morales

    2016-09-01

    Full Text Available Several manufacturers have developed devices with which to harness tidal/current power in areas where the depth does not exceed 40 m. These are the so-called first generation Tidal Energy Converters (TEC, and they are usually fixed to the seabed by gravity. When carrying out maintenance tasks on these devices it is, therefore, necessary to remove the nacelles from their bases and raise them to the surface of the sea. They must subsequently be placed back on their bases. These tasks require special high performance ships, signifying high maintenance costs. The automation of emersion and immersion maneuvers will undoubtedly lead to lower costs, given that ships with less demanding requirements will be required for the aforementioned maintenance tasks. This research presents a simple two degrees of freedom dynamic model that can be used to control a first generation TEC that has been conceived of to harness energy from marine currents. The control of the system is carried out by means of a water ballast system located inside the nacelle of the main power unit and is used as an actuator to produce buoying vertical forces. A nonlinear control law based on a decoupling term for the closed loop depth and/or orientation control is also proposed in order to ensure adequate behavior when the TEC performs emersion and immersion maneuvers with only hydrostatic buoyancy forces. The control scheme is composed of an inner loop consisting of a linear and decoupled input/output relationship and the vector of friction and compressibility terms and an outer loop that operates with the tracking error vector in order to ensure the asymptotically exponential stability of the TEC posture. Finally, the effectiveness of the dynamic model and the controller approach is demonstrated by means of numerical simulations when the TEC is carrying out an emersion maneuver for the development of general maintenance tasks and an emersion maneuver for blade-cleaning maintenance

  11. Sustaining Operational Maneuver in the Twenty-First Century

    Science.gov (United States)

    2010-05-13

    hedgerows while exploiting the breech created by strategic bombers and the other divisions of the United States Army VII Corps. Maneuver operations would...forces encountered the difficult hedgerow obstacles and a tenacious German enemy adapt at defending them. The allied forces lost momentum and needed... hedgerow country.27 For the American forces, it was the transition between the bloody, slow attritional fighting in the Normandy hedgerows and the

  12. Multi-class, multi-residue analysis of trace veterinary drugs in milk by rapid screening and quantification using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Zhang, Yaqian; Li, Xiang; Liu, Xiaomao; Zhang, Jinjie; Cao, Yanzhong; Shi, Zhihong; Sun, Hanwen

    2015-12-01

    A simple and rapid multi-class multi-residue analytical method was developed for the screening and quantification of veterinary drugs in milk by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). A total of 90 veterinary drugs investigated belonged to almost 20 classes including lincomycins, macrolides, sulfonamides, quinolones, tetracyclines, β-agonists, β-lactams, sedatives, β-receptor antagonists, sex hormones, glucocorticoids, nitroimidazoles, benzimidazoles, nitrofurans, and some others. A modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) procedure was developed for the sample preparation without the solid-phase extraction step. The linearity, sensitivity, accuracy, repeatability, and reproducibility of the method were fully validated. The response of the detector was linear for each target compound in a wide concentration range with a correlation coefficient (R(2)) of 0.9973 to 0.9999 (among them R(2)>0.999 for 73 of 90 analytes). The range of the limit of quantification for these compounds in the milk ranged from 0.10 to 17.30μg/kg. The repeatability and reproducibility were in the range of 2.11 to 9.62% and 2.76 to 13.9%, respectively. The average recoveries ranged from 72.62 to 122.2% with the RSD (n=6) of 1.30 to 9.61% at 3 concentration levels. For the screening method, the data of the precursor and product ions of the target analytes were simultaneously acquired under the all ions MS/MS mode in a single run. An accurate mass database for the confirmation and identification of the target compounds was established. The applicability of the screening method was verified by applying to real milk samples. The proposed analytical method allows the identification and confirmation of the target veterinary drugs at trace levels employing quick analysis time. Certain veterinary drugs were detected in some cases. Copyright © 2015 American Dairy Science Association. Published by

  13. Comparison of ZnS semiconductor nanoparticles capped with various functional groups as the matrix and affinity probes for rapid analysis of cyclodextrins and proteins in surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Kailasa, Suresh Kumar; Kiran, Kamatam; Wu, Hui-Fen

    2008-12-15

    Zinc sulfide (ZnS) semiconductor nanoparticles (NPs) capped with a variety of functional groups including bare ZnS NPs, 3-mercaptopropanoic acid (ZnS-3-MPA), sodium citrate (ZnS-citrate), cysteamine (ZnS-Cys), and 2-mercaptoethane sulfonate (ZnS-2-MES) have been investigated as the matrix and affinity probes for analysis of alpha-, beta-, and gamma-cyclodextrins (CDs), ubiquitin, and insulin in biological samples by using surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF-MS). Various parameters that would influence the ionization efficiency and sensitivity of these ZnS NPs in SALDI-TOF-MS were examined including the effect of capping agents, sample pH, ion abundance, and concentration of ZnS NPs. Among these ZnS NPs, our results have demonstrated that ZnS-3-MPA exhibited the highest efficiency toward CDs, ubiquitin, and insulin for high-sensitivity detection in SALDI-TOF-MS. The detection limits were 20-55 nM for CDs, 91 nM for ubiquitin, and 85 nM for insulin. The applicability of the present method is demonstrated by detection of ubiquitin-like proteins in oyster mushroom and also in the analysis of analytes in biological samples such as human urine and plasma. To our best knowledge, this is the first time semiconductor NPs were used as the matrix and affinity probes for high-sensitivity detection of organic and biomolecules in SALDI-TOF-MS. This approach exhibits the advantages of being simple, rapid, efficient, and straightforward for direct analysis of organic and biological samples in SALDI-TOF-MS without the need for time-consuming separation processes, tedious washing steps, or further laborious purification. In addition, it also can provide a sensitive and reliable quantitative assay for small- and large-molecule analysis with the detectable mass up to 8500 Da. We believe that this novel ZnS nanoprobe is simple, efficient, lower cost (compared with Au, Ag, and Pt NPs), fast, and with the potential for high

  14. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  15. Animal aloft: the origins of aerial behavior and flight.

    Science.gov (United States)

    Dudley, Robert; Yanoviak, Stephen P

    2011-12-01

    Diverse taxa of animals exhibit remarkable aerial capacities, including jumping, mid-air righting, parachuting, gliding, landing, controlled maneuvers, and flapping flight. The origin of flapping wings in hexapods and in 3 separate lineages of vertebrates (pterosaurs, bats, and birds) greatly facilitated subsequent diversification of lineages, but both the paleobiological context and the possible selective pressures for the evolution of wings remain contentious. Larvae of various arboreal hemimetabolous insects, as well as many adult canopy ants, demonstrate the capacity for directed aerial descent in the absence of wings. Aerial control in the ancestrally wingless archaeognathans suggests that flight behavior preceded the origins of wings in hexapods. In evolutionary terms, the use of winglets and partial wings to effect aerial righting and maneuvers could select for enhanced appendicular motions, and ultimately lead to powered flight. Flight behaviors that involve neither flapping nor wings are likely to be much more widespread than is currently recognized. Further characterization of the sensory and biomechanical mechanisms used by these aerially capable taxa can potentially assist in reconstruction of ancestral winged morphologies and facilitate our understanding of the origins of flight.

  16. Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.

    Science.gov (United States)

    Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen

    2013-01-01

    Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework.

  17. Vehicle Optimal Velocity Curves for Minimum-Time Maneuver

    Directory of Open Access Journals (Sweden)

    Li-xia Zhang

    2014-02-01

    Full Text Available A problem in vehicle minimum-time maneuver is the assumption that a vehicle passes through a given path in a minimal amount of time without deviating from the boundary of the given path. Vehicle handling inverse dynamics provides a new perspective to solve such problem. Based on inverse dynamics, this paper transformed the problem of optimal vehicle velocity for minimum-time maneuver into that of optimal control with the objective function of minimum time. The path for minimum vehicle travel time and the optimal control model were established. The optimal velocity curves for three types of paths, namely, monotonically increasing path, monotonically decreasing path, and constant radius path, were analyzed. On this basis, the optimal velocity curves were solved for two kinds of concrete paths: a path of decreasing curvature radius followed by a path of increasing curvature radius and another path of increasing curvature radius followed by a path of decreasing curvature radius. Nine cases of possible optimal velocity curves were acquired. The optimal velocity curve of the given path, that is, a parabola followed by a semicircle, was obtained. Optimal velocity curves can be used as reference for vehicle minimum-time maneuver, which is an important issue for driver safety in fast-moving vehicles.

  18. Actuator characterization of a man-portable precision maneuver concept

    Directory of Open Access Journals (Sweden)

    Ilmars Celmins

    2014-06-01

    Full Text Available The US Army Research Laboratory is conducting research to explore technologies that may be suitable for maneuvering man-portable munitions. Current research is focused on the use of rotary actuators with spin-stabilized munitions. A rotary actuator holds the potential of providing a low-power solution for guidance of a spinning projectile. This is in contrast to a linear (reciprocating actuator which would need to constantly change direction, resulting in large accelerations which in turn would require large forces, thereby driving up the actuator power. A rotational actuator would be operating at a fairly constant rotation rate once it is up to speed, resulting in much lower power requirements. Actuator experiments conducted over a variety of conditions validate the dynamic models of the actuator and supply the data necessary for model parameter estimation. Actuator performance metrics of spin rate response, friction, and power requirements were derived from the data. This study indicates that this class of maneuver concepts can be driven with these actuators. These results enable actuator design and multi-disciplinary simulation of refined maneuver concepts for a specific application.

  19. Evaluation of Mathematical Models for Tankers’ Maneuvering Motions

    Directory of Open Access Journals (Sweden)

    Erhan AKSU

    2017-03-01

    Full Text Available In this study, the maneuvering performance of two tanker ships, KVLCC1 and KVLCC2 which have different stern forms are predicted using a system-based method. Two different 3 DOF (degrees of freedom mathematical models based on the MMG(Maneuvering Modeling Group concept areappliedwith the difference in representing lateral force and yawing moment by second and third order polynomials respectively. Hydrodynamic coefficients and related parameters used in the mathematical models of the same scale models of KVLCC1 and KVLCC2 ships are estimated by using experimental data of NMRI (National Maritime Research Institute. The simulations of turning circle with rudder angle ±35o , zigzag(±10o /±10o and zigzag (±20o /±20o maneuvers are carried out and compared with free running model test data of MARIN (Maritime Research Institute Netherlands in this study. As a result of the analysis, it can be summarised that MMG model based on the third order polynomial is superior to the one based on the second order polynomial in view of estimation accuracy of lateral hull force and yawing moment.

  20. Missile-Borne SAR Raw Signal Simulation for Maneuvering Target

    Directory of Open Access Journals (Sweden)

    Weijie Xia

    2016-01-01

    Full Text Available SAR raw signal simulation under the case of maneuver and high-speed has been a challenging and urgent work recently. In this paper, a new method based on one-dimensional fast Fourier transform (1DFFT algorithm is presented for raw signal simulation of maneuvering target for missile-borne SAR. Firstly, SAR time-domain raw signal model is given and an effective Range Frequency Azimuth Time (RFAT algorithm based on 1DFFT is derived. In this algorithm, the “Stop and Go” (SaG model is adopted and the wide radar scattering characteristic of target is taken into account. Furthermore, the “Inner Pulse Motion” (IPM model is employed to deal with high-speed case. This new RFAT method can handle the maneuvering cases, high-speed cases, and bistatic radar cases, which are all possible in the missile-borne SAR. Besides, this raw signal simulation adopts the electromagnetic scattering calculation so that we do not need a scattering rate distribution map as the simulation input. Thus, the multiple electromagnetic reflections can be considered. Simulation examples prove the effectiveness of our method.

  1. A Fuel-Efficient Conflict Resolution Maneuver for Separation Assurance

    Science.gov (United States)

    Bowe, Aisha Ruth; Santiago, Confesor

    2012-01-01

    Automated separation assurance algorithms are envisioned to play an integral role in accommodating the forecasted increase in demand of the National Airspace System. Developing a robust, reliable, air traffic management system involves safely increasing efficiency and throughput while considering the potential impact on users. This experiment seeks to evaluate the benefit of augmenting a conflict detection and resolution algorithm to consider a fuel efficient, Zero-Delay Direct-To maneuver, when resolving a given conflict based on either minimum fuel burn or minimum delay. A total of twelve conditions were tested in a fast-time simulation conducted in three airspace regions with mixed aircraft types and light weather. Results show that inclusion of this maneuver has no appreciable effect on the ability of the algorithm to safely detect and resolve conflicts. The results further suggest that enabling the Zero-Delay Direct-To maneuver significantly increases the cumulative fuel burn savings when choosing resolution based on minimum fuel burn while marginally increasing the average delay per resolution.

  2. "Spaghetti Maneuver": A useful tool in pediatric laparoscopy - Our experience

    Directory of Open Access Journals (Sweden)

    Antonio Marte

    2011-01-01

    Full Text Available Aims: The laparoscopic "Spaghetti Maneuver" consists in holding an organ by its extremity with a grasper and rolling it up around the tool to keep the organ stable and facilitate its traction within a small space. We describe our experience with the "Spaghetti Maneuver" in some minimally invasive procedures. Materials and Methods: We successfully adopted this technique in 13 patients (5F : 8M aged between 6 and 14 years (average age, 10 on whom we performed 7 appendectomies, 2 ureteral reimplantation and 4 cholecystectomies. In all cases, after the first steps, the appendix, the gallbladder and the ureter were rolled around the grasper and easily isolated; hemostasis was thus induced and the organ was mobilized until removal during cholecystectomy and appendectomy, and before the reimplantation in case of ureteral reimplantation. Results: We found that this technique facilitated significantly the acts of holding, isolating and removing, when necessary, the structures involved, which remained constantly within the visual field of the operator. This allowed a very ergonomic work setting, overcoming the problem of the "blind" zone, which represents a dangerous and invisible area out of the operator′s control during laparoscopy. Moreover the isolation maneuvers resulted easier and reduced operating time. Conclusion: We think that this technique is easy to perform and very useful, because it facilitates the dissection of these organs, by harmonizing and stabilizing the force of traction exercised.

  3. Flight Mechanics Project

    Science.gov (United States)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  4. X-38 - First Flight

    Science.gov (United States)

    1997-01-01

    Reminiscent of the lifting body research flights conducted more than 30 years earlier, NASA's B-52 mothership lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also

  5. The development of an automated flight test management system for flight test planning and monitoring

    Science.gov (United States)

    Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.

    1988-01-01

    The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.

  6. Optimal Control of Hypersonic Planning Maneuvers Based on Pontryagin’s Maximum Principle

    Directory of Open Access Journals (Sweden)

    A. Yu. Melnikov

    2015-01-01

    Full Text Available The work objective is the synthesis of simple analytical formula of the optimal roll angle of hypersonic gliding vehicles for conditions of quasi-horizontal motion, allowing its practical implementation in onboard control algorithms.The introduction justifies relevance, formulates basic control tasks, and describes a history of scientific research and achievements in the field concerned. The author reveals a common disadvantage of the other authors’ methods, i.e. the problem of practical implementation in onboard control algorithms.The similar tasks of hypersonic maneuvers are systemized according to the type of maneuver, control parameters and limitations.In the statement of the problem the glider launched horizontally with a suborbital speed glides passive in the static Atmosphere on a spherical surface of constant radius in the Central field of gravitation.The work specifies a system of equations of motion in the inertial spherical coordinate system, sets the limits on the roll angle and optimization criteria at the end of the flight: high speed or azimuth and the minimum distances to the specified geocentric points.The solution.1 A system of equations of motion is transformed by replacing the time argument with another independent argument – the normal equilibrium overload. The Hamiltonian and the equations of mated parameters are obtained using the Pontryagin’s maximum principle. The number of equations of motion and mated vector is reduced.2 The mated parameters were expressed by formulas using current movement parameters. The formulas are proved through differentiation and substitution in the equations of motion.3 The Formula of optimal roll-position control by condition of maximum is obtained. After substitution of mated parameters, the insertion of constants, and trigonometric transformations the Formula of the optimal roll angle is obtained as functions of the current parameters of motion.The roll angle is expressed as the ratio

  7. Flight stability analysis under changes in insect morphology

    Science.gov (United States)

    Noest, Robert; Wang, Z. Jane

    2015-11-01

    Insect have an amazing ability to control their flight, being able to perform both fast aerial maneuvers and stable hovering. The insect's neural system has developed various mechanism by which it can control these flying feats, but we expect that insect morphology is equally important in facilitating the aerial control. We perform a computational study using a quasi-steady instantaneous flapping flight model which allows us to freely adapt the insect's morphological parameters. We picked a fruit fly as the basis for the body shape and wing motion, and study the effect of changes to the morphology for a range of wing stroke amplitudes. In each case we determine the periodic flight mode, with the period equal to a single wing beat, and do a Floquet stability analysis of the flight. To interpret our results we will compare the changed morphology to related insects. We discuss the implications of the insects location on the stability diagram.

  8. Experimental study on the efficiency and safety of the manual hyperinflation maneuver as a secretion clearance technique.

    Science.gov (United States)

    Ortiz, Tatiana de Arruda; Forti, Germano; Volpe, Márcia Souza; Carvalho, Carlos Roberto Ribeiro; Amato, Marcelo Brito Passos; Tucci, Mauro Roberto

    2013-01-01

    To evaluate, in a lung model simulating a mechanically ventilated patient, the efficiency and safety of the manual hyperinflation (MH) maneuver as a means of removing pulmonary secretions. Eight respiratory therapists (RTs) were asked to use a self-inflating manual resuscitator on a lung model to perform MH as if to remove secretions, under two conditions: as routinely applied during their clinical practice; and after receiving verbal instructions based on expert recommendations. In both conditions, three clinical scenarios were simulated: normal lung function, restrictive lung disease, and obstructive lung disease. Before instruction, it was common for an RT to compress the resuscitator bag two times, in rapid succession. Proximal pressure (Pprox) was higher before instruction than after. However, alveolar pressure (Palv) never exceeded 42.5 cmH₂O (median, 16.1; interquartile range [IQR], 11.7-24.5), despite Pprox values as high as 96.6 cmH₂O (median, 36.7; IQR, 22.9-49.4). The tidal volume (VT) generated was relatively low (median, 640 mL; IQR, 505-735), and peak inspiratory flow (PIF) often exceeded peak expiratory flow (PEF), the median values being 1.37 L/s (IQR, 0.99-1.90) and 1.01 L/s (IQR, 0.55-1.28), respectively. A PIF/PEF ratio < 0.9 (which theoretically favors mucus migration toward the central airways) was achieved in only 16.7% of the maneuvers. Under the conditions tested, MH produced safe Palv levels despite high Pprox. However, the MH maneuver was often performed in a way that did not favor secretion removal (PIF exceeding PEF), even after instruction. The unfavorable PIF/ PEF ratio was attributable to overly rapid inflations and low VT.

  9. Experimental study on the efficiency and safety of the manual hyperinflation maneuver as a secretion clearance technique *,**

    Science.gov (United States)

    Ortiz, Tatiana de Arruda; Forti, Germano; Volpe, Márcia Souza; Carvalho, Carlos Roberto Ribeiro; Amato, Marcelo Brito Passos; Tucci, Mauro Roberto

    2013-01-01

    OBJECTIVE: To evaluate, in a lung model simulating a mechanically ventilated patient, the efficiency and safety of the manual hyperinflation (MH) maneuver as a means of removing pulmonary secretions. METHODS: Eight respiratory therapists (RTs) were asked to use a self-inflating manual resuscitator on a lung model to perform MH as if to remove secretions, under two conditions: as routinely applied during their clinical practice; and after receiving verbal instructions based on expert recommendations. In both conditions, three clinical scenarios were simulated: normal lung function, restrictive lung disease, and obstructive lung disease. RESULTS: Before instruction, it was common for an RT to compress the resuscitator bag two times, in rapid succession. Proximal pressure (Pprox) was higher before instruction than after. However, alveolar pressure (Palv) never exceeded 42.5 cmH2O (median, 16.1; interquartile range [IQR], 11.7-24.5), despite Pprox values as high as 96.6 cmH2O (median, 36.7; IQR, 22.9-49.4). The tidal volume (VT) generated was relatively low (median, 640 mL; IQR, 505-735), and peak inspiratory flow (PIF) often exceeded peak expiratory flow (PEF), the median values being 1.37 L/s (IQR, 0.99-1.90) and 1.01 L/s (IQR, 0.55-1.28), respectively. A PIF/PEF ratio < 0.9 (which theoretically favors mucus migration toward the central airways) was achieved in only 16.7% of the maneuvers. CONCLUSIONS: Under the conditions tested, MH produced safe Palv levels despite high Pprox. However, the MH maneuver was often performed in a way that did not favor secretion removal (PIF exceeding PEF), even after instruction. The unfavorable PIF/PEF ratio was attributable to overly rapid inflations and low VT. PMID:23670506

  10. Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options

    Science.gov (United States)

    Song, Young-Joo; Bae, Jonghee; Kim, Young-Rok; Kim, Bang-Yeop

    2017-12-01

    To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.

  11. Treatment of horizontal canal BPPV: pathophysiology, available maneuvers, and recommended treatment.

    Science.gov (United States)

    Oron, Yahav; Cohen-Atsmoni, Smadar; Len, Assaf; Roth, Yehudah

    2015-08-01

    To describe the pathophysiology of horizontal canal benign paroxysmal positional vertigo, the available maneuvers for its management, and the recommended treatment. PubMed, Cochrane library. Review of the available literature. Two theories of pathophysiology underlying the disease are described, along with available maneuvers reflecting those theories; and videos of the maneuvers are provided. A comparison of available treatments is made. A variety of maneuvers is available related to the pathophysiology underlying the disease. The treatment chosen should be appropriate to the patients' ages, general conditions, and other diseases they may have. No treatment was found to be superior over the others regarding the success rate. In the case of geotropic nystagmus, the Gufoni maneuver is superior in its ease of performance. When it comes to apogeotropic nystagmus, the Barbecue and Gufoni maneuvers have comparable success rates. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  12. Force oscillations simulating breathing maneuvers do not prevent force adaptation.

    Science.gov (United States)

    Pascoe, Chris; Jiao, Yuekan; Seow, Chun Y; Paré, Peter D; Bossé, Ynuk

    2012-07-01

    Airway inflammation in patients with asthma exposes the airway smooth muscle (ASM) to a variety of spasmogens. These spasmogens increase ASM tone, which can lead to force adaptation. Length oscillations of ASM, which occur in vivo due to breathing maneuvers, can attenuate force adaptation. However, in the presence of tone, the force oscillations required to achieve these length oscillations may be unphysiologic (i.e., magnitude greater than the ones achieved due to the swings in transpulmonary pressure required for breathing). In the present study, we applied force oscillations simulating the tension oscillations experienced by the wall of a fourth-generation airway during tidal breathing with or without deep inspirations (DI) to ASM. The goal was to investigate whether force adaptation occurs in conditions mimicking breathing maneuvers. Tone was induced by carbachol (average, 20 nM), and the force-generating capacity of the ASM was assessed at 5-minute intervals before and after carbachol administration using electrical field stimulations (EFS). The results show that force oscillations applied before the introduction of tone had a small effect on the force produced by EFS (declined to 96.8% [P > 0.05] and 92.3% [P breathing oscillations (25%). These force oscillations did not prevent force adaptation (gain of force of 11.2 ± 2.2 versus 13.5 ± 2.7 and 11.2 ± 3.0% in static versus dynamic conditions with or without DI, respectively). The lack of effect of simulated breathing maneuvers on force adaptation suggests that this gain in ASM force may occur in vivo and could contribute to the development of airway hyperresponsiveness.

  13. Is it important to repeat the positioning maneuver after the treatment for benign paroxysmal positional vertigo?

    OpenAIRE

    Oliveira, Alexandra Kolontai de Sousa; Akira Suzuki, Fabio; Boari, Leticia

    2015-01-01

    INTRODUCTION: Benign paroxysmal positional vertigo (BPPV) is the most common cause of peripheral vestibular dysfunction.OBJECTIVE: To assess whether the performance of the Dix-Hallpike maneuver after the Epley positioning maneuver has prognostic value in the evolution of unilateral ductolithiasis of posterior semicircular canal.METHODS: A prospective cohort study in monitored patients at otoneurology ambulatory with a diagnosis of BPPV; they were submitted to the therapeutic maneuver and then...

  14. Hanging Maneuver for Stomach Traction in Laparoscopic Distal Pancreatic Resections: An Original Technique Applied in 218 Patients.

    Science.gov (United States)

    Dokmak, Safi; Aussilhou, Béatrice; Ftériche, Fadhel Samir; Belghiti, Jacques; Sauvanet, Alain

    2017-01-01

    Stomach traction done to expose the pancreas is still a problem in laparoscopic left pancreatic resections. We developed a simple hanging maneuver to retract the stomach rapidly and effectively. After dividing the gastrocolic ligament, the stomach was encircled with a tape, turned along its horizontal axis and pulled with an epigastric trocar, which was later removed. This technique was used in all patients who underwent laparoscopic left pancreatic resections including 165 distal pancreatectomies (DP), 35 central pancreatectomies (CP) and 18 enucleations (En). Demographics, surgical and postoperative outcome data were recorded. There were no mortalities. The mean operative time for DP, CP and En were 174, 191 and 104 min, respectively. The transfusion (0-4%) and conversion (0-3%) rates were low for all procedures. Morbidity was mainly represented by pancreatic fistula and grades (B + C) for DP, CP and En were observed in 26, 22 and 17%, respectively. No complication related to hanging of the stomach, like gastric perforation, was observed. Re-intervention and the mean hospital stay for DP, CP and En were observed in 5, 11 and 0% and were 16, 22 and 12, respectively. The readmission rate was low (0-9%). Hanging maneuver of the stomach is a simple procedure to rapidly, safely and effectively retract the stomach during left laparoscopic pancreatic resections. © 2016 S. Karger AG, Basel.

  15. Improving aggregate behavior in parking lots with appropriate local maneuvers

    KAUST Repository

    Rodriguez, Samuel

    2013-11-01

    In this paper we study the ingress and egress of pedestrians and vehicles in a parking lot. We show how local maneuvers executed by agents permit them to create trajectories in constrained environments, and to resolve the deadlocks between them in mixed-flow scenarios. We utilize a roadmap-based approach which allows us to map complex environments and generate heuristic local paths that are feasible for both pedestrians and vehicles. Finally, we examine the effect that some agent-behavioral parameters have on parking lot ingress and egress. © 2013 IEEE.

  16. Sequential Probability Ratio Test for Collision Avoidance Maneuver Decisions

    Science.gov (United States)

    Carpenter, J. Russell; Markley, F. Landis

    2010-01-01

    When facing a conjunction between space objects, decision makers must chose whether to maneuver for collision avoidance or not. We apply a well-known decision procedure, the sequential probability ratio test, to this problem. We propose two approaches to the problem solution, one based on a frequentist method, and the other on a Bayesian method. The frequentist method does not require any prior knowledge concerning the conjunction, while the Bayesian method assumes knowledge of prior probability densities. Our results show that both methods achieve desired missed detection rates, but the frequentist method's false alarm performance is inferior to the Bayesian method's

  17. Robust control for snake maneuver design of missile

    Science.gov (United States)

    Kun, Ya; Chen, Xin; Li, Chuntao

    2017-01-01

    For the performance of missile with high Mach number and strongly nonlinear dynamics, this paper uses robust control to design maneuver controller. Robust servomechanism linear quadratic regulator (RSLQR) control is used to form the inner loop and proportional-plus-integral (PI) control is used to provide yawing tracking with no error. Contrast simulations under three types of deviation have been done to confirm robustness of the RSLQR-plus-PI control. Simulation results shows that RSLQR-plus-PI control would resist the disturbance and maintain the properties of the controller, guarantee the robustness and stability of missile more effectively than pure PI control.

  18. Manned maneuvering unit - A space platform support system

    Science.gov (United States)

    Whitsett, C. E., Jr.; Lenda, J. A.; Josephson, J. T.

    1978-01-01

    The assembly and evaluation of large space platforms in low earth orbit will become practical in the Shuttle era. Extravehicular crewmembers, equipped with manned maneuvering units (MMUs), will play a vital role in the construction and checkout of these platforms. The MMU is a propulsive backpack with mobility extending the crew's visual, mental, and manipulative capabilities beyond the cabin to on-the-spot assembly and maintenance operations. Previous MMU experience is reviewed, Shuttle MMU design features related to space platform support are described, and the use of the MMU for specific construction and assembly tasks is illustrated.

  19. A limited flight study for investigating hyperstereo vision

    Science.gov (United States)

    Kalich, Melvyn E.; Rash, Clarence E.; McLean, William E.; Ramiccio, John G.

    2007-04-01

    A number of currently proposed helmet-mounted display (HMD) designs relocate image intensification (I2) tubes to the sides of the helmet. Such a design approach induces a visual condition referred to as hyperstereo vision (or hyperstereopsis). This condition manifests itself to the user as an exaggerated sense of depth perception, causing near- to mid-range objects to appear closer than they actually are. Hyperstereopsis is potentially a major concern for helicopter operations that are conducted at low altitudes. As part of a limited flight study to investigate this phenomenon, five rated U.S. Army aviators, as technical observers, wore a hyperstereo HMD during the conduct of a series if 13 standard maneuvers. Two subject aviators acquired a total of eight hours and three aviators a single hour of flight. Using a post-flight questionnaire, these aviators were asked to compare their visual experiences to that of normal I2-aided flight. Depth perception at distances below 300 feet was identified as the greatest challenge. The two 8-hour aviators reported a 5-8 hour "adaptation" period for most maneuvers.

  20. Orbital Maneuvers Using Low Thrust to Place a Satellite in a Constellation

    Directory of Open Access Journals (Sweden)

    Vivian Martins Gomes

    2007-01-01

    Full Text Available This paper considers the problem of low thrust suboptimal maneuvers to insert a satellite in a constellation. It is assumed that a satellite constellation is given with all the Keplerian elements of the satellite members having known values. Then, it is necessary to maneuver a new satellite from a parking orbit to its position in the constellation. The control available to perform this maneuver is the application of a low thrust to the satellite and the objective is to perform this maneuver with minimum fuel consumption.

  1. Technical Feasibility of Loitering Lighter-Than-Air Near-Space Maneuvering Vehicles

    National Research Council Canada - National Science Library

    Moomey, Eric R

    2005-01-01

    .... Lighter-than-air maneuvering vehicles, or airships, using the principle of buoyancy can take advantage of this region to become potential platforms for precision navigation, environmental monitoring...

  2. Muscular Control of Turning and Maneuvering in Jellyfish Bells

    Science.gov (United States)

    Hoover, Alexander; Miller, Laura; Griffith, Boyce

    2014-11-01

    Jellyfish represent one of the earliest and simplest examples of swimming by a macroscopic organism. Contractions of an elastic bell that expels water are driven by coronal swimming muscles. The re-expansion of the bell is passively driven by stored elastic energy. A current question in jellyfish propulsion is how the underlying neuromuscular organization of their bell allows for maneuvering. Using an immersed boundary framework, we will examine the mechanics of swimming by incorporating material models that are informed by the musculature present in jellyfish into a model of the elastic jellyfish bell in three dimensions. The fully-coupled fluid structure interaction problem is solved using an adaptive and parallelized version of the immersed boundary method (IBAMR). We then use this model to understand how variability in the muscular activation patterns allows for complicated swimming behavior, such as steering. We will compare the results of the simulations with the actual turning maneuvers of several species of jellyfish. Numerical flow fields will also be compared to those produced by actual jellyfish using particle image velocimetry (PIV).

  3. Drivers’ Visual Search Patterns during Overtaking Maneuvers on Freeway

    Directory of Open Access Journals (Sweden)

    Wenhui Zhang

    2016-11-01

    Full Text Available Drivers gather traffic information primarily by means of their vision. Especially during complicated maneuvers, such as overtaking, they need to perceive a variety of characteristics including the lateral and longitudinal distances with other vehicles, the speed of others vehicles, lane occupancy, and so on, to avoid crashes. The primary object of this study is to examine the appropriate visual search patterns during overtaking maneuvers on freeways. We designed a series of driving simulating experiments in which the type and speed of the leading vehicle were considered as two influential factors. One hundred and forty participants took part in the study. The participants overtook the leading vehicles just like they would usually do so, and their eye movements were collected by use of the Eye Tracker. The results show that participants’ gaze durations and saccade durations followed normal distribution patterns and that saccade angles followed a log-normal distribution pattern. It was observed that the type of leading vehicle significantly impacted the drivers’ gaze duration and gaze frequency. As the speed of a leading vehicle increased, subjects’ saccade durations became longer and saccade angles became larger. In addition, the initial and destination lanes were found to be key areas with the highest visual allocating proportion, accounting for more than 65% of total visual allocation. Subjects tended to more frequently shift their viewpoints between the initial lane and destination lane in order to search for crucial traffic information. However, they seldom directly shifted their viewpoints between the two wing mirrors.

  4. State estimators for tracking sharply-maneuvering ground targets

    Science.gov (United States)

    Visina, Radu S.; Bar-Shalom, Yaakov; Willett, Peter

    2017-05-01

    This paper presents an algorithm, based on the Interacting Multiple Model Estimator, that can be used to track the state of kinematic point targets, moving in two dimensions, that are capable of making sharp heading maneuvers over short periods of time, such as certain ground vehicles moving in an open field. The targets are capable of up to 60 °/s turn rates, while polar measurements are received at 1 Hz. We introduce the Non-Zero Mean, White Noise Turn-Rate IMM (IMM-WNTR) that consists of 3 modes based on a White Noise Turn Rate (WNTR) kinematic model that contains additive, white, Gaussian turn rate process noises. Two of the modes are considered maneuvering modes, and they have opposite (left/right), non-zero mean turn rate input noise. The need for non-zero mean turn rate process noise is explained, and Monte Carlo simulations compare this novel design to the traditional (single-mode) White Noise Acceleration Kalman Filter (WNA KF) and the two-mode White Noise Acceleration/Nearly-Coordinated Turn Rate IMM (IMM-CT). Results show that the IMM-WNTR filter achieves better accuracy and real-time consistency between expected error and actual error as compared to the (single-mode) WNA KF and the IMM-CT in all simulated scenarios, making it a very accurate state estimator for targets with sharp coordinated turn capability in 2D.

  5. A flight control through unstable flapping flight

    Science.gov (United States)

    Iima, Makoto; Yokoyama, Naoto; Hirai, Norio; Senda, Kei

    2012-11-01

    We have studied a flight control in a two-dimensional flapping flight model for insects. In this model, the model of center-of-mass can move in both horizontal and vertical directions according to the hydrodynamic force generated by flapping. Under steady flapping, the model converges to steady flight states depending on initial conditions. We demonstrate that simple changes in flapping motion, a finite-time stop of flapping, results in changes in the vortex structures, and the separation of two steady flight state by a quasi-steady flight. The model's flight finally converges to one of the final states by way of the quasi-steady state, which is not observed as a (stable) steady flight. The flight dynamic has been also analyzed. KAKENHI (23540433, 22360105, 21340019) and CREST No. PJ74100011.

  6. Flight Dynamics Analysis Branch End of Fiscal Year 2004 Report

    Science.gov (United States)

    DeLion, Anne (Editor); Stengle, Thomas

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2004. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  7. Flight Dynamics Analysis Branch End of Fiscal Year 2005 Report

    Science.gov (United States)

    2006-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based), spacecraft trajectory design and maneuver planning, attitude analysis, attitude determination and sensor calibration, and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  8. Proteus in flight over mountains near Las Cruces, New Mexico.

    Science.gov (United States)

    2002-01-01

    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  9. F-8C digital CCV flight control laws

    Science.gov (United States)

    Hartmann, G. L.; Hauge, J. A.; Hendrick, R. C.

    1976-01-01

    A set of digital flight control laws were designed for the NASA F-8C digital fly-by-wire aircraft. The control laws emphasize Control Configured Vehicle (CCV) benefits. Specific pitch axis objectives were improved handling qualities, angle-of-attack limiting, gust alleviation, drag reduction in steady and maneuvering flight, and a capability to fly with reduced static stability. The lateral-directional design objectives were improved Dutch roll damping and turn coordination over a wide range in angle-of-attack. An overall program objective was to explore the use of modern control design methodilogy to achieve these specific CCV benefits. Tests for verifying system integrity, an experimental design for handling qualities evaluation, and recommended flight test investigations were specified.

  10. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.

    Directory of Open Access Journals (Sweden)

    Katherine M Sholtis

    Full Text Available Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics. These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder.

  11. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans

    National Research Council Canada - National Science Library

    Jun Sato; Motokazu Nakayama; Ayumi Tomita; Takumi Sonoda; Motomitsu Hasumi; Takahisa Miyamoto

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high...

  12. Applying Dynamical Systems Theory to Optimize Libration Point Orbit Stationkeeping Maneuvers for WIND

    Science.gov (United States)

    Brown, Jonathan M.; Petersen, Jeremy D.

    2014-01-01

    NASA's WIND mission has been operating in a large amplitude Lissajous orbit in the vicinity of the interior libration point of the Sun-Earth/Moon system since 2004. Regular stationkeeping maneuvers are required to maintain the orbit due to the instability around the collinear libration points. Historically these stationkeeping maneuvers have been performed by applying an incremental change in velocity, or (delta)v along the spacecraft-Sun vector as projected into the ecliptic plane. Previous studies have shown that the magnitude of libration point stationkeeping maneuvers can be minimized by applying the (delta)v in the direction of the local stable manifold found using dynamical systems theory. This paper presents the analysis of this new maneuver strategy which shows that the magnitude of stationkeeping maneuvers can be decreased by 5 to 25 percent, depending on the location in the orbit where the maneuver is performed. The implementation of the optimized maneuver method into operations is discussed and results are presented for the first two optimized stationkeeping maneuvers executed by WIND.

  13. Proof of concept: differential effects of Valsalva and straining maneuvers on the pelvic floor.

    Science.gov (United States)

    Talasz, Helena; Kremser, Christian; Kofler, Markus; Kalchschmid, Elisabeth; Lechleitner, Monika; Rudisch, Ansgar

    2012-10-01

    To prove a basic physiological principle in healthy women, demonstrating different movement patterns of diaphragm, pelvic floor, and muscular wall surrounding the abdominal cavity during a Valsalva maneuver as opposed to a straining maneuver, by means of real-time dynamic magnetic resonance imaging (MRI). The study was performed at Hochzirl Hospital, Austria and Department of Radiology, Medical University Innsbruck, Austria. Four healthy women underwent MRI measurements in a 1.5-T whole body MR-scanner. Coronal, sagittal, and axial slices were acquired simultaneously and a dynamic MRI sequence was used to assess cranio-caudal movements of the diaphragm and pelvic floor and of concomitant changes in anterolateral abdominal muscle thickness and abdominal diameter at the umbilical level. Both the Valsalva maneuver and the straining maneuver began with deep inspiration and downward movement of the diaphragm. During the exertion phase of both maneuvers, abdominal muscle thickness increased and abdominal diameter decreased. During the Valsalva maneuver, the pelvic floor moved cranially parallel to the diaphragm, whereas during the straining maneuver, the pelvic floor was markedly displaced caudally. The Valsalva maneuver reflects an expiratory pattern with diaphragm and pelvic floor elevation, whereas during straining the pelvic floor descends. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. When do drivers abort an overtaking maneuver 5 on two-lane rural roads

    NARCIS (Netherlands)

    Farah, H.

    2016-01-01

    Overtaking on two-lane roads is a complex driving maneuver. Drivers who desire to overtake a lead vehicle need to evaluate the available gaps in the opposite direction and accept a sufficient gap to successfully complete the overtaking maneuver. However, often drivers realize that the gap they

  15. Skylab-4 Mission Onboard Photograph - Astronaut Carr Testing Astronaut Maneuvering Equipment.

    Science.gov (United States)

    1975-01-01

    This Skylab-4 onboard photograph depicts Astronaut Gerald Carr testing Astronaut Maneuvering Equipment (M509) by flying it around under weightless conditions in the Orbital Workshop. The M509 experiment was an operational study to evaluate and conduct an in-orbit verification of the utility of various maneuvering techniques to assist astronauts in performing tasks that were representative of future extravehicular activity requirements.

  16. Astronaut Gerald P. Carr flies the Astronaut Maneuvering Equipment in the OWS

    Science.gov (United States)

    1974-01-01

    Astronaut Gerald P. Carr, Skylab 4 commander, flies the M509 Astronaut Maneuvering Equipment. Carr is strapped into the back-mounted, hand-controlled Automatically stabilized Maneuvering Unit (ASMU). The M509 exercise was in the forward dome area of the OWS. THe dome area is about 22 feet in diameter and 19 feet form top to bottom.

  17. 46 CFR 35.20-40 - Maneuvering characteristics-T/OC.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Maneuvering characteristics-T/OC. 35.20-40 Section 35.20-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS OPERATIONS Navigation § 35.20-40 Maneuvering characteristics—T/OC. For each ocean and coastwise tankship of 1,600 gross tons or...

  18. Braking News: the Link between Crash Severity and Crash Avoidance Maneuvers

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    avoidance maneuvers and crash severity, with differences emerging for different critical events. Moreover, results show two trends: (i) most drivers fail to act when facing critical events, and (ii) drivers rarely perform crash avoidance maneuvers that are correlated with higher probability of lower crash...

  19. Teaching Cardiac Autonomic Function Dynamics Employing the Valsalva (Valsalva-Weber) Maneuver

    Science.gov (United States)

    Junqueira, Luiz Fernando, Jr.

    2008-01-01

    In this report, a brief history of the Valsalva (Valsalva-Weber) maneuver is outlined, followed by an explanation on the use of this approach for the evaluation of cardiac autonomic function based on underlying heart rate changes. The most important methodological and interpretative aspects of the Valsalva-Weber maneuver are critically updated,…

  20. Associating crash avoidance maneuvers with driver attributes and accident characteristics: a mixed logit model approach

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    Objective: The current study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics, and environmental conditions. The importance of avoidance maneuvers derives...... from the key role of proactive and state-aware road users within the concept of sustainable safety systems, as well as from the key role of effective corrective maneuvers in the success of automated in-vehicle warning and driver assistance systems. Methods: The analysis is conducted by means of a mixed......, (2) women and elderly have a relatively lower propensity to conduct crash avoidance maneuvers, (3) drowsiness and fatigue have a greater negative marginal effect on the tendency to engage in crash avoidance maneuvers than alcohol and drug consumption, (4) difficult road conditions increase...

  1. Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions

    Science.gov (United States)

    Carpenter, J. Russell; Markley, F. Landis

    2013-01-01

    A document discusses sequential probability ratio tests that explicitly allow decision-makers to incorporate false alarm and missed detection risks, and are potentially less sensitive to modeling errors than a procedure that relies solely on a probability of collision threshold. Recent work on constrained Kalman filtering has suggested an approach to formulating such a test for collision avoidance maneuver decisions: a filter bank with two norm-inequality-constrained epoch-state extended Kalman filters. One filter models the null hypotheses that the miss distance is inside the combined hard body radius at the predicted time of closest approach, and one filter models the alternative hypothesis. The epoch-state filter developed for this method explicitly accounts for any process noise present in the system. The method appears to work well using a realistic example based on an upcoming, highly elliptical orbit formation flying mission.

  2. Visual display aid for orbital maneuvering - Experimental evaluation

    Science.gov (United States)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1993-01-01

    An interactive proximity operations planning system, which allows on-site planning of fuel-efficient, multiburn maneuvers in a potential multispacecraft environment, has been experimentally evaluated. An experiment has been carried out in which nonastronaut operators with brief initial training were required to plan a trajectory to retrieve an object accidentally separated from a dual-keel Space Station, for a variety of different orbital situations. The experiments have shown that these operators were able to plan workable trajectories, satisfying a number of operational constraints. Fuel use and planning time were strongly correlated, both with the angle at which the object was separated and with the existence of spatial constraints. Planning behavior was found to be strongly operator-dependent. This finding calls for the need for standardizing planning strategies through operator training or the use of semiautomated planning schemes.

  3. A Small State Maneuvering in the Changing World Order

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2016-01-01

    states have to adjust, and therefore their different national political characteristics, values and preferences are not seen as having a strong influence. Being small is seen as an inherent disadvantage in international politics, but are there also advantages? Analyzing how Danish foreign policy......How are small states managing the shift under way in the global economic and political order from the United States and Europe towards other regions, especially Asia? In the International Relations literature, there is a tendency to focus on the great powers – they set the scene, and the small......, especially the Danish approach to the BRICs, has developed in recent years, I show how Denmark – a small state – is trying to maneuver in the changing world order through a “creative agency” approach characterized by pragmatic low-profile activism. I develop a neoclassical realist framework and use...

  4. Identification and risk estimation of movement strategies during cutting maneuvers.

    Science.gov (United States)

    David, Sina; Komnik, Igor; Peters, Markus; Funken, Johannes; Potthast, Wolfgang

    2017-05-25

    Approximately 70% of anterior cruciate ligament (ACL) injuries occur in non-contact situations during cutting and landing maneuvers. Parameters such as footstrike patterns and trunk orientation were found to influence ACL relevant knee loading, however, the relationship between the whole body movement and injury risk is debated. This study identifies whole body movement strategies that increase injury risk, and provides training recommendations to reduce this risk or enable a save return to sports after injury. Experimental cross-sectional study design. Three dimensional movement analysis was carried out to investigate 50 participants performing anticipated 90° cutting maneuvers. To identify and characterize movement strategies, footstrike pattern, knee valgus moment, knee internal rotation moment, angle of attack, shoulder and pelvis axis were analyzed using statistical parametric mapping. Three different movement strategies were identified. One strategy included rearfoot striking in combination with a relatively upright body position which generated higher knee joint loads than the second strategy, forefoot striking in combination with more backwards leaning and pre-rotation of the trunk towards the new movement direction. A third strategy combined forefoot striking with less preorientation which increased the ACL relevant knee joint load compared to the second strategy. The identified movement strategies clearly pre-determine the injury risk during non-contact situations with the third strategy as the most unfavorable one. Compared to the study of isolated parameters, the analysis of the whole body movement allowed for detailed separation of more risky from less risky cutting strategies. These results give practical recommendations for the prevention of ACL injury. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Rapid Detection and Identification of Candidemia by Direct Blood Culturing on Solid Medium by Use of Lysis-Centrifugation Method Combined with Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Idelevich, Evgeny A; Grünastel, Barbara; Becker, Karsten

    2017-01-01

    Candida sepsis is a life-threatening condition with increasing prevalence. In this study, direct blood culturing on solid medium using a lysis-centrifugation procedure enabled successful Candida species identification by matrix-assisted laser desorption-ionization time of flight mass spectrometry on average 3.8 h (Sabouraud agar) or 7.4 h (chocolate agar) before the positivity signal for control samples in Bactec mycosis-IC/F or Bactec Plus aerobic/F bottles, respectively. Direct culturing on solid medium accelerated candidemia diagnostics compared to that with automated broth-based systems. Copyright © 2016 American Society for Microbiology.

  6. The geometry and fluid dynamics of two- and three-dimensional maneuvers of burrowing and swimming C. elegans

    Science.gov (United States)

    Blawzdziewicz, Jerzy; Bilbao, Alejandro; Patel, Amar; Rahman, Mizanur; Vanapalli, Siva A.

    2016-11-01

    In its natural environment, which is decomposing organic matter and water, C. elegans swims and burrows in 3D complex media. Yet quantitative investigations of C. elegans locomotion have been limited to 2D motion. Recently we have provided a quantitative analysis of turning maneuvers of crawling and swimming nematodes on flat surfaces and in 2D fluid layers. Here, we follow with the first full 3D description of how C. elegans moves in complex 3D environments. We show that the nematode can explore 3D space by combining 2D turns with roll maneuvers that result in rotation of the undulation plane around the direction of motion. Roll motion is achieved by superposing a 2D curvature wave with nonzero body torsion; 2D turns (within the current undulation plane) are attained by variation of undulation wave parameters. Our results indicate that while hydrodynamic interactions reduce angles of 2D turns, the roll efficiency is significantly enhanced. This hydrodynamic effect explains the rapid nematode reorientation observed in 3D swimming.

  7. [Semont maneuver and vestibular rehabilitation exercises in the treatment of benign paroxysmal postural vertigo. A comparative study].

    Science.gov (United States)

    Toledo, H; Cortés, M L; Pane, C; Trujillo, V

    2000-04-01

    Benign paraoxysmal postural vertigo (BPPV) is one of the most frequent causes of peripheral dizziness. Treatment based on vestibular rehabilitation exercises (VRE) is effective in 90% of the cases in an interval of 3 to 4 weeks. This treatment however is often abandoned by the patient. The only therapeutic maneuvers (based on otolyte release) are equally effective but present a high medium term recurrence. To compare the efficacy of the Semont maneuver (SM), the VRE and the combination of both in the treatment of BPPV at three months of follow up. Forty patients with the clinical and electronystagmographic diagnosis of BPPV were divided into three groups: 1. SM, 2. VRE and 3. SM + VRE. The results were compared in regard to the signs and symptoms observed in the three groups of patients at 15 days, one month and at three months of treatment. The SM was effective in 80% of the patients at 15 days of treatment versus 45% of those receiving only VRE. The third group of patients, receiving the combined treatment, demonstrated a cure in 100% of the cases when evaluated at three months while only 66% of the SM group were found to be asymptomatic at the same time period (p < 0.05). The SM is easy to perform, rapid and effective in the short term, however has high recurrence. The VRE are effective in the long term based on the patient persistence. Combination of the two treatment leads to symptom remission in 100% of the patients at three months of treatment.

  8. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  9. Eclipse program QF-106 aircraft in flight

    Science.gov (United States)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  10. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    Science.gov (United States)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  11. Free flight of the mosquito Aedes aegypti

    CERN Document Server

    Iams, S M

    2012-01-01

    High speed video observations of free flying male Aedes aegypti mosquitoes, the dengue and yellow fever vector, along with custom measurement methods, enable measurement of wingbeat frequency, body position and body orientation of mosquitoes during flight. We find these mosquitoes flap their wings at approximately 850 Hz. We also generate body yaw, body pitch and wing deviation measurements with standard deviations of less than 1 degree and find that sideways velocity and acceleration are important components of mosquito motion. Rapid turns involving changes in flight direction often involve large sideways accelerations. These do not correspond to commensurate changes in body heading, and the insect's flight direction and body heading are decoupled during flight. These findings call in to question the role of yaw control in mosquito flight. In addition, using orientation data, we find that sideways accelerations are well explained by roll-based rotation of the lift vector. In contrast, the insect's body pitch...

  12. Functional integration of vertical flight path and speed control using energy principles

    Science.gov (United States)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  13. Inverted flight of the aircraft with high maneuverability

    Directory of Open Access Journals (Sweden)

    Stanisław Danilecki

    2015-12-01

    Full Text Available The paper presents major issues associated with maneuvering of the aircraft inverted flight (acrobatic. It was presented mathematical description for longitudinal balance of the airplane for inverted flight, in particular, the pitching moment coefficient plane without power for horizontal rudder (Cmbu, as well as the same force on the rudder horizontal (PHo. An analysis was conducted for gusts acting on the plane flying in an inverted position in relation to the flight envelope. It has also been analysed the horizontal tail load, acting on the inverted fly and caused by both gusts and brutal control. In conclusions, the comments on the aerodynamics of wing in flight inverted for the selected airfoil are presented. The focus is on static analysis of longitudinal balance of the airplane under normal inverted flight. Dynamic considerations, taking into account the impact of inertia on the load structure, were not carried out. Dynamic issues will be given in a separate publication.[b]Keywords[/b]: aviation, aircraft, inverted flight

  14. Bird or bat: comparing airframe design and flight performance

    Energy Technology Data Exchange (ETDEWEB)

    Hedenstroem, Anders; Johansson, L Christoffer [Department of Theoretical Ecology, Ecology Building, SE-223 62 Lund (Sweden); Spedding, Geoffrey R [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90098-1191 (United States)], E-mail: anders.hedenstrom@teorekol.lu.se

    2009-03-01

    Birds and bats have evolved powered flight independently, which makes a comparison of evolutionary 'design' solutions potentially interesting. In this paper we highlight similarities and differences with respect to flight characteristics, including morphology, flight kinematics, aerodynamics, energetics and flight performance. Birds' size range is 0.002-15 kg and bats' size range is 0.002-1.5 kg. The wingbeat kinematics differ between birds and bats, which is mainly due to the different flexing of the wing during the upstroke and constraints by having a wing of feathers and a skin membrane, respectively. Aerodynamically, bats appear to generate a more complex wake than birds. Bats may be more closely adapted for slow maneuvering flight than birds, as required by their aerial hawking foraging habits. The metabolic rate and power required to fly are similar among birds and bats. Both groups share many characteristics associated with flight, such as for example low amounts of DNA in cells, the ability to accumulate fat as fuel for hibernation and migration, and parallel habitat-related wing shape adaptations.

  15. A Monte Carlo error analysis program for near-Mars, finite-burn, orbital transfer maneuvers

    Science.gov (United States)

    Green, R. N.; Hoffman, L. H.; Young, G. R.

    1972-01-01

    A computer program was developed which performs an error analysis of a minimum-fuel, finite-thrust, transfer maneuver between two Keplerian orbits in the vicinity of Mars. The method of analysis is the Monte Carlo approach where each off-nominal initial orbit is targeted to the desired final orbit. The errors in the initial orbit are described by two covariance matrices of state deviations and tracking errors. The function of the program is to relate these errors to the resulting errors in the final orbit. The equations of motion for the transfer trajectory are those of a spacecraft maneuvering with constant thrust and mass-flow rate in the neighborhood of a single body. The thrust vector is allowed to rotate in a plane with a constant pitch rate. The transfer trajectory is characterized by six control parameters and the final orbit is defined, or partially defined, by the desired target parameters. The program is applicable to the deboost maneuver (hyperbola to ellipse), orbital trim maneuver (ellipse to ellipse), fly-by maneuver (hyperbola to hyperbola), escape maneuvers (ellipse to hyperbola), and deorbit maneuver.

  16. [Epley and Semont maneuvers in the treatment of bening paroxymal postural vertigo].

    Science.gov (United States)

    Aranda-Moreno, C; Jáuregui-Renaud, K

    2000-01-01

    To compare the effectiveness of the 'repositioning' Epley maneuver and the 'liberatory' Semont maneuver in the treatment of benign paroxysmal positional vertigo (BPPV) of the posterior semicircular canal, a prospective study was performed, with 3 months of followup. A consecutive sample of 100 patients was included in two groups (age-and-sex matched) with a similar number of patients with idiopathic BPPV in each group. Group I was treated using the 'repositioning' maneuver and group II, the 'liberatory' maneuver. At weeks 1, 4, and 12 during the study, the proportion of patients without positional nistagmus was identified, and patients gave an evaluation of their subjective improvement (as a percentage). When positional nystagmus was evident, the corresponding maneuver was used again. Sixty percent of the patients were without nystagmus after the single use of any of the maneuvers. At the end of the study, more than 90% of patients were without nystagmus, with a 90% median value of subjective improvement. Patients with idiopathic BPPV showed a similar response to treatment as patients with BPPV associated to other disorders. We conclude that both maneuvers are effective for the treatment of BPPV of the posterior semicircular canal.

  17. Real Time Analysis and Display of Aircraft Approach Maneuvers

    Science.gov (United States)

    Lynch, Robert E. (Inventor); Chidester, Thomas R. (Inventor); Lawrence, Robert E. (Inventor)

    2007-01-01

    Method and system for monitoring and comparing, in real time, performance of an aircraft during an approach to touchdown along a conventional approach path and along a contemplated modified approach path to touchdown. In a first procedure, a flight parameter value at a selected location is compared and displayed, for the planned path and for the modified path. In a second procedure, flight parameter values FP(t(sub m)) at a sequence (t(sub n)}n, of measurement times is compared and displayed, for the planned path and for a contemplated or presently-executed modified path. If the flight parameter for the planned path and for the modified path differ too much from each other, the pilot in command has an option of terminating the approach along the modified path.

  18. Planning of operational maneuvers with the 3-D PWR core dynamics SIMTRAN-online code

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J.M.; Ahnert, C.; Cano, D.; Garcia-Herranz, N. [Universidad Politecnica de Madrid (Spain)

    1996-09-01

    In this work we discuss the modelling capabilities developed in our 3-D PWR core dynamics SIMTRAN online code for the fast and accurate calculations required in the planning of optimal operational maneuvers; the validation results by comparison with actual operating data; and the systematic analysis of optimal maneuvers, along a typical PWR cycle, with the Constant Axial Offset Control (CAOC) technical specification; concluding with some relevant recommendations for the online planning of maneuvers and to relax the CAOC technical specification at low power. (author)

  19. Temporomandibular joint injury potential imposed by the low-velocity extension-flexion maneuver.

    Science.gov (United States)

    Howard, R P; Hatsell, C P; Guzman, H M

    1995-03-01

    It has been proposed that significant temporomandibular joint injury can occur as a result of rapid extension-flexion motion of the neck (whip-lash). This motion, which is experienced by passengers in vehicles that undergo rear-end collisions, has been described as causing rapid protrusion and opening of the mandible. It has been speculated that this relative motion between the mandible and the cranium produces forces at the temporomandibular joint (TMJ) that injure the articular elements. The objective of this study was to measure these forces by an experimental method. Accelerometer sensor and high-speed cinematographic data were obtained from the kinematic responses of live human test subjects positioned as occupants in motor vehicles that underwent staged low-velocity rear-end collisions. Linear and moment forces generated at the TMJs were obtained from the resultant acceleration pulse at the craniomandibular complex, estimation of the mass properties of the mandible and its appended soft tissues, and the application of Newton's Second Law of motion. The maximum linear forces generated at the TMJ in a rear-end collision resulting in a velocity change of the test subject of 8 km/h (5 mph) were in the 7 to 10 N (1.6 to 2.2 lb) range. Moment forces at the joint peaked briefly at 0.55 N.m (4.81 lb-in). These force magnitudes generated at the TMJ constitute a minor fraction of the forces experienced at the joint during normal physiologic function. It is a conclusion of this study that injuries to the TMJ attributed to low-velocity "whiplash" cannot be accounted for by the joint forces produced by this maneuver.

  20. Covariance-based maneuver optimization for NEO threats

    Science.gov (United States)

    Peterson, G.

    The Near Earth Object (NEO) conjunction analysis and mitigation problem is fundamentally the same as Earth-centered space traffic control, albeit on a larger scale and in different temporal and spatial frames. The Aerospace Corporation has been conducting conjunction detection and collision avoidance analysis for a variety of satellite systems in the Earth environment for over 3 years. As part of this process, techniques have been developed that are applicable to analyzing the NEO threat. In space traffic control operations in the Earth orbiting environment, dangerous conjunctions between satellites are determined using collision probability models, realistic covariances, and accurate trajectories in the software suite Collision Vision. Once a potentially dangerous conjunction (or series of conjunctions) is found, a maneuver solution is developed through the program DVOPT (DeltaV OPTimization) that will reduce the risk to a pre -defined acceptable level. DVOPT works by taking the primary's state vector at conjunction, back- propagating it to the time of the proposed burn, then applying the burn to the state vector, and forward-propagating back to the time of the original conjunction. The probability of collision is then re-computed based upon the new state vector and original covariances. This backwards-forwards propagation is coupled with a search algorithm to find the optimal burn solution as a function of time. Since the burns are small (typically cm/sec for Earth-centered space traffic control), Kepler's Equation was assumed for the backwards-forwards propagation with little loss in accuracy. The covariance-based DVOPT process can be easily expanded to cover heliocentric orbits and conjunctions between the Earth and an approaching object. It is shown that minimizing the burn to increase the miss distance between the conjuncting objects does not correspond to a burn solution that minimizes the probability of impact between the same two objects. Since a

  1. Bio-Inspired Integrated Sensing and Control Flapping Flight for Micro Aerial Vehicles

    Science.gov (United States)

    2012-02-28

    experimentation of engineered flapping flight. A robotic bat with 8 motors has been developed and installed on a 3-DOF pendulum [B1]. This AFOSR project...metric which is based entirely on a steady maneuver [61]. It is also an important benchmark to evaluate the efficacy of a yaw control mechanism. 3.2...capability of the wings. The foam table on which the aircraft is resting is not part of the airframe. modified version of the commerically

  2. Rapid detection of carbapenemase-producing Klebsiella pneumoniae strains derived from blood cultures by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Sakarikou, Christina; Ciotti, Marco; Dolfa, Camilla; Angeletti, Silvia; Favalli, Cartesio

    2017-03-08

    Carbapenemase-producing Enterobacteriaceae (CPE), particularly carbapenemase-producing Klebsiella pneumoniae isolates, are important causative agents of nosocomial infections associated with significant mortality rates mostly in critical wards. The rapid detection and typing of these strains is critical either for surveillance purposes and to prevent outbreaks and optimize antibiotic therapy. In this study, the MALDI-TOF MS method was used to detect rapidly these isolates from blood cultures (BCs) and to obtain proteomic profiles enable to discriminate between carbapenemase-producing and non-carbapenemase-producing strains. Fifty-five K. pneumoniae strains were tested. Identification and carbapenemase-production detection assay using Ertapenem were performed both from bacterial pellets extracted directly from BCs flasks and from subcultures of these strains. For all isolates, a complete antimicrobial susceptibility testing and a genotypic characterization were performed. We found 100% agreement between the carbapenemase-producing profile generated by MALDI TOF MS and that obtained using conventional methods. The assay detected and discriminated different carbapenemase-producing K. pneumoniae isolates within 30 min to 3 h after incubation with Ertapenem. MALDI-TOF MS is a promising, rapid and economical method for the detection of carbapenemase-producing K. pneumoniae strains that could be successfully introduced into the routine diagnostic workflow of clinical microbiology laboratories.

  3. Abort Flight Test Project Overview

    Science.gov (United States)

    Sitz, Joel

    2007-01-01

    A general overview of the Orion abort flight test is presented. The contents include: 1) Abort Flight Test Project Overview; 2) DFRC Exploration Mission Directorate; 3) Abort Flight Test; 4) Flight Test Configurations; 5) Flight Test Vehicle Engineering Office; 6) DFRC FTA Scope; 7) Flight Test Operations; 8) DFRC Ops Support; 9) Launch Facilities; and 10) Scope of Launch Abort Flight Test

  4. Flight demonstration of aircraft fuselage and bulkhead monitoring using optical fiber distributed sensing system

    Science.gov (United States)

    Wada, Daichi; Igawa, Hirotaka; Tamayama, Masato; Kasai, Tokio; Arizono, Hitoshi; Murayama, Hideaki; Shiotsubo, Katsuya

    2018-02-01

    We have developed an optical fiber distributed sensing system based on optical frequency domain reflectometry (OFDR) that uses long-length fiber Bragg gratings (FBGs). This technique obtains strain data not as a point data from an FBG but as a distributed profile within the FBG. This system can measure the strain distribution profile with an adjustable high spatial resolution of the mm or sub-mm order in real-time. In this study, we applied this OFDR-FBG technique to a flying test bed that is a mid-sized jet passenger aircraft. We conducted flight tests and monitored the structural responses of a fuselage stringer and the bulkhead of the flying test bed during flights. The strain distribution variations were successfully monitored for various events including taxiing, takeoff, landing and several other maneuvers. The monitoring was effective not only for measuring the strain amplitude applied to the individual structural parts but also for understanding the characteristics of the structural responses in accordance with the flight maneuvers. We studied the correlations between various maneuvers and strains to explore the relationship between the operation and condition of aircraft.

  5. MEMS Reaction Control and Maneuvering for Picosat Beyond LEO

    Science.gov (United States)

    Alexeenko, Alina

    2016-01-01

    The MEMS Reaction Control and Maneuvering for Picosat Beyond LEO project will further develop a multi-functional small satellite technology for low-power attitude control, or orientation, of picosatellites beyond low Earth orbit (LEO). The Film-Evaporation MEMS Tunable Array (FEMTA) concept initially developed in 2013, is a thermal valving system which utilizes capillary forces in a microchannel to offset internal pressures in a bulk fluid. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in a nozzle which induces vacuum boiling and provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. Interplanetary CubeSats can utilize FEMTA for high slew rate attitude corrections in addition to desaturating reaction wheels. The FEMTA in cooling mode can be used for thermal control during high-power communication events, which are likely to accompany the attitude correction. Current small satellite propulsion options are limited to orbit correction whereas picosatellites are lacking attitude control thrusters. The available attitude control systems are either quickly saturated reaction wheels or movable high drag surfaces with long response times.

  6. Manned maneuvering unit simulations on the Space Operations Simulator

    Science.gov (United States)

    Hartley, C.; Cwynar, D.; Ray, L.

    1984-01-01

    Details of the Manned Maneuvering Unit (MMU) and its use is discussed. MMU simulations in the Space Operations Simulator (SOS) use two major devices. The first is a six-degree-of-freedom moving base carriage that allows the trainee freedom to fly the MMU in a large room and to match rates and dock with full scale targets. The second device is a large screen television display that provides the trainee with accurate views of tumbling targets from any point in a surrounding sphere up to 300 meters (1000 feet) in diameter. Astronauts used the SOS to train for the Solar Max repair mission and are now using it to train for a mission to recover the Palapa-B communications satellite. Subjective comparisons by astronauts of an orbit MMU performance to simulated MMU performance in the SOS indicate that the simulations are very realistic. Data from the Solar Max mission have resulted in two software upgrades that increase SOS fidelity for the next MMU mission: a model of contact dynamics between the MMU and a target spacecraft, and a model of MMU plume impingement forces during docking.

  7. Computer simulation of on-orbit manned maneuvering unit operations

    Science.gov (United States)

    Stuart, G. M.; Garcia, K. D.

    1986-01-01

    Simulation of spacecraft on-orbit operations is discussed in reference to Martin Marietta's Space Operations Simulation laboratory's use of computer software models to drive a six-degree-of-freedom moving base carriage and two target gimbal systems. In particular, key simulation issues and related computer software models associated with providing real-time, man-in-the-loop simulations of the Manned Maneuvering Unit (MMU) are addressed with special attention given to how effectively these models and motion systems simulate the MMU's actual on-orbit operations. The weightless effects of the space environment require the development of entirely new devices for locomotion. Since the access to space is very limited, it is necessary to design, build, and test these new devices within the physical constraints of earth using simulators. The simulation method that is discussed here is the technique of using computer software models to drive a Moving Base Carriage (MBC) that is capable of providing simultaneous six-degree-of-freedom motions. This method, utilized at Martin Marietta's Space Operations Simulation (SOS) laboratory, provides the ability to simulate the operation of manned spacecraft, provides the pilot with proper three-dimensional visual cues, and allows training of on-orbit operations. The purpose here is to discuss significant MMU simulation issues, the related models that were developed in response to these issues and how effectively these models simulate the MMU's actual on-orbiter operations.

  8. Tactical approach to maneuvering within the chemical contamination labyrinth

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, T.W. [Department of Energy, Oak Ridge, TN (United States)

    1990-12-31

    The Department of Energy (DOE) recognized the need and accepts the responsibility for understanding the reality and mitigating the consequence of the complex chemical contamination legacy it inherited as well as controlling, reducing, and eliminating extant emissions and effluents. The key to maneuvering through this complicated and multifaceted labyrinth of concerns, from which a meaningful, high quality, and cost-effective restoration/mitigation machine is then set in motions, is the ability to perform accurate, factual, and explicit health and environmental/ecological risk assessments. Likewise, the common denominator for carrying out this essential task is to have access to comprehensive and reliable data of known quality with which to perform those analyses. DOE is committed to identifying the data universe; to technically scrutinize and ensure the quality of that data; to develop efficient and cost-effective means to maximize the handling, utilization, and sharing of that universe; and to undertake those assessments. DOE views this as an effort that can only be accomplished through a merging of the technical excellence that exists within federal and state agencies, academia, and industry. The task at hand is so large that only by integrating that intelligence base can we hope to accomplish the goals of establishing meaningful standards, developing functional and effective solutions, and providing quality guidance at a national scale.

  9. Synthetic Vision Systems in GA Cockpit-Evaluation of Basic Maneuvers Performed by Low Time GA Pilots During Transition from VMC to IMC

    Science.gov (United States)

    Takallu, M. A.; Wong, D. T.; Uenking, M. D.

    2002-01-01

    An experimental investigation was conducted to study the effectiveness of modern flight displays in general aviation cockpits for mitigating Low Visibility Loss of Control and the Controlled Flight Into Terrain accidents. A total of 18 General Aviation (GA) pilots with private pilot, single engine land rating, with no additional instrument training beyond private pilot license requirements, were recruited to evaluate three different display concepts in a fixed-based flight simulator at the NASA Langley Research Center's General Aviation Work Station. Evaluation pilots were asked to continue flight from Visual Meteorological Conditions (VMC) into Instrument Meteorological Conditions (IMC) while performing a series of 4 basic precision maneuvers. During the experiment, relevant pilot/vehicle performance variables, pilot control inputs and physiological data were recorded. Human factors questionnaires and interviews were administered after each scenario. Qualitative and quantitative data have been analyzed and the results are presented here. Pilot performance deviations from the established target values (errors) were computed and compared with the FAA Practical Test Standards. Results of the quantitative data indicate that evaluation pilots committed substantially fewer errors when using the Synthetic Vision Systems (SVS) displays than when they were using conventional instruments. Results of the qualitative data indicate that evaluation pilots perceived themselves to have a much higher level of situation awareness while using the SVS display concept.

  10. Effect of the Valsalva maneuver on cardiac-coronary interaction assessed by wave intensity analysis

    NARCIS (Netherlands)

    Rolandi, M.; Remmelink, Maurice; Nolte, Froukje; Baan, Jan; Piek, Jan J.; Spaan, Jos A. E.; Siebes, Maria

    2010-01-01

    The Valsalva maneuver (VM) provokes strong changes in the cardiovascular system and is therefore well suited to study the cardiac-coronary interaction in humans. In 12 patients undergoing catheterization we simultaneously recorded aortic pressure, left ventricular pressure, and intracoronary

  11. A single recruitment maneuver in ventilated critically ill children can translocate pulmonary cytokines into the circulation.

    NARCIS (Netherlands)

    Halbertsma, F.J.; Vaneker, M.; Pickkers, P.; Neeleman, C.; Scheffer, G.J.; Hoeven, J.G. van der

    2010-01-01

    INTRODUCTION: Recruitment maneuvers (RMs) are advocated to prevent pulmonary collapse during low tidal volume ventilation and improve oxygenation. However, convincing clinical evidence for improved outcome is lacking. Recent experimental studies demonstrate that RMs translocate pulmonary

  12. A Computer Simulation of the System-Wide Effects of Parallel-Offset Route Maneuvers

    Science.gov (United States)

    Lauderdale, Todd A.; Santiago, Confesor; Pankok, Carl

    2010-01-01

    Most aircraft managed by air-traffic controllers in the National Airspace System are capable of flying parallel-offset routes. This paper presents the results of two related studies on the effects of increased use of offset routes as a conflict resolution maneuver. The first study analyzes offset routes in the context of all standard resolution types which air-traffic controllers currently use. This study shows that by utilizing parallel-offset route maneuvers, significant system-wide savings in delay due to conflict resolution of up to 30% are possible. It also shows that most offset resolutions replace horizontal-vectoring resolutions. The second study builds on the results of the first and directly compares offset resolutions and standard horizontal-vectoring maneuvers to determine that in-trail conflicts are often more efficiently resolved by offset maneuvers.

  13. The Rapier or the Club: The Relationship between Attrition and Maneuver Warfare

    National Research Council Canada - National Science Library

    Springman, Jeffrey A

    2006-01-01

    ...? This project compares the relationship between attrition and maneuver warfare. The study considers whether there are times when wars of attrition should be fought, and whether there are conditions that force wars of attrition...

  14. [The necessity of post-maneuver postural restriction in treating benign paroxysmal positional vertigo].

    Science.gov (United States)

    Jia, Jianping; Chang, Delong; Dai, Song; Sang, Yuehong; Tai, Xuhui; Sun, Xiaohui; Hou, Yue; Zhang, Wei

    2013-08-01

    To evaluate the necessity of postural restrictions after repositioning maneuvers in posterior canal benign paroxysmal positional vertigo (BPPV). Sixty-eight consecutive patients diagnosed of posterior canal BPPV with a positive Dix-Hallpike test. Thirty-two patients were instructed to follow postural restrictions after repositioning maneuvers, and 36 patients did not receive any postural restriction after treatment. All the patients were reevaluated at 1 week and 3 months later respectively. There was no statistical difference in number of maneuvers needed to resolve symptoms between two groups. Epley maneuver is effective to treat patients with posterior canal BPPV, and postural restrictions does not improved the efficacy. Above all, we do not recommend any postural restrictions to patients with posterior canal BPPV.

  15. Global Optimization of N-Maneuver, High-Thrust Trajectories Using Direct Multiple Shooting

    Science.gov (United States)

    Vavrina, Matthew A.; Englander, Jacob A.; Ellison, Donald H.

    2016-01-01

    The performance of impulsive, gravity-assist trajectories often improves with the inclusion of one or more maneuvers between flybys. However, grid-based scans over the entire design space can become computationally intractable for even one deep-space maneuver, and few global search routines are capable of an arbitrary number of maneuvers. To address this difficulty a trajectory transcription allowing for any number of maneuvers is developed within a multi-objective, global optimization framework for constrained, multiple gravity-assist trajectories. The formulation exploits a robust shooting scheme and analytic derivatives for computational efficiency. The approach is applied to several complex, interplanetary problems, achieving notable performance without a user-supplied initial guess.

  16. Attitude maneuvers of a solar-powered electric orbital transfer vehicle

    Science.gov (United States)

    Jenkin, Alan B.

    1992-08-01

    Attitude maneuver requirements of a solar-powered electric orbital transfer vehicle have been studied in detail. This involved evaluation of the yaw, pitch, and roll profiles and associated angular accelerations needed to simultaneously steer the vehicle thrust vector and maintain the solar array pointed toward the sun. Maintaining the solar array pointed exactly at the sun leads to snap roll maneuvers which have very high (theoretically unbounded) accelerations, thereby imposing large torque requirements. The problem is exacerbated by the large solar arrays which are needed to generate the high levels of power needed by electric propulsion devices. A method of eliminating the snap roll maneuvers is presented. The method involves the determination of relaxed roll profiles which approximate a forced transition between alternate exact roll profiles and incur only small errors in solar array pointing. The method makes it feasible to perform the required maneuvers using currently available attitude control technology such as reaction wheels, hot gas jets, or gimballed main engines.

  17. Associating Crash Avoidance Maneuvers with Driver Attributes and Accident Characteristics: A Mixed Logit Model Approach

    DEFF Research Database (Denmark)

    Kaplan, Sigal; Prato, Carlo Giacomo

    2012-01-01

    This study focuses on the propensity of drivers to engage in crash avoidance maneuvers in relation to driver attributes, critical events, crash characteristics, vehicles involved, road characteristics and environmental attributes. Five alternative actions involving emergency lateral and speed con...

  18. Importance of back blow maneuvers in a 6 month old patient with sudden upper airway obstruction

    Directory of Open Access Journals (Sweden)

    Pinar Gencpinar

    2015-12-01

    Full Text Available Foreign body aspiration in children under four years old is one of the most frequently observed reasons for accident related deaths. It is more common in this age group due to inadequate swallowing functions and exploration of objects with the mouth. The most frequently encountered foreign bodies are food and toy parts. Life threatening complete laryngeal obstruction is rarely observed. Dyspnea, hypersalivation, cough and cyanosis can be seen. The basic and life-saving treatment approach is complete removal of foreign body maneuvers in the sudden onset of total obstruction. Here we report a six-month old male, who ingested a foreign body and was treated with back blow maneuvers successfully. In this case we emphasized the importance of back blow maneuvers. Keywords: Upper airway obstruction, Child, Back blows maneuvers

  19. Multiple Model Adaptive Estimator Target Tracker for Maneuvering Targets in Clutter

    National Research Council Canada - National Science Library

    Smith, Brian D

    2005-01-01

    ...) to be implemented directly. Poorly known or varying target dynamics complicate the design of any tracking filter, and filters using only a single dynamics model can rarely handle anything beyond the most benign target maneuvers...

  20. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  1. A Monte Carlo model for determining copperhead probability of acquisition and maneuver

    Science.gov (United States)

    Starks, M.

    1980-08-01

    This report documents AMSAA's Probability of Acquisition and Maneuver (PAM) model. The model is used to develop performance estimates for COPPERHEAD and related weapon systems. A mathematical method for modeling the acquisition and maneuver portions of a COPPERHEAD trajectory is presented. In addition, the report contains a FORTRAN implementation of the model, a description of the required inputs, and a sample case with input and output.

  2. Effectiveness of cough etiquette maneuvers in disrupting the chain of transmission of infectious respiratory diseases.

    Science.gov (United States)

    Zayas, Gustavo; Chiang, Ming C; Wong, Eric; MacDonald, Fred; Lange, Carlos F; Senthilselvan, Ambikaipakan; King, Malcolm

    2013-09-08

    The effectiveness of recommended measures, such as "cover your mouth when coughing", in disrupting the chain of transmission of infectious respiratory diseases (IRD) has been questioned. The objective of the current study was to determine the effectiveness of simple primary respiratory hygiene/cough etiquette maneuvers in blocking droplets expelled as aerosol during coughing. In this study, 31 healthy non-smokers performed cough etiquette maneuvers in an effort to cover their voluntarily elicited best effort coughs in an open bench format. A laser diffraction system was used to obtain accurate, non-invasive, quantitative, real time measurements of the size and number of droplets emitted during the assessed cough etiquette maneuvers. Recommended cough etiquette maneuvers did not block the release and dispersion of a variety of different diameter droplets to the surrounding environment. Droplets smaller than one-micron size dominate the total number of droplets leaked when practicing assessed maneuvers. All the assessed cough etiquette maneuvers, performed as recommended, do not block droplets expelled as aerosol when coughing. This aerosol can penetrate profound levels of the respiratory system. Practicing these assessed primary respiratory hygiene/cough etiquette maneuvers would still permit direct, indirect, and/or airborne transmission and spread of IRD, such as influenza and Tuberculosis. All the assessed cough etiquette maneuvers, as recommended, do not fully interrupt the chain of transmission of IRD. This knowledge urges us all to critically review recommended CE and to search for new evidence-based procedures that effectively disrupt the transmission of respiratory pathogens. Interrupting the chain of transmission of IRD will optimize the protection of first responders, paramedics, nurses, and doctors working in triage sites, emergency rooms, intensive care units, and the general public against cough-droplet-spread diseases.

  3. Flight Deck Display Technologies for 4DT and Surface Equivalent Visual Operations

    Science.gov (United States)

    Prinzel, Lawrence J., III; Jones, Denis R.; Shelton, Kevin J.; Arthur, Jarvis J., III; Bailey, Randall E.; Allamandola, Angela S.; Foyle, David C.; Hooey, Becky L.

    2009-01-01

    NASA research is focused on flight deck display technologies that may significantly enhance situation awareness, enable new operating concepts, and reduce the potential for incidents/accidents for terminal area and surface operations. The display technologies include surface map, head-up, and head-worn displays; 4DT guidance algorithms; synthetic and enhanced vision technologies; and terminal maneuvering area traffic conflict detection and alerting systems. This work is critical to ensure that the flight deck interface technologies and the role of the human participants can support the full realization of the Next Generation Air Transportation System (NextGen) and its novel operating concepts.

  4. Ornithopter flight stabilization

    Science.gov (United States)

    Dietl, John M.; Garcia, Ephrahim

    2007-04-01

    The quasi-steady aerodynamics model and the vehicle dynamics model of ornithopter flight are explained, and numerical methods are described to capture limit cycle behavior in ornithopter flight. The Floquet method is used to determine stability in forward flight, and a linear discrete-time state-space model is developed. This is used to calculate stabilizing and disturbance-rejecting controllers.

  5. Effectiveness of Chin-tuck Maneuver to Facilitate Swallowing in Neurologic Dysphagia

    Directory of Open Access Journals (Sweden)

    Saconato, Mariana

    2015-10-01

    Full Text Available Introduction The chin-tuck maneuver is the most frequently employed postural maneuver in the treatment of neurogenic oropharyngeal dysphagia caused by encephalic vascular strokes and degenerative diseases. Objective The purpose of this study was to investigate the effectiveness of this maneuver in patients with neurogenic dysphagia and factors that could interfere in it. Methods In this retrospective cohort, we analyzed the medical files and videofluoroscopy exams of 35 patients (19 male – 54% and 16 female – 46%; age range between 20 and 89 years old; mean = 69 years. Results The results suggest that the effectiveness of chin-tuck maneuver is related to the overall degree of dysphagia: the more severe the dysphagia, the less effective the maneuver. Conclusion Chin-tuck maneuver should benefit dysphagic patients with delay in the swallowing trigger, reduced laryngeal elevation, and difficulties to swallow liquids, but is not the best compensatory strategy for patients with severe dysphagia.

  6. Novel joint cupping clinical maneuver for ultrasonographic detection of knee joint effusions.

    Science.gov (United States)

    Uryasev, Oleg; Joseph, Oliver C; McNamara, John P; Dallas, Apostolos P

    2013-11-01

    Knee effusions occur due to traumatic and atraumatic causes. Clinical diagnosis currently relies on several provocative techniques to demonstrate knee joint effusions. Portable bedside ultrasonography (US) is becoming an adjunct to diagnosis of effusions. We hypothesized that a US approach with a clinical joint cupping maneuver increases sensitivity in identifying effusions as compared to US alone. Using unembalmed cadaver knees, we injected fluid to create effusions up to 10 mL. Each effusion volume was measured in a lateral transverse location with respect to the patella. For each effusion we applied a joint cupping maneuver from an inferior approach, and re-measured the effusion. With increased volume of saline infusion, the mean depth of effusion on ultrasound imaging increased as well. Using a 2-mm cutoff, we visualized an effusion without the joint cupping maneuver at 2.5 mL and with the joint cupping technique at 1 mL. Mean effusion diameter increased on average 0.26 cm for the joint cupping maneuver as compared to without the maneuver. The effusion depth was statistically different at 2.5 and 7.5 mL (P cupping technique in combination with US is a valuable tool in assessing knee effusions, especially those of subclinical levels. Effusion measurements are complicated by uneven distribution of effusion fluid. A clinical joint cupping maneuver concentrates the fluid in one recess of the joint, increasing the likelihood of fluid detection using US. © 2013 Elsevier Inc. All rights reserved.

  7. Rapid Differentiation of Haemophilus influenzae and Haemophilus haemolyticus by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry with ClinProTools Mass Spectrum Analysis.

    Science.gov (United States)

    Chen, Jonathan H K; Cheng, Vincent C C; Wong, Chun-Pong; Wong, Sally C Y; Yam, Wing-Cheong; Yuen, Kwok-Yung

    2017-09-01

    Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species. Copyright © 2017 American Society for Microbiology.

  8. Rapid discrimination of Haemophilus influenzae, H. parainfluenzae, and H. haemolyticus by fluorescence in situ hybridization (FISH) and two matrix-assisted laser-desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) platforms.

    Science.gov (United States)

    Frickmann, Hagen; Christner, Martin; Donat, Martina; Berger, Anja; Essig, Andreas; Podbielski, Andreas; Hagen, Ralf Matthias; Poppert, Sven

    2013-01-01

    Due to considerable differences in pathogenicity, Haemophilus influenzae, H. parainfluenzae and H. haemolyticus have to be reliably discriminated in routine diagnostics. Retrospective analyses suggest frequent misidentifications of commensal H. haemolyticus as H. influenzae. In a multi-center approach, we assessed the suitability of fluorescence in situ hybridization (FISH) and matrix-assisted laser-desorption-ionization time-of-flight mass-spectrometry (MALDI-TOF-MS) for the identification of H. influenzae, H. parainfluenzae and H. haemolyticus to species level. A strain collection of 84 Haemophilus spp. comprising 50 H. influenzae, 25 H. parainfluenzae, 7 H. haemolyticus, and 2 H. parahaemolyticus including 77 clinical isolates was analyzed by FISH with newly designed DNA probes, and two different MALDI-TOF-MS systems (Bruker, Shimadzu) with and without prior formic acid extraction. Among the 84 Haemophilus strains analyzed, FISH led to 71 correct results (85%), 13 uninterpretable results (15%), and no misidentifications. Shimadzu MALDI-TOF-MS resulted in 59 correct identifications (70%), 19 uninterpretable results (23%), and 6 misidentifications (7%), using colony material applied directly. Bruker MALDI-TOF-MS with prior formic acid extraction led to 74 correct results (88%), 4 uninterpretable results (5%) and 6 misidentifications (7%). The Bruker MALDI-TOF-MS misidentifications could be resolved by the addition of a suitable H. haemolyticus reference spectrum to the system's database. In conclusion, no analyzed diagnostic procedure was free of errors. Diagnostic results have to be interpreted carefully and alternative tests should be applied in case of ambiguous test results on isolates from seriously ill patients.

  9. Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. II: Classification of Canadian and Czech ice wines using statistical evaluation of the data.

    Science.gov (United States)

    Setkova, Lucie; Risticevic, Sanja; Pawliszyn, Janusz

    2007-04-20

    The previously developed and optimized headspace solid-phase microextraction (HS-SPME)-GC-time-of-flight (TOF) MS analytical method for the determination of compounds with a wide range of polarities and volatilities was successfully used in this study to characterize and classify a large set of ice wines according to their origin, grape variety and oak or stainless steel fermentation/ageing conditions, based on a statistical evaluation (principal component analysis (PCA)) of the measured data. More than 130 ice wine samples collected directly from Canadian and Czech wine producers were analyzed in this study. The SPME step was beneficially carried out utilizing the new-generation super elastic divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) 50 microm/30 microm fiber assembly. One fiber was used for the whole sequence of ice wine samples, control and blank experiments, which consisted of more than 600 individual extraction/injection cycles. Utilizing the high-speed TOF analyzer, full spectral information within the range of 35-450 u was collected for the entire GC run (as short as 4.5 min) without compromising in the detection sensitivity, as compared to other scanning mass analyzers operated in selected ion monitoring or MS(n) mode to achieve similar sensitivity. The identification of analytes was performed by a combination of the linear temperature-programmed retention index (LTPRI) approach with the comparison of the obtained spectra with three libraries included in the ChromaTOF software. A total of 201 peaks were tentatively assigned as ice wine aroma components and 58 of those compounds were evaluated in all of the examined samples.

  10. The mass spectrometry technology MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization Time- Of-Flight for a more rapid and economic workflow in the clinical microbiology laboratory

    Directory of Open Access Journals (Sweden)

    Simona Barnini

    2012-12-01

    Full Text Available Introduction: In order to improve the outcome of patients, reduce length of stay, costs and resources engaged in diagnostics, more rapid reports are requested to the clinical microbiologists.The purpose of this study is to assess the impact on workflow of MALDI-TOF technology, recently made available for use in routine diagnostics. Methods:The work list by the management information system is sent to the instrument MALDI-TOF, where are held at least three successive analytic sessions: the first includes bacteria isolated from CSF, blood cultures, and cases already reported as serious/urgent, the second includes all other germs isolated, the third, microorganisms that require extraction with trifluoroacetic acid (TFA or formic acid (FA for identification.The results of each session direct to the execution of different types of susceptibility testing. Results:The times of microbial identifications are reduced by 24 or 48 hours and made available to the clinician for the rational empirical therapy.The reagent costs are reduced by 40%.The subcultures were reduced by 80%, and microscopic examinations by 50%.The antibiotic susceptibility tests were immediately performed with the most appropriate method, based on the knowledge of local epidemiology and microbial species. Conclusion:The bacteriology is the less automated discipline among the clinical laboratory activities and results of diagnostic tests are poorly well-timed. The new interpretative algorithms of MALDI-TOF spectra, now available, allow the correct identification of bacteria in near real time, completely eliminating the wait is necessary for biochemical identification and guiding the operator in selecting the most appropriate antibiotic susceptibility tests. This technology makes work more rapid, economic and efficient, eliminating errors and, together with effective computerization of data, transforms the information content of the microbiological report, making it much more effective

  11. Symposium on School Desegregation and White Flight.

    Science.gov (United States)

    Orfield, Gary, Ed.

    Five papers intended to serve as an introduction to a complex and rapidly growing body of research are included in this volume. These papers represent the work of scholars who have studied the problem of white flight long before the current controversy over urban desegregation plans made it a national issue. Starting from very different…

  12. Liability and Insurance for Suborbital Flights

    Science.gov (United States)

    Masson-Zwaan, T.

    2012-01-01

    This paper analyzes and compares liability and liability insurance in the fields of aviation and spaceflight in order to propose solutions for a liability regime and insurance options for suborbital flights. Suborbital flights can be said to take place in the grey zone between air and space, between air law and space law, as well as between aviation insurance and space insurance. In terms of liability, the paper discusses air law and space law provisions in the fields of second and third party liability for damage to passengers and 'innocent bystanders' respectively, touching upon international treaties, national law and EU law, and on insurance to cover those risks. Although the insurance market is currently not ready to provide tailor-made products for operators of suborbital flights, it is expected to adapt rapidly once such flights will become reality. A hybrid approach will provide the best solution in the medium term.

  13. Internship Abstract - Aerosciences and Flight Mechanics Intern

    Science.gov (United States)

    Rangel, John

    2015-01-01

    Mars is a hard place to land on, but my internship with NASA's Aerosciences & Flight Mechanics branch has shown me the ways in which men and women will one day land safely. I work on Mars Aerocapture, an aeroassist maneuver that reduces the fuel necessary to "capture" into Martian orbit before a descent. The spacecraft flies through the Martian atmosphere to lose energy through heating before it exits back into space, this time at a slower velocity and in orbit around Mars. Spacecraft will need to maneuver through the Martian atmosphere to accurately hit their orbit, and they will need to survive the generated heat. Engineering teams need simulation data to continue their designs, and the guidance algorithm that ensures a proper orbit insertion needs to be refined - two jobs that fell to me at the summer's start. Engineers within my branch have developed two concept aerocapture vehicles, and I run simulations on their behavior during the maneuver. I also test and refine the guidance algorithm. I spent the first few weeks familiarizing myself with the simulation software, troubleshooting various guidance bugs and writing code. Everything runs smoothly now, and I recently sent my first set of trajectory data to a Thermal Protection System group so they can incorporate it into their heat-bearing material designs. I hope to generate plenty of data in the next few weeks for various engineering groups before my internship ends mid-August. My major accomplishment so far is improving the guidance algorithm. It is a relatively new algorithm that promises higher accuracy and fuel efficiency, but it hasn't undergone extensive testing yet. I've had the opportunity to work with the principal developer - a professor at Iowa State University - to find and fix several issues. I was also assigned the task of expanding the branch's aerodynamic heating simulation software. I am excited to do this because engineers in the future will use my work to generate meaningful data and make

  14. The NASA Dryden AAR Project: A Flight Test Approach to an Aerial Refueling System

    Science.gov (United States)

    Hansen, Jennifer L.; Murray, James E.; Campos, Norma V.

    2004-01-01

    The integration of uninhabited aerial vehicles (UAVs) into controlled airspace has generated a new era of autonomous technologies and challenges. Autonomous aerial refueling would enable UAVs to travel further distances and loiter for extended periods over time-critical targets. The NASA Dryden Flight Research Center recently has completed a flight research project directed at developing a dynamic hose and drogue system model to support the development of an automated aerial refueling system. A systematic dynamic model of the hose and drogue system would include the effects of various influences on the system, such as flight condition, hose and drogue type, tanker type and weight, receiver type, and tanker and receiver maneuvering. Using two NASA F/A-18 aircraft and a conventional hose and drogue aerial refueling store from the Navy, NASA has obtained flight research data that document the response of the hose and drogue system to these effects. Preliminary results, salient trends, and important lessons are presented.

  15. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration.

    Science.gov (United States)

    Crall, James D; Ravi, Sridhar; Mountcastle, Andrew M; Combes, Stacey A

    2015-09-01

    Locomotion through structurally complex environments is fundamental to the life history of most flying animals, and the costs associated with movement through clutter have important consequences for the ecology and evolution of volant taxa. However, few studies have directly investigated how flying animals navigate through cluttered environments, or examined which aspects of flight performance are most critical for this challenging task. Here, we examined how body size, acceleration and obstacle orientation affect the flight of bumblebees in an artificial, cluttered environment. Non-steady flight performance is often predicted to decrease with body size, as a result of a presumed reduction in acceleration capacity, but few empirical tests of this hypothesis have been performed in flying animals. We found that increased body size is associated with impaired flight performance (specifically transit time) in cluttered environments, but not with decreased peak accelerations. In addition, previous studies have shown that flying insects can produce higher accelerations along the lateral body axis, suggesting that if maneuvering is constrained by acceleration capacity, insects should perform better when maneuvering around objects laterally rather than vertically. Our data show that bumblebees do generate higher accelerations in the lateral direction, but we found no difference in their ability to pass through obstacle courses requiring lateral versus vertical maneuvering. In sum, our results suggest that acceleration capacity is not a primary determinant of flight performance in clutter, as is often assumed. Rather than being driven by the scaling of acceleration, we show that the reduced flight performance of larger bees in cluttered environments is driven by the allometry of both path sinuosity and mean flight speed. Specifically, differences in collision-avoidance behavior underlie much of the variation in flight performance across body size, with larger bees

  16. Evaluating the Tongue-Hold Maneuver Using High-Resolution Manometry and Electromyography

    Science.gov (United States)

    Hammer, Michael J.; Jones, Corinne A.; Mielens, Jason D.; Kim, Chloe H.; McCulloch, Timothy M.

    2014-01-01

    The tongue-hold maneuver is a widely used clinical technique designed to increase posterior pharyngeal wall movement in individuals with dysphagia. It is hypothesized that the tongue-hold maneuver results in increased contraction of the superior pharyngeal constrictor. However, an electromyographic study of the pharynx and tongue during the tongue-hold is still needed to understand whether and how swallow muscle activity and pressure may change with this maneuver. We tested eight healthy young participants using simultaneous intramuscular electromyography with high-resolution manometry during three task conditions including (a) saliva swallow without maneuver, (b) saliva swallow with the tongue tip at the lip, and (c) saliva swallow during the tongue-hold maneuver. We tested the hypothesis that tongue and pharyngeal muscle activity would increase during the experimental tasks, but that pharyngeal pressure would remain relatively unchanged. We found that the pre-swallow magnitude of tongue, pharyngeal constrictor, and cricopharyngeus muscle activity increased. During the swallow, the magnitude and duration of tongue and pharyngeal constrictor muscle activity each increased. However, manometric pressures and durations remained unchanged. These results suggest that increased superior pharyngeal constrictor activity may serve to maintain relatively stable pharyngeal pressures in the absence of posterior tongue movement. Thus, the tongue-hold maneuver may be a relatively simple but robust example of how the medullary swallow center is equipped to dynamically coordinate actions between tongue and pharynx. Our findings emphasize the need for combined modality swallow assessment to include high-resolution manometry and intramuscular electromyography to evaluate the potential benefit of the tongue-hold maneuver for clinical populations. PMID:24969727

  17. Comparison of Mallampati test with lower jaw protrusion maneuver in predicting difficult laryngoscopy and intubation

    Science.gov (United States)

    Ul Haq, Muhammad Irfan; Ullah, Hameed

    2013-01-01

    Background: Failure to maintain a patent airway is one of the commonest causes of anesthesia-related morbidity and mortality. Many protocols, algorithms, and different combinations of tested methods for airway assessment have been developed to predict difficult laryngoscopy and intubation. The reported incidence of a difficult intubation varies from 1.5% to 13%. The objective of this study was to compare Mallampati test (MT) with lower jaw protrusion (LJP) maneuver in predicting difficult laryngoscopy and intubation. Materials and Methods: Seven hundred and sixty patients were included in the study. All the patients underwent MT and LJP maneuver for their airway assessment. After a standardized technique of induction of anesthesia, primary anesthetist performed laryngoscopy and graded it according to the grades described by Cormack and Lehane. Sensitivity, specificity, accuracy, and positive predictive value (PPV) and negative predictive value (NPV) were calculated for both these tests with 95% confidence interval (CI) using conventional laryngoscopy as gold standard. Area under curve was also calculated for both, MT and LJP maneuver. A P < 0.05 was taken as significant. Results: LJP maneuver had higher sensitivity (95.9% vs. 27.1%), NPV (98.7% vs. 82.0%), and accuracy (90.1% vs. 80.3%) when compared to MT in predicting difficult laryngoscopy and intubation. Both tests, however, had similar specificity and PPV. There was marked difference in the positive and negative likelihood ratio between LJP and MT. Similarly, the area under the curve favored LJP maneuver over MT. Conclusion: The results of this study show that LJP maneuver is a better test to predict difficult laryngoscopy and tracheal intubation. We recommend the addition of this maneuver to the routine preoperative evaluation of airway. PMID:24106353

  18. Comparison of Mallampati test with lower jaw protrusion maneuver in predicting difficult laryngoscopy and intubation

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan Ul Haq

    2013-01-01

    Full Text Available Background: Failure to maintain a patent airway is one of the commonest causes of anesthesia-related morbidity and mortality. Many protocols, algorithms, and different combinations of tested methods for airway assessment have been developed to predict difficult laryngoscopy and intubation. The reported incidence of a difficult intubation varies from 1.5% to 13%. The objective of this study was to compare Mallampati test (MT with lower jaw protrusion (LJP maneuver in predicting difficult laryngoscopy and intubation. Materials and Methods: Seven hundred and sixty patients were included in the study. All the patients underwent MT and LJP maneuver for their airway assessment. After a standardized technique of induction of anesthesia, primary anesthetist performed laryngoscopy and graded it according to the grades described by Cormack and Lehane. Sensitivity, specificity, accuracy, and positive predictive value (PPV and negative predictive value (NPV were calculated for both these tests with 95% confidence interval (CI using conventional laryngoscopy as gold standard. Area under curve was also calculated for both, MT and LJP maneuver. A P < 0.05 was taken as significant. Results: LJP maneuver had higher sensitivity (95.9% vs. 27.1%, NPV (98.7% vs. 82.0%, and accuracy (90.1% vs. 80.3% when compared to MT in predicting difficult laryngoscopy and intubation. Both tests, however, had similar specificity and PPV. There was marked difference in the positive and negative likelihood ratio between LJP and MT. Similarly, the area under the curve favored LJP maneuver over MT. Conclusion: The results of this study show that LJP maneuver is a better test to predict difficult laryngoscopy and tracheal intubation. We recommend the addition of this maneuver to the routine preoperative evaluation of airway.

  19. A high performance liquid chromatography fingerprinting and ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry chemical profiling approach to rapidly find characteristic chemical markers for quality evaluation of dispensing granules, a case study on Chuanxiong Rhizoma.

    Science.gov (United States)

    Zhang, Xiao-Lin; Liu, Li-Fang; Zhu, Ling-Ying; Bai, Ying-Jia; Mao, Qian; Li, Song-Lin; Chen, Shi-Lin; Xu, Hong-Xi

    2014-01-01

    A high performance liquid chromatography-photodiode array detector (HPLC-PDA) fingerprinting and ultra high performance liquid chromatography-photodiode array detector coupled with quadrupole time-of-flight mass spectrometry (UHPLC-PDA-QTOF-MS/MS) based chemical profiling approach was developed to rapidly find characteristic chemical markers for quality control of dispensing granules, taking Chuanxiong Rhizoma (CR) as a model herb. Firstly, CR crude drugs, their traditional decoctions and CR dispensing granules were analyzed by HPLC-PDA to rapidly establish the fingerprints and thereby generate the simulative median chromatograms of CR crude drugs, decoctions and dispensing granules, and by comparing the simulative median chromatograms, major characteristic peaks of CR decoctions and dispensing granules could be determined. Secondary, UHPLC-PDA-QTOF-MS/MS was used to identify the major characteristic peaks of CR decoctions and dispensing granules. The identities of three major peaks were elucidated and confirmed to be ferulic acid (1), senkyunolide I (2) and senkyunolide H (3) by comparing the mass/UV spectra and retention times with that of the reference compounds. Thirdly, an HPLC-PDA method was validated to quantify the three characteristic components in commercial CR dispensing granules. The average contents of ferulic acid and senkyunolide H were found to be less than 1.0mg/g, whereas that of senkyunolide I was 4.40mg/g in CR dispensing granules, which indicated that senkyunolide I might be chosen as a suitable quantitative marker, while ferulic acid and senkyunolide H as qualitative markers for the quality evaluation of CR dispensing granules. It is suggested that this newly established approach could be used to practically and rapidly find suitable marker compounds for quality control of dispensing granules derived from other medicinal herbs. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  1. Flight Attendant Fatigue

    Science.gov (United States)

    2007-07-01

    Seattle to Helsinki) on the salivary melatonin and cortisol levels in 35 female flight atten- dants has shown that the resynchronization rate of these...in both summer and winter. Salivary melatonin and cortisol levels were measured at two-hour intervals for five days before, during, and after the 4...The effect of four-day round trip flights over 10 time zones on the circadian variation of salivary melatonin and cortisol in airline flight at

  2. oVEMP as an objective indicator of successful repositioning maneuver.

    Science.gov (United States)

    Asal, Samir; Sobhy, Osama; Balbaa, Amany

    2017-08-30

    Benign paroxysmal positioning vertigo (BPPV) is the most common peripheral vestibular disorder. Canalolithiasis in the posterior semi-circular canal is the most common underlying pathology that can be treated effectively by repositioning maneuvers. Our hypothesis suggested that successful maneuvers can lead to repositioning of dislodged otoconia to the utricle. Air conducted oVEMP, which is thought to originate from the contra-lateral utricular organ was measured in twenty patients with unilateral BPPV and we compared n1-p1 peak to peak amplitude of the affected ears in 3 separate intervals: on pre-treatment when typical nystagmus was confirmed, immediately after, and 1 week after repositioning maneuvers to assess change, if any, in amplitude. This study showed significant increase of oVEMP amplitude in the affected ears after successful repositioning maneuver that was more significant after 1 week. oVEMP can be used as a reliable objective test for ensuring a successful maneuver rather than subjective dependence on the patient's symptoms, which may be misleading due to a remission. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  3. Alveolar recruitment maneuver in mechanic ventilation pediatric intensive care unit children.

    Science.gov (United States)

    Neves, Valéria Cabral; Koliski, Adriana; Giraldi, Dinarte José

    2009-12-01

    Recent changes were introduced in acute hypoxemic respiratory failure children ventilation methods. There are evidences that less aggressive ventilation strategies can improve severe pulmonary injury survival. Experimental trials evidenced a relationship between inappropriate ventilatory measures and delayed acute pulmonary injury improvement, or even worsening. From this, a protective ventilatory measure arises in combination with alveolar recruitment maneuver. This association is believed in clinical practice to determine importantly reduced morbidity and mortality as well as reduced mechanic ventilation-induced injuries. It is indicated for acute lung injury patients, generally from pneumonia or sepsis, with severe hypoxemia. Its main contraindications are homodynamic instability, pneumothorax and intracranial hypertension. Experimental trials showed beneficial maneuver effects on both oxygenation and alveolar collapse. Adult studies showed improved pulmonary function with hypoxemia reversion. In children, the maneuver lead to significant inspired oxygen fraction and alveolar collapse reductions, less oxygen dependency, improved pulmonary complacency, and reduced bronchopulmonary dysplasia. However, studies in children are limited. Additional investigation is warranted on this matter, and its clinical application evidence. A literature review was conducted based on textbooks and MEDLINE, Pubmed, Cochrane library, SciELO, and Ovid databases, from 1998 to 2009, both in Portuguese and English. Publications on alveolar recruitment maneuver both in adults and children, review articles, experimental and clinical trials were included using the key words: protective ventilatory strategy, alveolar recruitment maneuver, pediatrics and mechanic ventilation.

  4. Effects of hamstring stretching on passive muscle stiffness vary between hip flexion and knee extension maneuvers.

    Science.gov (United States)

    Miyamoto, N; Hirata, K; Kanehisa, H

    2017-01-01

    The purpose of this study was to examine whether the effects of hamstring stretching on the passive stiffness of each of the long head of the biceps femoris (BFl), semitendinosus (ST), and semimembranosus (SM) vary between passive knee extension and hip flexion stretching maneuvers. In 12 male subjects, before and after five sets of 90 s static stretching, passive lengthening measurements where knee or hip joint was passively rotated to the maximal range of motion (ROM) were performed. During the passive lengthening, shear modulus of each muscle was measured by ultrasound shear wave elastography. Both stretching maneuvers significantly increased maximal ROM and decreased passive torque at a given joint angle. Passive knee extension stretching maneuver significantly reduced shear modulus at a given knee joint angle in all of BFl, ST, and SM. In contrast, the stretching effect by passive hip flexion maneuver was significant only in ST and SM. The present findings indicate that the effects of hamstring stretching on individual passive muscles' stiffness vary between passive knee extension and hip flexion stretching maneuvers. In terms of reducing the muscle stiffness of BFl, stretching of the hamstring should be performed by passive knee extension rather than hip flexion. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. The influence of airway supporting maneuvers on glottis view in pediatric fiberoptic bronchoscopy

    Directory of Open Access Journals (Sweden)

    Tarik Umutoglu

    2015-10-01

    Full Text Available ABSTRACTINTRODUCTION:Flexible fiber optic bronchoscopy is a valuable intervention for evaluation and management of respiratory diseases in both infants, pediatric and adult patients. The aim of this study is to investigate the influence of the airway supporting maneuvers on glottis view during pediatric flexible fiberoptic bronchoscopy.MATERIALS AND METHODS:In this randomized, controlled, crossover study; patients aged between 0 and 15 years who underwent flexible fiberoptic bronchoscopy procedure having American Society of Anesthesiologists I---II risk score were included. Patients having risk of difficult intubation, intubated or patients with tracheostomy, and patients with reduced neck mobility or having cautions for neck mobility were excluded from this study. After obtaining best glottic view at the neutral position, patients were positioned jaw trust with open mouth, jaw trust with teeth prottution, head tilt chin lift and triple airway maneuvers and best glottis scores were recorded.RESULTS:Total of 121 pediatric patients, 57 girls and 64 boys, were included in this study. Both jaw trust with open mouth and jaw trust with teeth prottution maneuvers improved the glottis view compared with neutral position (p 0.05. Head tilt chin lift and triple airway maneuvers improved glottis view when compared with both jaw trust with open mouth and jaw trust with teeth prottution maneuvers and neutral position (p 0.05.

  6. Multiple Maneuvering Target Tracking by Improved Particle Filter Based on Multiscan JPDA

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2012-01-01

    Full Text Available The multiple maneuvering target tracking algorithm based on a particle filter is addressed. The equivalent-noise approach is adopted, which uses a simple dynamic model consisting of target state and equivalent noise which accounts for the combined effects of the process noise and maneuvers. The equivalent-noise approach converts the problem of maneuvering target tracking to that of state estimation in the presence of nonstationary process noise with unknown statistics. A novel method for identifying the nonstationary process noise is proposed in the particle filter framework. Furthermore, a particle filter based multiscan Joint Probability Data Association (JPDA filter is proposed to deal with the data association problem in a multiple maneuvering target tracking. In the proposed multiscan JPDA algorithm, the distributions of interest are the marginal filtering distributions for each of the targets, and these distributions are approximated with particles. The multiscan JPDA algorithm examines the joint association events in a multiscan sliding window and calculates the marginal posterior probability based on the multiscan joint association events. The proposed algorithm is illustrated via an example involving the tracking of two highly maneuvering, at times closely spaced and crossed, targets, based on resolved measurements.

  7. THE EFFECTIVENESS OF SEMONT LIBERATORY MANEUVER IN ACUTE BENINGN PAROXYSMAL POSITIONAL VERTIGO PATIENTS

    Directory of Open Access Journals (Sweden)

    Achyutha Kiran Kumar

    2014-08-01

    Full Text Available Background: People with vestibular dysfunction complain of problems with balance and dizziness which creates a negative impact on the people and affects their quality of life. Medications help in the control of symptoms. There has been an increase in the implementation of many protocols for the rehabilitation of vestibular patients with follow up exercises for the treatment of BPPV. Methods: Thirty BPPV patients were identified by doing Dix- Hall pike positioning and their DHI scores were recorded. All patients were exclusively treated with Semont Liberatory maneuver. The effectiveness of the treatment was documented at 1 week and 1 month. Repeated procedures were performed if necessary. Results: After the treatment session of Semont Liberatory maneuver, the symptoms disappeared in 20 patients and have negative DHI test by 1st week, and of patients have negative DHI test by 1 month. The first success rate was 78% and the total success rate was 89%. Semont Liberatory maneuver also showed decrease in score of DHI [post-test] in 1 month duration. The patient who visited within one week after the onset of symptoms had good prognosis with Semont Liberatory maneuver. This protocol was ineffective in 4 patients. Conclusion: The Semont Liberatory maneuver is a safe and effective technique for treating BPPV patients.

  8. Power Maneuvering of Pressurized Water Reactors with Axially Variable Strength Control Rods

    Science.gov (United States)

    Kim, Ung-Soo; Seong, Poong-Hyun

    2004-02-01

    In this research, axially variable strength control rods (AVSCRs) are developed to solve the problems related to the axial power distribution of a reactor during power maneuvering of pressurized water reactors (PWRs). The control rods are classified into two types: multipurpose control rods and regulating control rods. Two multipurpose control rod banks (AVSCR1, AVSCR2) are newly developed; conventional axially uniform strength control rods are adopted as regulating control rod banks to minimize the design change. The newly developed AVSCRs are axially three-sectioned and their worth shapes are optimized to obtain appropriate moving characteristics related to the variation of the axial offset (AO) according to the motion of the AVSCRs. The operation strategy for the power maneuvering is developed in consideration of the moving characteristics of the AVSCRs. This strategy consists of simple logics, and no use of reactivity compensation by boron is considered. Finally, the AVSCRs are applied to the power maneuvering with a typical 100-50-100%, 2-6-2-14 h pattern of daily load-follow for all burn-up state of the core. From the application results, it is shown that the use of AVSCRs makes it possible to regulate AO within the target band during the power maneuvering with only control rods. Consequently, power maneuvering is accomplished without reactivity compensation by a change in boron concentration, and the AVSCRs can cover the entire burn-up states of the reactor core.

  9. Flight Standards Automation System -

    Data.gov (United States)

    Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....

  10. Aviation Flight Regulations

    National Research Council Canada - National Science Library

    2006-01-01

    .... This regulation covers aircraft operations, crew requirements and flight rules. It also covers Army aviation general provisions, training, standardization, and management of aviation resources...

  11. Military maneuvers and biodiversity: strange arrangements in southern California.

    Science.gov (United States)

    Sally. Duncan

    1998-01-01

    How can we maintain biodiversity as human population levels continue to increase at a rapid rate? This issue of Science Findings focuses on southern California, one of the richest areas of biodiversity in the country, and home of 1.5 million people. Pacific Northwest Research scientist Ross Kiester, in conjunction with a cooperative research agreement with Harvard...

  12. Neural control and precision of flight muscle activation in Drosophila.

    Science.gov (United States)

    Lehmann, Fritz-Olaf; Bartussek, Jan

    2017-01-01

    Precision of motor commands is highly relevant in a large context of various locomotor behaviors, including stabilization of body posture, heading control and directed escape responses. While posture stability and heading control in walking and swimming animals benefit from high friction via ground reaction forces and elevated viscosity of water, respectively, flying animals have to cope with comparatively little aerodynamic friction on body and wings. Although low frictional damping in flight is the key to the extraordinary aerial performance and agility of flying birds, bats and insects, it challenges these animals with extraordinary demands on sensory integration and motor precision. Our review focuses on the dynamic precision with which Drosophila activates its flight muscular system during maneuvering flight, considering relevant studies on neural and muscular mechanisms of thoracic propulsion. In particular, we tackle the precision with which flies adjust power output of asynchronous power muscles and synchronous flight control muscles by monitoring muscle calcium and spike timing within the stroke cycle. A substantial proportion of the review is engaged in the significance of visual and proprioceptive feedback loops for wing motion control including sensory integration at the cellular level. We highlight that sensory feedback is the basis for precise heading control and body stability in flies.

  13. Digital flight control software design requirements. [for space shuttle orbiter

    Science.gov (United States)

    1973-01-01

    The objective of the integrated digital flight control system is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effects by using an executive routine/function subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the GN and C computer complex and is equally insensitive to the characteristics of the processor configuration. The integrated structure of the control system and the DFCS executive routine which embodies that structure are described. The specific estimation and control algorithms used in the various mission phases are shown. Attitude maneuver routines that interface with the DFCS are also described.

  14. Effect of Conflict Resolution Maneuver Execution Delay on Losses of Separation

    Science.gov (United States)

    Cone, Andrew C.

    2010-01-01

    This paper examines uncertainty in the maneuver execution delay for data linked conflict resolution maneuvers. This uncertainty could cause the previously cleared primary conflict to reoccur or a secondary conflict to appear. Results show that the likelihood of a primary conflict reoccurring during a horizontal conflict resolution maneuver increases with larger initial turn-out angles and with shorter times until loss of separation. There is also a significant increase in the probability of a primary conflict reoccurring when the time until loss falls under three minutes. Increasing horizontal separation by an additional 1.5 nmi lowers the risk, but does not completely eliminate it. Secondary conflicts were shown to have a small probability of occurring in all tested configurations.

  15. Control of the axial offset in a nuclear reactor at power maneuvering

    Directory of Open Access Journals (Sweden)

    Maksim V. Maksimov

    2014-12-01

    Full Text Available High reliability and security of power unit are basic requirements when the power unit maneuvering mode operation. The reactor stability under disturbances both at steady load and maneuvering load embodies the guarantees of power unit safe and reliable operation. A quantitative measure of the reactor stability is assessed by the axial offset representing the technological characteristics of energy release uniformity, therefore the axial offset minimum deviation is WWER-1000 operation efficiency measure. The power unit capacity automated control systems’ influence on axial offset under maneuvering mode is investigated. Considered is the power unit compromise-combined control program, which maintains a constant axial offset value when power unit switching from one power level to another.

  16. Target pitch angle for the microburst escape maneuver

    Science.gov (United States)

    Mulgund, Sandeep S.; Stengel, Robert F.

    1992-01-01

    Recovery performance of a commuter-type aircraft in a microburst encounter is studied using a constant-pitch-attitude strategy and flight path optimization. Results obtained indicate that the pitch attitude which maximized climb rate in a wind shear condition is strongly dependent on whether the aircraft is subjected to a horizontal shear or a downdraft. The pitch attitude which maximizes ground clearance depends on the altitude of the encounter, the strength of the microburst, and the initial position of the aircraft with respect to the downburst core. Best results are obtained at relatively low target pitch angles, in severe wind shear encounters at very low altitudes. A technique for maximizing ground clearance involves maintaining a low pitch attitude early in the encounter, followed by a gradual pitch-up that ceases when the wind shear has been excited.

  17. Analysis of effects of manhole covers on motorcycle driver maneuvers: a nonparametric classification tree approach.

    Science.gov (United States)

    Chang, Li-Yen

    2014-01-01

    A manhole cover is a removable plate forming the lid over the opening of a manhole to allow traffic to pass over the manhole and to prevent people from falling in. Because most manhole covers are placed in roadway traffic lanes, if these manhole covers are not appropriately installed or maintained, they can represent unexpected hazards on the road, especially for motorcycle drivers. The objective of this study is to identify the effects of manhole cover characteristics as well as driver factors and traffic and roadway conditions on motorcycle driver maneuvers. A video camera was used to record motorcycle drivers' maneuvers when they encountered an inappropriately installed or maintained manhole cover. Information on 3059 drivers' maneuver decisions was recorded. Classification and regression tree (CART) models were applied to explore factors that can significantly affect motorcycle driver maneuvers when passing a manhole cover. Nearly 50 percent of the motorcycle drivers decelerated or changed their driving path to reduce the effects of the manhole cover. The manhole cover characteristics including the level difference between manhole cover and pavement, the pavement condition over the manhole cover, and the size of the manhole cover can significantly affect motorcycle driver maneuvers. Other factors, including traffic conditions, lane width, motorcycle speed, and loading conditions, also have significant effects on motorcycle driver maneuvers. To reduce the effects and potential risks from the manhole covers, highway authorities not only need to make sure that any newly installed manhole covers are as level as possible but also need to regularly maintain all the manhole covers to ensure that they are in good condition. In the long run, the size of manhole covers should be kept as small as possible so that the impact of manhole covers on motorcycle drivers can be effectively reduced. Supplemental materials are available for this article. Go to the publisher

  18. Biomechanical Simulation of Stresses and Strains Exerted on the Spinal Cord and Nerves During Scoliosis Correction Maneuvers.

    Science.gov (United States)

    Henao, Juan; Labelle, Hubert; Arnoux, Pierre-Jean; Aubin, Carl-Éric

    2018-01-01

    Biomechanical analysis of the spinal cord and nerves during scoliosis correction maneuvers through numerical simulations. To assess the biomechanical effects of scoliosis correction maneuvers and stresses generated on the spinal nervous structures. Important forces are applied during scoliosis correction surgery, which could potentially lead to neurologic complications due to stresses exerted on the nervous structures. The biomechanical impact of the different types of stresses applied on the nervous structures during correction maneuvers is not well understood. Three correction techniques were simulated using a hybrid computer modeling approach, personalized to a right thoracic adolescent idiopathic scoliotic case (Cobb angle: 63°): (1) Harrington-type distraction; (2) segmental translation technique; and a (3) segmental rotation-based procedure. A multibody model was used to simulate the kinematics of the instrumentation maneuvers; a second comprehensive finite element model was used to analyze the local stresses and strains on the spinal cord and nerves. Average values of the internal medullar pressure (IMP), shear stresses, nerve compression, and strain were computed over three regions and compared between techniques. Harrington distraction maneuver generated high stresses and strains over the thoracolumbar region. In the main thoracic region, the segmental translation maneuver technique induced 15% more shear stress, 25% more strain, and 62% lower nerve compression than Harrington distraction maneuver. The segmental rotation-based procedure induced 25% lower shear stresses and 18% more strain, respectively, at the apical level, as well as 72%, 57%, and 7% lower IMP, nerve compression, and strain in the upper thoracic region, compared with Harrington distraction maneuver. This study quantified the relative stress induced on the spinal cord and spinal nerves for different correction maneuvers using a novel hybrid patient-specific model. Of the three maneuvers

  19. Basics of space flight.

    Science.gov (United States)

    Celnikier, L. M.

    Space flight can be approached as an exercise in applied physics. "With his physicist's eye view" the author shows how well known and relatively elementary laws constrain what can and what cannot be done. This book will be of interest to anyone wishing to understand the real, rather than the imagined, limits of space flight.

  20. Robust Flight Controllers.

    Science.gov (United States)

    1983-12-01

    Institute of Technology, Wright-Patterson Air force Base, Ohio, December, 1982. 31. Roskam , J. Airplane Flight Dynamics and Automatic Flight Controls...Lawrence, Kansas: Roskam Aviation and Engineering, 1979. 171 " APPENDIX A: Generic Controller Format Al. Introduction In Chapter II, the idea of a

  1. Effect of Different Evasion Maneuvers on Anticipation and Visual Behavior in Elite Rugby League Players.

    Science.gov (United States)

    Connor, Jonathan D; Crowther, Robert G; Sinclair, Wade H

    2018-01-01

    This study examined the anticipation and visual behavior of elite rugby league players during two different evasion maneuvers (side- and split-steps). Participants (N = 48) included elite rugby league players (n = 38) and controls (n = 10). Each participant watched videos consisting of side- and split-steps, and anticipation of movement and eye behavior were measured. No significant differences between the groups or evasion maneuvers were found. The split-step was significantly harder to predict. Elite players appeared to spend more time viewing the torso and mid-region of the body compared with the controls.

  2. Effects of postural restriction after modified Epley maneuver on recurrence of benign paroxysmal positional vertigo.

    Science.gov (United States)

    Balikci, Hasan Huseyin; Ozbay, Isa

    2014-10-01

    In the present study, we calculated the success rate of the modified Epley maneuver and determined the effectiveness of post-maneuver positional restriction in terms of the prevention of early and late recurrence. The present study was conducted on 78 patients who had unilateral benign paroxysmal positional vertigo (BPPV) of the posterior semicircular canal (SCC) and who were treated in the Otorhinolaryngology Department of Susehri State Hospital. The Dix-Hallpike test was performed on all patients. After the involved canal was identified using this test, we guided patients through the modified Epley repositioning maneuver. A maximum of two maneuvers were performed in the same session. The patients were randomly divided into two groups. One group was not advised any positional restriction, while the second group was advised positional restriction for 10 days after the procedure. Recurrences during 1-90 days after the treatment were noted as early recurrences, while those that occurred after 90 days were noted as late recurrences. In the restriction group (n=39), repositioning was successful after a single maneuver in 32 (82.05%) patients and after two maneuvers in 5 (12.8%) patients. Repositioning failed in two (5.1%) patients. In the non-restriction group (n=39), repositioning was successful after a single maneuver in 31 (79.4%) patients and after two maneuvers in 6 (15.3%) patients. Repositioning failed in two (5.1%) patients. Thus, the success rate was 94.8% in each group. Early recurrence occurred in 3 (8.1%) of 37 patients in the restriction group and 2 (5.4%) of 37 patients in the non-restriction group (p>0.05). Late recurrence occurred in 5 (13.5%) of 37 patients in both the restriction and non-restriction groups (p>0.05). Postural restriction after a canalith repositioning procedure does not improve procedural success or decrease early and late recurrence rates. However, the number of patients was too small to detect a difference between both treatment

  3. Some design characteristics of the AMPTE turn and orbit change maneuvers. [Active Magnetospheric Particle Tracer Explorers

    Science.gov (United States)

    Kechichian, J. A.; Kwong, D. D.

    1985-01-01

    The maneuvers carried out by the Active Magnetospheric Particle Tracer Explorers (AMPTE) including the Charge Composition Explorer (CCE) and the Ion Release Module (IRM) spacecraft are analyzed. Analytic and graphical methods are developed in order to carry out sensitivity analyses that helped design the nominal maneuvers, by taking into account errors in burn initiating time, motor performance, and spin axis pointing. A tradeoff analysis between errors in timing and Delta V magnitude is shown for the IRM orbit transfer, and a technique that allows for the determination of the attitude of spinner spacecraft by way of the observed Doppler shift resulting from an unbalanced turn is investigated.

  4. STS-39 OV-103 reaction control system (RCS) jets fire during onorbit maneuver

    Science.gov (United States)

    1991-01-01

    During STS-39 rendezvous maneuvers, two of Discovery's, Orbiter Vehicle (OV) 103's, right reaction control system (RCS) jets fire (one up and one to the right). The RCS jet firings create a glow around OV-103's orbital maneuvering system (OMS) pods and vertical tail against the blackness of space. Some reflection from the crew compartment windows is visible. In the foreground are the Space Test Payload 1 (STP-1) multipurpose experiment support structure (MPESS) (front) and the Air Force Program 675 (AFP-675) experiment support system (ESS) (back). The remote manipulator system (RMS) arm is stowed along the port side sill longeron.

  5. Alveolar recruitment maneuver in refractory hypoxemia and lobar atelectasis after cardiac surgery: A case report

    Directory of Open Access Journals (Sweden)

    Herbst-Rodrigues Marcus

    2012-06-01

    Full Text Available Abstract Objective This case report describes an unusual presentation of right upper lobe atelectasis associated with refractory hypoxemia to conventional alveolar recruitment maneuvers in a patient soon after coronary artery bypass grafting surgery. Method Case-report. Results The alveolar recruitment with PEEP = 40cmH2O improved the patient’s atelectasis and hypoxemia. Conclusion In the present report, the unusual alveolar recruitment maneuver with PEEP 40cmH2O showed to be safe and efficient to reverse refractory hypoxemia and uncommon atelectasis in a patient after cardiac surgery.

  6. Determination of aerodynamic parameters of a fighter airplane from flight data at high angles of attack

    Science.gov (United States)

    Klein, V.; Batterson, J. G.; Abbasy, I.

    1983-01-01

    A procedure for the estimation of airplane model structure and parameters is applied to data from a modern fighter airplane operating within an angle of attack range of 5 to 60 deg. The paper briefly describes the airplane, flight and wind tunnel data available, and the estimation method. The results presented contain basic longitudinal characteristics of the airplane and the estimates of aerodynamic parameters in the yawing-moment equations. These estimates are obtained from small and large amplitude maneuvers. Because the latter set of data was not suitable for airplane identification, some of the large amplitude maneuvers were joined together and then partitioned into subsets according to the values of angle of attack. Each subset was then analyzed as a separate data set. Most of the estimated parameters and functions are in good agreement with the wind tunnel measurements. The estimated lateral parameters in the model equations also demonstrate good prediction capabilities.

  7. Rapid Prototyping

    Science.gov (United States)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  8. An assessment of various side-stick controller/stability and control augmentation systems for night nap-of-Earth flight using piloted simulation

    Science.gov (United States)

    Landis, K. H.; Aiken, E. W.

    1982-01-01

    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions.

  9. Computer vision techniques for rotorcraft low altitude flight

    Science.gov (United States)

    Sridhar, Banavar

    1990-01-01

    Rotorcraft operating in high-threat environments fly close to the earth's surface to utilize surrounding terrain, vegetation, or manmade objects to minimize the risk of being detected by an enemy. Increasing levels of concealment are achieved by adopting different tactics during low-altitude flight. Rotorcraft employ three tactics during low-altitude flight: low-level, contour, and nap-of-the-earth (NOE). The key feature distinguishing the NOE mode from the other two modes is that the whole rotorcraft, including the main rotor, is below tree-top whenever possible. This leads to the use of lateral maneuvers for avoiding obstacles, which in fact constitutes the means for concealment. The piloting of the rotorcraft is at best a very demanding task and the pilot will need help from onboard automation tools in order to devote more time to mission-related activities. The development of an automation tool which has the potential to detect obstacles in the rotorcraft flight path, warn the crew, and interact with the guidance system to avoid detected obstacles, presents challenging problems. Research is described which applies techniques from computer vision to automation of rotorcraft navigtion. The effort emphasizes the development of a methodology for detecting the ranges to obstacles in the region of interest based on the maximum utilization of passive sensors. The range map derived from the obstacle-detection approach can be used as obstacle data for the obstacle avoidance in an automatic guidance system and as advisory display to the pilot. The lack of suitable flight imagery data presents a problem in the verification of concepts for obstacle detection. This problem is being addressed by the development of an adequate flight database and by preprocessing of currently available flight imagery. The presentation concludes with some comments on future work and how research in this area relates to the guidance of other autonomous vehicles.

  10. Initial Satellite Formation Flight Results from the Magnetospheric Multiscale Mission

    Science.gov (United States)

    Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Farahmand, Mitra

    2016-01-01

    This paper will describe the results that have been obtained to date concerning MMS formation flying. The MMS spacecraft spin at a rate of 3.1 RPM, with spin axis roughly aligned with Ecliptic North. Several booms are used to deploy instruments: two 5 m magnetometer booms in the spin plane, two rigid booms of length 12.5 m along the positive and negative spin axes, and four flexible wire booms of length 60 m in the spin plane. Minimizing flexible motion of the wire booms requires that reorientation of the spacecraft spin axis be kept to a minimum: this is limited to attitude maneuvers to counteract the effects of gravity-gradient and apparent solar motion. Orbital maneuvers must therefore be carried out in essentially the nominal science attitude. These burns make use of a set of monopropellant hydrazine thrusters: two (of thrust 4.5 N) along the spin axis in each direction, and eight (of thrust 18 N) in the spin plane; the latter are pulsed at the spin rate to produce a net delta-v. An on-board accelerometer-based controller is used to accurately generate a commanded delta-v. Navigation makes use of a weak-signal GPS-based system: this allows signals to be received even when MMS is flying above the GPS orbits, producing a highly accurate determination of the four MMS orbits. This data is downlinked to the MMS Mission Operations Center (MOC) and used by the MOC Flight Dynamics Operations Area (FDOA) for maneuver design. These commands are then uplinked to the spacecraft and executed autonomously using the controller, with the ground monitoring the burns in real time.

  11. Effectiveness of physical counterpressure maneuvers in preventing vasovagal syncope: the Physical Counterpressure Manoeuvres Trial (PC-Trial)

    NARCIS (Netherlands)

    van Dijk, Nynke; Quartieri, Fabio; Blanc, Jean-Jaques; Garcia-Civera, Roberto; Brignole, Michele; Moya, Angel; Wieling, Wouter

    2006-01-01

    OBJECTIVES: In this study, we assessed the effectiveness of physical counterpressure maneuvers (PCM) in daily life. BACKGROUND: There is presently no evidence-based therapy for vasovagal syncope. Current treatment consists of explanation and life-style advice. Physical counterpressure maneuvers have

  12. Grab them by the Nose and Kick them in the Pants: Patton on Combined Arms Operational Maneuver

    Science.gov (United States)

    2010-04-23

    in order to break through the hedgerows and into the city of A vranches and the plains of Brittany commenced on 25 July 1944. Patton may not have...operational maneuver. Much like the trenches of World War I, the formidable hedgerows in France favored the defender and prevented maneuver. Yet Patton was

  13. Flight Dynamics Analysis Branch

    Science.gov (United States)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  14. The Proteus aircraft and NASA Dryden's T-34 in flight over Las Cruces, New Mexico.

    Science.gov (United States)

    2002-01-01

    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  15. An analysis of airline landing flare data based on flight and training simulator measurements

    Science.gov (United States)

    Heffley, R. K.; Schulman, T. M.; Clement, T. M.

    1982-01-01

    Landings by experienced airline pilots transitioning to the DC-10, performed in flight and on a simulator, were analyzed and compared using a pilot-in-the-loop model of the landing maneuver. By solving for the effective feedback gains and pilot compensation which described landing technique, it was possible to discern fundamental differences in pilot behavior between the actual aircraft and the simulator. These differences were then used to infer simulator fidelity in terms of specific deficiencies and to quantify the effectiveness of training on the simulator as compared to training in flight. While training on the simulator, pilots exhibited larger effective lag in commanding the flare. The inability to compensate adequately for this lag was associated with hard or inconsistent landings. To some degree this deficiency was carried into flight, thus resulting in a slightly different and inferior landing technique than exhibited by pilots trained exclusively on the actual aircraft.

  16. Changes in Stroke Volume Induced by Lung Recruitment Maneuver Predict Fluid Responsiveness in Mechanically Ventilated Patients in the Operating Room.

    Science.gov (United States)

    Biais, Matthieu; Lanchon, Romain; Sesay, Musa; Le Gall, Lisa; Pereira, Bruno; Futier, Emmanuel; Nouette-Gaulain, Karine

    2017-02-01

    Lung recruitment maneuver induces a decrease in stroke volume, which is more pronounced in hypovolemic patients. The authors hypothesized that the magnitude of stroke volume reduction through lung recruitment maneuver could predict preload responsiveness. Twenty-eight mechanically ventilated patients with low tidal volume during general anesthesia were included. Heart rate, mean arterial pressure, stroke volume, and pulse pressure variations were recorded before lung recruitment maneuver (application of continuous positive airway pressure of 30 cm H2O for 30 s), during lung recruitment maneuver when stroke volume reached its minimal value, and before and after volume expansion (250 ml saline, 0.9%, infused during 10 min). Patients were considered as responders to fluid administration if stroke volume increased greater than or equal to 10%. Sixteen patients were responders. Lung recruitment maneuver induced a significant decrease in mean arterial pressure and stroke volume in both responders and nonresponders. Changes in stroke volume induced by lung recruitment maneuver were correlated with those induced by volume expansion (r = 0.56; P volume during lung recruitment maneuver predicted fluid responsiveness with a sensitivity of 88% (95% CI, 62 to 98) and a specificity of 92% (95% CI, 62 to 99). Pulse pressure variations more than 6% before lung recruitment maneuver discriminated responders with a sensitivity of 69% (95% CI, 41 to 89) and a specificity of 75% (95% CI, 42 to 95). The area under receiver operating curves generated for changes in stroke volume induced by lung recruitment maneuver (0.96; 95% CI, 0.81 to 0.99) was significantly higher than that for pulse pressure variations (0.72; 95% CI, 0.52 to 0.88; P volume decrease during lung recruitment maneuver could predict preload responsiveness in mechanically ventilated patients in the operating room.

  17. Acute effects of physiotherapeutic respiratory maneuvers in critically ill patients with craniocerebral trauma.

    Science.gov (United States)

    Cerqueira Neto, Manoel Luiz de; Moura, Álvaro Vieira; Cerqueira, Telma Cristina Fontes; Aquim, Esperidião Elias; Reá-Neto, Álvaro; Oliveira, Mirella Cristine; Silva Júnior, Walderi Monteiro da; Santana-Filho, Valter J; Scola, Rosana Herminia

    2013-09-01

    To evaluate the effects of physiotherapeutic respiratory maneuvers on cerebral and cardiovascular hemodynamics and blood gas variables. A descriptive, longitudinal, prospective, nonrandomized clinical trial that included 20 critical patients with severe craniocerebral trauma who were receiving mechanical ventilation and who were admitted to the intensive care unit. Each patient was subjected to the physiotherapeutic maneuvers of vibrocompression and increased manual expiratory flow (5 minutes on each hemithorax), along with subsequent airway suctioning with prior instillation of saline solution, hyperinflation and hyperoxygenation. Variables related to cardiovascular and cerebral hemodynamics and blood gas variables were recorded after each vibrocompression, increased manual expiratory flow and airway suctioning maneuver and 10 minutes after the end of airway suctioning. The hemodynamic and blood gas variables were maintained during vibrocompression and increased manual expiratory flow maneuvers; however, there were increases in mean arterial pressure, intracranial pressure, heart rate, pulmonary arterial pressure and pulmonary capillary pressure during airway suctioning. All of the values returned to baseline 10 minutes after the end of airway suctioning. Respiratory physiotherapy can be safely performed on patients with severe craniocerebral trauma. Additional caution must be taken when performing airway suctioning because this technique alters cerebral and cardiovascular hemodynamics, even in sedated and paralyzed patients.

  18. The Relationship between Submental Surface Electromyography and Hyo-Laryngeal Kinematic Measures of Mendelsohn Maneuver Duration

    Science.gov (United States)

    Azola, Alba M.; Greene, Lindsey R.; Taylor-Kamara, Isha; Macrae, Phoebe; Anderson, Cheryl; Humbert, Ianessa A.

    2015-01-01

    Purpose: The Mendelsohn Maneuver (MM) is a commonly prescribed technique that is taught to individuals with dysphagia to improve swallowing ability. Due to cost and safety concerns associated with videofluoroscopy (VFS) use, submental surface electromyography (ssEMG) is commonly used in place of VFS to train the MM in clinical and research…

  19. Multislice spiral computed tomography to determine the effects of a recruitment maneuver in experimental lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Henzler, Dietrich; Rossaint, Rolf [University Hospital, RWTH Aachen, Anesthesiology Department, Aachen (Germany); Mahnken, Andreas H.; Wildberger, Joachim E.; Guenther, Rolf W. [University Hospital of the RWTH Aachen, Clinic of Diagnostic Radiology, Aachen (Germany); Kuhlen, Ralf [University Hospital of the RWTH Aachen, Operative Intensive Care Department, Aachen (Germany)

    2006-06-15

    Although recruitment of atelectatic lung is a common aim in acute respiratory distress syndrome (ARDS), the effects of a recruitment maneuver have not been assessed quantitatively. By multislice spiral CT (MSCT), we analyzed the changes in lung volumes calculated from the changes in the CT values of hyperinflated (V{sub HYP}), normally (V{sub NORM}), poorly (V{sub POOR}) and nonaerated (V{sub NON}) lung in eight mechanically ventilated pigs with saline lavage-induced acute lung injury before and after a recruitment maneuver. This was compared to single slice analysis near the diaphragm. The increase in aerated lung was mainly for V{sub POOR} and the less in V{sub NORM}. Total lung volume and intrathoracic gas increased. No differences were found for tidal volumes measured by spirometry or determined by CT. The inspiratory-expiratory volume differences were not different after the recruitment maneuver in V{sub NON} (from 62{+-}18 ml to 43{+-}26 ml, P=0.114), and in V{sub NORM} (from 216{+-}51 ml to 251{+-}37 ml, P=0.102). Single slice analysis significantly underestimated the increase in normally and poorly aerated lung. Quantitative analysis of lung volumes by whole lung MSCT revealed the increase of poorly aerated lung as the main mechanism of a standard recruitment maneuver. MSCT can provide additional information as compared to single slice CT. (orig.)

  20. Leveraging Manet and Mobile Devices in Ship-to-Objective Maneuver and Expeditionary MAGTF Operations

    Science.gov (United States)

    2014-09-01

    support and firepower. ECO allows for the Marine Corps to deploy a lower- level maneuver unit as an economy of force measure to assert combat power over...to the Global Information Grid ( GIG ) is the course of action the Marine Corps should adopt (Price & McHuen, 2009). My proposed research addresses

  1. Focus-before-detection Methods for Radar Detection of Near Space High-maneuvering Aircrafts

    Directory of Open Access Journals (Sweden)

    Xu Jia

    2017-06-01

    Full Text Available Recently emerging, high maneuvering near space targets have many characteristics that differ from conventional targets, like ultra-high speed, high-maneuverability, ultra-far range, low Radar Cross Section (RCS, plasma sheath, ionosphere layer pollution, and cosmic ray interference. Based on general signal modeling for near space targets of ground-based, airborne, and spaceborne radars, this paper proposes novel focus-before-detection methods with respect to a distributed radar network, multi-dimensions, multiple targets, micro motion, varied model, and non-parametric processing. The proposed FBD based methods can effectively suppress the strong ionosphere layer pollution and active jamming, as well as problems like the scaled effect of echoes, arbitrary motion, aperture fill time, sparse sub-band frequency synthesis, across range cell, across Doppler cell, and across beam width. The proposed Focus-Before-Detection (FBD based methods can remarkably improve the signal processing performance on target detection, parameter estimation, maneuver tracking, high-resolution imaging, feature extraction, and target recognition. Additionally, they are suitable for both high maneuvering near space targets and conventional targets, and can be applied for both new-generation radars and conventional targets. Therefore, the proposed FBD based methods for high maneuvering near space target detection have both important academic research value and impact a wide variety of applications.

  2. Cooperative maneuvering in close environments among cybercars and dual-mode cars

    NARCIS (Netherlands)

    Milanés, V.; Alonso, J.; Bouraoui, L.; Ploeg, J.

    2011-01-01

    This paper describes the results of vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) experiments implementing cooperative maneuvering for three different vehicles driving automatically. The cars used were cybercars from the Institut National de Recherche en Informatique et Automatique

  3. Optimized routing on agricultural fields by minimizing maneuvering and servicing time

    NARCIS (Netherlands)

    Spekken, M.; Bruin, de S.

    2013-01-01

    Agricultural machines spend a significant part of their time on non-productive operations such as maneuvering near the boundaries of the field and loading or offloading of inputs or outputs (here referred to as servicing). This paper integrates existing methods for route optimization so as to

  4. Testicular rerouting by modified Prentiss maneuver: usefulness in bilateral synchronous orchidopexy for high inguinal undescended testes.

    Science.gov (United States)

    Prakash, Jai; Dalela, Deepansh; Goel, Apul; Dalela, Divakar; Kumar, Manoj; Sankhwar, Satya Narayan; Kureel, Shiv Narain

    2014-08-01

    To describe our experience and illustrate the surgical procedure of synchronous bilateral testicular rerouting in high inguinal undescended testes (HIUT) by extending the use of "modified Prentiss maneuver" in bilateral situation, to establish this as a procedure of choice in bilateral HIUT and secondly to demonstrate the length gained by maneuver itself. Between January 2011 and December 2012 ten boys (8months-6years) with diagnosis of bilateral HIUT were included in the study. Bilateral orchidopexy was done by "modified Prentiss maneuver" under general anesthesia. Postoperatively all patients were evaluated at 3 months ,6 months and 1 year by physical examinations and ultrasound. It was possible to reroute the testes underneath inferior epigastric artery (IEA) without its mobilization and thus locate testicular pedicle through a fascial hole above pubic tubercle, well medial to IEA. The average gain in scrotal positioning was 16mm (10-22mm).No retractions, atrophy of testis, clinical weakness of anterior abdominal wall or inguinal herniation was noted in any patient up to one year follow up. Testicular re-routing by "modified Prentiss maneuver" is a simple, feasible, safe and efficient method for bilateral orchidopexy in bilateral HIUT. Preserving the inferior epigastric artery bilaterally has physiologic advantages. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Acute effects of physiotherapeutic respiratory maneuvers in critically ill patients with craniocerebral trauma

    Directory of Open Access Journals (Sweden)

    Manoel Luiz de Cerqueira Neto

    2013-09-01

    Full Text Available OBJECTIVE: To evaluate the effects of physiotherapeutic respiratory maneuvers on cerebral and cardiovascular hemodynamics and blood gas variables. METHOD: A descriptive, longitudinal, prospective, nonrandomized clinical trial that included 20 critical patients with severe craniocerebral trauma who were receiving mechanical ventilation and who were admitted to the intensive care unit. Each patient was subjected to the physiotherapeutic maneuvers of vibrocompression and increased manual expiratory flow (5 minutes on each hemithorax, along with subsequent airway suctioning with prior instillation of saline solution, hyperinflation and hyperoxygenation. Variables related to cardiovascular and cerebral hemodynamics and blood gas variables were recorded after each vibrocompression, increased manual expiratory flow and airway suctioning maneuver and 10 minutes after the end of airway suctioning. RESULTS: The hemodynamic and blood gas variables were maintained during vibrocompression and increased manual expiratory flow maneuvers; however, there were increases in mean arterial pressure, intracranial pressure, heart rate, pulmonary arterial pressure and pulmonary capillary pressure during airway suctioning. All of the values returned to baseline 10 minutes after the end of airway suctioning. CONCLUSION: Respiratory physiotherapy can be safely performed on patients with severe craniocerebral trauma. Additional caution must be taken when performing airway suctioning because this technique alters cerebral and cardiovascular hemodynamics, even in sedated and paralyzed patients.

  6. The Choice of the Maneuver of the Vessel’s Passing Considering the Coordination’s System of the Interactive Vessels and Their Dynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Yevgen Volkov

    2017-03-01

    Full Text Available The maneuver of the altering course of the vessel is a more preferable to avoid a collision. Due to that the calculation of the parameters of the avoidance maneuver should be done considering the dynamic characteristics of the vessel in maneuvering. The paper analyzes the dynamic models of the vessel rotation motion in order to select more appropriate one for the calculation of avoidance maneuver of the vessel applying the altering of the course.

  7. Flight Research Building (Hangar)

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Glenn Flight Research Building is located at the NASA Glenn Research Center with aircraft access to Cleveland Hopkins International Airport. The facility is...

  8. Flight Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Flight System Monitor which will use non-intrusive electrical monitoring (NEMO). The electronic system health of...

  9. Structural Pain Compensating Flight Control

    Science.gov (United States)

    Miller, Chris J.

    2014-01-01

    The problem of control command and maneuver induced structural loads is an important aspect of any control system design. Designers must design the aircraft structure and the control architecture to achieve desired piloted control responses while limiting the imparted structural loads. The classical approach is to build the structure with high margins, restrict control surface commands to known good combinations, and train pilots to follow procedural maneuvering limitations. With recent advances in structural sensing and the continued desire to improve safety and vehicle fuel efficiency, it is both possible and desirable to develop control architectures that enable lighter vehicle weights while maintaining and improving protection against structural damage.

  10. Orion Abort Flight Test

    Science.gov (United States)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind

  11. The flight robotics laboratory

    Science.gov (United States)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  12. Aerodynamics of Bird Flight

    OpenAIRE

    Dvořák Rudolf

    2014-01-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to c...

  13. Flight Test Techniques

    Science.gov (United States)

    1989-01-01

    PARTICULARITES ET INNOVATIONS par G.Guyot 4 THE EXPERIMENTAL AIRCRAFT FLIGHT TEST PIOGRAMME by R.A.Hartley 5 REAL-TIME LGHT TEST ANALYSIS AND DISPLAY TECNIQUES ...the surface with a paint brush approximately 30 min prior to takeoff. Documentation was obtained from chase aircraft photographs. A dark curved line...also exhibited numerous teething difficulties caused by its radical flight control system. That these problems were worked out (particularly those

  14. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  15. Parameter Identification of Ship Maneuvering Models Using Recursive Least Square Method Based on Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Man Zhu

    2017-03-01

    Full Text Available Determination of ship maneuvering models is a tough task of ship maneuverability prediction. Among several prime approaches of estimating ship maneuvering models, system identification combined with the full-scale or free- running model test is preferred. In this contribution, real-time system identification programs using recursive identification method, such as the recursive least square method (RLS, are exerted for on-line identification of ship maneuvering models. However, this method seriously depends on the objects of study and initial values of identified parameters. To overcome this, an intelligent technology, i.e., support vector machines (SVM, is firstly used to estimate initial values of the identified parameters with finite samples. As real measured motion data of the Mariner class ship always involve noise from sensors and external disturbances, the zigzag simulation test data include a substantial quantity of Gaussian white noise. Wavelet method and empirical mode decomposition (EMD are used to filter the data corrupted by noise, respectively. The choice of the sample number for SVM to decide initial values of identified parameters is extensively discussed and analyzed. With de-noised motion data as input-output training samples, parameters of ship maneuvering models are estimated using RLS and SVM-RLS, respectively. The comparison between identification results and true values of parameters demonstrates that both the identified ship maneuvering models from RLS and SVM-RLS have reasonable agreements with simulated motions of the ship, and the increment of the sample for SVM positively affects the identification results. Furthermore, SVM-RLS using data de-noised by EMD shows the highest accuracy and best convergence.

  16. Preliminary results from a subsonic high angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, and flight test evaluation

    Science.gov (United States)

    Whitmore, Stephen A.; Moes, Timothy R.; Larson, Terry J.

    1990-01-01

    A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research flight vehicle. The system is a matrix of 25 pressure orifices in concentric circles on the nose of the vehicle. The orifices determine angles of attack and sideslip, Mach number, and pressure altitude. Pressure was transmitted from the orifices to an electronically scanned pressure module by lines of pneumatic tubing. The HI-FADS system was calibrated and demonstrated using dutch roll flight maneuvers covering large Mach, angle-of-attack, and sideslip ranges. Reference airdata for system calibration were generated by a minimum variance estimation technique blending measurements from two wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and meteorological analyses. The pressure orifice calibration was based on identifying empirical adjustments to modified Newtonian flow on a hemisphere. Calibration results are presented. Flight test results used all 25 orifices or used a subset of 9 orifices. Under moderate maneuvering conditions, the HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz. Aerodynamic lags in the aircraft flow field caused some performance degradation during heavy maneuvering.

  17. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  18. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  19. Gender Differences among Sagittal Plane Knee Kinematic and Ground Reaction Force Characteristics during a Rapid Sprint and Cut Maneuver

    Science.gov (United States)

    James, C. Roger; Sizer, Phillip S.; Starch, David W.; Lockhart, Thurmon E.; Slauterbeck, James

    2004-01-01

    Women are more prone to anterior cruciate ligament (ACL) injury during cutting sports than men. The purpose of this study was to examine knee kinematic and ground reaction forces (GRF) differences between genders during cutting. Male and female athletes performed cutting trials while force platform and video data were recorded (180 Hz).…

  20. Rapid Operational Access and Maneuver Support (ROAMS) Platform for Improved Military Logistics Lines of Communication and Operational Vessel Routing

    Science.gov (United States)

    2017-06-01

    Platform for Improved Military Logistics Lines of Communication and Operational Vessel Routing by Drew Loney, Kimberly Pevey, Jennifer McAlpin...provides improved knowledge of potential lines of communication and vessel routes through hydrodynamic modeling and path optimization under a variety of...classified into two types of activities: logistics and operational. Logistics activities are concerned with the establishment of lines of communication

  1. The role of flight planning in aircrew decision performance

    Science.gov (United States)

    Pepitone, Dave; King, Teresa; Murphy, Miles

    1989-01-01

    The role of flight planning in increasing the safety and decision-making performance of the air transport crews was investigated in a study that involved 48 rated airline crewmembers on a B720 simulator with a model-board-based visual scene and motion cues with three degrees of freedom. The safety performance of the crews was evaluated using videotaped replays of the flight. Based on these evaluations, the crews could be divided into high- and low-safety groups. It was found that, while collecting information before flights, the high-safety crews were more concerned with information about alternative airports, especially the fuel required to get there, and were characterized by making rapid and appropriate decisions during the emergency part of the flight scenario, allowing these crews to make an early diversion to other airports. These results suggest that contingency planning that takes into account alternative courses of action enhances rapid and accurate decision-making under time pressure.

  2. Eclipse program F-106 aircraft in flight, front view

    Science.gov (United States)

    1997-01-01

    Shot of the QF-106 aircraft in flight with the landing gear deployed. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  3. The importance of a normal breathing pattern for an effective abdominal-hollowing maneuver in healthy people: an experimental study.

    Science.gov (United States)

    Ha, Sung-min; Kwon, Oh-yun; Kim, Su-jung; Choung, Sung-dae

    2014-02-01

    A normal breathing pattern while performing the abdominal-hollowing (AH) maneuver or spinal-stabilization exercise is essential for the success of rehabilitation programs and exercises. In previous studies, subjects were given standardized instructions to control the influence of respiration during the AH maneuver. However, the effect of breathing pattern on abdominal-muscle thickness during the AH maneuver has not been investigated. To compare abdominal-muscle thickness in subjects performing the AH maneuver under normal and abnormal breathing-pattern conditions and to investigate the effect of breathing pattern on the preferential contraction ratio (PCR) of the transverse abdominis. Comparative, repeated-measures experimental study. University research laboratory. 16 healthy subjects (8 male, 8 female) from a university population. A real-time ultrasound scanner was used to measure abdominal-muscle thickness during normal and abnormal breathing patterns. A paired t test was used to assess the effect of breathing pattern on abdominal-muscle thickness and PCR. Muscle thickness in the transverse abdominis and internal oblique muscles was significantly greater under the normal breathing pattern than under the abnormal pattern (P pattern compared with the abnormal pattern (P pattern is essential for performance of an effective AH maneuver. Thus, clinicians should ensure that patients adopt a normal breathing pattern before performing the AH maneuver and monitor transverse abdominis activation during the maneuver.

  4. Flight control optimization from design to assessment application on the Cessna Citation X business aircraft =

    Science.gov (United States)

    Boughari, Yamina

    New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna

  5. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  6. Long duration flights management

    Science.gov (United States)

    Sosa-Sesma, Sergio; Letrenne, Gérard; Spel, Martin; Charbonnier, Jean-Marc

    Long duration flights (LDF) require a special management to take the best decisions in terms of ballast consumption and instant of separation. As a contrast to short duration flights, where meteorological conditions are relatively well known, for LDF we need to include the meteorological model accuracy in trajectory simulations. Dispersions on the fields of model (wind, temperature and IR fluxes) could make the mission incompatible with safety rules, authorized zones and others flight requirements. Last CNES developments for LDF act on three main axes: 1. Although ECMWF-NCEP forecast allows generating simulations from a 4D point (altitude, latitude, longitude and UT time), result is not statistical, it is determinist. To take into account model dispersion a meteorological NCEP data base was analyzed. A comparison between Analysis (AN) and Forecast (FC) for the same time frame had been done. Result obtained from this work allows implementing wind and temperature dispersions on balloon flight simulator. 2. For IR fluxes, NCEP does not provide ascending IR fluxes in AN mode but only in FC mode. To obtain the IR fluxes for each time frame, satellite images are used. A comparison between FC and satellites measurements had been done. Results obtained from this work allow implementing flux dispersions on balloon flight simulator. 3. An improved cartography containing a vast data base had been included in balloon flight simulator. Mixing these three points with balloon flight dynamics we have obtained two new tools for observing balloon evolution and risk, one of them is called ASTERISK (Statistic Tool for Evaluation of Risk) for calculations and the other one is called OBERISK (Observing Balloon Evolution and Risk) for visualization. Depending on the balloon type (super pressure, zero pressure or MIR) relevant information for the flight manager is different. The goal is to take the best decision according to the global situation to obtain the largest flight duration with

  7. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  8. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  9. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    Science.gov (United States)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  10. DSMC simulations of the Shuttle Plume Impingement Flight EXperiment(SPIFEX)

    Science.gov (United States)

    Stewart, Benedicte; Lumpkin, Forrest

    2017-01-01

    During orbital maneuvers and proximity operations, a spacecraft fires its thrusters inducing plume impingement loads, heating and contamination to itself and to any other nearby spacecraft. These thruster firings are generally modeled using a combination of Computational Fluid Dynamics (CFD) and DSMC simulations. The Shuttle Plume Impingement Flight EXperiment(SPIFEX) produced data that can be compared to a high fidelity simulation. Due to the size of the Shuttle thrusters this problem was too resource intensive to be solved with DSMC when the experiment flew in 1994.

  11. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time...

  12. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  13. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep.......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...

  14. Decision Model of Flight Safety Based on Flight Event

    Science.gov (United States)

    Xiao-yu, Zhang; Jiu-sheng, Chen

    To improve the management of flight safety for airline company, the hierarchy model is established about the evaluation of flight safety by flight event. Flight safety is evaluated by improved analytical hierarchy process (AHP). The method to rectify the consistency judgment matrix is given to improve the AHP. Then the weight can be given directly without consistency judgment matrix. It ensures absolute consistent of judgment matrix. By statistic of flight event incidence history data, the flight safety analysis is processed by means of static evaluation and dynamic evaluation. The hierarchy structure model is implemented based on .NET, and the simulation result proves the validity of the method.

  15. LiPo battery energy studies for improved flight performance of unmanned aerial systems

    Science.gov (United States)

    Chang, K.; Rammos, P.; Wilkerson, S. A.; Bundy, M.; Gadsden, S. Andrew

    2016-05-01

    Energy storage is one of the most important determinants of how long and far a small electric powered unmanned aerial system (UAS) can fly. For years, most hobby and experimentalists used heavy fuels to power small drone-like systems. Electric motors and battery storage prior to the turn of the century were either too heavy or too inefficient for flight times of any usable duration. However, with the availability of brushless electric motors and lithium-based batteries everything has changed. Systems like the Dragon Eye, Pointer, and Raven are in service performing reconnaissance, intelligence, surveillance, and target acquisition (RISTA) for more than an hour at a time. More recently, multi-rotor vehicles have expanded small UAS capabilities to include activities with hovering and persistent surveillance. Moreover, these systems coupled with the surge of small, low-cost electronics can perform autonomous and semi-autonomous missions not possible just ten years ago. This paper addresses flight time limitation issues by proposing an experimental method with procedures for system identification that may lead to modeling of energy storage in electric UAS'. Consequently, this will allow for energy storage to be used more effectively in planning autonomous missions. To achieve this, a set of baseline experiments were designed to measure the energy consumption of a mid-size UAS multi-rotor. Several different flight maneuvers were considered to include different lateral velocities, climbing, and hovering. Therefore, the goal of this paper is to create baseline flight data for each maneuver to be characterized with a certain rate of energy usage. Experimental results demonstrate the feasibility and robustness of the proposed approach. Future work will include the development of mission planning algorithms that provide realistic estimates of possible mission flight times and distances given specific mission parameters.

  16. Quadcopter Aggressive Maneuvers along Singular Configurations: An Energy-Quaternion Based Approach

    Directory of Open Access Journals (Sweden)

    Ayman A. El-Badawy

    2016-01-01

    Full Text Available Automatic aggressive maneuvers with quadcopters are regarded as a highly challenging control problem. The aim is to tackle the singularities that exist in a vertical looping maneuver. Modeling singularities are resolved by writing the equations-of-motion of the quadcopter in quaternion form. Physical singularities due to underactuation are resolved by using an energy-based control. Energy-based control is utilized to overcome the uncontrollability of the quadcopter at physical singular configurations, for instance, when commanding the quadcopter to gain altitude while pitched at 90∘. Three looping strategies (circular, clothoidal, and newly developed constant thrust are implemented on a nonlinear model of the quadcopter. The three looping strategies are discussed along with their advantages and limitations.

  17. Auxiliary Truncated Unscented Kalman Filtering for Bearings-Only Maneuvering Target Tracking.

    Science.gov (United States)

    Li, Liang-Qun; Wang, Xiao-Li; Liu, Zong-Xiang; Xie, Wei-Xin

    2017-04-27

    Novel auxiliary truncated unscented Kalman filtering (ATUKF) is proposed for bearings-only maneuvering target tracking in this paper. In the proposed algorithm, to deal with arbitrary changes in motion models, a modified prior probability density function (PDF) is derived based on some auxiliary target characteristics and current measurements. Then, the modified prior PDF is approximated as a Gaussian density by using the statistical linear regression (SLR) to estimate the mean and covariance. In order to track bearings-only maneuvering target, the posterior PDF is jointly estimated based on the prior probability density function and the modified prior probability density function, and a practical algorithm is developed. Finally, compared with other nonlinear filtering approaches, the experimental results of the proposed algorithm show a significant improvement for both the univariate nonstationary growth model (UNGM) case and bearings-only target tracking case.

  18. An Iterative Learning Control Technique for Point-to-Point Maneuvers Applied on an Overhead Crane

    Directory of Open Access Journals (Sweden)

    Khaled A. Alhazza

    2014-01-01

    Full Text Available An iterative learning control (ILC strategy is proposed, and implemented on simple pendulum and double pendulum models of an overhead crane undergoing simultaneous traveling and hoisting maneuvers. The approach is based on generating shaped commands using the full nonlinear equations of motion combined with the iterative learning control, to use as acceleration commands to the jib of the crane. These acceleration commands are tuned to eliminate residual oscillations in rest-to-rest maneuvers. The performance of the proposed strategy is tested using an experimental scaled model of an overhead crane with hoisting. The shaped command is derived analytically and validated experimentally. Results obtained showed that the proposed ILC control strategy is capable of eliminating travel and residual oscillations in simple and double pendulum models with hoisting. It is also shown, in all cases, that the proposed approach has a low sensitivity to the initial cable lengths.

  19. Monte Carlo Analysis of the Commissioning Phase Maneuvers of the Soil Moisture Active Passive (SMAP) Mission

    Science.gov (United States)

    Williams, Jessica L.; Bhat, Ramachandra S.; You, Tung-Han

    2012-01-01

    The Soil Moisture Active Passive (SMAP) mission will perform soil moisture content and freeze/thaw state observations from a low-Earth orbit. The observatory is scheduled to launch in October 2014 and will perform observations from a near-polar, frozen, and sun-synchronous Science Orbit for a 3-year data collection mission. At launch, the observatory is delivered to an Injection Orbit that is biased below the Science Orbit; the spacecraft will maneuver to the Science Orbit during the mission Commissioning Phase. The delta V needed to maneuver from the Injection Orbit to the Science Orbit is computed statistically via a Monte Carlo simulation; the 99th percentile delta V (delta V99) is carried as a line item in the mission delta V budget. This paper details the simulation and analysis performed to compute this figure and the delta V99 computed per current mission parameters.

  20. Purging using the Heimlich maneuver among children and adolescents with eating disorders.

    Science.gov (United States)

    Boachie, Ahmed; Kusi Appiah, Edigna; Jubin, Michelle; Jasper, Karin

    2015-09-01

    This case report describes five independent cases of children and adolescents assessed for eating disorders who disclosed using the Heimlich maneuver as a purging technique. The maneuver is meant to be used only in life or death situations, likely once or less in any person's lifetime. A child or adolescent with an eating disorder may be using it to self-induce vomiting on a daily basis, increasing the risk of complications, including potential damage to major organs of the body. Asking patients who purge to elaborate on the methods with which they purge can provide clinicians with fuller information, improving their ability to select appropriate medical tests and interventions. Thorough investigations of physical complaints during the patient assessment may be warranted, including examining patients for possible rib fractures, hemorrhages, perforations of the hollow viscous, and other forms of blunt abdominal traumas. © 2015 Wiley Periodicals, Inc.

  1. A nonlinear filtering and predication (NFP) method for maneuvering target tracking

    Science.gov (United States)

    Chen, H.; Chang, K. C.

    2006-05-01

    A new non-linear filtering and predication (NFP) algorithm with input estimation is proposed for maneuvering target tracking. In the proposed method, the acceleration level is determined by a decision process, where a least squares (LS) estimator plays a major role to detect target maneuvering within a sliding window. In this paper, we first illustrate that the optimal solution to minimize the mean squared error (MSE) must consider a trade-off between the bias and error variance. For the application of target tracking, we then derive the MSE of target positions in a close form by using orthogonal space decompositions. Then we discuss the NFP estimator, and evaluate how well the approach potentially works in the case of given system parameters. Comparing with the traditional unbiased minimum variance filter (UMVF), Kalman filter, and interactive multiple model (IMM) algorithms, numerical results show that the newly proposed NFP method performs comparable or better in all scenarios with less computational requirements.

  2. Single Maneuvering Target Tracking in Clutter Based on Multiple Model Algorithm with Gaussian Mixture Reduction

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    2013-10-01

    Full Text Available The measurement origin uncertainty and target (dynamic or/and measurement model uncertainty are two fundamental problems in maneuvering target tracking in clutter. The multiple hypothesis tracker (MHT and multiple model (MM algorithm are two well-known methods dealing with these two problems, respectively. In this work, we address the problem of single maneuvering target tracking in clutter by combing MHT and MM based on the Gaussian mixture reduction (GMR. Different ways of combinations of MHT and MM for this purpose were available in previous studies, but in heuristic manners. The GMR is adopted because it provides a theoretically appealing way to reduce the exponentially increasing numbers of measurement association possibilities and target model trajectories. The superior performance of our method, comparing with the existing IMM+PDA and IMM+MHT algorithms, is demonstrated by the results of Monte Carlo simulation.

  3. Horizontal Conflict Resolution Maneuvers with a Cockpit Display of Traffic Information

    Science.gov (United States)

    Palmer, E.; Jago, S.; Dubord, M.

    1981-01-01

    Pilot resolution of potential conflicts in the horizontal plane when the only information available on the other aircraft was presented on a Cockpit Display of Traffic Information (CDTI) is investigated. The pilot's task was to assess the situation and if necessary maneuver so as to avoid the other aircraft. No instructions were given on evasive strategy or on what was considered to be an acceptable minimum separation. The results indicate that pilots had a strong bias of turning toward the intruder aircraft in order to pass behind it. In more than 50% of the encounters with a 90 degree crossing angle in which the intruder aircraft was programmed to pass behind the aircraft, the pilots maneuvered so as to pass behind the intruder. This bias was not as strong with the display which showed a prediction of the intruder's relative velocity. The average miss distance for all encounters was about 4500 feet.

  4. Axial offset as measure of stability of light water nuclear reactor during capacity maneuvering

    Directory of Open Access Journals (Sweden)

    Mark V. Nikolsky

    2015-03-01

    Full Text Available High reliability and security of power unit are required during operation of power unit while maneuvering. They depend on the stability of reactor when transition from one power level to another. The axial offset is a quantitative measure of the reactor stability. It is shown that change of the active core inlet coolant temperature yields an uncontrollable disturbance affecting the axial offset and therefore the reactor stability. To insure the reactor stability the compromise-combined power control method is proposed. Analysis of the influence of temperature of coolant at the magnitude of the axial offset for different regulatory programs is carried out. The change in the depth of immersion of regulators in the active zone for different regulatory programs when the reactor plant daily capacity maneuver is studied.

  5. Maneuvering Target Detection Based on JRC System in Gaussian and Non-Gaussian Clutter

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2015-01-01

    Full Text Available Aimed at the problem of detecting maneuvering targets in the Gaussian and sea clutter environments and based on the established motion state model, this paper proposed a new scheme that uses a joint radar-communication (JRC system with Kalman filter to accurately detect the target with the generalized likelihood ratio test (GLRT theory and a constant false alarm rate (CFAR based threshold. Also, the theoretical threshold and probability function of GLRT target detection based on CFAR were given. Moreover, target detection probability of the new JRC system in Weibull and K distribution clutter is deduced. In addition to theoretical considerations, simulations and measurement results of the new JRC systems demonstrate excellent detection performance for maneuvering targets in the Weibull and K distribution channel.

  6. Hybrid Switching Controller Design for the Maneuvering and Transit of a Training Ship

    Directory of Open Access Journals (Sweden)

    Tomera Mirosław

    2017-03-01

    Full Text Available The paper presents the design of a hybrid controller used to control the movement of a ship in different operating modes, thereby improving the performance of basic maneuvers. This task requires integrating several operating modes, such as maneuvering the ship at low speeds, steering the ship at different speeds in the course or along the trajectory, and stopping the ship on the route. These modes are executed by five component controllers switched on and off by the supervisor depending on the type of operation performed. The desired route, containing the coordinates of waypoints and tasks performed along consecutive segments of the reference trajectory, is obtained by the supervisory system from the system operator. The former supports switching between component controllers and provides them with new set-points after each change in the reference trajectory segment, thereby ensuring stable operation of the entire hybrid switching controller.

  7. A Novel Guidance Law with Line-of-Sight Acceleration Feedback for Missiles against Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Kemao Ma

    2014-01-01

    Full Text Available Terminal guidance law design and its implementation are considered for homing missiles against maneuvering targets. The lateral acceleration dynamics are taken into account in the design. In the guidance law design, the line-of-sight acceleration signals are incorporated into the acceleration reference signals to compensate for the targets’ maneuvers. Then the commanded accelerations are designed and the convergent tracking of the lateral accelerations to these signals is proven theoretically. In the guidance implementation, a linear high-gain differentiator is used to estimate the line-of-sight rates and the line-of-sight acceleration signals. To avoid the magnifying effects of higher order differentiation, a practical design of commanded accelerations is given to realize approximate tracking of the lateral accelerations to the given reference signals. Simulation is conducted for both cases with and without measurement noises. The simulation results justify the feasibility of the design and the implementation.

  8. Analysis of LFM-waveform Libraries for Cognitive Tracking Maneuvering Targets

    Directory of Open Access Journals (Sweden)

    Wang Hongyan

    2016-01-01

    Full Text Available Based on the idea of the waveform agility in cognitive radars,the waveform libraries for maneuvering target tracking are discussed. LFM-waveform libraries are designed according to different combinations of chirp parameters and FrFT rotation angles. By applying the interact multiple model (IMM algorithm in tracking maneuvering targets, transmitted waveform is called real time from the LFM-waveform libraries. The waveforms are selected from the library according to the criterion of maximum mutual information between the current state of knowledge of the model and the measurement. Simulation results show that waveform library containing certain amount LFM-waveforms can improve the performance of cognitive tracking radar.

  9. Conflict resolution maneuvers during near miss encounters with cockpit traffic displays

    Science.gov (United States)

    Palmer, E.

    1983-01-01

    The benefits and liabilities associated with pilots' use of a cockpit traffic display to assess the threat posed by air traffic and to make small maneuvers to avoid situations which would result in collision avoidance advisories are experimentally studied. The crew's task was to fly a simulated wide-body aircraft along a straight course at constant altitude while intruder aircraft appeared on a variety of converging trajectories. The main experimental variables were the amount and quality of the information displayed on the intruder aircraft's estimated future position. Pilots were to maintain a horizontal separation of at least 1.5 nautical miles or a vertical separation of 500 ft, so that collision avoidance advisories would not be triggered. The results show that pilots could usually maneuver to provide the specified separation but often made course deviations greater than 1.5 nm or 500 ft.

  10. Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm

    Science.gov (United States)

    TayyebTaher, M.; Esmaeilzadeh, S. Majid

    2017-07-01

    This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.

  11. Virtual maneuvering test in CFD media in presence of free surface

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand

    2015-05-01

    Full Text Available Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, k-ε and SST k-ω in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.

  12. Comparative study on the application of evolutionary optimization techniques to orbit transfer maneuvers

    OpenAIRE

    Minisci, E.A.; Avanzini, G.

    2008-01-01

    Orbit transfer maneuvers are here considered as benchmark cases for comparing performance of different optimization\\ud techniques in the framework of direct methods. Two different classes of evolutionary algorithms, a\\ud conventional genetic algorithm and an estimation of distribution method, are compared in terms of performance\\ud indices statistically evaluated over a prescribed number of runs. At the same time, two different types of problem\\ud representations are considered, a first one b...

  13. Stroke Volume during Mueller Maneuver Measured by Impedance Cardiography in Patients with Mitral Regurgitation

    Czech Academy of Sciences Publication Activity Database

    Viščor, Ivo; Jurák, Pavel; Vondra, Vlastimil; Halámek, Josef; Leinveber, Pavel

    2009-01-01

    Roč. 36, - (2009), s. 749-751 ISSN 0276-6574 R&D Projects: GA AV ČR IAA200650801; GA ČR GP102/07/P425 Institutional research plan: CEZ:AV0Z20650511 Keywords : Mueller maneuver * impedance cardiography * congestive heart failure Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering http://cinc.mit.edu/archives/2009/pdf/0749.pdf

  14. Efficacy of Applying Postural Restrictions after Epley Maneuver in Patients with Benign Paroxysmal Positional Vertigo

    OpenAIRE

    Gholamali Dashti-Khavidaki; Aghil Absalan; Ebrahim Pirasteh

    2014-01-01

    Background: The purpose of this study was to determine the efficacy of applying postural restrictions after Epley maneuver on therapeutic success in patients with BPPV (Benign Paroxysmal Positional Vertigo). Materials and Methods: This randomized controlled clinical trial study was conducted in among 118 patients with BPPV at Khatam-al-Anbia hospital in Zahedan. First group treated with postural restrictions and the second with no restrictions. After one week the presence of BPPV examined ...

  15. Radon-Fractional Fourier Transform and Its Application to Radar Maneuvering Target Detection (Preprint)

    Science.gov (United States)

    2014-10-09

    Radon -Fractional Fourier Transform and Its Application to Radar Maneuvering Target Detection Xiaolong Chen*, Fuqing Cai, Yu Cong, Jian Guan...unit (ARU) and Doppler frequency migration (DFM) effects. In this paper, a novel transform called the Radon -fractional Fourier transform (RFRFT) is...are carried out and the performances of different methods including MTD, FRFT, and the Radon -Fourier transform (RFT) are compared, which demonstrate

  16. The balance and harmony of control power for a combat aircraft in tactical maneuvering

    Science.gov (United States)

    Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.

    1992-01-01

    An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.

  17. The Effects of Buffeting and other Transonic Phenomena on Maneuvering Combat Aircraft

    Science.gov (United States)

    1975-07-01

    vibration along the spinal axis gx = chest to back vibration gv " side to side ( shoulder to shoulder ) vibration 2.1 HUMAN PERFORMANCE EFFECTS OF...Figure 2-1» provides one example of how personal equipment ( shoulder harness) can affect performance. In addition, random • .bratlons. especially...maneuvering and precision tracking. The unconventional handling characteristics exhibited by aircraft with these systems may require readaptation by

  18. Is neck flexion during a cerebrospinal fluid puncture a potentially hazardous maneuver?

    Science.gov (United States)

    Surov, Alexey; Kunze, Christian; Lieser, Ulla; Spielmann, Rolf Peter; Kornhuber, Malte

    2010-05-01

    Cerebrospinal fluid puncture (CSFP) is a diagnostically meaningful procedure. We describe an acute tetraplegia in a patient as complication after CSFP. Cervical myelopathy due to posterior os odontoideum subluxation was diagnosed, and an occipitocervical fusion was performed surgically. No significant improvement of the neurological status was observed within the following 3 years. Neck flexion as performed during CSFP is a potentially hazardous maneuver. When patients show inconstant symptoms of craniocervical pathology or signs of cervical myelopathy, an os odontoideum should be suspected.

  19. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Directory of Open Access Journals (Sweden)

    Yang Yang, Ying Fang, Xini Zhang, Junliang He, Weijie Fu

    2017-12-01

    Full Text Available The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively performed a weight-bearing dorsiflexion (WB-DF maneuver, drop jumps (DJs, and lay-up jumps (LJs. Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041 was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028 and power (p = 0.022 were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  20. Simulation of attitude and maneuvers for the Brazilian spin-stabilized satellite

    Science.gov (United States)

    Koitikuga, Helio; Ferreira, L. Danilo D.; Guedes, Ulisses T. V.

    1987-08-01

    A summary is presented concerning the development of studies dealing with the attitude dynamical analysis of MECB (Missao Espacial Completa Brasileira) spin stabilized data collection satellite. One of the aims of these studies is to verify the feasibility of the proposed stabilization system, through digital simulation. Such simulations are carried out and show the dynamical behavior of the satellite attitude during free and controlled phase (maneuver), allowing one to obtain qualitative information about several aspects of the stabilization and control system.

  1. Literature concerning control and display technology applicable to the Orbital Maneuvering Vehicle (OMV)

    Science.gov (United States)

    1990-01-01

    A review is presented of the literature concerning control and display technology that is applicable to the Orbital Maneuvering Vehicle (OMV), a system being developed by NASA that will enable the user to remotely pilot it during a mission in space. In addition to the general review, special consideration is given to virtual image displays and their potential for use in the system, and a preliminary partial task analysis of the user's functions is also presented.

  2. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.

    Science.gov (United States)

    Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming

    2014-12-18

    Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    Science.gov (United States)

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-12-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion-extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane.

  4. Estimation of the Maximum Angle of Sideslip for Determination of Vertical-Tail Loads in Rolling Maneuvers

    National Research Council Canada - National Science Library

    Stone, Ralph

    1952-01-01

    Recent experiences have indicated that angles of sideslip in rolling maneuvers may be critical in the design of vertical tails for current research airplanes having weight distributed mainly along the fuselage...

  5. Study of dynamical stability of tethered systems during space tug maneuvers

    Science.gov (United States)

    Mantellato, R.; Olivieri, L.; Lorenzini, E. C.

    2017-09-01

    The dynamics of a space tether system composed of one active spacecraft, an uncontrolled large debris (e.g., a defunct satellite), and a visco-elastic tether connecting the two bodies are investigated in this paper. The active spacecraft is assumed to be equipped with a propulsive system for carrying out a tug maneuver that forces the orbital decay of the debris. The dynamical stability and the eigenfrequencies of the tethered system under the action of the thrust are investigated with both numerical and analytical models. A more complex numerical lumped-masses model provides the reference to validate the results hailing from the simplified models. Simplified models of orbital decay, tether, and debris attitude motions were derived using the Clohessy-Wiltshire equations. The results obtained with the simplified models fit very well with those from the lumped-masses model for a wide range of initial conditions. Thanks to the analytical models two resonance conditions were found, both of them affecting the attitude dynamics of the debris, that could represent a serious issue for the safety of the tug maneuver. Also, an instability mechanism that could induce the dual mass system to rotate around its center of mass under certain conditions was identified. These findings make it possible to pinpoint the set of initial conditions of the tethered system at the beginning of the thrust event that provides a dynamically stable tug maneuver for different configurations of the system (e.g., low/high thrust, stiff/elastic tethers).

  6. Desaturation Maneuvers and Precise Orbit Determination for the BepiColombo Mission

    CERN Document Server

    Alessi, Elisa Maria; Milani, Andrea; Tommei, Giacomo

    2012-01-01

    The purpose of this work is the analysis of the consequences that desaturation maneuvers can have in the precise orbit determination corresponding to the Radio Science Experiment (MORE) of the BepiColombo mission to Mercury. This mission is an ESA/JAXA joint project with very challenging objectives regarding geodesy, geophysics and fundamental physics. In the neighborhood of Mercury, the s/c will experience strong solar radiation pressure torques; the s/c attitude is controlled by inertial wheels that after some time reach their maximum rotation state. Then they have to be slowed down by means of thruster pulses, inducing a residual acceleration on the s/c, with a desaturation (or off-loading) maneuver. In this paper, we will show how such maneuvers affect the orbit of the s/c and the radio science measurements and, also, how to include them in the orbit determination and parameter estimation procedure. The non linear least squares fit we consider is applied on a set of observational arcs separated by interva...

  7. Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver.

    Science.gov (United States)

    Miranda, Daniel L; Rainbow, Michael J; Crisco, Joseph J; Fleming, Braden C

    2013-02-01

    Jumping and cutting activities are investigated in many laboratories attempting to better understand the biomechanics associated with non-contact ACL injury. Optical motion capture is widely used; however, it is subject to soft tissue artifact (STA). Biplanar videoradiography offers a unique approach to collecting skeletal motion without STA. The goal of this study was to compare how STA affects the six-degrees-of-freedom motion of the femur and tibia during a jump-cut maneuver associated with non-contact ACL injury. Ten volunteers performed a jump-cut maneuver while their landing leg was imaged using optical motion capture (OMC) and biplanar videoradiography. The within-bone motion differences were compared using anatomical coordinate systems for the femur and tibia, respectively. The knee joint kinematic measurements were compared during two periods: before and after ground contact. Over the entire activity, the within-bone motion differences between the two motion capture techniques were significantly lower for the tibia than the femur for two of the rotational axes (flexion/extension, internal/external) and the origin. The OMC and biplanar videoradiography knee joint kinematics were in best agreement before landing. Kinematic deviations between the two techniques increased significantly after contact. This study provides information on the kinematic discrepancies between OMC and biplanar videoradiography that can be used to optimize methods employing both technologies for studying dynamic in vivo knee kinematics and kinetics during a jump-cut maneuver. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Gender differences in time-frequency EMG analysis of unanticipated cutting maneuvers.

    Science.gov (United States)

    Beaulieu, Mélanie L; Lamontagne, Mario; Xu, Lanyi

    2008-10-01

    The purpose of this study is to compare the time-frequency characteristic, using nonlinearly scaled wavelets, of the EMG signal as well as the three-dimensional (3D) knee kinematics of female and male elite soccer players performing an unanticipated cutting maneuver. Fifteen female and 15 male elite soccer players performed several cutting maneuvers during which EMG of eight muscles of the leg and 3D kinematics of the knee were recorded. To create an unanticipated condition, the participants executed one of three tasks, which were signaled to them with an illuminated target board. Male participants generally executed the unanticipated cutting maneuver with a quadriceps activation of higher frequency components. These gender differences were also found at initial ground contact (IC) for the vastii and biceps femoris (BF) muscles. These higher frequencies dominated the signal earlier in time for the BF and later for the tibialis anterior (TA) in women. Furthermore, women performed the cutting task with greater knee abduction than did the men. Female athletes adopted a different motor unit recruitment strategy that was particularly evident at, and near, IC resulting in lower frequency components in the EMG signal of the lateral hamstring. This strategy may play a role in explaining the gender bias in anterior cruciate ligament (ACL) injury rates. Gender differences in knee kinematics were also observed, exposing the female ACL to higher strain, which may be the result of differences in neuromuscular strategies to stabilize the knee joint.

  9. Mueller-Hillis maneuver and angle of progression: Are they correlated?

    Directory of Open Access Journals (Sweden)

    Sofia Mendes

    Full Text Available Summary Objective: Mueller-Hillis maneuver (MHM and angle of progression (AOP measured by transperineal ultrasound have been used to assess fetal head descent during the second stage of labor. We aimed to assess whether AOP correlates with MHM in the second stage of labor. Method: A prospective observational study including women with singleton pregnancy in the second stage of labor was performed. The AOP was measured immediately after the Mueller-Hillis maneuver. A receiver-operating characteristics (ROC curve analysis was performed to determine the best discriminatory AOP cut-off for the identification of a positive MHM. A p-value less than 0.05 was considered statistically significant. Results: One hundred and sixty-six (166 women were enrolled in the study and 81.3% (n=135 had a positive MHM. The median AOP was 143º (106º to 210º. The area under the curve for the prediction of a positive maneuver was 0.619 (p=0.040. Derived from the ROC curve, an AOP of 138.5º had the best diagnostic performance for the identification of a positive MHM (specificity of 65% and a sensitivity of 67%. Conclusion: An AOP of 138º seems to be associated with a positive MHM in the second stage of labor.

  10. Recruitment Maneuver in Elderly Patients with Different Peripheral Chemoreflex Sensitivity during Major Abdominal Surgery.

    Science.gov (United States)

    Trembach, Nikita; Zabolotskikh, Igor

    2016-01-01

    The goal of the study was to evaluate the effect of a recruitment maneuver on respiratory biomechanics, oxygenation, and hemodynamics in patients suffering from chronic heart failure with different peripheral chemoreflex sensitivity. The study was conducted in 115 elderly patients which underwent major abdominal surgery under general/epidural surgery. Peripheral chemoreflex sensitivity (PCS) was evaluated with breath-holding duration (BHD) during breath-holding test. All patients were divided into two groups: group H had a high PCS (BHD = 38 seconds or less, n = 49); Group M had a middle PCS (BHD more than 38 seconds, n = 66). Recruitment maneuver improved oxygenation and respiratory biomechanics in all cases. However, cardiac output decreased by an average of 18%-31% in group H compared to 18%-28% in group M. SVR either remained unchanged or decreased by up to 14% of the initial value in group H, while, in group M, it had a tendency to increase, which was 24% of the initial value. So, recruitment maneuver is an effective method to improve oxygenation and biomechanical properties of the respiratory system but in patients with increased peripheral chemoreflex sensitivity it associates with the risk of hemodynamic disturbances.

  11. Strong Tracking Spherical Simplex-Radial Cubature Kalman Filter for Maneuvering Target Tracking.

    Science.gov (United States)

    Liu, Hua; Wu, Wen

    2017-03-31

    Conventional spherical simplex-radial cubature Kalman filter (SSRCKF) for maneuvering target tracking may decline in accuracy and even diverge when a target makes abrupt state changes. To overcome this problem, a novel algorithm named strong tracking spherical simplex-radial cubature Kalman filter (STSSRCKF) is proposed in this paper. The proposed algorithm uses the spherical simplex-radial (SSR) rule to obtain a higher accuracy than cubature Kalman filter (CKF) algorithm. Meanwhile, by introducing strong tracking filter (STF) into SSRCKF and modifying the predicted states' error covariance with a time-varying fading factor, the gain matrix is adjusted on line so that the robustness of the filter and the capability of dealing with uncertainty factors is improved. In this way, the proposed algorithm has the advantages of both STF's strong robustness and SSRCKF's high accuracy. Finally, a maneuvering target tracking problem with abrupt state changes is used to test the performance of the proposed filter. Simulation results show that the STSSRCKF algorithm can get better estimation accuracy and greater robustness for maneuvering target tracking.

  12. Pursuit-evasion games with information uncertainties for elusive orbital maneuver and space object tracking

    Science.gov (United States)

    Shen, Dan; Jia, Bin; Chen, Genshe; Blasch, Erik; Pham, Khanh

    2015-05-01

    This paper develops and evaluates a pursuit-evasion (PE) game approach for elusive orbital maneuver and space object tracking. Unlike the PE games in the literature, where the assumption is that either both players have perfect knowledge of the opponents' positions or use primitive sensing models, the proposed PE approach solves the realistic space situation awareness (SSA) problem with imperfect information, where the evaders will exploit the pursuers' sensing and tracking models to confuse their opponents by maneuvering their orbits to increase the uncertainties, which the pursuers perform orbital maneuvers to minimize. In the game setup, each game player P (pursuer) and E (evader) has its own motion equations with a small continuous low-thrust. The magnitude of the low thrust is fixed and the direction can be controlled by the associated game player. The entropic uncertainty is used to generate the cost functions of game players. The Nash or mixed Nash equilibrium is composed of the directional controls of low-thrusts. Numerical simulations are emulated to demonstrate the performance. Simplified perturbations models (SGP4/SDP4) are exploited to calculate the ground truth of the satellite states (position and speed).

  13. Motor vehicle-bicycle crashes in Beijing: irregular maneuvers, crash patterns, and injury severity.

    Science.gov (United States)

    Yan, Xinping; Ma, Ming; Huang, Helai; Abdel-Aty, Mohamed; Wu, Chaozhong

    2011-09-01

    This research presents a comprehensive analysis of motor vehicle-bicycle crashes using 4 years of reported crash data (2004-2007) in Beijing. The interrelationship of irregular maneuvers, crash patterns and bicyclist injury severity are investigated by controlling for a variety of risk factors related to bicyclist demographics, roadway geometric design, road environment, etc. Results show that different irregular maneuvers are correlated with a number of risk factors at different roadway locations such as the bicyclist age and gender, weather and traffic condition. Furthermore, angle collisions are the leading pattern of motor vehicle-bicycle crashes, and different irregular maneuvers may lead to some specific crash patterns such as head-on or rear-end crashes. Orthokinetic scrape is more likely to result in running over bicyclists, which may lead to more severe injury. Moreover, bicyclist injury severity level could be elevated by specific crash patterns and risk factors including head-on and angle collisions, occurrence of running over bicyclists, night without streetlight, roads without median/division, higher speed limit, heavy vehicle involvement and older bicyclists. This study suggests installation of median, division between roadway and bikeway, and improvement of illumination on road segments. Reduced speed limit is also recommended at roadway locations with high bicycle traffic volume. Furthermore, it may be necessary to develop safety campaigns aimed at male, teenage and older bicyclists. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. The development of cryogenic wind tunnels and their application to maneuvering aircraft technology

    Science.gov (United States)

    Polhamus, E. C.; Boyden, R. F.

    1981-01-01

    The cryogenic wind tunnel and its potential for advancing maneuvering aircraft technology is discussed. A brief overview of the cryogenic wind tunnel concept and the capabilities and status of the Langley cryogenic facilities is given, as is a review of the considerations leading to the selection of the cryogenic concept such as capital and operating costs of the tunnel, model and balance construction implications, and test condition. Typical viscous, compressibility and aeroelastic effects encountered by maneuvering aircraft are illustrated and the unique ability of the cryogenic wind tunnels to isolate and investigate these parameters while simulating full scale conditions is discussed. The status of the Langley cryogenic wind tunnel facilities is reviewed and their operating envelopes described in relation to maneuvering aircraft research and development requirements. The status of cryogenic testing technology specifically related to aircraft maneuverability studies including force balances and buffet measurement techniques is discussed. Included are examples of research carried out in the Langley 0.3 meter transonic cryogenic wind tunnel to verify the various techniques.

  15. Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers.

    Science.gov (United States)

    El-Haddad, Mohamed T; Tao, Yuankai K

    2015-08-01

    Microscope-integrated intraoperative OCT (iOCT) enables imaging of tissue cross-sections concurrent with ophthalmic surgical maneuvers. However, limited acquisition rates and complex three-dimensional visualization methods preclude real-time surgical guidance using iOCT. We present an automated stereo vision surgical instrument tracking system integrated with a prototype iOCT system. We demonstrate, for the first time, automatically tracked video-rate cross-sectional iOCT imaging of instrument-tissue interactions during ophthalmic surgical maneuvers. The iOCT scan-field is automatically centered on the surgical instrument tip, ensuring continuous visualization of instrument positions relative to the underlying tissue over a 2500 mm(2) field with sub-millimeter positional resolution and <1° angular resolution. Automated instrument tracking has the added advantage of providing feedback on surgical dynamics during precision tissue manipulations because it makes it possible to use only two cross-sectional iOCT images, aligned parallel and perpendicular to the surgical instrument, which also reduces both system complexity and data throughput requirements. Our current implementation is suitable for anterior segment surgery. Further system modifications are proposed for applications in posterior segment surgery. Finally, the instrument tracking system described is modular and system agnostic, making it compatible with different commercial and research OCT and surgical microscopy systems and surgical instrumentations. These advances address critical barriers to the development of iOCT-guided surgical maneuvers and may also be translatable to applications in microsurgery outside of ophthalmology.

  16. The dynamics of orbital maneuvering: Design and evaluation of a visual display aid for human controllers

    Science.gov (United States)

    Ellis, Stephen R.; Grunwald, Arthur J.

    1990-01-01

    An interactive proximity operations planning system, which allows on-site planning of fuel-efficient, multi-burn maneuvers in a potential multi-spacecraft environment was developed and tested. Though this display system most directly assists planning by providing visual feedback to aid visualization of the trajectories and constraints, its most significant features include an inverse dynamics algorithm that removes control nonlinearities facing the operator and a trajectory planning technique that reduces the order of control and creates, through a geometric spread-sheet the illusion of an inertially stable environment. This synthetic environment provides the user with control of relevant static and dynamic properties of way-points during small orbital changes allowing independent solutions to the normally coupled problems of orbital maneuvering. An experiment was carried out in which experienced operators were required to plan a trajectory to retrieve an object accidently separated from a dual-keel space station. The time required to plan these maneuvers was found to be predicted by the direction of the insertion thrust and did not depend on the point of separation from the space station.

  17. F-104 in flight

    Science.gov (United States)

    1993-01-01

    F-104G N826NA during a 1993 flight over the Mojave desert, outfitted with an experiment pylon under the center fuselage and wing racks. The F-104 was originally designed by Kelly Johnson of the Lockheed Skunk Works as a day fighter. The aircraft soon proved ideal for both research and training. For instance, a modified F-104 tested the reaction control jets for the X-15. The F-104's short wings and low lift to drag ratio made it ideal to simulate the X-15 landing profile, which the F-104s often undertook before X-15 flights in order to acquaint pilots with the rocket plane's landing characteristics. This training role continued with the lifting bodies. NASA F-104s were also used for high-speed research after the X-1E was retired. Finally, the F-104s were also used as chase planes for research missions. The F-104G was a late model designed as a fighter bomber for low-level strike missions. It was built for use by the West German Air Force and other foreign governments. N826NA accomplished a wide-range of research activities, including tests of the Space Shuttle's Thermal Protection System (TPS) tiles. The aircraft made 1,415 flights before being retired. It is now on display at the Dryden Flight Research Center.

  18. Flight deck task management

    Science.gov (United States)

    2016-12-21

    This report documents the work undertaken in support of Volpe Task Order No. T0026, Flight Deck Task Management. The objectives of this work effort were to: : 1) Develop a specific and standard definition of task management (TM) : 2) Conduct a ...

  19. Extracts from the Cochrane Library: modifications of the Epley (canalith repositioning) maneuver for posterior canal benign paroxysmal positional vertigo.

    Science.gov (United States)

    Burton, Martin J; Eby, Thomas L; Rosenfeld, Richard M

    2012-09-01

    The "Cochrane Corner" is a quarterly section in the Journal that highlights systematic reviews relevant to otolaryngology-head and neck surgery, with invited commentary to aid clinical decision making. This installment features a Cochrane review "Modifications of the Epley (Canalith Repositioning) Manoeuvre for Posterior Canal Benign Paroxysmal Positional Vertigo (BPPV)" that finds no evidence of benefit for mastoid oscillation applied during the Epley maneuver nor any clinically important benefit for post-Epley postural restrictions in comparison with the Epley maneuver alone.

  20. CFD Analysis of a Maneuvering F/A-18E Super Hornet

    Science.gov (United States)

    2016-10-12

    sim data, the aero database, or flight- test data. Time step studies were conducted to confirm that the results are not dependent on NAWCADPAX/TIM...this study were conducted at full-scale and the results were compared to data from flight tests and the F/A-18E validated flight simulation database...study were conducted at full-scale and the results were compared to data from flight tests and the F/A-18E validated flight simulation database. The

  1. Maintaining Aura's Orbit Requirements While Performing Orbit Maintenance Maneuvers Containing an Orbit Normal Delta-V Component

    Science.gov (United States)

    Johnson, Megan R.; Petersen, Jeremy D.

    2014-01-01

    The Earth Observing System (EOS) Afternoon Constellation consists of five member missions (GCOM-W1, Aqua, CALIPSO, CloudSat, and Aura), each of which maintain a frozen, sun-synchronous orbit with a 16-day repeating ground track that follows the Worldwide Reference System-2 (WRS-2). Under nominal science operations for Aura, the propulsion system is oriented such that the resultant thrust vector is aligned 13.493 degrees away from the velocity vector along the yaw axis. When performing orbit maintenance maneuvers, the spacecraft performs a yaw slew to align the thrust vector in the appropriate direction. A new Drag Make Up (DMU) maneuver operations scheme has been implemented for Aura alleviating the need for the 13.493 degree yaw slew. The focus of this investigation is to assess the impact that no-slew DMU maneuver operations will have on Aura's Mean Local Time (MLT) which drives the required along track separation between Aura and the constellation members, as well as Aura's frozen orbit properties, eccentricity and argument of perigee. Seven maneuver strategies were analyzed to determine the best operational approach. A mirror pole strategy, with maneuvers alternating at the North and South poles, was implemented operationally to minimize impact to the MLT. Additional analysis determined that the mirror pole strategy could be further modified to include frozen orbit maneuvers and thus maintain both MLT and the frozen orbit properties under noslew operations.

  2. Effects of pelvic compression belts on the kinematics and kinetics of the lower extremities during sit-to-stand maneuvers.

    Science.gov (United States)

    Kim, Jong Moon; Je, Hyun Dong; Kim, Hyeong-Dong

    2017-08-01

    [Purpose] To investigate the effects of a pelvic compression belt (PCB) and chair height on the kinematics and kinetics of the lower extremity during sit-to-stand (STS) maneuvers in healthy people. [Subjects and Methods] Twenty-two people participated in this study. They were required to perform STS maneuvers under four conditions. Hip joint moment and angular displacement of the hip, knee, and ankle were measured. A PCB was also applied below the anterior superior iliac spine. [Results] The angular displacement of the ankle joint increased while performing STS maneuvers from a normal chair with a PCB in phase 1, and decreased during phase 2 when performing STS maneuvers from a high chair. The overall angular displacement in phase 3 was decreased while rising from a chair with a PCB and rising from a high chair. When performed STS maneuvers from a high chair, the angular displacement of the hip, knee, and ankle joint decreased considerably in phase 3. This decreased lower extremity motion in phase 3 indicated that participants required less momentum to complete the maneuver. [Conclusion] The results of this study suggest that a PCB might be appropriate for patients with pelvic girdle pain and lower back pain related to pregnancy.

  3. The necessity of post-maneuver postural restriction in treating benign paroxysmal positional vertigo: a meta-analytic study.

    Science.gov (United States)

    Mostafa, Badr E; Youssef, Tamer Ali; Hamad, Ahmed S

    2013-03-01

    The objective of this article is to verify the role of postural restrictions after repositioning maneuvers in treating patients with benign paroxysmal positional vertigo (BPPV). The study included published articles yielded by a Pubmed search concerning post-maneuver postural restriction in treating BPPV. The search was limited to articles published in English language in the last three decades. The search was done on 1/11/2011. For the 18 relevant articles, we applied our inclusion and exclusion criteria and only 9 articles were included. The data collected from each article were statistically analyzed utilizing meta-analytic Review Manager (RevMan 5.1) software. (Version: 5.1.0.0). There were no significant differences between patients instructed with postural restriction after undergoing repositioning maneuver and patients left free to move after undergoing repositioning maneuver with regard to the presence or absence of post-maneuver symptoms. In conclusion, post-maneuver restrictions do not add to the success of the treatment of BPPV and there is no reason to submit patients to these impractical instructions.

  4. Evaluation of pelvic floor muscles activity with and without abdominal maneuvers in subjects with and without low back pain.

    Science.gov (United States)

    Ehsani, Fatemeh; Arab, Amir Massoud; Assadi, Hamed; Karimi, Noureddin; Shanbehzadeh, Sanaz

    2016-04-27

    There was controversy in finding of studies related pelvic floor muscle (PFM) rehabilitation of subjects with low back pain (LBP), while this issue is very important for treatment of subjects with LBP. The purpose of this study was to evaluate PFM contraction in three conditions of alone and with abdominal hollowing (AH) or abdominal bracing (AB) maneuvers in subjects with and without chronic LBP. Subjects were divided into two groups: subjects with LBP (N = 25) and without LBP (N = 27). PFM contraction alone and during contraction with AH or AB maneuvers was measured. The amount of bladder base movement was measured as an indicator of PFM activity. There were no differences in PFM activity between subjects with and without chronic LBP, when PFM contracted alone (P = 0.60), contracted with AH (P= 0.12) and AB maneuver (P = 0.54). Our data revealed that contraction of the PFM alone produce greater displacement of the bladder base than contraction of the PFM with AH (P = 0.005) or AB maneuver (P = 0.001) in both groups. However, no significant difference was found between contraction of the PFM with AH and AB maneuver in individuals with LBP (P = 0.31). It seems that PFM contraction alone is more effective than PFM contraction with AH or AB maneuvers in lifting the pelvic floor in subjects with and without LBP.

  5. Kinematic Visual Biofeedback Improves Accuracy of Learning a Swallowing Maneuver and Accuracy of Clinician Cues During Training.

    Science.gov (United States)

    Azola, Alba M; Sunday, Kirstyn L; Humbert, Ianessa A

    2017-02-01

    Submental surface electromyography (ssEMG) visual biofeedback is widely used to train swallowing maneuvers. This study compares the effect of ssEMG and videofluoroscopy (VF) visual biofeedback on hyo-laryngeal accuracy when training a swallowing maneuver. Furthermore, it examines the clinician's ability to provide accurate verbal cues during swallowing maneuver training. Thirty healthy adults performed the volitional laryngeal vestibule closure maneuver (vLVC), which involves swallowing and sustaining closure of the laryngeal vestibule for 2 s. The study included two stages: (1) first accurate demonstration of the vLVC maneuver, followed by (2) training-20 vLVC training swallows. Participants were randomized into three groups: (a) ssEMG biofeedback only, (b) VF biofeedback only, and (c) mixed biofeedback (VF for the first accurate demonstration achieving stage and ssEMG for the training stage). Participants' performances were verbally critiqued or reinforced in real time while both the clinician and participant were observing the assigned visual biofeedback. VF and ssEMG were continuously recorded for all participants. Results show that accuracy of both vLVC performance and clinician cues was greater with VF biofeedback than with either ssEMG or mixed biofeedback (p < 0.001). Using ssEMG for providing real-time biofeedback during training could lead to errors while learning and training a swallowing maneuver.

  6. Air/ground wind shear information integration: Flight test results

    Science.gov (United States)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  7. Eclipse program QF-106 aircraft in flight, view from tanker

    Science.gov (United States)

    1997-01-01

    View of QF-106 airplane from a KC-135 tanker aircraft. The Eclipse aircraft was not refueling but simply flying below and behind the tanker for purposes of shooting the photograph from the air. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator -01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  8. Volume Delivered During Recruitment Maneuver Predicts Lung Stress in Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Beitler, Jeremy R; Majumdar, Rohit; Hubmayr, Rolf D; Malhotra, Atul; Thompson, B Taylor; Owens, Robert L; Loring, Stephen H; Talmor, Daniel

    2016-01-01

    Global lung stress varies considerably with low tidal volume ventilation for acute respiratory distress syndrome. High stress despite low tidal volumes may worsen lung injury and increase risk of death. No widely available parameter exists to assess global lung stress. We aimed to determine whether the volume delivered during a recruitment maneuver (V(RM)) is inversely associated with lung stress and mortality in acute respiratory distress syndrome. Substudy of an acute respiratory distress syndrome clinical trial on esophageal pressure-guided positive end-expiratory pressure titration. U.S. academic medical center. Forty-two patients with acute respiratory distress syndrome in whom airflow, airway pressure, and esophageal pressure were recorded during the recruitment maneuver. A single recruitment maneuver was performed before initiating protocol-directed ventilator management. Recruitment maneuvers consisted of a 30-second breath hold at 40 cm H2O airway pressure under heavy sedation or paralysis. V(RM) was calculated by integrating the flow-time waveform during the maneuver. End-inspiratory stress was defined as the transpulmonary (airway minus esophageal) pressure during end-inspiratory pause of a tidal breath and tidal stress as the transpulmonary pressure difference between end-inspiratory and end-expiratory pauses. V(RM) ranged between 7.4 and 34.7 mL/kg predicted body weight. Lower V(RM) predicted high end-inspiratory and tidal lung stress (end-inspiratory: β = -0.449; 95% CI, -0.664 to -0.234; p volume, or plateau pressure and positive end-expiratory pressure, V(RM) remained independently associated with both end-inspiratory and tidal stress. In unadjusted analysis, low V(RM) predicted increased risk of death (odds ratio, 0.85; 95% CI, 0.72-1.00; p = 0.026). V(RM) remained significantly associated with mortality after adjusting for study arm (odds ratio, 0.84; 95% CI, 0.71-1.00; p = 0.022). Low V(RM) independently predicts high lung stress and may

  9. F-15 RPRV Attached Under the Wing of the B-52 Mothership in Flight

    Science.gov (United States)

    1973-01-01

    This photograph shows one of NASA's 3/8th-scale F-15 remotely piloted research vehicles under the wing of the B-52 mothership in flight during 1973, the year that the research program began. The vehicle was used to make stall-spin studies of the F-15 shape before the actual F-15s began their flight tests. B-52 Project Description: NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle

  10. B-52 Launch Aircraft in Flight

    Science.gov (United States)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  11. Multi-Objective Flight Control for Drag Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean

    2017-01-01

    As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag

  12. UAVSAR Flight-Planning System

    Science.gov (United States)

    2008-01-01

    A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.

  13. Wing motion transformation to evaluate aerodynamic coupling in flapping wing flight.

    Science.gov (United States)

    Faruque, Imraan A; Humbert, J Sean

    2014-12-21

    Whether the remarkable flight performance of insects is because the animals leverage inherent physics at this scale or because they employ specialized neural feedback mechanisms is an active research question. In this study, an empirically derived aerodynamics model is used with a transformation involving a delay and a rotation to identify a class of kinematics that provide favorable roll-yaw coupling. The transformation is also used to transform both synthetic and experimentally measured wing motions onto the manifold representing proverse yaw and to quantify the degree to which freely flying insects make use of passive aerodynamic mechanisms to provide proverse roll-yaw turn coordination. The transformation indicates that recorded insect kinematics do act to provide proverse yaw for a variety of maneuvers. This finding suggests that passive aerodynamic mechanisms can act to reduce the neural feedback demands of an insect׳s flight control strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. GN&C for Pegasus air-launched space booster - Design and first flight results

    Science.gov (United States)

    Rovner, Daniel

    1991-04-01

    A three-stage solid-propellant small-payload launch vehicle is described; because it is intended to be launched from beneath a large transport-class aircraft, is also features a wing with a clipped delta planform. A low flight path angle trajectory utilized by the vehicle is outlined. The closed-loop control of vehicle attitude about all three body axes is maintained from the time that separation from the carrier aircraft is sensed until post-insertion payload maneuvers are completed, while an aerodynamic autopilot provides attitude control from the time that separation from the carrier aircraft is sensed until stage-one separation. Emphasis is placed on an explicit guidance algorithm based on the Space Shuttle Powered Explicit Guidance, and first-flight results.

  15. Infrared Thermography Flight Experimentation

    Science.gov (United States)

    Blanchard, Robert C.; Carter, Matthew L.; Kirsch, Michael

    2003-01-01

    Analysis was done on IR data collected by DFRC on May 8, 2002. This includes the generation of a movie to initially examine the IR flight data. The production of the movie was challenged by the volume of data that needed to be processed, namely 40,500 images with each image (256 x 252) containing over 264 million points (pixel depth 4096). It was also observed during the initial analysis that the RTD surface coating has a different emissivity than the surroundings. This fact added unexpected complexity in obtaining a correlation between RTD data and IR data. A scheme was devised to generate IR data near the RTD location which is not affected by the surface coating This scheme is valid as long as the surface temperature as measured does not change too much over a few pixel distances from the RTD location. After obtaining IR data near the RTD location, it is possible to make a direct comparison with the temperature as measured during the flight after adjusting for the camera s auto scaling. The IR data seems to correlate well to the flight temperature data at three of the four RID locations. The maximum count intensity occurs closely to the maximum temperature as measured during flight. At one location (RTD #3), there is poor correlation and this must be investigated before any further progress is possible. However, with successful comparisons at three locations, it seems there is great potential to be able to find a calibration curve for the data. Moreover, as such it will be possible to measure temperature directly from the IR data in the near future.

  16. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  17. Fusion of locomotor maneuvers, and improving sensory capabilities, give rise to the flexible homing strikes of juvenile zebrafish

    Directory of Open Access Journals (Sweden)

    Rebecca E. Westphal

    2013-06-01

    Full Text Available At five days post-fertilization and 4 mm in length, zebrafish larvae are successful predators of mobile prey items. The tracking and capturing of 200 µm long Paramecia requires efficient sensorimotor transformations and precise neural controls that activate axial musculature for orientation and propulsion, while coordinating jaw muscle activity to engulf them. Using high-speed imaging, we report striking changes across ontogeny in the kinematics, structure and efficacy of zebrafish feeding episodes. Most notably, the discrete tracking maneuvers used by larval fish (turns, forward swims become fused with prey capture swims to form the continuous, fluid homing strikes of juvenile and adult zebrafish. Across this same developmental time frame, the duration of feeding episodes become much shorter, with strikes occurring at broader angles and from much greater distances than seen with larval zebrafish. Moreover, juveniles use a surprisingly diverse array of motor patterns that constitute a flexible predatory strategy. This enhances the ability of zebrafish to capture more mobile prey items such as Artemia. Visually-guided tracking is complemented by the mechanosensory lateral line system. Neomycin ablation of lateral line hair cells reduced the accuracy of strikes and overall feeding rates, especially when neomycin-treated larvae and juveniles were placed in the dark. Darkness by itself reduced the distance from which strikes were launched, as visualized by infrared imaging. Rapid growth and changing morphology, including ossification of skeletal elements and differentiation of control musculature, present challenges for sustaining and enhancing predatory capabilities. The concurrent expansion of the cerebellum and subpallium (an ancestral basal ganglia may contribute to the emergence of juvenile homing strikes, whose ontogeny possibly mirrors a phylogenetic expansion of motor capabilities.

  18. Simulator investigations of side-stick controller/stability and control augmentation systems for night nap-of-earth flight

    Science.gov (United States)

    Landis, K. H.; Aiken, E. W.

    1984-01-01

    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions. Previously announced in STAR as N82-23216

  19. Management Process of a Frequency Response Flight Test for Rotorcraft Flying Qualities Evaluation

    Directory of Open Access Journals (Sweden)

    João Otávio Falcão Arantes Filho

    2016-07-01

    Full Text Available This paper applies the frequency response methodology to characterize and analyze the flying qualities of longitudinal and lateral axes of a rotary-wing aircraft, AS355-F2. Using the results, it is possible to check the suitability of the aircraft in accordance with ADS-33E-PRF standard, whose flying qualities specifications criteria are based on parameters in the frequency domain. The key steps addressed in the study involve getting, by means of flight test data, the closed-loop dynamic responses including the design of the instrumentation and specification of the sensors to be used in the flight test campaign, the definition of the appropriate maneuvers characteristics for excitation of the aircraft, the planning and execution of the flight test to collect the data, and the proper data treatment, processing and analysis after the flight. After treatment of the collected data, single input-single output spectral analysis is performed. The results permit the analysis of the flying qualities characteristics, anticipation of the demands to which the pilot will be subjected during closed-loop evaluations and check of compliance with the aforementioned standard, within the range of consistent excitation frequencies for flight tests, setting the agility level of the test aircraft.

  20. Controlled banked turns in coleopteran flight measured by a miniature wireless inertial measurement unit.

    Science.gov (United States)

    Li, Yao; Cao, Feng; Thang Vo Doan, Tat; Sato, Hirotaka

    2016-09-28

    The mechanisms and principles of insect flight have long been investigated by researchers working on micro and nano air vehicles (MAVs/NAVs). However, studies of insect flight maneuvers require high speed filming and high spatial resolution in a small experimental space, or the tethering of the insect to a fixed place. Under such artificial conditions, the insects may deviate its flying behavior from that of regular flight. In this study, we mounted a tiny wireless system, or 'backpack', on live beetles (Mecynorrhina torquata; length 62 ± 8 mm; mass 7.4 ± 1.3 g) freely flying in a large laboratory space. The backpack contains a micro inertial measurement unit (IMU) that was especially designed and manufactured for this purpose. Owing to the small mass (∼1.30 g) and dimensions (∼2.3 cm(2)) of the backpack and the high accuracy of the IMU, we could remotely record the beetle in free flight. The free flight data revealed a strong linear correlation between the roll angle and yaw angular velocity. The strength of the correlation was quantified by the correlation coefficients and mean values. The change in roll angle preceded the change in yaw angular velocity. Moreover, there were frequent fluctuations in the roll angular velocity, which were uncorrelated with the yaw angular velocity. Apart from the strong correlation, these findings imply that Mecynorrhina torquata actively manipulates its roll rotation without coupling to the yaw rotation.