WorldWideScience

Sample records for rapid desorption rate

  1. Rapid decompression and desorption induced energetic failure in coal

    Directory of Open Access Journals (Sweden)

    Shugang Wang

    2015-06-01

    Full Text Available In this study, laboratory experiments are conducted to investigate the rapid decompression and desorption induced energetic failure in coal using a shock tube apparatus. Coal specimens are recovered from Colorado at a depth of 610 m. The coal specimens are saturated with the strong sorbing gas CO2 for a certain period and then the rupture disc is suddenly broken on top of the shock tube to generate a shock wave propagating upwards and a rarefaction wave propagating downwards through the specimen. This rapid decompression and desorption has the potential to cause energetic fragmentation in coal. Three types of behaviors in coal after rapid decompression are found, i.e. degassing without fragmentation, horizontal fragmentation, and vertical fragmentation. We speculate that the characteristics of fracture network (e.g. aperture, spacing, orientation and stiffness and gas desorption play a role in this dynamic event as coal can be considered as a dual porosity, dual permeability, dual stiffness sorbing medium. This study has important implications in understanding energetic failure process in underground coal mines such as coal gas outbursts.

  2. Rapid screening of pharmaceutical drugs using thermal desorption – SALDI mass spectrometry

    International Nuclear Information System (INIS)

    Grechnikov, A A; Kubasov, A E; Borodkov, A S; Georgieva, V B; Nikiforov, S M; Simanovsky, Ya O; Alimpiev, S S

    2012-01-01

    A novel approach to the rapid screening of pharmaceutical drugs by surface assisted laser desorption-ionization (SALDI) mass spectrometry with the rotating ball interface coupled with temperature programmed thermal desorption has been developed. Analytes were thermally desorbed and deposited onto the surface of amorphous silicon substrate attached to the rotating ball. The ball was rotated and the deposited analytes were analyzed using SALDI. The effectiveness of coupling SALDI mass spectrometry with thermal desorption was evaluated by the direct and rapid analysis of tablets containing lidocaine, diphenhydramine and propranolol without any sample pretreatment. The overall duration of the screening procedure was 30÷40 sec. Real urine samples were studied for drug analysis. It is shown that with simple preparation steps, urine samples can be quantitatively analyzed using the proposed technique with the detection limits in the range of 0.2÷0.5 ng/ml.

  3. Counterion adsorption and desorption rate of a charged macromolecule

    Science.gov (United States)

    Shi, Yu; Yang, Jingfa; Zhao, Jiang

    The rate constant of counterion adsorption to and desorption from a synthetic polyelectrolyte, polystyrene sulfonate (PSS-), is measured in aqueous solution by single molecule fluorescence spectroscopy. The results show that both adsorption and desorption rate of counterions have strong dependence on polymer concentration, salt concentration as well as the molecular weight of polyelectrolytes. The results clearly demonstrate that the contribution of electrostatic interaction and the translational entropy to the distribution of counterions of a polyelectrolyte molecule. The information is helpful to the understanding of polyelectrolyte physics. National Natural Science Foundation of China.

  4. Optimizing contaminant desorption and bioavailability in dense slurry systems. 2. PAH bioavailability and rates of degradation.

    Science.gov (United States)

    Kim, Han S; Weber, Walter J

    2005-04-01

    The effects of mechanical mixing on rates of polycyclic aromatic hydrocarbon (PAH) biodegradation in dense geosorbent slurry (67% solids content, w/w) systems were evaluated using laboratory-scale intermittently mixed batch bioreactors. A PAH-contaminated soil and a phenanthrene-sorbed mineral sorbent (alpha-Al2O3) were respectively employed as slurry solids in aerobic and anaerobic biodegradation studies. Both slurries exhibited a characteristic behavior of pseudoplastic non-Newtonian fluids, and the impeller revolution rate and its diameter had dramatic impacts on power and torque requirements in their laminar flow mixing. Rates of phenanthrene biodegradation were markedly enhanced by relatively low-level auger mixing under both aerobic and anaerobic (denitrifying) conditions. Parameters for empirical models correlating biodegradation rate coefficient (k(b)) values to the degree of mixing were similar to those for correlations between mass transfer (desorption) rate coefficient (k(r)) values for rapidly desorbing fractions of soil organic matter and degree of mixing reported in a companion study, supporting a conclusion that performance-efficient and cost-effective enhancements of PAH mass transfer (desorption) and its biodegradation processes can be achieved by the introduction of optimal levels of reactor-scale mechanical mixing.

  5. Modeling Organic Contaminant Desorption from Municipal Solid Waste Components

    Science.gov (United States)

    Knappe, D. R.; Wu, B.; Barlaz, M. A.

    2002-12-01

    Approximately 25% of the sites on the National Priority List (NPL) of Superfund are municipal landfills that accepted hazardous waste. Unlined landfills typically result in groundwater contamination, and priority pollutants such as alkylbenzenes are often present. To select cost-effective risk management alternatives, better information on factors controlling the fate of hydrophobic organic contaminants (HOCs) in landfills is required. The objectives of this study were (1) to investigate the effects of HOC aging time, anaerobic sorbent decomposition, and leachate composition on HOC desorption rates, and (2) to simulate HOC desorption rates from polymers and biopolymer composites with suitable diffusion models. Experiments were conducted with individual components of municipal solid waste (MSW) including polyvinyl chloride (PVC), high-density polyethylene (HDPE), newsprint, office paper, and model food and yard waste (rabbit food). Each of the biopolymer composites (office paper, newsprint, rabbit food) was tested in both fresh and anaerobically decomposed form. To determine the effects of aging on alkylbenzene desorption rates, batch desorption tests were performed after sorbents were exposed to toluene for 30 and 250 days in flame-sealed ampules. Desorption tests showed that alkylbenzene desorption rates varied greatly among MSW components (PVC slowest, fresh rabbit food and newsprint fastest). Furthermore, desorption rates decreased as aging time increased. A single-parameter polymer diffusion model successfully described PVC and HDPE desorption data, but it failed to simulate desorption rate data for biopolymer composites. For biopolymer composites, a three-parameter biphasic polymer diffusion model was employed, which successfully simulated both the initial rapid and the subsequent slow desorption of toluene. Toluene desorption rates from MSW mixtures were predicted for typical MSW compositions in the years 1960 and 1997. For the older MSW mixture, which had a

  6. The impact of soil organic matter and soil sterilisation on the bioaccessibility of 14C-azoxystrobin determined by desorption kinetics.

    Science.gov (United States)

    Clegg, Helen; Riding, Matthew J; Oliver, Robin; Jones, Kevin C; Semple, Kirk T

    2014-08-15

    As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of (14)C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (Frap) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F(slow)). The rapid desorption rate constant (k(fast)) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F(rap). In non-sterile soil, F(rap) was lower resulting in higher F(slow), while desorption rates remained unaffected. Organic matter (OM) reduces F(rap); but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Carbon tetrachloride desorption from activated carbon

    International Nuclear Information System (INIS)

    Jonas, L.A.; Sansone, E.B.

    1981-01-01

    Carbon tetrachloride was desorbed from a granular activated carbon subsequent to its adsorption under various vapor exposure periods. The varied conditions of exposure resulted in a range of partially saturated carbon beds which, when followed by a constant flow rate for desorption, generated different forms of the desorbing concentration versus time curve. A method of analyzing the desorption curves is presented which permits extraction of the various desorbing rates from the different desorption and to relate this to the time required for such regeneration. The Wheeler desorption kinetic equation was used to calculate the pseudo first order desorption rate constant for the carbon. The desorption rate constant was found to increase monotonically with increasing saturation of the bed, permitting the calculation of the maximum desorption rate constant for the carbon at 100% saturation. The Retentivity Index of the carbon, defined as the dimensionless ratio of the adsorption to the desorption rate constant, was found to be 681

  8. The impact of soil organic matter and soil sterilisation on the bioaccessibility of {sup 14}C-azoxystrobin determined by desorption kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Clegg, Helen; Riding, Matthew J. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Oliver, Robin [Syngenta, Jealotts Hill Research Station, Bracknell RG42 6ET (United Kingdom); Jones, Kevin C. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom); Semple, Kirk T., E-mail: k.semple@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2014-08-15

    Highlights: • Desorption of azoxystrobin from soils occurs in a bi-phasic manner. • Soil organic matter, indigenous microorganisms and contact time reduce desorption. • Choice of extractant is important in determining predicting the bioaccessible fraction. - Abstract: As soils represent a major sink for most pesticides, factors influencing pesticide degradation are essential in identifying their potential environmental risk. Desorption of {sup 14}C-azoxystrobin was investigated over time in two soils under sterile and non-sterile conditions using exhaustive (solvent) and non-exhaustive (aqueous) methods. Desorption data were fitted to a two-compartment model, differentiating between fast and slow desorbing fractions. With increased ageing, rapid desorption (F{sub rap}) (bioaccessibility) decreased with corresponding increases in slowly desorbing fractions (F{sub slow}). The rapid desorption rate constant (k{sub fast}) was not affected by ageing, sterility or extraction solvent. The non-exhaustive extractions had similar desorption profiles; whereas exhaustive extractions in aged soils had the highest F{sub rap}. In non-sterile soil, F{sub rap} was lower resulting in higher F{sub slow}, while desorption rates remained unaffected. Organic matter (OM) reduces F{sub rap}; but not desorption rates. Microorganisms and OM enhanced ageing effects, reducing the fraction of fast desorbing chemicals and potentially the bioaccessibility of pesticides in soil.

  9. Atmospheric Pressure-Thermal Desorption (AP-TD)/Electrospray Ionization-Mass Spectrometry for the Rapid Analysis of Bacillus Spores

    Science.gov (United States)

    A technique is described where an atmospheric pressure-thermal desorption (AP-TD) device and electrospray ionization (ESI)-mass spectrometry are coupled and used for the rapid analysis of Bacillus spores in complex matrices. The resulting AP-TD/ESI-MS technique combines the generation of volatile co...

  10. Fraction of organic carbon predicts labile desorption rates of chlorinated organic pollutants in laboratory-spiked geosorbents.

    Science.gov (United States)

    Ginsbach, Jake W; Killops, Kato L; Olsen, Robert M; Peterson, Brittney; Dunnivant, Frank M

    2010-05-01

    The resuspension of large volumes of sediments that are contaminated with chlorinated pollutants continues to threaten environmental quality and human health. Whereas kinetic models are more accurate for estimating the environmental impact of these events, their widespread use is substantially hampered by the need for costly, time-consuming, site-specific kinetics experiments. The present study investigated the development of a predictive model for desorption rates from easily measurable sorbent and pollutant properties by examining the relationship between the fraction of organic carbon (fOC) and labile release rates. Duplicate desorption measurements were performed on 46 unique combinations of pollutants and sorbents with fOC values ranging from 0.001 to 0.150. Labile desorption rate constants indicate that release rates predominantly depend upon the fOC in the geosorbent. Previous theoretical models, such as the macro-mesopore and organic matter (MOM) diffusion model, have predicted such a relationship but could not accurately predict the experimental rate constants collected in the present study. An empirical model was successfully developed to correlate the labile desorption rate constant (krap) to the fraction of organic material where log(krap)=0.291-0.785 . log(fOC). These results provide the first experimental evidence that kinetic pollution releases during resuspension events are governed by the fOC content in natural geosorbents. Copyright (c) 2010 SETAC.

  11. STM-Induced Hydrogen Desorption via a Hole Resonance

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Thirstrup, C.; Sakurai, M.

    1998-01-01

    We report STM-induced desorption of H from Si(100)-H(2 X 1) at negative sample bias. The desorption rate exhibits a power-law dependence on current and a maximum desorption rate at -7 V. The desorption is explained by vibrational heating of H due to inelastic scattering of tunneling holes...... with the Si-H 5 sigma hole resonance. The dependence of desorption rate on current and bias is analyzed using a novel approach for calculating inelastic scattering, which includes the effect of the electric field between tip and sample. We show that the maximum desorption rate at -7 V is due to a maximum...

  12. Development of a kinetic model of hydrogen absorption and desorption in magnesium and analysis of the rate-determining step

    Science.gov (United States)

    Kitagawa, Yuta; Tanabe, Katsuaki

    2018-05-01

    Mg is promising as a new light-weight and low-cost hydrogen-storage material. We construct a numerical model to represent the hydrogen dynamics on Mg, comprising dissociative adsorption, desorption, bulk diffusion, and chemical reaction. Our calculation shows a good agreement with experimental data for hydrogen absorption and desorption on Mg. Our model clarifies the evolution of the rate-determining processes as absorption and desorption proceed. Furthermore, we investigate the optimal condition and materials design for efficient hydrogen storage in Mg. By properly understanding the rate-determining processes using our model, one can determine the design principle for high-performance hydrogen-storage systems.

  13. Rapid detection of undesired cosmetic ingredients by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Ouyang, Jie; An, Dongli; Chen, Tengteng; Lin, Zhiwei

    2017-10-01

    In recent years, cosmetic industry profits soared due to the widespread use of cosmetics, which resulted in illicit manufacturers and products of poor quality. Therefore, the rapid and accurate detection of the composition of cosmetics has become crucial. At present, numerous methods, such as gas chromatography and liquid chromatography-mass spectrometry, were available for the analysis of cosmetic ingredients. However, these methods present several limitations, such as failure to perform comprehensive and rapid analysis of the samples. Compared with other techniques, matrix-assisted laser desorption ionization time-of-flight mass spectrometry offered the advantages of wide detection range, fast speed and high accuracy. In this article, we briefly summarized how to select a suitable matrix and adjust the appropriate laser energy. We also discussed the rapid identification of undesired ingredients, focusing on antibiotics and hormones in cosmetics.

  14. Evaluating the role of desorption in bioavailability of sediment-associated contaminants using oligochaetes, semipermeable membrane devices and Tenax extraction

    International Nuclear Information System (INIS)

    Leppaenen, Matti T.; Kukkonen, Jussi V.K.

    2006-01-01

    The success of the rapidly desorbing fraction as an available fraction was challenged by using sediment ingesting and non-ingesting oligochaetes (Lumbriculus variegatus) together with passive samplers (semipermeable membrane devices, SPMDs) in accumulation and kinetic modelling exercises for carbon-14 labelled model compounds (pyrene, benzo[a]pyrene and 3,4,3',4'-tetrachlorobiphenyl). Passive samplers clearly produced lower uptake rate constants and steady state factors than either of the oligochaete treatments when residue concentrations were based on animal lipid or total SPMD weight. The rapidly desorbing chemical fractions in sediments did not show a significant relationship with the biota sediment accumulation factors or SPMD accumulation factors. A distinctly better relationship was observed between the accumulation factors and the desorption rate constants. The results support the assumption that desorption plays an important role in bioavailability, although animal behaviour and the diffusional limitations of hydrophobic contaminants in sediment together probably affect the actual available pool. - Desorption and animal behaviour play major roles in the availability of hydrophobic organics in sediments

  15. A SIMPLE AND RAPID MATRIX-ASSISTED LASER DESORPTION/IONIZATION TIME OF FLIGHT MASS SPECTROMETRY METHOD TO SCREEN FISH PLASMA SAMPLES FOR ESTROGEN-RESPONSIVE BIOMARKERS

    Science.gov (United States)

    In this study, we describe and evaluate the performance of a simple and rapid mass spectral method for screening fish plasma for estrogen-responsive biomarkers using matrix assisted laster desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) couopled with a short...

  16. A simple method for rapid microbial identification from positive monomicrobial blood culture bottles through matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Lin, Jung-Fu; Ge, Mao-Cheng; Liu, Tsui-Ping; Chang, Shih-Cheng; Lu, Jang-Jih

    2017-06-30

    Rapid identification of microbes in the bloodstream is crucial in managing septicemia because of its high disease severity, and direct identification from positive blood culture bottles through matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can shorten the turnaround time. Therefore, we developed a simple method for rapid microbiological identification from positive blood cultures by using MALDI-TOF MS. We modified previously developed methods to propose a faster, simpler and more economical method, which includes centrifugation and hemolysis. Specifically, our method comprises two-stage centrifugation with gravitational acceleration (g) at 600g and 3000g, followed by the addition of a lysis buffer and another 3000g centrifugation. In total, 324 monomicrobial bacterial cultures were identified. The success rate of species identification was 81.8%, which is comparable with other complex methods. The identification success rate was the highest for Gram-negative aerobes (85%), followed by Gram-positive aerobes (78.2%) and anaerobes (67%). The proposed method requires less than 10 min, costs less than US$0.2 per usage, and facilitates batch processing. We conclude that this method is feasible for clinical use in microbiology laboratories, and can serve as a reference for treatments or further complementary diagnostic testing. Copyright © 2017. Published by Elsevier B.V.

  17. Desorption Kinetics and Mechanisms of CO2 on Amine-Based Mesoporous Silica Materials

    Directory of Open Access Journals (Sweden)

    Yang Teng

    2017-01-01

    Full Text Available Tetraethylenepentamine (TEPA-based mesoporous MCM-41 is used as the adsorbent to determine the CO2 desorption kinetics of amine-modified materials after adsorption. The experimental data of CO2 desorption as a function of time are derived by zero-length column at different temperatures (35, 50, and 70 °C and analyzed by Avrami’s fractional-order kinetic model. A new method is used to distinguish the physical desorption and chemical desorption performance of surface-modified mesoporous MCM-41. The activation energy Ea of CO2 physical desorption and chemical desorption calculated from Arrhenius equation are 15.86 kJ/mol and 57.15 kJ/mol, respectively. Furthermore, intraparticle diffusion and Boyd’s film models are selected to investigate the mechanism of CO2 desorption from MCM-41 and surface-modified MCM-41. For MCM-41, there are three rate-limiting steps during the desorption process. Film diffusion is more prominent for the CO2 desorption rates at low temperatures, and pore diffusion mainly governs the rate-limiting process under higher temperatures. Besides the surface reaction, the desorption process contains four rate-limiting steps on surface-modified MCM-41.

  18. Bacterial rapid identification with matrix assisted laser desorption/ionization time-of-flight mass spectrometry: development of an 'in-house method' and comparison with Bruker Sepsityper(®) kit.

    Science.gov (United States)

    Frédéric Ric, S; Antoine, M; Bodson, A; Lissoir, B

    2015-10-01

    The objective of this study was to compare an in-house matrix-assisted laser desorption ionization with time of flight (MALDI-TOF) method and a commercial MALDI-TOF kit (Sepsityper(®) kit) for direct bacterial identification in positive blood cultures. We also evaluated the time saved and the cost associated with the rapid identification techniques. We used the BACTEC(®) automated system for detecting positive blood cultures. Direct identification using Sepsityper kit and the in-house method were compared with conventional identification by MALDI-TOF using pure bacterial culture on the solid phase. We also evaluated different cut-off scores for rapid bacterial identification. In total, 127 positive blood vials were selected. The rate of rapid identification with the MALDI Sepsityper kit was 25.2% with the standard cut-off and 33.9% with the enlarged cut-off, while the results for the in-house method were 44.1 and 61.4%, respectively. Error rates with the enlarged cut-off were 6.98 (n = 3) and 2.56% (n = 2) for Sepsityper and the in-house method, respectively. Identification rates were higher for gram-negative bacteria. Direct bacterial identification succeeded in supplying rapid identification of the causative organism in cases of sepsis. The time taken to obtain a result was nearly 24  hours shorter for the direct bacterial identification methods than for conventional MALDI-TOF on solid phase culture. Compared with the Sepsityper kit, the in-house method offered better results and fewer errors, was more cost-effective and easier to use.

  19. Long-term desorption of trichloroethylene from flint clay using multiplexed optical detection

    International Nuclear Information System (INIS)

    Stager, M.P.; Perram, G.P.

    1999-01-01

    The long-term desorption of trichloroethylene (TCE) from powdered flint clay was examined using a multiplexed, phase sensitive infrared technique which provided a gas phase detection limit of 0.0045 torr for continuous monitoring of the desorption process for at least 3 days. The vapor phase TCE concentrations as a function of desorption time exhibit a significant deviation from Langmuir kinetics. The desorption process is adequately described by bonding sites with a gamma distribution for the desorption rate coefficients. The mean desorption rate for powdered flint clay at 25°C is k d = 0.50 ± 0.02 h −1 . (author)

  20. Non-isothermal desorption and nucleate boiling in a water-salt droplet LiBr

    Directory of Open Access Journals (Sweden)

    Misyura Sergey Ya.

    2018-01-01

    Full Text Available Experimental data on desorption and nucleate boiling in a droplet of LiBr-water solution were obtained. An increase in salt concentration in a liquid-layer leads to a considerable decrease in the rate of desorption. The significant decrease in desorption intensity with a rise of initial mass concentration of salt has been observed. Evaporation rate of distillate droplet is constant for a long time period. At nucleate boiling of a water-salt solution of droplet several characteristic regimes occur: heating, nucleate boiling, desorption without bubble formation, formation of the solid, thin crystalline-hydrate film on the upper droplet surface, and formation of the ordered crystalline-hydrate structures during the longer time periods. For the final stage of desorption there is a big difference in desorption rate for initial salt concentration, C0, 11% and 51%. This great difference in the rate of desorption is associated with significantly more thin solution film for C0 = 11% and higher heat flux.

  1. Testosterone sorption and desorption: Effects of soil particle size

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yong, E-mail: yqi01@unomaha.edu [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Zhang, Tian C. [Civil Engineering Dept., University of Nebraska-Lincoln at Omaha Campus, Omaha, NE 68182 (United States); Ren, Yongzheng [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-08-30

    Graphical abstract: - Highlights: • Smaller soil particles have higher sorption and lower desorption rates. • The sorption capacity ranks as clay > silt > sand. • Small particles like clays have less potential for desorption. • Colloids (clays) have high potential to facilitate the transport of hormones in soil–water environments. - Abstract: Soils contain a wide range of particles of different diameters with different mobility during rainfall events. Effects of soil particles on sorption and desorption behaviors of steroid hormones have not been investigated. In this study, wet sieve washing and repeated sedimentation methods were used to fractionate the soils into five ranges. The sorption and desorption properties and related mechanisms of testosterone in batch reactors filled with fractionated soil particles were evaluated. Results of sorption and desorption kinetics indicate that small soil particles have higher sorption and lower desorption rates than that of big ones. Thermodynamic results show the sorption processes are spontaneous and exothermal. The sorption capacity ranks as clay > silt > sand, depending mainly on specific surface area and surface functional groups. The urea control test shows that hydrogen bonding contributes to testosterone sorption onto clay and silt but not on sand. Desorption tests indicate sorption is 36–65% irreversible from clay to sand. Clays have highest desorption hysteresis among these five soil fractions, indicating small particles like clays have less potential for desorption. The results provide indirect evidence on the colloid (clay)-facilitated transport of hormones (micro-pollutants) in soil environments.

  2. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    Science.gov (United States)

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  3. Development of an improved rapid BACpro® protocol and a method for direct identification from blood-culture-positive bottles using matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Yonezawa, Takatoshi; Watari, Tomohisa; Ashizawa, Kazuho; Hanada, Daisuke; Yanagiya, Takako; Watanabe, Naoki; Terada, Takashi; Tomoda, Yutaka; Fujii, Satoshi

    2018-05-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been incorporated into pathogenic bacterial identification methods and has improved their rapidity. Various methods have been reported to directly identify bacteria with MALDI-TOF MS by pretreating culture medium in blood culture bottles. Rapid BACpro® (Nittobo Medical Co., Ltd.) is a pretreatment kit for effective collection of bacteria with cationic copolymers. However, the Rapid BACpro® pretreatment kit is adapted only for MALDI Biotyper (Bruker Daltonics K.K.), and there has been a desire to expand its use to VITEK MS (VMS; bioMerieux SA). We improved the protocol and made it possible to analyze with VMS. The culture medium bacteria collection method was changed to a method with centrifugation after hemolysis using saponin; the cationic copolymer concentration was changed to 30% of the original concentration; the sequence with which reagents were added was changed; and a change was made to an ethanol/formic acid extraction method. The improved protocol enhanced the identification performance. When VMS was used, the identification rate was 100% with control samples. With clinical samples, the identification agreement rate with the cell smear method was 96.3%. The improved protocol is effective in blood culture rapid identification, being both simpler and having an improved identification performance compared with the original. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Rapid detection of nicotine from breath using desorption ionisation on porous silicon.

    Science.gov (United States)

    Guinan, T M; Abdelmaksoud, H; Voelcker, N H

    2017-05-04

    Desorption ionisation on porous silicon (DIOS) was used for the detection of nicotine from exhaled breath. This result represents proof-of-principle of the ability of DIOS to detect small molecular analytes in breath including biomarkers and illicit drugs.

  5. An infrared measurement of chemical desorption from interstellar ice analogues

    Science.gov (United States)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  6. Surface-assisted laser desorption ionization mass spectrometry techniques for application in forensics.

    Science.gov (United States)

    Guinan, Taryn; Kirkbride, Paul; Pigou, Paul E; Ronci, Maurizio; Kobus, Hilton; Voelcker, Nicolas H

    2015-01-01

    Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is an excellent analytical technique for the rapid and sensitive analysis of macromolecules (>700 Da), such as peptides, proteins, nucleic acids, and synthetic polymers. However, the detection of smaller organic molecules with masses below 700 Da using MALDI-MS is challenging due to the appearance of matrix adducts and matrix fragment peaks in the same spectral range. Recently, nanostructured substrates have been developed that facilitate matrix-free laser desorption ionization (LDI), contributing to an emerging analytical paradigm referred to as surface-assisted laser desorption ionization (SALDI) MS. Since SALDI enables the detection of small organic molecules, it is rapidly growing in popularity, including in the field of forensics. At the same time, SALDI also holds significant potential as a high throughput analytical tool in roadside, work place and athlete drug testing. In this review, we discuss recent advances in SALDI techniques such as desorption ionization on porous silicon (DIOS), nano-initiator mass spectrometry (NIMS) and nano assisted laser desorption ionization (NALDI™) and compare their strengths and weaknesses with particular focus on forensic applications. These include the detection of illicit drug molecules and their metabolites in biological matrices and small molecule detection from forensic samples including banknotes and fingerprints. Finally, the review highlights recent advances in mass spectrometry imaging (MSI) using SALDI techniques. © 2014 Wiley Periodicals, Inc.

  7. Temperature dependence of CO desorption kinetics at a novel Pt-on-Au/C PEM fuel cell anode

    DEFF Research Database (Denmark)

    Pitois, A.; Pilenga, A.; Pfrang, A.

    2010-01-01

    techniques. The temperature dependence of the CO desorption process on this system has been investigated using isotopic exchange experiments. The CO desorption kinetics have been studied as a function of temperature and flow rate. Desorption rate constants have been measured for a temperature range between...... degrees C. The dependence in temperature of the desorption rate constants for the novel Pt-on-Au/C system is however much lower than that observed for the Pt/C system. This suggests that the nature of the substrate has a significant influence on the catalyst surface properties. It shows that, in surface...... 25 and 150 degrees C. These desorption rate constants have been compared with the benchmarking desorption rate data obtained for the commercial Pt/C catalyst under similar experimental conditions. A comparable desorption rate constant for the Pt-on-Au/C and Pt/C systems has been obtained at 25...

  8. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, 1

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1984-01-01

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The rate of desorption of uranium did not vary in the range of concentration from 0.3 to 0.5 N, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10 %, the percentage of dissolved titanium (DTI) was below 0.38 % with sulfuric acid, below 0.7 % with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85 %. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  9. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, (1)

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1983-01-01

    An investigation was carried out on the desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent by the batch process. The rate of desorption of uranium with acidic eluent depended on temperature, showing an increase as the temperature was raised. But the rate of desorption with acidic eluent was less dependent on temperature than that obtained when mixed eluent of sodium carbonate-sodium hydrogencarbonate was used. The difference of the rate of desorption of uranium in the range of concentration from 0.3 to 0.5N was not found, and the rate of desorption with sulfuric acid was slightly higher than that obtained when hydrochloric acid was used. The amount of dissolved titanium decreased as the ratio of adsorbent to eluent (RAE) was increased. At RAE of 10%, the percentage of dissolved titanium (DTI) was below 0.38% with sulfuric acid, below 0.7% with hydrochloric acid. These values were found to be higher than the ones with the carbonate eluent. The elements except uranium, which were adsorbed on the adsorbent, were eluted simultaneously with acidic eluent. The regeneration of the adsorbent after desorption, therefore, was found to be unnecessary. In a repeated test of adsorption-desorption treatment up to five times, the percentage of uranium adsorbed from natural sea water was approximately constant of 85%. From these results, the application of column process to the desorption of uranium with acidic eluent at room temperature was proposed to be feasible. (author)

  10. Sorption and desorption of tritiated water vapor on piping materials of nuclear fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Ohmori, Rumi [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Sorption and desorption of D{sub 2}O on Cr{sub 2}O{sub 3}, NiO, SS316 powders were studied at ambient temperature. When D{sub 2}O were contacted with samples after drying at 303K, broad peak was observed at 2100-2700cm{sup -1} on Cr{sub 2}O{sub 3} and NiO. Sorption and desorption rate depended on wave numbers. Isotope exchange rate with H{sub 2}O vapor was faster than dry desorption rate. By heating pretreatment, sorption amount and desorption rate for Cr{sub 2}O{sub 3} and NiO decreased. For SS316, broad peak was observed only after heating pretreatment at 673K. (author)

  11. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions

    International Nuclear Information System (INIS)

    Bakir, Adil; Rowland, Steven J.; Thompson, Richard C.

    2014-01-01

    Microplastics have the potential to uptake and release persistent organic pollutants (POPs); however, subsequent transfer to marine organisms is poorly understood. Some models estimating transfer of sorbed contaminants to organisms neglect the role of gut surfactants under differing physiological conditions in the gut (varying pH and temperature), examined here. We investigated the potential for polyvinylchloride (PVC) and polyethylene (PE) to sorb and desorb 14 C-DDT, 14 C-phenanthrene (Phe), 14 C-perfluorooctanoic acid (PFOA) and 14 C-di-2-ethylhexyl phthalate (DEHP). Desorption rates of POPs were quantified in seawater and under simulated gut conditions. Influence of pH and temperature was examined in order to represent cold and warm blooded organisms. Desorption rates were faster with gut surfactant, with a further substantial increase under conditions simulating warm blooded organisms. Desorption under gut conditions could be up to 30 times greater than in seawater alone. Of the POP/plastic combinations examined Phe with PE gave the highest potential for transport to organisms. Highlights: • PVC and PE (200–250 μm) were able to sorb phenanthrene, DDT, PFOA and DEHP. • Desorption rates were faster using a gut surfactant compared to seawater alone. • Desorption rates were further enhanced at lower pH and higher temperature. • Plastic-POPs were ranked according to their potential to cause “harm”. -- Desorption rates of sorbed POPs from plastics were substantially enhanced under gut conditions specific of warm blooded organisms, suggesting potential transfer following ingestion

  12. Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Murray, Patrick R

    2010-02-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry is a rapid, accurate method for identifying bacteria and fungi recovered on agar culture media. We report herein a method for the direct identification of bacteria in positive blood culture broths by MALDI-TOF mass spectrometry. A total of 212 positive cultures were examined, representing 32 genera and 60 species or groups. The identification of bacterial isolates by MALDI-TOF mass spectrometry was compared with biochemical testing, and discrepancies were resolved by gene sequencing. No identification (spectral score of blood culture broth. Of the bacteria with a spectral score of > or = 1.7, 162 (95.3%) of 170 isolates were correctly identified. All 8 isolates of Streptococcus mitis were misidentified as being Streptococcus pneumoniae isolates. This method provides a rapid, accurate, definitive identification of bacteria within 1 h of detection in positive blood cultures with the caveat that the identification of S. pneumoniae would have to be confirmed by an alternative test.

  13. Possibility of a quasi-liquid layer of As on GaAs substrate grown by MBE as observed by enhancement of Ga desorption at high As pressure

    Science.gov (United States)

    Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.

    2000-06-01

    The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).

  14. Photon- and electron-stimulated desorption from laboratory models of interstellar ice grains

    International Nuclear Information System (INIS)

    Thrower, J. D.; Abdulgalil, A. G. M.; Collings, M. P.; McCoustra, M. R. S.; Burke, D. J.; Brown, W. A.; Dawes, A.; Holtom, P. J.; Kendall, P.; Mason, N. J.; Jamme, F.; Fraser, H. J.; Rutten, F. J. M.

    2010-01-01

    The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H 2 O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds.

  15. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  16. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    International Nuclear Information System (INIS)

    Park, J.H.; Erck, R.; Park, E.T.

    1997-01-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10 -4 torr at temperatures between 250 and 700 degrees C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R ∼ 10 and 100 at 700 and 250 degrees C, respectively). However at <267 degrees C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy

  17. Kinetics of Uranium(VI) Desorption from Contaminated Sediments: Effect of Geochemical Conditions and Model Evaluation

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Shi, Zhenqing; Zachara, John M.

    2009-01-01

    Stirred-flow cell experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. Three influent solutions of variable pH, Ca and carbonate concentrations that affected U(VI) aqueous and surface speciation were used under dynamic flow conditions to evaluate the effect of geochemical conditions on the rate of U(VI) desorption. The measured rate of U(VI) desorption varied with solution chemical composition that evolved as a result of thermodynamic and kinetic interactions between the influent solutions and sediment. The solution chemical composition that led to a lower equilibrium U(VI) sorption to the solid phase yielded a faster desorption rate. The experimental results were used to evaluate a multi-rate, surface complexation model (SCM) that has been proposed to describe U(VI) desorption kinetics in the Hanford sediment that contained complex sorbed U(VI) species in mass transfer limited domains. The model was modified and supplemented by including multi-rate, ion exchange reactions to describe the geochemical interactions between the solutions and sediment. With the same set of model parameters, the modified model reasonably well described the evolution of major ions and the rates of U(VI) desorption under variable geochemical and flow conditions, implying that the multi-rate SCM is an effective way to describe U(VI) desorption kinetics in subsurface sediments

  18. Desorption dynamics of deuterium in CuCrZr alloy

    Science.gov (United States)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  19. Various causes behind the desorption hysteresis of carboxylic acids on mudstones.

    Science.gov (United States)

    Rasamimanana, S; Lefèvre, G; Dagnelie, R V H

    2017-02-01

    Adsorption desorption is a key factor for leaching, migration and (bio)degradation of organic pollutants in soils and sediments. Desorption hysteresis of apolar organic compounds is known to be correlated with adsorption/diffusion into soil organic matter. This work focuses on the desorption hysteresis of polar organic compounds on a natural mudstone sample. Acetic, citric and ortho-phthalic acids displayed adsorption-desorption hysteresis on Callovo-Oxfordian mudstone. The non-reversible behaviours resulted from three different mechanisms. Adsorption and desorption kinetics were evaluated using 14C- and 3H-labelled tracers and an isotopic exchange method. The solid-liquid distribution ratio of acetate decreased using a NaN 3 bactericide, indicating a rapid bacterial consumption compared with negligible adsorption. The desorption hysteresis of phthalate was apparent and suppressed by the equilibration of renewal pore water with mudstone. This confirms the significant and reversible adsorption of phthalate. Finally, persistent desorption hysteresis was evidenced for citrate. In this case, a third mechanism should be considered, such as the incorporation of citrate in the solid or a chemical perturbation, leading to strong desorption resilience. The results highlighted the different pathways that polar organic pollutants might encounter in a similar environment. Data on phthalic acid is useful to predict the retarded transport of phthalate esters and amines degradation products in sediments. The behaviour of citric acid is representative of polydentate chelating agents used in ore and remediation industries. The impact of irreversible adsorption on solid/solution partitioning and transport deserves further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A Holistic Approach to Understanding the Desorption of Phosphorus in Soils.

    Science.gov (United States)

    Menezes-Blackburn, Daniel; Zhang, Hao; Stutter, Marc; Giles, Courtney D; Darch, Tegan; George, Timothy S; Shand, Charles; Lumsdon, David; Blackwell, Martin; Wearing, Catherine; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Haygarth, Philip M

    2016-04-05

    The mobility and resupply of inorganic phosphorus (P) from the solid phase were studied in 32 soils from the UK. The combined use of diffusive gradients in thin films (DGT), diffusive equilibration in thin films (DET) and the "DGT-induced fluxes in sediments" model (DIFS) were adapted to explore the basic principles of solid-to-solution P desorption kinetics in previously unattainable detail. On average across soil types, the response time (Tc) was 3.6 h, the desorption rate constant (k-1) was 0.0046 h(-1), and the desorption rate was 4.71 nmol l(-1) s(-1). While the relative DGT-induced inorganic P flux responses in the first hour is mainly a function of soil water retention and % Corg, at longer times it is a function of the P resupply from the soil solid phase. Desorption rates and resupply from solid phase were fundamentally influenced by P status as reflected by their high correlation with P concentration in FeO strips, Olsen, NaOH-EDTA and water extracts. Soil pH and particle size distribution showed no significant correlation with the evaluated mobility and resupply parameters. The DGT and DET techniques, along with the DIFS model, were considered accurate and practical tools for studying parameters related to soil P desorption kinetics.

  1. Novel, Improved Sample Preparation for Rapid, Direct Identification from Positive Blood Cultures Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry

    OpenAIRE

    Schubert, Sören; Weinert, Kirsten; Wagner, Chris; Gunzl, Beatrix; Wieser, Andreas; Maier, Thomas; Kostrzewa, Markus

    2011-01-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is widely used for rapid and reliable identification of bacteria and yeast grown on agar plates. Moreover, MALDI-TOF MS also holds promise for bacterial identification from blood culture (BC) broths in hospital laboratories. The most important technical step for the identification of bacteria from positive BCs by MALDI-TOF MS is sample preparation to remove blood cells and host proteins. We present a m...

  2. Rate Parameter Distributions for Isobutane Dehydrogenation and Isobutene Dimerization and Desorption over HZSM-5

    Directory of Open Access Journals (Sweden)

    Trevor C. Brown

    2013-11-01

    Full Text Available Deconvolution of the evolved isobutene data obtained from temperature-programmed, low-pressure steady-state conversion of isobutane over HZSM-5 has yielded apparent activation energies for isobutane dehydrogenation, isobutene dimerization and desorption. Intrinsic activation energies and associated isobutane collision frequencies are also estimated. A combination of wavelet shrinkage denoising, followed by time-varying flexible least squares of the evolved mass-spectral abundance data over the temperature range 150 to 450 °C, provides accurate, temperature-dependent, apparent rate parameters. Intrinsic activation energies for isobutane dehydrogenation range from 86 to 235.2 kJ mol−1 (average = 150 ± 42 kJ mol−1 for isobutene dimerization from 48.3 to 267 kJ mol−1 (average = 112 ± 74 kJ mol−1 and for isobutene desorption from 64.4 to 97.8 kJ mol−1 (average = 77 ± 12 kJ mol−1. These wide ranges reflect the heterogeneity and acidity of the zeolite surface and structure. Seven distinct locations and sites, including Lewis and Brønsted acid sites can be identified in the profiles. Isobutane collision frequencies range from 10−0.4 to 1022.2 s−1 and are proportional to the accessibility of active sites, within the HZSM-5 micropores or on the external surface.

  3. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth

    Energy Technology Data Exchange (ETDEWEB)

    Son, H.K. [Department of Health and Environment, Kosin University, Dong Sam Dong, Young Do Gu, Busan (Korea, Republic of); Sivakumar, S., E-mail: ssivaphd@yahoo.com [Department of Bioenvironmental Energy, College of Natural Resource and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 627-706 (Korea, Republic of); Rood, M.J. [Department of Civil and Environmental Engineering, University of Illinois, Urbana, IL (United States); Kim, B.J. [Construction Engineering Research Laboratory, U.S. Army Engineer Research and Development Center (ERDC-CERL), Champaign, IL (United States)

    2016-01-15

    Highlights: • We study the adsorption and desorption of VOCs by an activated carbon fiber cloth. • Desorption concentration was controlled via electrothermal heating. • The desorption rate was successfully equalized and controlled by this system. - Abstract: Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40–900 ppm{sub v}) and superficial gas velocity (6.3–9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system.

  4. Trapping hydropyrolysates on silica and their subsequent desorption to facilitate rapid fingerprinting by GC-MS

    Energy Technology Data Exchange (ETDEWEB)

    Meredith, W.; Russell, C.A.; Cooper, M.; Snape, C.E. [Nottingham Univ. (United Kingdom). Fuel and Energy Centre; Love, G.D. [Newcastle upon Tyne Univ. (United Kingdom). School of Civil Engineering and Geosciences; Fabbri, D. [Universita di Bologna, Ravenna (Italy). Lab. di Chimica Ambientale; Vane, C.H. [British Geological Society, Keyworth (United Kingdom)

    2004-01-01

    Analytical hydropyrolysis performed under high hydrogen gas pressure (>10 MPa) has been demonstrated to possess the unique ability to release high yields of biomarker hydrocarbons covalently bound within the non-hydrocarbon macromolecular fraction of crude oils and source rocks. This study describes the development of the experimental procedure for trapping the product oils (hydropyrolysates) on silica to facilitate more convenient recovery than conventional collection and to allow analysis by thermal desorption-GC-MS without any prior work-up. Conventionally, the trap has consisted of a stainless steel coil, cooled with dry ice from which the products are recovered in organic solvents. Replacing this with a system in which the hydropyrolysates are adsorbed on a small mass of silica greatly reduces the turn-around time between tests, and aids the recovery and separation of the products. This method has been developed using an oil shale and an oil asphaltene fraction, with the silica trap producing very similar biomarker profiles to that from the conventional trap. The quantitative recovery of hydrocarbons from a light crude oil desorbed from silica under hydropyrolysis conditions demonstrates no significant loss of the high molecular weight n-alkanes (>n-C{sub 10}) for both trapping methods. The use of liquid nitrogen as the trap coolant results in significantly improved recovery of the lower molecular mass constituents. The silica trapping method allows for the hydropyrolysates to be characterised by thermal desorption-GC-MS, which has been investigated both on- and off-line. The oils undergo relatively little cracking during desorption, with similar n-alkane and biomarker profiles being obtained as with normal work-up and GC-MS analysis. Thus, in terms of fingerprinting geomacromolecules, ''hypy-thermal desorption-GC-MS'' appears to have the potential to be developed as an attractive alternative to traditional py-GC-MS. (author)

  5. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Coupling laser desorption with gas chromatography and ion mobility spectrometry for improved olive oil characterisation.

    Science.gov (United States)

    Liedtke, Sascha; Seifert, Luzia; Ahlmann, Norman; Hariharan, Chandrasekhara; Franzke, Joachim; Vautz, Wolfgang

    2018-07-30

    The investigation of volatile compounds in the headspace of liquid samples can often be used for detailed and non-destructive characterisation of the sample. This has great potential for process control or the characterisation of food samples, such as olive oil. We investigated, for the first time, the plume of substances released from olive oil droplets by laser desorption in a feasibility study and applied ion mobility spectrometry coupled to rapid GC pre-separation to enhance selectivity. Our investigation demonstrated that significantly more substances can be detected and quantified via laser desorption than in the usual headspace, enabling a rapid (5-10 min), sensitive (low ng/g range) and comprehensive analysis of the sample, with the potential for quality control and fraud identification. Therefore, laser desorption provides a useful sampling tool for characterising liquids in many applications, requiring only a few µL of sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Desorption isotherms of cementitious materials: study of an accelerated protocol and estimation of RVE

    International Nuclear Information System (INIS)

    Wu, Qier

    2014-01-01

    In the framework of French radioactive waste management and storage, the durability evaluation and prediction of concrete structures requires the knowledge of desorption isotherm of concrete. The aim of the present study is to develop an accelerated experimental method to obtain desorption isotherm of cementitious materials more quickly and to estimate the Representative Volume Element (RVE) size related to the desorption isotherm of concrete. In order to ensure that experimental results can be statistically considered representative, a great amount of sliced samples of cementitious materials with three different thicknesses (1 mm, 2 mm and 3 mm) have been de-saturated. The effect of slice thickness and the saturation condition on the mass variation kinetics and the desorption isotherms is analyzed. The influence of the aggregate distribution on the water content and the water saturation degree is also analyzed. A method based on statistical analysis of water content and water saturation degree is proposed to estimate the RVE for water desorption experiment of concrete. The evolution of shrinkage with relative humidity is also followed for each material during the water desorption experiment. A protocol of cycle of rapid desaturation-re-saturation is applied and shows the existence of hysteresis between desorption and adsorption. (author)

  8. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on variou...

  9. Kinetics of Hydrogen Absorption and Desorption in Titanium

    Directory of Open Access Journals (Sweden)

    Suwarno Suwarno

    2017-10-01

    Full Text Available Titanium is reactive toward hydrogen forming metal hydride which has a potential application in      energy storage and conversion. Titanium hydride has been widely studied for hydrogen storage, thermal storage, and battery electrodes applications. A special interest is using titanium for hydrogen production in a hydrogen sorption-enhanced steam reforming of natural gas. In the present work, non-isothermal dehydrogenation kinetics of titanium hydride and kinetics of hydrogenation in gaseous flow at isothermal conditions were investigated. The hydrogen desorption was studied using temperature desorption spectroscopy (TDS while the hydrogen absorption and desorption in gaseous flow were studied by temperature programmed desorption (TPD. The present work showed that the path of dehydrogenation of the TiH2 is d®b®a hydride phase with possible overlapping steps occurred. The fast hydrogen desorption rate observed at the TDS main peak temperature were correlated with the fast transformation of the d-TiH1.41 to b-TiH0.59. In the gaseous flow, hydrogen absorption and desorption were related to the transformation of b-TiH0.59 Û d-TiH1.41 with 2 wt.% hydrogen reversible content. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 20th March 2017; Accepted: 9th April 2017; Available online: 27th October 2017; Published regularly: December 2017 How to Cite: Suwarno, S., Yartys, V.A. (2017. Kinetics of Hydrogen Absorption and Desorption in Titanium. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 312-317  (doi:10.9767/bcrec.12.3.810.312-317

  10. Temperature suppression of STM-induced desorption of hydrogen on Si(100) surfaces

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Nakayama, T.

    1999-01-01

    The temperature dependence of hydrogen (H) desorption from Si(100) H-terminated surfaces by a scanning tunneling microscope (STM) is reported for negative sample bias. It is found that the STM induced H desorption rate (R) decreases several orders of magnitude when the substrate temperature...

  11. Data compilation for particle impact desorption

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeuchi, Fujio.

    1984-05-01

    The desorption of gases from solid surfaces by incident electrons, ions and photons is one of the important processes of hydrogen recycling in the controlled thermonuclear reactors. We have surveyed the literature concerning the particle impact desorption published through 1983 and compiled the data on the desorption cross sections and desorption yields with the aid of a computer. This report presents the results obtained for electron stimulated desorption, the desorption cross sections and yields being given in graphs and tables as functions of incident electron energy, surface temperature and gas exposure. (author)

  12. The desorptivity model of bulk soil-water evaporation

    Science.gov (United States)

    Clapp, R. B.

    1983-01-01

    Available models of bulk evaporation from a bare-surfaced soil are difficult to apply to field conditions where evaporation is complicated by two main factors: rate-limiting climatic conditions and redistribution of soil moisture following infiltration. Both factors are included in the "desorptivity model', wherein the evaporation rate during the second stage (the soil-limiting stage) of evaporation is related to the desorptivity parameter, A. Analytical approximations for A are presented. The approximations are independent of the surface soil moisture. However, calculations using the approximations indicate that both soil texture and soil moisture content at depth significantly affect A. Because the moisture content at depth decreases in time during redistribution, it follows that the A parameter also changes with time. Consequently, a method to calculate a representative value of A was developed. When applied to field data, the desorptivity model estimated cumulative evaporation well. The model is easy to calculate, but its usefulness is limited because it requires an independent estimate of the time of transition between the first and second stages of evaporation. The model shows that bulk evaporation after the transition to the second stage is largely independent of climatic conditions.

  13. Adsorption and desorption of plant growth regulator 14C-PP333 in various soils

    International Nuclear Information System (INIS)

    Yu Fengyi; Zhang Ping; Yang Xiu

    1995-01-01

    Adsorption, desorption and residue of 14 C-PP333 with 4 concentrations in various soils were studied by radioactive isotopic tracer. The results showed that the adsorption rates in 6 soils were different. The lowest adsorption rate of fluvo-aquatic soil from Shanxi was 15.22%, the highest adsorption rate of black soil from Heilongjiang was 22.53%. The relation between the C.E.C., O.M. and adsorption rate in soil was correlative. Adsorption rate in soil increased with an increase in C.E.C.. 14 C-PP3333 adsorbed in 6 soils could be desorbed by water. The desorption rate in soils was high. There is residue of 14 C-PP333 in soil desorbed by water. There was a negative relationship between the residue amount and the adsorption rate in soil. Easy desorption of PP333 adsorbed in soil showed that PP333 was movable and diffusible in soil and had influence on agro-ecosystem

  14. Hydrogen desorption properties of MgH2–Ni–Ni2Si composites prepared by mechanochemical method

    International Nuclear Information System (INIS)

    Shimada, Motoki; Higuchi, Eiji; Inoue, Hiroshi

    2013-01-01

    Highlights: ► The MgH 2 –Ni composite showed fast hydrogen desorption rate at 250 °C. ► The MgH 2 –Ni–Ni 2 Si composite showed fast hydrogen desorption rate at 220 °C. ► Nanocrystalline Mg 2 Ni and Mg 2 Si were formed between Mg and adjacent Ni or Si. ► Ni 2 Si did not form any alloys and work as a catalyst. -- Abstract: To improve hydrogen desorbability of Mg, some composites were prepared from MgH 2 , Ni and Ni 2 Si mixed powders by the mechanochemical method. The MgH 2 –Ni(2 mol%)–Ni 2 Si(1 mol%) composite was slower in hydrogen desorption rate at 250 °C than the MgH 2 –Ni(2 mol%) composite, while the hydrogen desorption rate at 220 °C for the former was faster than that for the latter. The XRD pattern of the MgH 2 –Ni(2 mol%) composite showed that after hydrogen desorption at 400 °C small diffraction peaks assigned to Mg 2 Ni were observed with peaks assigned to Mg. They shifted to smaller angles after hydrogen absorption at 250 °C and come back to the original positions after hydrogen desorption at 250 °C, suggesting reversible hydrogen absorption/desorption of Mg 2 Ni. In contrast, Ni 2 Si was not changed over the whole processes. These results indicated that Ni 2 Si worked as a catalyst for hydrogen desorption, leading to the improvement of desorbability at 220 °C

  15. Detection of Nonvolatile Inorganic Oxidizer-Based Explosives from Wipe Collections by Infrared Thermal Desorption-Direct Analysis in Real Time Mass Spectrometry.

    Science.gov (United States)

    Forbes, Thomas P; Sisco, Edward; Staymates, Matthew

    2018-05-07

    Infrared thermal desorption (IRTD) was coupled with direct analysis in real time mass spectrometry (DART-MS) for the detection of both inorganic and organic explosives from wipe collected samples. This platform generated discrete and rapid heating rates that allowed volatile and semivolatile organic explosives to thermally desorb at relatively lower temperatures, while still achieving elevated temperatures required to desorb nonvolatile inorganic oxidizer-based explosives. IRTD-DART-MS demonstrated the thermal desorption and detection of refractory potassium chlorate and potassium perchlorate oxidizers, compounds difficult to desorb with traditional moderate-temperature resistance-based thermal desorbers. Nanogram to sub-nanogram sensitivities were established for analysis of a range of organic and inorganic oxidizer-based explosive compounds, with further enhancement limited by the thermal properties of the most common commercial wipe materials. Detailed investigations and high-speed visualization revealed conduction from the heated glass-mica base plate as the dominant process for heating of the wipe and analyte materials, resulting in thermal desorption through boiling, aerosolization, and vaporization of samples. The thermal desorption and ionization characteristics of the IRTD-DART technique resulted in optimal sensitivity for the formation of nitrate adducts with both organic and inorganic species. The IRTD-DART-MS coupling and IRTD in general offer promising explosive detection capabilities to the defense, security, and law enforcement arenas.

  16. Coupling carbon nanotube film microextraction with desorption corona beam ionization for rapid analysis of Sudan dyes (I-IV) and Rhodamine B in chilli oil.

    Science.gov (United States)

    Chen, Di; Huang, Yun-Qing; He, Xiao-Mei; Shi, Zhi-Guo; Feng, Yu-Qi

    2015-03-07

    A rapid analysis method by coupling carbon nanotube film (CNTF) microextraction with desorption corona beam ionization (DCBI) was developed for the determination of Sudan dyes (I-IV) and Rhodamine B in chilli oil samples. Typically, CNTF was immersed into the diluted solution of chilli oil for extraction, which was then placed directly under the visible plasma beam tip of the DCBI source for desorption and ionization. Under optimized conditions, five dyes were simultaneously determined using this method. Results showed that the analytes were enriched by the CNTF through the π-π interactions, and the proposed method could significantly improve the sensitivities of these compounds, compared to the direct analysis by DCBI-MS/MS. The method with a linear range of 0.08-12.8 μg g(-1) and good linear relationships (R(2) > 0.93) in a multiple reaction monitoring (MRM) mode was developed. Satisfactory reproducibility was achieved. Relative standard deviations (RSDs) were less than 20.0%. The recoveries ranged from 80.0 to 110.0%, and the limits of detection (LODs) were in the range of 1.4-21 ng g(-1). Finally, the feasibility of the method was further exhibited by the determination of five illegal dyes in chilli powder. These results demonstrate that the proposed method consumes less time and solvent than conventional HPLC-based methods and avoids the contamination of chromatographic column and ion source from non-volatile oil. With the help of a 72-well shaker, multiple samples could be treated simultaneously, which ensures high throughput for the entire pretreatment process. In conclusion, it provides a rapid and high-throughput approach for the determination of such illicit additions in chilli products.

  17. Characterisation of bacteria by matrix-assisted laser desorption/ionisation and electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van

    2000-01-01

    Chemical analysis for the characterisation of micro-organisms is rapidly evolving, after the recent advent of new ionisation methods in mass spectrometry (MS): electrospray (ES) and matrix-assisted laser desorption/ionisation (MALDI). These methods allow quick characterisation of micro-organisms,

  18. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo [Food Safety and Technology Research Centre, State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong Special Administrative Region (China); Shenzhen Key Laboratory of Food Biological Safety Control and State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen (China); Yao, Zhong-Ping, E-mail: zhongping.yao@polyu.edu.hk [Food Safety and Technology Research Centre, State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong Special Administrative Region (China); Shenzhen Key Laboratory of Food Biological Safety Control and State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen (China)

    2015-07-16

    Highlights: • Simplified sample preparation method for direct analysis of edible oils by MALDI-MS. • Establishment of a preliminary MALDI-MS spectral database of edible oils. • Rapid screening of mixed edible oils and gutter oils. - Abstract: Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils.

  19. Rapid screening of mixed edible oils and gutter oils by matrix-assisted laser desorption/ionization mass spectrometry

    International Nuclear Information System (INIS)

    Ng, Tsz-Tsun; So, Pui-Kin; Zheng, Bo; Yao, Zhong-Ping

    2015-01-01

    Highlights: • Simplified sample preparation method for direct analysis of edible oils by MALDI-MS. • Establishment of a preliminary MALDI-MS spectral database of edible oils. • Rapid screening of mixed edible oils and gutter oils. - Abstract: Authentication of edible oils is a long-term issue in food safety, and becomes particularly important with the emergence and wide spread of gutter oils in recent years. Due to the very high analytical demand and diversity of gutter oils, a high throughput analytical method and a versatile strategy for authentication of mixed edible oils and gutter oils are highly desirable. In this study, an improved matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) method has been developed for direct analysis of edible oils. This method involved on-target sample loading, automatic data acquisition and simple data processing. MALDI-MS spectra with high quality and high reproducibility have been obtained using this method, and a preliminary spectral database of edible oils has been set up. The authenticity of an edible oil sample can be determined by comparing its MALDI-MS spectrum and principal component analysis (PCA) results with those of its labeled oil in the database. This method is simple and the whole process only takes several minutes for analysis of one oil sample. We demonstrated that the method was sensitive to change in oil compositions and can be used for measuring compositions of mixed oils. The capability of the method for determining mislabeling enables it for rapid screening of gutter oils since fraudulent mislabeling is a common feature of gutter oils

  20. [Special application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiological diagnostics].

    Science.gov (United States)

    Nagy, Erzsébet; Abrók, Marianna; Bartha, Noémi; Bereczki, László; Juhász, Emese; Kardos, Gábor; Kristóf, Katalin; Miszti, Cecilia; Urbán, Edit

    2014-09-21

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry as a new possibility for rapid identification of bacteria and fungi revolutionized the clinical microbiological diagnostics. It has an extreme importance in the routine microbiological laboratories, as identification of the pathogenic species rapidly will influence antibiotic selection before the final determination of antibiotic resistance of the isolate. The classical methods for identification of bacteria or fungi, based on biochemical tests, are influenced by many environmental factors. The matrix-assisted laser desorption ionization time-of-flight mass spectrometry is a rapid method which is able to identify a great variety of the isolated bacteria and fungi based on the composition of conserved ribosomal proteins. Recently several other applications of the method have also been investigated such as direct identification of pathogens from the positive blood cultures. There are possibilities to identify bacteria from the urine samples in urinary tract infection or from other sterile body fluids. Using selective enrichment broth Salmonella sp from the stool samples can be identified more rapidly, too. The extended spectrum beta-lactamase or carbapenemase production of the isolated bacteria can be also detected by this method helping the antibiotic selection in some cases. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry based methods are suitable to investigate changes in deoxyribonucleic acid or ribonucleic acid, to carry out rapid antibiotic resistance determination or other proteomic analysis. The aim of this paper is to give an overview about present possibilities of using this technique in the clinical microbiological routine procedures.

  1. Development of a rapid and simplified protocol for direct bacterial identification from positive blood cultures by using matrix assisted laser desorption ionization time-of- flight mass spectrometry.

    Science.gov (United States)

    Jakovljev, Aleksandra; Bergh, Kåre

    2015-11-06

    Bloodstream infections represent serious conditions carrying a high mortality and morbidity rate. Rapid identification of microorganisms and prompt institution of adequate antimicrobial therapy is of utmost importance for a successful outcome. Aiming at the development of a rapid, simplified and efficient protocol, we developed and compared two in-house preparatory methods for the direct identification of bacteria from positive blood culture flasks (BD BACTEC FX system) by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF MS). Both methods employed saponin and distilled water for erythrocyte lysis. In method A the cellular pellet was overlaid with formic acid on the MALDI TOF target plate for protein extraction, whereas in method B the pellet was exposed to formic acid followed by acetonitrile prior to placing on the target plate. Best results were obtained by method A. Direct identification was achieved for 81.9 % and 65.8 % (50.3 % and 26.2 % with scores >2.0) of organisms by method A and method B, respectively. Overall concordance with final identification was 100 % to genus and 97.9 % to species level. By applying a lower cut-off score value, the levels of identification obtained by method A and method B increased to 89.3 % and 77.8 % of organisms (81.9 % and 65.8 % identified with scores >1.7), respectively. Using the lowered score criteria, concordance with final results was obtained for 99.3 % of genus and 96.6 % of species identifications. The reliability of results, rapid performance (approximately 25 min) and applicability of in-house method A have contributed to implementation of this robust and cost-effective method in our laboratory.

  2. Nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tashlykova-Bushkevich, Iya I. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-12-31

    The present work summarizes recent progress in the investigation of nanoscale microstructure effects on hydrogen behavior in rapidly solidified aluminum alloys foils produced at exceptionally high cooling rates. We focus here on the potential of modification of hydrogen desorption kinetics in respect to weak and strong trapping sites that could serve as hydrogen sinks in Al materials. It is shown that it is important to elucidate the surface microstructure of the Al alloy foils at the submicrometer scale because rapidly solidified microstructural features affect hydrogen trapping at nanostructured defects. We discuss the profound influence of solute atoms on hydrogen−lattice defect interactions in the alloys. with emphasis on role of vacancies in hydrogen evolution; both rapidly solidified pure Al and conventionally processed aluminum samples are considered.

  3. Investigations into ultraviolet matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Heise, Theodore W. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    Matrix-assisted laser desorption (MALD) is a technique for converting large biomolecules into gas phase ions. Some characteristics of the commonly used uv matrices are determined. Solubilities in methanol range from 0.1 to 0.5 M. Solid phase absorption spectra are found to be similar to solution, but slightly red-shifted. Acoustic and quartz crystal microbalance signals are investigated as possible means of uv-MALD quantitation. Evidence for the existence of desorption thresholds is presented. Threshold values are determined to be in the range of 2 to 3 MW/cm2. A transient imaging technique based on laser-excited fluorescence for monitoring MALD plumes is described. Sensitivity is well within the levels required for studying matrix-assisted laser desorption, where analyte concentrations are significantly lower than those in conventional laser desorption. Results showing the effect of film morphology, particularly film thickness, on plume dynamics are presented. In particular, MALD plumes from thicker films tend to exhibit higher axial velocities. Fluorescent labeling of protein and of DNA is used to allow imaging of their uv-MALD generated plumes. Integrated concentrations are available with respect to time, making it possible to assess the rate of fragmentation. The spatial and temporal distributions are important for the design of secondary ionization schemes to enhance ion yields and for the optimization of ion collection in time-of-flight MS instruments to maximize resolution. Such information could also provide insight into whether ionization is closely associated with the desorption step or whether it is a result of subsequent collisions with the matrix gas (e.g., proton transfer). Although the present study involves plumes in a normal atmosphere, adaptation to measurements in vacuum (e.g., inside a mass spectrometer) should be straightforward.

  4. Desorption electrospray ionisation mass spectrometry: A rapid screening tool for veterinary drug preparations and forensic samples from hormone crime investigations

    International Nuclear Information System (INIS)

    Nielen, M.W.F.; Hooijerink, H.; Claassen, F.C.; Engelen, M.C. van; Beek, T.A. van

    2009-01-01

    Hormone and veterinary drug screening and forensics can benefit from the recent developments in desorption electrospray ionisation (DESI) mass spectrometry (MS). In this work the feasibility of DESI application has been studied. Using a linear ion trap or quadrupole time-of-flight (TOF) MS instrument both full-scan and data-dependent collision-induced dissociation MS n spectra were acquired in seconds without sample preparation. Preliminary data are presented for the rapid screening of (pro)hormone supplement samples, an illegal steroid cocktail and forensic samples from veterinary drug investigations. The potential of this DESI approach is clearly demonstrated since compounds observed could be independently confirmed by liquid chromatography/TOFMS with accurate mass measurement, and/or proton nuclear magnetic resonance spectroscopy. Specific concerns related to false-positive and false-negative findings due to limitations in quantification and memory-effects are briefly discussed. It is envisaged that DESI will achieve a prominent role in hormone and veterinary drug analysis in the near future

  5. Desorption electrospray ionisation mass spectrometry: A rapid screening tool for veterinary drug preparations and forensic samples from hormone crime investigations

    Energy Technology Data Exchange (ETDEWEB)

    Nielen, M.W.F. [RIKILT Institute of Food Safety, P.O. Box 230, 6700 AE Wageningen (Netherlands); Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen (Netherlands)], E-mail: michel.nielen@wur.nl; Hooijerink, H. [RIKILT Institute of Food Safety, P.O. Box 230, 6700 AE Wageningen (Netherlands); Claassen, F.C. [Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen (Netherlands); Engelen, M.C. van [RIKILT Institute of Food Safety, P.O. Box 230, 6700 AE Wageningen (Netherlands); Beek, T.A. van [Wageningen University, Laboratory of Organic Chemistry, Dreijenplein 8, 6703 HB Wageningen (Netherlands)

    2009-04-01

    Hormone and veterinary drug screening and forensics can benefit from the recent developments in desorption electrospray ionisation (DESI) mass spectrometry (MS). In this work the feasibility of DESI application has been studied. Using a linear ion trap or quadrupole time-of-flight (TOF) MS instrument both full-scan and data-dependent collision-induced dissociation MS{sup n} spectra were acquired in seconds without sample preparation. Preliminary data are presented for the rapid screening of (pro)hormone supplement samples, an illegal steroid cocktail and forensic samples from veterinary drug investigations. The potential of this DESI approach is clearly demonstrated since compounds observed could be independently confirmed by liquid chromatography/TOFMS with accurate mass measurement, and/or proton nuclear magnetic resonance spectroscopy. Specific concerns related to false-positive and false-negative findings due to limitations in quantification and memory-effects are briefly discussed. It is envisaged that DESI will achieve a prominent role in hormone and veterinary drug analysis in the near future.

  6. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting.

    Science.gov (United States)

    Christner, Martin; Rohde, Holger; Wolters, Manuel; Sobottka, Ingo; Wegscheider, Karl; Aepfelbacher, Martin

    2010-05-01

    Early and adequate antimicrobial therapy has been shown to improve the clinical outcome in bloodstream infections (BSI). To provide rapid pathogen identification for targeted treatment, we applied matrix-assisted laser desorption-ionization time of flight (MALDI-TOF) mass spectrometry fingerprinting to bacteria directly recovered from blood culture bottles. A total of 304 aerobic and anaerobic blood cultures, reported positive by a Bactec 9240 system, were subjected in parallel to differential centrifugation with subsequent mass spectrometry fingerprinting and reference identification using established microbiological methods. A representative spectrum of bloodstream pathogens was recovered from 277 samples that grew a single bacterial isolate. Species identification by direct mass spectrometry fingerprinting matched reference identification in 95% of these samples and worked equally well for aerobic and anaerobic culture bottles. Application of commonly used score cutoffs to classify the fingerprinting results led to an identification rate of 87%. Mismatching mostly resulted from insufficient bacterial numbers and preferentially occurred with Gram-positive samples. The respective spectra showed low concordance to database references and were effectively rejected by score thresholds. Spiking experiments and examination of the respective study samples even suggested applicability of the method to mixed cultures. With turnaround times around 100 min, the approach allowed for reliable pathogen identification at the day of blood culture positivity, providing treatment-relevant information within the critical phase of septic illness.

  7. Desorption kinetics of ciprofloxacin in municipal biosolids determined by diffusion gradient in thin films.

    Science.gov (United States)

    D'Angelo, E; Starnes, D

    2016-12-01

    Ciprofloxacin (CIP) is a commonly-prescribed antibiotic that is largely excreted by the body, and is often found at elevated concentrations in treated sewage sludge (biosolids) at municipal wastewater treatment plants. When biosolids are applied to soils, they could release CIP to surface runoff, which could adversely affect growth of aquatic organisms that inhabit receiving water bodies. The hazard risk largely depends on the amount of antibiotic in the solid phase that can be released to solution (labile CIP), its diffusion coefficient, and sorption/desorption exchange rates in biosolids particles. In this study, these processes were evaluated in a Class A Exceptional Quality Biosolids using a diffusion gradient in thin films (DGT) sampler that continuously removed CIP from solution, which induced desorption and diffusion in biosolids. Mass accumulation of antibiotic in the sampler over time was fit by a diffusion transport and exchange model available in the software tool 2D-DIFS to derive the distribution coefficient of labile CIP (K dl ) and sorption/desorption rate constants in the biosolids. The K dl was 13 mL g -1 , which equated to 16% of total CIP in the labile pool. Although the proportion of labile CIP was considerable, release rates to solution were constrained by slow desorption kinetics (desorption rate constant = 4 × 10 -6 s -1 ) and diffusion rate (effective diffusion coefficient = 6 × 10 -9  cm 2  s -1 . Studies are needed to investigate how changes in temperature, water content, pH and other physical and chemical characteristics can influence antibiotic release kinetics and availability and mobility in biosolid-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, Elizabeth Guthrie [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)], E-mail: elizabeth_nichols@ncsu.edu; Gregory, Samuel T.; Musella, Jennifer S. [North Carolina State University, Department of Forestry and Environmental Resources, 2800 Faucette Drive, Raleigh, NC 27695 (United States)

    2008-12-15

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C{sub 3}-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k{sub slow} and k{sub veryslow}. After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior.

  9. The impact of vegetation on sedimentary organic matter composition and PAH desorption

    International Nuclear Information System (INIS)

    Nichols, Elizabeth Guthrie; Gregory, Samuel T.; Musella, Jennifer S.

    2008-01-01

    Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C 3 -phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k slow and k veryslow . After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions. - Plants alter sediment organic matter composition and PAH desorption behavior

  10. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    Science.gov (United States)

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  11. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Randy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parra, Amanda [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Russell, Marion [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lee, Wen-Yee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-05-01

    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirred tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.

  12. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hui; Schimmelmann, Arndt [Indiana University, Dept. of Geological Sciences, Bloomington, IN 47405-1405 (United States); Mastalerz, Maria [Indiana University, Indiana Geological Survey, Bloomington, IN 47405-2208 (United States); Pope, James [CRL Energy Ltd., 123 Blenheim Road, Christchurch (New Zealand); University of Canterbury, Dept. of Geological Sciences, Christchurch (New Zealand); Moore, Tim A. [University of Canterbury, Dept. of Geological Sciences, Christchurch (New Zealand); P.T. Arrow Energy Indonesia, Wisma Anugraha, Jl. Taman Kemang No. 32B, Jakarta Selatan (Indonesia)

    2010-01-07

    Desorption canisters are routinely employed to quantify coalbed gas contents in coals. If purging with inert gas or water flooding is not used, entrapment of air with {proportional_to} 78.08 vol.% nitrogen (N{sub 2}) in canisters during the loading of coal results in contamination by air and subsequent overestimates of N{sub 2} in desorbed coalbed gas. Pure coalbed gas does not contain any elemental oxygen (O{sub 2}), whereas air contamination originally includes {proportional_to} 20.95 vol.% O{sub 2} and has a N{sub 2}/O{sub 2} volume ratio of {proportional_to} 3.73. A correction for atmospheric N{sub 2} is often attempted by quantifying O{sub 2} in headspace gas and then proportionally subtracting atmospheric N{sub 2}. However, this study shows that O{sub 2} is not a conservative proxy for air contamination in desorption canisters. Time-series of gas chromatographic (GC) compositional data from several desorption experiments using high volatile bituminous coals from the Illinois Basin and a New Zealand subbituminous coal document that atmospheric O{sub 2} was rapidly consumed, especially during the first 24 h. After about 2 weeks of desorption, the concentration of O{sub 2} declined to near or below GC detection limits. Irreversible loss of O{sub 2} in desorption canisters is caused by biological, chemical, and physical mechanisms. The use of O{sub 2} as a proxy for air contamination is justified only immediately after loading of desorption canisters, but such rapid measurements preclude meaningful assessment of coalbed gas concentrations. With increasing time and progressive loss of O{sub 2}, the use of O{sub 2} content as a proxy for atmospheric N{sub 2} results in overestimates of N{sub 2} in desorbed coalbed gas. The indicated errors for nitrogen often range in hundreds of %. Such large analytical errors have a profound influence on market choices for CBM gas. An erroneously calculated N{sub 2} content in CBM would not meet specifications for most pipeline

  13. Coalbed gas desorption in canisters: Consumption of trapped atmospheric oxygen and implications for measured gas quality

    International Nuclear Information System (INIS)

    Jin, Hui; Schimmelmann, Arndt; Mastalerz, Maria; Pope, James; Moore, Tim A.

    2010-01-01

    Desorption canisters are routinely employed to quantify coalbed gas contents in coals. If purging with inert gas or water flooding is not used, entrapment of air with ∝ 78.08 vol.% nitrogen (N 2 ) in canisters during the loading of coal results in contamination by air and subsequent overestimates of N 2 in desorbed coalbed gas. Pure coalbed gas does not contain any elemental oxygen (O 2 ), whereas air contamination originally includes ∝ 20.95 vol.% O 2 and has a N 2 /O 2 volume ratio of ∝ 3.73. A correction for atmospheric N 2 is often attempted by quantifying O 2 in headspace gas and then proportionally subtracting atmospheric N 2 . However, this study shows that O 2 is not a conservative proxy for air contamination in desorption canisters. Time-series of gas chromatographic (GC) compositional data from several desorption experiments using high volatile bituminous coals from the Illinois Basin and a New Zealand subbituminous coal document that atmospheric O 2 was rapidly consumed, especially during the first 24 h. After about 2 weeks of desorption, the concentration of O 2 declined to near or below GC detection limits. Irreversible loss of O 2 in desorption canisters is caused by biological, chemical, and physical mechanisms. The use of O 2 as a proxy for air contamination is justified only immediately after loading of desorption canisters, but such rapid measurements preclude meaningful assessment of coalbed gas concentrations. With increasing time and progressive loss of O 2 , the use of O 2 content as a proxy for atmospheric N 2 results in overestimates of N 2 in desorbed coalbed gas. The indicated errors for nitrogen often range in hundreds of %. Such large analytical errors have a profound influence on market choices for CBM gas. An erroneously calculated N 2 content in CBM would not meet specifications for most pipeline-quality gas. (author)

  14. Rapid determination of trace nitrophenolic organics in water by combining solid-phase extraction with surface-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Chen, Y C; Shiea, J; Sunner, J

    2000-01-01

    A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range. Copyright 2000 John Wiley & Sons, Ltd.

  15. Investigation of ethyl lactate as a green solvent for desorption of total petroleum hydrocarbons (TPH) from contaminated soil.

    Science.gov (United States)

    Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi

    2016-11-01

    Treatment of oil-contaminated soil is a major environmental concern worldwide. The aim of this study is to examine the applicability of a green solvent, ethyl lactate (EL), in desorption of diesel aliphatic fraction within total petroleum hydrocarbons (TPH) in contaminated soil and to determine the associated desorption kinetics. Batch desorption experiments were carried out on artificially contaminated soil at different EL solvent percentages (%). In analysing the diesel range of TPH, TPH was divided into three fractions and the effect of solvent extraction on each fraction was examined. The experimental results demonstrated that EL has a high and fast desorbing power. Pseudo-second order rate equation described the experimental desorption kinetics data well with correlation coefficient values, R 2 , between 0.9219 and 0.9999. The effects of EL percentage, initial contamination level of soil and liquid to solid ratio (L/S (v/w)) on initial desorption rate have also been evaluated. The effective desorption performance of ethyl lactate shows its potential as a removal agent for remediation of TPH-contaminated soil worldwide.

  16. Sorption and desorption kinetics of diuron, fluometuron, prometryn and pyrithiobac sodium in soils.

    Science.gov (United States)

    Baskaran, S; Kennedy, I R

    1999-11-01

    The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.

  17. Rapid Quantification of N-Methyl-2-pyrrolidone in Polymer Matrices by Thermal Desorption-GC/MS.

    Science.gov (United States)

    Kim, Young-Min; Kim, Jae Woo; Moon, Hye Mi; Lee, Min-Jin; Hosaka, Akihiko; Watanabe, Atsushi; Teramae, Norio; Park, Young-Kwon; Myung, Seung-Woon

    2017-01-01

    Analysis of a residual solvent in polymeric materials has become an important issue due to the increased regulations and standards for its use. N-Methyl-2-pyrrolidone (NMP) is a solvent widely used in many industries and restricted as one of the chemicals under EU REACH regulations due to its potential harmful effects. In this study, thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) is applied for the quantitative analysis of NMP with the use of a polymer-coated sample cup. By using the polymer-coated sample cup, the vaporization of NMP was prevented during waiting time before TD-GC/MS analysis. The calibration curve for the TD method showed good linearity (correlation coefficient, r 2 = 0.9998) and precision values (below 5.3% RSD). NMP recovery rates in different polymer matrices (PS, PMMA and PVC) were in the range of 98.8 to 106.6% with RSD values below 5.0%. The quantification result (600 mg NMP/kg PVC) for the blind NMP carrying sample in a PVC matrix by TD-GC/MS was higher than that (532 mg NMP/kg PVC) by solvent extraction-GC/MS method.

  18. Effect of pH on desorption of CO2 from alkanolamine - rich solvents

    Science.gov (United States)

    Du, Min

    2017-08-01

    Adipic acid was used as a pH regulator, which was added to 0.4 mol/L MEA, DEA and MDEA solvents during CO2 desorption process. It is found that when pH value of the solvents swing between 8-10, CO2 desorption rate enhanced, and energy consumption has declined obviously. This research may have reference significance on optimization of alkanolamine CO2 capture process.

  19. Radiotracer experiments on the desorption of iodine from paddy soil with and without rice plants

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Uchida, Shigeo; Yoshida, Satoshi

    1991-01-01

    In order to assess the behavior of radioiodine in rice fields, we have performed laboratory experiments, using 125 I tracer, on the desorption phenomena of iodine from soil during rice cultivation. Most of the 125 I added to the soil was adsorbed by the soil solid phase at the beginning of the experiment. However, the iodine started to desorb into the soil solution with the growth of rice plants. The highest desorption rate of iodine was found around the flowering period, i.e. nearly 30% of the 125 I was desorbed from Ando soil into the soil solution. In contrast to this, no particular increase in the iodine desorption was observed from the uncultivated flooded soil. It was suggested that rice plants had some influence upon iodine desorption from soil and the desorption also depended on the soil types. (author)

  20. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  1. Kinetics Study of Gas Pollutant Adsorption and Thermal Desorption on Silica Gel

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-06-01

    Full Text Available Silica gel is a typical porous desiccant material. Its adsorption performance for gaseous air pollutants was investigated to determine its potential contribution to reducing such pollutants. Three gaseous air pollutants, toluene, carbon dioxide, and methane, were investigated in this paper. A thermogravimetric analyzer was used to obtain the equilibrium adsorption capacity of gases on single silica gel particles. The silica gel adsorption capacity for toluene is much higher than that for carbon dioxide and methane. To understand gas pollutant thermal desorption from silica gel, the thermogravimetric analysis of toluene desorption was conducted with 609 ppm toluene vapor at 313 K, 323 K, and 333 K. The overall regeneration rate of silica gel was strongly dependent on temperature and the enthalpy of desorption. The gas pollutant adsorption performance and thermal desorption on silica gel material may be used to estimate the operating and design parameters for gas pollutant adsorption by desiccant wheels.

  2. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    International Nuclear Information System (INIS)

    Prata, Fabio; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges; Lavorenti, Arquimedes

    2003-01-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh 2 PO 4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha -1 of P 2 O 5 , which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L -1 ), with a 14 C radioactivity of 0.233 kBq mL -1 . Four steps of the desorption procedures withCaCl 2 0.01 mol L -1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L -1 ). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm -3 . Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  3. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Directory of Open Access Journals (Sweden)

    Prata Fábio

    2003-01-01

    Full Text Available The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with KH2PO4 at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha-1 of P2O5, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L-1, with a 14C radioactivity of 0.233 kBq mL-1. Four steps of the desorption procedure with CaCl2 0.01 mol L-1 and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L-1. Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm-3. Moreover, a small amount of applied glyphosate was extracted (<10%, and the extraction increased with increasing soil phosphorus content.

  4. Data compilation for particle-impact desorption, 2

    International Nuclear Information System (INIS)

    Oshiyama, Takashi; Nagai, Siro; Ozawa, Kunio; Takeutchi, Fujio.

    1985-07-01

    The particle impact desorption is one of the elementary processes of hydrogen recycling in controlled thermonuclear fusion reactors. We have surveyed the literature concerning the ion impact desorption and photon stimulated desorption published through the end of 1984 and compiled the data on the desorption cross sections and yields with the aid of a computer. This report presents the results of the compilation in graphs and tables as functions of incident energy, surface temperature and surface coverage. (author)

  5. Modeling of hydrogen desorption from tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Guterl, J., E-mail: jguterl@ucsd.edu [University of California, San Diego, La Jolla, CA 92093 (United States); Smirnov, R.D. [University of California, San Diego, La Jolla, CA 92093 (United States); Krasheninnikov, S.I. [University of California, San Diego, La Jolla, CA 92093 (United States); Nuclear Research National University MEPhI, Moscow 115409 (Russian Federation); Uberuaga, B.; Voter, A.F.; Perez, D. [Los Alamos National Laboratory, Los Alamos, NM 8754 (United States)

    2015-08-15

    Hydrogen retention in metallic plasma-facing components is among key-issues for future fusion devices. For tungsten, which has been chosen as divertor material in ITER, hydrogen desorption parameters experimentally measured for fusion-related conditions show large discrepancies. In this paper, we therefore investigate hydrogen recombination and desorption on tungsten surfaces using molecular dynamics simulations and accelerated molecular dynamics simulations to analyze adsorption states, diffusion, hydrogen recombination into molecules, and clustering of hydrogen on tungsten surfaces. The quality of tungsten hydrogen interatomic potential is discussed in the light of MD simulations results, showing that three body interactions in current interatomic potential do not allow to reproduce hydrogen molecular recombination and desorption. Effects of surface hydrogen clustering on hydrogen desorption are analyzed by introducing a kinetic model describing the competition between surface diffusion, clustering and recombination. Different desorption regimes are identified and reproduce some aspects of desorption regimes experimentally observed.

  6. Rapid detection of illegal colorants on traditional Chinese pastries through mass spectrometry with an interchangeable thermal desorption electrospray ionization source.

    Science.gov (United States)

    Chao, Yu-Ying; Chen, Yen-Ling; Chen, Wei-Chu; Chen, Bai-Hsiun; Huang, Yeou-Lih

    2018-06-30

    Ambient mass spectrometry using an interchangeable thermal desorption/electrospray ionization source (TD-ESI) is a relatively new technique that has had only a limited number of applications to date. Nevertheless, this direct-analysis technique has potential for wider use in analytical chemistry (e.g., in the rapid direct detection of contaminants, residues, and adulterants on and in food) when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to a TD-ESI source from a conventional ESI source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants on traditional Chinese pastries (TCPs), as a proof-of-concept for the detection of illegal colorants. While TD-ESI can offer direct (i.e., without any sample preparation) qualitative screening analyses for TCPs with adequate sensitivity within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous matrices (e.g., tang yuan). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration

    International Nuclear Information System (INIS)

    Njikam, Eloh; Schiewer, Silke

    2012-01-01

    Graphical abstract: Cadmium was completely and quickly desorbed from grapefruit peels using 0.01 M HNO 3 . The kinetics followed a novel 1st or 2nd order kinetic model, related to the remaining metal bound as the rate-determining reactant concentration. For 0.001 M HNO 3 , desorption was incomplete and the model fit less perfect. Highlights: ► Metal desorption was over 90% complete within 50 min for most desorbents. ► Models for biosorbent desorption kinetics were developed. ► Desorption kinetics best fit a novel first-order model related to remaining metal bound. ► Cd uptake after desorption by HNO 3 was similar to the original uptake. ► The optimal desorbent was 0.1 or 0.01 M acid, being fast, efficient and cheap. - Abstract: Citrus peel biosorbents are efficient in removing heavy metals from wastewater. Heavy metal recovery and sorbent regeneration are important for the financial competitiveness of biosorption with other processes. The desorbing agents HNO 3 , NaNO 3 , Ca(NO 3 ) 2 , EDTA, S, S-EDDS, and Na-Citrate were studied at different concentrations to optimize cadmium elution from orange or grapefruit peels. In most cases, desorption was fast, being over 90% complete within 50 min. However sodium nitrate and 0.001 M nitric acid were less efficient. Several new models for desorption kinetics were developed. While zero-, first- and second-order kinetics are commonly applied for modeling adsorption kinetics, the present study adapts these models to describe desorption kinetics. The proposed models relate to the number of metal-filled binding sites as the rate-determining reactant concentration. A model based on first order kinetics with respect to the remaining metal bound performed best. Cd bound in subsequent adsorption after desorption was similar to the original amount bound for desorption by nitric acid, but considerably lower for calcium nitrate as the desorbent. While complexing agents were effective desorbents, their cost is higher than that

  8. 3rd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Knotek, Michael

    1988-01-01

    These proceedings are the result of the third international workshop on Desorption Induced by Electronic Transitions, DIET III, which took place on Shelter Island, NY, May. 20-22, 1987. The work contained in this volume is an excellent summary of the current status of the field and should be a valuable reference text for both "seasoned" researchers and newcomers in the field of DIET. Based on the success of the meeting it seems clear that interest and enthusiasm in the field is strong. It is also apparent, from the many lively discussions during the meeting, that many unanswered questions (and controversies) remain to be solved. It was particularly pleasing to see many new participants from new and rapidly advancing fields, ranging from gas phase dynamics to semiconductor processing. The resulting cross-fertilization from these separate but related fields is playing an important role in helping us understand desorption processes at solid surfaces. In general, the topics covered during the course of the worksh...

  9. Thermal desorption spectroscopy for investigating hydrogen isotope behavior in materials

    International Nuclear Information System (INIS)

    Xia Tirui; Yang Hongguang; Zhan Qin; Han Zhibo; He Changshui

    2012-01-01

    The behavior of hydrogen isotope generated in fusion reactor materials is the key issue for safety and economic operation of fusion reactors and becomes an interesting field. In order to investigate the mechanism of hydrogen isotope such as diffusion, release and retention, a high-sensitivity thermal desorption spectroscopy (TDS) in combination with a quadruple mass spectrometer (QMS) was developed. A major technical breakthrough in ultrahigh vacuum (UHV), low hydrogen background, linear heating and sensitivity calibration of TDS system was made. UHV of l × 10 -7 Pa and low hydrogen background of l × 10 -9 Pa were obtained by combining turbo molecule pump and sputter ion pump. Specimens can be linearly heated up to 1173 K at the rate of 1 to 50 K/min under the MCGS PID software. Sensitivity calibration of the TDS system was accomplished using a special deuterium leak in the detector mode of QMS second electron multiplier. The desorption sensitivity coefficient and the minimum detection limit of deuterium desorption rate are 6.22 × l0 24 s -l · and l.24 × l0 -10 s -1 , respectively. The measurement was also routinely conducted on a specimen of standard, deuterium-containing Zr-4 alloy maintained in the laboratory, so as to validate the TDS method. (authors)

  10. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of an electron beam on adsorption and desorption of ammonia on ruthenium (0001)

    International Nuclear Information System (INIS)

    Danielson, L.R.; Dresser, M.J.; Donaldson, E.E.; Sandstrom, D.R.

    1978-01-01

    The effects of an electron beam on ammonia adsorption and desorption on Ru(0001) have been investigated by Auger electron spectroscopy, low-energy electron diffraction, and thermal flash desorption. Appreciable adsorption at room temperature occurred only on the area of the Ru crystal which had been bombarded by an electron beam during dosing. The adsorption rate was a function of beam current density and ammonia pressure, and an apparent (2x2) diffraction pattern appeared in the area bombarded by the electron beam. Electron bombardment of the molecular γ states of ammonia followed by flash desorption showed that less ammonia and more hydrogen and nitrogen were desorbed as the bombardment time increased. An analysis of this process based on electron-induced dissociation of the ammonia molecule yielded an effective initial dissociation cross section of 3x10 -6 cm 2 . Hydrogen flash desorption spectra after bombardment of the γ states obeying first order kinetics with desorption energies of 0.78 and 1.0 eV. Electron bombardment of the γ states for short times produced the same effects on the ammonia flash desorption spectra as preadsorption of hydrogen. (Auth.)

  12. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows

  13. Sorption/desorption reversibility of polycyclic aromatic hydrocarbons (PAHs) in soils and carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guohui

    2008-07-01

    Understanding sorption/desorption is an important prerequisite for the prediction of fate and transport of pollutants in the environment. During the last two decades, numerous studies have reported hysteresis phenomenon for the interaction of hydrophobic organic contaminants (HOCs) with natural organic matter (NOM). It manifests as nonsingular sorption/desorption isotherms or different rates for sorption and desorption, where during desorption a higher affinity of a compound on a given sorbent and a longer time scale for release than for sorption is observed. Other studies showed that some of the reported sorption/desorption hysteresis phenomena are due to experimental artifacts, mainly resulting from non-attainment of sorption equilibrium before desorption experiments, which result in 'pseudo-hysteresis'. Except for the hypothesis of sorbent reconfiguration, clear experimental evidence for the physical or chemical mechanisms proposed to lead to hysteresis is still lacking. In this study, sorption/desorption equilibrium and kinetics of phenanthrene sorption/desorption from two soils and three carbonaceous samples were investigated using both batch and column techniques. The main objective of this work was to monitor hysteresis phenomenon by carefully recovering the solute mass in the system and to compare sorption/desorption equilibria and kinetics thermodynamically. Nonsingular isotherms and higher desorption enthalpies as well as increased activation energies with proceeding desorption are expected if significant hysteresis exists. Sorption-desorption cycles were carried out to compare equilibrium isotherms and associated sorption/desorption enthalpies (AeH, isosteric heats). Instead of the traditional decant-and-refill batch method, the experiments were conducted using a newly designed batch protocol, which enables the determination of sorption/desorption isotherms at different temperatures using a closed batch system. This method additionally allows the

  14. Study of boric acid sorption and desorption processes

    International Nuclear Information System (INIS)

    Czosnowska, B.; Laren, E.

    1978-01-01

    The results are given of the experimental determination of the effect on the boric acid flow and sorption and desorption efficiency of the flow rate of boric acid at different concentrations through an ion exchange column 10.2 cm 2 in cross section. The strongly alkaline VOFATIT RO ion exchanger was used. (B.S.)

  15. Rapid Identification of Intact Staphylococcal Bacteriophages Using Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Dana Štveráková

    2018-04-01

    Full Text Available Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae, Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus, as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus-specific bacteriophages.

  16. Rapid Quantification of 25-Hydroxyvitamin D3 in Human Serum by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Qi, Yulin; Müller, Miriam; Stokes, Caroline S.; Volmer, Dietrich A.

    2018-04-01

    LC-MS/MS is widely utilized today for quantification of vitamin D in biological fluids. Mass spectrometric assays for vitamin D require very careful method optimization for precise and interference-free, accurate analyses however. Here, we explore chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) as a rapid alternative for quantitative measurement of 25-hydroxyvitamin D3 in human serum, and compare it to results from LC-MS/MS. The method implemented an automated imaging step of each MALDI spot, to locate areas of high intensity, avoid sweet spot phenomena, and thus improve precision. There was no statistically significant difference in vitamin D quantification between the MALDI-MS/MS and LC-MS/MS: mean ± standard deviation for MALDI-MS—29.4 ± 10.3 ng/mL—versus LC-MS/MS—30.3 ± 11.2 ng/mL (P = 0.128)—for the sum of the 25-hydroxyvitamin D epimers. The MALDI-based assay avoided time-consuming chromatographic separation steps and was thus much faster than the LC-MS/MS assay. It also consumed less sample, required no organic solvents, and was readily automated. In this proof-of-concept study, MALDI-MS readily demonstrated its potential for mass spectrometric quantification of vitamin D compounds in biological fluids.

  17. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    Energy Technology Data Exchange (ETDEWEB)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model was based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.

  18. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

    NARCIS (Netherlands)

    Rams, Thomas E; Sautter, Jacqueline D; Getreu, Adam; van Winkelhoff, Arie J

    OBJECTIVE: Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P.

  19. Direct analysis of anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption-dielectric barrier discharge ionization mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Nonami, Hiroshi; Hiraoka, Kenzo

    2014-08-11

    Rapid detection of trace level anabolic steroids in urine is highly desirable to monitor the consumption of performance enhancing anabolic steroids by athletes. The present article describes a novel strategy for identifying the trace anabolic steroids in urine using Leidenfrost phenomenon assisted thermal desorption (LPTD) coupled to dielectric barrier discharge (DBD) ionization mass spectrometry. Using this method the steroid molecules are enriched within a liquid droplet during the thermal desorption process and desorbed all-together at the last moment of droplet evaporation in a short time domain. The desorbed molecules were ionized using a dielectric barrier discharge ion-source in front of the mass spectrometer inlet at open atmosphere. This process facilitates the sensitivity enhancement with several orders of magnitude compared to the thermal desorption at a lower temperature. The limits of detection (LODs) of various steroid molecules were found to be in the range of 0.05-0.1 ng mL(-1) for standard solutions and around two orders of magnitude higher for synthetic urine samples. The detection limits of urinary anabolic steroids could be lowered by using a simple and rapid dichloromethane extraction technique. The analytical figures of merit of this technique were evaluated at open atmosphere using suitable internal standards. The technique is simple and rapid for high sensitivity and high throughput screening of anabolic steroids in urine. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Adlayer structure dependent ultrafast desorption dynamics in carbon monoxide adsorbed on Pd (111)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung-Young; Camillone, Nina R.; Camillone, Nicholas, E-mail: nicholas@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Xu, Pan [Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 (United States); White, Michael G. [Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Department of Chemistry, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-07-07

    We report our ultrafast photoinduced desorption investigation of the coverage dependence of substrate–adsorbate energy transfer in carbon monoxide adlayers on the (111) surface of palladium. As the CO coverage is increased, the adsorption site population shifts from all threefold hollows (up to 0.33 ML), to bridge and near bridge (>0.5 to 0.6 ML) and finally to mixed threefold hollow plus top site (at saturation at 0.75 ML). We show that between 0.24 and 0.75 ML this progression of binding site motifs is accompanied by two remarkable features in the ultrafast photoinduced desorption of the adsorbates: (i) the desorption probability increases roughly two orders magnitude, and (ii) the adsorbate–substrate energy transfer rate observed in two-pulse correlation experiments varies nonmonotonically, having a minimum at intermediate coverages. Simulations using a phenomenological model to describe the adsorbate–substrate energy transfer in terms of frictional coupling indicate that these features are consistent with an adsorption-site dependent electron-mediated energy coupling strength, η{sub el}, that decreases with binding site in the order: three-fold hollow > bridge and near bridge > top site. This weakening of η{sub el} largely counterbalances the decrease in the desorption activation energy that accompanies this progression of adsorption site motifs, moderating what would otherwise be a rise of several orders of magnitude in the desorption probability. Within this framework, the observed energy transfer rate enhancement at saturation coverage is due to interadsorbate energy transfer from the copopulation of molecules bound in three-fold hollows to their top-site neighbors.

  1. Glyphosate sorption and desorption in soils with distinct phosphorus levels

    Energy Technology Data Exchange (ETDEWEB)

    Prata, Fabio [BIOAGRI Labs., Piracicaba, SP (Brazil). Div. de Quimica. Lab. de Radioquimica; Cardinali, Vanessa Camponez do Brasil; Tornisielo, Valdemar Luiz; Regitano, Jussara Borges [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz. Dept. de Ciencias Exatas; Lavorenti, Arquimedes [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Secao de Toxicologia

    2003-03-01

    The sorption of glyphosate by soils occurs due to the inner sphere complex formation with metals of soil oxides, which are related to the soil phosphate adsorption capacity. The aim of this study was to evaluate the effects of increasing rates of phosphorus on sorption and desorption of glyphosate in three soils with different mineralogical attributes. Soils were a Rhodic Kandiudalf, an Anionic Acrudox and a Typic Humaquept. Soil samples were amended with Kh{sub 2}PO{sub 4} at equivalent rates of 0; 1,000; 5,000; 20,000 and 50,000 kg ha{sup -1} of P{sub 2}O{sub 5}, which are high from the agricultural point of view, but necessary in order to perform sorption and desorption studies. The experimental design consisted of a completely randomized factorial: 2 soils x 5 phosphorus rates and 3 replicates. For the sorption experiments, five glyphosate solutions were employed (0.42; 0.84; 1.68; 3.36 and 6.72 mg L{sup -1}), with a {sup 14}C radioactivity of 0.233 kBq mL{sup -1}. Four steps of the desorption procedures withCaCl{sub 2} 0.01 mol L{sup -1} and one extraction with Mehlich 3 were performed only at one concentration (0.84 mol L{sup -1}). Soil samples were afterwards biologically oxidized to establish the radioactive balance. Glyphosate competes with phosphorus for specific sorption sites, but this competition becomes important when phosphorus is present at rates higher than 1,000 mg dm{sup -3}. Moreover, a small amount of applied glyphosate was extracted (<10%), and the extraction increased with increasing soil phosphorus content. (author)

  2. Desorption of Benzene, 1,3,5-Trifluorobenzene, and Hexafluorobenzene from a Graphene Surface: The Effect of Lateral Interactions on the Desorption Kinetics.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2018-05-03

    The desorption of benzene, 1,3,5-trifluorobenzene (TFB), and hexafluorobenzene (HFB) from a graphene covered Pt(111) substrate was investigated using temperature programmed desorption (TPD). All three species have well resolved monolayer and second layer desorption peaks. The desorption spectra for submonolayer coverages of benzene and hexafluorobenzene are consistent with first order desorption kinetics. In contrast, the submonolayer TPD spectra for 1,3,5-trifluorobenzene align on a common leading-edge which is indicative of zero order desorption kinetics. The desorption behavior of the three molecules can be correlated with the strength of the quadrupole moments. Calculations (second-order Møller-Plesset perturbation and density functional theory) show that the potential minimum for coplanar TFB dimers is more than a factor of two greater than that for either benzene or HFB dimers. The calculations support the interpretation that benzene and HFB are less likely to form the two dimensional islands that are needed for submonolayer zero order desorption kinetics.

  3. Studies of iodine adsorption and desorption on HTGR coolant circuit materials

    International Nuclear Information System (INIS)

    Osborne, M.F.; Compere, E.L.; de Nordwall, H.J.

    1976-04-01

    Safety studies of the HTGR system indicate that radioactive iodine, released from the fuel to the helium coolant, may pose a problem of concern if no attenuation of the amount of iodine released occurs in the coolant circuit. Since information on iodine behavior in this system was incomplete, iodine adsorption on HTGR materials was studied in vacuum as a function of iodine pressure and of adsorber temperature. Iodine coverages on Fe 3 O 4 and Cr 2 O 3 approached maxima of about 2 x 10 14 and 1 x 10 14 atoms/cm 2 , respectively, whereas the iodine coverage on graphite under similar conditions was found to be less by a factor of about 100. Iodine desorption from the same materials into vacuum or flowing helium was investigated, on a limited basis, as a function of iodine coverage, of adsorber temperature, and of dry vs wet helium. The rate of vacuum desorption from Fe 3 O 4 was related to the spectrum of energies of the adsorption sites. A small amount of water vapor in the helium enhanced desorption from iron powder but appeared to have less effect on desorption from the metal oxides

  4. Impact of equilibrating time on phosphate adsorption and desorption behaviour in some selected saline sodic soils

    International Nuclear Information System (INIS)

    Khan, Q.U.; HAN; Khan, M.J.; Rehman, S.; Khan, S.U.

    2012-01-01

    To investigate the effect of equilibrating time on phosphate adsorption and desorption on saline sodic soils a study was carried using three soil series from Dera Ismail Khan (Pakistan) district, namely Zindani, Tikken and Gishkori. These soils are alkaline calcareous in nature with greater Electrical Conductivity (EC) and Sodium Adsorption Ratio (SAR) values which classify them as saline sodic soils. The equilibrating time for the adsorption study was 8, 12, 16, 20, 24, 48 and 72 hours for two levels (5 mg L/sup -1/ and 100 mg L/sup -1/). For desorption study 1, 2, 3, 4 and 5 hours after 24 hours for low and high dilution. Adsorption and desorption isotherms of phosphate were developed for these soils. The Gishkori soil showed the greatest rate of adsorption as compared with the other two soils. Applying Langmuir and Freundlich models to P adsorption data revealed that Freundlich equation (R2 = 0.99) showed a better fit over the Langmuir equation (R2 =0. 97) in the three soils. The desorption curves varied similarly from each other. The amount of P adsorbed was different from that released back to the soil solution. The amount of adsorption increased with the time. Statistical analysis showed that the rate of adsorption for both 5 and 100 mg P L/sup -1/ was significantly different at P<0.05 at 16 and 20 hours and at P<0.01 beyond 20 hours. However, the rate of desorption was not significantly influenced by the equilibrating time as compared with the theoretical values of the three series. As the P - desorption curve did not coincide the P - adsorption curve, hence the availability of P to plant was adversely affected on its application. (author)

  5. Novel, improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    Science.gov (United States)

    Schubert, Sören; Weinert, Kirsten; Wagner, Chris; Gunzl, Beatrix; Wieser, Andreas; Maier, Thomas; Kostrzewa, Markus

    2011-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is widely used for rapid and reliable identification of bacteria and yeast grown on agar plates. Moreover, MALDI-TOF MS also holds promise for bacterial identification from blood culture (BC) broths in hospital laboratories. The most important technical step for the identification of bacteria from positive BCs by MALDI-TOF MS is sample preparation to remove blood cells and host proteins. We present a method for novel, rapid sample preparation using differential lysis of blood cells. We demonstrate the efficacy and ease of use of this sample preparation and subsequent MALDI-TOF MS identification, applying it to a total of 500 aerobic and anaerobic BCs reported to be positive by a Bactec 9240 system. In 86.5% of all BCs, the microorganism species were correctly identified. Moreover, in 18/27 mixed cultures at least one isolate was correctly identified. A novel method that adjusts the score value for MALDI-TOF MS results is proposed, further improving the proportion of correctly identified samples. The results of the present study show that the MALDI-TOF MS-based method allows rapid (directly from positive BCs and with high accuracy. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation

    Science.gov (United States)

    Peng, Lanfang; Liu, Paiyu; Feng, Xionghan; Wang, Zimeng; Cheng, Tao; Liang, Yuzhen; Lin, Zhang; Shi, Zhenqing

    2018-03-01

    Predicting the kinetics of heavy metal adsorption and desorption in soil requires consideration of multiple heterogeneous soil binding sites and variations of reaction chemistry conditions. Although chemical speciation models have been developed for predicting the equilibrium of metal adsorption on soil organic matter (SOM) and important mineral phases (e.g. Fe and Al (hydr)oxides), there is still a lack of modeling tools for predicting the kinetics of metal adsorption and desorption reactions in soil. In this study, we developed a unified model for the kinetics of heavy metal adsorption and desorption in soil based on the equilibrium models WHAM 7 and CD-MUSIC, which specifically consider metal kinetic reactions with multiple binding sites of SOM and soil minerals simultaneously. For each specific binding site, metal adsorption and desorption rate coefficients were constrained by the local equilibrium partition coefficients predicted by WHAM 7 or CD-MUSIC, and, for each metal, the desorption rate coefficients of various binding sites were constrained by their metal binding constants with those sites. The model had only one fitting parameter for each soil binding phase, and all other parameters were derived from WHAM 7 and CD-MUSIC. A stirred-flow method was used to study the kinetics of Cd, Cu, Ni, Pb, and Zn adsorption and desorption in multiple soils under various pH and metal concentrations, and the model successfully reproduced most of the kinetic data. We quantitatively elucidated the significance of different soil components and important soil binding sites during the adsorption and desorption kinetic processes. Our model has provided a theoretical framework to predict metal adsorption and desorption kinetics, which can be further used to predict the dynamic behavior of heavy metals in soil under various natural conditions by coupling other important soil processes.

  8. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    Blejchař Tomáš

    2016-06-01

    Full Text Available The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR or extreme ultraviolet (XUV lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave model.

  9. Sorption, desorption and extraction of uranium from some sands under dynamic conditions

    International Nuclear Information System (INIS)

    Palagyi, S.; Laciok, A.

    2006-01-01

    Sorption, desorption and extraction behavior of uranium in various fluvial sands of domestic origin were investigated in continuous dynamic column experiments. For the sorption of U(VI) an aqueous 10 -4 M UO 2 (NO 3 ) 2 solution was used at a flow rate of about 0.3 cm 3 /min. Desorption was carried out with demineralized water, and the extraction with 10 -2 M Na 2 CO 3 solution following desorption. The retardation coefficients (R) and hydrodynamic dispersion coefficients (D d ), were determined using an ADE equation. From the experimentally determined values of R, bulk density and porosity, the distribution coefficients (K d ) of the UO 2 2+ species have been calculated for the respective processes. The extent of U sorption in sands, as well as the proportion of desorbed and extracted U from these sands, was also calculated. (author)

  10. Adsorption of Chloroform by the Rapid Response System Filter

    National Research Council Canada - National Science Library

    Karwacki, Christopher

    1997-01-01

    Adsorption equilibria and dynamic breakthrough data were measured to determine the adsorption capacity and effect of purge air on the desorption of chloroform from activated carbon simulating the Rapid Response System (RRS) filter...

  11. Coverage dependent desorption dynamics of deuterium on Si(100) surfaces: interpretation with a diffusion-promoted desorption model.

    Science.gov (United States)

    Matsuno, T; Niida, T; Tsurumaki, H; Namiki, A

    2005-01-08

    We studied coverage dependence of time-of-flight (TOF) spectra of D2 molecules thermally desorbed from the D/Si(100) surface. The mean translational energies Et of desorbed D2 molecules were found to increase from 0.20+/-0.05 eV to 0.40+/-0.04 eV as the desorption coverage window was decreased from 1.0 ML> or =thetaD> or =0.9 ML to 0.2 ML> or =thetaD> or =0 ML, being consistent with the kinetics switch predicted in the interdimer mechanism. The measured TOF spectra were deconvoluted into 2H, 3H, and 4H components by a curve fitting method along the principle of detailed balance. As a result, it turned out that the desorption kinetics changes from the 4H to the 3H situation at high coverage above thetaD=0.9 ML, while the 2H desorption is dominant for a quite wide coverage region up to thetaD=0.8 ML. A dynamic desorption mechanism by which the desorption is promoted by D-atom diffusion to dangling bonds was proposed. 2005 American Institute of Physics.

  12. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials; Untersuchung der Mechanismen schwerioneninduzierter Desorption an beschleunigerrelevanten Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Markus

    2008-02-22

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  13. Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance.

    Science.gov (United States)

    Ghafari, Mohsen; Atkinson, John D

    2018-06-05

    A novel one-step hyper-cross-linking method, using 1,2-dichloroethane (DCE) and 1,6-dichlorohexane (DCH) cross-linkers, expands the micropore volume of commercial styrenic polymers. Performance of virgin and modified polymers was evaluated by measuring hexane, toluene, and methyl-ethyl-ketone (MEK) adsorption capacity, adsorption/desorption kinetics, and desorption efficiency. Hyper-cross-linked polymers have up to 128% higher adsorption capacity than virgin polymers at P/P 0  = 0.05 due to micropore volume increases up to 330%. Improvements are most pronounced with the DCE cross-linker. Hyper-cross-linking has minimal impact on hexane adsorption kinetics, but adsorption rates for toluene and MEK decrease by 6-41%. Desorption rates decreased (3-36%) for all materials after hyper-cross-linking, with larger decreases for DCE hyper-cross-linked polymers due to smaller average pore widths. For room temperature desorption, 20-220% more adsorbate remains in hyper-cross-linked polymers after regeneration compared to virgin materials. DCE hyper-cross-linked polymers have 13-92% more residual adsorbate than DCH counterparts. Higher temperatures were required for DCE hyper-cross-linked polymers to completely desorb VOCs compared to the DCH hyper-cross-linked and virgin counterparts. Results show that the one-step hyper-cross-linking method for modifying styrenic polymers improves adsorption capacity because of added micropores, but decreases adsorption/desorption kinetics and desorption efficiency for large VOCs due to a decrease in average pore width. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Initial screening of thermal desorption for soil remediation

    International Nuclear Information System (INIS)

    Yezzi, J.J. Jr.; Tafuri, A.N.; Rosenthal, S.; Troxler, W.L.

    1994-01-01

    Petroleum-contaminated soils--caused by spills, leaks, and accidental discharges--exist at many sites throughout the United States. Thermal desorption technologies which are increasingly being employed to treat these soils, have met soil cleanup criteria for a variety of petroleum products. Currently the United States Environmental Protection Agency is finalizing a technical report entitled Use of Thermal Desorption for Treating Petroleum-Contaminated Soils to assist remedial project managers, site owners, remediation contractors, and equipment vendors in evaluating the use of thermal desorption technologies for petroleum-contaminated soil applications. The report will present a three-level screening method to help a reader predict the success of applying thermal desorption at a specific site. The objective of screening level one is to determine the likelihood of success in a specific application of thermal desorption. It will take into account procedures for collecting and evaluating data on site characteristics, contaminant characteristics, soil characteristics, and regulatory requirements. This level will establish whether or not thermal desorption should be evaluated further for site remediation, whether treatment should occur on-site or off-site, and if on-site is a viable option, what system size will be most cost-effective. The scope of this paper addresses only screening level one which provides a preliminary assessment of the applicability of thermal desorption to a particular site. This topic encompasses worksheets that are an integral part of the ''user friendly'' screening process. Level one screening provides a foundation for the subsequent two levels which follow a similar ''user friendly'' worksheet approach to evaluating thermal desorption technologies and establishing costs for thermal desorption in an overall remediation project

  15. The distribution dynamics and desorption behaviour of mobile pharmaceuticals and caffeine to combined sewer sediments.

    Science.gov (United States)

    Hajj-Mohamad, M; Darwano, H; Duy, S Vo; Sauvé, S; Prévost, M; Arp, H P H; Dorner, S

    2017-01-01

    Pharmaceuticals are discharged to the environment from wastewater resource recovery facilities, sewer overflows, and illicit sewer connections. To understand the fate of pharmaceuticals, there is a need to better understand their sorption dynamics to suspended sediments (SS) and settled sediments (StS) in sewer systems. In this study, such sorption dynamics to both SS and StS were assessed using a batch equilibrium method under both static and dynamic conditions. Experiments were performed with natively occurring and artificially modified concentrations of sewer pharmaceuticals (acetaminophen, theophylline, carbamazepine, and a metabolite of carbamazepine) and caffeine. Differences in apparent distribution coefficients, K d,app , between SS and StS were related to differences in their organic carbon (OC) content, and the practice of artificially modifying the concentration. K d,app values of modified contaminant concentrations and high OC sediments were substantially higher. Pseudo-second order desorption rates for these mobile compounds were also quantified. Successive flushing events to simulate the addition of stormwater to sewer networks revealed that aqueous concentrations would not necessarily decrease, because the added water will rapidly return to equilibrium concentrations with the sediments. Sorption and desorption kinetics must be considered in addition to dilution, to avoid underestimating the influence of dilution on concentrations of pharmaceuticals discharged to the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Interaction of D2 with H2O amorphous ice studied by temperature-programmed desorption experiments.

    Science.gov (United States)

    Amiaud, L; Fillion, J H; Baouche, S; Dulieu, F; Momeni, A; Lemaire, J L

    2006-03-07

    The gas-surface interaction of molecular hydrogen D2 with a thin film of porous amorphous solid water (ASW) grown at 10 K by slow vapor deposition has been studied by temperature-programmed-desorption (TPD) experiments. Molecular hydrogen diffuses rapidly into the porous network of the ice. The D2 desorption occurring between 10 and 30 K is considered here as a good probe of the effective surface of ASW interacting with the gas. The desorption kinetics have been systematically measured at various coverages. A careful analysis based on the Arrhenius plot method has provided the D2 binding energies as a function of the coverage. Asymmetric and broad distributions of binding energies were found, with a maximum population peaking at low energy. We propose a model for the desorption kinetics that assumes a complete thermal equilibrium of the molecules with the ice film. The sample is characterized by a distribution of adsorption sites that are filled according to a Fermi-Dirac statistic law. The TPD curves can be simulated and fitted to provide the parameters describing the distribution of the molecules as a function of their binding energy. This approach contributes to a correct description of the interaction of molecular hydrogen with the surface of possibly porous grain mantles in the interstellar medium.

  17. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more ...

  18. Desorption electro-spray ionization - orbitrap mass spectrometry of synthetic polymers and copolymers

    International Nuclear Information System (INIS)

    Friia, Manel; Legros, Veronique; Tortajada, Jeanine; Buchmann, William

    2012-01-01

    Desorption Electro-Spray Ionization (DESI) - Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol -1 up to more than 20000 g.mol -1 . Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI-MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of Mn, Mw and PDI values. DESI-Orbitrap MS results were compared to those obtained from matrix-assisted laser desorption/ionization- time-of-flight MS and gel permeation chromatography. An application of DESI-Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. (authors)

  19. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  20. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for rapid identification of fungal rhinosinusitis pathogens.

    Science.gov (United States)

    Huang, Yanfei; Wang, Jinglin; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Lu, Xinxin

    2017-03-01

    Filamentous fungi are among the most important pathogens, causing fungal rhinosinusitis (FRS). Current laboratory diagnosis of FRS pathogens mainly relies on phenotypic identification by culture and microscopic examination, which is time consuming and expertise dependent. Although matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS has been employed to identify various fungi, its efficacy in the identification of FRS fungi is less clear. A total of 153 FRS isolates obtained from patients were analysed at the Clinical Laboratory at the Beijing Tongren Hospital affiliated to the Capital Medical University, between January 2014 and December 2015. They were identified by traditional phenotypic methods and Bruker MALDI-TOF MS (Bruker, Biotyper version 3.1), respectively. Discrepancies between the two methods were further validated by sequencing. Among the 153 isolates, 151 had correct species identification using MALDI-TOF MS (Bruker, Biot 3.1, score ≥2.0 or 2.3). MALDI-TOF MS enabled identification of some very closely related species that were indistinguishable by conventional phenotypic methods, including 1/10 Aspergillus versicolor, 3/20 Aspergillus flavus, 2/30 Aspergillus fumigatus and 1/20 Aspergillus terreus, which were misidentified by conventional phenotypic methods as Aspergillus nidulans, Aspergillus oryzae, Aspergillus japonicus and Aspergillus nidulans, respectively. In addition, 2/2 Rhizopus oryzae and 1/1 Rhizopus stolonifer that were identified only to the genus level by the phenotypic method were correctly identified by MALDI-TOF MS. MALDI-TOF MS is a rapid and accurate technique, and could replace the conventional phenotypic method for routine identification of FRS fungi in clinical microbiology laboratories.

  1. Hydrogen desorption reactions of Li-N-H hydrogen storage system: Estimation of activation free energy

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuru; Haga, Tetsuya; Kawai, Yasuaki; Kojima, Yoshitsugu

    2007-01-01

    The dehydrogenation reactions of the mixtures of lithium amide (LiNH 2 ) and lithium hydride (LiH) were studied under an Ar atmosphere by means of temperature programmed desorption (TPD) technique. The dehydrogenation reaction of the LiNH 2 /LiH mixture was accelerated by addition of 1 mol% Ti(III) species (k = 3.1 x 10 -4 s -1 at 493 K), and prolonged ball-milling time (16 h) further enhanced reaction rate (k = 1.1 x 10 -3 s -1 at 493 K). For the hydrogen desorption reaction of Ti(III) doped samples, the activation energies estimated by Kissinger plot (95 kJ mol -1 ) and Arrhenius plot (110 kJ mol -1 ) were in reasonable agreement. The LiNH 2 /LiH mixture without Ti(III) species, exhibited slower hydrogen desorption process and the kinetic traces deviated from single exponential behavior. The results indicated the Ti(III) additives change the hydrogen desorption reaction mechanism of the LiNH 2 /LiH mixture

  2. Thermal desorption study of physical forces at the PTFE surface

    Science.gov (United States)

    Wheeler, D. R.; Pepper, S. V.

    1987-01-01

    Thermal desorption spectroscopy (TDS) of the polytetrafluoroethylene (PTFE) surface was successfully employed to study the possible role of physical forces in the enhancement of metal-PTFE adhesion by radiation. The thermal desorption spectra were analyzed without assumptions to yield the activation energy for desorption over a range of xenon coverage from less than 0.1 monolayer to more than 100 monolayers. For multilayer coverage, the desorption is zero-order with an activation energy equal to the sublimation energy of xenon. For submonolayer coverages, the order for desorption from the unirradiated PTFE surface is 0.73 and the activation energy for desorption is between 3.32 and 3.36 kcal/mol; less than the xenon sublimation energy. The effect of irradiation is to increase the activation energy for desorption to as high as 4 kcal/mol at low coverage.

  3. Zero-Headspace Coal-Core Gas Desorption Canister, Revised Desorption Data Analysis Spreadsheets and a Dry Canister Heating System

    Science.gov (United States)

    Barker, Charles E.; Dallegge, Todd A.

    2005-01-01

    Coal desorption techniques typically use the U.S. Bureau of Mines (USBM) canister-desorption method as described by Diamond and Levine (1981), Close and Erwin (1989), Ryan and Dawson (1993), McLennan and others (1994), Mavor and Nelson (1997) and Diamond and Schatzel (1998). However, the coal desorption canister designs historically used with this method have an inherent flaw that allows a significant gas-filled headspace bubble to remain in the canister that later has to be compensated for by correcting the measured desorbed gas volume with a mathematical headspace volume correction (McLennan and others, 1994; Mavor and Nelson, 1997).

  4. Deuterium desorption from tungsten using laser heating

    Directory of Open Access Journals (Sweden)

    J.H. Yu

    2017-08-01

    Full Text Available Retention and desorption of hydrogenic species need to be accurately modeled to predict the tritium inventory of next generation fusion devices, which is needed both for tritium fuel recovery and for tritium safety concerns. In this paper, experiments on thermal desorption of deuterium from intrinsic polycrystalline tungsten defects using laser heating are compared to TMAP-7 modeling. The samples during deuterium plasma exposure were at a temperature of 373K for this benchmark study with ion fluence of 0.7–1.0 ×1024Dm−2. Following plasma exposure, a fiber laser (λ= 1100nm heated the samples to peak surface temperatures ranging from ∼500 to 1400K with pulse widths from 10ms to 1s, and 1 to 10 pulses applied to each sample. The remaining deuterium retention was measured using temperature programmed desorption (TPD. Results show that > 95% of deuterium is desorbed when the peak surface temperature reached ∼950K for > 1s. TMAP-7 is used to predict deuterium desorption from tungsten for a range of surface temperatures and heating durations, and is compared to previous work on desorption from beryllium codeposits.

  5. Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Schmidt, V; Jarosch, A; März, P; Sander, C; Vacata, V; Kalka-Moll, W

    2012-03-01

    Blood culture is probably the most significant specimen used for the diagnosis of bacterial infections, especially for bloodstream infections. In the present study, we compared the resin-containing BD BACTEC™ Plus-Aerobic (Becton Dickinson), non-charcoal-containing BacT/Alert(®) SA (bioMérieux), and charcoal-containing BacT/Alert(®) FA (bioMérieux) blood culture bottles with direct identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 103 bacterial isolates, from clinical blood cultures, representing the most frequent 13 genera and 24 species were examined. Bacteria were extracted from positive blood culture broth by density centrifugation and then subjected to identification by MALDI-TOF MS using two different volumes and chemical treatments. Overall, correct identification by MALDI-TOF MS was obtained for the BD BACTEC™ Plus-Aerobic, BacT/Alert(®) SA, and BacT/Alert(®) FA blood culture bottles in 72%, 45.6%, and 23%, respectively, for gram-negative bacteria in 86.6%, 69.2%, and 47.1%, respectively, and for gram-positive bacteria in 60.0%, 28.8%, and 5.4%, respectively. The lack of identification was observed mainly with viridans streptococci. Depending on the blood culture bottles used in routine diagnostic procedures and the protocol for bacterial preparation, the applied MALDI-TOF MS represents an efficient and rapid method for direct bacterial identification.

  6. Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry rapid detection of carbapenamase activity in Acinetobacter baumannii isolates

    Directory of Open Access Journals (Sweden)

    Noha Abouseada

    2017-01-01

    Full Text Available Introduction: Carbapenamase-producing Acinetobacter baumannii are an increasing threat in hospitals and Intensive Care Units. Accurate and rapid detection of carbapenamase producers has a great impact on patient improvement and aids in implementation of infection control measures. Aim: In this study, we describe the use of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI TOF MS to identify carbapenamase-producing A. baumannii isolates in up to 3 h. Isolates and Methods: A total of 50 A. baumannii isolates (of which 39 were carabapenamase producers were tested using MALDI TOF MS. Isolates were incubated for 3 h with 0.25 mg/ml up to 2 mg/ml of imipenem (IMP at 37°C. Supernatants were analysed by MALDI TOF to analyse peaks corresponding to IMP (300 Da and an IMP metabolite (254 Da using UltrafleXtreme (Bruker Daltonics, Bremen, Germany. Results: All carbapenamase-producing isolates were evidenced by the disappearance or reduction in intensity of the 300 Da peak of IPM and the appearance of a 254 Da peak of the IPM metabolite. In isolates that did not produce carbapenamase, the IPM 300 Da peak remained intact. Conclusion: MALDI TOF is a promising tool in the field of diagnostic microbiology that has the ability to transfer identification and antimicrobial susceptibility testing time from days to hours.

  7. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Derrick [Colorado School of Mines, Golden, CO (United States)

    2014-12-22

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  8. Investigations on ion-beam induced desorption from cryogenic surfaces; Untersuchungen zu ionenstrahlinduzierter Desorption von kryogenen Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Christoph

    2017-07-03

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  9. Rapid identification and typing of Yersinia pestis and other Yersinia species by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.

    Science.gov (United States)

    Ayyadurai, Saravanan; Flaudrops, Christophe; Raoult, Didier; Drancourt, Michel

    2010-11-12

    Accurate identification is necessary to discriminate harmless environmental Yersinia species from the food-borne pathogens Yersinia enterocolitica and Yersinia pseudotuberculosis and from the group A bioterrorism plague agent Yersinia pestis. In order to circumvent the limitations of current phenotypic and PCR-based identification methods, we aimed to assess the usefulness of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) protein profiling for accurate and rapid identification of Yersinia species. As a first step, we built a database of 39 different Yersinia strains representing 12 different Yersinia species, including 13 Y. pestis isolates representative of the Antiqua, Medievalis and Orientalis biotypes. The organisms were deposited on the MALDI-TOF plate after appropriate ethanol-based inactivation, and a protein profile was obtained within 6 minutes for each of the Yersinia species. When compared with a 3,025-profile database, every Yersinia species yielded a unique protein profile and was unambiguously identified. In the second step of analysis, environmental and clinical isolates of Y. pestis (n = 2) and Y. enterocolitica (n = 11) were compared to the database and correctly identified. In particular, Y. pestis was unambiguously identified at the species level, and MALDI-TOF was able to successfully differentiate the three biotypes. These data indicate that MALDI-TOF can be used as a rapid and accurate first-line method for the identification of Yersinia isolates.

  10. Rapid Identification of the Foodborne Pathogen Trichinella spp. by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

    Directory of Open Access Journals (Sweden)

    Anne Mayer-Scholl

    Full Text Available Human trichinellosis occurs through consumption of raw or inadequately processed meat or meat products containing larvae of the parasitic nematodes of the genus Trichinella. Currently, nine species and three genotypes are recognized, of which T. spiralis, T. britovi and T. pseudospiralis have the highest public health relevance. To date, the differentiation of the larvae to the species and genotype level is based primarily on molecular methods, which can be relatively time consuming and labor intensive. Due to its rapidness and ease of use a matrix assisted laser desorption / ionization time of flight mass spectrometry (MALDI-TOF MS reference spectra database using Trichinella strains of all known species and genotypes was created. A formicacid/acetonitrile protein extraction was carried out after pooling 10 larvae of each Trichinella species and genotype. Each sample was spotted 9 times using α-cyano 4-hydoxy cinnamic acid matrix and a MicroFlex LT mass spectrometer was used to acquire 3 spectra (m/z 2000 to 20000 Da from each spot resulting in 27 spectra/species or genotype. Following the spectra quality assessment, Biotyper software was used to create a main spectra library (MSP representing nine species and three genotypes of Trichinella. The evaluation of the spectra generated by MALDI-TOF MS revealed a classification which was comparable to the results obtained by molecular methods. Also, each Trichinella species utilized in this study was distinct and distinguishable with a high confidence level. Further, different conservation methods such as freezing and conservation in alcohol and the host species origin of the isolated larvae did not have a significant influence on the generated spectra. Therefore, the described MALDI-TOF MS can successfully be implemented for both genus and species level identification and represents a major step forward in the use of this technique in foodborne parasitology.

  11. Kinetics of Cation and Oxyanion Adsorption and Desorption on Ferrihydrite: Roles of Ferrihydrite Binding Sites and a Unified Model

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lei [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Shi, Zhenqing [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Lu, Yang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dohnalkova, Alice C. [Environmental; Lin, Zhang [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry; Dang, Zhi [School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, People’s Republic of China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry

    2017-08-29

    Understanding the kinetics of toxic ion reactions with ferrihydrite is crucial for predicting the dynamic behavior of contaminants in soil environments. In this study, the kinetics of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite were investigated with a combination of laboratory macroscopic experiments, microscopic investigation and mechanistic modeling. The rates of As(V), Cr(VI), Cu, and Pb adsorption and desorption on ferrihydrite, as systematically studied using a stirred-flow method, was highly dependent on the reaction pH and metal concentrations and varied significantly among four metals. Spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) showed, at sub-nano scales, all four metals were distributed within the ferrihydrite particle aggregates homogeneously after adsorption reactions, with no evidence of surface diffusion-controlled processes. Based on experimental results, we developed a unifying kinetics model for both cation and oxyanion adsorption/desorption on ferrihydrite based on the mechanistic-based equilibrium model CD-MUSIC. Overall, the model described the kinetic results well, and we quantitatively demonstrated how the equilibrium properties of the cation and oxyanion binding to various ferrihydrite sites affected the adsorption and desorption rates. Our results provided a unifying quantitative modeling method for the kinetics of both cation and oxyanion adsorption/desorption on iron minerals.

  12. Adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Etherton, B.P.

    1980-01-01

    The adsorption and desorption of hydrogen and carbon monoxide were studied on alumina-supported iridium catalysts which were examined by a scanning transmission electron microscope (STEM). The metal particle size and number of particles per area of catalyst increased with increasing metal loading. The particles were approx. 10 A. in diameter, cubo-octahedral shaped, and approx. 80-90% disperse. The STEM electron beam caused negligible damage to the samples. Hydrogen adsorption measurements showed that the hydrogen-iridium atom ratio was 1.2:1-1.3:1 and increased with decreasing metal loading. Temperature-programed desorption showed four types of adsorbed hydrogen desorbing at -90/sup 0/C (I), 15/sup 0/C (IV), 115/sup 0/C (II), and 245/sup 0/C (III). Types II and IV desorb from single atom sites and Types I and III from multiple atom sites. Type I is in rapid equilibrium with the gas phase. All desorption processes appear to be first order. Carbon monoxide adsorbed nondissociatively at 25/sup 0/C with approx. 0.7:1 CO/Ir atom ratio. It adsorbed primarily in linear forms at low coverage, but a bridged form appeared at high coverage.

  13. Secondary ion shadow-cone enhanced desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chechen Chang (Hawaii Univ., Honolulu (USA). Dept. of Chemistry)

    1990-02-01

    The incident angle dependence of the secondary particle emission process under keV ion bombardment has been investigated. The results from the full molecular dynamics calculations indicate that the flux anisotropy of the incident beam, resulting from the non-uniform impact parameters for the surface atom of a single crystal, affects the particle desorption in a systematic fashion. The enhanced desorption at certain angles of incidence corresponds to the intensive focusing of the incident beam to the near-surface atom and the extended dissipation of momentum by large-angle scattering. This observation has let us to develop a new theoretical model in which the enhanced desorption is described by the distance of closest encounter along the trajectory of the incident particle to the surface atom. The computer time for the simulation of the incident-angle-dependent emission process is significantly reduced. The results from the calculation based on this model are in good agreement both with the results from the full dynamics calculation and with the experimental results. The new model also allows a complementary evaluation of the microscopic dynamics involved in the shadow-cone enhanced desorption. (author).

  14. Sorption/Desorption Interactions of Plutonium with Montmorillonite

    Science.gov (United States)

    Begg, J.; Zavarin, M.; Zhao, P.; Kersting, A. B.

    2012-12-01

    Plutonium (Pu) release to the environment through nuclear weapon development and the nuclear fuel cycle is an unfortunate legacy of the nuclear age. In part due to public health concerns over the risk of Pu contamination of drinking water, predicting the behavior of Pu in both surface and sub-surface water is a topic of continued interest. Typically it was assumed that Pu mobility in groundwater would be severely restricted, as laboratory adsorption studies commonly show that naturally occurring minerals can effectively remove plutonium from solution. However, evidence for the transport of Pu over significant distances at field sites highlights a relative lack of understanding of the fundamental processes controlling plutonium behavior in natural systems. At several field locations, enhanced mobility is due to Pu association with colloidal particles that serve to increase the transport of sorbed contaminants (Kersting et al., 1999; Santschi et al., 2002, Novikov et al., 2006). The ability for mineral colloids to transport Pu is in part controlled by its oxidation state and the rate of plutonium adsorption to, and desorption from, the mineral surface. Previously we have investigated the adsorption affinity of Pu for montmorillonite colloids, finding affinities to be similar over a wide range of Pu concentrations. In the present study we examine the stability of adsorbed Pu on the mineral surface. Pu(IV) at an initial concentration of 10-10 M was pre-equilibrated with montmorillonite in a background electrolyte at pH values of 4, 6 and 8. Following equilibration, aliquots of the suspensions were placed in a flow cell and Pu-free background electrolyte at the relevant pH was passed through the system. Flow rates were varied in order to investigate the kinetics of desorption and hence gain a mechanistic understanding of the desorption process. The flow cell experiments demonstrate that desorption of Pu from the montmorillonite surface cannot be modeled as a simple

  15. Thermal desorption and surface modification of He+ implanted into tungsten

    International Nuclear Information System (INIS)

    Fu Zhang; Yoshida, N.; Iwakiri, H.; Xu Zengyu

    2004-01-01

    Tungsten divertor plates in fusion reactors will be subject to helium bombardment. Helium retention and thermal desorption is a concerned issue in controlling helium ash. In the present study, fluence dependence of thermal desorption behavior of helium in tungsten was studied at different irradiation temperatures and ion energies. Results showed that helium desorption could start at ∼400 K with increasing fluence, while no noticeable peaks were detected at low fluence. Total helium desorption reached a saturation value at high fluence range, which was not sensitive to irradiation temperature or ion energy for the conditions evaluated. Surface modifications caused by either ion irradiation or thermal desorption were observed by SEM. The relationship of surface modifications and helium desorption behavior was discussed. Some special features of elevated irradiation temperature and lower ion energy were also indicated

  16. Adsorption, aggregation, and desorption of proteins on smectite particles.

    Science.gov (United States)

    Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam

    2014-10-07

    We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.

  17. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    International Nuclear Information System (INIS)

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na + and F + desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H + , Li + , and F + are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N 2 -O 2 multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF 2 and a series of alkali halides are discussed in terms of desorption mechanisms

  18. Universal scaling for biomolecule desorption induced by swift heavy ions

    International Nuclear Information System (INIS)

    Szenes, G.

    2005-01-01

    A thermal activation mechanism is proposed for the desorption of biomolecules. Good agreement is found with the experiments in a broad range of the electronic stopping power. The activation energies of desorption U are 0.33, 1.57 and 5.35 eV for positive, negative and neutral leucine molecules, respectively, and 2.05 eV for positive ergosterol molecules. The desorption of valine clusters is analyzed. The magnitude of the specific heat shows that the internal degrees of freedom are not excited up to the moment of desorption. The effect of irradiation temperature and of ion velocity on the desorption yield is discussed on the basis of the author's model. The scaling function derived in the model for the desorption of biomolecules is applied also to the sputtering of SiO 2 and U = 0.42 eV is obtained

  19. Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, S.B.; Poppendieck, D.G.; Grabanski, C.B.; Loehr, R.C. [University of North Dakota, Grand Forks, ND (US). Energy and Environmental Research Center

    2002-11-15

    Soil and sediment samples from OG (oil gas) and CG (coal gas) manufactured gas plant (MGP) sites in the United States that had been closed for about 50 years were selected to represent a range of PAH concentrations and sample matrix compositions. Samples varied from vegetated soils to lampblack soot and had carbon contents from 3 to 87 wt%. Supercritical carbon dioxide, SFE desorption and water/XAD{sub 2} desorption curves were determined and fit with a simple two-site model to determine the rapid-released fraction (F) for PAHs ranging from naphthalene to benzo-(ghi)perylene. F values varied greatly among the samples. Release rates did not correlate with sample matrix characteristics including PAH concentrations, elemental composition or 'hard' and 'soft' organic carbon, indicating that PAH release cannot easily be estimated on the basis of sample matrix composition. F values for CG site samples obtained with SFE and water desorption agreed well but SFE yielded higher F values for the OG samples. These behaviors were attributed to the stronger ability of carbon dioxide than water to desorb PAHs from the highly aromatic (hard) carbon of the OG matrixes, while carbon dioxide and water showed similar abilities to desorb PAHs from the more polar (soft) carbon of the CG samples. The combined SFE and water desorption approaches should improve the understanding of PAH sequestration and release from contaminated soils and sediments and provide the basis for subsequent studies, using the same samples to compare PAH release with PAH availability to earthworms. 46 refs., 4 figs., 4 tabs.

  20. Gas desorption during friction of amorphous carbon films

    International Nuclear Information System (INIS)

    Rusanov, A; Fontaine, J; Martin, J-M; Mogne, T L; Nevshupa, R

    2008-01-01

    Gas desorption induced by friction of solids, i.e. tribodesorption, is one of the numerous physical and chemical phenomena, which arise during friction as result of thermal and structural activation of material in a friction zone. Tribodesorption of carbon oxides, hydrocarbons, and water vapours may lead to significant deterioration of ultra high vacuum conditions in modern technological equipment in electronic, optoelectronic industries. Therefore, knowledge of tribodesorption is crucial for the performance and lifetime of vacuum tribosystems. Diamond-like carbon (DLC) coatings are interesting materials for vacuum tribological systems due to their high wear resistance and low friction. Highly hydrogenated amorphous carbon (a-C:H) films are known to exhibit extremely low friction coefficient under high vacuum or inert environment, known as 'superlubricity' or 'superlow friction'. However, the superlow friction period is not always stable and then tends to spontaneous transition to high friction. It is supposed that hydrogen supply from the bulk to the surface is crucial for establishing and maintaining superlow friction. Thus, tribodesorption can serve also as a new technique to determine the role of gases in superlow friction mechanisms. Desorption of various a-C:H films, deposited by PECVD, ion-beam deposition and deposition using diode system, has been studied by means of ultra-high vacuum tribometer equipped with a mass spectrometer. It was found that in superlow friction period desorption rate was below the detection limit in the 0-85 mass range. However, transition from superlow friction to high friction was accompanied by desorption of various gases, mainly of H 2 and CH 4 . During friction transition, surfaces were heavily damaged. In experiments with DLC films with low hydrogen content tribodesorption was significant during the whole experiment, while low friction was not observed. From estimation of maximum surface temperature during sliding contact it

  1. Desorption electrospray ionisation mass spectrometry: A rapid screening tool for veterinary drug preparations and forensic samples from hormone crime investigations

    NARCIS (Netherlands)

    Nielen, M.W.F.; Hooijerink, H.; Claassen, F.C.; Engelen, M.C.; Beek, van T.A.

    2009-01-01

    Hormone and veterinary drug screening and forensics can benefit from the recent developments in desorption electrospray ionisation (DESI) mass spectrometry (MS). In this work the feasibility of DESI application has been studied. Using a linear ion trap or quadrupole time-of-flight (TOF) MS

  2. Characterization of Rhodamine Self-Assembled Films Using Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Shi, Ruixia; Na, Na; Jiang, Fubin; Ouyang, Jin

    2013-06-01

    Growth process information and molecular structure identification are very important for characterization of self-assembled films. Here, we explore the possible application of desorption electrospray ionization mass spectrometry (DESI-MS) that provides the assembled information of rhodamine B (Rh B) and rhodamine 123 (Rh 123) films. With the help of lab-made DESI source, two characteristic ions [Rh B]+ and [Rh 123]+ are observed directly in the open environment. To evaluate the reliability of this technique, a comparative study of ultraviolet-visible (UV-vis) spectroscopy and our method is carried out, and the result shows good correlation. According to the signal intensity of characteristic ions, the layer-by-layer adsorption process of dyes can be monitored, and the thicknesses of multilayer films can also be comparatively determined. Combining the high sensitivity, selectivity, and speed of mass spectrometry, the selective adsorption of similar structure molecules under different pH is recognized easily from extracted ion chronograms. The variation trend of dyes signalling intensity with concentration of polyelectrolyte is studied as well, which reflects the effect of surface charge on dyes deposition. Additionally, the desorption area, surface morphology, and thicknesses of multilayer films are investigated using fluorescence microscope, scanning electron microscope (SEM), and atomic force microscopy (AFM), respectively. Because the desorption area was approximately as small as 2 mm2, the distribution situation of organic dyes in an arbitrary position could be gained rapidly, which means DESI-MS has advantages on in situ analysis.

  3. Adsorption and desorption of 14C-chlorsulfuron in soils

    International Nuclear Information System (INIS)

    Chen Zuyi; Cheng Wei; Mi Chunyun

    1995-01-01

    The adsorption and desorption of the 4 concentrations of 14 C-chlorsulfuron in 10 soils were studied. As a result the soils had weak adsorptions of chlorsulfuron and the adsorptions varied with different type of soils tested. Adsorption rate of paddy soil (infant red earth) from Hunan and latosol red earth from Hainan was 3%∼4%; Yellow-brown earth from Nanjing and red earth from Jiangxi was 6%∼9%; black soil from Jilin, paddy soil (infant red earth) from Jiangxi and red earth from Anhui was 10%∼14%; Albic bleached soil from Jilin and yellow fluvo-aquatic soil from Jiangsu was 19%∼23%. pH value had an influence on the adsorption and organic matter had not obvious influence on the adsorption. Chlorsulfuron absorbed in soil could be desorbed through water. The relation between the adsorption and desorption was negative. The weak adsorption in soil shows that chlorsulfuron is active movable and diffusible and likely to pollute the ecological environment

  4. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for rapid strain typing of Bacillus coagulans.

    Science.gov (United States)

    Sato, Jun; Nakayama, Motokazu; Tomita, Ayumi; Sonoda, Takumi; Hasumi, Motomitsu; Miyamoto, Takahisa

    2017-01-01

    In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and repetitive-PCR (rep-PCR) were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  5. Detection of Bacteriocins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

    OpenAIRE

    Rose, Natisha L.; Sporns, Peter; McMullen, Lynn M.

    1999-01-01

    The use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the detection of bacteriocins was investigated. A 30-s water wash of the sample on the MALDI-TOF MS probe was effective in removing contaminants of the analyte. This method was used for rapid detection of nisin, pediocin, brochocin A and B, and enterocin A and B from culture supernatants and for detection of enterocin B throughout its purification.

  6. Electrospun fibrous thin film microextraction coupled with desorption corona beam ionization-mass spectrometry for rapid analysis of antidepressants in human plasma.

    Science.gov (United States)

    Chen, Di; Hu, Yu-Ning; Hussain, Dilshad; Zhu, Gang-Tian; Huang, Yun-Qing; Feng, Yu-Qi

    2016-05-15

    Appropriate sample preparations prior to analysis can significantly enhance the sensitivity of ambient ionization techniques, especially during the enrichment or purification of analytes in the presence of complex biological matrix. Here in, we developed a rapid analysis method by the combination of thin film microextraction (TFME) and desorption corona beam ionization (DCBI) for the determination of antidepressants in human plasma. Thin films used for extraction consisted of sub-micron sized highly ordered mesoporous silica-carbon composite fibers (OMSCFs), simply prepared by electrospinning and subsequent carbonization. Typically, OMSCFs thin film was immersed into the diluted plasma for extraction of target analytes and then directly subjected to the DCBI-MS for detection. Size-exclusion effect of mesopores contributed to avoid of the protein precipitation step prior to extraction. Mass transfer was benefited from high surface-to-volume ratio which is attributed to macroporous network and ordered mesostructures. Moreover, the OMSCFs provided mixed-mode hydrophobic/ion-exchange interactions towards target analytes. Thus, the detection sensitivity was greatly improved due to effective enrichment of the target analytes and elimination of matrix interferences. After optimization of several parameters related to extraction performance, the proposed method was eventually applied for the determination of three antidepressants in human plasma. The calibration curves were plotted in the range of 5-1000 ng/mL with acceptable linearity (R(2) >0.983). The limits of detection (S/N=3) of three antidepressants were in ranges of 0.3-1 ng/mL. Reproducibility was achieved with RSD less than 17.6% and the relative recoveries were in ranges of 83.6-116.9%. Taken together, TFME-DCBI-MS method offers a powerful capacity for rapid analysis to achieve much-improved sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A novel experimental system of high stability and lifetime for the laser-desorption of biomolecules.

    Science.gov (United States)

    Taherkhani, Mehran; Riese, Mikko; BenYezzar, Mohammed; Müller-Dethlefs, Klaus

    2010-06-01

    A novel laser desorption system, with improved signal stability and extraordinary long lifetime, is presented for the study of jet-cooled biomolecules in the gas phase using vibrationally resolved photoionization spectroscopy. As a test substance tryptophane is used to characterize this desorption source. A usable lifetime of above 1 month (for a laser desorption repetition rate of 20 Hz) has been observed by optimizing the pellets (graphite/tryptophane, 3 mm diameter and 6 mm length) from which the substance is laser-desorbed. Additionally, the stability and signal-to-noise ratio has been improved by averaging the signal over the entire sample pellet by synchronizing the data acquisition with the rotation of the sample rod. The results demonstrate how a combination of the above helps to produce stable and conclusive spectra of tryptophane using one-color and two-color resonant two-photon ionization studies.

  8. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry: protocol standardization and database expansion for rapid identification of clinically important molds.

    Science.gov (United States)

    Paul, Saikat; Singh, Pankaj; Rudramurthy, Shivaprakash M; Chakrabarti, Arunaloke; Ghosh, Anup K

    2017-12-01

    To standardize the matrix-assisted laser desorption ionization-time of flight mass spectrometry protocols and expansion of existing Bruker Biotyper database for mold identification. Four different sample preparation methods (protocol A, B, C and D) were evaluated. On analyzing each protein extraction method, reliable identification and best log scores were achieved through protocol D. The same protocol was used to identify 153 clinical isolates. Of these 153, 123 (80.3%) were accurately identified by using existing database and remaining 30 (19.7%) were not identified due to unavailability in database. On inclusion of missing main spectrum profile in existing database, all 153 isolates were identified. Matrix-assisted laser desorption ionization-time of flight mass spectrometry can be used for routine identification of clinically important molds.

  9. Rapid, simple, and highly sensitive analysis of drugs in biological samples using thin-layer chromatography coupled with matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Kuwayama, Kenji; Tsujikawa, Kenji; Miyaguchi, Hajime; Kanamori, Tatsuyuki; Iwata, Yuko T; Inoue, Hiroyuki

    2012-01-01

    Rapid and precise identification of toxic substances is necessary for urgent diagnosis and treatment of poisoning cases and for establishing the cause of death in postmortem examinations. However, identification of compounds in biological samples using gas chromatography and liquid chromatography coupled with mass spectrometry entails time-consuming and labor-intensive sample preparations. In this study, we examined a simple preparation and highly sensitive analysis of drugs in biological samples such as urine, plasma, and organs using thin-layer chromatography coupled with matrix-assisted laser desorption/ionization mass spectrometry (TLC/MALDI/MS). When the urine containing 3,4-methylenedioxymethamphetamine (MDMA) without sample dilution was spotted on a thin-layer chromatography (TLC) plate and was analyzed by TLC/MALDI/MS, the detection limit of the MDMA spot was 0.05 ng/spot. The value was the same as that in aqueous solution spotted on a stainless steel plate. All the 11 psychotropic compounds tested (MDMA, 4-hydroxy-3-methoxymethamphetamine, 3,4-methylenedioxyamphetamine, methamphetamine, p-hydroxymethamphetamine, amphetamine, ketamine, caffeine, chlorpromazine, triazolam, and morphine) on a TLC plate were detected at levels of 0.05-5 ng, and the type (layer thickness and fluorescence) of TLC plate did not affect detection sensitivity. In addition, when rat liver homogenate obtained after MDMA administration (10 mg/kg) was spotted on a TLC plate, MDMA and its main metabolites were identified using TLC/MALDI/MS, and the spots on a TLC plate were visualized by MALDI/imaging MS. The total analytical time from spotting of intact biological samples to the output of analytical results was within 30 min. TLC/MALDI/MS enabled rapid, simple, and highly sensitive analysis of drugs from intact biological samples and crude extracts. Accordingly, this method could be applied to rapid drug screening and precise identification of toxic substances in poisoning cases and

  10. CHARACTERIZING SOIL/WATER SORPTION AND DESORPTION BEHAVIOR OF BTEX AND PAHS USING SELECTIVE SUPERCRITICAL FLUID EXTRACTION (SFE); TOPICAL

    International Nuclear Information System (INIS)

    Steve Hawthorne

    1998-01-01

    The first goal of the proposed study was to generate initial data to determine the ability of selective SFE behavior to mimic the soil/water sorption and desorption behavior of BTEX (benzene, toluene, and xylenes) and PAHs (polycyclic aromatic hydrocarbons).Samples generated by Professor Bill Rixey's column sorption studies (aged for 2 weeks to 8 months) and desorption studies (six weeks desorption of the aged soil columns with pure water) were extracted using sequentially-stronger SFE conditions to selectively remove different fractions of each BTEX and PAH component which range from loosely to tightly bound in the soil matrices. The selective SFE results parallel the sorption/desorption leaching behavior and mechanisms determined by Professor Rixey's investigations (under separate funding) using water desorption of soil columns previously aged with BTEX and PAHs. These results justify more intensive investigations of the use of selective SFE to mimic soil/water sorption and desorption of organic pollutants related to fossil fuels which will be performed under separate funding. The second goal of the study was to determine if selective SFE extraction behavior parallels the remediation behavior displayed by PAHs currently undergoing in-situ bioremediation at a manufactured gas plant (MGP) site. Based on soil analyses of several individual PAHs (as well as total PAHs) before remediation began, and after 147 days of remediation, selective SFE successfully mimicked remediation behavior. These results strongly support the use of selective SFE to predict remediation behavior of soils contaminated with PAHs, and are expected to provide a powerful and rapid analytical tool which will be useful for determining the remediation endpoints which are necessary for environmental protection. Based on the initial success found in the present study, additional investigations into the use of SFE for predicting and monitoring the remediation behavior of PAH-contaminated soils will be

  11. Cs-137 sorption and desorption in relation to properties of 17 soils

    International Nuclear Information System (INIS)

    Kerpen, W.

    1988-01-01

    For Cs-137 sorption and desorption studies material of Ap and Ah horizons from 17 soils with wide varying soil properties was selected. The soils were: Podsol, Luvisol, Chernozem, Cambisol, Phaeozem, Arenosol, Gleysol and other soils. The Cs-137 sorption and desorption experiments were carried out in aqueous solution (20 g of soil) under standardized conditions for two reasons: (1) to determine the amounts of Cs-137 sorption, desorption and remains as a function of different soils and (2) to evaluate the soil parameters which govern the sorption, desorption processes. Concerning the second point the sorption values, the amount of 137 Cs desorbed within four desorption cycles and the 137 Cs remains after four desorption cycles were correlated with pH, grain size, sorption capacity (CEC), and other soil properties. It will be shown that generally Cs-137 sorption, desorption and remains depend primarily on the pH of the soil. The middle sand proved to be an indicator for the strenght of sorption, and desorption processes. Sorption and desorption studies lead to the same results as found in biotest experiments

  12. A rapid method to estimate Westergren sedimentation rates.

    Science.gov (United States)

    Alexy, Tamas; Pais, Eszter; Meiselman, Herbert J

    2009-09-01

    The erythrocyte sedimentation rate (ESR) is a nonspecific but simple and inexpensive test that was introduced into medical practice in 1897. Although it is commonly utilized in the diagnosis and follow-up of various clinical conditions, ESR has several limitations including the required 60 min settling time for the test. Herein we introduce a novel use for a commercially available computerized tube viscometer that allows the accurate prediction of human Westergren ESR rates in as little as 4 min. Owing to an initial pressure gradient, blood moves between two vertical tubes through a horizontal small-bore tube and the top of the red blood cell (RBC) column in each vertical tube is monitored continuously with an accuracy of 0.083 mm. Using data from the final minute of a blood viscosity measurement, a sedimentation index (SI) was calculated and correlated with results from the conventional Westergren ESR test. To date, samples from 119 human subjects have been studied and our results indicate a strong correlation between SI and ESR values (R(2)=0.92). In addition, we found a close association between SI and RBC aggregation indices as determined by an automated RBC aggregometer (R(2)=0.71). Determining SI on human blood is rapid, requires no special training and has minimal biohazard risk, thus allowing physicians to rapidly screen for individuals with elevated ESR and to monitor therapeutic responses.

  13. Experimental study on desorption characteristics of SAPO-34 and ZSM-5 zeolite

    Science.gov (United States)

    Yuan, Z. X.; Zhang, X.; Wang, W. C.; Du, C. X.; Liu, Z. B.; Chen, Y. C.

    2018-03-01

    The dynamic characteristics of SAPO-34 and ZSM-5 zeolite in the desorption process have been experimentally studied with the gravimetric method. The weight change of the test sample was recorded continually for different conditions of temperature and pressure. The curve of the desorption degree with the temperature and the pressure was obtained and discussed. With the intrinsic different micro-structure, the two zeolites showed distinguished characteristics of the desorption. In contrast to an S-shaped desorption curve of the SAPO-34, the ZSM-5 showed an exponential desorption curve. In comparison, the desorption characteristics of the ZSM-5 were better than that of the SAPO-34 in the temperature range of 40 °C 90 °C. Nevertheless, the effect of the pressure on the desorption degree was stronger for the SAPO-34 than for the ZSM-5. Further analysis revealed that the desorption speed was affected more strongly by the temperature than by the pressure.

  14. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    Science.gov (United States)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  15. Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity

    Science.gov (United States)

    Zhao, Bo; Caselli, Paola; Li, Zhi-Yun

    2018-05-01

    We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.

  16. Oxygen desorption from YBa2Cu3O(7-x) and Bi2CaSr2Cu2O(8 + delta) superconductors

    Science.gov (United States)

    Mesarwi, A.; Levenson, L. L.; Ignatiev, A.

    1991-01-01

    Oxygen desorption experiments from YBa2Cu3O(7-x) (YBCO) and Bi2CaSr2Cu2O(8 + delta) (BSCCO) superconductors were carried out using a quadrupole mass spectrometer for monitoring the desorbing species and X-ray photoemission spectroscopy for surface characterization. Molecular oxygen was found to desorb from both superconductors following photoirradiation with ultraviolet/optical radiation and subsequent heating at over 150 C. Both YBCO and BSCCO were found to have similar oxygen desorption rates and similar activation energies. The desorption data as well as the X-ray photoemission data indicate that the oxygen desorption is not intrinsic to the superconductors but rather due to molecular oxygen entrapped in the material.

  17. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Science.gov (United States)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  18. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems

    International Nuclear Information System (INIS)

    Castro, F.J.

    2000-01-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models consider simultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  19. Direct identification of bacteria from positive BacT/ALERT blood culture bottles using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry.

    Science.gov (United States)

    Mestas, Javier; Felsenstein, Susanna; Bard, Jennifer Dien

    2014-11-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is a fast and robust method for the identification of bacteria. In this study, we evaluate the performance of a laboratory-developed lysis method (LDT) for the rapid identification of bacteria from positive BacT/ALERT blood culture bottles. Of the 168 positive bottles tested, 159 were monomicrobial, the majority of which were Gram-positive organisms (61.0% versus 39.0%). Using a cut-off score of ≥1.7, 80.4% of the organisms were correctly identified to the species level, and the identification rate of Gram-negative organisms (90.3%) was found to be significantly greater than that of Gram-positive organisms (78.4%). The simplicity and cost-effectiveness of the LDT enable it to be fully integrated into the routine workflow of the clinical microbiology laboratory, allowing for rapid identification of Gram-positive and Gram-negative bacteria within an hour of blood culture positivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Evaluation of repetitive-PCR and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS for rapid strain typing of Bacillus coagulans.

    Directory of Open Access Journals (Sweden)

    Jun Sato

    Full Text Available In order to establish rapid and accurate typing method for Bacillus coagulans strains which is important for controlling in some canned foods and tea-based beverages manufacturing because of the high-heat resistance of the spores and high tolerance of the vegetative cells to catechins and chemicals, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS and repetitive-PCR (rep-PCR were evaluated. For this purpose, 28 strains of B. coagulans obtained from various culture collections were tested. DNA sequence analyses of the genes encoding 16S rRNA and DNA gyrase classified the test strains into two and three groups, respectively, regardless of their phenotypes. Both MALDI-TOF MS and rep-PCR methods classified the test strains in great detail. Strains classified in each group showed similar phenotypes, such as carbohydrate utilization determined using API 50CH. In particular, the respective two pairs of strains which showed the same metabolic characteristic were classified into the same group by both MALDI-TOF MS and rep-PCR methods separating from the other strains. On the other hand, the other strains which have the different profiles of carbohydrate utilization were separated into different groups by these methods. These results suggested that the combination of MALDI-TOF MS and rep-PCR analyses was advantageous for the rapid and detailed typing of bacterial strains in respect to both phenotype and genotype.

  1. The role of electron-stimulated desorption in focused electron beam induced deposition

    DEFF Research Database (Denmark)

    van Dorp, Willem F.; Hansen, Thomas Willum; Wagner, Jakob Birkedal

    2013-01-01

    We present the results of our study about the deposition rate of focused electron beam induced processing (FEBIP) as a function of the substrate temperature with the substrate being an electron-transparent amorphous carbon membrane. When W(CO)6 is used as a precursor it is observed that the growt......, the majority desorbs from the surface rather than dissociates to contribute to the deposit. It is important to take this into account during FEBIP experiments, for instance when determining fundamental process parameters such as the activation energy for desorption....... experiments compared to literature values is consistent with earlier findings by other authors. The discrepancy is attributed to electron-stimulated desorption, which is known to occur during electron irradiation. The data suggest that, of the W(CO)6 molecules that are affected by the electron irradiation...

  2. Defect formation and desorption of metal atoms from alkali halide crystals under low energy electron bombardment studied by optical absorption and mass spectroscopy

    International Nuclear Information System (INIS)

    Seifert, N.R.

    1993-04-01

    This work presents an extensive investigation of electronically induced desorption of ground-state alkali atoms from alkali halides and for the first time correlates directly the desorption with the stability and spatial distribution of the defects formed during bombardment. The electron impact results in the formation of stable F-centers and F-center clusters in the bulk of the crystals. In striking contrast a significant metallization of the surface is observed. Even at temperatures as low as 90 deg C the metallization is achieved within the time resolution of our detection system, which can only be explained by the rapid diffusion of hot holes. Superimposed to the fast and short diffusion of hot holes is the slow F-center diffusion. Measuring the distribution of defects with low energy ion sputtering techniques indicates that at least in the case of LiF the observed diffusion constant of F-centers agrees with values derived by using methods different from that applied here. At low temperatures the formation of F-center clusters and metal on the surface dominates. Colloid formation clearly requires higher temperatures (typically around 200 deg C). This is a strong evidence that efficient F-center diffusion is necessary for the formation of metallic particles (colloids) in the bulk of the crystals. Desorption of alkali atoms from alkali halides at temperatures around room temperature is due to weakly bound alkali atoms. For elevated temperatures the stability of the metallic clusters in the bulk of the crystals (i.e. colloids) are the rate limiting process. (author)

  3. Tritium absorption and desorption in ITER relevant materials: comparative study of tungsten dust and massive samples

    Energy Technology Data Exchange (ETDEWEB)

    Grisolia, C., E-mail: christian.grisolia@cea.fr [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Hodille, E. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Chene, J.; Garcia-Argote, S.; Pieters, G.; El-Kharbachi, A. [CEA Saclay, SCBM, iBiTec-S, PC n° 108, 91191 Gifsur-Yvette (France); Marchetti, L.; Martin, F.; Miserque, F. [CEA Saclay, DEN/DPC/SCCME/LECA, F-91191 Gif-sur-Yvette (France); Vrel, D.; Redolfi, M. [LSPM, Université Paris 13, Sorbonne Paris Cité, UPR 3407 CNRS, 93430 Villetaneuse (France); Malard, V. [CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze F-30207 (France); Dinescu, G.; Acsente, T. [NILPRP, 409 Atomistilor Street, 77125 Magurele, Bucharest (Romania); Gensdarmes, F.; Peillon, S. [IRSN, PSN-RES/SCA/LPMA, Saclay, Gif-sur-Yvette, 91192 (France); Pegourié, B. [CEA, IRFM, F-13108 Saint Paul lez Durance (France); Rousseau, B. [CEA Saclay, SCBM, iBiTec-S, PC n° 108, 91191 Gifsur-Yvette (France)

    2015-08-15

    Tritium adsorption and desorption from well characterized tungsten dust are presented. The dust used are of different types prepared by planetary milling and by aggregation technique in plasma. For the milled powder, the surface specific area (SSA) is 15.5 m{sup 2}/g. The particles are poly-disperse with a maximum size of 200 nm for the milled powder and 100 nm for the aggregation one. Prior to tritiation the particles are carefully de-oxidized. Both samples are experiencing a high tritium inventory from 5 GBq/g to 35 GBq/g. From comparison with massive samples and considering that tritium inventory increases with SSA, it is shown that surface effects are predominant in the tritium trapping process. Extrapolation to the ITER environment is undertaken with the help of a Macroscopic Rate Equation model. It is shown that, during the life time of ITER, these particles can exceed rapidly 1 GBq/g.

  4. Sorption-desorption behavior of polybrominated diphenyl ethers in soils

    International Nuclear Information System (INIS)

    Olshansky, Yaniv; Polubesova, Tamara; Vetter, Walter; Chefetz, Benny

    2011-01-01

    Polybrominated diphenyl ethers (PBDEs) are flame retardants that are commonly found in commercial and household products. These compounds are considered persistent organic pollutants. In this study, we used 4,4'-dibromodiphenyl ether (BDE-15) as a model compound to elucidate the sorption and desorption behavior of PBDEs in soils. The organic carbon-normalized sorption coefficient (K OC ) of BDE-15 was more than three times higher for humin than for bulk soils. However, pronounced desorption hysteresis was obtained mainly for bulk soils. For humin, increasing concentration of sorbed BDE-15 resulted in decreased desorption. Our data illustrate that BDE-15 and probably other PBDEs exhibit high sorption affinity to soils. Moreover, sorption is irreversible and thus PBDEs can potentially accumulate in the topsoil layer. We also suggest that although humin is probably a major sorbent for PBDEs in soils, other humic materials are also responsible for their sequestration. - Highlights: → BDE-15 exhibited pronounced desorption hysteresis. → BDE-15 sowed higher sorption affinity to humin as compared to the bulk soils. → Sequestration of PBDEs depends on soil organic matter constitutes other than humin. - Pronounced desorption hysteresis was observed for BDE-15 in natural soils.

  5. Treating high-mercury-containing lamps using full-scale thermal desorption technology.

    Science.gov (United States)

    Chang, T C; You, S J; Yu, B S; Chen, C M; Chiu, Y C

    2009-03-15

    The mercury content in high-mercury-containing lamps are always between 400 mg/kg and 200,000 mg/kg. This concentration is much higher than the 260 mg/kg lower boundary recommended for the thermal desorption process suggested by the US Resource Conservation and Recovery Act. According to a Taiwan EPA survey, about 4,833,000 cold cathode fluorescent lamps (CCFLs), 486,000 ultraviolet lamps and 25,000 super high pressure mercury lamps (SHPs) have been disposed of in the industrial waste treatment system, producing 80, 92 and 9 kg-mercury/year through domestic treatment, offshore treatment and air emissions, respectively. To deal with this problem we set up a full-scale thermal desorption process to treat and recover the mercury from SHPs, fluorescent tube tailpipes, fluorescent tubes containing mercury-fluorescent powder, and CCFLs containing mercury-fluorescent powder and monitor the use of different pre-heating temperatures and desorption times. The experimental results reveal that the average thermal desorption efficiency of SHPs and fluorescent tube tailpipe were both 99.95%, while the average thermal desorption efficiencies of fluorescent tubes containing mercury-fluorescent powder were between 97% and 99%. In addition, a thermal desorption efficiency of only 69.37-93.39% was obtained after treating the CCFLs containing mercury-fluorescent powder. These differences in thermal desorption efficiency might be due to the complexity of the mercury compounds contained in the lamps. In general, the thermal desorption efficiency of lamps containing mercury-complex compounds increased with higher temperatures.

  6. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2008-06-15

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 {sup o}C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO{sub 3} and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater.

  7. Sorption and desorption studies of chromium(VI) from nonviable cyanobacterium Nostoc muscorum biomass

    International Nuclear Information System (INIS)

    Gupta, V.K.; Rastogi, A.

    2008-01-01

    This communication presents results pertaining to the sorptive and desorptive studies carried out on chromium(VI) removal onto nonviable freshwater cyanobacterium (Nostoc muscorum) biomass. Influence of varying the conditions for removal of chromium(VI), such as the pH of aqueous solution, the dosage of biosorbent, the contact time with the biosorbent, the temperature for the removal of chromium, the effect of light metal ions and the adsorption-desorption studies were investigated. Sorption interaction of chromium on to cyanobacterial species obeyed both the first and the second-order rate equation and the experimental data showed good fit with both the Langmuir and freundlich adsorption isotherm models. The maximum adsorption capacity was 22.92 mg/g at 25 o C and pH 3.0. The adsorption process was endothermic and the values of thermodynamic parameters of the process were calculated. Various properties of the cyanobacterium, as adsorbent, explored in the characterization part were chemical composition of the adsorbent, surface area calculation by BET method and surface functionality by FTIR. Sorption-desorption of chromium into inorganic solutions and distilled water were observed and this indicated the biosorbent could be regenerated using 0.1 M HNO 3 and EDTA with upto 80% recovery. The biosorbents were reused in five biosorption-desorption cycles without a significant loss in biosorption capacity. Thus, this study demonstrated that the cyanobacterial biomass N. muscorum could be used as an efficient biosorbent for the treatment of chromium(VI) bearing wastewater

  8. Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles

    International Nuclear Information System (INIS)

    Jafari, Seyed Ali; Jamali, Abbas

    2016-01-01

    Packed-bed column process efficiency for cadmium adsorption from aqueous solution was investigated under different bed heights (2.6 to 7.5 cm) and feed flow rates (15 to 30 ml min -1 ). The column was filled with brown seaweed, Sargassum angustifolium. Three simplified models, including Bed Depth Service Time, Thomas, and Yoon- Nelson were employed for describing the experimental breakthrough curves as well as achieving design parameters. Bed lifetime was also evaluated in several consecutive sorption-desorption cycles. Cadmium concentration of 0.005mg l−1, as a standard limit for potable water, was considered as the breakthrough concentration. The maximum column performance was achieved 81% at 7.5 cm bed length and flow rate of 15 ml min -1 . Indeed, increasing the bed height increased the sorption performance and service time, while increasing the feed flow rate had a negative effect. Maximum sorption capacity value remained almost constant by the bed height changes; however, increase in the feed flow rate slightly decreased it. The modeling results revealed that the Yoon-Nelson model was more accurate than Thomas for describing the experimental breakthrough data, especially at low flow rates. Column service time predictions were surprisingly achieved using the Bed Depth Service Time model even at extrapolations. 20% reduction in column adsorption efficiency was observed at the end of four consecutive sorption-desorption cycles; however, desorption efficiencies were achieved more than 99% in each cycle.

  9. Continuous cadmium removal from aqueous solutions by seaweed in a packed-bed column under consecutive sorption-desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, Seyed Ali; Jamali, Abbas [Persian Gulf Research Institute, Persian Gulf University, 75169, Bushehr (Iran, Islamic Republic of)

    2016-04-15

    Packed-bed column process efficiency for cadmium adsorption from aqueous solution was investigated under different bed heights (2.6 to 7.5 cm) and feed flow rates (15 to 30 ml min{sup -1}). The column was filled with brown seaweed, Sargassum angustifolium. Three simplified models, including Bed Depth Service Time, Thomas, and Yoon- Nelson were employed for describing the experimental breakthrough curves as well as achieving design parameters. Bed lifetime was also evaluated in several consecutive sorption-desorption cycles. Cadmium concentration of 0.005mg l−1, as a standard limit for potable water, was considered as the breakthrough concentration. The maximum column performance was achieved 81% at 7.5 cm bed length and flow rate of 15 ml min{sup -1}. Indeed, increasing the bed height increased the sorption performance and service time, while increasing the feed flow rate had a negative effect. Maximum sorption capacity value remained almost constant by the bed height changes; however, increase in the feed flow rate slightly decreased it. The modeling results revealed that the Yoon-Nelson model was more accurate than Thomas for describing the experimental breakthrough data, especially at low flow rates. Column service time predictions were surprisingly achieved using the Bed Depth Service Time model even at extrapolations. 20% reduction in column adsorption efficiency was observed at the end of four consecutive sorption-desorption cycles; however, desorption efficiencies were achieved more than 99% in each cycle.

  10. Exciton-Promoted Desorption From Solid Water Surfaces A2

    DEFF Research Database (Denmark)

    McCoustra, M.R.S.; Thrower, J.D.

    2018-01-01

    Abstract Desorption from solid water surfaces resulting from interaction with electromagnetic and particle radiation is reviewed in the context of the role of nonthermal desorption in astrophysical environments. Experimental observations are interpreted in terms of mechanisms sharing a common basis...

  11. Impact of neutron irradiation on thermal helium desorption from iron

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xunxiang, E-mail: hux1@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Field, Kevin G. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Taller, Stephen [University of Michigan, Ann Arbor, MI 48109 (United States); Katoh, Yutai [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wirth, Brian D. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); University of Tennessee, Knoxville, TN 37996 (United States)

    2017-06-15

    The synergistic effect of neutron irradiation and transmutant helium production is an important concern for the application of iron-based alloys as structural materials in fission and fusion reactors. In this study, we investigated the impact of neutron irradiation on thermal helium desorption behavior in high purity iron. Single crystalline and polycrystalline iron samples were neutron irradiated in HFIR to 5 dpa at 300 °C and in BOR-60 to 16.6 dpa at 386 °C, respectively. Following neutron irradiation, 10 keV He ion implantation was performed at room temperature on both samples to a fluence of 7 × 10{sup 18} He/m{sup 2}. Thermal desorption spectrometry (TDS) was conducted to assess the helium diffusion and clustering kinetics by analyzing the desorption spectra. The comparison of He desorption spectra between unirradiated and neutron irradiated samples showed that the major He desorption peaks shift to higher temperatures for the neutron-irradiated iron samples, implying that strong trapping sites for He were produced during neutron irradiation, which appeared to be nm-sized cavities through TEM examination. The underlying mechanisms controlling the helium trapping and desorption behavior were deduced by assessing changes in the microstructure, as characterized by TEM, of the neutron irradiated samples before and after TDS measurements.

  12. The kinetics of hydrogen absorption/desorption within nanostructured composite Ni79.1Co18.6Cu2.3 alloy using resistometry

    International Nuclear Information System (INIS)

    Spasojević, M.; Maričić, A.; Ribić Zelenović, L.; Krstajić, N.; Spasojević, P.

    2013-01-01

    Highlights: ► Nanostructured Ni 79.1 Co 18.6 Cu 2.3 powder was obtained by electrochemical deposition. ► Correlation observed between electrical conductivity and absorbed hydrogen amount. ► Hydrogen absorption/desorption mechanism was determined. - Abstract: Ni 79.1 Co 18.6 Cu 2.3 powder was obtained by electrochemical deposition from an ammonium sulfate bath. The structure and surface morphology of the powder were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The electrochemically obtained Ni 79.1 Co 18.6 Cu 2.3 alloy contained an amorphous phase and nanocrystals with an average size of 6.8 nm of FCC phase of the solid solution of cobalt and copper in nickel. Nanocrystals were characterized by a high average microstrain value and high minimum density of chaotically distributed dislocations. X-ray analysis also showed that powder hydrogenation at an elevated temperature of up to 200 °C did not change unit cell parameters and mean crystallite size value. SEM images show the formation of two shapes of powder particles: large cauliflower-like particles and small dendritic ones. Powder pressing at 10 MPa and at 25 °C gave samples that were analyzed for hydrogen absorption/desorption within the temperature range of 160–200 °C. Changes in electrical resistivity during absorption/desorption were monitored. The reciprocal value of resistivity (electrical conductivity) was found to increase linearly with increasing amount of absorbed hydrogen. The experimental results were used to propose an absorption/desorption mechanism. The adsorbed hydrogen molecule dissociates on alloy surface, forming adsorbed atoms. Adatoms penetrate and diffuse into the bulk of the alloy, simultaneously donating their electrons to the conduction band of the alloy. The increase in the concentration of free electrons induces a decrease in electrical resistivity. The overall absorption rate during initial absorption is determined by the

  13. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  14. Sorption, desorption and leaching potential of sulfonylurea herbicides in Argentinean soils.

    Science.gov (United States)

    Azcarate, Mariela P; Montoya, Jorgelina C; Koskinen, William C

    2015-01-01

    The sulfonylurea (SUs) herbicides are used to control broadleaf weeds and some grasses in a variety of crops. They have become popular because of their low application rates, low mammalian toxicity and an outstanding herbicidal activity. Sorption is a major process influencing the fate of pesticides in soil. The objective of this study was to characterize sorption-desorption of four sulfonylurea herbicides: metsulfuron-methyl (methyl 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl)]benzoate), sulfometuron-methyl (methyl 2-[(4,6-dimethylpyrimidin-2-yl)carbamoylsulfamoyl]benzoate), rimsulfuron (1-(4,6-dimethoxypyrimidin-2-yl)-3-(3-ethylsulfonyl-2-pyridylsulfonyl)urea) and nicosulfuron (2-[(4,6-dimethoxypyrimidin-2-yl)carbamoylsulfamoyl]-N,N-dimethylnicotinamide) from different soil horizons of different landscape positions. Sorption was studied in the laboratory by batch equilibration method. Sorption coefficients (K(d-SE)) showed that rimsulfuron (K(d-SE) = 1.18 to 2.08 L kg(-1)) and nicosulfuron (K(d-SE) = 0.02 to 0.47 L kg(-1)) were more highly sorbed than metsulfuron-methyl (K(d-SE) = 0.00 to 0.05 L kg(-1)) and sulfometuron-methyl (K(d-SE) = 0.00 to 0.05 L kg(-1)). Sorption coefficients (K(d-SE)) were correlated with pH and organic carbon content. All four herbicides exhibited desorption hysteresis where the desorption coefficients (K(d-D)) > K(d-SE). To estimate the leaching potential, K(oc) and ground-water ubiquity score (GUS) were used to calculate the half-life (t1/2) required to be classified as "leacher" or "nonleacher". According to the results, rimsulfuron and nicosulfuron herbicides would be classified as leachers, but factors such as landscape position, soil depth and the rate of decomposition in surface and subsurface soils could change the classification. In contrast, these factors do not affect classification of sulfometuron-methyl and metsulfuron-methyl; they would rank as leachers.

  15. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-01-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl_2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl_2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. - Highlights: • Metal availability, desorption, and speciation were tested during phytoextraction. • Metal availability showed an initial sharp decline then a slight change in acid soils. • Metal availability changed little during

  16. Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction.

    Science.gov (United States)

    Hawthorne, Steven B; Poppendieck, Dustin G; Grabanski, Carol B; Loehr, Raymond C

    2002-11-15

    Soil and sediment samples from oil gas (OG) and coal gas (CG) manufactured gas plant (MGP) sites were selected to represent a range of PAH concentrations (150-40,000 mg/kg) and sample matrix compositions. Samples varied from vegetated soils to lampblack soot and had carbon contents from 3 to 87 wt %. SFE desorption (120 min) and water/XAD2 desorption (120 days) curves were determined and fit with a simple two-site model to determine the rapid-released fraction (F) for PAHs ranging from naphthalene to benzo[ghi]perylene. F values varied greatly among the samples, from ca. 10% to >90% for the two- and three-ring PAHs and from <1% to ca. 50% for the five- and six-ring PAHs. Release rates did not correlate with sample matrix characteristics including PAH concentrations, elemental composition (C, H, N, S), or "hard" and "softs" organic carbon, indicating that PAH release cannot easily be estimated on the basis of sample matrix composition. Fvalues for CG site samples obtained with SFE and water desorption agreed well (linear correlation coefficient, r2 = 0.87, slope = 0.93), but SFE yielded higher F values for the OG samples. These behaviors were attributed to the stronger ability of carbon dioxide than water to desorb PAHs from the highly aromatic (hard) carbon of the OG matrixes, while carbon dioxide and water showed similar abilities to desorb PAHs from the more polar (soft) carbon of the CG samples. The combined SFE and water desorption approaches should improve the understanding of PAH sequestration and release from contaminated soils and sediments and provide the basis for subsequent studies using the same samples to compare PAH release with PAH availability to earthworms.

  17. Rapid in situ detection of alkaloids in plant tissue under ambient conditions using desorption electrospray ionization.

    Science.gov (United States)

    Talaty, Nari; Takáts, Zoltán; Cooks, R Graham

    2005-12-01

    Desorption electrospray ionization (DESI) mass spectrometry is applied to the in situ detection of alkaloids in the tissue of poison hemlock (Conium maculatum), jimsonweed (Datura stramonium) and deadly nightshade (Atropa belladonna). The experiment is carried out by electrospraying micro-droplets of solvent onto native or freshly-cut plant tissue surfaces. No sample preparation is required and the mass spectra are recorded under ambient conditions, in times of a few seconds. The impact of the sprayed droplets on the surface produces gaseous ions from organic compounds originally present in the plant tissue. The effects of operating parameters, including the electrospray high voltage, heated capillary temperature, the solvent infusion rate and the carrier gas pressure on analytical performance are evaluated and optimized. Different types of plant material are analyzed including seeds, stems, leaves, roots and flowers. All the previously reported alkaloids have been detected in C. maculatum, while fifteen out of nineteen known alkaloids for D. stramonium and the principal alkaloids of A. belladonna were also identified. All identifications were confirmed by tandem mass spectrometry. Results obtained show similar mass spectra, number of alkaloids, and signal intensities to those obtained when extraction and separation processes are performed prior to mass spectrometric analysis. Evidence is provided that DESI ionization occurs by both a gas-phase ionization process and by a droplet pick-up mechanism. Quantitative precision of DESI is compared with conventional electrospray ionization mass spectrometry (after sample workup) and the RSD values for the same set of 25 dicotyledonous C. maculatum seeds (one half of each seed analyzed by ESI and the other by DESI) are 9.8% and 5.2%, respectively.

  18. Adsorption and desorption of radioactive inert gases in various materials

    International Nuclear Information System (INIS)

    Butkus, D.

    1999-01-01

    Peculiarities of the 85 Kr and 133 Xe adsorption and desorption processes in active carbon and paraffin are considered in the work. During the desorption process, the distribution of 85 Kr and 133 Xe atoms in active carbon particles is uneven: atoms in narrow micropores desorb the last. It is shown that by changing adsorption conditions the presence time of radioactive inert gases in an active carbon can be prolonged. The adsorption and desorption processes change in the adsorbent, which changes its aggregation state: adsorption occurs in a liquid absorbent and desorption - in a solid absorbent. Paraffin is just such an absorbent changing its aggregation state with low energy losses. It has been obtained that 133 Xe accumulates less in liquid paraffin that in an active carbon. The absorption of 85 Kr in paraffin is larger than in an active carbon (at 18-20 degrees Celsius), while desorption is slower. The velocity of radioactive inert gas atom motion in different places of a solid paraffin sample is different - it increases approaching the borders of the sample. Prolongation of the desorption time of radioactive inert gases from adsorbents and adsorbents in many cases is of a practical importance. In this work, it has been shown by model experiments that the intensity of adsorption and desorption processes for the same sorbents can be changed. Desorption intensity changes are related to the distribution of gas atoms on the surface of particles and in micropores. Desorption velocity decreases if inert gas atoms having entered micropores are 'closed' by condensed liquids in the environment. In this case an inert gas atom diffuses within the whole particle volume or through the condensed liquid. Radioactive inert gases 85 Kr and 133 Xe are absorbed not only in liquid paraffin but in solid one as well. Therefore, after a paraffin sample is hermetically closed in a glass dish, 85 Kr (gas) having diffused from this sample is repeatedly absorbed in it. The 85 Kr

  19. Acoustic emission during hydrogen absorption and desorption in palladium

    International Nuclear Information System (INIS)

    Ramesh, R.; Mukhopadhyay, C.K.; Jayakumar, T.; Baldev Raj

    1996-01-01

    Acoustic emission technique has been used to study charging and discharging of hydrogen in palladium. During charging, breaking of oxide film due to surface activation and saturation of hydrogen absorption have been identified by acoustic emission. In the discharging cycle, the desorption of hydrogen from the specimen leads to high AE activity immediately after initiation of discharging, followed by gradual decrease in the acoustic activity, which reaches a minimum upon completion of the desorption. The potential of the acoustic emission technique for studying the kinetics of hydrogen absorption and desorption in metals has been shown. (author)

  20. Upscaling of U (VI) desorption and transport from decimeter‐scale heterogeneity to plume‐scale modeling

    Science.gov (United States)

    Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan; Briggs, Martin A.; Day-Lewis, Frederick D.

    2015-01-01

    Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research were to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.

  1. Desorption of large organic molecules by laser-induced plasmon excitation

    International Nuclear Information System (INIS)

    Lee, I.; Callcott, T.A.

    1991-01-01

    Ejection of large organic molecules from surfaces by laser-induced electronic-excited desorption has attracted considerable interest in recent years. In addition to the importance of this effect for fundamental investigations of the ejection process, this desorption technique has been applied to the study of large, fragile molecules by mass spectrometry. In this paper, we present a new method to induce electronic excitation on the metal surface for the desorption of large organic molecules. 3 refs., 3 figs

  2. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  3. Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry.

    Science.gov (United States)

    Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas

    2014-01-01

    This review summarizes various approaches for the analysis of low molecular weight (LMW) compounds by different laser desorption/ionization mass spectrometry techniques (LDI-MS). It is common to use an agent to assist the ionization, and small molecules are normally difficult to analyze by, e.g., matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) using the common matrices available today, because the latter are generally small organic compounds themselves. This often results in severe suppression of analyte peaks, or interference of the matrix and analyte signals in the low mass region. However, intrinsic properties of several LDI techniques such as high sensitivity, low sample consumption, high tolerance towards salts and solid particles, and rapid analysis have stimulated scientists to develop methods to circumvent matrix-related issues in the analysis of LMW molecules. Recent developments within this field as well as historical considerations and future prospects are presented in this review.

  4. Mineralogic Residence and Desorption Rates of Sorbed 90Sr in Contaminated Subsurface Sediments: Implications to Future Behavior and In-Ground Stability

    International Nuclear Information System (INIS)

    PIs: John M. Zachara; Jim P. McKinley; S. M. Heald; Chongxuan Liu; Peter C. Lichtner

    2006-01-01

    The project is investigating the adsorption/desorption process of 90Sr in coarse-textured pristine and contaminated Hanford sediment with the goal to define a generalized reaction-based model for use in reactive transport calculations. While it is known that sorbed 90Sr exists in an ion exchangeable state, the mass action relationships that control the solid-liquid distribution and the mineral phases responsible for adsorption have not been defined. Many coarse-textured Hanford sediment display significant sorptivity for 90Sr, but contain few if any fines that may harbor phyllosilicates with permanent negative charge and associated cation exchange capacity. Moreover, it is not known whether the adsorption-desorption process exhibits time dependence within context of transport, and if so, the causes for kinetic behavior

  5. Bacterial desorption from food container and food processing surfaces.

    Science.gov (United States)

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  6. Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces

    CERN Document Server

    Tratnik, H; Hilleret, Noël

    2005-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption from surface adsorbates are usually the factors which in°uence pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchro- tron radiation and bombardment by energetic ions and electrons, properties like the molecular desorption yield or secondary electron yield can strongly in°uence the performance of the accelerator. In high-energy particle accelerators operating at liquid helium temperature, cold surfaces are exposed to the bombardment of energetic photons, electrons and ions. The gases released by the subsequent desorption are re-condensed on the cold surfaces and can be re-desorbed by the impinging electrons and ions. The equilibrium coverage reached on the surfaces exposed to the impact of energetic particles depends on the desorption yield of the condensed gases and can a®ect the operation of the accelerator by modifying th...

  7. Lead sorption-desorption from organic residues.

    Science.gov (United States)

    Duarte Zaragoza, Victor M; Carrillo, Rogelio; Gutierrez Castorena, Carmen M

    2011-01-01

    Sorption and desorption are mechanisms involved in the reduction of metal mobility and bioavailability in organic materials. Metal release from substrates is controlled by desorption. The capacity of coffee husk and pulp residues, vermicompost and cow manure to adsorb Pb2+ was evaluated. The mechanisms involved in the sorption process were also studied. Organic materials retained high concentrations of lead (up to 36,000 mg L(-1)); however, the mechanisms of sorption varied according to the characteristics of each material: degree of decomposition, pH, cation exchange capacity and percentage of organic matter. Vermicompost and manure removed 98% of the Pb from solution. Lead precipitated in manure and vermicompost, forming lead oxide (PbO) and lead ferrite (PbFe4O7). Adsorption isotherms did not fit to the typical Freundlich and Langmuir equations. Not only specific and non-specific adsorption was observed, but also precipitation and coprecipitation. Lead desorption from vermicompost and cow manure was less than 2%. For remediation of Pb-polluted sites, the application of vermicompost and manure is recommended in places with alkaline soils because Pb precipitation can be induced, whereas coffee pulp residue is recommended for acidic soils where Pb is adsorbed.

  8. Desorption of metals from Cetraria islandica (L. Ach. Lichen using solutions simulating acid rain

    Directory of Open Access Journals (Sweden)

    Čučulović Ana A.

    2014-01-01

    Full Text Available Desorption of metals K, Al, Ca, Mg, Fe, Ba, Zn, Mn, Cu and Sr from Cetraria islandica (L. with solutions whose composition was similar to that of acid rain, was investigated. Desorption of metals from the lichen was performed by five successive desorption processes. Solution mixtures containing H2SO4, HNO3 and H2SO4-HNO3 were used for desorption. Each solution had three different pH values: 4.61, 5.15 and 5.75, so that the desorptions were performed with nine different solutions successively five times, always using the same solution volume. The investigated metals can be divided into two groups. One group was comprised of K, Ca and Mg, which were desorbed in each of the five desorption processes at all pH values used. The second group included Al, Fe, Zn, Ba, Mn and Sr; these were not desorbed in each individual desorption and not at all pH values, whereas Cu was not desorbed at all under any circumstances. Using the logarithmic dependence of the metal content as a function of the desorption number, it was found that potassium builds two types of links and is connected with weaker links in lichen. Potassium is completely desorbed, 80% in the first desorption, and then gradually in the following desorptions. Other metals are linked with one weaker link (desorption 1-38% and with one very strong link (desorption below the metal detection limit. [Projekat Ministarstva nauke Republike Srbije, br. III43009 i br. ON 172019

  9. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter, Fabiano André; Ferreira, Tamara Santos; Sinhorin, Adilson Paulo; Lima, Larissa Borges de; Morais, Leidimar Alves de; Pacheco, Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diu...

  10. Bile salts at the air-water interface: adsorption and desorption.

    Science.gov (United States)

    Maldonado-Valderrama, J; Muros-Cobos, J L; Holgado-Terriza, J A; Cabrerizo-Vílchez, M A

    2014-08-01

    Bile salts (BS) are bio-surfactants which constitute a vital component in the process of fat digestion. Despite the importance of the interfacial properties in their biological role, these have been scarcely studied in the literature. In this work, we present the adsorption-desorption profiles of two BS (NaTC and NaGDC) including dilatational rheology. Findings from this study reveal very different surface properties of NaTC and NaGDC which originate from different complexation properties relevant to the digestion process. Dynamic adsorption curves show higher adsorption rates for NaTC and suggest the existence of various conformational regimes in contrast to NaGDC which presents only one conformational regime. This is corroborated by analysis of the adsorption isotherms and more in detail by the rheological behaviour. Accordingly, the dilatational response at 1Hz displays two maxima of the dilatational modulus for NaTC as a function of bulk concentration, in contrast to NaGDC which displays only one maximum. The desorption profiles reveal that NaTC adopts an irreversibly adsorbed form at high surface coverage whereas NaGDC fully desorbs from the surface within the whole range of concentrations used. Analysis of the adsorption-desorption profiles provides new insight into the surface properties of BS, suggesting a surface complexation of NaTC. This knowledge can be useful since through interfacial engineering we might control the extent of lipolysis providing the basis for the rational design of food products with tailored digestibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Influence of surface coverage on the chemical desorption process

    Energy Technology Data Exchange (ETDEWEB)

    Minissale, M.; Dulieu, F., E-mail: francois.dulieu@obspm.fr [LERMA, Université de Cergy Pontoise et Observatoire de Paris, UMR 8112 du CNRS. 5, mail Gay Lussac, 95031 Cergy Pontoise (France)

    2014-07-07

    In cold astrophysical environments, some molecules are observed in the gas phase whereas they should have been depleted, frozen on dust grains. In order to solve this problem, astrochemists have proposed that a fraction of molecules synthesized on the surface of dust grains could desorb just after their formation. Recently the chemical desorption process has been demonstrated experimentally, but the key parameters at play have not yet been fully understood. In this article, we propose a new procedure to analyze the ratio of di-oxygen and ozone synthesized after O atoms adsorption on oxidized graphite. We demonstrate that the chemical desorption efficiency of the two reaction paths (O+O and O+O{sub 2}) is different by one order of magnitude. We show the importance of the surface coverage: for the O+O reaction, the chemical desorption efficiency is close to 80% at zero coverage and tends to zero at one monolayer coverage. The coverage dependence of O+O chemical desorption is proved by varying the amount of pre-adsorbed N{sub 2} on the substrate from 0 to 1.5 ML. Finally, we discuss the relevance of the different physical parameters that could play a role in the chemical desorption process: binding energy, enthalpy of formation, and energy transfer from the new molecule to the surface or to other adsorbates.

  12. Sorption-desorption dynamics of radiocaesium in organic matter soils

    International Nuclear Information System (INIS)

    Valcke, E.; Cremers, A.

    1994-01-01

    A systematic study has been carried out on the radiocaesium sorption properties of 25 soils (forest, peat) covering organic matter (OM) contents in the range of 10-97%. Predictions are made for radiocaesium partitioning between micaceous Frayed Edge Sites (FES) and regular exchange sites (RES) on the basis of specific radiocaesium interception potentials of the soil and overall exchange capacity. It is shown that for soils with a very high OM content (>80%), significant fractions are present in a readily reversible form in the OM phase. In soils of low-medium OM content (<40%), only a very minor fraction is present in the OM exchange complex. Experimental findings, based on a desorption screening with a variety of desorption agents are in agreement with these predictions. On the basis of a study of sorption kinetics, some additional tools are available for identifying problem soils. In cases of very high OM content, radiocaesium adsorption is completed within hours demonstrating the involvement of the OM sites. In soils for which interception occurs in the FES, sorption continues to proceed for periods of 2-3 weeks. In conclusion, some examples are presented on radiocaesium desorption using ion exchangers as radiocaesium sinks in promoting desorption. For a peaty soil, near quantitative desorption is accomplished. For forest soils with OM contents in a range of 10-40%, fixation levels of 30-50% are demonstrated

  13. Effects of H2O and H2O2 on thermal desorption of tritium from stainless steel

    International Nuclear Information System (INIS)

    Quinlan, M. J.; Shmayda, W. T.; Lim, S.; Salnikov, S.; Chambers, Z.; Pollock, E.; Schroeder, W. U.

    2008-01-01

    Tritiated stainless steel was subjected to thermal desorption at various temperatures, different temperature profiles, and in the presence of different helium carrier gas additives. In all cases the identities of the desorbing tritiated species were characterized as either water-soluble or insoluble. The samples were found to contain 1.1 mCi±0.4 mCi. Approximately ninety-five percent of this activity was released in molecular water-soluble form. Additives of H 2 O or H 2 O 2 to dry helium carrier gas increase the desorption rate and lower the maximum temperature to which the sample must be heated, in order to remove the bulk of the tritium. The measurements validate a method of decontamination of tritiated steel and suggest a technique that can be used to further explore the mechanisms of desorption from tritiated metals. (authors)

  14. Adsorption-desorption and leaching of pyraclostrobin in Indian soils.

    Science.gov (United States)

    Reddy, S Navakishore; Gupta, Suman; Gajbhiye, Vijay T

    2013-01-01

    Pyraclostrobin is a new broad-spectrum foliar applied and seed protectant fungicide of the strobilurin group. In this paper, adsorption-desorption of pyraclostrobin has been investigated in three different soils viz. Inceptisol (sandy loam, Delhi), Vertisol (sandy clay, Hyderabad) and Ultisol (sandy clay loam, Thrissur). Effect of organic matter and clay content on sorption was also studied in Inceptisol of Delhi. Leaching potential of pyraclostrobin as influenced by rainfall was studied in intact soil columns to confirm the results of adsorption-desorption studies. The adsorption studies were carried out at initial concentrations of 0.05, 0.1, 0.5, 1 and 1.5 μg mL(-1). The distribution coefficient (Kd) values in three test soils ranged from 4.91 to 18.26 indicating moderate to high adsorption. Among the three test soils, adsorption was the highest in Ultisol (Kd 18.26), followed by Vertisol (Kd 9.87) and Inceptisol (Kd 4.91). KF value was also highest for Ultisol soil (66.21), followed by Vertisol (40.88) and Inceptisol (8.59). S-type adsorption isotherms were observed in all the three test soils. Kd values in organic carbon-removed soil and clay-removed soil were 3.57 and 2.83 respectively, indicating lower adsorption than normal Inceptisol. Desorption studies were carried out at initial concentrations of 0.5, 1 and 1.5 μg mL(-1). Desorption was the greatest in Inceptisol, followed by Vertisol and Ultisol. Amounts of pyraclostrobin desorbed in three desorption cycles for different concentrations were 23.1-25.3%, 9.4-20.7% and 8.1-13.6% in Inceptisol, Vertisol and Ultisol respectively. Desorption was higher in clay fraction-removed and organic carbonremoved soils than normal Inceptisol. Desorption was slower than adsorption in all the test soils, indicating hysteresis effect (with hysteresis coefficient values varying from 0.05 to 0.20). Low values of hysteresis coefficient suggest high hysteresis effect indicating easy and strong adsorption, and slow

  15. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  16. Desorption of absorbed iron in bean root and leaf tissues

    International Nuclear Information System (INIS)

    Jooste, J.H.; De Bruyn, J.A.

    1979-01-01

    The effect of different desorption media on the amount of absorbed Fe (from a solution of FeCl 3 in 0,5 mM CaCl 2 ) retained by leaf discs and excised root tips of bean plants was investigated. Attempts were also made to determine the effect of desorption on the intracellular distribution of Fe. Desorption in water or an FeCl 3 solution had no pronounced effect on the amount of absorbed Fe retained by either the leaf or root tissues. However, Na 2 -EDTA was able to desorb a considerable portion of the absorbed Fe, especially in root tissue. This applies to Fe absorbed from solutions of FeCl 3 and Fe-EDDHA. Desorption by the chelate removed Fe from practically all the different particulate fractions of both root and leaf tissues, but desorption following the longer absorption periods resulted in an increase in the Fe content of the 'soluble' fraction. The possibility that Na 2 -EDTA causes an increased permeability of cell membranes seems likely. The view that removal of Ca by the chelate causes this increase in permeability could not be confirmed [af

  17. Laser desorption mass spectrometry for biomolecule detection and its applications

    Science.gov (United States)

    Winston Chen, C. H.; Sammartano, L. J.; Isola, N. R.; Allman, S. L.

    2001-08-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications.

  18. Laser desorption mass spectrometry for biomolecule detection and its applications

    International Nuclear Information System (INIS)

    Winston Chen, C.H.; Allman, S.L.; Sammartano, L.J.; Isola, N.R.

    2001-01-01

    During the past few years, we developed and used laser desorption mass spectrometry for biomolecule detections. Matrix-assisted laser desorption/ionization (MALDI) was successfully used to detect DNA fragments with the size larger than 3000 base pairs. It was also successfully used to sequence DNA with both enzymatic and chemical degradation methods to produce DNA ladders. We also developed MALDI with fragmentation for direct DNA sequencing for short DNA probes. Since laser desorption mass spectrometry for DNA detection has the advantages of fast speed and no need of labeling, it has a great potential for molecular diagnosis for disease and person identification by DNA fingerprinting. We applied laser desorption mass spectrometry to succeed in the diagnosis of cystic fibrosis and several other nerve degenerative diseases such as Huntington's disease. We also succeeded in demonstrating DNA typing for forensic applications

  19. Positron-annihilation-induced ion desorption from TiO2(110)

    Science.gov (United States)

    Tachibana, T.; Hirayama, T.; Nagashima, Y.

    2014-05-01

    We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.

  20. Inelastic surface collisions and the desorption of massive molecular ions

    Energy Technology Data Exchange (ETDEWEB)

    Macfarlane, R D [Texas A and M Univ., College Station (USA). Dept. of Chemistry

    1983-01-01

    The interaction of high energy ions in the region of electronic stopping (1 MeV u/sup -1/) stimulates the desorption of massive molecular ions of biomolecules such as insulin. The experimental details of the measurements are given with some examples of application for analytical mass spectrometry. Studies on the role of the incident ion (accelerator beam experiments) are reviewed as well as the contribution of the matrix to the desorption-ionization process. How the electronic relaxation process couples to desorption-ionization is a central question in understanding the overall mechanism of the process.

  1. Catalitic effect of Co on hydrogen desorption form nanostucturated magnesium hydride

    Directory of Open Access Journals (Sweden)

    Matović Ljiljana Lj.

    2008-01-01

    Full Text Available To study the influence of 3d transition metal addition on desorption kinetics of MgH2 ball milling of MgH2-Co blends was performed under Ar. Microstructural and morphological characterization, performed by XRD and SEM, show a huge correlation with thermal stability and hydrogen desorption properties investigated by DSC. A complex desorption behavior is correlated with the dispersion of the metal additive particles on hydride matrix. The activation energy for H2 desorption from MgH2-Co composite was calculated from both non-isothermal and isothermal methods to be 130 kJ/mol which means that mutually diffusion and nucleation and growth of new phase control the dehydration process.

  2. Qualitative and quantitative analysis of complex temperature-programmed desorption data by multivariate curve resolution

    Science.gov (United States)

    Rodríguez-Reyes, Juan Carlos F.; Teplyakov, Andrew V.; Brown, Steven D.

    2010-10-01

    The substantial amount of information carried in temperature-programmed desorption (TPD) experiments is often difficult to mine due to the occurrence of competing reaction pathways that produce compounds with similar mass spectrometric features. Multivariate curve resolution (MCR) is introduced as a tool capable of overcoming this problem by mathematically detecting spectral variations and correlations between several m/z traces, which is later translated into the extraction of the cracking pattern and the desorption profile for each desorbate. Different from the elegant (though complex) methods currently available to analyze TPD data, MCR analysis is applicable even when no information regarding the specific surface reaction/desorption process or the nature of the desorbing species is available. However, when available, any information can be used as constraints that guide the outcome, increasing the accuracy of the resolution. This approach is especially valuable when the compounds desorbing are different from what would be expected based on a chemical intuition, when the cracking pattern of the model test compound is difficult or impossible to obtain (because it could be unstable or very rare), and when knowing major components desorbing from the surface could in more traditional methods actually bias the quantification of minor components. The enhanced level of understanding of thermal processes achieved through MCR analysis is demonstrated by analyzing three phenomena: i) the cryogenic desorption of vinyltrimethylsilane from silicon, an introductory system where the known multilayer and monolayer components are resolved; ii) acrolein hydrogenation on a bimetallic Pt-Ni-Pt catalyst, where a rapid identification of hydrogenated products as well as other desorbing species is achieved, and iii) the thermal reaction of Ti[N(CH 3) 2] 4 on Si(100), where the products of surface decomposition are identified and an estimation of the surface composition after the

  3. Moisture sorption–desorption characteristics and the corresponding thermodynamic properties of carvedilol phosphate

    Directory of Open Access Journals (Sweden)

    Ravikiran Allada

    2017-01-01

    Full Text Available Aims: Carvedilol phosphate (CDP is a nonselective beta-blocker used for the treatment of heart failures and hypertension. In this work, moisture sorption–desorption characteristics and thermodynamic properties of CDP have been investigated. Materials and Methods: The isotherms were determined using dynamic vapor sorption analyzer at different humidity conditions (0%–90% relative humidity and three pharmaceutically relevant temperatures (20°C, 30°C, and 40°C. The experimental sorption data determined were fitted to various models, namely, Brunauer–Emmett–Teller; Guggenheim-Anderson-De Boer (GAB; Peleg; and modified GAB. Isosteric heats of sorption were evaluated through the direct use of sorption isotherms by means of the Clausius-Clapeyron equation. Statistical Analysis Used: The sorption model parameters were determined from the experimental sorption data using nonlinear regression analysis, and mean relative percentage deviation (P, correlation (Correl, root mean square error, and model efficiency were considered as the criteria to select the best fit model. Results: The sorption–desorption isotherms have sigmoidal shape – confirming to Type II isotherms. Based on the statistical data analysis, modified GAB model was found to be more adequate to explain sorption characteristics of CDP. It is noted that the rate of adsorption and desorption is specific to the temperature at which it was being studied. It is observed that isosteric heat of sorption decreased with increasing equilibrium moisture content. Conclusions: The calculation of the thermodynamic properties was further used to draw an understanding of the properties of water and energy requirements associated with the sorption behavior. The sorption–desorption data and the set of equations are useful in the simulation of processing, handling, and storage of CDP and further behavior during manufacture and storage of CDP formulations.

  4. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    Science.gov (United States)

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction

  5. Study of the mechanisms of heavy-ion induced desorption on accelerator-relevant materials

    International Nuclear Information System (INIS)

    Bender, Markus

    2008-01-01

    The ion beam loss induced desorption is a performance limitation for low charge state heavy ion accelerators. If charge exchanged projectile ions get lost onto the beam pipe, desorption of gas is stimulated resulting in a pressure increase inside of the synchrotron and thus, a dramatically reduction of the beam life time. To minimize the amount of desorbed gas an experimental program has been started to measure the desorption yields (released gas molecules per incident ion) of various materials and different projectile ions. The present work is a contribution to the understanding of the physical processes behind the ion beam loss induced desorption. The yield measurements by the pressure rise method have been combined for the rst time with in situ ion beam analysis technologies such as ERDA and RBS. With this unique method the desorption behavior of a sample can be correlated to its surface and bulk properties. The performed experiments with 1,4 MeV/u Xenon-Ions show that the ion induced desorption is mainly a surface effect. Sputtered oxide layers or impurities do not contribute to the desorbed gas significantly. Nevertheless bulk properties play an important role in the desorption strength. Pure metallic samples desorb less gas than isolating materials under swift heavy ion irradiation. From the experimental results it was possible to estimate the desorption yields of various materials under ion bombardment by means of an extended inelastic thermal-spike-model. The extension is the combination of the thermal-spike's temperature map with thermal desorption. Within this model the ion induced desorption can be regarded as the release of adsorbates from a transient overheated spot on the samples surface around the ion impact. Finally a copper substrate with a gold coated surface was developed and proposed as a suitable material for a beam loss collimator with minimum desorption to ensure the performance of GSI's SIS18 in high current beam operation. (orig.)

  6. Sorption and desorption of indaziflam degradates in several agricultural soils

    Directory of Open Access Journals (Sweden)

    Diego Gonçalves Alonso

    2016-04-01

    Full Text Available ABSTRACT Processes regulating pesticide fate in the environment are influenced by the physicochemical properties of pesticides and soils. Sorption and desorption are important processes as they regulate the movement of pesticides in soil. Although sorption-desorption is widely studied for herbicides, studies involving their metabolites in soil are scarce. Sorption and desorption of indaziflam metabolites (indaziflam-triazinediamine (FDAT, indaziflam-triazine-indanone (ITI and indaziflam-carboxilic acid (ICA were investigated in six Brazilian (BRA soils and three United States (USA soils with different physicochemical properties. The Freundlich equation described sorption of the metabolites for all soils (R2 > 0.98; 1/n ~ 1. Sorption order (Kf was ITI > ICA > FDAT. Mean values of Kf,oc were 453, 289, and 81 (BRA and 444, 48, and 48 (USA for metabolites ITI, ICA, and FDAT respectively. Desorption was hysteretic for all metabolites in all soils. These results suggest that these metabolites fall in the classification range of mobile to moderately mobile in soils.

  7. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  8. Adsorption/desorption properties of vacuum materials for the 6 GeV synchrotron

    International Nuclear Information System (INIS)

    Krauss, A.R.

    1985-01-01

    Considerable attention must be paid to the vacuum and adsorption/desorption properties of all materials installed inside the vacuum envelope if the design goals of the 6 GeV synchrotron are to be met. Unfortunately, the data is very sparse in several key areas. Additionally, some procedures normally associated with good vacuum practice, such as air baking, may prove to be totally unsuitable on the basis of desorption properties. We present here a brief discussion of the adsorption, outgassing, electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD) properties of vacuum materials as they relate to the design of a 6 GeV synchrotron

  9. Investigations on ion-beam induced desorption from cryogenic surfaces

    International Nuclear Information System (INIS)

    Maurer, Christoph

    2017-01-01

    A central component of FAIR, the Facility for Antiproton and Ion Research, will be the superconducting heavy ion synchrotron SIS100, which is supposed to provide reliable, high intensity beams for various applications. Its beam intensity is governed by the space charge limit, while the maximum energy is determined by the machine's magnetic rigidity. That means, ions with higher charge state can be accelerated to a higher energy, but with less intensity. For highest intensity beams, intermediate charge states have to be used instead of high charge state ions. This alleviates the issue of space charge but gives rise to dynamic vacuum effects, which also limit beam intensity: beam particles collide with residual gas particles, which leads to charge exchange and their subsequent loss. Impacting on the chamber wall, these ions release adsorbed gas particles. This process is called desorption and leads to a localized increase in pressure, which in turn causes more charge exchange. After a few rounds of self amplification, this can lead to total beam loss. This ''runaway-desorption'' is typically the main beam intensity limiting process for intermediate charge state (heavy) ion beams. The extent of this phenomenon is governed by two factors: the initial beam intensity and the desorption yield. The latter is examined within the scope of this thesis. Special emphasis is placed on the influence of the target's temperature, since the SIS100 will be a superconducting machine with cryogenic vacuum chamber walls. In order to investigate this topic, an experimental setup has been devised, built at the SIS18 and taken into commission. Based on the experience gained during operation, it has been continuously improved and extended. Another central innovation presented in this thesis is the use of gas dynamics simulations for an improved method of data analysis. Using this technique, environmental conditions like the chamber geometry and the connected

  10. Searching out the hydrogen absorption/desorption limiting reaction factors: Strategies allowing to increase kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Zeaiter, Ali, E-mail: ali.zeaiter@femto-st.fr; Chapelle, David; Nardin, Philippe

    2015-10-05

    Highlights: • A macro scale thermodynamic model that simulates the response of a FeTi-X hydride tank is performed, and validated experimentally. • A sensibility study to identify the most influent input variables that can changes very largely the reaction rate. - Abstract: Hydrogen gas has become one of the most promising energy carriers. Main breakthrough concerns hydrogen solid storage, specially based on intermetallic material use. Regarding the raw material abundance and cost, the AB type alloy FeTi is an auspicious candidate to store hydrogen. Its absorption/desorption kinetics is a basic hindrance to common use, compared with more usual hydrides. First, discussions based on literature help us identifying the successive steps leading to metal hydriding, and allow to introduce the physical parameters which drive or limit the reaction. This analysis leads us to suggest strategies in order to increase absorption/desorption kinetics. Attention is then paid to a thermofluidodynamic model, allowing to describe a macroscopic solid storage reactor. Thus, we can achieve a simulation which describes the overall reaction inside the hydrogen reactor and, by varying the sub-mentioned parameters (thermal conductivity, the powder granularity, environment heat exchange…), we attempt to hierarchy the reaction limiting factors. These simulations are correlated to absorption/desorption experiments for which pressure, temperature and hydrogen flow are recorded.

  11. Desorption of organic molecules with fast incident atomic and polyatomic ions

    International Nuclear Information System (INIS)

    Hunt, J.E.; Salehpour, M.; Fishel, D.L.

    1989-01-01

    In 1974, Macfarlane and coworkers introduced a new mass spectrometric technique based on desorption-ionization of sample molecules from solid targets by the impact of fast heavy ions (fission fragments) from 252 Cf. The process of ion-induced desorption of molecular ions from surfaces is not yet fully understood, although a large amount of experimental data related to the mechanism has been published. This paper concerns the use of fast incident polyatomic ions to induce desorption of secondary molecular ions of valine and chlorophyll from surfaces. Polyatomic ions are unique in that they are a collection of temporally and spatially correlated atoms. The main finding in this study is that incident polyatomic ions produce drastic enhancements in the secondary ion yields over atomic ions. Also, two types of nonlinear effects in desorption have been observed and will be discussed

  12. Desorption by Femtosecond Laser Pulses : An Electron-Hole Effect?

    OpenAIRE

    D. M., NEWNS; T. F., HEINZ; J. A., MISEWICH; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center; IBM Research Division, T. J. Watson Research Center

    1992-01-01

    Desorption of molecules from metal surfaces induced by femtosecond visible laser pulses has been reported. Since the lattice temperature rise is insufficient to explain desorption, an electronic mechanism is clearly responsible. It is shown that a theory based on direct coupling between the center-of-mass degree of freedom of the adsorbate and the electron-hole excitations of the substrate provides a satisfactory explanation of the various experimental findings.

  13. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  14. Gas desorption properties of ammonia borane and metal hydride composites

    International Nuclear Information System (INIS)

    Matin, M.R.

    2009-01-01

    'Full text': Ammonia borane (NH 3 BH 3 ) has been of great interest owing to its ideal combination of low molecular weight and high H 2 storage capacity of 19.6 mass %, which exceeds the current capacity of gasoline. DOE's year 2015 targets involve gravimetric as well as volumetric energy densities. In this work, we have investigated thermal decomposition of ammonia borane and calcium hydride composites at different molar ratio. The samples were prepared by planetary ball milling under hydrogen gas atmosphere pressure of 1Mpa at room temperature for 2, and 10 hours. The gas desorption properties were examined by thermal desorption mass spectroscopy (TDMS). The identification of phases was carried out by X-ray diffraction. The results obtain were shown in fig (a),(b),and (c). Hydrogen desorption properties were observed at all molar ratios, but the desorption temperature is significantly lower at around 70 o C at molar ratio 1:1 as shown in fig (c), and unwanted gas (ammonia) emissions were remarkably suppressed by mixing with the calcium hydride. (author)

  15. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  16. Rapid rate sintering of nanocrystalline ZrO2-3 mol% Y2O3

    International Nuclear Information System (INIS)

    Chen, D.J.; Mayo, M.J.

    1996-01-01

    Conventional ramp-and-hold sintering with a wide range of heating rates was conducted on submicrometer and nanocrystalline ZrO 2 -3 mol% Y 2 O 3 powder compacts. Although rapid heating rates have been reported to produce high density/fine grain size products for many submicrometer and smaller starting powders, the application of this technique to ZrO 2 -3 mol% Y 2 O 3 produced mixed results. In the case of submicrometer ZrO 2 -3 mol% Y 2 O 3 , neither densification nor grain growth was affected by the heating rate used. In the case of nanocrystalline ZrO 2 -3 mol% Y 2 O 3 , fast heating rates severely retarded densification and had a minimal effect on grain growth. The large adverse effect of fast heating rates on the densification of the nanocrystalline powder was traced to a thermal gradient/differential densification effect. Microstructural evidence suggests that the rate of densification greatly exceeded the rate of heat transfer in this material; consequently, the sample interior was not able to densify before being geometrically constrained by a fully dense shell which formed at the sample exterior. This finding implies that rapid rate sintering will meet severe practical constraints in the manufacture of bulk nanocrystalline ZrO 2 -3 mol% Y 2 O 3 specimens

  17. Low energy electron stimulated desorption from DNA films dosed with oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Mirsaleh-Kohan, Nasrin; Bass, Andrew D.; Cloutier, Pierre; Massey, Sylvain; Sanche, Leon [Groupe en sciences des radiations, Faculte de medecine et des sciences de la sante, Universite de Sherbrooke, Sherbrooke, Quebec J1H 5N4 (Canada)

    2012-06-21

    Desorption of anions stimulated by 1-18 eV electron impact on self-assembled monolayer (SAM) films of single DNA strands is measured as a function of film temperature (50-250 K). The SAMs, composed of 10 nucleotides, are dosed with O{sub 2}. The OH{sup -} desorption yields increase markedly with exposure to O{sub 2} at 50 K and are further enhanced upon heating. In contrast, the desorption yields of O{sup -}, attributable to dissociative electron attachment to trapped O{sub 2} molecules decrease with heating. Irradiation of the DNA films prior to the deposition of O{sub 2} shows that this surprising increase in OH{sup -} desorption, at elevated temperatures, arises from the reaction of O{sub 2} with damaged DNA sites. These results thus appear to be a manifestation of the so-called 'oxygen fixation' effect, well known in radiobiology.

  18. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-11-01

    Full Text Available We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes (Zhang et al., 2014. Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF, where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS, TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level

  19. Organometallics and quaternary ammonium salts affect calcium ion desorption from lecithin liposome membranes

    International Nuclear Information System (INIS)

    Kral, T.E.; Kuczera, J.; Przestalski, S.

    2001-01-01

    The objective of the present work was to compare the effects of groups of tin and lead organometallic compounds and their mixtures with amphiphilic quaternary ammonium salts (QAS) on the process of calcium ion desorption from lecithin liposome membranes, as dependent on the properties of the hydrophilic and hydrophobic parts of QAS. In the investigations the method of radioactive labels was applied. Synergism and antagonism in the action of both groups of compounds were found. The effectiveness of the cooperation depended more on chain length of QAS compounds than on the size and polarity of their hydrophobic parts. The most effective of all compounds studied was a the mixture of benzyldimethylammonium chloride in a mixture with tripropyltin. Since the rate of calcium desorption proved to be a good measure of efficacy of biologically active surfactants, it seems that the conclusions reached in this paper may be useful for choosing compounds which are able to decontaminate the environment polluted with heavy metals. (orig.)

  20. Study on hydrogen absorption/desorption properties of uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Hiroshi; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1996-10-01

    Hydrogen absorption/desorption properties of two U-Mn intermetallic compounds, U{sub 6}Mn and UMn{sub 2}, were investigated. U{sub 6}Mn absorbed hydrogen and the hydrogen desorption pressure of U{sub 6}Mn obtained from this experiment was higher than that of U, which was considered to be the effect of alloying, whereas UMn{sub 2} was not observed to absorb hydrogen up to 50 atm at room temperature. (author)

  1. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  2. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure.

    Science.gov (United States)

    Yang, Xi; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Yang, Zhongyu; Ma, Yueqiang; Feng, Tiecheng; Cui, Xiaoxu

    2018-05-01

    This work was undertaken to investigate the behaviors and kinetics of toluene adsorption and desorption on activated carbons with varying pore structure. Five kinds of activated carbon from different raw materials were selected. Adsorption isotherms and breakthrough curves for toluene were measured. Langmuir and Freundlich equations were fitted to the equilibrium data, and the Freundlich equation was more suitable for simulating toluene adsorption. The process consisted of monolayer, multilayer and partial active site adsorption types. The effect of the pore structure of the activated carbons on toluene adsorption capacity was investigated. The quasi-first-order model was more suitable for describing the process than the quasi-second-order model. The adsorption data was also modeled by the internal particle diffusion model and it was found that the adsorption process could be divided into three stages. In the external surface adsorption process, the rate depended on the specific surface area. During the particle diffusion stage, pore structure and volume were the main factors affecting adsorption rate. In the final equilibrium stage, the rate was determined by the ratio of meso- and macro-pores to total pore volume. The rate over the whole adsorption process was dominated by the toluene concentration. The desorption behavior of toluene on activated carbons was investigated, and the process was divided into heat and mass transfer parts corresponding to emission and diffusion mechanisms, respectively. Physical adsorption played the main role during the adsorption process. Copyright © 2017. Published by Elsevier B.V.

  3. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  4. Fast and reliable diagnosis of XDR Acinetobacter baumannii meningitis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Brunetti, Grazia; Ceccarelli, Giancarlo; Giordano, Alessandra; Navazio, Anna Sara; Vittozzi, Pietro; Venditti, Mario; Raponi, Giammarco

    2018-01-01

    Bacterial meningitis is a medical emergency needing quick and timely diagnosis. Even though meningitis caused by Acinetobacter baumannii is relatively rare, it is associated with high mortality rates especially in neurosurgery patients and represents a serious therapeutic problem due to the limited penetration of effective antibiotics into the cerebrospinal fluid. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) has been effectively used as a rapid method for microbial identification. In this case report we identified A. baumanni by MALDI-TOF technique directly from the CSF drawn from the external ventricular drainage of a patient with severe confusional state and signs of meningism. Simultaneously the antibiotic susceptibility test was performed by automated method from the pellet of the broth-enriched sample. The MALDI-TOF technique allowed microbial identification in less than 30 minutes, and the susceptibility test result was available in eight hours, thus allowing a fast diagnosis ready for prompt and targeted antimicrobial therapy.

  5. Desorption, dissociation and orientation of oxygen admolecules on a reconstructed platinum(110)(1x2) surface studied by thermal desorption and near-edge X-ray-absorption fine-structure

    International Nuclear Information System (INIS)

    Ohno, Yuichi; Matsushima, Tatsuo; Tanaka, Shin-ichiro; Kamada, Masao

    1993-01-01

    The desorption, dissociation and orientation of oxygen admolecules on a reconstructed Pt(110)(1x2) were studied by means of TDS combined with isotope tracer, NEXAFS, and angle-resolved TDS. The admolecules below half a monolayer lie on the bottom of the trough, being oriented along it. The molecules adsorbed additionally are lying on declining terraces. The desorption flux of the former species shows a simple cosine distribution, suggesting that the molecule is not localized on the bottom in the desorption event. (author)

  6. Laser-Induced Fluorescence Decay of 2-Methyl-, 2-Methoxy-, and 2-Ethylnaphthlene on α-Alumina during Temperature Programmed Desorption

    Directory of Open Access Journals (Sweden)

    Bradly B. Baer

    2013-01-01

    Full Text Available The decay of electronically excited molecular films of 2-methylnaphthalene (2-MN, 2-methoxynaphthalene (2-MeON, and 2-ethylnaphthalene (2-EN on a crystal of α-alumina was monitored as a function of temperature with temperature programmed desorption (TPD experiments. By assuming an exponential decay, the rate constants of the relaxation to the ground state were observed to have two components (±20% by laser induced fluorescence (LIF. For the 2-MeON, 2-MN, and 2-EN excimer, the longer components were 35, 25, and 23 × 106 s−1, respectively. Rate constants for the trap fluorescence for 2-MeON, 2-MN, and 2-EN were 100, 44, and 23×106 s−1, respectively. In separate experiments, the effect of a molecule that does not fluoresce and has a lower desorption temperature than the fluorophores was studied by deposition of a bilayer. 1-Chlorohexane (1-CH was chosen as the second layer to the fluorophore and the results gave clues to the complexity of the surface dynamics that occur as the surface is heated. For these bilayer systems, a second excimer formed during the TPD subsequent to the desorption of 1-CH, and their rates are given in parenthesis: for 2-MeON, 2-MN, and 2-EN, the long components were 30 (36, 25 (45, and 23 (42 × 106 s−1, respectively.

  7. Film growth, adsorption and desorption kinetics of indigo on SiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Scherwitzl, Boris, E-mail: b.scherwitzl@tugraz.at; Resel, Roland; Winkler, Adolf [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz (Austria)

    2014-05-14

    Organic dyes have recently been discovered as promising semiconducting materials, attributable to the formation of hydrogen bonds. In this work, the adsorption and desorption behavior, as well as thin film growth was studied in detail for indigo molecules on silicon dioxide with different substrate treatments. The material was evaporated onto the substrate by means of physical vapor deposition under ultra-high vacuum conditions and was subsequently studied by Thermal Desorption Spectroscopy (TDS), Auger Electron Spectroscopy, X-Ray Diffraction, and Atomic Force Microscopy. TDS revealed initially adsorbed molecules to be strongly bonded on a sputter cleaned surface. After further deposition a formation of dimers is suggested, which de-stabilizes the bonding mechanism to the substrate and leads to a weakly bonded adsorbate. The dimers are highly mobile on the surface until they get incorporated into energetically favourable three-dimensional islands in a dewetting process. The stronger bonding of molecules within those islands could be shown by a higher desorption temperature. On a carbon contaminated surface no strongly bonded molecules appeared initially, weakly bonded monomers rather rearrange into islands at a surface coverage that is equivalent to one third of a monolayer of flat-lying molecules. The sticking coefficient was found to be unity on both substrates. The desorption energies from carbon covered silicon dioxide calculated to 1.67 ± 0.05 eV for multilayer desorption from the islands and 0.84 ± 0.05 eV for monolayer desorption. Corresponding values for desorption from a sputter cleaned surface are 1.53 ± 0.05 eV for multilayer and 0.83 ± 0.05 eV for monolayer desorption.

  8. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    Science.gov (United States)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  9. Reliable and reproducible method for rapid identification of Nocardia species by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    Science.gov (United States)

    Toyokawa, Masahiro; Kimura, Keigo; Nishi, Isao; Sunada, Atsuko; Ueda, Akiko; Sakata, Tomomi; Asari, Seishi

    2013-01-01

    Recently, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been challenged for the identification of Nocardia species. However, the standard ethanol-formic acid extraction alone is insufficient in allowing the membrane proteins of Nocardia species to be ionized by the matrix. We therefore aimed to establish our new extraction method for the MALDI-TOF MS-based identification of Nocardia species isolates. Our modified extraction procedure is through dissociation in 0.5% Tween-20 followed by bacterial heat-inactivation, mechanical breaking of the cell wall by acid-washed glass beads and protein extraction with formic acid and acetonitrile. As reference methods for species identification, full-length 16S rRNA gene sequencing and some phenotypical tests were used. In a first step, we made our own Nocardia database by analyzing 13 strains (13 different species including N. elegans, N. otitidiscaviarum, N. asiatica, N. abscessus, N. brasiliensis, N. thailandica, N. farcinica, N. nova, N. mikamii, N. cyriacigeorgica, N. asteroids, Nocardiopsis alba, and Micromonospora sp.) and registered to the MALDI BioTyper database. Then we established our database. The analysis of 12 challenge strains using the our database gave a 100% correct identification, including 8 strains identified to the species level and 4 strains to the genus level (N. elegans, N. nova, N. farcinica, Micromonospora sp.) according to the manufacture's log score specifications. In the estimation of reproducibility of our method intended for 4 strains, both within-run and between-run reproducibility were excellent. These data indicates that our method for rapid identification of Nocardia species is with reliability, reproducibility and cost effective.

  10. Oxygen Sorption and Desorption Properties of Selected Lanthanum Manganites and Lanthanum Ferrite Manganites

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Skou, Eivind M.; Jacobsen, Torben

    2015-01-01

    Temperature‐programmed desorption (TPD) with a carrier gas was used to study the oxygen sorption and desorption properties of oxidation catalysts and solid‐oxide fuel cell (SOFC) cathode materials (La0.85Sr0.15)0.95MnO3+δ (LSM) and La0.60Sr0.40Fe0.80Mn0.20O3‐δ (LSFM). The powders were characterized...... by X‐ray diffractometry, atomic force microscopy (AFM), and BET surface adsorption. Sorbed oxygen could be distinguished from oxygen originating from stoichiometry changes. The results indicated that there is one main site for oxygen sorption/desorption. The amount of sorbed oxygen was monitored over...... time at different temperatures. Furthermore, through data analysis it was shown that the desorption peak associated with oxygen sorption is described well by second‐order desorption kinetics. This indicates that oxygen molecules dissociate upon adsorption and that the rate‐determining step...

  11. Study of adsorption and desorption of water on Li4SiO4

    International Nuclear Information System (INIS)

    Schauer, V.; Schumacher, G.; Kernforschungszentrum Karlsruhe GmbH

    1989-01-01

    Lithium orthosilicate is one of the candidate materials for tritium breeding in a fusion reactor blanket. The release of tritium from this material depens on diffusion in the bulk and on desorption from the surface of the material which is usually covered by adsorbed water. Adsorption and desorption of water was examined to gain an insight into the release of tritium from the surface. Temperature controlled desorption experiments with lithium orthosilicate powder show desorption peaks which are assigned to the desorption of physisorbed water. At temperatures above 390 K and partial pressures up to 1.6 mbar water is absorbed in the first layer on the surface only. Immersion experiments gave much too high values of the heat of immersion for spray dried powder but reasonable 82 kJ/mol of water for spheres of 0.5 mm diameter produced from molten orthosilicate. (orig.)

  12. Trace level detection of explosives in solution using leidenfrost phenomenon assisted thermal desorption ambient mass spectrometry.

    Science.gov (United States)

    Saha, Subhrakanti; Mandal, Mridul Kanti; Chen, Lee Chuin; Ninomiya, Satoshi; Shida, Yasuo; Hiraoka, Kenzo

    2013-01-01

    The present paper demonstrates the detection of explosives in solution using thermal desorption technique at a temperature higher than Leidenfrost temperature of the solvent in combination with low temperature plasma (LTP) ionization. Leidenfrost temperature of a solvent is the temperature above which the solvent droplet starts levitation instead of splashing when placed on a hot metallic surface. During this desorption process, slow and gentle solvent evaporation takes place, which leads to the pre-concentration of less-volatile explosive molecules in the droplet and the explosive molecules are released at the last moment of droplet evaporation. The limits of detection for explosives studied by using this thermal desorption LTP ionization method varied in a range of 1 to 10 parts per billion (ppb) using a droplet volume of 20 μL (absolute sample amount 90-630 fmol). As LTP ionization method was applied and ion-molecule reactions took place in ambient atmosphere, various ion-molecule adduct species like [M+NO2](-), [M+NO3](-), [M+HCO3](-), [M+HCO4](-) were generated together with [M-H](-) peak. Each peak was unambiguously identified using 'Exactive Orbitrap' mass spectrometer in negative ionization mode within 3 ppm deviation compared to its exact mass. This newly developed technique was successfully applied to detect four explosives contained in the pond water and soil sample with minor sample pre-treatment and the explosives were detected with ppb levels. The present method is simple, rapid and can detect trace levels of explosives with high specificity from solutions.

  13. Rapid quantification of biomarkers during kerogen microscale pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Stott, A.W.; Abbott, G.D. [Fossil Fuels and Environmental Geochemistry NRG, The University, Newcastle-upon-Tyne (United Kingdom)

    1995-02-01

    A rapid, reproducible method incorporating closed system microscale pyrolysis and thermal desorption-gas chromatography/mass spectrometry has been developed and applied to the quantification of sterane biomarkers released during pyrolysis of the Messel oil shale kerogen under confined conditions. This method allows a substantial experimental concentration-time data set to be collected at accurately controlled temperatures, due to the low thermal inertia of the microscale borosilicate glass reaction vessels, which facilitates kinetic studies of biomarker reactions during kerogen microscale pyrolysis

  14. Thermal desorption of deuterium implanted into beryllium

    International Nuclear Information System (INIS)

    Markin, A.V.; Chernikov, V.N.; Zakharov, A.P.

    1995-01-01

    By means of TDS measurements it is shown that the desorption of deuterium from Be implanted with 5 keV D ions to fluences, Φ, from 1x10 20 D/m 2 to 1x10 21 D/m 2 proceeds in one high temperature stage B, while at Φ ≥ 1.2x10 21 D/m 2 one more stage A is added. The desorption maximum A is narrow and consists of two peaks A 1 and A 2 at about 460 K and 490 K, respectively. Peak A 1 is attributed to the desorption of deuterium from the walls of opened channels formed under D ion implantation. Peak A 2 is a consequence of the opening of a part of closed bubbles/channels to the outer surface. The position of maximum B shifts noticeably and nonsteadily on the fluence in a range from 850 to 1050 K. The origin of this maximum is the liberation of D atoms bound at vacancy complexes discussed previously by Wampler. The dependence of Tm(B) on the fluence is governed by the interaction of freely migrating D atoms with partly opened or fully closed gas cavity arrangements which are created under temperature ramping, but differently in specimens implanted with D ions to different fluences

  15. Probe-Substrate Distance Control in Desorption Electrospray Ionization

    Science.gov (United States)

    Yarger, Tyler J.; Yuill, Elizabeth M.; Baker, Lane A.

    2018-03-01

    We introduce probe-substrate distance (Dps)-control to desorption electrospray ionization (DESI) and report a systematic investigation of key experimental parameters. Examination of voltage, flow rate, and nebulizing gas pressure suggests as Dps decreases, the distance-dependent spray current increases, until a critical point. At the critical point the relationship inverts, and the spray current decreases as the probe moves closer to the surface due to constriction of solution flow by the nebulizing gas. Dps control was used to explore the use of spray current as a signal for feedback positioning, while mass spectrometry imaging was performed simultaneously. Further development of this technique is expected to find application in study of structure-function relationships for clinical diagnostics, biological investigation, and materials characterization. [Figure not available: see fulltext.

  16. Photo-stimulated desorption from water and methane clusters on the surface of solid neon

    International Nuclear Information System (INIS)

    Arakawa Ichiri; Matsumoto Dairo; Takekuma Shinichi; Tamura Reimi; Miura Takashi

    2012-01-01

    Photo-stimulated desorption of ions from methane and water heterocluster on the surface of solid neon was studied. The desorption yields of the variety of photo-desorbed species showed strong dependence on the composition and the size of the mother cluster. It was found that the presence of a water molecule in the cluster significantly enhanced, or was almost essential for, the desorption of any species observed. Systematic investigation of the correlation between the cluster size and the desorption yield of each ion has revealed the mother cluster which yields the each desorbed ion.

  17. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.

    Science.gov (United States)

    Cheng, Hefa; Reinhard, Martin

    2006-06-01

    Hydrophobic micropores can play a significant role in controlling the long-term release of organic contaminants from geosorbents. We describe a technique for quantifying the total and the hydrophobic mineral micropore volumes based on the mass of trichloroethylene (TCE) sorbed in the slow-releasing pores under dry and wet conditions, respectively. Micropore desorption models were used to differentiate the fast- and slow-desorbing fractions in desorption profiles. The micropore environment in which organic molecules were sorbed in the presence of water was probed by studying the transformation of a water-reactive compound (2,2-dichloropropane or 2,2-DCP). For sediment from an alluvial aquifer, the total and hydrophobic micropore volumes estimated using this technique were 4.65 microL/g and 0.027 microL/g (0.58% of total), respectively. In microporous silica gel A, a hydrophobic micropore volume of 0.038 microL/g (0.035% of reported total) was measured. The dehydrohalogenation rate of 2,2-DCP sorbed in hydrophobic micropores of the sediment was slower than that reported in bulk water, indicating an environment of low water activity. The results suggest that hydrolyzable organic contaminants sorbed in hydrophobic micropores react slower than in bulk water, consistent with the reported persistence of reactive contaminants in natural soils.

  18. The kinetics of hydrogen absorption/desorption within nanostructured composite Ni{sub 79.1}Co{sub 18.6}Cu{sub 2.3} alloy using resistometry

    Energy Technology Data Exchange (ETDEWEB)

    Spasojevic, M., E-mail: ljiljana.spasojevic51@yahoo.com [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Faculty of Agronomy Cacak, University of Kragujevac, Cara Dusana 34, 32000 Cacak, Republic of Serbia (Serbia); Maricic, A. [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Ribic Zelenovic, L. [Joint Laboratory for Advanced Materials of the Serbian Academy of Science and Arts, Section for Amorphous Systems, Svetog Save 65, 32000 Cacak, Republic of Serbia (Serbia); Faculty of Agronomy Cacak, University of Kragujevac, Cara Dusana 34, 32000 Cacak, Republic of Serbia (Serbia); Krstajic, N.; Spasojevic, P. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Republic of Serbia (Serbia)

    2013-02-25

    electrons induces a decrease in electrical resistivity. The overall absorption rate during initial absorption is determined by the dissociation of adsorbed hydrogen molecules. At a later stage, the diffusion of H{sup +} ions into the alloy bulk was found to be the rate determining step. The rate of the desorption reaction during the initial stage is governed by the recombination of adsorbed hydrogen atoms. Over time, H{sup +} diffusion becomes the slowest step in the mechanism, hence determining the desorption rate.

  19. Adsorption, desorption and biodegradation in soil of CrylAb toxin protein from Bt transgenic rice

    International Nuclear Information System (INIS)

    Wang Haiyan; Ye Qingfu

    2004-01-01

    The equilibrium adsorption and binding of CrylAb toxin from Bt transgenic rice, to 7 different soils and the biodegradation of the bound toxin were studied. The adsorption rate of Bt in soils improved with decreasing of the added Bt purified protein concentration. Adsorption rate (125 and 780 nm/ml) in powdery-muddy paddy soil, Fluvio-marine yellow loamy and Coastal saline soil were 24.85% and 40.81%, 9.1% and 31.67%, 12.47% and 30.75%, respectively. Desorption rate in the soils dropped with content of soil-absorbed protein decreased. Its adsorption ratio in powdery-muddy paddy soil was 12.95% and 5.88%, respectively. The relationship between adsorption amount and concentration of Bt purified protein in different soils was notably positive correlation (P 0 e -λt ); Half life of Bt protein in soils was among 15.2-97.6 d; Degradation of pruified Bt protein was rapid at the initial incubation time (30 d), but slow at 150d incubation; The degradation of purified Bt protein in Intertidal sandy soil was the slowest with half-life of 97.6d. The protein in the soil amended with 1.25 μg/g could be still detectable after incubation of 345d; the degradation of purified Bt protein in Coastal saline soil and Aquic light saline sandy soil were faster. Their half-lives were 19.6 d and 15.2 d, respecitvely. The residue time of Bt purified protein in the soils was all more than 150 d. (authors)

  20. Sorption and desorption of carbamazepine from water by smectite clays.

    Science.gov (United States)

    Zhang, Weihao; Ding, Yunjie; Boyd, Stephen A; Teppen, Brian J; Li, Hui

    2010-11-01

    Carbamazepine is a prescription anticonvulsant and mood stabilizing pharmaceutical administered to humans. Carbamazepine is persistent in the environment and frequently detected in water systems. In this study, sorption and desorption of carbamazepine from water was measured for smectite clays with the surface negative charges compensated with K+, Ca2+, NH4+, tetramethylammonium (TMA), trimethylphenylammonium (TMPA) and hexadecyltrimethylammonium (HDTMA) cations. The magnitude of sorption followed the order: TMPA-smectite≥HDTMA-smectite>NH4-smectite>K-smectite>Ca-smectite⩾TMA-smectite. The greatest sorption of carbamazepine by TMPA-smectite is attributed to the interaction of conjugate aromatic moiety in carbamazepine with the phenyl ring in TMPA through π-π interaction. Partitioning process is the primary mechanism for carbamazepine uptake by HDTMA-smectite. For NH4-smectite the urea moiety in carbamazepine interacts with exchanged cation NH4+ by H-bonding hence demonstrating relatively higher adsorption. Sorption by K-, Ca- and TMA-smectites from water occurs on aluminosilicate mineral surfaces. These results implicate that carbamazepine sorption by soils occurs primarily in soil organic matter, and soil mineral fractions play a secondary role. Desorption of carbamazepine from the sorbents manifested an apparent hysteresis. Increasing irreversibility of desorption vs. sorption was observed for K-, Ca-, TMA-, TMPA- and HDTMA-clays as aqueous carbamazepine concentrations increased. Desorption hysteresis of carbamazepine from K-, Ca-, NH4-smectites was greater than that from TMPA- and HDTMA-clays, suggesting that the sequestrated carbamazepine molecules in smectite interlayers are more resistant to desorption compared to those sorbed by organic phases in smectite clays. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Science.gov (United States)

    Chuang, K.-J.; Fedoseev, G.; Qasim, D.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2018-02-01

    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as ∼10‑8–10‑9 n H, contradicts the generally accepted idea that at 10 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO–H2CO–CH3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2CO and CH3OH. We find that for temperatures in the range of 10 to 14 K, an upper limit of 0.24 ± 0.02 for the overall elemental carbon loss upon CO conversion into CH3OH. This corresponds with an effective reaction desorption fraction of ≤0.07 per hydrogenation step, or ≤0.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.

  2. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    OpenAIRE

    Gloria Lourdes Dimas-Rivera; Javier Rivera de la Rosa; Carlos J. Lucio-Ortiz; José Antonio De los Reyes Heredia; Virgilio González González; Tomás Hernández

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection betwe...

  3. Rate equation analysis of hydrogen uptake on Si (100) surfaces

    International Nuclear Information System (INIS)

    Inanaga, S.; Rahman, F.; Khanom, F.; Namiki, A.

    2005-01-01

    We have studied the uptake process of H on Si (100) surfaces by means of rate equation analysis. Flowers' quasiequilibrium model for adsorption and desorption of H [M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, Surf. Sci. 396, 227 (1998)] is extended so that in addition to the H abstraction (ABS) and β 2 -channel thermal desorption (TD) the proposed rate equation further includes the adsorption-induced desorption (AID) and β 1 -TD. The validity of the model is tested by the experiments of ABS and AID rates in the reaction system H+D/Si (100). Consequently, we find it can well reproduce the experimental results, validating the proposed model. We find the AID rate curve as a function of surface temperature T s exhibits a clear anti-correlation with the bulk dangling bond density versus T s curve reported in the plasma-enhanced chemical vapor deposition (CVD) for amorphous Si films. The significance of the H chemistry in plasma-enhanced CVD is discussed

  4. Study of the mechanisms of matrix assisted laser desorption / ionization

    International Nuclear Information System (INIS)

    Manuelli, Pascal

    1995-01-01

    This research thesis aims at a better knowledge of some aspects of a complex mechanism: the matrix-assisted laser desorption/ionization (MALDI). The author first proposes a comparative analysis of results obtained by time-of-flight (TOF) mass spectrometry and by Fourier transform mass spectrometry. He reports the study of the matrix role (notably a polymeric matrix) as a matter submitted to laser desorption. In this respect, the influence of the incident wavelength has been studied. The author also reports a comparative of ions produced by matrix laser desorption (study performed by Fourier transform mass spectrometry) and of neutral molecules (study performed by flash pyrolysis coupled with gas chromatography and with mass spectrometry). Finally, results obtained on derivatives and complexes based on beta-cyclodextrins highlight benefits as well as limitations of this technique [fr

  5. Site Specificity in Femtosecond Laser Desorption of Neutral H Atoms from Graphite(0001)

    DEFF Research Database (Denmark)

    Frigge, R.; Hoger, T.; Siemer, B.

    2010-01-01

    Femtosecond laser excitation and density functional theory reveal site and vibrational state specificity in neutral atomic hydrogen desorption from graphite induced by multiple electronic transitions. Multimodal velocity distributions witness the participation of ortho and para pair states...... of chemisorbed hydrogen in the desorption process. Very slow velocities of 700 and 400  ms-1 for H and D atoms are associated with the desorption out of the highest vibrational state of a barrierless potential....

  6. The effect of activated carbon on partitioning, desorption, and biouptake of native polychlorinated biphenyls in four freshwater sediments.

    Science.gov (United States)

    Sun, Xueli; Ghosh, Upal

    2008-11-01

    The present study evaluated the effect of activated carbon amendment in four freshwater sediments from the Great Lakes (North America) areas of concern with a wide range of sediment geochemical characteristics (0.83-5.1% total organic carbon) and polychlorinated biphenyl (PCB) concentrations (0.33-84.7 microg/g). The work focused on understanding the impact of activated carbon amendment on PCB aqueous partitioning, PCB desorption characteristics, and PCB biouptake in a freshwater oligochaete (Lumbriculus variegatus). The results showed that PCB aqueous equilibrium concentrations, rapid desorption fractions, and biouptake by the oligochaete were reduced after activated carbon amendment. Addition of activated carbon at a dose of 0.5-fold native organic carbon reduced PCB bioaccumulation by 42% for Niagara River sediment, 85% for Grasse River sediment, 74% for Milwaukee River sediment 1, and 70% for Milwaukee River sediment 2. A linear relationship was observed between log biota-sediment accumulation factor and the first 6-h desorption fractions for each PCB homologue for treated and untreated sediments. Water-lipid bioconcentration factors for PCB congeners were largely conserved after amendment with activated carbon. Our present results suggest that at steady state, changes in the aqueous PCB concentrations can be used to predict changes in PCB bioaccumulation in deposit-feeding organisms. Thus, use of advanced pore-water measurement techniques, such as solid-phase extraction passive samplers, may be suitable for long-term monitoring of treatment performance.

  7. Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Modica, F.S.; Lane, G.S.; Vaarkamp, M.

    1993-01-01

    Hydrogen temperature-programmed desorption (TPD) of supported platinum catalysts, Pt/KLTL, Pt/H-LTL, Pt/K-MAZ, Pt/H-MAZ, Pt/-Al2O3, and Pt/SiO2, was performed after hydrogen reduction at 300, 450, or 650°C. For all catalysts, reversible desorption of chemisorbed hydrogen occurred at approximately

  8. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary

    International Nuclear Information System (INIS)

    Li, Y.-H.

    1979-01-01

    The pronounced desorption of Ba and 226 Ra from river-borne sediments in the Hudson estuary can be explained quantitatively by the drastic decrease in the distribution coefficients of both elements from a fresh to a salty water medium. The desorption in estuaries can augment, at least, the total global river fluxes of dissolved Ba and 226 Ra by one and nine times, respectively. The desorption flux of 226 Ra from estuaries accounts for 17-43% of the total 226 Ra flux from coastal sediments. Two mass balance models depicting mixing and adsorption-desorption processes in estuaries are discussed. (Auth.)

  9. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    Science.gov (United States)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  10. Adsorption and desorption characteristics of crystal violet in bottom ash column

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-06-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  11. ADSORPTION AND DESORPTION CHARACTERISTICS OF CRYSTAL VIOLET IN BOTTOM ASH COLUMN

    Directory of Open Access Journals (Sweden)

    Puthiya Veetil Nidheesh

    2012-01-01

    Full Text Available This study described adsorption of Crystal Violet (CV by bottom ash in fixed-bed column mode. Equilibrium of adsorption was studied in batch mode for finding adsorption capacity of bottom ash. In fixed bed column adsorption, the effects of bed height, feed flow rate, and initial concentration were studied by assessing breakthrough curve. The slope of the breakthrough curve decreased with increasing bed height. The breakthrough time and exhaustion time were decreased with increasing influent CV concentration and flow rates. The effect of bed depth, flow rate and CV concentration on the adsorption column design parameters were analyzed. Bed depth service time (BDST model was applied for analysis of crystal violet adsorption in the column. The adsorption capacity of bottom ash was calculated at 10% breakthrough point for different flow rates and concentrations. Desorption studies reveals that recovery of CV from bottom ash was effective by using CH3COOH than H2SO4, NaOH, HCl and NaCl solutions.

  12. WATER ADSORPTION AND DESORPTION ISOTHERMS ON MILK POWDER: II. WHOLE MILK

    Directory of Open Access Journals (Sweden)

    Edgar M. Soteras

    2014-03-01

    Full Text Available The aim of this research was the determination of adsorption and desorption isotherms of cow whole milk powder. The experiments have been carried out at 15, 25 and 40 ºC, in ranges of moisture and water activity characteristic of normal conditions in which the processes of drying, packaging and storage are developed. By studying the influence of the temperature on the experimental plots, the isosteric adsorption heat was determined. Experimental data were correlated to the referential model of Guggenheim, Anderson and Boer (GAB. For both, adsorption and desorption, a good model fit was observed. The isotherms showed very similar shapes between them and, by comparing adsorption and desorption isotherms, the phenomenon of hysteresis was confirmed.

  13. Bulk-mediated surface diffusion: non-Markovian desorption dynamics

    International Nuclear Information System (INIS)

    Revelli, Jorge A; Budde, Carlos E; Prato, Domingo; Wio, Horacio S

    2005-01-01

    Here we analyse the dynamics of adsorbed molecules within the bulk-mediated surface diffusion framework, when the particle's desorption mechanism is characterized by a non-Markovian process, while the particle's adsorption as well as its motion in the bulk is governed by Markovian dynamics. We study the diffusion of particles in both semi-infinite and finite cubic lattices, analysing the conditional probability to find the system on the reference absorptive plane as well as the surface dispersion as functions of time. The results are compared with known Markovian cases showing the differences that can be exploited to distinguish between Markovian and non-Markovian desorption mechanisms in experimental situations

  14. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    International Nuclear Information System (INIS)

    Bartram, Michael E.; Creighton, J. Randall

    1999-01-01

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N 15 H 3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N 2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia

  15. Low-temperature thermal reduction of graphene oxide: In situ correlative structural, thermal desorption, and electrical transport measurements

    Science.gov (United States)

    Lipatov, Alexey; Guinel, Maxime J.-F.; Muratov, Dmitry S.; Vanyushin, Vladislav O.; Wilson, Peter M.; Kolmakov, Andrei; Sinitskii, Alexander

    2018-01-01

    Elucidation of the structural transformations in graphene oxide (GO) upon reduction remains an active and important area of research. We report the results of in situ heating experiments, during which electrical, mass spectrometry, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM) measurements were carried out correlatively. The simultaneous electrical and temperature programmed desorption measurements allowed us to correlate the onset of the increase in the electrical conductivity of GO by five orders of magnitude at about 150 °C with the maxima of the rates of desorption of H2O, CO, and CO2. Interestingly, this large conductivity change happens at an intermediate level of the reduction of GO, which likely corresponds to the point when the graphitic domains become large enough to enable percolative electronic transport. We demonstrate that the gas desorption is intimately related to (i) the changes in the chemical structure of GO detected by XPS and Raman spectroscopy and (ii) the formation of nanoscopic holes in GO sheets revealed by TEM. These in situ observations provide a better understanding of the mechanism of the GO thermal reduction.

  16. SPS Ion Induced Desorption Experiment

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This experiment will give a study about the induced desorption from heavy ion (Indium ion run from week 45 in SPS T4-H8 area) impacting LHC type graphite collimator. 4 different samples are located in the 4 chambers 90° one to each other: pure graphite, graphite with copper coating, graphite with NEG coating, 316LN stainless steal (reference).

  17. Stable Isotope Systematics of Coalbed Gas during Desorption and Production

    Directory of Open Access Journals (Sweden)

    Martin Niemann

    2017-06-01

    Full Text Available The stable carbon isotope ratios of coalbed methane (CBM demonstrate diagnostic changes that systematically vary with production and desorption times. These shifts can provide decisive, predictive information on the behaviour and potential performance of CBM operations. Samples from producing CBM wells show a general depletion in 13C-methane with increasing production times and corresponding shifts in δ13C-CH4 up to 35.8‰. Samples from canister desorption experiments show mostly enrichment in 13C for methane with increasing desorption time and isotope shifts of up to 43.4‰. Also, 13C-depletion was observed in some samples with isotope shifts of up to 32.1‰. Overall, the magnitudes of the observed isotope shifts vary considerably between different sample sets, but also within samples from the same source. The δ13C-CH4 values do not have the anticipated signature of methane generated from coal. This indicates that secondary processes, including desorption and diffusion, can influence the values. It is also challenging to deconvolute these various secondary processes because their molecular and isotope effects can have similar directions and/or magnitudes. In some instances, significant alteration of CBM gases has to be considered as a combination of secondary alteration effects.

  18. Thermal desorption of deuterium from Be, and Be with helium bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, A.V.; Van Veen, A.; Busker, G.J. [Delft Univ. of Technology (Netherlands). Interfaculty Reactor Inst.

    1998-01-01

    Deuterium desorption measurements carried out on a single-crystalline beryllium sample are presented. Deuterium ions were implanted at room temperature at the energy of 0.7 and 1.2 keV up to doses ranging from 10{sup 19} to 3.6 x 10{sup 21} m{sup -2}. In order to eliminate the influence of the beryllium-oxide surface layer, before the implantation the surface of the sample was cleaned by argon sputtering. After the implantation the sample was annealed up to 1200 K at a constant rate of 10 K/s. Deuterium released from the sample was monitored by a calibrated quadrupole mass-spectrometer. The desorption spectra revealed two different contributions. One is a well defined and very narrow peak centered around 450 K. This peak is observed only at high implantation doses > 7.8 x 10{sup 20} m{sup -2}, which is close to the deuterium saturation limit of 0.3 D/Be and is related to deuterium release from blisters or interconnected bubbles. The activation energy of 1.1 eV and the threshold implantation dose are consistent with the values reported in literature. The second contribution in the release spectra is found in the temperature range from 600 to 900 K and is present throughout the whole range of the implantation doses. The activation energies corresponding to this release lie in the range between 1.8 and 2.5 eV and are ascribed to the release from deuterium-vacancy type of defects. In a number of experiments the deuterium implantation was preceded by helium implantation followed by partial annealing to create helium bubbles. The resulting deuterium desorption spectra indicate that deuterium detrapping from helium bubbles is characterized by an activation energy of 2.7 eV. (author)

  19. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    Directory of Open Access Journals (Sweden)

    Gloria Lourdes Dimas-Rivera

    2014-01-01

    Full Text Available In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA. The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface.

  20. First-principles calculations of helium and neon desorption from cavities in silicon

    International Nuclear Information System (INIS)

    Eddin, A Charaf; Pizzagalli, L

    2012-01-01

    Combining density functional theory, the nudged elastic band technique, and the ultradense fluid model, we investigated the desorption process of He and Ne in silicon. Our results show that the internal surfaces of gas-filled bubbles are not a limiting factor during desorption experiments, since the surface reconstruction opens diffusion paths easier than in the bulk. We show that the vibrational contribution to the energy of helium in the bulk has to be considered in order to determine realistic pressures in the bubbles, when comparing experiments and simulations. At the maximum of desorption, an average pressure of 1-2 GPa is computed. (paper)

  1. Characterizing particle-scale equilibrium adsorption and kinetics of uranium(VI) desorption from U-contaminated sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Liu, Chongxuan; Kent, Douglas B.; Zachara, John M.

    2013-01-01

    Rates of U(VI) release from individual dry-sieved size fractions of a field-aggregated, field-contaminated composite sediment from the seasonally saturated lower vadose zone of the Hanford 300-Area were examined in flow-through reactors to maintain quasi-constant chemical conditions. The principal source of variability in equilibrium U(VI) adsorption properties of the various size fractions was the impact of variable chemistry on adsorption. This source of variability was represented using surface complexation models (SCMs) with different stoichiometric coefficients with respect to hydrogen ion and carbonate concentrations for the different size fractions. A reactive transport model incorporating equilibrium expressions for cation exchange and calcite dissolution, along with rate expressions for aerobic respiration and silica dissolution, described the temporal evolution of solute concentrations observed during the flow-through reactor experiments. Kinetic U(VI) desorption was well described using a multirate SCM with an assumed lognormal distribution for the mass-transfer rate coefficients. The estimated mean and standard deviation of the rate coefficients were the same for all Micropore volumes, assessed using t-plots to analyze N2 desorption data, were also the same for all dry-sieved micropore volumes and mass-transfer rate properties. Pore volumes for dry-sieved size fractions exceeded values for the corresponding wet-sieved fractions. We hypothesize that repeated field wetting and drying cycles lead to the formation of aggregates and/or coatings containing (micro)pore networks which provided an additional mass-transfer resistance over that associated with individual particles. The 2–8 mm fraction exhibited a larger average and standard deviation in the distribution of mass-transfer rate coefficients, possibly caused by the abundance of microporous basaltic rock fragments.

  2. Heavy-Ion-Induced Electronic Desorption of Gas from Metals

    CERN Document Server

    Molvik, A W; Mahner, E; Kireeff Covo, M; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Krämer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2007-01-01

    During heavy-ion operation in several particle accelerators worldwide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion-induced gas desorption scales with the electronic energy loss (dEe/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  3. Unconventional resource's production under desorption-induced effects

    Directory of Open Access Journals (Sweden)

    S. Sina Hosseini Boosari

    2016-06-01

    We have developed a numerical model to study the effect of changes in porosity, permeability and compaction on four major U.S. shale formations considering their Langmuir isotherm desorption behavior. These resources include; Marcellus, New Albany, Barnett and Haynesville Shales. First, we introduced a model that is a physical transport of single-phase gas flow in shale porous rock. Later, the governing equations are implemented into a one-dimensional numerical model and solved using a fully implicit solution method. It is found that the natural gas production is substantially affected by desorption-induced porosity/permeability changes and geomechancis. This paper provides valuable insights into accurate modeling of unconventional reservoirs that is more significant when an even small correction to the future production prediction can enormously contribute to the U.S. economy.

  4. Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces

    Science.gov (United States)

    Chaabouni, H.; Diana, S.; Nguyen, T.; Dulieu, F.

    2018-04-01

    Context. Formamide (NH2CHO) and methylamine (CH3NH2) are known to be the most abundant amine-containing molecules in many astrophysical environments. The presence of these molecules in the gas phase may result from thermal desorption of interstellar ices. Aims: The aim of this work is to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces and to understand their interaction with water ice. Methods: Temperature programmed desorption (TPD) experiments of formamide and methylamine ices were performed in the sub-monolayer and monolayer regimes on graphite (HOPG) and non-porous amorphous solid water (np-ASW) ice surfaces at temperatures 40-240 K. The desorption energy distributions of these two molecules were calculated from TPD measurements using a set of independent Polanyi-Wigner equations. Results: The maximum of the desorption of formamide from both graphite and ASW ice surfaces occurs at 176 K after the desorption of H2O molecules, whereas the desorption profile of methylamine depends strongly on the substrate. Solid methylamine starts to desorb below 100 K from the graphite surface. Its desorption from the water ice surface occurs after 120 K and stops during the water ice sublimation around 150 K. It continues to desorb from the graphite surface at temperatures higher than160 K. Conclusions: More than 95% of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate and is released into the gas phase with a desorption energy distribution Edes = 7460-9380 K, which is measured with the best-fit pre-exponential factor A = 1018 s-1. However, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes = 3850-8420 K) is measured with the best-fit pre-exponential factor A = 1012 s-1. A fraction of solid methylamine monolayer of roughly 0.15 diffuses through the water ice surface towards the HOPG substrate. This small amount of methylamine

  5. Direct bacterial identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry: A systematic review and meta-analysis.

    Science.gov (United States)

    Ruiz-Aragón, Jesús; Ballestero-Téllez, Mónica; Gutiérrez-Gutiérrez, Belén; de Cueto, Marina; Rodríguez-Baño, Jesús; Pascual, Álvaro

    2017-10-27

    The rapid identification of bacteraemia-causing pathogens could assist clinicians in the timely prescription of targeted therapy, thereby reducing the morbidity and mortality of this infection. In recent years, numerous techniques that rapidly and directly identify positive blood cultures have been marketed, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) being one of the most commonly used. The aim of this systematic review and meta-analysis was to evaluate the accuracy of MALDI-TOF (Bruker ® ) for the direct identification of positive blood culture bottles. A meta-analysis was performed to summarize the results of the 32 studies evaluated. The overall quality of the studies was moderate. For Gram-positive bacteria, overall rates of correct identification of the species ranged from 0.17 to 0.98, with a cumulative rate (random-effects model) of 0.72 (95% CI: 0.64-0.80). For Gram-negative bacteria, correct identification rates ranged from 0.66 to 1.00, with a cumulative effect of 0.92 (95% CI: 0.88-0.95). For Enterobacteriaceae, the rate was 0.96 (95% CI: 0.94-0.97). MALDI-TOF mass spectrometry shows high accuracy for the correct identification of Gram-negative bacteria, particularly Enterobacteriaceae, directly from positive blood culture bottles, and moderate accuracy for the identification of Gram-positive bacteria (low for some species). Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  6. Thermal desorption spectroscopy of boron/carbon films after keV deuterium irradiation

    International Nuclear Information System (INIS)

    Yamaki, T.; Gotoh, Y.; Ando, T.; Jimbou, R.; Ogiwara, N.; Saidoh, M.

    1994-01-01

    Thermal desorption spectroscopy (TDS) of D 2 and CD 4 was done on boron/carbon films (B/(B+C)=0-74%), after 3 keV D 3 + irradiation to 4.5x10 17 D/cm 2 at 473 K. The D 2 desorption peaks were observed at 1050, 850 and 650 K. For a sputter B/C film (0%), only the 1050 K peak was observed. With increasing boron concentration to 3%, a sharp peak appeared at 850 K, the intensity of which was found to increase with increasing boron concentration to 23%, and then to decrease at 74%. The 650 K shoulder, which was observed for high boron concentration specimens, was speculated to be deuterium trapped by boron atoms in the boron clusters. The relative amount of CD 4 desorption was found to decrease with increasing boron concentration, which was attributed to the decrease in the trapped deuterium concentration in the implantation layer at temperatures at which CD 4 desorption proceeds. ((orig.))

  7. The feasibility of desorption on Zeolite-water pair using dry gas

    Science.gov (United States)

    Oktariani, E.; Nakashima, K.; Noda, A.; Xue, B.; Tahara, K.; Nakaso, K.; Fukai, J.

    2018-04-01

    The increase in temperature, reduction in partial pressure, reduction in concentration, purging with an inert fluid, and displacement with a more strongly adsorbing species are the basic things that occur in the practical method of desorption. In this study, dry gas at constant temperature and pressure was employed as the aid to reduce the partial pressure in the water desorption on the zeolite 13X. The objective of this study is to confirm the feasibility of desorption using dry gas experimentally and numerically. The implication of heat and mass transfers were numerically investigated to find the most influential. The results of numerical simulation agree with the experimental ones for the distribution of local temperature and average water adsorbed in the packed bed.

  8. Study of defects near molybdenum surface using thermal desorption spectrometer

    International Nuclear Information System (INIS)

    Naik, P.K.

    1980-01-01

    Thermal desorption spectrometry is utilized to study the migration of atoms and defects near molybdenum surface. The thermal desorption spectra of inert gas ions (neon, argon and krypton) injected with various energies (430-1950 eV) into a polycrystalline molybdenum target with various dosages (6.4 x 10sup(12) - 3.9 x 10sup(14) ions/cmsup(2)) are investigated. Four different states of binding of the trapped atoms corresponding to the activation energies for desorption have been revealed from the spectra. The activation energies are found to be relatively insensitive to the species of the bombarding ion, incident ion energy and the dosage. The patterns of the spectra are strongly influenced by the mean projected range of the ions into the solid. The activation energies deduced are in good agreement with those reported for the migration of atoms and defects in molybdenum. (auth.)

  9. Electron stimulated desorption of gases at technological surfaces of aluminium

    International Nuclear Information System (INIS)

    Ding, M.Q.; Williams, E.M.

    1989-01-01

    The release of gas by electron bombardment at aluminium alloy surfaces in vacuum -9 torr has been investigated for a range of treatments including bakeout and glow discharge cleaning. Particular attention has been given to the role of continuous electron bombardment, with current densities and electron energies of up to 1.5 mA cm -2 and 2.0 keV, respectively, over the 10 cm 2 of surface area under irradiation. The observations of desorption efficiency, defined as the number of desorbed molecules per incident electron, conform to a model involving a dynamic balance between adsorption and desorption, with contributions to adsorption from both surface and sub-surface gas. Continuous electron bombardment promotes a surface with low desorption efficiency, -5 mol/electron, however, the conditioning cycle is accelerated significantly by glow discharge treatment. There is evidence of some short-term memory when the samples are exposed to air. (author)

  10. Adsorption and desorption of Cu2+ on paddy soil aggregates pretreated with different levels of phosphate.

    Science.gov (United States)

    Dai, Jun; Wang, Wenqin; Wu, Wenchen; Gao, Jianbo; Dong, Changxun

    2017-05-01

    Interactions between anions and cations are important for understanding the behaviors of chemical pollutants and their potential risks in the environment. Here we prepared soil aggregates of a yellow paddy soil from the Taihu Lake region, and investigated the effects of phosphate (P) pretreatment on adsorption-desorption of Cu 2+ of soil aggregates, free iron oxyhydrates-removed soil aggregates, goethite, and kaolinite with batch adsorption method. The results showed that Cu 2+ adsorption was reduced on the aggregates pretreated with low concentrations of P, and promoted with high concentrations of P, showing a V-shaped change. Compared with the untreated aggregates, the adsorption capacity of Cu 2+ was reduced when P application rates were lower than 260, 220, 130 and 110mg/kg for coarse, clay, silt and fine sand fractions, respectively. On the contrary, the adsorption capacity of Cu 2+ was higher on P-pretreated soil aggregates than on the control ones when P application rates were greater than those values. However, the desorption of Cu 2+ was enhanced at low levels of P, but suppressed at high levels of P, displaying an inverted V-shaped change over P adsorption. The Cu 2+ adsorption by the aggregate particles with and without P pretreatments was well described by the Freundlich equation. Similar results were obtained on P-pretreated goethite. However, such P effects on Cu 2+ adsorption-desorption were not observed on kaolinite and free iron oxyhydrates-removed soil aggregates. The present results indicate that goethite is one of the main soil substances responsible for the P-induced promotion and inhibition of Cu 2+ adsorption. Copyright © 2016. Published by Elsevier B.V.

  11. Adsorption and desorption of phosphorus in ceramic capsules

    International Nuclear Information System (INIS)

    Almeida, J.R.F. de.

    1983-01-01

    Experiments were carried out in order to analyse the capacity of adsorving P from water using ceramic capsules with 32P, in the presence and absence of water flow through the capsule. Also studied was the desorption of 32 P from the capsule in water, with and without water flow. The desorption of residual 32 P was analysed by isotopic exchange with 31 P, also with and without water flow. It was observed that, in the presence of a flow, the capsule retained 32 P from the solution, which was weakly desorbed by water but was isotopically exchanged with 31 P. In the absence of a flow, the capsule was not an efficient P adsorber. (Author) [pt

  12. Sorption – desorption of imidacloprid insecticide on Indian soils of five different locations

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2013-07-01

    Full Text Available Sorption-desorption processes govern the movement of all chemicals including pesticides in soils. The present investigation was undertaken to study the sorption-desorption of imidacloprid, using a batch method, on soils of five different location of India. Sorption data were fitted to Freundlich isotherm. The log K value was the highest for loam type soil (1.830 and the lowest for clay type soil (1.661. The value of 1/n was the maximum for silt loam soil (0.909 but minimum for loam soil (0.723. Simple correlation analysis indicated that among soil properties only electrical conductivity showed a higher but marginally non-significant negative correlation with log K (r = -0.826 indicating that higher concentration of solutes solutes are conducive to low sorption capacity of soil. The desorption data conformed to two surfaces Freundlich desorption isotherm. The values of 1/n1' corresponding to easily desorbed fraction of imidacloprid showed significant negative correlation with soil pH (r = -0.886, significant at p ≤0.05 but significant positive correlation with clay content (r = 0.980, significant at p ≤0.01. The desorption index for easily desorbed fraction of imidacloprid (n1’/n also had significant negative correlation with soil pH (r = 0.953, significant at p ≤0.05. From cumulative desorption data, it appeared that bioavailability of imidacloprid would be lower in neutral soil than acidic or alkaline soils.

  13. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  14. A Compact, Solid-State UV (266 nm) Laser System Capable of Burst-Mode Operation for Laser Ablation Desorption Processing

    Science.gov (United States)

    Arevalo, Ricardo, Jr.; Coyle, Barry; Paulios, Demetrios; Stysley, Paul; Feng, Steve; Getty, Stephanie; Binkerhoff, William

    2015-01-01

    Compared to wet chemistry and pyrolysis techniques, in situ laser-based methods of chemical analysis provide an ideal way to characterize precious planetary materials without requiring extensive sample processing. In particular, laser desorption and ablation techniques allow for rapid, reproducible and robust data acquisition over a wide mass range, plus: Quantitative, spatially-resolved measurements of elemental and molecular (organic and inorganic) abundances; Low analytical blanks and limits-of-detection ( ng g-1); and, the destruction of minimal quantities of sample ( g) compared to traditional solution and/or pyrolysis analyses (mg).

  15. Impact of activated carbon, biochar and compost on the desorption and mineralization of phenanthrene in soil

    International Nuclear Information System (INIS)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno; Winding, Anne; Wollensen de Jonge, Lis; Trapp, Stefan; Karlson, Ulrich G.

    2013-01-01

    Sorption of PAHs to carbonaceous soil amendments reduces their dissolved concentrations, limiting toxicity but also potentially biodegradation. Therefore, the maximum abiotic desorption of freshly sorbed phenanthrene (≤5 mg kg −1 ) was measured in three soils amended with activated carbon (AC), biochar or compost. Total amounts of phenanthrene desorbed were similar between the different soils, but the amendment type had a large influence. Complete desorption was observed in the unamended and compost amended soils, but this reduced for biochar (41% desorbed) and AC (8% desorbed). Cumulative amounts mineralized were 28% for the unamended control, 19% for compost, 13% for biochar and 4% for AC. Therefore, the effects of the amendments in soil in reducing desorption were also reflected in the extents of mineralization. Modeling was used to analyze key processes, indicating that for the AC and charcoal treatments bacterial activity did not limit mineralization, but rather desorption into the dissolved phase. -- Highlights: •Phenanthrene desorption and mineralization compared in soils with activated carbon, charcoal or compost. •Only activated charcoal and biochar hindered both desorption and mineralization. •A linear relationship was found between the extents desorbed and mineralized. •Modelling indicated that bacterial activity was not limiting but that desorption was. -- Extraction into an exhaustive silicone sink measures the maximum phenanthrene desorption from soils with amendments, and this is reflected in the extent of mineralization

  16. Desorption of H atoms from graphite (0001) using XUV free electron laser pulses

    DEFF Research Database (Denmark)

    Siemer, B.; Olsen, Thomas; Hoger, T.

    2010-01-01

    The desorption of neutral H atoms from graphite with femtosecond XUV pulses is reported. The velocity distribution of the atoms peaks at extremely low kinetic energies. A DFT-based electron scattering calculation traces this distribution to desorption out of specific adsorption sites on graphite......, and identifies the highest vibrational state in the adsorbate potential as a major source for the slow atoms. It is evident that multiple electron scattering processes are required for this desorption. A direct electronic excitation of a repulsive hydrogen-carbon bond seems not to be important....

  17. Desorption isotherms and isosteric heat of 'cajuzinho-do-cerrado' achenes

    Directory of Open Access Journals (Sweden)

    Karine F. Barbosa

    2016-05-01

    Full Text Available ABSTRACT The objective of this study was to determine the desorption isotherms of 'cajuzinho-do-cerrado' achenes (Anacardium humile St. Hil. in various conditions of temperature and water activity, as well as to select the one that best represents the phenomenon and to determine the isosteric heat of desorption. The fruits were collected at the Emas National Park, in the municipality of Mineiros-GO, Brazil, pulped and then subjected to drying in silica gel at temperature of 25 ± 2 °C until the moisture contents of 17.6, 13.6, 11.1, 8.7 and 5.3 (d.b.%. After drying, the desorption isotherms were determined by the indirect static method. The water activity (Aw was determined at different temperatures, and the achenes were placed in a B.O.D. chamber, regulated at 10, 20, 30 and 40 °C. Data of hygroscopic equilibrium moisture content were fitted to different mathematical models through non-linear regression analysis, using the Gauss-Newton method. The Copace model was the one that best represented the hygroscopicity of 'cajuzinho-do-cerrado' achenes, while the integral isosteric heat of desorption of 'cajuzinho-do-cerrado' achenes for the moisture content range of 4.51 to 13.40 (% d.b. varied from 2,734.82 to 2,548.49 kJ kg-1.

  18. Modelling deuterium release during thermal desorption of D{sup +}-irradiated tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Poon, M. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada); Haasz, A.A. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada)], E-mail: tonyhaasz@utias.utoronto.ca; Davis, J.W. [University of Toronto Institute for Aerospace Studies, Toronto, ON, M3H 5T6 (Canada)

    2008-03-15

    Thermal desorption profiles were modelled based on SIMS measurements of implantation profiles and using the multi-trap diffusion code TMAP7 [G.R. Longhurst, TMAP7: Tritium Migration Analysis Program, User Manual, Idaho National Laboratory, INEEL/EXT-04-02352 (2004)]. The thermal desorption profiles were the result of 500 eV/D{sup +} irradiations on single crystal tungsten at 300 and 500 K to fluences of 10{sup 22}-10{sup 24} D{sup +}/m{sup 2}. SIMS depth profiling was performed after irradiation to obtain the distribution of trapped D within the top 60 nm of the surface. Thermal desorption spectroscopy (TDS) was performed subsequently to obtain desorption profiles and to extract the total trapped D inventory. The SIMS profiles were calibrated to give D concentrations. To account for the total trapped D inventory measured by TDS, SIMS depth distributions were used in the near-surface (surface to 30 nm), NRA measurements [V.Kh. Alimov, J. Roth, M. Mayer, J. Nucl. Mater. 337-339 (2005) 619] were used in the range 1-7 {mu}m, and a linear drop in the D distribution was assumed in the intermediate sub-surface region ({approx}30 nm to 1 {mu}m). Traps were assumed to be saturated so that the D distribution also represented the trap distribution. Three trap energies, 1.07 {+-} 0.03, 1.34 {+-} 0.03 and 2.1 {+-} 0.05 eV were required to model the 520, 640 and 900 K desorption peaks, respectively. The 1.34 and 1.07 eV traps correspond to trapping of a first and second D atom at a vacancy, respectively, while the 2.1 eV trap corresponds to atomic D trapping at a void. A fourth trap energy of 0.65 eV was used to fit the 400 K desorption peak observed by Quastel et al. [A.D. Quastel, J.W. Davis, A.A. Haasz, R.G. Macaulay-Newcombe, J. Nucl. Mater. 359 (2006) 8].

  19. Modelling of Convective Process of Water Desorption from Polystyrene

    International Nuclear Information System (INIS)

    Stakic, M.; Nikolic, A.

    2008-01-01

    This study presents a mathematical model developed to evaluate the influence of structural and operational factors on convective dehydration process (desorption of liquid phase from capillary-porous material), as well as the possibility to utilize this model for the case of water desorption from polystyrene cation resin CG-8. The model accounts for unsteady one-dimensional simultaneous heat and mass transfer between the gas (air) and the solid phase (resin). The identification of effective transport properties for the considered fixed bed of material (resin CG 8) is discussed. To this purpose available data from the literature are used. (author)

  20. Anomalous low-temperature desorption from preirradiated rare gas solids

    International Nuclear Information System (INIS)

    Savchenko, E.V.; Gumenchuk, G.B.; Yurtaeva, E.M.; Belov, A.G.; Khyzhniy, I.V.; Frankowski, M.; Beyer, M.K.; Smith-Gicklhorn, A.M.; Ponomaryov, A.N.; Bondybey, V.E.

    2005-01-01

    The role for the exciton-induced defects in the stimulation of anomalous low-temperature desorption of the own lattice atoms from solid Ar and Ne preirradiated by an electron beam is studied. The free electrons from shallow traps-structural defects-was monitored by the measurements of a yield of the thermally induced exoelectron emission (TSEE). The reaction of recombination of self-trapped holes with electrons is considered as a source of energy needed for the desorption of atoms from the surface of preirradiated solids. A key part of the exciton-induced defects in the phenomenon observed is demonstrated

  1. Sorption-desorption of samarium in Febex bentonite

    International Nuclear Information System (INIS)

    Ramirez-Guinart, O.; Rigol, A.; Vidal, M.; Fernandez-Poyatos, P.; Alba, M. D.

    2012-01-01

    Document available in extended abstract form only. The chemical and physical nature of the clay is a key issue in the design of engineered barriers. The FEBEX bentonite is one of the clays candidates to be used in engineered barriers in deep geology repositories (DGR). Here, its performance was tested with respect to the sorption-desorption of samarium, which is a lanthanide that, besides being considered as a natural analogue of actinides, may also be present in high level radioactive waste in the form of the radioactive isotope 151 Sm. FEBEX bentonite was used in this study. This is a di-octahedral smectite, with isomorphic substitutions in tetrahedral and octahedral sheets. Its theoretical cation exchange capacity value is 1500 meq kg -1 . Sorption isotherms were obtained for Sm in the range of initial concentrations of 0.01 and 9 meq l -1 . Tests were carried out in deionized water and in a medium simulating the composition of interstitial water. Sorption tests were performed equilibrating 30 ml of the Sm solution with 0.2 g of clay. After a contact time of 24 hours, supernatants were decanted off after centrifugation. The quantification of the concentration of Sm in the initial and final solutions allowed us to quantify the Sm equilibrium concentration (C eq ), the fraction sorbed in the FEBEX bentonite (C sorb ) and to derive the sorption K d data. Desorption tests were applied to determine the desorption K d and the percentage of Sm reversibly sorbed. Desorption tests were performed with the bentonite residue from the sorption step, under the same experimental conditions, but without Sm. Powder X-ray diffractograms were obtained from 3 to 70 deg. 2θ with a step of 0.05 deg. and a counting time of 3 s. The crystalline phases were identified using the computer program X'Pert HighScore. The morphology of the samples was analyzed by SEM at 20 kV. An EDX system was fitted to the SEM equipment to perform chemical analyses of the samples using a Si/Li detector

  2. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter,Fabiano André; Ferreira,Tamara Santos; Sinhorin,Adilson Paulo; Lima,Larissa Borges de; Morais,Leidimar Alves de; Pacheco,Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorpti...

  3. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  4. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  5. Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils

    International Nuclear Information System (INIS)

    Chen Wei; Hou Lei; Luo Xiaoli; Zhu Lingyan

    2009-01-01

    In situ chemical oxidation is a commonly applied soil and groundwater remediation technology, but can have significant effects on soil properties, which in turn might affect fate and transport of organic contaminants. In this study, it was found that oxidation treatment resulted mainly in breakdown of soil organic matter (SOM) components. Sorption of naphthalene and phenanthrene to the original soils and the KMnO 4 -treated soils was linear, indicating that hydrophobic partitioning to SOM was the predominant mechanism for sorption. Desorption from the original and treated soils was highly resistant, and was well modeled with a biphasic desorption model. Desorption of residual naphthalene after treating naphthalene-contaminated soils with different doses of KMnO 4 also followed the biphasic desorption model very well. It appears that neither changes of soil properties caused by chemical oxidation nor direct chemical oxidation of contaminated soils had a noticeable effect on the nature of PAH-SOM interactions. - Chemical oxidation of soils had little effect on the mechanisms controlling sorption and desorption of PAHs.

  6. The Absorption-Desorption of Hydrogen by 1.5 g Depleted Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Si-Hyung; Kim, Kwang-Rag; Ahn, Do-Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sohn, Soon Hwan; Song, Kyu Min [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    The form of metal tritides is one of the most popular methods for the storage of hydrogen isotopes. Particularly when metal is in a powder form, the storage capacity of hydrogen isotopes become the maximum value. Here, a 1.5g depleted uranium metal was decrepitated into a powder upon an absorption and desorption of hydrogen gas. The conditions for an activation, absorption-desorption of the hydrogen were defined.

  7. The Absorption-Desorption of Hydrogen by 1.5 g Depleted Uranium

    International Nuclear Information System (INIS)

    Kim, Sunmi; Paek, Seungwoo; Lee, Minsoo; Kim, Si-Hyung; Kim, Kwang-Rag; Ahn, Do-Hee; Sohn, Soon Hwan; Song, Kyu Min

    2008-01-01

    The form of metal tritides is one of the most popular methods for the storage of hydrogen isotopes. Particularly when metal is in a powder form, the storage capacity of hydrogen isotopes become the maximum value. Here, a 1.5g depleted uranium metal was decrepitated into a powder upon an absorption and desorption of hydrogen gas. The conditions for an activation, absorption-desorption of the hydrogen were defined

  8. Controlled precipitation for enhanced dissolution rate of flurbiprofen: development of rapidly disintegrating tablets.

    Science.gov (United States)

    Essa, Ebtessam A; Elmarakby, Amira O; Donia, Ahmed M A; El Maghraby, Gamal M

    2017-09-01

    The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets. This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential. Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses. The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution. Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.

  9. Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction.

    Science.gov (United States)

    Dong, Haoran; Guan, Xiaohong; Lo, Irene M C

    2012-09-01

    Nano zero-valent iron (NZVI) offers a promising approach for arsenic remediation, but the spent NZVI with elevated arsenic content could arouse safety concerns. This study investigated the fate of As(V)-treated NZVI (As-NZVI), by examining the desorption potential of As under varying conditions. The desorption kinetics of As from As-NZVI as induced by phosphate was well described by a biphasic rate model. The effects of As(V)/NZVI mass ratio, pH, and aging time on arsenic desorption from As-NZVI by phosphate were investigated. Less arsenic desorption was observed at lower pH or higher As(V)/NZVI mass ratio, where stronger complexes (bidentate) formed between As(V) and NZVI corrosion products as indicated by FTIR analysis. Compared with the fresh As-NZVI, the amount of phosphate-extractable As significantly decreased in As-NZVI aged for 30 or 60 days. The results of the sequential extraction experiments demonstrated that a larger fraction of As was sorbed in the crystalline phases after aging, making it less susceptible to phosphate displacement. However, at pH 9, a slightly higher proportion of phosphate-extractable As was observed in the 60-day sample than in the 30-day sample. XPS results revealed the transformation of As(V) to more easily desorbed As(III) during aging and a higher As(III)/As(V) ratio in the 60-day sample at pH 9, which might have resulted in the higher desorption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Identification of Blood Culture Isolates Directly from Positive Blood Cultures by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry and a Commercial Extraction System: Analysis of Performance, Cost, and Turnaround Time

    OpenAIRE

    Lagacé-Wiens, Philippe R. S.; Adam, Heather J.; Karlowsky, James A.; Nichol, Kimberly A.; Pang, Paulette F.; Guenther, Jodi; Webb, Amanda A.; Miller, Crystal; Alfa, Michelle J.

    2012-01-01

    Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry represents a revolution in the rapid identification of bacterial and fungal pathogens in the clinical microbiology laboratory. Recently, MALDI-TOF has been applied directly to positive blood culture bottles for the rapid identification of pathogens, leading to reductions in turnaround time and potentially beneficial patient impacts. The development of a commercially available extraction kit (Bruker Sepsit...

  11. The effect of ozone on nicotine desorption from model surfaces:evidence for heterogeneous chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Destaillats, Hugo; Singer, Brett C.; Lee, Sharon K.; Gundel, LaraA.

    2005-05-01

    Assessment of secondhand tobacco smoke exposure using nicotine as a tracer or biomarker is affected by sorption of the alkaloid to indoor surfaces and by its long-term re-emission into the gas phase. However, surface chemical interactions of nicotine have not been sufficiently characterized. Here, the reaction of ozone with nicotine sorbed to Teflon and cotton surfaces was investigated in an environmental chamber by monitoring nicotine desorption over a week following equilibration in dry or humid air (65-70 % RH). The Teflon and cotton surfaces had N{sub 2}-BET surface areas of 0.19 and 1.17 m{sup 2} g{sup -1}, and water mass uptakes (at 70 % RH) of 0 and 7.1 % respectively. Compared with dry air baseline levels in the absence of O{sub 3}, gas phase nicotine concentrations decrease, by 2 orders of magnitude for Teflon after 50 h at 20-45 ppb O{sub 3}, and by a factor of 10 for cotton after 100 h with 13-15 ppb O{sub 3}. The ratios of pseudo first-order rate constants for surface reaction (r) to long-term desorption (k) were r/k = 3.5 and 2.0 for Teflon and cotton surfaces, respectively. These results show that surface oxidation was competitive with desorption. Hence, oxidative losses could significantly reduce long-term re-emissions of nicotine from indoor surfaces. Formaldehyde, N-methylformamide, nicotinaldehyde and cotinine were identified as oxidation products, indicating that the pyrrolidinic N was the site of electrophilic attack by O{sub 3}. The presence of water vapor had no effect on the nicotine-O{sub 3} reaction on Teflon surfaces. By contrast, nicotine desorption from cotton in humid air was unaffected by the presence of ozone. These observations are consistent with complete inhibition of ozone-nicotine surface reactions in an aqueous surface film present in cotton but not in Teflon surfaces.

  12. Desorption dynamics of deuterium molecules from the Si(100)-(3×1) dideuteride surface

    OpenAIRE

    Niida, T; Tsurumaki, Hiroshi; Namiki, Akira

    2006-01-01

    We measured polar angle ()-resolved time-of-flight spectra of D2 molecules desorbing from the Si(100)-(3×1) dideuteride surface. The desorbing D2 molecules exhibit a considerable translational heating with mean desorption kinetic energies of 0.25 eV, which is mostly independent of the desorption angles for 0°30°. The observed desorption dynamics of deuterium was discussed along the principle of detailed balance to predict their adsorption dynamics onto the monohydride Si surface.

  13. Rapid and accurate processing method for amide proton exchange rate measurement in proteins

    International Nuclear Information System (INIS)

    Koskela, Harri; Heikkinen, Outi; Kilpelaeinen, Ilkka; Heikkinen, Sami

    2007-01-01

    Exchange between protein backbone amide hydrogen and water gives relevant information about solvent accessibility and protein secondary structure stability. NMR spectroscopy provides a convenient tool to study these dynamic processes with saturation transfer experiments. Processing of this type of NMR spectra has traditionally required peak integration followed by exponential fitting, which can be tedious with large data sets. We propose here a computer-aided method that applies inverse Laplace transform in the exchange rate measurement. With this approach, the determination of exchange rates can be automated, and reliable results can be acquired rapidly without a need for manual processing

  14. Sorption and desorption of glyphosate in Mollisols and Ultisols soils of Argentina.

    Science.gov (United States)

    Gómez Ortiz, Ana Maria; Okada, Elena; Bedmar, Francisco; Costa, José Luis

    2017-10-01

    In Argentina, glyphosate use has increased exponentially in recent years as a result of the widespread adoption of no-till management combined with genetically modified glyphosate-resistant crops. This massive use of glyphosate has created concern about its potential environmental impact. Sorption-desorption of glyphosate was studied in 3 Argentinean soils with contrasting characteristics. Glyphosate sorption isotherms were modeled using the Freundlich equation to estimate the sorption coefficient (K f ). Glyphosate sorption was high, and the K f varied from 115.6 to 1612 mg 1-1/n L 1/n /kg. Cerro Azul soil had the highest glyphosate sorption capacity as a result of a combination of factors such as higher clay content, cation exchange capacity, total iron, and aluminum oxides, and lower available phosphorus and pH. Desorption isotherms were also modeled using the Freundlich equation. In general, desorption was very low (glyphosate strongly sorbs to the soils and that it is almost an irreversible process. Anguil soil had a significantly higher desorption coefficient (K fd ) than the other soils, associated with its lower clay content and higher pH and phosphorus. Glyphosate high sorption and low desorption to the studied soils may prevent groundwater contamination. However, it may also affect its bioavailability, increasing its persistence and favoring its accumulation in the environment. The results of the present study contribute to the knowledge and characterization of glyphosate retention in different soils. Environ Toxicol Chem 2017;36:2587-2592. © 2017 SETAC. © 2017 SETAC.

  15. The Design and Development of Enhanced Thermal Desorption Products

    Directory of Open Access Journals (Sweden)

    R. Humble

    2005-01-01

    Full Text Available This research study is based on a knowledge-transfer collaboration between The National Centre for Product Design and Development Research (PDR and Markes International Ltd. The aim of the two-year collaboration has been to implement design tools and techniques for the development of enhanced thermal desorption products. Thermal desorption is a highly-specialised technique for the analysis of trace-level volatile organic compounds. This technique allows minute quantities of these compounds to be measured; however, there is an increasing demand from customers for greater sensitivity over a wider range of applications, which means new design methodologies need to be evaluated. The thermal desorption process combines a number of disparate chemical, thermal and mechanical disciplines, and the major design constraints arise from the need to cycle the sample through extremes in temperature. Following the implementation of a comprehensive product design specification, detailed design solutions have been developed using the latest 3D CAD techniques. The impact of the advanced design techniques is assessed in terms of improved product performance and reduced development times, and the wider implications of new product development within small companies are highlighted.  

  16. X-ray induced gas desorption within a prototype LEP vacuum chamber

    International Nuclear Information System (INIS)

    Williams, E.M.; Le Normand, F.; Hilleret, N.; Dominichini, G.

    1982-12-01

    The present report is concerned with an experimental simulation of the process of photon induced desorption within an aluminium vacuum chamber of the same basic form as proposed for the LEP accelerator. The objectives in the work can be described in the following three-fold manner: Firstly, to establish the levels of photon induced desorption efficiency for identified gas species. Secondly, to examine the contribution of surface treatments as bakeout and glow discharge cleaning, and to correlate these responses with changes in surface activity induced by beam cleaning. Thirdly, to gain insight into the energy dependence of the desorption process so as to provide a reasonable basis for predicting conditions at the levels of critical energy in excess of 100 keV which are applicable at the full design energy of the LEP accelerator. (orig./HSI)

  17. Experimental Study on Methane Desorption from Lumpy Coal under the Action of Hydraulic and Thermal

    Directory of Open Access Journals (Sweden)

    Dong Zhao

    2018-01-01

    Full Text Available Moisture and thermal are the key factors for influencing methane desorption during CBM exploitation. Using high-pressure water injection technology into coalbed, new fractures and pathways are formed to transport methane. A phenomenon of water-inhibiting gas flow existed. This study is focused on various water pressures impacted on gas-adsorbed coal samples, and then the desorption capacity could be revealed under different conditions. And the results are shown that methane desorption capacity was decreased with the increase in water pressure at room temperature and the downtrend would be steady until water pressure was large enough. Heating could promote gas desorption capacity effectively, with the increasing of water injection pressures, and the promotion of thermal on desorption became more obvious. These results are expected to provide a clearer understanding of theoretical efficiency of heat water or steam injection into coalbed, and they can provide some theoretical and experimental guidance on CBM production and methane control.

  18. Beneficial effect of carbon on hydrogen desorption kinetics from Mg–Ni–In alloy

    International Nuclear Information System (INIS)

    Cermak, J.; Kral, L.

    2013-01-01

    Highlights: ► Beneficial effect of graphitic carbon was observed. ► The effect is optimal up to c opt . ► Above c opt , phase decomposition occurs. ► Indium in studied Mg–Ni-based alloys prevents oxidation. - Abstract: In the present paper, hydrogen desorption kinetics from hydrided Mg–Ni–In–C alloys was investigated. A chemical composition that substantially accelerates hydrogen desorption was found. It was observed that carbon improves the hydrogen desorption kinetics significantly. Its beneficial effect was found to be optimum close to the carbon concentration of about c C ≅ 5 wt.%. With this composition, stored hydrogen can be desorbed readily at temperatures down to about 485 K, immediately after hydrogen charging. This can substantially shorten the hydrogen charging/discharging cycle of storage tanks using Mg–Ni-based alloys as hydrogen storage medium. For higher carbon concentrations, unwanted phases precipitated, likely resulting in deceleration of hydrogen desorption and lower hydrogen storage capacity.

  19. Kinetic behaviour of the adsorption and desorption of phosphorus-32 on aluminium hydroxide

    International Nuclear Information System (INIS)

    Ribeiro, E.M.G.

    1993-01-01

    Great amount of phosphate fertilizers are used in agriculture. Soil fertility have been studied using fertilizer labelled with phosphorus 32 to improve agronomic practices by increasing the efficient use of phosphate fertilizer. Previous research work have been published suggesting the potential use of kinetics parameters to characterize phosphorus in soil and to diagnosis the phosphate level. In this work the kinetic behaviour of the absorption and desorption of phosphorus-32 on a synthetic aluminium hydroxide was studied attempting to detect the formation of a precipitated phase on the hydroxide surface. The kinetic data for adsorption was adjusted with the Elovich and Fardeau equations for isotopic exchange. It was verified a change in the kinetic behaviour when the surface was approximately 80% saturated. This change suggested the formation of a precipitate. The kinetic data for desorption was fitted with the Fardeau equation, and it was verified the desorption kinetics slower than the desorption. (B.C.A.). 40 refs, 17 figs, 5 tabs

  20. Rapid magnetic solid-phase extraction based on monodisperse magnetic single-crystal ferrite nanoparticles for the determination of free fatty acid content in edible oils.

    Science.gov (United States)

    Wei, Fang; Zhao, Qin; Lv, Xin; Dong, Xu-Yan; Feng, Yu-Qi; Chen, Hong

    2013-01-09

    This study proposes a rapid magnetic solid-phase extraction (MSPE) based on monodisperse magnetic single-crystal ferrite (Fe(3)O(4)) nanoparticles (NPs) for determining the quantities of eight free fatty acids (FFAs), including palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), arachidic acid (C20:0), eicosenoic acid (C20:1), and behenic acid (C22:0) in oil. The amine-functionalized mesoporous Fe(3)O(4) magnetic NPs were applied as a sorbent for MSPE of FFAs from oil samples in a process that is based on hydrophilic interaction. The extraction can be completed rapidly in a dispersive mode with the aid of vigorous vortex. Additional tedious processing steps such as centrifugation and evaporation of organic solvent were not necessary with this procedure. Furthermore, esterification of FFAs can be accomplished during the desorption procedure by using methanol/sulfuric acid (99:1, v/v) as the desorption solvent. Several parameters affecting the extraction efficiency were investigated, including the matrix solvent for extraction, the desorption solvent and desorption time, and the amount of sorbent and extraction time. The pretreatment process was rapid under optimal conditions, being accomplished within 15 min. When coupled with gas chromatography-flame ionization detection (GC-FID), a rapid, simple, and convenient MSPE-GC-FID method for the determination of FFAs in oil samples was established with a total analysis time within 25 min. The limits of detection for the target FFAs were found to be 7.22-26.26 ng/mL. Recoveries in oil samples were in the range of 81.33-117.75%, with RSDs of <6.4% (intraday) and <6.9% (interday). This method was applied successfully to the analysis of dynamic FFA formation in four types of edible oils subjected to an accelerated storage test. The simple, rapid, and cost-effective method developed in the current study offers a potential application for the extraction and

  1. Equilibrium moisture content (EMC) in Norway spruce during the first and second desorptions

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben; Engelund, Emil Tang; Thygesen, Lisbeth G.

    2011-01-01

    It is a commonly accepted notion that the equilibrium moisture content (EMC) of wood at a given relative humidity (RH) is highest during initial desorption of green wood due to an irreversible loss of hygroscopicity during the 1st desorption. The basis for this notion is investigated by assessing...

  2. Nuclear stimulated desorption as a potential tool for surface study

    International Nuclear Information System (INIS)

    Nir, Dror.

    1993-03-01

    The described research work constitutes a base for an experimental method to be implemented in the study of solid surfaces. Nuclear Stimulated Desorption (NSD) is a new mode of experimentation in thin film and surface physics. It Is based on the interplay between nuclear phenomena (reactions and spontaneous decays), and atomic - scale induced effects on surfaces and very thin films. One may distinguish between two generically different relationships between the two. First, the dynamics of the nuclear reaction -primarily the recoil of the nucleus - may effect the position of the atom or molecule containing it. Second, the nuclear reaction (or decay) may serve as an analytical indicator of the whereabouts of the atom, or molecule, in question. In nuclear stimulated desorption, both thee aspects combine in an essential way. Namely, one employs a series of two consecutive decays (normally weak decays or isomeric transition) . The first of these decays causes the nucleus to desorb from a surface onto which it had been placed; the second serves to determine the position of the daughter and thereby the characteristics of the primary desorption . The essential feature in NSD is that it occurs almost exclusively from the outermost surface layer. This is because we choose to work with nuclei whose recoil energy Is of the same order of magnitude of the binding energy of the atom to the surface . Furthermore, the desorption probability and its angular (and temporal) characteristics, depend on the features (topology, morphology) of its immediate neighborhood. This work describes experiments which were designed to give relevant, phenomenological information about the outgoing flux of the radioactive daughters (for specifically chosen nuclear species) , and in particular the magnitude of the flux, its time dependence and its charged state. In addition. the basic phenomena itself is being distinguished from competing processes (thermal desorption, in particular). We will now

  3. A rapid screening method to monitor expression of various recombinant proteins from prokaryotic and eukaryotic expression systems using MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Jebanathirajah, J.A.; Andersen, S.; Blagoev, B.

    2002-01-01

    Rapid methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to monitor recombinant protein expression from various prokaryotic and eukaryotic cell culture systems were devised. Intracellular as well as secreted proteins from both induced and constitutive...

  4. Rapid decline in glomerular filtration rate during the first weeks following heart transplantation

    DEFF Research Database (Denmark)

    Hornum, M; Andersen, Mads Jønsson; Gustafsson, F

    2011-01-01

    We hypothesized that a decrease in renal function is seen immediately after heart transplantation (HTX) with little recovery over time. Twelve consecutive patients had their glomerular filtration rate (GFR) measured using (51)Cr-ethylenediaminetetraacetic acid (EDTA) measured GFR (mGFR) before tr...... risk factor for the rapid and sustained decrease in renal function supports the need for more studies on renoprotective strategies immediately after HTX....

  5. Desorption of Water from Distinct Step Types on a Curved Silver Crystal

    Directory of Open Access Journals (Sweden)

    Jakrapan Janlamool

    2014-07-01

    Full Text Available We have investigated the adsorption of H2O onto the A and B type steps on an Ag single crystal by temperature programmed desorption. For this study, we have used a curved crystal exposing a continuous range of surface structures ranging from [5(111 × (100] via (111 to [5(111 × (110]. LEED and STM studies verify that the curvature of our sample results predominantly from monoatomic steps. The sample thus provides a continuous array of step densities for both step types. Desorption probed by spatially-resolved TPD of multilayers of H2O shows no dependence on the exact substrate structure and thus confirms the absence of thermal gradients during temperature ramps. In the submonolayer regime, we observe a small and linear dependence of the desorption temperature on the A and B step density. We argue that such small differences are only observable by means of a single curved crystal, which thus establishes new experimental benchmarks for theoretical calculation of chemically accurate binding energies. We propose an origin of the observed behavior based on a “two state” desorption model.

  6. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sun Lanlan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhao Dongxu [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhang Yue; Xu Fugang [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China); Li Zhuang, E-mail: zli@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate school of the Chinese Academy of Sciences, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022 (China)

    2011-05-15

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/{mu}L. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  7. DNA adsorption and desorption on mica surface studied by atomic force microscopy

    International Nuclear Information System (INIS)

    Sun Lanlan; Zhao Dongxu; Zhang Yue; Xu Fugang; Li Zhuang

    2011-01-01

    The adsorption of DNA molecules on mica surface and the following desorption of DNA molecules at ethanol-mica interface were studied using atomic force microscopy. By changing DNA concentration, different morphologies on mica surface have been observed. A very uniform and orderly monolayer of DNA molecules was constructed on the mica surface with a DNA concentration of 30 ng/μL. When the samples were immersed into ethanol for about 15 min, various desorption degree of DNA from mica (0-99%) was achieved. It was found that with the increase of DNA concentration, the desorption degree of DNA from the mica at ethanol-mica interface decreased. And when the uniform and orderly DNA monolayers were formed on the mica surface, almost no DNA molecule desorbed from the mica surface in this process. The results indicated that the uniform and orderly DNA monolayer is one of the most stable DNA structures formed on the mica surface. In addition, we have studied the structure change of DNA molecules after desorbed from the mica surface with atomic force microscopy, and found that the desorption might be ascribed to the ethanol-induced DNA condensation.

  8. Effects of solid-medium type on routine identification of bacterial isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    Science.gov (United States)

    Anderson, Neil W; Buchan, Blake W; Riebe, Katherine M; Parsons, Lauren N; Gnacinski, Stacy; Ledeboer, Nathan A

    2012-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for the identification of bacteria. Factors that may alter protein profiles, including growth conditions and presence of exogenous substances, could hinder identification. Bacterial isolates identified by conventional methods were grown on various media and identified using the MALDI Biotyper (Bruker Daltonics, Billerica, MA) using a direct smear method and an acid extraction method. Specimens included 23 Pseudomonas isolates grown on blood agar, Pseudocel (CET), and MacConkey agar (MAC); 20 Staphylococcus isolates grown on blood agar, colistin-nalidixic acid agar (CNA), and mannitol salt agar (MSA); and 25 enteric isolates grown on blood agar, xylose lysine deoxycholate agar (XLD), Hektoen enteric agar (HE), salmonella-shigella agar (SS), and MAC. For Pseudomonas spp., the identification rate to genus using the direct method was 83% from blood, 78% from MAC, and 94% from CET. For Staphylococcus isolates, the identification rate to genus using the direct method was 95% from blood, 75% from CNA, and 95% from MSA. For enteric isolates, the identification rate to genus using the direct method was 100% from blood, 100% from MAC, 100% from XLD, 92% from HE, and 87% from SS. Extraction enhanced identification rates. The direct method of MALDI-TOF analysis of bacteria from selective and differential media yields identifications of varied confidence. Notably, Staphylococci spp. from CNA exhibit low identification rates. Extraction enhances identification rates and is recommended for colonies from this medium.

  9. Rapid assessment of malaria transmission using age-specific sero-conversion rates.

    Directory of Open Access Journals (Sweden)

    Laveta Stewart

    2009-06-01

    Full Text Available Malaria transmission intensity is a crucial determinant of malarial disease burden and its measurement can help to define health priorities. Rapid, local estimates of transmission are required to focus resources better but current entomological and parasitological methods for estimating transmission intensity are limited in this respect. An alternative is determination of antimalarial antibody age-specific sero-prevalence to estimate sero-conversion rates (SCR, which have been shown to correlate with transmission intensity. This study evaluated SCR generated from samples collected from health facility attendees as a tool for a rapid assessment of malaria transmission intensity.The study was conducted in north east Tanzania. Antibodies to Plasmodium falciparum merozoite antigens MSP-1(19 and AMA-1 were measured by indirect ELISA. Age-specific antibody prevalence was analysed using a catalytic conversion model based on maximum likelihood to generate SCR. A pilot study, conducted near Moshi, found SCRs for AMA-1 were highly comparable between samples collected from individuals in a conventional cross-sectional survey and those collected from attendees at a local health facility. For the main study, 3885 individuals attending village health facilities in Korogwe and Same districts were recruited. Both malaria parasite prevalence and sero-positivity were higher in Korogwe than in Same. MSP-1(19 and AMA-1 SCR rates for Korogwe villages ranged from 0.03 to 0.06 and 0.07 to 0.21 respectively. In Same district there was evidence of a recent reduction in transmission, with SCR among those born since 1998 [MSP-1(19 0.002 to 0.008 and AMA-1 0.005 to 0.014 ] being 5 to 10 fold lower than among individuals born prior to 1998 [MSP-1(19 0.02 to 0.04 and AMA-1 0.04 to 0.13]. Current health facility specific estimates of SCR showed good correlations with malaria incidence rates in infants in a contemporaneous clinical trial (MSP-1(19 r(2 = 0.78, p<0.01 & AMA-1 r

  10. Rapid needle-out patient-rollover approach after cone beam CT-guided lung biopsy: effect on pneumothorax rate in 1,191 consecutive patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Im [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Park, Chang Min; Goo, Jin Mo [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Sang Min [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of)

    2015-07-15

    To investigate the effect of rapid needle-out patient-rollover approach on the incidence of pneumothorax and drainage catheter placement due to pneumothorax in C-arm Cone-beam CT (CBCT)-guided percutaneous transthoracic needle biopsy (PTNB) of lung lesions. From May 2011 to December 2012, 1227 PTNBs were performed in 1191 patients with a 17-gauge coaxial needle. 617 biopsies were performed without (conventional-group) and 610 with rapid-rollover approach (rapid-rollover-group). Overall pneumothorax rates and incidences of pneumothorax requiring drainage catheter placement were compared between two groups. There were no significant differences in overall pneumothorax rates between conventional and rapid-rollover groups (19.8 % vs. 23.1 %, p = 0.164). However, pneumothorax rate requiring drainage catheter placement was significantly lower in rapid-rollover-group (1.6 %) than conventional-group (4.2 %) (p = 0.010). Multivariate analysis revealed male, age > 60, bulla crossed, fissure crossed, pleura to target distance > 1.3 cm, emphysema along needle tract, and pleural punctures ≥ 2 were significant risk factors of pneumothorax (p < 0.05). Regarding pneumothorax requiring drainage catheter placement, fissure crossed, bulla crossed, and emphysema along needle tract were significant risk factors (p < 0.05), whereas rapid-rollover approach was an independent protective factor (p = 0.002). The rapid needle-out patient-rollover approach significantly reduced the rate of pneumothorax requiring drainage catheter placement after CBCT-guided PTNB. (orig.)

  11. Thermal desorption of deuterium from modified carbon nanotubes and its correlation to the microstructure

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; van den Berg, A.H.J.; Smithers, Mark A.; Smithers, M.A.

    2006-01-01

    The process of deuterium desorption from single-wall carbon nanotubes (SWNTs) modified by atomic (D) and molecular (D2) deuterium treatment was investigated in an ultrahigh vacuum environment using thermal desorption mass spectroscopy (TDMS). Microstructural and chemical analyses of SWNT material,

  12. Multisample matrix-assisted laser desorption source for molecular beams of neutral peptides

    International Nuclear Information System (INIS)

    Lupulescu, C.; Abd El Rahim, M.; Antoine, R.; Barbaire, M.; Broyer, M.; Dagany, X.; Maurelli, J.; Rayane, D.; Dugourd, Ph.

    2006-01-01

    We developed and tested a multisample laser desorption source for producing stable molecular beams of neutral peptides. Our apparatus is based on matrix-assisted laser desorption technique. The source consists of 96 different targets which may be scanned by a software control procedure. Examples of molecular beams of neutral peptides are presented, as well as the influence of the different source parameters on the jet

  13. Electron-stimulated desorption of lithium ions from lithium halide thin films

    International Nuclear Information System (INIS)

    Markowski, Leszek

    2007-01-01

    Electron-stimulated desorption of positive lithium ions from thin layers of lithium halides deposited onto Si(1 1 1) are investigated by the time-of-flight technique. The determined values of isotope effect of the lithium ( 6 Li + / 7 Li + ) are 1.60 ± 0.04, 1.466 ± 0.007, 1.282 ± 0.004, 1.36 ± 0.01 and 1.33 ± 0.01 for LiH, LiF, LiCl, LiBr and LiI, respectively. The observed most probable kinetic energies of 7 Li + are 1.0, 1.9, 1.1, 0.9 and 0.9 eV for LiH, LiF, LiCl, LiBr and LiI, respectively, and seem to be independent of the halide component mass. The values of lithium ion emission yield, lithium kinetic energy and lithium isotope effect suggest that the lattice relaxation is only important in the lithium ion desorption process from the LiH system. In view of possible mechanisms and processes involved into lithium ion desorption the obtained results indicate that for LiH, LiCl, LiBr and LiI the ions desorb in a rather classical way. However, for LiF, ion desorption has a more quantum character and the modified wave packet squeezing model has to be taken into account

  14. Scattering, Adsorption, and Langmuir-Hinshelwood Desorption Models for Physisorptive and Chemisorptive Gas-Surface Systems

    Science.gov (United States)

    2013-09-01

    quantum effects by incorporating Zero- Point Energy ( ZPE ) in the initial conditions [19; 108]. Desorption calculations, in order to be incorporated...TST Transition State Theory TTPD Threshold Temperature-Programmed Desorption UHV Ultra-High Vacuum XHV Extreme-High Vacuum ZPE Zero-Point Energy 141

  15. Probing the crossover in CO desorption from single crystal to nanoparticulate Ru model catalysts

    DEFF Research Database (Denmark)

    Murphy, Shane; Strebel, Christian Ejersbo; Vendelbo, Søren Bastholm

    2011-01-01

    Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles.......Crossover in CO desorption behavior and nanoscale structure probed with STM from ruthenium single crystals to PVD and mass-selected nanoparticles....

  16. Desorption of organophosphorous pesticides from soil with wastewater and surfactant solutions

    International Nuclear Information System (INIS)

    Hernandez-Soriano, M. C.; Mingorance, M. D.; Pena, A.

    2009-01-01

    Surfactants can be introduced in the environment by wastewater discharge, point-charge pollution or deliberate action, e. g. to remediate contaminated soil or groundwater. The irrigation of soil with wastewater containing surfactants may modify pesticide desorption from soil, thus affecting their affecting their environmental fate. Desorption from soil of the plain of Granada (South-eastern Spain) of two organophosphorous pesticides, diazinon and dimethoate, differing in solubility and hydrophobicity, has been evaluated in the presence of different surfactant aqueous solutions and municipal wastewater. (Author)

  17. Effect of equilibration time on Pu desorption from goethite

    International Nuclear Information System (INIS)

    Wong, Jennifer C.; Powell, Brian A.; Zavarin, Mavrik; Begg, James D.; Kersting, Annie B.

    2015-01-01

    It has been suggested that strongly sorbing ions such as plutonium may become irreversibly bound to mineral surfaces over time which has implications for near- and far-field transport of Pu. Batch adsorption-desorption data were collected as a function of time and pH to study the surface stability of Pu on goethite. Pu(IV) was adsorbed to goethite over the pH range 4.2 to 6.6 for different periods of time (1, 6, 15, 34 and 116 d). Following adsorption, Pu was leached from the mineral surface with desferrioxamine B (DFOB), a complexant capable of effectively competing with the goethite surface for Pu. The amount of Pu desorbed from the goethite was found to vary as a function of the adsorption equilibration time, with less Pu removed from the goethite following longer adsorption periods. This effect was most pronounced at low pH. Logarithmic desorption distribution ratios for each adsorption equilibration time were fit to a pH-dependent model. Model slopes decreased between 1 and 116 d adsorption time, indicating that overall Pu(IV) surface stability on goethite surfaces becomes less dependent on pH with greater adsorption equilibration time. The combination of adsorption and desorption kinetic data suggest that non-redox aging processes affect Pu sorption behavior on goethite.

  18. Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents

    International Nuclear Information System (INIS)

    Liu Wenxin; Cheng Fangfang; Li Weibo; Xing Baoshan; Tao Shu

    2012-01-01

    Desorption kinetic and isothermal characteristics of BDE-28 and BDE-47 were investigated using natural soils with different organic carbon fractions. The results indicated that a two-compartment first-order model with dominant contribution of slow desorption could adequately describe the released kinetics of studied PBDEs. Desorption isotherms of different samples could be fitted well by linear distribution model or nonlinear Freundlich model. Moreover, most desorption procedures roughly exhibited hysteresis with respect to preceding sorption ones. At the statistically significant level of 0.05 or 0.1, total organic carbon content (f OC ) exhibited significant correlations with the fitted parameters by the isothermal models. The correlations of f OC and SOM fractions (e.g., fulvic acid and humin) with the single point desorption coefficients at lower aqueous concentrations of studied PBDEs were significant; while at higher aqueous concentrations, the relationships were less significant or insignificant. Our findings may facilitate a comprehensive understanding on behaviors of PBDEs in soil systems. - Highlights: ► A two-compartment first-order kinetic model for the PBDEs studied was established. ► Isotherm was fitted well by a linear distribution or a nonlinear Freundlich model. ► Desorption commonly exhibited somewhat hysteresis relative to sorption. ► Soil organic carbon fractions showed close correlations with the model parameters. - Two-compartment first-order model, and linear distribution model or nonlinear Freundlich model could well elucidate desorption kinetics and isotherms of PBDEs in natural soils, respectively.

  19. Modelling of discrete TDS-spectrum of hydrogen desorption

    Science.gov (United States)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  20. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  1. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils

    DEFF Research Database (Denmark)

    Fernandez Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel

    2015-01-01

    The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments...... tetracycline > oxytetracycline > chlortetracycline in soil 1, with similar values for the three antibiotics and the sequence tetracycline > chlortetracycline > oxytetracycline in soil 2. The desorption sequences were oxytetracycline > tetracycline > chlortetracycline in soil 1 and oxytetracycline...... > chlortetracycline > tetracycline in soil 2. In conclusion, the SFC technique has yielded new kinetic data regarding tetracycline, oxytetracycline, and chlortetracycline adsorption/desorption on soils, indicating that it can be used to shed further light on the retention and transport processes affecting antibiotics...

  2. ε-Polylysine-based thermo-responsive adsorbents for immunoglobulin adsorption-desorption under mild conditions.

    Science.gov (United States)

    Maruyama, Masashi; Shibuya, Keisuke

    2017-08-22

    Thermo-responsive adsorbents for immunoglobulin G (IgG) employing ε-polylysine (EPL) as a polymer backbone were developed. The introduction of mercaptoethylpyridine (MEP) as an IgG-binding ligand and hydrophobization of side chains afforded thermo-responsive IgG adsorbents, whose thermo-responsive IgG desorption ratio was up to 88% (EPL/MEP derivative 3m). The changes in surface densities of active MEP groups, which are caused by thermal conformational changes of the adsorbents, play key roles for IgG desorption. Although a trade-off of IgG adsorption capacity and IgG desorption ratio was observed, the present study offers a novel molecular design for thermo-responsive adsorbents with high synthetic accessibility and potentially low toxicity.

  3. The use of angle resolved electron and photon stimulated desorption for the determination of molecular structure at surfaces

    International Nuclear Information System (INIS)

    Madey, T.E.; Stockbauer, R.

    1983-01-01

    A brief review of recent data related to the use of angle-resolved electron stimulated desorption and photon stimulated desorption in determining the structures of molecules at surfaces is made. Examples include a variety of structural assignments based on ESIAD (electron stimulated desorption ion angular distributions), the observation of short-range local ordering effects induced in adsorbed molecules by surface impurities, and the application of photon stimulated desorption to both ionic and covalent adsorbate systems. (Author) [pt

  4. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment.

    Science.gov (United States)

    Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting

    2017-05-01

    High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process

  5. Mechanistic study of lead desorption during the leaching process of ion-absorbed rare earths: pH effect and the column experiment

    Science.gov (United States)

    Xue, Q.; Tang, J., Sr.; Chen, H.

    2017-12-01

    High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pHleaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process.

  6. Competitive metal sorption and desorption onto Kappaphycus alvarezii, seaweed waste biomass

    International Nuclear Information System (INIS)

    Lee, K.O.; Nazaruddin Ramli; Mamot Said; Musa Ahmad; Suhaimi Mohd Yasir; Arbakariya Ariff

    2011-01-01

    Competitive metal sorption and desorption onto Kappaphycus alvarezii waste biomass were investigated. Metal sorption capacities were 0.82 mg Cr (III)/ g, 0.73 mg Ni (II)/ g, 0.67 mg Cd (II)/ g, 0.65 mg Cu( II)/ g and 0.64 mg Zn (II)/ g in multi metal system. Whereas, desorption efficiencies were 66.08 %, 71.50 % and 80.44 % using 0.1 M HNO 3 , 0.1 M HCl and 0.1 M H 2 SO 4 , respectively. The metal sorption sequence were Cr(III) > Ni(II) > Cd(II) > Cu(II) > Zn(II), while metal desorption sequence were Cd(II) > Zn(II) > Cu(II) > Ni(II) > Cr(III). Fourier transformed infrared spectroscopy (FTIR) technique was used to characterize the seaweed waste biomass. FTIR analysis shown that carbonyl (-C-O) and nitrile (-C≡N) groups interact with the metal ions. The experiments result revealed that Kappaphycus alvarezii waste biomass represent an attractive candidate to remove multi metal ions. (author)

  7. Thermal desorption of deuterium from polycrystalline nickel pre-implanted with helium

    International Nuclear Information System (INIS)

    Shi, S.Q.; Abramov, E.; Thompson, D.A.

    1990-01-01

    The thermal desorption technique has been used to study the trapping of deuterium atoms in high-purity polycrystalline nickel pre-implanted with helium for 1 x 10 19 to 5 x 10 20 ions/m 2 . The effect of post-implantation annealing at 703 K and 923 K on the desorption behavior was investigated. Measured values of the total amount of detrapped deuterium (Q T ) and helium concentration were used in a computer simulation of the desorption curve. It was found that the simulation using one or two discrete trap energies resulted in an inadequate fit between the simulated and the measured data. Both experimental and simulation results are explained using a stress-field trapping model. The effective binding energy, E b eff , was estimated to be in the range of 0.4-0.6 eV. Deuterium charging was found to stimulate a release of helium at a relatively low temperature

  8. Competitive metal sorption and desorption onto Kappaphycus alvarezii, seaweed waste biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K O; Ramli, Nazaruddin; Said, Mamot; Ahmad, Musa [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, selangor (Malaysia); Yasir, Suhaimi Mohd [School of Sciences and Technology, Universiti Malaysia Sabah (UMS), Sabah (Malaysia); Arbakariya Ariff, E-mail: naza@ukm.my [Faculty of Biotechnology and Biomolecular science, Universiti Putra Malaysia (UPM), Serdang, Selangor (Malaysia)

    2011-07-15

    Competitive metal sorption and desorption onto Kappaphycus alvarezii waste biomass were investigated. Metal sorption capacities were 0.82 mg Cr (III)/ g, 0.73 mg Ni (II)/ g, 0.67 mg Cd (II)/ g, 0.65 mg Cu( II)/ g and 0.64 mg Zn (II)/ g in multi metal system. Whereas, desorption efficiencies were 66.08 %, 71.50 % and 80.44 % using 0.1 M HNO{sub 3}, 0.1 M HCl and 0.1 M H{sub 2}SO{sub 4}, respectively. The metal sorption sequence were Cr(III) > Ni(II) > Cd(II) > Cu(II) > Zn(II), while metal desorption sequence were Cd(II) > Zn(II) > Cu(II) > Ni(II) > Cr(III). Fourier transformed infrared spectroscopy (FTIR) technique was used to characterize the seaweed waste biomass. FTIR analysis shown that carbonyl (-C-O) and nitrile (-C{identical_to}N) groups interact with the metal ions. The experiments result revealed that Kappaphycus alvarezii waste biomass represent an attractive candidate to remove multi metal ions. (author)

  9. A Rapid Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry-Based Method for Single-Plasmid Tracking in an Outbreak of Carbapenem-Resistant Enterobacteriaceae

    Science.gov (United States)

    Lau, Anna F.; Wang, Honghui; Weingarten, Rebecca A.; Drake, Steven K.; Suffredini, Anthony F.; Garfield, Mark K.; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J.; Frank, Karen M.

    2014-01-01

    Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the blaKPC carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼11,109-Da MS peak corresponding to a gene product of the blaKPC pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of blaKPC-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the blaKPC Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other blaKPC Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. PMID:24850353

  10. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  11. Property changes of some hydrogen storage alloys upon hydrogen absorption-desorption cycling

    International Nuclear Information System (INIS)

    Park, C.N.; Cho, S.W.; Choi, J.

    2005-01-01

    Hydrogen absorption-desorption cycling induced by pressure change in a closed system were carried out with LaNi 5 , La 0.7 Ce 0.3 Ni 4 Cu and TiFe 0.9 Ni 0.1 alloys. PC isotherms measured during the cycling showed some changes in hydrogen storage capacity, plateau pressure and hysteresis of the alloys. The half capacity life of LaNi 5 alloy can be projected as 70,000 cycles for room temperature pressure cycling. When La 0.7 Ce 0.3 Ni 4 Cu alloy was pressure cycled both of the plateau pressures were decreased significantly and continuously. TiFe 0.9 Ni 0.1 alloy showed a good resistance to cyclic degradation. Heat treatments of the degraded alloys under 1 atm of hydrogen gas recovered most of the hydrogen storage properties to the initial level even though they were degraded again more rapidly upon subsequent cycling. (orig.)

  12. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  13. Rapid tryptic mapping using enzymatically active mass spectrometer probe tips

    Energy Technology Data Exchange (ETDEWEB)

    Dogruel, D.; Williams, P.; Nelson, R.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-12-01

    A method has been developed for rapid, sensitive, and accurate tryptic mapping of polypeptides using matrix-assisted laser desorption/ionization time-of-flight mass analysis. The technique utilizes mass spectrometer probe tips which have been activated through the covalent immobilization of trypsin. The enzymatically active probe tips were used for the tryptic mapping of chicken egg lysozyme and the results compared with those obtained using either free trypsin or agarose-immobilized trypsin. A significant increase in the overall sensitivity of the process was observed using the active probe tips, as well as the production of more characteristic proteolytic fragments and the elimination of background signals due to the autolysis of the trypsin. Further, probe tip digestions were found to be rapid and convenient. 19 refs., 6 figs., 2 tabs.

  14. An experimental and modeling study of grain-scale uranium desorption from field-contaminated sediments and the potential influence of microporosity on mass-transfer

    Science.gov (United States)

    Stoliker, D.; Liu, C.; Kent, D. B.; Zachara, J. M.

    2012-12-01

    The aquifer below the 300-Area of the Hanford site (Richland, WA, USA) is plagued by a persistent plume of dissolved uranium (U(VI)) in excess of the Environmental Protection Agency drinking water maximum contamination level even after the removal of highly contaminated sediments. The aquifer sediments in the seasonally saturated lower vadose zone act as both a source and sink for uranium during stage changes in the nearby Columbia River. Diffusion limitation of uranium mass-transfer within these sediments has been cited as a potential cause of the plume's persistence. Equilibrium U(VI) sorption is a strong function of variable chemical conditions, especially carbonate, hydrogen, and uranyl ion activities. Field-contaminated sediments from the site require up to 1,000 hours to reach equilibrium in static batch reactors. Increases in U(VI) concentrations over longer time-scales result from changes in chemical conditions, which drive reactions with sediments that favor U(VI) desorption. Grain-scale U(VI) sorption/desorption rates are slow, likely owing to diffusion of U(VI) and other solutes through intra-granular pore domains. In order to improve understanding of the impact of intra-granular diffusion and chemical reactions controlling grain-scale U(VI) release, experiments were conducted on individual particle size fractions of a single set of constant chemical conditions with multiple stop-flow events, were similar for all size fractions displacement from equilibrium and multiple diffusion domains were described with a two-parameter lognormal distribution of mass-transfer rate coefficients. Parameters describing mass transfer were the same for all size fractions reaction models calibrated with individual size fractions predicted U(VI) and chemical composition as a function of time for the bulk sediment sample. Volumes of pores less than 2.4 nm, quantified using nitrogen adsorption-desorption isotherms, were the same for all size fractions < 2 mm, nearly double

  15. On the impact of dose rate variation upon RapidArc implementation of volumetric modulated arc therapy

    International Nuclear Information System (INIS)

    Nicolini, Giorgia; Clivio, Alessandro; Cozzi, Luca; Fogliata, Antonella; Vanetti, Eugenio

    2011-01-01

    Purpose: A study was carried out to evaluate the robustness and mutual interplay of two variables concurring to generate modulation patterns of the RapidArc (RapidArc) implementation of volumetric modulated arc therapy. Dose rate (DR) and gantry speed (GS) are free parameters optimized alongside field aperture shape by the RapidArc engine; however, they are limited by machine constraints and mutually compensate in order to deliver the proper MU/deg during the gantry rotation. Methods: Four test cases (one geometrical and three clinical) were selected and RapidArc plans were optimized using maximum allowed dose rates from 100 to 600 MU/min. The maximum gantry speed was fixed at 4.8 deg/s. Qualitative analysis of DR and GS patterns from these cases was summarized together with quantitative assessment of delivery parameters. Pretreatment quality assurance measurements and scoring of plan quality aimed to determine whether preferable initial conditions might be identified or the optimization engine might be invariant to those variables and capable of providing adequate plans independently from the limits applied. Results: The results of the study were: (i) High dynamic range in MU/deg is achievable across all dose rates by means of gantry speed modulation; (ii) there is a robust compensation mechanism between the two variables; (iii) from a machine delivery point-of-view, slightly improved accuracy is achieved when lower DRs are applied; however, this does not have practical consequences since measurements and plan evaluation showed a lack of clinically relevant deviation; and (iv) reduced total treatment time is a major advantage of high DR. Conclusions: A trend toward improved plan quality for clinical cases was observed with high DR but cannot be generalized, due to the limited amount of cases investigated and the consequent limited significance of the observed differences. As a minimum benefit, the reduced total treatment time should be considered as well.

  16. Extrapolation studies on desorption of thorium and uranium at different solution compositions on contaminated soil sediments (Malaysia)

    International Nuclear Information System (INIS)

    Syed Hakimi Sakuma

    2000-01-01

    By means of batch desorption experiments, the thorium and uranium desorption properties of contaminated soil sediments are investigated as a function of the effect of cations present in the groundwater. A phenomenological correlation between the desorption coefficient and the concentration of Ca and Mg in the water is determined. Kd Thorium -0.15849 ± 0.03237 log (Ca + Mg) + 5.06715 ± 0.09106; Kd Uranium = -0.11984 ± 0.03237 log (Ca + Mg) + 2.99909 ± 0.09105. By these models the sorption/desorption behaviour of soils can be predicted phenomenologically as function of the groundwater composition. (author)

  17. Enhanced desorption of Cs from clays by a polymeric cation-exchange agent

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Woo, E-mail: park85@gmail.com [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Kim, Bo Hyun [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Department of Chemical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon (Korea, Republic of); Yang, Hee-Man; Seo, Bum-Kyoung [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of); Lee, Kune-Woo, E-mail: nkwlee@kaeri.re.kr [Decontamination & Decommissioning Research Division, Korea Atomic Energy Research Institute, Daedeok-daero 989-111, Yuseong-gu, Daejeon (Korea, Republic of)

    2017-04-05

    Highlights: • A cationic polyelectrolyte has excellent ability to desorb Cs bound strongly to clay. • The polycation desorbed significantly more Cs from the clay than did single cations. • Additional NH{sub 4}{sup +} treatment following the polycation treatment enhanced desorption of Cs. • The reaction yielded efficient desorption (95%) of an extremely low concentration of Cs-137 in the clay. - Abstract: We report on a new approach to increase the removal of cesium from contaminated clays based on the intercalation of a cationic polyelectrolyte into the clay interlayers. A highly charged cationic polyelectrolyte, polyethyleneimine (PEI), was shown to intercalate into the negatively charged interlayers and readily replaced Cs ions adsorbed on the interlayers of montmorillonite. The polycation desorbed significantly more Cs strongly bound to the clay than did single cations. Moreover, additional NH{sub 4}{sup +} treatment following the PEI treatment enhanced desorption of Cs ions that were less accessible by the bulky polyelectrolyte. This synergistic effect of PEI with NH{sub 4}{sup +} yielded efficient desorption (95%) of an extremely low concentration of radioactive {sup 137}Cs in the clay, which is very difficult to remove by simple cation-exchange methods due to the increased stability of the binding of Cs to the clay at low Cs concentrations.

  18. Adsorption and desorption behavior of herbicide diuron on various Chinese cultivated soils.

    Science.gov (United States)

    Liu, Yihua; Xu, Zhenzhen; Wu, Xiaoguang; Gui, Wenjun; Zhu, Guonian

    2010-06-15

    The adsorption-desorption behaviors of diuron were investigated in six cultivated soils of China. The effect of system pH and temperature were also studied. The data fitted the Freundlich equation very well. The adsorption K(F) values indicated the adsorption of diuron in the six soils was in the sequence of black soil (D)>yellow earth (F)>paddy soil (B)>yellow-brown soil (C)>yellow-cinnamon soil (A)>lateritic red earth (E). The adsorption K(F) and Freundlich exponents n were decreased when temperature was increased from 298 K to 318 K. However, the Gibb's free energy values were found less negative with the increasing temperature. Meanwhile, the extent of diuron adsorption on soil was at rather high level under low pH value conditions and decreased with increasing pH value. In addition, the desorption behavior of diuron in the six soils was in the sequence of lateritic red earth (E)>yellow-cinnamon soil (A)>paddy soil (B)>yellow earth (F)>yellow-brown soil (C)>black soil (D). At the same time, desorption hysteresis of diuron were observed in all of the tested soils. And the soil organic matter content may play an important role in the adsorption-desorption behavior. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Direct Detection of Pharmaceuticals and Personal Care Products from Aqueous Samples with Thermally-Assisted Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Campbell, Ian S.; Ton, Alain T.; Mulligan, Christopher C.

    2011-07-01

    An ambient mass spectrometric method based on desorption electrospray ionization (DESI) has been developed to allow rapid, direct analysis of contaminated water samples, and the technique was evaluated through analysis of a wide array of pharmaceutical and personal care product (PPCP) contaminants. Incorporating direct infusion of aqueous sample and thermal assistance into the source design has allowed low ppt detection limits for the target analytes in drinking water matrices. With this methodology, mass spectral information can be collected in less than 1 min, consuming ~100 μL of total sample. Quantitative ability was also demonstrated without the use of an internal standard, yielding decent linearity and reproducibility. Initial results suggest that this source configuration is resistant to carryover effects and robust towards multi-component samples. The rapid, continuous analysis afforded by this method offers advantages in terms of sample analysis time and throughput over traditional hyphenated mass spectrometric techniques.

  20. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  1. Sample and plume luminescence in fast heavy ion induced desorption

    International Nuclear Information System (INIS)

    Tuszynski, W.; Koch, K.; Hilf, E.R.

    1996-01-01

    The luminescence arising in 252 Cf-fission fragment induced desorption events has been measured using the time-correlated single photon counting technique. Photons emitted from the sample have been guided from a plasma desorption ion source to a photodetector by an optical fibre. Spectra and decay functions have been obtained using thin layers of Coronene or POPOP as samples. The results are strongly dependent on the acceleration field applied for ion extraction. Approximately 10 photons per fission fragment have been produced when applying no accelerating voltage. The results clearly show that these photons come from radiative electronic relaxations of molecules in the solid sample. Considerably more photons per fission fragment have been produced when applying a positive acceleration voltage. The intensity increases almost linearly for acceleration fields below 10 kV/cm and saturates at a nearly 10-fold higher value when compared to no acceleration. The intensity is also affected by the homogeneity of the accelerating field. These additional photons are attributed to radiative electronic relaxations of desorbed neutral molecules in the plume excited by inelastic collisions with accelerated positive ions. No additional photons have been observed when extracting negative ions. The negative ions produced do obviously not hit and/or excite desorbed neutral molecules, presumably due to their specific desorption characteristics. The experimental data have been analyzed by comparing with the cw and time-resolved sample luminescence obtained by optical excitation. The findings demonstrate that valuable information on ion-solid interactions, on specific desorption quantities and on processes in the plume can be obtained by measuring and analyzing the luminescence induced by the impact of high energy primary ions. (orig.)

  2. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    Science.gov (United States)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  3. Investigation of hydrogen-deformation interactions in β-21S titanium alloy using thermal desorption spectroscopy

    International Nuclear Information System (INIS)

    Tal-Gutelmacher, E.; Eliezer, D.; Boellinghaus, Th.

    2007-01-01

    The focus of this paper is the investigation of the combined influence of hydrogen and pre-plastic deformation on hydrogen's absorption/desorption behavior, the microstructure and microhardness of a single-phased β-21S alloy. In this study, thermal desorption analyses (TDS) evaluation of various desorption and trapping parameters provide further insight on the relationships between hydrogen absorption/desorption processes and deformation, and their mutual influence on the microstructure and the microhardness of β-21S alloy. TDS spectra were supported by other experimental techniques, such as X-ray diffraction, scanning and transmission electron microscopy, hydrogen quantity analyses and microhardness tests. Pre-plastic deformation, performed before the electrochemical hydrogenation of the alloy, increased significantly the hydrogen absorption capacity. Its influence was also evident on the notably expanded lattice parameter of β-21S alloy after hydrogenation. However, no hydride precipitation was observed. An interesting softening effect of the pre-deformed hydrogenated alloy was revealed by microhardness tests. TDS demonstrated the significant effect of pre-plastic deformation on the hydrogen evolution process. Hydrogen desorption temperature and the activation energy for hydrogen release increased, additional trap states were observed and the amount of desorbed hydrogen decreased

  4. Segregation of O2 and CO on the surface of dust grains determines the desorption energy of O2

    Science.gov (United States)

    Noble, J. A.; Diana, S.; Dulieu, F.

    2015-12-01

    Selective depletion towards pre-stellar cores is still not understood. The exchange between the solid and gas phases is central to this mystery. The aim of this paper is to show that the thermal desorption of O2 and CO from a submonolayer mixture is greatly affected by the composition of the initial surface population. We have performed thermally programmed desorption (TPD) experiments on various submonolayer mixtures of O2 and CO. Pure O2 and CO exhibit almost the same desorption behaviour, but their desorption differs strongly when mixed. Pure O2 is slightly less volatile than CO, while in mixtures, O2 desorbs earlier than CO. We analyse our data using a desorption law linking competition for binding sites with desorption, based on the assumption that the binding energy distribution of both molecules is the same. We apply Fermi-Dirac statistics in order to calculate the adsorption site population distribution, and derive the desorbing fluxes. Despite its simplicity, the model reproduces the observed desorption profiles, indicating that competition for adsorption sites is the reason for lower temperature O2 desorption. CO molecules push-out or `dislodge' O2 molecules from the most favourable binding sites, ultimately forcing their early desorption. It is crucial to consider the surface coverage of dust grains in any description of desorption. Competition for access to binding sites results in some important discrepancies between similar kinds of molecules, such as CO and O2. This is an important phenomenon to be investigated in order to develop a better understanding of the apparently selective depletion observed in dark molecular clouds.

  5. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  6. Desorption of trihalomethanes in gas liquid contactors

    International Nuclear Information System (INIS)

    Ramirez Quesada, Kenneth

    2000-01-01

    Updated studies show that gastric cancer is related with the existence of trihalomethanes (THMs) in the drinking water. The trihalomethanes are sub products from the degradation of humic acids and your reaction with chlorine and bromine used like decontaminates. The desorption process is used to eliminate the THMs with air in contact with the water. The experimental design was used in three contactors. The contactors selected were: the bubbling's column, the packed column and the shaken tank without screen. There were selected three variable: initial concentration of THMs, the residence time and the turbulence degree (measured with the Reynolds number). The concentrations were made with a gas chromatograph. The objective of this project is to do a comparison with the gas liquid contactors more used in the industrial level to determinate which ones are the best in the desorption process. The conclusion of the experimental design is that the tank is the equipment with the best capacity to eliminate THMs. Too it includes other techniques to eliminate THMs of the water and your treatment [es

  7. Desorption and ionization processes in laser mass spectrometry

    International Nuclear Information System (INIS)

    Peyl, G.J.Q. van der.

    1984-01-01

    In this thesis results are reported from a study on the desorption- and ionization process initiated by infra-red laser irradiation (LDMS) or ion bombardment (SIMS) of thin organic sample layers. The study is especially focused on the formation of quasimolecular ions under these conditions. Results of these investigations can be used for a better optimization of the LDMS and SIMS techniques in organic mass spectrometry. First, an overview is given of laser desorption mass spectrometry. Next, the coupling of the laser energy into the organic sample layer is investigated. It is concluded that the laser energy is primarily absorbed by the substrate material and not by the organic overlayer. The formation of quasi-molecular ions, either in the gas phase or in the substrate surface is investigated. The final section reports kinetic energy distributions for ions sputtered from organic solids and liquids. (Auth.)

  8. Sorption and desorption reactions of radionuclides with a crushed basalt-bentonite packing material

    International Nuclear Information System (INIS)

    Barney, G.S.; Lane, D.L.; Allen, C.C.; Jones, T.E.

    1985-04-01

    Current design of waste packages for disposal of high-level radioactive wastes in underground basalt formations includes a layer of packing material that surrounds the waste container. One of the functions of this material is to limit the release of radionuclides from a breached container into groundwater by providing a low hydraulic conductivity zone and by sorbing dissolved radionuclides. The objective of this study was to assess the radionuclide sorption capability of a proposed packing material composed of 25% sodium bentonite and 75% crushed basalt (by weight). Sorption and desorption reactions of several important waste radioelements (neptunium, uranium, plutonium, technetium, selenium, and radium) were investigated in the absence of air at 90 0 C. Uranium and neptunium were sorbed by slow reactions that follow first-order kinetics. The reaction rates are probably controlled by reduction of weakly sorbed uranium(VI) and neptunium(V) by ferrous iron in the crushed basalt component. Technetium(VII) was not reduced or sorbed under these conditions. Freundlich sorption and desorption isotherms for a given radionuclide were non-singular and show a strong tendency for sorption hysteresis. Applying the isotherm data to a one-dimensional transport model indicated that hysteretic sorption on the packing material provides an important safety factor in controlling releases of some radionuclides

  9. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Evans, L; Kollmus, H; Küchler, D; Scrivens, R; Severin, D; Wengenroth, M; CERN. Geneva. ATS Department

    2011-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and goldcoated copper, were bombarded under perpendicular impact with 4.2 MeV/u Pb54+ ions. Partial pressure rises of H2, CH4, CO, and CO2 and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  10. Kinetics of tetracycline, oxytetracycline, and chlortetracycline adsorption and desorption on two acid soils.

    Science.gov (United States)

    Fernández-Calviño, David; Bermúdez-Couso, Alipio; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos; Fernández-Sanjurjo, Maria J; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2015-01-01

    The purpose of this work was to quantify retention/release of tetracycline, oxytetracycline, and chlortetracycline on two soils, paying attention to sorption kinetics and to implications of the adsorption/desorption processes on transfer of these pollutants to the various environmental compartments. We used the stirred flow chamber (SFC) procedure to achieve this goal. All three antibiotics showed high affinity for both soils, with greater adsorption intensity for soil 1, the one with the highest organic matter and Al and Fe oxides contents. Desorption was always  oxytetracycline > chlortetracycline in soil 1, with similar values for the three antibiotics and the sequence tetracycline > chlortetracycline > oxytetracycline in soil 2. The desorption sequences were oxytetracycline > tetracycline > chlortetracycline in soil 1 and oxytetracycline > chlortetracycline > tetracycline in soil 2. In conclusion, the SFC technique has yielded new kinetic data regarding tetracycline, oxytetracycline, and chlortetracycline adsorption/desorption on soils, indicating that it can be used to shed further light on the retention and transport processes affecting antibiotics on soils and other media, thus increasing knowledge on the behavior and evolution of these pharmaceutical residues in the environment.

  11. Coffee-ring effects in laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Hu, Jie-Bi; Chen, Yu-Chie; Urban, Pawel L

    2013-03-05

    This report focuses on the heterogeneous distribution of small molecules (e.g. metabolites) within dry deposits of suspensions and solutions of inorganic and organic compounds with implications for chemical analysis of small molecules by laser desorption/ionization (LDI) mass spectrometry (MS). Taking advantage of the imaging capabilities of a modern mass spectrometer, we have investigated the occurrence of "coffee rings" in matrix-assisted laser desorption/ionization (MALDI) and surface-assisted laser desorption/ionization (SALDI) sample spots. It is seen that the "coffee-ring effect" in MALDI/SALDI samples can be both beneficial and disadvantageous. For example, formation of the coffee rings gives rise to heterogeneous distribution of analytes and matrices, thus compromising analytical performance and reproducibility of the mass spectrometric analysis. On the other hand, the coffee-ring effect can also be advantageous because it enables partial separation of analytes from some of the interfering molecules present in the sample. We report a "hidden coffee-ring effect" where under certain conditions the sample/matrix deposit appears relatively homogeneous when inspected by optical microscopy. Even in such cases, hidden coffee rings can still be found by implementing the MALDI-MS imaging technique. We have also found that to some extent, the coffee-ring effect can be suppressed during SALDI sample preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils.

    Science.gov (United States)

    Davari, Masoud; Rahnemaie, Rasoul; Homaee, Mehdi

    2015-09-01

    Investigating the interactions of heavy metals is imperative for sustaining environment and human health. Among those, Cd is toxic for organisms at any concentration. While Ni acts as a micronutrient at very low concentration but is hazardous toxic above certain threshold value. In this study, the chemical adsorption and desorption reactions of Ni and Cd in contaminated soils were investigated in both single and binary ion systems. Both Ni and Cd experimental data demonstrated Langmuir type adsorption. In the competitive systems, an antagonistic effect was observed, implying that both ions compete for same type of adsorption sites. Adverse effect of Cd on Ni adsorption was slightly stronger than that of opposite system, consistent with adsorption isotherms in single ion systems. Variation in ionic strength indicated that Ca, a much weaker adsorbate, could also compete with Cd and Ni for adsorption on soil particles. Desorption data indicated that Cd and Ni are adsorbed very tightly such that after four successive desorption steps, less than 0.5 % of initially adsorbed ions released into the soil solution. This implies that Ca, at concentration in equilibrium with calcite mineral, cannot adequately compete with and replace adsorbed Ni and Cd ions. This adsorption behavior was led to considerable hysteresis between adsorption and desorption in both single and binary ion systems. In the binary ion systems, desorption of Cd and Ni was increased by increase in both equilibrium concentration of adsorbed ion and concentration of competitor ion. The overall results obtained in this research indicate that Cd and Ni are strongly adsorbed in calcareous soil and Ca, the major dissolved ion, insignificantly influences metal ions adsorption. Consequently, the contaminated soils by Ni and Cd can simultaneously be remediated by environmentally oriented technologies such as phytoremediation.

  13. Retention of Nickel in Soils: Sorption-Desorption and Extended X-ray Absorption Fine Structure Experiments

    Science.gov (United States)

    Adsorption and desorption of heavy metals in soils are primary factors that influence their bioavailability and mobility in the soil profile. To examine the characteristics of nickel (Ni) adsorption-desorption in soils, kinetic batch experiments were carried out followed by Ni re...

  14. Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes.

    Science.gov (United States)

    Hall, Kathleen E; Spokas, Kurt A; Gamiz, Beatriz; Cox, Lucia; Papiernik, Sharon K; Koskinen, William C

    2018-05-01

    Biochar, a carbon-rich product of biomass pyrolysis, could limit glyphosate transport in soil and remediate contaminated water. The present study investigates the sorption/desorption behavior of glyphosate on biochars prepared from different hardwoods at temperatures ranging from 350 to 900 °C to elucidate fundamental mechanisms. Glyphosate (1 mg L -1 ) sorption on biochars increased with pyrolysis temperature and was highest on 900 °C biochars; however, total sorption was low on a mass basis (glyphosate in soils, did not alter biochar sorption capacities. Glyphosate did not desorb from biochar with CaCl 2 solution; however, up to 86% of the bound glyphosate was released with a K 2 HPO 4 solution. Results from this study suggest a combined impact of surface chemistry and physical constraints on glyphosate sorption/desorption on biochar. Based on the observed phosphate-induced desorption of glyphosate, the addition of P-fertilizer to biochar-amended soils can remobilize the herbicide and damage non-target plants; therefore, improved understanding of this risk is necessary. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Adsorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agroecosystem in Malaysia.

    Science.gov (United States)

    Ismail, B S; Ooi, K E

    2012-05-01

    Laboratory experiments were conducted to evaluate adsorption, desorption and mobility of metsulfuron-methyl in soils of the oil palm agroecosystem consisting of the Bernam, Selangor, Rengam and Bongor soil series. The lowest adsorption of metsulfuron-methyl occurred in the Bongor soil (0.366 ml g(-1)), and the highest in the Bemam soil (2.837 ml g(-1). The K(fads) (Freundlich) values of metsulfuron-methyl were 0.366, 0.560, 1.570 and 2.837 ml g(-1) in Bongor, Rengam, Selangor and Bemam soil, respectively. The highest K(fdes) value of metsulfuron-methyl, observed in the Bemam soil, was 2.563 indicating low desorption 0.280 (relatively strong retention). In contrast, the lowest K(fdes) value of 0.564 was observed for the Bongor soil, which had the lowest organic matter (1.43%) and clay content (13.2%). Soil organic matter and clay content were the main factors affecting the adsorption of metsulfuron-methyl. The results of the soil column leaching studies suggested that metsulfuron-methyl has a moderate potential for mobility in the Bernam and Bongor soil series with 19.3% and 39%, respectively for rainfall at 200 mm. However, since metsulfuron-methyl is applied at a very low rate (the maximum field application rate used was 30 g ha(-1)) and is susceptible to biodegradation, the potential forground water contamination is low.

  16. Bactec™ blood culture bottles allied to MALDI-TOF mass spectrometry: rapid etiologic diagnosis of bacterial endophthalmitis.

    Science.gov (United States)

    Tanaka, Tatiana; Oliveira, Luiza Manhezi de Freitas; Ferreira, Bruno Fortaleza de Aquino; Kato, Juliana Mika; Rossi, Flavia; Correa, Karoline de Lemes Giuntini; Pimentel, Sergio Luis Gianotti; Yamamoto, Joyce Hisae; Almeida Junior, João Nóbrega

    2017-07-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) has been used for direct identification of pathogens from blood-inoculated blood culture bottles (BCBs). We showed that MALDI-TOF MS is an useful technique for rapid identification of the causative agents of endophthalmitis from vitreous humor-inoculated BCBs with a simple protocol. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hydrogen absorption-desorption properties of UZr0.29 alloy

    International Nuclear Information System (INIS)

    Shuai Maobing; Su Yongjun; Wang Zhenhong; Zhang Yitao

    2001-01-01

    Hydrogen absorption-desorption properties of UZr 0.29 alloy are investigated in detail at hydrogen pressures up to 0.4 MPa and over the temperature range of 300 to 723 K. It absorbs hydrogen up to 2.3 H atoms per F.U. (formula unit) by only one-step reaction and hence each desorption isotherm has a single plateau over nearly the whole hydrogen composition range. The enthalpy and entropy changes of the dissociation reaction are of -78.9 kJ·mol -1 H 2 and 205.3 J·(K·mol H 2 ) -1 , respectively. The alloy shows high durability against powdering upon hydrogenation and may have good heat conductivity. It is predicted that UZr 0.29 alloy may be a suitable material for tritium treatment and storage

  18. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  19. Adsorção e dessorção aniônicas individuais por gibbsita pedogenética Individual anionic adsorption and desorption by pedogenic gibbsite

    Directory of Open Access Journals (Sweden)

    Adélia A. A. Pozza

    2009-01-01

    Full Text Available Anion adsorption/desorption dynamics was studied as individual processes on surface of particles of a gibbsitic clay. The data suggest a remarkable gibbsite role as nitrate leaching retardant in soil. The opposite behavior of gibbsite towards adsorption/desorption of silicate and phosphate suggests the need of an adequate compromise solution regarding interval and rate applications of anions in cultivated gibbsitic soils. The high P adsorption verified in pH values lower than that reported for the point of zero charge of synthetic Al-hydroxides implies that this process takes place in pedogenic gibbsites through inner sphere complexation.

  20. Optical detection of CO and CO2 temperature dependent desorption from carbon nanotube clusters

    International Nuclear Information System (INIS)

    Chistiakova, M V; Armani, A M

    2014-01-01

    The development of new materials relies on high precision methods to quantify adsorption/desorption of gases from surfaces. One commonly used approach is temperature programmed desorption spectroscopy. While this approach is very accurate, it requires complex instrumentation, and it is limited to performing experiments under high vacuum, thus restricting experimental scope. An alternative approach is to integrate the surface of interest directly onto a detector face, creating an active substrate. One surface that has applications in numerous areas is the carbon nanotube (CNT). As such, an active substrate that integrates a CNT surface on a sensor and is able to perform measurements in ambient environments will have significant impact. In the present work, we have developed an active substrate that combines an optical sensor with a CNT cluster substrate. The optical sensor is able to accurately probe the temperature dependent desorption of carbon monoxide and carbon dioxide gases from the CNT cluster surface. This active substrate will enable a wide range of temperature dependent desorption measurements to be performed from a scientifically interesting material system. (paper)

  1. High permeation rates in liposome systems explain rapid glyphosate biodegradation associated with strong isotope fractionation.

    Science.gov (United States)

    Ehrl, Benno; Mogusu, Emmanuel O; Kim, Kyoungtea; Hofstetter, Heike; Pedersen, Joel A; Elsner, Martin

    2018-05-23

    Bacterial uptake of charged organic pollutants such as the widely used herbicide glyphosate is typically attributed to active transporters, whereas passive membrane permeation as an uptake pathway is usually neglected. For 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes, pH-dependent membrane permeation coefficients (Papp) of glyphosate, determined by nuclear magnetic resonance (NMR) spectroscopy, varied from Papp(pH 7.0) = 3.7 (+/-0.3) × 10-7 m∙s-1 to Papp(pH 4.1) = 4.2 (+/-0.1) × 10-6 m∙s-1. This surprisingly rapid membrane permeation depended on glyphosate speciation and was, at physiological pH, in the range of polar, non-charged molecules suggesting that passive membrane permeation is a potential uptake pathway during glyphosate biodegradation. To test this hypothesis, a Gram-negative glyphosate degrader, Ochrobactrum sp. FrEM, was isolated from glyphosate-treated soil and glyphosate permeation rates inferred from the liposome model were compared to bacterial degradation rates. Estimated maximum permeation rates were, indeed, two orders of magnitudes higher than glyphosate degradation rates. Moreover, biodegradation of millimolar glyphosate concentrations gave rise to pronounced carbon isotope fractionation with an apparent kinetic isotope effect of AKIEcarbon= 1.014 ± 0.003. This value is consistent with unmasked enzymatic isotope fractionation demonstrating that glyphosate biodegradation was little mass transfer-limited and glyphosate exchange across the cell membrane was rapid relative to enzymatic turnover.

  2. Biosorption and desorption of Cd2+ from wastewater by dehydrated shreds of Cladophora fascicularis

    Science.gov (United States)

    Deng, Liping; Zhu, Xiaobin; Su, Yingying; Su, Hua; Wang, Xinting

    2008-02-01

    The adsorption and desorption of algae Cladophora fascicularis and their relation with initial Cd2+ concentration, initial pH, and co-existing ions were studied. Adsorption equilibrium and biosorption kinetics were established from batch experiments. The adsorption equilibrium was adequately described by the Langmuir isotherm, and biosorption kinetics was in pseudo-second order model. The experiment on co-existing ions showed that the biosorption capacity of biomass decreased with an increasing concentration of competing ions. Desorption experiments indicated that EDTA was efficient desorbent for recovery from Cd2+. With high capacities of metal biosorption and desorption, the biomass of Cladophora fascicularis is promising as a cost-effective biosorbent for the removal of Cd2+ from wastewater.

  3. Laser induced desorption as hydrogen retention diagnostic method

    Energy Technology Data Exchange (ETDEWEB)

    Zlobinski, Miroslaw

    2016-07-15

    binding energy. Such effects can lead to the observed desorption fractions as simulations (TMAP7 code) of heat and H diffusion during the laser pulse show. These experiments are performed in a vacuum chamber outside the tokamak, where the desorbed gases are quantified by a quadrupole mass spectrometer, thus representing the ex situ method LID-QMS. In the tokamak TEXTOR the in situ diagnostic method LIDS is used utilizing the same physics for heating, desorption and surface modifications. Understanding the latter becomes important to mitigate material release into the plasma. Here, the quantification of the desorbed hydrogen is done by passive spectroscopy of the Balmer H{sub α} and D{sub α} light (656 nm) observed coaxially to the laser beam as a double line by a spectrometer and from the side by a camera with gated image intensifier using a narrow-band H and D filter. A simplified data evaluation has been developed which determines the plasma radius of the light intensity maximum of the LIDS light, takes the electron density and temperature at this radius measured by edge plasma diagnostics and looks up the corresponding quotient of ionisation to excitation rate {sup S}/{sub XB}(n{sub e},T{sub e}) in a database (ADAS). A second factor takes into account the dominant plasma processes which yield only one atom from one hydrogen molecule for pure hydrogen release and even less for desorbed hydrocarbons. The combined light-to-particle conversion factor is ca. 30 H atoms/H{sub α} photons which agrees with simulations of the LIDS light (ERO code). While the simulated spatial light distribution is very sensitive to the details of the plasma edge profiles, the total photon amount stays very constant, thus justifying the simplified data evaluation. The experimental FWHM of the light in toroidal/poloidal direction is 30-40 mm and has an e-folding decay length of 15-20 mm in radial direction. Its intensity maximum is typically at n{sub e} ∼ 4.10{sup 18} {sup e{sup -}}/{sub m

  4. Laser induced desorption as hydrogen retention diagnostic method

    International Nuclear Information System (INIS)

    Zlobinski, Miroslaw

    2016-01-01

    . Such effects can lead to the observed desorption fractions as simulations (TMAP7 code) of heat and H diffusion during the laser pulse show. These experiments are performed in a vacuum chamber outside the tokamak, where the desorbed gases are quantified by a quadrupole mass spectrometer, thus representing the ex situ method LID-QMS. In the tokamak TEXTOR the in situ diagnostic method LIDS is used utilizing the same physics for heating, desorption and surface modifications. Understanding the latter becomes important to mitigate material release into the plasma. Here, the quantification of the desorbed hydrogen is done by passive spectroscopy of the Balmer H α and D α light (656 nm) observed coaxially to the laser beam as a double line by a spectrometer and from the side by a camera with gated image intensifier using a narrow-band H and D filter. A simplified data evaluation has been developed which determines the plasma radius of the light intensity maximum of the LIDS light, takes the electron density and temperature at this radius measured by edge plasma diagnostics and looks up the corresponding quotient of ionisation to excitation rate S / XB (n e ,T e ) in a database (ADAS). A second factor takes into account the dominant plasma processes which yield only one atom from one hydrogen molecule for pure hydrogen release and even less for desorbed hydrocarbons. The combined light-to-particle conversion factor is ca. 30 H atoms/H α photons which agrees with simulations of the LIDS light (ERO code). While the simulated spatial light distribution is very sensitive to the details of the plasma edge profiles, the total photon amount stays very constant, thus justifying the simplified data evaluation. The experimental FWHM of the light in toroidal/poloidal direction is 30-40 mm and has an e-folding decay length of 15-20 mm in radial direction. Its intensity maximum is typically at n e ∼ 4.10 18 e - / m 3 and k B T e ∼ 60 eV close to the last closed flux surface. A

  5. Equilibrium adsorption data from temperature-programmed desorption measurements

    NARCIS (Netherlands)

    Foeth, F.; Mugge, J.M.; van der Vaart, R.; van der Vaart, Rick; Bosch, H.; Reith, T.

    1996-01-01

    This work describes a novel method that enables the calculation of a series of adsorption isotherms basically from a single Temperature-Programmed Desorption (TPD) experiment. The basic idea is to saturate an adsorbent packed in a fixed bed at a certain feed concentration and temperature and to

  6. Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon

    Science.gov (United States)

    Nsouandélé, J. L.; Tamba, J. G.; Bonoma, B.

    2018-04-01

    This work is centered on the study of the desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods, which contribute in the determination of drying and storage of tropical plank woods. Desorption isotherms of tropical woods were experimentally determined under different temperatures in this study using the gravimetric method. The determination of Henderson's model isotherms parameters of desorption were obtained for temperatures of 20 °C, 30 °C, 40 °C, and 50 °C. The mean relative deviation between theoretical and experimental moisture contents was calculated and fitted well with the desorption models of tropical woods. We noticed that Henderson models fitted much better with experimental ones for 95% of relative humidity. The sigmoid shapes of results are satisfactory. Hysteresis phenomenon was observed for desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods. Results showed the difference between the stability and use of heavy and heavyweight tropical wood. These results help in the estimation of water content at equilibrium of tropical woods in relative humidity from experimented ones. Hygroscopic equilibrium humidity of heavy tropical woods varied between 0% and 50% while those of heavyweight varied between 0% and 25%. Therefore, these woods can be used in an opened environment; woodwork and decoration.

  7. Modeling photo-desorption in high current storage rings

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1991-01-01

    High luminosity flavor factories are characterized by high fluxes of synchrotron radiation that lead to thermal management difficulties. The associated photo-desorption from the vacuum chamber walls presents an additional design challenge, providing a vacuum system suitable for maintaining acceptable beam-gas lifetimes and low background levels of scattered radiation in the detector. Achieving acceptable operating pressures (1-10 nTorr) with practical pumping schemes requires the use of materials with low photodesorption efficiency operating in a radiation environment beyond that of existing storage rings. Extrapolating the existing photo-desorption data base to the design requirements of high luminosity colliders requires a physical model of the differential cleaning in the vacuum chamber. The authors present a simple phenomenological model of photodesorption that includes effects of dose dependence and diffuse photon reflection to compute the leveling of gas loads in beamlines of high current storage rings that typify heavy flavor factories. This model is also used to estimate chamber commissioning times

  8. Hydrogen absorption-desorption properties of U2Ti

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Tanaka, Satoru; Yamawaki, Michio

    1990-01-01

    Hydrogen absorption-desorption properties of U 2 Ti intermetallic compound was examined over the temperature range of 298 to 973 K and at hydrogen pressures below 10 5 Pa. It absorbs hydrogen up to 7.6 atoms per F.U. (formula unit) by two step reactions and hence each desorption isotherm is separated into two plateau regions. In the first plateau, a newly-found ternary hydride is formed, where the hydrogen concentration, c H , reaches 2.4 H atoms/F.U. In the second plateau, UH 3 is formed and c H reaches 7.6 H atoms/F.U. The specimen is disintegrated into fine powder in the second plateau, while in the first plateau the ternary hydride which was identified to be UTi 2 H x (x=4.8 to 6.2) showed high durability against powdering. It is predicted that UTi 2 can be suitable material for tritium storage. (orig.)

  9. Insight into the Physical and Dynamical Processes that Control Rapid Increases in Total Flash Rate

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2015-01-01

    Rapid increases in total lightning (also termed "lightning jumps") have been observed for many decades. Lightning jumps have been well correlated to severe and hazardous weather occurrence. The main focus of lightning jump work has been on the development of lightning algorithms to be used in real-time assessment of storm intensity. However, in these studies it is typically assumed that the updraft "increases" without direct measurements of the vertical motion, or specification of which updraft characteristic actually increases (e.g., average speed, maximum speed, or convective updraft volume). Therefore, an end-to-end physical and dynamical basis for coupling rapid increases in total flash rate to increases in updraft speed and volume must be understood in order to ultimately relate lightning occurrence to severe storm metrics. Herein, we use polarimetric, multi-Doppler, and lightning mapping array measurements to provide physical context as to why rapid increases in total lightning are closely tied to severe and hazardous weather.

  10. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae.

    Science.gov (United States)

    Lau, Anna F; Wang, Honghui; Weingarten, Rebecca A; Drake, Steven K; Suffredini, Anthony F; Garfield, Mark K; Chen, Yong; Gucek, Marjan; Youn, Jung-Ho; Stock, Frida; Tso, Hanna; DeLeo, Jim; Cimino, James J; Frank, Karen M; Dekker, John P

    2014-08-01

    Carbapenem-resistant Enterobacteriaceae (CRE) have spread globally and represent a serious and growing threat to public health. Rapid methods for tracking plasmids carrying carbapenemase genes could greatly benefit infection control efforts. Here, we demonstrate that real-time, direct tracking of a single plasmid in a bacterial strain responsible for an outbreak is possible using a commercial matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system. In this case, we retrospectively tracked the bla(KPC) carbapenemase gene-bearing pKpQIL plasmid responsible for a CRE outbreak that occurred at the NIH Clinical Center in 2011. An ∼ 11,109-Da MS peak corresponding to a gene product of the bla(KPC) pKpQIL plasmid was identified and characterized using a combination of proteomics and molecular techniques. This plasmid peak was present in spectra from retrospectively analyzed K. pneumoniae outbreak isolates, concordant with results from whole-genome sequencing, and absent from a diverse control set of bla(KPC)-negative clinical Enterobacteriaceae isolates. Notably, the gene characterized here is located adjacent to the bla(KPC) Tn4401 transposon on the pKpQIL plasmid. Sequence analysis demonstrates the presence of this gene in other bla(KPC) Tn4401-containing plasmids and suggests that this signature MS peak may be useful in tracking other plasmids conferring carbapenem resistance. Plasmid identification using this MALDI-TOF MS method was accomplished in as little as 10 min from isolated colonies and 30 min from positive (spiked) blood cultures, demonstrating the potential clinical utility for real-time plasmid tracking in an outbreak. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. The Characterization of Laser Ablation Patterns and a New Definition of Resolution in Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry (MALDI-IMS).

    Science.gov (United States)

    O'Rourke, Matthew B; Raymond, Benjamin B A; Padula, Matthew P

    2017-05-01

    Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI-IMS) is a technique that has seen a sharp rise in both use and development. Despite this rapid adoption, there have been few thorough investigations into the actual physical mechanisms that underlie the acquisition of IMS images. We therefore set out to characterize the effect of IMS laser ablation patterns on the surface of a sample. We also concluded that the governing factors that control spatial resolution have not been correctly defined and therefore propose a new definition of resolution. Graphical Abstract ᅟ.

  12. Thermal desorption of toluene from Vanadium-containing catalysts coated onto various carriers

    Directory of Open Access Journals (Sweden)

    Z. Zheksenbaeva

    2012-12-01

    Full Text Available The method temperature-programmed desorption has been studied the state of toluene on the surface-modified vanadium catalysts on different carriers. Among the investigated carriers the most active in the reaction of partial oxidation of toluene is anatase structural titanium dioxide. For the partial oxidation of toluene on modified vanadium-containing catalysts deposited on TiO2 was tested. It was found that on the catalyst 20%V2O5-5%MoO3-2%Sb2O3/TiO2 at a temperature of 673K, volume rate of 15 thousand hours-1 oxidation of toluene is 80% c yield of benzoic acid with a selectivity of  70% of 87.5%.

  13. A Study on Thermal Desorption of Deuterium in D-loaded SS316LN for ITER Tritium Removal System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myungchul; Kim, Heemoon; Ahn, Sangbok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jaeyong; Lee, Sanghwa; LanAhn, Nguyen Thi [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Because Type B radwaste includes tritium on its inside, especially at vicinity of surface, tritium removal from the radwaste is a matter of concern in terms of the radwaste processes. Tritium behavior in materials is related with temperature. Considering a diffusion process, it is expected that tritium removal efficiency is enhanced with increasing baking temperature. However, there is a limitation about temperature due to facility capacity and economic aspect. Therefore, it is necessary to investigate the effect of temperature on the desorption behavior of Tritium in ITER materials. TDS analysis was performed in SS316LN loaded at 120, 240 and 350 °C. D2 concentration and the desorption peak temperature increased with increasing loading temperature. Using peak shift method with three ramp rates of 0.166, 0.332, and 0.5 °C/sec, trap activation energy of D in SS316LN loaded at 350 °C was 56 kJ/mol.

  14. Adsorption and Desorption of Nickel(II) Ions from Aqueous Solution by a Lignocellulose/Montmorillonite Nanocomposite

    Science.gov (United States)

    Zhang, Xiaotao; Wang, Ximing

    2015-01-01

    A new and inexpensive lignocellulose/montmorillonite (LNC/MMT) nanocomposite was prepared by a chemical intercalation of LNC into MMT and was subsequently investigated as an adsorbent in batch systems for the adsorption-desorption of Ni(II) ions in an aqueous solution. The optimum conditions for the Ni(II) ion adsorption capacity of the LNC/MMT nanocomposite were studied in detail by varying parameters such as the initial Ni(II) concentration, the solution pH value, the adsorption temperature and time. The results indicated that the maximum adsorption capacity of Ni(II) reached 94.86 mg/g at an initial Ni(II) concentration of 0.0032 mol/L, a solution pH of 6.8, an adsorption temperature of 70°C, and adsorption time of 40 min. The represented adsorption kinetics model exhibited good agreement between the experimental data and the pseudo-second-order kinetic model. The Langmuir isotherm equation best fit the experimental data. The structure of the LNC/MMT nanocomposite was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM), whereas the adsorption mechanism was discussed in combination with the results obtained from scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy analyses (FTIR). The desorption capacity of the LNC/MMT nanocomposite depended on parameters such as HNO3 concentration, desorption temperature, and desorption time. The satisfactory desorption capacity of 81.34 mg/g was obtained at a HNO3 concentration, desorption temperature, and desorption time of 0.2 mol/L, 60 ºC, and 30 min, respectively. The regeneration studies showed that the adsorption capacity of the LNC/MMT nanocomposite was consistent for five cycles without any appreciable loss in the batch process and confirmed that the LNC/MMT nanocomposite was reusable. The overall study revealed that the LNC/MMT nanocomposite functioned as an effective adsorbent in the detoxification of Ni

  15. A rapid decrease in the rotation rate of comet 41P/Tuttle-Giacobini-Kresák.

    Science.gov (United States)

    Bodewits, Dennis; Farnham, Tony L; Kelley, Michael S P; Knight, Matthew M

    2018-01-10

    Cometary outgassing can produce torques that change the spin state of the cometary nucleus, which in turn influences the evolution and lifetime of the comet. If these torques increase the rate of rotation to the extent that centripetal forces exceed the material strength of the nucleus, the comet can fragment. Torques that slow down the rotation can cause the spin state to become unstable, but if the torques persist the nucleus can eventually reorient itself and the rotation rate can increase again. Simulations predict that most comets go through a short phase of rapid changes in spin state, after which changes occur gradually over longer times. Here we report observations of comet 41P/Tuttle-Giacobini-Kresák during its close approach to Earth (0.142 astronomical units, approximately 21 million kilometres, on 1 April 2017) that reveal a rapid decrease in rotation rate. Between March and May 2017, the apparent rotation period of the nucleus increased from 20 hours to more than 46 hours-a rate of change of more than an order of magnitude larger than has hitherto been measured. This phenomenon must have been caused by the gas emission from the comet aligning in such a way that it produced an anomalously strong torque that slowed the spin rate of the nucleus. The behaviour of comet 41P/Tuttle-Giacobini-Kresák suggests that it is in a distinct evolutionary state and that its rotation may be approaching the point of instability.

  16. A rapid decrease in the rotation rate of comet 41P/Tuttle–Giacobini–Kresák

    Science.gov (United States)

    Bodewits, Dennis; Farnham, Tony L.; Kelley, Michael S. P.; Knight, Matthew M.

    2018-01-01

    Cometary outgassing can produce torques that change the spin state of the cometary nucleus, which in turn influences the evolution and lifetime of the comet. If these torques increase the rate of rotation to the extent that centripetal forces exceed the material strength of the nucleus, the comet can fragment. Torques that slow down the rotation can cause the spin state to become unstable, but if the torques persist the nucleus can eventually reorient itself and the rotation rate can increase again. Simulations predict that most comets go through a short phase of rapid changes in spin state, after which changes occur gradually over longer times. Here we report observations of comet 41P/Tuttle–Giacobini–Kresák during its close approach to Earth (0.142 astronomical units, approximately 21 million kilometres, on 1 April 2017) that reveal a rapid decrease in rotation rate. Between March and May 2017, the apparent rotation period of the nucleus increased from 20 hours to more than 46 hours—a rate of change of more than an order of magnitude larger than has hitherto been measured. This phenomenon must have been caused by the gas emission from the comet aligning in such a way that it produced an anomalously strong torque that slowed the spin rate of the nucleus. The behaviour of comet 41P/Tuttle–Giacobini–Kresák suggests that it is in a distinct evolutionary state and that its rotation may be approaching the point of instability.

  17. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-02-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Children with Autism Detect Targets at Very Rapid Presentation Rates with Similar Accuracy as Adults

    Science.gov (United States)

    Hagmann, Carl Erick; Wyble, Bradley; Shea, Nicole; LeBlanc, Megan; Kates, Wendy R.; Russo, Natalie

    2016-01-01

    Enhanced perception may allow for visual search superiority by individuals with Autism Spectrum Disorder (ASD), but does it occur over time? We tested high-functioning children with ASD, typically developing (TD) children, and TD adults in two tasks at three presentation rates (50, 83.3, and 116.7 ms/item) using rapid serial visual presentation.…

  19. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate.

    OpenAIRE

    Barnini, S; Ghelardi, Emilia; Brucculeri, V; Morici, Paola; Lupetti, Antonella

    2015-01-01

    Background Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identif...

  20. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    Science.gov (United States)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  1. Association/dissociation in dense gases and adsorption/desorption on surfaces

    International Nuclear Information System (INIS)

    Flannery, M.R.

    1984-01-01

    A new comprehensive theory is described for the time evolution towards equilibrium of association and dissociation in a dense gas. Expressions are formulated and are illustrated for the net probabilities of association to stable vibrational levels and dissociation to the continuum from an arbitrary bound vibrational level via collision with the thermal gas bath. A general variational principle emerges: The rate which corresponds to the overall direction of the process always adjusts itself to a minimum and the time evolution towards equilibrium is hindered. Analogy is established with Kirchhoff's Laws and Tellegen's Theorem for electrical networks, and with the Principle of Least Dissipation basic to thermodynamics, heat conduction, and fluid mechanics. The theory can also be modified to provide the first basic microscopic account of Associative Desorption of atoms from and Dissociative Chemisorption of molecules to surfaces

  2. Stable Isotopes Reveal Rapid Enamel Elongation (Amelogenesis) Rates for the Early Cretaceous Iguanodontian Dinosaur Lanzhousaurus magnidens.

    Science.gov (United States)

    Suarez, Celina A; You, Hai-Lu; Suarez, Marina B; Li, Da-Qing; Trieschmann, J B

    2017-11-10

    Lanzhousaurus magnidens, a large non-hadrosauriform iguanodontian dinosaur from the Lower Cretaceous Hekou Group of Gansu Province, China has the largest known herbivorous dinosaur teeth. Unlike its hadrosauriform relatives possessing tooth batteries of many small teeth, Lanzhousaurus utilized a small number (14) of very large teeth (~10 cm long) to create a large, continuous surface for mastication. Here we investigate the significance of Lanzhousaurus in the evolutionary history of iguanodontian-hadrosauriform transition by using a combination of stable isotope analysis and CT imagery. We infer that Lanzhousaurus had a rapid rate of tooth enamel elongation or amelogenesis at 0.24 mm/day with dental tissues common to other Iguanodontian dinosaurs. Among ornithopods, high rates of amelogenesis have been previously observed in hadrosaurids, where they have been associated with a sophisticated masticatory apparatus. These data suggest rapid amelogenesis evolved among non-hadrosauriform iguanodontians such as Lanzhousaurus, representing a crucial step that was exapted for the evolution of the hadrosaurian feeding mechanism.

  3. Electron-stimulated desorption from condensed branched alkanes

    International Nuclear Information System (INIS)

    Kelber, J.A.; Knotek, M.L.

    1982-01-01

    Desorption of H + , CH 3+ , H 2+ , and D + have been measured as a function of electron excitation energy for solid neopentane, tetramethylsilane and two deuterated isomers of isobutane. The evidence shows that C-C (or Si-C) and C-H bonds are broken by electronic excitations localized on methyl groups, in contrast to CH 3+ production in gas-phase neopentane, and that these excitations are the final states of decay processes initiated by creation of a hole in the C2s level, or, in tetramethylsilane, the C2s/Si3s level. This is in accord with other evidence which shows that localized multi-valence hole states result in C-H, C-C, Si-C and Si-H dissociation, and that such states may be excited either directly or by shakeup, by decay from a C2s hole, or by decay for a C1s core hole. It is apparent then, that dissociation and desorption of ions from covalent materials is a multi (electron) hole mechanism, and that the means of localizing the excitation energy in such systems involves multi-hole correlation

  4. Summary of Adsorption/Desorption Experiments for the European Database on Indoor Air Pollution Sources in Buildings

    DEFF Research Database (Denmark)

    Kjær, Ulla Dorte; Tirkkonen, T.

    1996-01-01

    Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings.......Experimental data for adsorption/desorption in building materials. Contribution to the European Database on Indoor Air Pollution Sources in buildings....

  5. Organic solvents improve hydrocarbon desorption and biodegradation in highly contaminated weathered soils

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rivero, M. [Tecnologico de Estudios Superiores de Ecatepec, Mexico City (Mexico); Saucedo-Casteneda, G.; Gutierrez-Rojas, M. [Autonoma Metropolitan Univ., Mexico City (Mexico). Dept. of Biotechnology

    2007-07-15

    A toluene-based microbial slurry phase system was used to remediate hydrocarbons (HC) in highly contaminated soil samples collected from a site next to a working refinery in Mexico. Initial HC concentrations of the samples were 237.2 {+-} 16,6 g kg{sup -1} in dry soil. The microbial consortium consisted of 10 different strains in a mineral solution. Non-polar solvents used in the phase system included hexane, benzene, and toluene. Polar solvents included n-butanol, acetone, and methanol. The bioavailability of the HCs was increased using both polar and nonpolar solvents in order to promote desorption from the soil and to enhance overall HC biodegradation. HC desorption was analyzed in an abiotic system. Respiration and residual HCs were examined after a period of 30 days in order to compare the effects of the 2 solvents. The biodegradation extracts were then fractionated in a silica gel column to determine if the solvents actually enhanced the biodegradation of specific HC fractions. The study showed that induced dipole interactions forces resulted when nonpolar molecules were dissolved into a nonpolar solvent. Results for desorption and solubility varied among the 6 solvents. Higher dielectric constants resulted in higher solubility and desorption of HCs for nonpolar solvents, while the opposite effect was observed for polar solvents. It was concluded that toluene produced better biodegradation results than any of the milder solvents. 34 refs., 4 tabs., 1 fig.

  6. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    Science.gov (United States)

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  7. Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium

    Science.gov (United States)

    Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan

    2018-02-01

    Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).

  8. Partitioning and desorption behavior of polycyclic aromatic hydrocarbons from disparate sources

    International Nuclear Information System (INIS)

    Reeves, W.R.; McDonald, T.J.; Cizmas, L.; Donnelly, K.C.

    2004-01-01

    Contaminated sediments pose a unique challenge for risk assessment or remediation because the overlying water column may transport contaminants offsite or to ecological receptors. This research compares the behavior of polycyclic aromatic hydrocarbons (PAHs) on marine sediments from two sites. The first site was affected by shipping activities and the second was impacted by a creosote seep. Organic carbon:water partitioning coefficients (K oc values) were measured with three solutions. Desorption was measured using Tenax beads. PAHs from the ship channel had lower K oc values than those from the creosote facility. For example, the average log K oc value of ship channel pyrene was significantly lower than that of creosote facility pyrene (4.39±0.35 and 5.29±0.09, respectively, when tested in 5 mM calcium chloride). These results were consistent with the greater desorption of pyrene, phenanthrene and benzo(a)pyrene from the ship channel than from the creosote facility sediments. Organic compound desorption from sediments can be considered to be a two-stage process, with a labile fraction that desorbs quickly and a refractory fraction that desorbs much more slowly. In both sediments, more than 75% of the benzo(a)pyrene was found to have partitioned into the refractory phase. The amounts of phenanthrene and pyrene that partitioned into the refractory phase were lower. Linear correlations of log K oc with log (C R /C L ) (where C R and C L are the fractions of the compound in the refractory and labile phases, respectively, at time zero) showed that partitioning measurements made with the US EPA's Toxicity Characteristic Leaching Procedure fluid (US EPA, 1996) most closely matched predictions of desorption behavior. The data imply that with a larger data set, it may be possible to relate simple partitioning measurements to desorption behavior. Partitioning measurements were used to predict water concentrations. Despite having higher concentrations of carcinogenic PAHs

  9. Matrix-assisted laser desorption fourier transform mass spectrometry for biological compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hettich, R.; Buchanan, M.

    1990-01-01

    The recent development of matrix-assisted UV laser desorption (LD) mass spectrometry has made possible the ionization and detection of extremely large molecules (with molecular weights exceeding 100,000 Daltons). This technique has generated enormous interest in the biological community for the direct examination of large peptides and oligonucleotides. Although this matrix-assisted ionization method has been developed and used almost exclusively with time-of-flight (TOF) mass spectrometers, research is currently in progress to demonstrate this technique with trapped ion mass spectrometers, such as Fourier transform ion cyclotron resonance mass spectrometry (FTMS). The potential capabilities of FTMS for wide mass range, high resolution measurement, and ion trapping experiments suggest that this instrumental technique should be useful for the detailed structural characterization of large ions generated by the matrix-assisted technique. We have recently demonstrated that matrix-assisted ultraviolet laser desorption can be successfully used with FTMS for the ionization of small peptides. The objective of this report is to summarize the application and current limitations of matrix-assisted laser desorption FTMS for the characterization of peptides and oligonucleotides at the isomeric level. 4 refs., 3 figs., 2 tabs.

  10. Study of desorption of methyl iodide from activated carbon impregnated by TEDA

    International Nuclear Information System (INIS)

    Yue Longqing; Luo Deli; Yue Ziyu

    2013-01-01

    The capability of iodine retention is an important parameter of solid sorbent, iodine could be desorbed from activated carbon once the parameter doesn't meet requirement. This work discussed the effects of nitrogen flow rate, dipping in water, temperature and K + on the iodine retention. The results show, the quantities of iodine released increase to 3.15 times when nitrogen flow rates increase from 0.1 m 3 /h to 1.5 m 3 /h; methyl iodine molecules are desorbed after half of an hour's dipping in water with no notable change observed thereafter to the desorption capacity at l.5 h, 2 h, 3 h, 4 h respectively; there was no release of iodine below 80 ℃; K + play a positive role for retention of iodine species; and that the quantities of methyl iodine released with 0.06 g KCl account for 56% of that without KCl. (authors)

  11. ADSORPTION OF MANGANESE FROM ACID MINE DRAINAGE EFFLUENTS USING BONE CHAR: CONTINUOUS FIXED BED COLUMN AND BATCH DESORPTION STUDIES

    Directory of Open Access Journals (Sweden)

    D. C. Sicupira

    2015-06-01

    Full Text Available AbstractIn the present study, continuous fixed bed column runs were carried out in an attempt to evaluate the feasibility of using bone char for the removal of manganese from acid mine drainage (AMD. Tests using a laboratory solution of pure manganese at typical concentration levels were also performed for comparison purposes. The following operating variables were evaluated: column height, flow rate, and initial pH. Significant variations in resistance to the mass transfer of manganese into the bone char were identified using the Thomas model. A significant effect of the bed height could only be observed in tests using the laboratory solution. No significant change in the breakthrough volume could be observed with different flow rates. By increasing the initial pH from 2.96 to 5.50, the breakthrough volume was also increased. The maximum manganese loading capacity in continuous tests using bone char for AMD effluents was 6.03 mg g-1, as compared to 26.74 mg g-1 when using the laboratory solution. The present study also performed desorption tests, using solutions of HCl, H2SO4, and water, aimed at the reuse of the adsorbent; however, no promising results were obtained due to low desorption levels associated with a relatively high mass loss. Despite the desorption results, the removal of manganese from AMD effluents using bone char as an adsorbent is technically feasible and attends to environmental legislation. It is interesting to note that the use of bone char for manganese removal may avoid the need for pH corrections of effluents after treatment. Moreover, bone char can also serve to remove fluoride ions and other metals, thus representing an interesting alternative material for the treatment of AMD effluents.

  12. Rapid screening of basic colorants in processed vegetables through mass spectrometry using an interchangeable thermal desorption electrospray ionization source.

    Science.gov (United States)

    Chao, Yu-Ying; Chen, Yen-Ling; Lin, Hong-Yi; Huang, Yeou-Lih

    2018-06-20

    Thermal desorption electrospray ionization/mass spectrometry (TD-ESI-MS) employing a quickly interchangeable ionization source is a relatively new ambient ionization mass spectrometric technique that has had, to date, only a limited number of applications related to food safety control. With reallocation of resources, this direct-analysis technique has had wider use in food analysis when operated in dual-working mode (pretreatment-free qualitative screening and conventional quantitative confirmation) after switching to an ambient ionization source from a traditional atmospheric pressure ionization source. Herein, we describe the benefits and challenges associated with the use of a TD-ESI source to detect adulterants in processed vegetables (PVs), as a proof-of-concept for the detection of basic colorants. While TD-ESI can offer direct qualitative screening analyses for PVs with detection capabilities lower than those provided with liquid chromatography/UV detection within 30 s, the use of TD-ESI for semi-quantification is applicable only for homogeneous food matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Non-isothermal kinetics of the thermal desorption of mercury from a contaminated soil

    Directory of Open Access Journals (Sweden)

    López, Félix A.

    2014-03-01

    Full Text Available The Almadén mining district (Ciudad Real, Spain was the largest cinnabar (mercury sulphide mine in the world. Its soils have high levels of mercury a consequence of its natural lithology, but often made much worse by its mining history. The present work examines the thermal desorption of two contaminated soils from the Almadén area under non-isothermal conditions in a N2 atmosphere, using differential scanning calorimetry (DSC. DSC was performed at different heating rates between room temperature and 600 °C. Desorption temperatures for different mercury species were determined. The Friedman, Flynn-Wall-Ozawa and Coasts–Redfern methods were employed to determine the reaction kinetics from the DSC data. The activation energy and pre-exponential factor for mercury desorption were calculated.El distrito minero de Almadén (Ciudad Real, España tiene la mayor mina de cinabrio (sulfuro de mercurio del mundo. Sus suelos tienen altos niveles de mercurio como consecuencia de su litología natural, pero a menudo su contenido en mercurio es mucho más alto debido a la historia minera de la zona. Este trabajo examina la desorción térmica de dos suelos contaminados procedentes de Almadén bajo condiciones isotérmicas en atmósfera de N2, empleando calorimetría diferencial de barrido (DSC. La calorimetría se llevó a cabo a diferentes velocidades de calentamiento desde temperatura ambiente hasta 600 °C. Se determinaron las diferentes temperaturas de desorción de las especies de mercurio presentes en los suelos. Para determinar la cinética de reacción a partir de los datos de DSC se utilizaron los métodos de Friedman, Flynn-Wall-Ozawa y Coasts–Redfern. Además se calcularon las energías de activación y los factores pre-exponenciales para la desorción del mercurio.

  14. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Shea, Yvonne R; Zelazny, Adrian M; Murray, Patrick R

    2010-10-01

    We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid identification of yeast species. Using Bruker Daltonics MALDI BioTyper software, we created a spectral database library with m/z ratios of 2,000 to 20,000 Da for 109 type and reference strains of yeast (44 species in 8 genera). The database was tested for accuracy by use of 194 clinical isolates (23 species in 6 genera). A total of 192 (99.0%) of the clinical isolates were identified accurately by MALDI-TOF MS. The MALDI-TOF MS-based method was found to be reproducible and accurate, with low consumable costs and minimal preparation time.

  15. Topically applied methotrexate is rapidly delivered into skin by fractional laser ablation

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth Hjardem; Lerche, Catharina; Vissing, Anne-Cathrine

    2015-01-01

    Objectives: Methotrexate (MTX) is a chemotherapeutic and anti-inflammatory drug that may cause systemic adverse effects. This study investigated kinetics and biodistribution of MTX delivered topically by ablative fractional laser (AFXL). Methods: In vitro passive diffusion of 10 mg/ml MTX (1 w...... sections, donor and receiver compartments. Fluorescence microscopy of UVC-activated MTX-fluorescence and desorption electro-spray ionization mass spectrometry imaging (DESI-MSI) evaluated MTX biodistribution. Results: AFXL-processed skin facilitated rapid MTX delivery through cone-shaped microchannels.......30 mg/cm3, p = 0.002). Transdermal permeation was

  16. Adsorption-desorption behavior of atrazine on agricultural soils in China.

    Science.gov (United States)

    Yue, Lin; Ge, ChengJun; Feng, Dan; Yu, Huamei; Deng, Hui; Fu, Bomin

    2017-07-01

    Adsorption and desorption are important processes that affect atrazine transport, transformation, and bioavailability in soils. In this study, the adsorption-desorption characteristics of atrazine in three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a "fast" adsorption and a "slow" adsorption and could be well described by pseudo-second-order model. In addition, the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model; as for alluvial soil, the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil>alluvial soil>laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorption of atrazine in soils. The atrazine adsorption in these three tested soils was controlled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption; while with the increase of equilibrium concentration, partition was predominant. Copyright © 2016. Published by Elsevier B.V.

  17. Sorption and desorption of 17α-ethinylestradiol onto sediments affected by rhamnolipidic biosurfactants.

    Science.gov (United States)

    Guo, Yan-Ping; Hu, Yong-You; Lin, Hui; Ou, Xue-Lian

    2018-02-15

    Many studies have addressed the desorption and mobilization performances of sorbed contaminants affected by different rhamnolipidic biosurfactants. Study results have been mixed and complicated. Rhamnolipids are always microbial produced with variable homologues. In this study, two representative rhamnolipidic fractions (i.e., RL-F1 and RL-F2, which are mono- and di-rhamnolipids, respectively) were investigated and compared to determine their influence on 17α-ethynylestradiol (EE2) distribution within sediment-water sorption and desorption systems. In general, the coexistence of RL-F1 and EE2 enhanced EE2 sorption in a wider monorhamnolipidic dosage range when freshly treated sorbate was used. The sorbed EE2 concentration decreased as the RL-F1 dosage increased in the aged sorbate desorption systems. However, RL-F2 facilitated EE2 mobilization in both sorption and desorption processes. Experimental data were estimated using a conceptual model that considered the sorbed rhamnolipids and aqueous micelles for organic partitioning. The model results indicated that the rhamnolipid type is an important factor influencing organic distribution, in addition to sorbate aging process and sediment characteristics. The use of a rhamnolipidic mixture containing both mono- and di-rhamnosyl components may not achieve the desired effect when the biosurfactant-enhanced mobilization or immobilization approach is selected. These results are significant for selecting and applying rhamnolipids to remediate contaminants. Copyright © 2017. Published by Elsevier B.V.

  18. Controlling the surface density of DNA on gold by electrically induced desorption.

    Science.gov (United States)

    Arinaga, Kenji; Rant, Ulrich; Knezević, Jelena; Pringsheim, Erika; Tornow, Marc; Fujita, Shozo; Abstreiter, Gerhard; Yokoyama, Naoki

    2007-10-31

    We report on a method to control the packing density of sulfur-bound oligonucleotide layers on metal electrodes by electrical means. In a first step, a dense nucleic acid layer is deposited by self-assembly from solution; in a second step, defined fractions of DNA molecules are released from the surface by applying a series of negative voltage cycles. Systematic investigations of the influence of the applied electrode potentials and oligonucleotide length allow us to identify a sharp desorption onset at -0.65 V versus Ag/AgCl, which is independent of the DNA length. Moreover, our results clearly show the pronounced influence of competitive adsorbents in solution on the desorption behavior, which can prevent the re-adsorption of released DNA molecules, thereby enhancing the desorption efficiency. The method is fully bio-compatible and can be employed to improve the functionality of DNA layers. This is demonstrated in hybridization experiments revealing almost perfect yields for electrically "diluted" DNA layers. The proposed control method is extremely beneficial to the field of DNA-based sensors.

  19. Hydrogen desorption from mechanically milled carbon micro coils hydrogenated at high temperature

    International Nuclear Information System (INIS)

    Yoshio Furuya; Shuichi Izumi; Seiji Motojima; Yukio Hishikawa

    2005-01-01

    Carbon micro coils (CMC) have been prepared by the catalytic pyrolysis of acetylene at 750-800 C. The as grown coils have an almost amorphous structure and contain about 1 mass% hydrogen. They have 0.1 - 10 mm coil length, 1-5 μm coil diameter, 0.1-0.5 μm coil pitch and about 100 m 2 /g specific surface area. They were graphitized, as maintaining the morphology of the coils, by heat-treating at a higher temperature than 2500 C in Ar atmosphere. The layer space (d) of graphitized CMC was determined to be 0.341 nm, forming a 'herringbone' structure with an inclination of 10-40 degree versus the coiled fiber axis, having a specific surface area of about 8 m 2 /g. The hydrogen absorption behaviors of CMC were investigated from RT to 1200 C by a thermal desorption spectrometry (TDS) using a quadrupole mass analyzer. In TDS measurements, pre-existing hydrogen, which was due to the residual acetylene incorporated into CMC on its growing, desorbed from 700 C and peaked at about 900 C. The increment in the main peak of desorbed hydrogen in the as-grown CMC heat-treated at 500 C for 1 h under high pressure of hydrogen gas (1.9 or 8.9 MPa) was not remarkable as is shown in Fig.1. While, in the CMC samples milled mechanically for 1 h at RT using a planetary ball mill, the increase of desorbed hydrogen became to be great with the hydrogen pressure (up to 8.9 MPa) on heat-treating at 500 C, as is shown in Fig.2. In these CMC samples, the building up temperature of the hydrogen desorption was shifted to a lower one and the temperature range of desorption became to be wider than those in the as-grown CMC because of the appearance of another desorption peak at about 600 C in addition to the peak ranging from 850 C to 900 C. The same kind of peak was also slightly observed in as-grown CMC (Fig.1). It is clear that this desorption at about 600 C has contributed to the remarkable increase of desorbed hydrogen in the milled CMC. In this work, values of more than 2 mass% were obtained

  20. Kinetics of Surfactant Desorption at an Air–Solution Interface

    KAUST Repository

    Morgan, C. E.

    2012-12-18

    The kinetics of re-equilibration of the anionic surfactant sodium dodecylbenzene sulfonate at the air-solution interface have been studied using neutron reflectivity. The experimental arrangement incorporates a novel flow cell in which the subphase can be exchanged (diluted) using a laminar flow while the surface region remains unaltered. The rate of the re-equilibration is relatively slow and occurs over many tens of minutes, which is comparable with the dilution time scale of approximately 10-30 min. A detailed mathematical model, in which the rate of the desorption is determined by transport through a near-surface diffusion layer into a diluted bulk solution below, is developed and provides a good description of the time-dependent adsorption data. A key parameter of the model is the ratio of the depth of the diffusion layer, H c, to the depth of the fluid, Hf, and we find that this is related to the reduced Péclet number, Pe*, for the system, via Hc/Hf = C/Pe*1/2. Although from a highly idealized experimental arrangement, the results provide an important insight into the "rinse mechanism", which is applicable to a wide variety of domestic and industrial circumstances. © 2012 American Chemical Society.

  1. Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs

    Directory of Open Access Journals (Sweden)

    Michael H. Kohn

    2008-01-01

    Full Text Available While it remains a matter of some debate, rapid sequence evolution of the coding sequences of duplicate genes is characteristic for early phases past duplication, but long established duplicates generally evolve under constraint, much like the rest of the coding genome. As for coding sequences, it may be possible to infer evolutionary rate, selection, and constraint via contrasts between duplicate gene divergence in the 5 prime regions and in the corresponding synonymous site divergence in the coding regions. Finding elevated rates for the 5 prime regions of duplicated genes, in addition to the coding regions, would enable statements regarding the early processes of duplicate gene evolution. Here, 1 kb of each of the 5 prime regulatory regions of Drosophila melanogaster duplicate gene pairs were mapped onto one another to isolate shared sequence blocks. Genetic distances within shared sequence blocks (d5’ were found to increase as a function of synonymous (dS, and to a lesser extend, amino-acid (dA site divergence between duplicates. The rate d5’/dS was found to rapidly decay from values > 1 in young duplicate pairs (dS 0.8. Such rapid rates of 5 prime evolution exceeding 1 (~neutral predominantly were found to occur in duplicate pairs with low amino-acid site divergence and that tended to be co-regulated when assayed on microarrays. Conceivably, functional redundancy and relaxation of selective constraint facilitates subsequent positive selection on the 5 prime regions of young duplicate genes. This might promote the evolution of new functions (neofunctionalization or division of labor among duplicate genes (subfunctionalization. In contrast, similar to the vast portion of the non-coding genome, the 5 prime regions of long-established gene duplicates appear to evolve under selective constraint, indicating that these long-established gene duplicates have assumed critical functions.

  2. Influence of molecular packing and phospholipid type on rates of cholesterol exchange

    International Nuclear Information System (INIS)

    Lund-Katz, S.; Laboda, H.M.; McLean, L.R.; Phillips, M.C.

    1988-01-01

    The rates of [ 14 C]cholesterol transfer from small unilamellar vesicles containing cholesterol dissolved in bilayers of different phospholipids have been determined to examine the influence of phospholipid-cholesterol interactions on the rate of cholesterol desorption from the lipid-water interface. At 37 0 C, for vesicles containing 10 mol % cholesterol, the half-times for exchange are about 1, 13, and 80 h, respectively, for unsaturated PC, saturated PC, and SM. In order to probe how differences in molecular packing in the bilayers cause the rate constants for cholesterol desorption to be in the order unsaturated PC > saturated PC > SM, nuclear magnetic resonance (NMR) and monolayer methods were used to evaluate the cholesterol physical state and interactions with phospholipid. The NMR relaxation parameters for [4- 13 C] cholesterol reveal no differences in molecular dynamics in the above bilayers. The greater van der Waals interaction in the SM monolayer (or bilayer) compared to PC gives rise to a larger condensation by cholesterol. This is a direct demonstration of the greater interaction of cholesterol with SM compared to PC. An estimate of the van der Waals interactions between cholesterol and these phospholipids has been used to derive a relationship between the ratio of the rate constants for cholesterol desorption and the relative molecular areas (lateral packing density) in two bilayers. This analysis suggests that differences in cholesterol-phospholipid van der Waals interaction energy are an important cause of varying rates of cholesterol exchange from different host phospholipid bilayers

  3. Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology

    Science.gov (United States)

    Schmitt, Axel K.; Perfit, Michael R.; Rubin, Kenneth H.; Stockli, Daniel F.; Smith, Matthew C.; Cotsonika, Laurie A.; Zellmer, Georg F.; Ridley, W. Ian

    2011-01-01

    Oceanic spreading ridges are Earth's most productive crust generating environment, but mechanisms and rates of crustal accretion and heat loss are debated. Existing observations on cooling rates are ambiguous regarding the prevalence of conductive vs. convective cooling of lower oceanic crust. Here, we report the discovery and dating of zircon in mid-ocean ridge dacite lavas that constrain magmatic differentiation and cooling rates at an active spreading center. Dacitic lavas erupted on the southern Cleft segment of the Juan de Fuca ridge, an intermediate-rate spreading center, near the intersection with the Blanco transform fault. Their U–Th zircon crystallization ages (29.3-4.6+4.8 ka; 1δ standard error s.e.) overlap with the (U–Th)/He zircon eruption age (32.7 ± 1.6 ka) within uncertainty. Based on similar 238U-230Th disequilibria between southern Cleft dacite glass separates and young mid-ocean ridge basalt (MORB) erupted nearby, differentiation must have occurred rapidly, within ~ 10–20 ka at most. Ti-in-zircon thermometry indicates crystallization at 850–900 °C and pressures > 70–150 MPa are calculated from H2O solubility models. These time-temperature constraints translate into a magma cooling rate of ~ 2 × 10-2 °C/a. This rate is at least one order-of-magnitude faster than those calculated for zircon-bearing plutonic rocks from slow spreading ridges. Such short intervals for differentiation and cooling can only be resolved through uranium-series (238U–230Th) decay in young lavas, and are best explained by dissipating heat convectively at high crustal permeability.

  4. Comparison of rapid-cycling and non-rapid-cycling bipolar disorder based on prospective mood ratings in 539 outpatients

    NARCIS (Netherlands)

    Kupka, RW; Luckenbaugh, DA; Post, RM; Suppes, T; Altshuler, LL; Keck, PE; Frye, MA; Denicoff, KD; Grunze, H; Leverich, GS; McElroy, SL; Walden, J; Nolen, WA

    Objective: To detect risk factors for rapid cycling in bipolar disorder, the authors compared characteristics of rapid-cycling and non-rapid-cycling patients both from a categorical and a dimensional perspective. Method: Outpatients with bipolar I disorder (N = 419), bipolar II disorder (N = 104),

  5. Adsorption/Desorption Transition of Recombinant Human Neurotrophin 4: Physicochemical Characterization.

    Science.gov (United States)

    Dąbkowska, Maria; Adamczak, Małgorzata; Barbasz, Jakub; Cieśla, Michał; Machaliński, Bogusław

    2017-09-26

    Bulk physicochemical properties of neurotrophin 4 (NT-4) in electrolyte solutions and its adsorption/desorption on/from mica surfaces have been studied using dynamic light scattering (DLS), microelectrophoresis, a solution depletion technique (enzyme-linked immunosorbent assay, ELISA), and AFM imaging. Our study presents a determination of the diffusion coefficient, hydrodynamic diameters, electrophoretic mobility, and isoelectric point of the NT-4 under various ionic strength and pH conditions. The size of the NT-4 homodimer for an ionic strength of 0.015 M was substantially independent of pH and equal to 5.1 nm. It has been found that the number of electrokinetic charges per NT-4 molecule was equal to zero for all studied ionic strengths at pH 8.1, which was identified as the isoelectric point (iep). The protein adsorption/desorption on/from mica surfaces was examined as a function of ionic strength and pH. The kinetics of neurotrophin adsorption/desorption were evaluated at pH 3.5, 7.4, and 11 by direct AFM imaging and the ELISA technique. A monotonic increase in the maximum coverage of adsorbed NT-4 molecules with ionic strength (up to 5.5 mg/m 2 ) was observed at pH 3.5. These results were interpreted in terms of the theoretical model postulating an irreversible adsorption of the protein governed by the random sequential adsorption (RSA). Our measurements revealed a significant role of ionic strength, pH, and electrolyte composition in the lateral electrostatic interactions among differently charged NT-4 molecules. The transition between adsorption/desorption processes is found for the region of high pH and low surface concentration of adsorbed neurotrophin molecules at constant ionic strength. Additionally, results presented in this work show that the adsorption behavior of neurotrophin molecules may be governed by intrasolvent electrostatic interactions yielding an aggregation process. Understanding polyvalent neurotrophin interactions may have an impact on

  6. Relation Between pH and Desorption of Cu, Cr, Zn, and Pb from Industrially Polluted Soils

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Henrik K.; Jensen, Pernille Erland

    2009-01-01

    Desorption of Cu, Cr, Pb, and Zn from industrially polluted soils as a result of acidification is in focus. The eight soils of the investigation vary greatly in composition and heavy metal concentration/combination. Three soils had elevated concentrations of Cu, Pb, and Zn; regardless of pollution...... level, pollution origin, and soil type, the order for desorption as pH decreased was Zn > Cu > Pb. Turning to a single heavy metal in different soils, there was a huge difference in the pH at which the major desorption started. The variation was most significant for Pb where, e.g., less than 10......% was desorbed at pH 2.5 from one soil, whereas in another soil 60% Pb was desorbed at this pH. Sequential extraction was made and the soils in which a high percentage of Pb was found in the residual phase (adsorbed strongest) was also the soils where less Pb was desorbed at low pH in the desorption experiments...

  7. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  8. Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system.

    Science.gov (United States)

    Wang, Peng; Keller, Arturo A

    2008-05-01

    Although nonionic surfactants have been considered in surfactant-aided soil washing systems, there is little information on the particle-size dependence of these processes, and this may have significant implications for the design of these systems. In this study, Triton-100 (TX) was selected to study its effect on the sorption and desorption of two pesticides (Atrazine and Diuron) from different primary soil size fractions (clay, silt, and sand fractions) under equilibrium sorption and sequential desorption. Soil properties, TX sorption, and pesticide sorption and desorption all exhibited significant particle-size dependence. The cation exchange capacity (CEC) of the bulk soils and the soil fractions determined TX sorption capacity, which in turn determined the desorption efficiency. Desorption of pesticide out of the clay raction is the limiting factor in a surfactant-aided washing system. The solubilization efficiency of the individual surfactant micelles decreased as the amount of surfactant added to the systems increased. Thus, instead of attempting to wash the bulk soil, a better strategy might be to either (1) use only the amount of surfactant that is sufficient to clean the coarse fraction, then separate the fine fraction, and dispose or treat it separately, or (2) to separate the coarse fractions mechanically and then treatthe coarse and fine fractions separately. These results may be applicable to many other hydrophobic organic compounds such as polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) strongly sorbed onto soils and sediments.

  9. Influence of pre-treatments on the desorption isotherm ...

    African Journals Online (AJOL)

    Influence of pre-treatments on the desorption isotherm characteristics of plaintain. P-N T Johnson. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/gjs.v39i1.15851 · AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for ...

  10. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications; Desorption laser et spectrometrie de masse par temps de vol. Aspects fondamentaux. Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chaurand, P

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10{sup 6} W/cm{sup 2}. In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10{sup -4}. We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10{sup 4} m/s and 10{sup 5} m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10{sup 4} m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C{sub 60} molecules and derivated C{sub 60} are presented. Desorption methods are compared. (author). 32 refs., 34 figs.

  11. Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Chien, Hsiu-Chuan; Wu, Tzu-Ho; Rajkumar, Muniyandi; Hu, Chi-Chang

    2016-01-01

    Highlights: • H adsorption causes local pH increase and negatively shifts the double-layer potential window. • The local pH variation at AC/electrolyte interface can be controlled via adding buffer agents. • H adsorption potential on AC in buffer electrolytes follows the Nernstian dependence. • The pseudocapacitive reversibility of H adsorption/desorption at/within AC is too poor. - Abstract: In this work, the effects of adding buffer agents into aqueous electrolytes on the hydrogen adsorption/desorption behaviour at/within activated carbon are systematically investigated for the negative electrode of asymmetric supercapacitors. Due to the poor electrochemical reversibility of hydrogen adsorption/desorption at/within activated carbon, the hydrogen responses at/within activated carbon are not suitable for pseudo-capacitive energy storage of high-performance asymmetric supercapacitor. The electrochemical adsorption of H atoms consumes protons and causes the local pH change at the activated carbon/electrolyte interface, leading to the negative shift in the H adsorption potential when weakly acidic, neutral, and weakly basic electrolytes without buffer agents are employed. The addition of buffer agents into electrolytes significantly improves the rate of proton supply and promotes the rate of hydrogen adsorption at/within AC. Interestingly, the onset potential of significant H adsorption obtained from the buffered electrolytes generally follows the Nernstian dependence, suggesting the Nerstian dependence of H"+/H_a_d_s on AC at all pH values. In order to obtain the energy storage devices with high coulombic and energy efficiencies, the onset potential of significant H adsorption obtained from the electrolyte containing buffer agents is a reliable lower potential limit of the AC-coated negative electrode for aqueous asymmetric supercapacitors.

  12. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    Science.gov (United States)

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers.

  13. Comparison of the growth kinetics of In{sub 2}O{sub 3} and Ga{sub 2}O{sub 3} and their suboxide desorption during plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Patrick, E-mail: vogt@pdi-berlin.de; Bierwagen, Oliver, E-mail: bierwagen@pdi-berlin.de [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, D-10117 Berlin (Germany)

    2016-08-08

    We present a comprehensive study of the In{sub 2}O{sub 3} growth kinetics during plasma-assisted molecular beam epitaxy and compare it to that of the related oxide Ga{sub 2}O{sub 3} [P. Vogt and O. Bierwagen, Appl. Phys. Lett. 108, 072101 (2016)]. The growth rate and desorbing fluxes were measured during growth in-situ by a laser reflectometry set-up and line-of-sight quadrupole mass spectrometer, respectively. We extracted the In incorporation as a function of the provided In flux, different growth temperatures T{sub G}, and In-to-O flux ratios r. The data are discussed in terms of the competing formation of In{sub 2}O{sub 3} and desorption of the suboxide In{sub 2}O and O. The same three growth regimes as in the case of Ga{sub 2}O{sub 3} can be distinguished: (i) In-transport limited, O-rich (ii) In{sub 2}O-desorption limited, O-rich, and (iii) O-transport limited, In-rich. In regime (iii), In droplets are formed on the growth surface at low T{sub G}. The growth kinetics follows qualitatively that of Ga{sub 2}O{sub 3} in agreement with their common oxide and suboxide stoichiometry. The quantitative differences are mainly rationalized by the difference in In{sub 2}O and Ga{sub 2}O desorption rates and vapor pressures. For the In{sub 2}O, Ga{sub 2}O, and O desorption, we extracted the activation energies and frequency factors by means of Arrhenius-plots.

  14. Toposelective electrochemical desorption of thiol SAMs from neighboring polycrystalline gold surfaces.

    Science.gov (United States)

    Tencer, Michal; Berini, Pierre

    2008-11-04

    We describe a method for the selective desorption of thiol self-assembled monolayers from gold surfaces having micrometer-scale separations on a substrate. In an electrolyte solution, the electrical resistance between the adjacent areas can be much lower than the resistance between a surface and the counter electrode. Also, both reductive and oxidative thiol desorption may occur. Therefore, the potentials of the surfaces must be independently controlled with a multichannel potentiostat and operating windows for a given thiol/electrolyte system must be established. In this study operating windows were established for 1-dodecanethiol-based SAMs in phosphate buffer, phosphate-buffered saline, and sodium hydroxide solution, and selective SAM removal was successfully performed in a four-electrode configuration.

  15. Interlaboratory determinations of isotopically enriched metals by field desorption mass spectroscopy

    International Nuclear Information System (INIS)

    Bahr, U.; Schulten, H.R.; Achenbach, C.; Ziskoven, R.

    1982-01-01

    The isotopic distribution of stable isotopes in six enriched metals (calcium, copper, barium, rubidium, strontium and thallium) has been determined by field desorption mass spectrometry. A first evaluation of the interlaboratory reproducibility of the application of this method for trace determination of metals was made using three different types of mass spectrometers in three different laboratories. The standard deviations for the most abundant isotopes of the metals investigated are between +-0.1 and +-0.5%. Within these standard deviations, the values obtained by the three mass spectrometry groups are the same. To support the accuracy of our quantification, thermal ionization mass spectrometry has been employed and confirms the results of the field desorption method. (orig.) [de

  16. Interactions on External MOF Surfaces: Desorption of Water and Ethanol from CuBDC Nanosheets.

    Science.gov (United States)

    Elder, Alexander C; Aleksandrov, Alexandr B; Nair, Sankar; Orlando, Thomas M

    2017-10-03

    The external surfaces of metal-organic framework (MOF) materials are difficult to experimentally isolate due to the high porosities of these materials. MOF surface surrogates in the form of copper benzenedicarboxylate (CuBDC) nanosheets were synthesized using a bottom-up approach, and the surface interactions of water and ethanol were investigated by temperature-programmed desorption (TPD). A method of analysis of diffusion-influenced TPD was developed to measure the desorption properties of these porous materials. This approach also allows the extraction of diffusion coefficients from TPD data. The transmission Fourier transform infrared spectra, powder X-ray diffraction patterns, and TPD data indicate that water desorbs from CuBDC nanosheets with activation energies of 44 ± 2 kJ/mol at edge sites and 58 ± 1 kJ/mol at external surface and internal and pore sites. Ethanol desorbs with activation energies of 58 ± 1 kJ/mol at internal pore sites and 66 ± 0.4 kJ/mol at external surface sites. Co-adsorption of water and ethanol was also investigated. The presence of ethanol was found to inhibit the desorption of water, resulting in a water desorption process with an activation energy of 68 ± 0.7 kJ/mol.

  17. Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry

    DEFF Research Database (Denmark)

    Persson, S; Sönksen, C P; Frigaard, N U

    2000-01-01

    We have used matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for mass determination of pigments and proteins in chlorosomes, the light-harvesting organelles from the photosynthetic green sulfur bacterium Chlorobium tepidum. By applying a small volume (1...... microL) of a concentrated suspension of isolated chlorosomes directly to the target of the mass spectrometer we have been able to detect bacteriochlorophyll a and all the major homologs of bacteriochlorophyll c. The peak heights of the different bacteriochlorophyll c homologs in the MALDI spectra were...... proportional to peak areas obtained from HPLC analysis of the same sample. The same result was also obtained when whole cells of Chl. tepidum were applied to the target, indicating that MALDI-MS can provide a rapid method for obtaining a semiquantitative determination or finger-print of the bacteriochlorophyll...

  18. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  19. Electron stimulated desorption study of oxygen adsorption on tungsten

    International Nuclear Information System (INIS)

    Prince, R.H.; Floyd, G.R.

    1978-01-01

    The adsorption of oxygen on a polycrystalline tungsten surface at approximately 800 K has been studied by means of electron stimulated desorption (ESD). Although precision gas dosing was not employed, the initial sticking probability for dissociative adsorption appears to be essentially unity, while the variation with coverage suggests that a high degree of order exists and that precursor state kinetics are significant. A most noticeable and reproducible discontinuity in ESD parameters occurs at a fractional coverage theta approximately 0.8 (exposure approximately 1.4 X 10 15 molecules/cm 2 incident) which is interpreted as an order-disorder transition within a single (β 1 ) chemisorption state, and results in an increase in the ionic desorption cross-section by a factor of approximately 1.26. A discussion of the adsorption kinetics and the disorder transition is given in terms of current models of dissociative adsoption which include the effects of nearest neighbour lateral interactions. (Auth.)

  20. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo

    2013-01-01

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field

  1. Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Youngsu; Lee, Jonghee; Kim, Seongsoo [Agency for Defense Development, Daejeon (Korea, Republic of)

    2013-09-15

    The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.

  2. Microwave-Enhanced Thermal Desorption of Polyhalogenated Biphenyls from Contaminated Soil

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, P.; Kaštánek, František; Hájek, Milan

    2010-01-01

    Roč. 136, č. 3 (2010), s. 295-300 ISSN 0733-9372 Institutional research plan: CEZ:AV0Z40720504 Keywords : microwave * experiments * desorption Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.117, year: 2010

  3. The desorption of ammonia and carbon dioxide from multicomponent solutions: I. Model description and development

    Directory of Open Access Journals (Sweden)

    Jotanović Milovan B.

    2002-01-01

    Full Text Available A mathematical model of the desorption process based on the synthesised technological topology of the regeneration process gas components NH3 and CO2, was developed. The logical principle methodology of the mathematical modelling of desorption processes was worked out in detail. The mathematical model of the process, including the following: - The synthesized technological scheme of the desorption of components NH3 and CO2, with all the necessary requirements and limitations of the mathematical model; - The relevant multicomponent systems which exist in the process were defined in which the interphase transformation occurs; - The considered units (aparatus are defined which make up the basic technological topology of the process; - Desorption processes in towers with different types of trays were defined and mathematically described; - The cooling process and condensation of gas phase in a complex multicomponent system was of the gas phase in a complex multicomponent system was defined and mathematically described. Many variants of the process were analyzed by using developed model with the aim of determining the relevant functional dependences between some basic parameters of the process. They will be published in the second part of this study.

  4. Modeling Adsorption-Desorption Processes at the Intermolecular Interactions Level

    Science.gov (United States)

    Varfolomeeva, Vera V.; Terentev, Alexey V.

    2018-01-01

    Modeling of the surface adsorption and desorption processes, as well as the diffusion, are of considerable interest for the physical phenomenon under study in ground tests conditions. When imitating physical processes and phenomena, it is important to choose the correct parameters to describe the adsorption of gases and the formation of films on the structural materials surface. In the present research the adsorption-desorption processes on the gas-solid interface are modeled with allowance for diffusion. Approaches are proposed to describe the adsorbate distribution on the solid body surface at the intermolecular interactions level. The potentials of the intermolecular interaction of water-water, water-methane and methane-methane were used to adequately modeling the real physical and chemical processes. The energies calculated by the B3LYP/aug-cc-pVDZ method. Computational algorithms for determining the average molecule area in a dense monolayer, are considered here. Differences in modeling approaches are also given: that of the proposed in this work and the previously approved probabilistic cellular automaton (PCA) method. It has been shown that the main difference is due to certain limitations of the PCA method. The importance of accounting the intermolecular interactions via hydrogen bonding has been indicated. Further development of the adsorption-desorption processes modeling will allow to find the conditions for of surface processes regulation by means of quantity adsorbed molecules control. The proposed approach to representing the molecular system significantly shortens the calculation time in comparison with the use of atom-atom potentials. In the future, this will allow to modeling the multilayer adsorption at a reasonable computational cost.

  5. H2S absorption and desorption system for a heavy water production plant (Gird ler-Sulphide method)

    International Nuclear Information System (INIS)

    Diaz, F.; Duran, O.

    1987-01-01

    A computational design for the principal equipment involved in the absorption and desorption sections of a heavy water production plant (Girdler-sulphide method) is described. the programs were developed in FORTRAN. A detailled description of transport equations for the desorption tower, which are applicable for the absorption one is included. The optimization criteria used for the equipment design were mainly economic; the results were obtained under the optimal conditions for the towers. The programs may be used in the long term, for the simulation of the absorption and desorption sections together with the isotopic exchange sectionts (author)

  6. Desorption dynamics of deuterium molecules from the Si(100)-(3x1) dideuteride surface.

    Science.gov (United States)

    Niida, T; Tsurumaki, H; Namiki, A

    2006-01-14

    We measured polar angle (theta)-resolved time-of-flight spectra of D2 molecules desorbing from the Si(100)-(3x1) dideuteride surface. The desorbing D2 molecules exhibit a considerable translational heating with mean desorption kinetic energies of approximately 0.25 eV, which is mostly independent of the desorption angles for 0 degreesdynamics of deuterium was discussed along the principle of detailed balance to predict their adsorption dynamics onto the monohydride Si surface.

  7. EFFECT OF GRAIN SIZE AND ACTIVATION TIME OF ZEOLITE TO ADSORPTION AND DESORPTION OF NH4OH AND KCL AS MODEL OF FERTILIZER-ZEOLITE MIX

    Directory of Open Access Journals (Sweden)

    Muhammad Prasantio Bimantio

    2017-10-01

    Full Text Available Zeolites can be used as adsorbent, ion exchange, catalyst, or catalyst carrier. Application of fertilizer use in the zeolite also be one of the interesting topic. Zeolites in a mixture of fertilizer can use to control the release of nutrients. The purpose of this research is to study the effect of grain size and time of the activation of zeolite to adsorption and desorption of NH4OH and KCl as modeling of ZA and KCl fertilizer, to obtain the value of adsorption rate constant (ka and desorption rate constant (kd. This research procedure include: the process of adsorption by adding zeolite with various size and time of activation into a sealed beaker glass and let the adsorption process occurs for 24 hours. After 24 hours, the solution was filtered, the zeolite then put in 100 ml of aquadest into a sealed beaker glass and let the desorption process happened for another 24 hours. Three samples with the largest difference solution concentrations looked for the value of the ka and kd. Zeolite configuration with the largest ka is trialed with fertilizer and compared with the value of ka obtained from modeling. The result for NH4OH adsorbate, -50+60 mesh 2 hours configuration zeolite give the largest ka. For KCl adsorbate, -30+40 mesh 4 hours configuration zeolite give the largest ka. The value between modeling and trials with fertilizers are not much different.

  8. Mechanisms of desorption of 134Cs and 85Sr aerosols deposited on urban surfaces

    International Nuclear Information System (INIS)

    Real, J.; Persin, F.; Camarasa-Claret, C.

    2002-01-01

    The radioactive isotopes of cesium and strontium may be deposited on urban surfaces in the case of an accidental atmospheric discharge from a nuclear facility and thus imply a health hazard. In order to handle the decontamination of these surfaces, we have carried out experiments under controlled conditions on tiles and concrete and we have studied the physical and chemical mechanisms at the solid-liquid interface. The deposition of radionuclides was carried out in the form of aerosols indicating an accidental source term. Their desorption by rainwater is low in all cases, of the order of 5-6% for cesium for any material and 29 and 12% for strontium on tile and concrete, respectively. The low desorption values of cesium may be explained by the strong bonding that occurs with the silicates constituting the tile due to virtually irreversible processes of exchange of ions and by the formation of insoluble complexes with the C-S-H gel of concrete. The strontium-tile bonds are weaker, while strontium precipitates with the carbonates of concrete in the form of SrCO 3 . In view of these characteristics, washing solutions with high concentrations of chloride and oxalate of ammonium chosen for their ion-exchanging and sequestering properties were tested on these surfaces. The desorption of cesium improved strongly since it reached 70% on tile and 90% on concrete after 24 h of contact, which is consistent with our knowledge of the bonds between this element and the surfaces. Strontium, given the greater complexity of physical and chemical forms that it may take is less well desorbed. The ammonium chloride improves the desorption (50% and 40%, for tile and concrete, respectively) but the oxalate, while it does not affect desorption on the tiles, decreases that on the concrete since by strongly etching the concrete, it causes the release of carbonate ions that precipitate with strontium

  9. Internal energy deposition with silicon nanoparticle-assisted laser desorption/ionization (SPALDI) mass spectrometry

    Science.gov (United States)

    Dagan, Shai; Hua, Yimin; Boday, Dylan J.; Somogyi, Arpad; Wysocki, Ronald J.; Wysocki, Vicki H.

    2009-06-01

    The use of silicon nanoparticles for laser desorption/ionization (LDI) is a new appealing matrix-less approach for the selective and sensitive mass spectrometry of small molecules in MALDI instruments. Chemically modified silicon nanoparticles (30 nm) were previously found to require very low laser fluence in order to induce efficient LDI, which raised the question of internal energy deposition processes in that system. Here we report a comparative study of internal energy deposition from silicon nanoparticles to previously explored benzylpyridinium (BP) model compounds during LDI experiments. The internal energy deposition in silicon nanoparticle-assisted laser desorption/ionization (SPALDI) with different fluorinated linear chain modifiers (decyl, hexyl and propyl) was compared to LDI from untreated silicon nanoparticles and from the organic matrix, [alpha]-cyano-4-hydroxycinnamic acid (CHCA). The energy deposition to internal vibrational modes was evaluated by molecular ion survival curves and indicated that the ions produced by SPALDI have an internal energy threshold of 2.8-3.7 eV. This is slightly lower than the internal energy induced using the organic CHCA matrix, with similar molecular survival curves as previously reported for LDI off silicon nanowires. However, the internal energy associated with desorption/ionization from the silicon nanoparticles is significantly lower than that reported for desorption/ionization on silicon (DIOS). The measured survival yields in SPALDI gradually decrease with increasing laser fluence, contrary to reported results for silicon nanowires. The effect of modification of the silicon particle surface with semifluorinated linear chain silanes, including fluorinated decyl (C10), fluorinated hexyl (C6) and fluorinated propyl (C3) was explored too. The internal energy deposited increased with a decrease in the length of the modifier alkyl chain. Unmodified silicon particles exhibited the highest analyte internal energy

  10. Comparison of biomolecule desorption yields for low and high energy primary ions

    International Nuclear Information System (INIS)

    Kamensky, I.; Hakansson, P.; Sundqvist, B.; McNeal, C.J.; MacFarlane, R.

    1982-01-01

    Ion induced desorption yields of molecular ions from samples of cesium iodide, glycylglycine, ergosterol, bleomycin and a trinucleoside diphosphate have been studied using primary beams of 54 MeV 63 Cu 9+ and 3 keV 133 Cs + . Mass analysis was performed with a time-of-flight technique. Each sample was studied with the same spectrometer for both low and high energy primary ions and without opening of the vacuum chamber in between the measurements. The results show that fast heavy ions give larger yields for all samples studied and that the yield ratios for high to low energy desorption increase with the mass of the sample molecule. (orig.)

  11. A rapid MALDI-TOF MS identification database at genospecies level for clinical and environmental Aeromonas strains.

    Directory of Open Access Journals (Sweden)

    Cinzia Benagli

    Full Text Available The genus Aeromonas has undergone a number of taxonomic and nomenclature revisions over the past 20 years, and new (subspecies and biogroups are continuously described. Standard identification methods such as biochemical characterization have deficiencies and do not allow clarification of the taxonomic position. This report describes the development of a matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS identification database for a rapid identification of clinical and environmental Aeromonas isolates.

  12. Rapid kinematic finite source inversion for Tsunamic Early Warning using high rate GNSS data

    Science.gov (United States)

    Chen, K.; Liu, Z.; Song, Y. T.

    2017-12-01

    Recently, Global Navigation Satellite System (GNSS) has been used for rapid earthquake source inversion towards tsunami early warning. In practice, two approaches, i.e., static finite source inversion based on permanent co-seismic offsets and kinematic finite source inversion using high-rate (>= 1 Hz) co-seismic displacement waveforms, are often employed to fulfill the task. The static inversion is relatively easy to be implemented and does not require additional constraints on rupture velocity, duration, and temporal variation. However, since most GNSS receivers are deployed onshore locating on one side of the subduction fault, there is very limited resolution on near-trench fault slip using GNSS in static finite source inversion. On the other hand, the high-rate GNSS displacement waveforms, which contain the timing information of earthquake rupture explicitly and static offsets implicitly, have the potential to improve near-trench resolution by reconciling with the depth-dependent megathrust rupture behaviors. In this contribution, we assess the performance of rapid kinematic finite source inversion using high-rate GNSS by three selected historical tsunamigenic cases: the 2010 Mentawai, 2011 Tohoku and 2015 Illapel events. With respect to the 2010 Mentawai case, it is a typical tsunami earthquake with most slip concentrating near the trench. The static inversion has little resolution there and incorrectly puts slip at greater depth (>10km). In contrast, the recorded GNSS displacement waveforms are deficit in high-frequency energy, the kinematic source inversion recovers a shallow slip patch (depth less than 6 km) and tsunami runups are predicted quite reasonably. For the other two events, slip from kinematic and static inversion show similar characteristics and comparable tsunami scenarios, which may be related to dense GNSS network and behavior of the rupture. Acknowledging the complexity of kinematic source inversion in real-time, we adopt the back

  13. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    International Nuclear Information System (INIS)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun; Park, Joon B.; Ito, Eisuke; Hara, Masahiko

    2011-01-01

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41".deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C_5H_9 "+, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C_5H_9SH"+, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs

  14. High throughput reaction screening using desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Wleklinski, Michael; Loren, Bradley P; Ferreira, Christina R; Jaman, Zinia; Avramova, Larisa; Sobreira, Tiago J P; Thompson, David H; Cooks, R Graham

    2018-02-14

    We report the high throughput analysis of reaction mixture arrays using methods and data handling routines that were originally developed for biological tissue imaging. Desorption electrospray ionization (DESI) mass spectrometry (MS) is applied in a continuous on-line process at rates that approach 10 4 reactions per h at area densities of up to 1 spot per mm 2 (6144 spots per standard microtiter plate) with the sprayer moving at ca. 10 4 microns per s. Data are analyzed automatically by MS using in-house software to create ion images of selected reagents and products as intensity plots in standard array format. Amine alkylation reactions were used to optimize the system performance on PTFE membrane substrates using methanol as the DESI spray/analysis solvent. Reaction times can be screening of processes like N -alkylation and Suzuki coupling reactions as reported herein. Products and by-products were confirmed by on-line MS/MS upon rescanning of the array.

  15. Laser-induced desorption of organic molecules from front- and back-irradiated metal foils

    International Nuclear Information System (INIS)

    Zinovev, Alexander V.; Veryovkin, Igor V.; Pellin, Michael J.

    2009-01-01

    Laser-Induced Acoustic Desorption (LIAD) from thin metal foils is a promising technique for gentle and efficient volatilization of intact organic molecules from surfaces of solid substrates. Using the Single Photon Ionization (SPI) method combined with time-of-flight mass-spectrometry (TOF MS), desorbed flux in LIAD was examined and compared to that from direct laser desorption (LD). Molecules of various organic dyes were used in experiments. Translational velocities of the desorbed intact molecules did not depend on the desorbing laser intensity, which implies the presence of more sophisticated mechanism of energy transfer than the direct mechanical or thermal coupling between the laser pulse and the adsorbed molecules. The results of our experiments indicate that the LIAD phenomenon cannot be described in terms of a simple mechanical shake-off nor the direct laser desorption. Rather, they suggest that multi-step energy transfer processes are involved. Possible qualitative mechanism of LIAD that are based on formation of non-equilibrium energy states in the adsorbate-substrate system are proposed and discussed.

  16. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene

    International Nuclear Information System (INIS)

    Zhang Honghua; Lin Kunde; Wang Hailong; Gan, Jay

    2010-01-01

    Biochars are anthropogenic carbonaceous sorbent and their influences on the sorption of environmental contaminants need to be characterized. Here we evaluated the effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Two biochars separately produced at 350 o C and 700 o C and three soils were tested. Biochar amendment generally enhanced the soil sorption of phenanthrene. The biochar produced at 700 o C generally showed a greater ability at enhancing a soil's sorption ability than that prepared at 350 o C. The single-step desorption measurement showed an apparent hysteresis in biochar-amended soils. After 28 d equilibration, the sorptive capacity of biochar-amended soil (with an organic carbon content of 0.16%) significantly decreased. This study clearly suggested that biochar application enhanced soil sorption of hydrophobic organic compounds, but the magnitude of enhancement depended on the preparation of biochars, the indigenous soil organic carbon levels, and the contact time between soil and biochar. - Pinus radiata derived biochars influence soil sorption and desorption of phenanthrene.

  17. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    can be degraded at all, the desorption and biodegradation of low concentrations of 14C-labelled phenanthrene (⩽5μgL−1) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene...

  18. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    International Nuclear Information System (INIS)

    Li, Ming; Kang, Zhan; Huang, Xiaobo

    2015-01-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials

  19. Competitive sorption and desorption of heavy metals by individual soil components

    International Nuclear Information System (INIS)

    Covelo, E.F.; Vega, F.A.; Andrade, M.L.

    2007-01-01

    Knowledge of sorption and desorption of heavy metals by individual soil components should be useful for modelling the behaviour of soils of arbitrary composition when contaminated by heavy metals, and for designing amendments increasing the fixation of heavy metals by soils polluted by these species. In this study the competitive sorption and desorption of Cd, Cr, Cu, Ni, Pb and Zn by humified organic matter, Fe and Mn oxides, kaolinite, vermiculite and mica were investigated. Due to the homogeneity of the sorbents, between-metal competition for binding sites led to their preferences for one or another metal being much more manifest than in the case of whole soils. On the basis of k d100 values (distribution coefficients calculated in sorption-desorption experiments in which the initial sorption solution contained 100 mg L -1 of each metal), kaolinite and mica preferentially sorbed and retained chromium; vermiculite, copper and zinc; HOM, Fe oxide and Mn oxide, lead (HOM and Mn oxide also sorbed and retained considerable amounts of copper). Mica only retained sorbed chromium, Fe oxide sorbed cadmium and lead, and kaolinite did not retain sorbed copper. The sorbents retaining the greatest proportions of sorbed metals were vermiculite and Mn oxide, but the ratios of k d100 values for retention and sorption suggest that cations were least reversibly bound by Mn oxide, and most reversibly by vermiculite

  20. Sorption and desorption behaviors of diuron in soils amended with charcoal.

    Science.gov (United States)

    Yu, Xiang-Yang; Ying, Guang-Guo; Kookana, Rai S

    2006-11-01

    Charcoal derived from the partial combustion of vegetation is ubiquitous in soils and sediments and can potentially sequester organic contaminants. To examine the role of charcoal in the sorption and desorption behaviors of diuron pesticide in soil, synthetic charcoals were produced through carbonization of red gum (Eucalyptus spp.) wood chips at 450 and 850 degrees C (referred to as charcoals BC450 and BC850, respectively, in this paper). Pore size distribution analyses revealed that BC850 contained mainly micropores (pores approximately 0.49 nm mean width), whereas BC450 was essentially not a microporous material. Short-term equilibration (diuron in a soil amended with various amounts of charcoals of both types. The sorption coefficients, isotherm nonlinearity, and apparent sorption-desorption hysteresis markedly increased with increasing content of charcoal in the soil, more prominently in the case of BC850, presumably due to the presence of micropores and its relatively higher specific surface area. The degree of apparent sorption-desorption hystersis (hysteresis index) showed a good correlation with the micropore volume of the charcoal-amended soils. This study indicates that the presence of small amounts of charcoal produced at high temperatures (e.g., interior of wood logs during a fire) in soil can have a marked effect on the release behavior of organic compounds. Mechanisms of this apparent hysteretic behavior need to be further investigated.

  1. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems; Analisis de la Tecnica Espectroscopia de Desorcion Termica (TDS) y su Applicacion para la Caracterizacion de Sistemas Metal-Hydrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Castro, F J [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models considersimultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  2. Tritium breeding and release-rate kinetics from neutron-irradiated lithium oxide

    International Nuclear Information System (INIS)

    Quanci, J.F.

    1989-01-01

    The research encompasses the measurement of the tritium breeding and release-rate kinetics from lithium oxide, a ceramic tritium-breeding material. A thermal extraction apparatus which allows the accurate measurement of the total tritium inventory and release rate from lithium oxide samples under different temperatures, pressures and carrier-gas compositions with an uncertainty not exceeding 3% was developed. The goal of the Lithium Blanket Module program was to determine if advanced computer codes could accurately predict the tritium production in the lithium oxide blanket of a fusion power plant. A fusion blanket module prototype, was built and irradiated with a deuterium-tritium fusion-neutron source. The tritium production throughout the module was modeled with the MCNP three dimensional Monte Carlo code and was compared to the assay of the tritium bred in the module. The MCNP code accurately predicted tritium-breeding trends but underestimated the overall tritium breeding by 30%. The release rate of tritium from small grain polycrystalline sintered lithium oxide with a helium carrier gas from 300 to 450 C was found to be controlled by the first order surface desorption of mono-tritiated water. When small amounts of hydrogen were added to the helium carrier gas, the first order rate constant increased from the isotopic exchange of hydrogen for tritium at the lithium oxide surface occurring in parallel with the first order desorption process. The isotopic-exchange first order rate constant temperature dependence and hydrogen partial pressure dependence were evaluated. Large single crystals of lithium oxide were fabricated by the vacuum fusion technique. The release rate of tritium from the large single crystals was found to be controlled by diffusion, and the mixed diffusion-desorption controlled release regime

  3. Statistical physics modeling of hydrogen desorption from LaNi{sub 4.75}Fe{sub 0.25}: Stereographic and energetic interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Wjihi, Sarra [Unité de Recherche de Physique Quantique, 11 ES 54, Faculté des Science de Monastir (Tunisia); Dhaou, Houcine [Laboratoire des Etudes des Systèmes Thermiques et Energétiques (LESTE), ENIM, Route de Kairouan, 5019 Monastir (Tunisia); Yahia, Manel Ben; Knani, Salah [Unité de Recherche de Physique Quantique, 11 ES 54, Faculté des Science de Monastir (Tunisia); Jemni, Abdelmajid [Laboratoire des Etudes des Systèmes Thermiques et Energétiques (LESTE), ENIM, Route de Kairouan, 5019 Monastir (Tunisia); Lamine, Abdelmottaleb Ben, E-mail: abdelmottaleb.benlamine@gmail.com [Unité de Recherche de Physique Quantique, 11 ES 54, Faculté des Science de Monastir (Tunisia)

    2015-12-15

    Statistical physics treatment is used to study the desorption of hydrogen on LaNi{sub 4.75}Fe{sub 0.25}, in order to obtain new physicochemical interpretations at the molecular level. Experimental desorption isotherms of hydrogen on LaNi{sub 4.75}Fe{sub 0.25} are fitted at three temperatures (293 K, 303 K and 313 K), using a monolayer desorption model. Six parameters of the model are fitted, namely the number of molecules per site n{sub α} and n{sub β}, the receptor site densities N{sub αM} and N{sub βM}, and the energetic parameters P{sub α} and P{sub β}. The behaviors of these parameters are discussed in relationship with desorption process. A dynamic study of the α and β phases in the desorption process was then carried out. Finally, the different thermodynamical potential functions are derived by statistical physics calculations from our adopted model.

  4. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    International Nuclear Information System (INIS)

    Choi, Hyeok; Lawal, Wasiu; Al-Abed, Souhail R.

    2015-01-01

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls

  5. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok, E-mail: hchoi@uta.edu [Department of Civil Engineering, The University of Texas at Arlington, 416 Yates Street, Arlington, TX 76019-0308 (United States); Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Lawal, Wasiu [Environmental and Earth Sciences Program, The University of Texas at Arlington, 500 Yates Street, Arlington, TX 76019-0049 (United States); Al-Abed, Souhail R. [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)

    2015-04-28

    Highlights: • Problematic aged real PCBs-contaminated sediment (WHS) was examined. • Performance of reactive activated carbon (RAC) impregnated with Pd–ZVI was tested. • Fate and transport of PCBs bound to WHS in the presence of RAC was fully traced. • Direct mixing configuration was compared with compartment configuration. • Results reflected real world complexities associated with slow desorption of PCBs. - Abstract: Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls.

  6. Hydrogen Temperature-Programmed Desorption in Platinum Catalysts: Decomposition and Isotopic Exchange by Spillover Hydrogen of Chemisorbed Ammonia.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Barr, M.K.; Modica, F.S.

    1996-01-01

    H{2}-TPD of Pt/alumina catalysts display multiple hydrogendesorptions. In addition to chemisorbed hydrogen (Peak I) atapproximately 175}o{C, there is a small hydrogen desorption (PeakII) at about 250}o{C and a large, irreversible hydrogen desorption(Peak III) at 450}o{C. The quantity of hydrogen

  7. Sorption-desorption of antimony species onto calcined hydrotalcite: Surface structure and control of competitive anions.

    Science.gov (United States)

    Constantino, Leonel Vinicius; Quirino, Juliana Nunes; Abrão, Taufik; Parreira, Paulo Sérgio; Urbano, Alexandre; Santos, Maria Josefa

    2018-02-15

    Calcined hydrotalcite can be applied to remove anionic contaminants from aqueous systems such as antimony species due to its great anion exchange capacity and high surface area. Hence, this study evaluated antimonite and antimonate sorption-desorption processes onto calcined hydrotalcite in the presence of nitrate, sulfate and phosphate. Sorption and desorption experiments of antimonite and antimonate were carried out in batch equilibrium and the post-sorption solids were analyzed by X-ray fluorescence (EDXRF). Sorption data were better fitted by dual-mode Langmuir-Freundlich model (R 2 >0.99) and desorption data by Langmuir model. High maximum sorption capacities were found for the calcined hydrotalcite, ranging from 617 to 790meqkg -1 . The competing anions strongly affected the antimony sorption. EDXRF analysis and mathematical modelling showed that sulfate and phosphate presented higher effect on antimonite and antimonate sorption, respectively. High values for sorption efficiency (SE=99%) and sorption capacity were attributed to the sorbent small particles and the large surface area. Positive hysteresis indexes and low mobilization factors (MF>3%) suggest very low desorption capacity to antimony species from LDH. These calcined hydrotalcite characteristics are desirable for sorption of antimony species from aqueous solutions. Copyright © 2017. Published by Elsevier B.V.

  8. Mechanical desorption of immobilized proteins using carbon dioxide aerosols for reusable biosensors

    International Nuclear Information System (INIS)

    Singh, Renu; Hong, Seongkyeol; Jang, Jaesung

    2015-01-01

    Highlights: • Immobilized proteins were removed using carbon dioxide aerosols. • We observed high removal efficiencies due to the aerosol treatment. • We confirmed the removal with FTIR and X-ray photoelectron spectroscopy. • This CO 2 aerosol treatment did not undermine re-functionalization. • This technique is a fast and damage-free method to reuse a sensor surface. - Abstract: Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO 2 ) aerosols (a mixture of solid and gaseous CO 2 ), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL −1 ) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO 2 aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors

  9. Laser desorption and time-of-flight mass spectrometry. Fundamentals .Applications

    International Nuclear Information System (INIS)

    Chaurand, P.

    1994-11-01

    Time-of-flight mass spectrometry is a very powerful technique for the analysis of heavy molecular ions (100 000 u and more). The ejection in the gas phase and the ionization of these molecules is now possible through the MALDI technique (Matrix Assisted Laser Desorption Ionization). This technique consists in mixing the heavy molecules to be analysed with a organic matrix which absorbs at the wavelength of the laser. The necessary irradiance are of the order of 10 6 W/cm 2 . In these conditions we have shown that the mass resolutions are optimum and that the relative mass accuracies are of the order of 10 -4 . We have also demonstrated that the emission angle of the molecular ions in MALDI depends on the incident angle of the laser light. During the desorption process, the molecular ions are emitted in the opposite direction of the incident laser light. This effect is particularly important for the design of the accelerating stage of the time-of-flight spectrometers. Problems relative to the detection of these heavy molecular ions have been studied in details between 0.5 10 4 m/s and 10 5 m/s. The velocity threshold of the electronic emission is lower than the value of 0.5 10 4 m/s. The relation between the electronic emission and the projectile velocity is complex. Finally, examples on mass identification of C 60 molecules and derivated C 60 are presented. Desorption methods are compared. (author). 32 refs., 34 figs

  10. Effects of wind-wave disturbances on adsorption and desorption of tetracycline and sulfadimidine in water-sediment systems.

    Science.gov (United States)

    Liao, Qianjiahua; Huang, Zheng; Li, Shu; Wang, Yi; Liu, Yuqing; Luo, Ran; Shang, Jingge

    2018-05-28

    Wind-wave disturbances frequently disperse sediment particles into overlying water, which facilitates the adsorption and desorption of contaminants in aquatic ecosystems. Tetracycline (TC) and sulfadimidine (SM2) are common antibiotics that are frequently found in aquatic environments. This study utilized microcosms, comprising sediment and water from Lake Taihu, China, to examine the adsorption and desorption of TC and SM2 under different wind-wave disturbances in a shallow lake environment. The adsorption experiments were conducted with three different concentrations (1, 5, 10 mg/L) of TC and SM2 in the overlying water, and two different (background and strong) wind-wave conditions for 72 h. Subsequently, four microcosms were employed in a 12-h desorption study. Analysis of adsorption progress showed that TC concentration in the overlying water decreased quickly, while SM2 remained almost constant. In the desorption experiments, SM2 released to the overlying water was an order of magnitude greater than TC. These results indicate that sediment particles strongly adsorb TC but weakly adsorb SM2. Compared to background conditions, the strong wind-wave conditions resulted in higher concentrations of TC and SM2 in sediment and facilitated their migration to deeper sediment during adsorption, correspondingly promoting greater release of TC and SM2 from sediment particles into the overlying water during desorption.

  11. Distribution law of temperature changes during methane adsorption and desorption in coal using infrared thermography technology

    Science.gov (United States)

    Zhao, Dong; Chen, Hao; An, Jiangfei; Zhou, Dong; Feng, Zengchao

    2018-05-01

    Gas adsorption and desorption is a thermodynamic process that takes place within coal as temperature changes and that is related to methane (CH4) storage. As infrared thermographic technology has been applied in this context to measure surface temperature changes, the aim of this research was to further elucidate the distribution law underlying this process as well as the thermal effects induced by heat adsorption and desorption in coal. Specimens of two different coal ranks were used in this study, and the surface temperature changes seen in the latter were detected. A contour line map was then drawn on the basis of initial results enabling a distribution law of temperature changes for samples. The results show that different regions of coal sample surfaces exhibit different heating rates during the adsorption process, but they all depends on gas storage capacity to a certain extent. It proposes a correlation coefficient that expresses the relationship between temperature change and gas adsorption capacity that could also be used to evaluate the feasibility of coalbed CH4 extraction in the field. And finally, this study is deduced a method to reveal the actual adsorption capacity of coal or CH4 reservoirs in in situ coal seams.

  12. Solid Waste Decontamination by Thermal Desorption and Catalytic Oxidation Methods

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Topka, Pavel; Soukup, Karel; Jirátová, Květa; Váňová, H.; Kaštánek, František

    2014-01-01

    Roč. 68, č. 9 (2014), s. 1279-1282 ISSN 0366-6352 R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : thermal desorption * catalytic oxidation * soil decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  13. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hui, E-mail: yuhui200@uregina.ca [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada); Huang Guohe, E-mail: gordon.huang@uregina.ca [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada); An Chunjiang, E-mail: an209@uregina.ca [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada); Wei Jia, E-mail: jia.wei@iseis.org [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2 (Canada)

    2011-06-15

    Highlights: {yields} The combined DOM and biosurfactant significantly enhanced desorption of PAHs. {yields} Compost DOM exhibited higher desorption enhancement capacity than the soil DOM. {yields} Competition among PAHs, DOM and biosurfactant for sorption site determined desorption of PAHs from soil. {yields} Formation of DOM-biosurfactant complex enhance desorption extent of PAHs. - Abstract: The combined effects of DOM and biosurfactant on the sorption/desorption behavior of phenanthrene (PHE) and pyrene (PYR) in soil water systems were systematically investigated. Two origins of DOMs (extracted from soil and extracted from food waste compost) and an anionic biosurfactant (rhamnolipid) were introduced. The presence of DOM in the aqueous phase could decrease the sorption of PAHs, thus influence their mobility. Desorption enhancement for both PHE and PYR in the system with compost DOM was greater than that in the soil DOM system. This is due to the differences in specific molecular structures and functional groups of two DOMs. With the co-existence of biosurfactant and DOM, partitioning is the predominant process and the desorption extent was much higher than the system with DOM or biosurfactant individually. For PHE, the desorption enhancement of combined DOM and biosurfactant was larger than the sum of DOM or biosurfactant; however desorption enhancement for PYR in the combined system was less than the additive enhancement in two individual system under low PAH concentration. This could be explained as the competition sorption among PAHs, DOM and biosurfactant. The results of this study will help to clarify the transport of petroleum pollutants in the remediation of HOCs-contaminated soils.

  14. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system

    International Nuclear Information System (INIS)

    Yu Hui; Huang Guohe; An Chunjiang; Wei Jia

    2011-01-01

    Highlights: → The combined DOM and biosurfactant significantly enhanced desorption of PAHs. → Compost DOM exhibited higher desorption enhancement capacity than the soil DOM. → Competition among PAHs, DOM and biosurfactant for sorption site determined desorption of PAHs from soil. → Formation of DOM-biosurfactant complex enhance desorption extent of PAHs. - Abstract: The combined effects of DOM and biosurfactant on the sorption/desorption behavior of phenanthrene (PHE) and pyrene (PYR) in soil water systems were systematically investigated. Two origins of DOMs (extracted from soil and extracted from food waste compost) and an anionic biosurfactant (rhamnolipid) were introduced. The presence of DOM in the aqueous phase could decrease the sorption of PAHs, thus influence their mobility. Desorption enhancement for both PHE and PYR in the system with compost DOM was greater than that in the soil DOM system. This is due to the differences in specific molecular structures and functional groups of two DOMs. With the co-existence of biosurfactant and DOM, partitioning is the predominant process and the desorption extent was much higher than the system with DOM or biosurfactant individually. For PHE, the desorption enhancement of combined DOM and biosurfactant was larger than the sum of DOM or biosurfactant; however desorption enhancement for PYR in the combined system was less than the additive enhancement in two individual system under low PAH concentration. This could be explained as the competition sorption among PAHs, DOM and biosurfactant. The results of this study will help to clarify the transport of petroleum pollutants in the remediation of HOCs-contaminated soils.

  15. A monoenergetic electron source generated by nuclear stimulated desorption

    International Nuclear Information System (INIS)

    Kelson, I.; Levy, Y.; Nir, D.; Haustein, P.E.

    1994-01-01

    A series of measurements of nuclear stimulated desorption was performed for 103 Ru, using thin ruthenium films irradiated by thermal neutrons. The magnitude, time dependence and electric charge state of the outgoing 103m Rh flux was investigated. The utilization of monoenergetic electrons accompanying the 103 Rh decay for thin film thickness measurement is considered. (Author)

  16. Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hun Gu; Kim, You Young; Park, Tae Sun; Noh, Jae Geun [Hanyang University, Seoul (Korea, Republic of); Park, Joon B. [Chonbuk National University, Jeonju (Korea, Republic of); Ito, Eisuke; Hara, Masahiko [RIKEN-HYU Collaboration Center, Saitama (Japan)

    2011-04-15

    The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at 50 .deg. C formed well-ordered SAMs with a (2√3 x √5)R41{sup .}deg. packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments (C{sub 5}H{sub 9} {sup +}, m/e = 69) generated via C-S bond cleavage and the parent molecular species (C{sub 5}H{sub 9}SH{sup +}, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

  17. Studies on adsorption-desorption of xenon on surface of BC-404 plastic scintillator based on soaking method

    Energy Technology Data Exchange (ETDEWEB)

    Yongchun, Xiang [Institute of Nuclear Physics and Chemistry, China and Academy of Engineer Physics, Mianyang 621900 (China); School of Physics, Peking University, Beijing 100080 (China); Tieshuan, Fan [School of Physics, Peking University, Beijing 100080 (China); Chuanfei, Zhang; Fei, Luo; Qian, Wang; Rende, Ze [Institute of Nuclear Physics and Chemistry, China and Academy of Engineer Physics, Mianyang 621900 (China); Qingpei, Xiang, E-mail: xiangqingpei@163.com [Institute of Nuclear Physics and Chemistry, China and Academy of Engineer Physics, Mianyang 621900 (China)

    2017-03-01

    The phoswich coincidence detector is used to verify the CTBT treaty by measuring radioxenon and as such needs to possess high detection sensitivity. However, residual xenon adsorbed onto the surface of β detectors greatly influences subsequent measurements of weak samples. In this study, we investigate the adsorption-desorption behavior of xenon on BC-404 scintillator surfaces with different coating thicknesses using the soaking method. The results present the desorption behavior of xenon on a BC-404 surface for the first time. The calculated adsorption capacity for an uncoated surface is consistent with that from previous studies. However, due to factors such as limitations in coating technology, the effectiveness of coating on reducing the “memory effect” of the detector was poor. The proposed method is suitable for studying the adsorption-desorption behavior of gases on solid surfaces due to its simplicity and flexibility. - Highlights: • We investigate the adsorption-desorption of xenon on coated BC-404 surfaces. • The calculated adsorption capacity on an uncoated surface agrees with other results. • The method can be used to simulate xenon adsorption in phoswich detectors.

  18. Mathematical modeling of the adsorption/desorption characteristics of anthocyanins from muscadine (Vitis rotundifolia cv. Noble) juice pomace on Amberlite FPX66 resin in a fixed bed column.

    Science.gov (United States)

    Uzdevenes, Chad G; Gao, Chi; Sandhu, Amandeep K; Yagiz, Yavuz; Gu, Liwei

    2018-03-24

    Muscadine grape pomace, a by-product of juicing and wine-making, contains significant amounts of anthocyanin 3,5-diglucosides, known to be beneficial to human health. The objective of this research was to use mathematical modeling to investigate the adsorption/desorption characteristics of these anthocyanins from muscadine grape pomace on Amberlite FPX66 resin in a fixed bed column. Anthocyanins were extracted using hot water and ultrasound, and the extracts were loaded onto a resin column at five bed depths (5, 6, 8, 10 and 12 cm) using three flow rates (4, 6 and 8 mL min -1 ). It was found that adsorption on the column fitted the bed depth service time (BDST) model and the empty bed residence time (EBRT) model. Desorption was achieved by eluting the column using ethanol at four concentrations (25, 40, 55 and 70% v/v) and could be described with an empirical sigmoid model. The breakthrough curves of anthocyanins fitted the BDST model for all three flow rates with R 2 values of 0.983, 0.992 and 0.984 respectively. The EBRT model was successfully employed to find the operating lines, which allow for column scale-up while still achieving similar results to those found in a laboratory operation. Desorption with 40% (v/v) ethanol achieved the highest recovery rate of anthocyanins at 79.6%. The mathematical models established in this study can be used in designing a pilot/industrial- scale column for the separation and concentration of anthocyanins from muscadine juice pomace. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  19. PAH desorption from river floodplain soils using supercritical fluid extraction

    Czech Academy of Sciences Publication Activity Database

    Yang, Y.; Cajthaml, Tomáš; Hofmann, T.

    2008-01-01

    Roč. 156, č. 3 (2008), s. 745-752 ISSN 0269-7491 R&D Projects: GA MŠk 2B06156 Institutional research plan: CEZ:AV0Z50200510 Keywords : pahs * slow desorption * carbonaceous materials Subject RIV: EE - Microbiology, Virology Impact factor: 3.135, year: 2008

  20. Temperature-Induced Desorption of Methyl tert-Butyl Ether Confined on ZSM-5: An In Situ Synchrotron XRD Powder Diffraction Study

    Directory of Open Access Journals (Sweden)

    Elisa Rodeghero

    2017-02-01

    Full Text Available The temperature-induced desorption of methyl tert-butyl ether (MTBE from aqueous solutions onto hydrophobic ZSM-5 was studied by in situ synchrotron powder diffraction and chromatographic techniques. This kind of information is crucial for designing and optimizing the regeneration treatment of such zeolite. The evolution of the structural features monitored by full profile Rietveld refinements revealed that a monoclinic (P21/n to orthorhombic (Pnma phase transition occurred at about 100 °C. The MTBE desorption process caused a remarkable change in the unit-cell parameters. Complete MTBE desorption was achieved upon heating at about 250 °C. Rietveld analysis demonstrated that the desorption process occurred without any significant zeolite crystallinity loss, but with slight deformations in the channel apertures.

  1. 5th International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Jennison, Dwight R; Stechel, Ellen B; DIET V; Desorption induced by electronic transitions

    1993-01-01

    This volume in the Springer Series on Surface Sciences presents a recent account of advances in the ever-broadening field of electron-and photon-stimulated sur­ face processes. As in previous volumes, these advances are presented as the proceedings of the International Workshop on Desorption Induced by Electronic Transitions; the fifth workshop (DIET V) was held in Taos, New Mexico, April 1-4, 1992. It will be abundantly clear to the reader that "DIET" is not restricted to desorption, but has for several years included photochemistry, non-thermal surface modification, exciton self-trapping, and many other phenomena that are induced by electron or photon bombardment. However, most stimulated surface processes do share a common physics: initial electronic excitation, localization of the excitation, and conversion of electronic energy into nuclear kinetic energy. It is the rich variation of this theme which makes the field so interesting and fruitful. We have divided the book into eleven parts in orde...

  2. Heavy-ion induced desorption yields of amorphous carbon films bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M

    2011-01-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2 Me...

  3. Ion-stimulated gas desorption yields of coated (Au, Ag, Pd) stainless steel vacuum chambers irradiated with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Malabaila, M; Taborelli, M

    2005-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy Ion Accelerator (LINAC 3), has been used to measure molecular desorption yields for 4.2 MeV/u lead ions impacting on different accelerator-type vacuum chambers. In order to study the effect of the surface oxide layer on the gas desorption, gold-, silver-, and palladium-coated 316LN stainless steel chambers and similarly prepared samples were tested for desorption at LINAC 3 and analysed for chemical composition by X-ray Photoemission Spectroscopy (XPS). The large effective desorption yield of 2 x 10**4 molecules/ion, previously measured for uncoated, vacuum fired stainless steel, was reduced after noble metal coating by up to 2 orders of magnitude. In addition, the effectiveness of beam scrubbing with heavy ions and the consequence of a subsequent venting on the desorption yields of a beam-scrubbed vacuum chamber are described. Practical consequences for the vacuum system of the future Low Energy Ion Ring (LEIR) are discussed.

  4. Treatment of Y-12 storm sewer sediments and DARA soils by thermal desorption

    International Nuclear Information System (INIS)

    Morris, M.I.; Shealy, S.E.

    1995-01-01

    The 1992 Oak Ridge Reservation Federal Facilities Compliance Agreement (FFCA) listed a number of mixed wastes, subject to land disposal restrictions (LDR), for which no treatment method had been identified, and required DOE to develop strategies for treatment and ultimate disposal of those wastes. This paper presents the results of a program to demonstrate that thermal desorption can remove both organics and mercury from two mixed wastes from the DOE Y-12 facility in Oak Ridge, Tennessee. The first waste, the Y-12 Storm Sewer Sediments (SSSs) was a sediment generated from upgrades to the plant storm sewer system. This material contained over 4 percent mercury, 2 percent uranium and 350 mg/kg polychlorinated biphenyls (PCBs). Leachable mercury exceeded toxicity characteristic leaching procedure (TCLP) and LDR criteria. The second waste, the Disposal Area Remedial Action (DARA) Soils, are contaminated with uranium, mercury and PCBs. This treatability study included bench-scale testing of a thermal desorption process. Results of the testing showed that, for the SSSs, total mercury could be reduced to 120 mg/kg by treatment at 600 degrees C, which is at the high end of the temperature range for typical thermal desorption systems. Leachable TCLP mercury was less than 50 μg/L and PCBs were below 2 mg/kg. Treatment of the DARA Soils at 450 degrees C for 10 minutes resulted in residual PCBs of 0.6 to 3.0 mg/kg. This is too high (goal < 2mg/kg) and higher treatment temperatures are needed. The testing also provided information on the characteristics and quantities of residuals from the thermal desorption process

  5. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    International Nuclear Information System (INIS)

    Chen Yong; Luo Guanghong; Diao Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos

    2007-01-01

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3xω Nd:YAG laser in air, SF 6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ∼2 μm in SF 6 gas and to ∼5 μm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (∼10x) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits

  6. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark; Badu-Tawiah, Abraham K.; Li, Anyin; Soparawalla, Santosh; Roqan, Iman S.; Cooks, Robert Graham

    2013-01-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  7. Hydrocarbon analysis using desorption atmospheric pressure chemical ionization

    KAUST Repository

    Jjunju, Fred Paul Mark

    2013-07-01

    Characterization of the various petroleum constituents (hydronaphthalenes, thiophenes, alkyl substituted benzenes, pyridines, fluorenes, and polycyclic aromatic hydrocarbons) was achieved under ambient conditions without sample preparation by desorption atmospheric pressure chemical ionization (DAPCI). Conditions were chosen for the DAPCI experiments to control whether ionization was by proton or electron transfer. The protonated molecule [M+H]+ and the hydride abstracted [MH]+ form were observed when using an inert gas, typically nitrogen, to direct a lightly ionized plasma generated by corona discharge onto the sample surface in air. The abundant water cluster ions generated in this experiment react with condensed-phase functionalized hydrocarbon model compounds and their mixtures at or near the sample surface. On the other hand, when naphthalene was doped into the DAPCI gas stream, its radical cation served as a charge exchange reagent, yielding molecular radical cations (M+) of the hydrocarbons. This mode of sample ionization provided mass spectra with better signal/noise ratios and without unwanted side-products. It also extended the applicability of DAPCI to petroleum constituents which could not be analyzed through proton transfer (e.g., higher molecular PAHs such as chrysene). The thermochemistry governing the individual ionization processes is discussed and a desorption/ionization mechanism is inferred. © 2012 Elsevier B.V.

  8. Demonstration of a batch vacuum thermal desorption process on hazardous and mixed waste

    International Nuclear Information System (INIS)

    Palmer, C.R.; McElwee, M.; Meyers, G.

    1995-01-01

    Many different waste streams have been identified at Department of Energy (DOE) facilities as having both hazardous organic and radioactive contaminants. There is presently only one permitted facility in which to manage these materials, and that facility has only limited capacity to process solid wastes. Over the past two years, Rust has been pilot testing a new thermal desorption process that is very well suited to these wastes, and has begun permitting and design of a unit for commercial operation. This paper presents both historic and recent pilot test data on the treatment of hazardous and mixed waste. Also described is the commercial unit. Rust's patented VAC*TRAX technology takes advantage of high vacuum to reduced operating temperature for the thermal desorption of organic contaminants from waste soils, sludges and other contaminated solids. This allows for economical thermal separation on relatively small sites (30 to 5,000 m 3 of waste). VAC*TRAX employs indirect heating; this, combined with a very low carrier gas flow, results in a vent flow rate of approximately 1 m 3 /min which allows for the use of control devices that would not be practical with conventional thermal technology. The unit is therefore ideally suited to processing mixed waste, since zero radioactive emissions can be maintained. An additional benefit of the technology is that the low operating temperature allows highly effective separation to be performed well below the degradation point for the solid components of a trash type waste stream, which constitutes a large fraction of the present mixed waste inventory

  9. Rapid detoxification from opioid dependence under general anaesthesia versus standard methadone tapering : abstinence rates and withdrawal distress experiences

    NARCIS (Netherlands)

    Krabbe, Paul F M; Koning, Jeroen P F; Heinen, Nadia; Laheij, Robert J F; van Cauter, R M Victory; De Jong, Cor A J

    The aim of this work was to study abstinence rates and withdrawal effects of rapid detoxification of opioid-dependents under general anaesthesia (RD-GA) compared to standard methadone tapering (SMT) using a prospective clinical trial with a follow-up of 3 months, as a preliminary study at the

  10. Rapid detoxification from opioid dependence under general anaesthesia versus standard methadone tapering: abstinence rates and withdrawal distress experiences.

    NARCIS (Netherlands)

    Krabbe, P.F.M.; Koning, J.P.; Heinen, N.; Laheij, R.J.F.; Cauter, R.M.V. van; Jong, C.A.J. de

    2003-01-01

    The aim of this work was to study abstinence rates and withdrawal effects of rapid detoxification of opioid-dependents under general anaesthesia (RD-GA) compared to standard methadone tapering (SMT) using a prospective clinical trial with a follow-up of 3 months, as a preliminary study at the

  11. In-situ regeneration of activated carbon with electric potential swing desorption (EPSD) for the H2S removal from biogas.

    Science.gov (United States)

    Farooq, M; Almustapha, M N; Imran, M; Saeed, M A; Andresen, John M

    2018-02-01

    In-situ regeneration of a granular activated carbon was conducted for the first time using electric potential swing desorption (EPSD) with potentials up to 30 V. The EPSD system was compared against a standard non-potential system using a fixed-bed reactor with a bed of 10 g of activated carbon treating a gas mixture with 10,000 ppm H 2 S. Breakthrough times, adsorption desorption volume, capacities, effect of regeneration and desorption kinetics were investigated. The analysis showed that desorption of H 2 S using the new EPSD system was 3 times quicker compared with the no potential system. Hence, physical adsorption using EPSD over activated carbon is efficient, safe and environmental friendly and could be used for the in-situ regeneration of granular activated carbon without using a PSA and/or TSA system. Additionally, adsorption and desorption cycles can be obtained with a classical two column system, which could lead towards a more efficient and economic biogas to biomethane process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Comparison of a disposable sorptive sampler with thermal desorption in a gas chromatographic inlet, or in a dedicated thermal desorber, to conventional stir bar sorptive extraction-thermal desorption for the determination of micropollutants in water.

    Science.gov (United States)

    Wooding, Madelien; Rohwer, Egmont R; Naudé, Yvette

    2017-09-01

    The presence of micropollutants in the aquatic environment is a worldwide environmental concern. The diversity of micropollutants and the low concentration levels at which they may occur in the aquatic environment have greatly complicated the analysis and detection of these chemicals. Two sorptive extraction samplers and two thermal desorption methods for the detection of micropollutants in water were compared. A low-cost, disposable, in-house made sorptive extraction sampler was compared to SBSE using a commercial Twister sorptive sampler. Both samplers consisted of polydimethylsiloxane (PDMS) as a sorptive medium to concentrate micropollutants. Direct thermal desorption of the disposable samplers in the inlet of a GC was compared to conventional thermal desorption using a commercial thermal desorber system (TDS). Comprehensive gas chromatography coupled to time-of-flight mass spectrometry (GC × GC-TOFMS) was used for compound separation and identification. Ten micropollutants, representing a range of heterogeneous compounds, were selected to evaluate the performance of the methods. The in-house constructed sampler, with its associated benefits of low-cost and disposability, gave results comparable to commercial SBSE. Direct thermal desorption of the disposable sampler in the inlet of a GC eliminated the need for expensive consumable cryogenics and total analysis time was greatly reduced as a lengthy desorption temperature programme was not required. Limits of detection for the methods ranged from 0.0010 ng L -1 to 0.19 ng L -1 . For most compounds, the mean (n = 3) recoveries ranged from 85% to 129% and the % relative standard deviation (% RSD) ranged from 1% to 58% with the majority of the analytes having a %RSD of less than 30%. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Desorption, partitioning, and dechlorination characteristics of PCBs in sediments in interaction with reactive activated carbon.

    Science.gov (United States)

    Choi, Hyeok; Lawal, Wasiu; Al-Abed, Souhail R

    2015-04-28

    Sediment (WHS) in Waukegan Harbor, Illinois, heavily contaminated and aged with polychlorinated biphenyls (PCBs), was treated with reactive activated carbon (RAC) impregnated with palladized iron nanoparticles. Lab test proceeded in a direct mixing configuration of RAC and WHS. A compartment configuration, where RAC was physically separated from WHS, was also designed to trace the sequential transport and fate of PCBs, including desorption, adsorption, dechlorination, and re-partitioning. PCBs, once desorbed from WHS, were immediately sequestrated to RAC and subject to dechlorination. Direct mixing of WHS with RAC was one-order of magnitude more effective for dechlorination than compartment configuration. Compared to their desorption-followed by-adsorption route, direct physical contact of RAC with PCBs bound to WHS exhibited negligible contribution to the availability of PCBs for dechlorination reaction. Addition of RAC even in compartment configuration facilitated PCBs desorption from WHS. However, slow desorption of PCBs limited overall performance, resulting in a five-order of magnitude lower dechlorination yield when compared with treatment of purely aqueous PCBs. The low dechlorination yield reflected real world complexities in treating 3.19% organic carbon-containing WHS aged with PCBs for 40 years. These observations were further supported when compared with results on clean Cesar Creek sediment spiked with 2-chlorinated biphenyls. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Direct pathway for sticking/desorption of H2 on Si(100)

    DEFF Research Database (Denmark)

    Kratzer, Peter; Hammer, Bjørk; Nørskov, Jens Kehlet

    1995-01-01

    The energetics of H2 interacting with the Si(100) surface is studied by means of ab initio total-energy calculations within the framework of density-functional theory. We find a direct desorption pathway from the monohydride phase that is compatible with experimental activation energies and demon......The energetics of H2 interacting with the Si(100) surface is studied by means of ab initio total-energy calculations within the framework of density-functional theory. We find a direct desorption pathway from the monohydride phase that is compatible with experimental activation energies...... and demonstrate the importance of substrate relaxation for this process. Both the transition state configuration and the barrier height depend crucially on the degree of buckling of the Si dimers on the Si(100) surface. The adsorption barrier height on the clean surface is governed by the buckling via its...

  15. Mechanism and Thermochemistry of Coal Char Oxidation and Desorption of Surface Oxides

    DEFF Research Database (Denmark)

    Levi, Gianluca; Causà, Mauro; Lacovig, Paolo

    2017-01-01

    The present study investigates the coal char combustion by a combination of thermochemical and X-ray photoemission spectroscopy (XPS) analyses. Thermoanalytical methods (differential thermogravimetry, differential scanning calorimetry, and temperature-programmed desorption) are used to identify...... the key reactive steps that occur upon oxidation and heating of coal char (chemisorption, structural rearrangement and switchover of surface oxides, and desorption) and their energetics. XPS is used to reveal the chemical nature of the surface oxides that populate the char surface and to monitor...... functionalities prevail. The rearrangement of epoxy during preoxidation goes together with activation of the more stable and less reactive carbon sites. Results are in good agreement with semi-lumped kinetic models of carbon oxidation, which include (1) formation of "metastable" surface oxides, (2) complex...

  16. Water desorption kinetics of polymer composites with cellulose fibers as filler

    Czech Academy of Sciences Publication Activity Database

    Vacková, Taťana; Kroisová, D.; Špatenka, P.

    2009-01-01

    Roč. 48, č. 1 (2009), s. 68-76 ISSN 0022-2348 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer composites * water desorption kinetics * thermoplastic matrix Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.716, year: 2009

  17. Rapid video-referenced ratings of reciprocal social behavior in toddlers: a twin study.

    Science.gov (United States)

    Marrus, Natasha; Glowinski, Anne L; Jacob, Theodore; Klin, Ami; Jones, Warren; Drain, Caroline E; Holzhauer, Kieran E; Hariprasad, Vaishnavi; Fitzgerald, Robert T; Mortenson, Erika L; Sant, Sayli M; Cole, Lyndsey; Siegel, Satchel A; Zhang, Yi; Agrawal, Arpana; Heath, Andrew C; Constantino, John N

    2015-12-01

    Reciprocal social behavior (RSB) is a developmental prerequisite for social competency, and deficits in RSB constitute a core feature of autism spectrum disorder (ASD). Although clinical screeners categorically ascertain risk of ASD in early childhood, rapid methods for quantitative measurement of RSB in toddlers are not yet established. Such measurements are critical for tracking developmental trajectories and incremental responses to intervention. We developed and validated a 20-min video-referenced rating scale, the video-referenced rating of reciprocal social behavior (vrRSB), for untrained caregivers to provide standardized ratings of quantitative variation in RSB. Parents of 252 toddler twins [Monozygotic (MZ) = 31 pairs, Dizygotic (DZ) = 95 pairs] ascertained through birth records, rated their twins' RSB at two time points, on average 6 months apart, and completed two developmental measures, the Modified Checklist for Autism in Toddlers (M-CHAT) and the MacArthur Communicative Development Inventory Short Form (MCDI-s). Scores on the vrRSB were fully continuously distributed, with excellent 6-month test-retest reliability ([intraclass correlation coefficient] ICC = 0.704, p CHAT (t = -8.588, df = 31, p < .000), incrementally improved from 18-24 months, and were inversely correlated with receptive and expressive vocabulary on the MCDI-s. Like quantitative autistic trait ratings in school-aged children and adults, toddler scores on the vrRSB are continuously distributed and appear highly heritable. These ratings exhibited minimal measurement error, high inter-individual stability, and developmental progression in RSB as children matured from 18-24 months, supporting their potential utility for serially quantifying the severity of early autistic syndromes over time and in response to intervention. In addition, these findings inform the genetic-environmental structure of RSB in early typical development. © 2015 Association for Child and

  18. Rapid charging of nickel-cadmium accumulators

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, F

    1972-01-01

    Four types of charging of gas-tight Ni-Cd accumulators (a) normal; (b) accelerated; (c) rapid; and (d) ultra-rapid are described. For rapid charging, a built-in temperature sensor cuts off charging current at a prescribed point. In ultra-rapid charging, 50% charge can be attained in 3.5 min. and 25% charge within 50 sec. In the second phase of ultra-rapid charging, a surplus of oxygen is released at the positive electrode and a safety valve is provided for pressure reduction. Characteristic curves are given for various rates of charging and some data on discharge rates is also given.

  19. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  20. Three dimensional evaluation of alveolar bone changes in response to different rapid palatal expansion activation rates

    Directory of Open Access Journals (Sweden)

    Brian LaBlonde

    Full Text Available ABSTRACT Introduction: The aim of this multi-center retrospective study was to quantify the changes in alveolar bone height and thickness after using two different rapid palatal expansion (RPE activation protocols, and to determine whether a more rapid rate of expansion is likely to cause more adverse effects, such as alveolar tipping, dental tipping, fenestration and dehiscence of anchorage teeth. Methods: The sample consisted of pre- and post-expansion records from 40 subjects (age 8-15 years who underwent RPE using a 4-banded Hyrax appliance as part of their orthodontic treatment to correct posterior buccal crossbites. Subjects were divided into two groups according to their RPE activation rates (0.5 mm/day and 0.8 mm/day; n = 20 each group. Three-dimensional images for all included subjects were evaluated using Dolphin Imaging Software 11.7 Premium. Maxillary base width, buccal and palatal cortical bone thickness, alveolar bone height, and root angulation and length were measured. Significance of the changes in the measurements was evaluated using Wilcoxon signed-rank test and comparisons between groups were done using ANOVA. Significance was defined at p ≤ 0.05. Results: RPE activation rates of 0.5 mm per day (Group 1 and 0.8 mm per day (Group 2 caused significant increase in arch width following treatment; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Buccal alveolar height and width decreased significantly in both groups. Both treatment protocols resulted in significant increases in buccal-lingual angulation of teeth; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Conclusion: Both activation rates are associated with significant increase in intra-arch widths. However, 0.8 mm/day resulted in greater increases. The 0.8 mm/day activation rate also resulted in more increased dental tipping and decreased buccal alveolar bone thickness over 0.5 mm/day.

  1. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation.

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D

    2012-10-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5-100 mg dry soil cm(-2)), temperature (20-40°C), and soil moisture content (2-40%) over periods up to 16d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Desorption of polycyclic aromatic hydrocarbons from field-contaminated soil to a two-dimensional hydrophobic surface before and after bioremediation

    Science.gov (United States)

    Hu, Jing; Aitken, Michael D.

    2012-01-01

    Dermal exposure can represent a significant health risk in settings involving potential contact with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). However, there is limited work on the ability of PAHs in contaminated soil to reach the skin surface via desorption from the soil. We evaluated PAH desorption from a field-contaminated soil to a two-dimensional hydrophobic surface (C18 extraction disk) as a measure of potential dermal exposure as a function of soil loading (5 to 100 mg dry soil/cm2), temperature (20 °C to 40 °C), and soil moisture content (2% to 40%) over periods up to 16 d. The efficacy of bioremediation in removing the most readily desorbable PAH fractions was also evaluated. Desorption kinetics were described well by an empirical two-compartment kinetic model. PAH mass desorbed to the C18 disk kept increasing at soil loadings well above the estimated monolayer coverage, suggesting mechanisms for PAH transport to the surface other than by direct contact. Such mechanisms were reinforced by observations that desorption occurred even with dry or moist glass microfiber filters placed between the C18 disk and the soil. Desorption of all PAHs was substantially reduced at a soil moisture content corresponding to field capacity, suggesting that transport through pore air contributed to PAH transport to the C18 disk. The lower molecular weight PAHs had greater potential to desorb from soil than higher molecular weight PAHs. Biological treatment of the soil in a slurry-phase bioreactor completely eliminated PAH desorption to the C18 disks. PMID:22704210

  3. EFFICIENCY OF PRE-TREATMENT OF LEACHATE FROM MUNICIPAL WASTE DUMPS BY GASEOUS DESORPTION (STRIPPING OF AMMONIA

    Directory of Open Access Journals (Sweden)

    Justyna Koc-Jurczyk

    2017-05-01

    Full Text Available The paper studies the efficiency of pre-treatment of landfill leachate by gaseous desorption of ammonia. The research was done on a municipal non-hazardous waste dump in Krosno (Sub-Carpathian Province, Poland. The pretreatment provided a favorable BOD5/COD ratio in leachate. Also concentrations of 16 PAHs and heavy metals did not exceed the legal limits. However, gaseous desorption of ammonia was insufficiently efficient in recovering ammonia nitrogen from leachate.

  4. Thermal desorption spectroscopy of pyrolytic graphite cleavage faces after keV deuterium irradiation at 330-1000 K

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yamaki, T.; Tokiguchi, K.

    1992-01-01

    Thermal desorption spectroscopy (TDS) measurements were made on D 2 and CD 4 from surface layers of pyrolytic graphite cleavage faces after 3 keV D + 3 irradiation to 1.5 x 10 18 D/cm 2 at irradiation temperatures from 330 to 1000 K. Thermal desorption of both D 2 and CD 4 was observed to rise simultaneously at around 700 K. The D 2 peak was found at T m = 900-1000 K, while the CD 4 peak appeared at a lower temperature, 800-840 K. The T m for the D 2 TDS increased, while that for the CD 4 decreased with increasing irradiation temperature. These results obviously indicate that the D 2 desorption is detrapping/recombination limited, while the CD 4 desorption is most likely to be diffusion limited. The amount of thermally desorbed D 2 after the D + irradiation was observed to monotonously decrease as the irradiation temperature was increased from 330 to 1000 K. These tendencies agreed with previous results for the irradiation temperature dependencies of both C1s chemical shift (XPS) and the interlayer spacing, d 002 (HRTEM), on the graphite basal face. (orig.)

  5. Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater

    International Nuclear Information System (INIS)

    Gu Yingying; Yeung, Albert T.

    2011-01-01

    Highlights: → CAIW is very effective in desorbing cadmium from soil particle surfaces at soil mixture pHs of lower than 5. → The cadmium desorption efficiency of CAIW also depends on the initial sorbed concentration of cadmium on soil particle surfaces. → Complexions of cadmium with citric acid and acetic acid are the dominant mechanisms for cadmium desorption in the soil mixture pH range of 4-8. → CAIW may be a promising enhancement agent for the remediation of heavy metal-contaminated soils. - Abstract: The sorption/desorption characteristics of heavy metals onto/from soil particle surfaces are the primary factors controlling the success of the remediation of heavy-metal contaminated soils. These characteristics are pH-dependent, chemical-specific, and reversible; and can be modified by enhancement agents such as chelates and surfactants. In this study, batch experiments were conducted to evaluate the feasibility of using citric acid industrial wastewater (CAIW) to desorb cadmium from a natural clay from Shanghai, China at different soil mixture pHs. It can be observed from the results that the proportion of cadmium desorbed from the soil using synthesized CAIW is generally satisfactory, i.e., >60%, when the soil mixture pH is lower than 6. However, the proportion of desorbed cadmium decreases significantly with increase in soil mixture pH. The dominant cadmium desorption mechanism using CAIW is the complexion of cadmium with citric acid and acetic acid in CAIW. It is concluded that CAIW can be a promising enhancement agent for the remediation of cadmium-contaminated natural soils when the environmental conditions are favorable. As a result, CAIW, a waste product itself, can be put into productive use in soil remediation.

  6. Desorption of cadmium from a natural Shanghai clay using citric acid industrial wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Gu Yingying, E-mail: guyong99hg@yahoo.com.cn [Department of Environmental Science and Engineering, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266555 (China); Yeung, Albert T., E-mail: yeungat@hku.hk [Department of Civil Engineering, The University of Hong Kong, Pokfulam Road (Hong Kong)

    2011-07-15

    Highlights: {yields} CAIW is very effective in desorbing cadmium from soil particle surfaces at soil mixture pHs of lower than 5. {yields} The cadmium desorption efficiency of CAIW also depends on the initial sorbed concentration of cadmium on soil particle surfaces. {yields} Complexions of cadmium with citric acid and acetic acid are the dominant mechanisms for cadmium desorption in the soil mixture pH range of 4-8. {yields} CAIW may be a promising enhancement agent for the remediation of heavy metal-contaminated soils. - Abstract: The sorption/desorption characteristics of heavy metals onto/from soil particle surfaces are the primary factors controlling the success of the remediation of heavy-metal contaminated soils. These characteristics are pH-dependent, chemical-specific, and reversible; and can be modified by enhancement agents such as chelates and surfactants. In this study, batch experiments were conducted to evaluate the feasibility of using citric acid industrial wastewater (CAIW) to desorb cadmium from a natural clay from Shanghai, China at different soil mixture pHs. It can be observed from the results that the proportion of cadmium desorbed from the soil using synthesized CAIW is generally satisfactory, i.e., >60%, when the soil mixture pH is lower than 6. However, the proportion of desorbed cadmium decreases significantly with increase in soil mixture pH. The dominant cadmium desorption mechanism using CAIW is the complexion of cadmium with citric acid and acetic acid in CAIW. It is concluded that CAIW can be a promising enhancement agent for the remediation of cadmium-contaminated natural soils when the environmental conditions are favorable. As a result, CAIW, a waste product itself, can be put into productive use in soil remediation.

  7. Helium desorption in EFDA iron materials for use in nuclear fusion reactors

    International Nuclear Information System (INIS)

    Salazar R, A. R.; Pinedo V, J. L.; Sanchez, F. J.; Ibarra, A.; Vila, R.

    2015-09-01

    In this paper the implantation with monoenergetic ions (He + ) was realized with an energy of 5 KeV in iron samples (99.9999 %) EFDA (European Fusion Development Agreement) using a collimated beam, after this a Thermal Desorption Spectrometry of Helium (THeDS) was made using a leak meter that detects amounts of helium of up to 10 - - 12 mbar l/s. Doses with which the implantation was carried out were 2 x 10 15 He + /cm 2 , 1 x 10 16 He + /cm 2 , 2 x 10 16 He + /cm 2 , 1 x 10 17 He + /cm 2 during times of 90 s, 450 s, 900 s and 4500 s, respectively. Also, using the SRIM program was calculated the depth at which the helium ions penetrate the sample of pure ion, finding that the maximum distance is 0.025μm in the sample. For this study, 11 samples of Fe EFDA were prepared to find defects that are caused after implantation of helium in order to provide valuable information to the manufacture of materials for future fusion reactors. However understand the effects of helium in the micro structural evolution and mechanical properties of structural materials are some of the most difficult questions to answer in materials research for nuclear fusion. When analyzing the spectra of THeDS was found that five different groups of desorption peaks existed, which are attributed to defects of He caused in the material, these defects are He n V (2≤n≤6), He n V m , He V for the groups I, II and IV respectively. These results are due to the comparison of the peaks presented in the desorption spectrum of He, with those of other authors who have made theoretical calculations. Is important to note that the thermal desorption spectrum of helium was different depending on the dose with which the implantation of He + was performed. (Author)

  8. Mechanical desorption of immobilized proteins using carbon dioxide aerosols for reusable biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Renu; Hong, Seongkyeol [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Jang, Jaesung, E-mail: jjang@unist.ac.kr [School of Mechanical and Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2015-01-01

    Highlights: • Immobilized proteins were removed using carbon dioxide aerosols. • We observed high removal efficiencies due to the aerosol treatment. • We confirmed the removal with FTIR and X-ray photoelectron spectroscopy. • This CO{sub 2} aerosol treatment did not undermine re-functionalization. • This technique is a fast and damage-free method to reuse a sensor surface. - Abstract: Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO{sub 2}) aerosols (a mixture of solid and gaseous CO{sub 2}), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL{sup −1}) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO{sub 2} aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors.

  9. Element-specific and site-specific ion desorption from adsorbed molecules by deep core-level photoexcitation at the K-edges

    CERN Document Server

    Baba, Y H

    2003-01-01

    This article reviews our recent works on the ion desorption from adsorbed and condensed molecules at low temperature following the core-level photoexcitations using synchrotron soft x-rays. The systems investigated here are adsorbed molecules with relatively heavy molecular weight containing third-row elements such as Si, P, S, and Cl. Compared with molecules composed of second-row elements, the highly element-specific and site-specific fragment-ion desorption were observed when we tune the photon energy at the dipole-allowed 1s -> sigma sup * (3p sup *) resonance. On the basis of the resonance Auger decay spectra around the 1s ionization thresholds, the observed highly specific ion desorption is interpreted by the localization of the excited electrons (here we call as 'spectator electrons') in the antibonding sigma sup * orbital. In order to separate the direct photo-induced process from the indirect processes triggered by the secondary electrons, the photon-stimulated ion desorption was also investigated in...

  10. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    Science.gov (United States)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  11. Tissue imaging with a stigmatic mass microscope using laser desorption/ionization

    Science.gov (United States)

    Awazu, Kunio; Hazama, Hisanao; Hamanaka, Tomonori; Aoki, Jun; Toyoda, Michisato; Naito, Yasuhide

    2012-03-01

    A novel stigmatic mass microscope using laser desorption/ionization and a multi-turn time-of-flight mass spectrometer, MULTUM-IMG, has been developed. Stigmatic ion images of crystal violet masked by a fine square mesh grid with a 12.7 μm pitch were clearly observed, and the estimated spatial resolution was about 3 μm in the linear mode with a 20-fold ion optical magnification. Tissue sections of a brain and eyes of a mouse stained with crystal violet and methylene blue were observed in the linear mode, and the stigmatic total ion images of crystal violet and methylene blue agreed well with the optical photomicrograph of the same sections. Especially, the fine structure in the cornea tissue was clearly observed with a spatial resolution in the range of micrometers. Although the total measurement time of the stigmatic ion image for the whole-eye section was about 59 minutes using a laser with a 10 Hz repetition rate, the measurement time could be reduced to about 35 s using a laser with a 1 kHz repetition rate and automation of measurements. The stigmatic mass microscope developed in this research should be suitable for high-spatial resolution and high-throughput imaging mass spectrometry for pathology, pharmacokinetics, and so on.

  12. Copper desorption from Gelidium algal biomass.

    Science.gov (United States)

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  13. Silver nanoparticles as matrix for laser desorption/ionization mass spectrometry of peptides

    International Nuclear Information System (INIS)

    Hua Lin; Chen Jianrong; Ge Liya; Tan, Swee Ngin

    2007-01-01

    Silver nanoparticle synthesized from chemical reduction has been successfully utilized as a matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of peptides. Acting as a substrate to adsorb analytes, as well as a transmission medium for UV laser, silver nanoparticle was found to assist in the desorption/ionization of peptides with little or no induced fragmentation. The size of the nanoparticle was typically in the range of 160 ± 20 nm. One of the key advantages of silver nanoparticle for peptides analysis is its simple step for on-probe sample preparation. In addition, it also minimizes the interferences of sodium dodecyl sulfate (SDS) surfactant background signal, resulting in cleaner mass spectra and more sensitive signal, when compared to α-cyano-4-hydroxycinnamic acid (CCA) matrix

  14. TPD IR studies of CO desorption from zeolites CuY and CuX

    Science.gov (United States)

    Datka, Jerzy; Kozyra, Paweł

    2005-06-01

    The desorption of CO from zeolites CuY and CuX was followed by TPD-IR method. This is a combination of temperature programmed desorption and IR spectroscopy. In this method, the status of activated zeolite (before adsorption), the process of adsorption, and the status of adsorbed molecules can be followed by IR spectroscopy, and the process of desorption (with linear temperature increase) can be followed both by IR spectroscopy and by mass spectrometry. IR spectra have shown two kinds of Cu + sites in both CuY and CuX. Low frequency (l.f.) band (2140 cm -1 in CuY and 2130 cm -1 in CuX) of adsorbed CO represents Cu + sites for which π back donation is stronger and σ donation is weaker whereas high frequency h.f. band (2160 cm -1 in CuY and 2155 cm -1 in CuX) represent Cu + sites for which π back donation is weaker and σ donation is stronger. The TPD-IR experiments evidenced that the Cu + sites represented by l.f. band bond CO more weakly than those represented by h.f. one, indicating that σ donation has more important impact to the strength of Cu +-CO bonding. On the contrary, π back donation has bigger contribution to the activation of adsorbed molecules.

  15. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO2(111)

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jonathan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steven H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Beste, Ariana [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on the surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.

  16. Charging-assisted desorption of deuterium films by keV electrons

    DEFF Research Database (Denmark)

    Schou, Jørgen; Thestrup Nielsen, Birgitte; Pedersen, Thomas Garm

    2009-01-01

    m. The initial film thickness and the mass loss as result of desorption were monitored by the QCM. The electron beam current was kept at about or below 100 nA to avoid beam-induced evaporation. Secondary electron emission was suppressed to a value below 0.01-0.03 electrons/electron by a repeller...

  17. Coverage-dependent adsorption and desorption of oxygen on Pd(100)

    Energy Technology Data Exchange (ETDEWEB)

    Dunnen, Angela den; Jacobse, Leon; Wiegman, Sandra; Juurlink, Ludo B. F., E-mail: l.juurlink@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden (Netherlands); Berg, Otto T. [Department of Chemistry, California State University Fresno, 2555 E. San Ramon Ave., Fresno, California 93740 (United States)

    2016-06-28

    We have studied the adsorption and desorption of O{sub 2} on Pd(100) by supersonic molecular beam techniques and thermal desorption spectroscopy. Adsorption measurements on the bare surface confirm that O{sub 2} initially dissociates for all kinetic energies between 56 and 380 meV and surface temperatures between 100 and 600 K via a direct mechanism. At and below 150 K, continued adsorption leads to a combined O/O{sub 2} overlayer. Dissociation of molecularly bound O{sub 2} during a subsequent temperature ramp leads to unexpected high atomic oxygen coverages, which are also obtained at high incident energy and high surface temperature. At intermediate temperatures and energies, these high final coverages are not obtained. Our results show that kinetic energy of the gas phase reactant and reaction energy dissipated during O{sub 2} dissociation on the cold surface both enable activated nucleation of high-coverage surface structures. We suggest that excitation of local substrate phonons may play a crucial role in oxygen dissociation at any coverage.

  18. 2nd International Workshop on Desorption Induced by Electronic Transitions

    CERN Document Server

    Menzel, Dietrich

    1985-01-01

    The second workshop on Desorption Induced by Electronic Transitions (DIET II) took place October 15-17, 1984, in SchloB Elmau, Bavaria. DIET II, fol­ lowing the great success of DIET I (edited by N. H. Tolk, M. M. Traum, J. C. Tully, T. E. Madey and published in Springer Ser. Chem. Phys. , Vol. 24), again brought together over 60 workers in this exciting field. The "hard co­ re of experts" was essentially the same as in DIET I but the general overlap of participants between the two meetings was small. While DIET I had the function of an exposition of the status of the field DIET II focussed more on new developments. The main emphasis was again on the microscopic under­ standing of DIET but a number of side aspects and the application of DIET ideas to other fields such as sputtering, laser-induced desorption, fractu­ re, erosion, etc. were considered, too. New mechanisms and new refined expe­ rimental techniques were proposed and discussed at the meeting critically but with great enthusiasm. In addition t...

  19. Thermal desorption and bombardment-induced release of deuterium implanted into stainless steels at low energy

    International Nuclear Information System (INIS)

    Farrell, G.; Donnelly, S.E.

    1978-01-01

    Thermal desorption spectra have been obtained for low energy (15-750 eV) deuterons implanted into types 321 and 304 stainless steel, to total fluences in the range 10 13 - 10 17 deuterons/cm 2 . In each case the spectra show a peak at about 350 K, but in the 321 steel there is a second peak in the region of 900 K, the population and peak temperature of which increase with energy. Activation energies of 0.99 and 2.39 eV and a rate constant of 7 x 10 15 /s have been derived for the peaks and it is thought that the first peak corresponds to release from sites close to the surface, while the second peak may be related to trapping at impurities such as Ti. Measurements have also been made of the release of deuterium resulting from post-implantation bombardment with hydrogen ions. It is found that depletion of the first peak in the 321 steel is the result of gas sputtering, but depletion of the second peak is the result of the formation of HD during desorption, while depletion of the peak in the 304 stainless steel also results from HD formation even though this peak is the same as the first peak in the 321 steel. Estimates have also been made of the deuterium self-sputtering cross section at various energies, which show a monotonic decrease as energy increases. (Auth.)

  20. A novel cluster of Mycobacterium abscessus complex revealed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS).

    Science.gov (United States)

    Suzuki, Hiromichi; Yoshida, Shiomi; Yoshida, Atsushi; Okuzumi, Katsuko; Fukusima, Atsuhito; Hishinuma, Akira

    2015-12-01

    Mycobacterium abscessus complex is a rapidly growing mycobacterium consisting of 3 subspecies, M. abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. However, rapid and accurate species identification is difficult. We first evaluated a suitable protocol of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for distinguishing these subspecies. Then, we studied spectral signals by MALDI-TOF MS in 59 M. abscessus, 42 M. massiliense, and 2 M. bolletii. Among several specific spectral signals, 4 signals clearly differentiate M. massiliense from the other 2 subspecies, M. abscessus and M. bolletii. Moreover, 6 of the 42 M. massiliense isolates showed a spectral pattern similar to M. abscessus. These isolates correspond to the distinctive class of M. massiliense (cluster D) which is closer to M. abscessus by the previous variable number tandem repeat analysis. These results indicate that MALDI-TOF MS is not only useful for the identification of 3 subspecies of M. abscessus complex but also capable of distinguishing clusters of M. massiliense. Copyright © 2015 Elsevier Inc. All rights reserved.