WorldWideScience

Sample records for rapid cooling rates

  1. Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kenel, C., E-mail: Christoph.Kenel@empa.ch; Leinenbach, C.

    2015-07-15

    Highlights: • Rapid solidification studies with varying cooling rates were realized for Ti–Al. • Experiments were combined with finite element simulations of heat transfer. • The resulting microstructure of Ti–Al alloys is strongly dependent on the Al content. • The microstructure and phase transformation behavior can be predicted. • The method allows alloy development for processes involving rapid solidification. - Abstract: Titanium aluminides as structural intermetallics are possible candidates for a potential weight reduction and increased performance of high temperature components. A method for the characterization of the microstructure formation in rapidly solidified alloys was developed and applied for binary Ti–(44–48)Al (at.%). The results show a strong dependency of the microstructure on the Al content at cooling rates between 6 ⋅ 10{sup 2} and 1.5 ⋅ 10{sup 4} K s{sup −1}. The formation of α → α{sub 2} ordering, lamellar α{sub 2} + γ colonies and interdendritic TiAl γ-phase were observed, depending on the Al amount. Based on thermodynamic calculations the observed microstructure can be explained using the CALPHAD approach taking into account the non-equilibrium conditions. The presented method provides a useful tool for alloy development for processing techniques involving rapid solidification with varying cooling rates.

  2. Advances in rapid cooling treatment for heat stroke

    Directory of Open Access Journals (Sweden)

    Jia-jia ZHAO

    2014-10-01

    Full Text Available Heat stroke is a life-threatening disease characterized clinically by central nervous system dysfunction and severe hyperthermia (core temperature rises to higher than 40℃. The unchecked rise of body core temperature overwhelms intrinsic or extrinsic heat generation mechanism, thus overwhelms homoeostatic thermoregulation. Hyperthermia causes cellular and organ dysfunction with progressive exacerbation resulting in multi-organ failure and death. Rapid cooling to reduce core temperature as quickly as possible is the primary and most effective treatment, as it has been shown that the major determinant of outcome in heatstroke is the degree and duration of hyperthermia. If suppression of body temperature is delayed, the fatality rate will be elevated. Several cooling methods are available, including physical cooling by conduction, convection and evaporation with ice/cold water immersion, internal cooling by invasive methods such as hemofiltration, intravascular cooling, cold water gastric and rectal lavage, and cooling with drugs. It is crucial to formulate a scientific and reasonable strategy for the subsequent treatment in accordance with the patient's physical condition, the condition of cooling equipment, and the manipulator's proficiency in cooling methods and equipment usage. This article reviews the domestic and international advances in study of rapid and efficient cooling measures for heat stroke. DOI: 10.11855/j.issn.0577-7402.2014.10.17

  3. Drowning of a barrier coastline under rapid rates of relative sea-level rise during the 8.2 ka cooling event: Cause or coincidence?

    Science.gov (United States)

    Mellett, C.; Hodgson, D. M.; Lang, A.; Mauz, B.; Plater, A. J.

    2012-12-01

    Examples where barrier landforms and deposits are preserved offshore of a highstand shoreline are rare on contemporary continental shelves, and in the rock record. Therefore, understanding of the conditions required for preservation and the sedimentary processes-response to such factors is limited and heavily dependent on simulation models. Here, an integrated dataset of multibeam bathymetry and 2D seismic reflection profiles has uncovered an exceptionally well preserved drowned barrier complex at Hastings Bank, on the English Channel continental shelf, offshore of southeast England. Mapping of nine seismic stratigraphic units calibrated with lithological information from multiple vibrocores has enabled the interpretation of fluvial, shoreface, barrier, washover fan, back-barrier and tidal environments of deposition. Stratigraphic architecture is used as the basis for landscape evolution reconstructions that reveal phases of barrier progradation, degradation and retreat. Optical Stimulated Luminescence (OSL) dating of shoreface and beach deposits revealed ages in the range of 8.4 ± 0.2 ka and 7.8 ± 0.2 ka. These ages indicate the barrier developed under rapid rates of early Holocene sea-level rise and more specifically, correlate to the time period surrounding the 8.2 ka cooling event and associated sea-level 'jump'. To preserve a barrier beach including the barrier foreshore under such rapid rates of relative sea-level rise, sediment supply would have to be sufficient to keep pace to prevent the shoreline responding through continuous reworking, i.e. rollover. Further, the rate of transgression is conditioned by inherited topography with higher rates of retreat, and hence greater potential for drowning, expected across the shallowly dipping substrate. Using Hastings Bank as an example, it has also been demonstrated that the morphodynamic state of the barrier complex in terms of its ability to respond dynamically to relative sea-level rise, conditions its

  4. Cryopreservation: Vitrification and Controlled Rate Cooling.

    Science.gov (United States)

    Hunt, Charles J

    2017-01-01

    Cryopreservation is the application of low temperatures to preserve the structural and functional integrity of cells and tissues. Conventional cooling protocols allow ice to form and solute concentrations to rise during the cryopreservation process. The damage caused by the rise in solute concentration can be mitigated by the use of compounds known as cryoprotectants. Such compounds protect cells from the consequences of slow cooling injury, allowing them to be cooled at cooling rates which avoid the lethal effects of intracellular ice. An alternative to conventional cooling is vitrification. Vitrification methods incorporate cryoprotectants at sufficiently high concentrations to prevent ice crystallization so that the system forms an amorphous glass thus avoiding the damaging effects caused by conventional slow cooling. However, vitrification too can impose damaging consequences on cells as the cryoprotectant concentrations required to vitrify cells at lower cooling rates are potentially, and often, harmful. While these concentrations can be lowered to nontoxic levels, if the cells are ultra-rapidly cooled, the resulting metastable system can lead to damage through devitrification and growth of ice during subsequent storage and rewarming if not appropriately handled.The commercial and clinical application of stem cells requires robust and reproducible cryopreservation protocols and appropriate long-term, low-temperature storage conditions to provide reliable master and working cell banks. Though current Good Manufacturing Practice (cGMP) compliant methods for the derivation and banking of clinical grade pluripotent stem cells exist and stem cell lines suitable for clinical applications are available, current cryopreservation protocols, whether for vitrification or conventional slow freezing, remain suboptimal. Apart from the resultant loss of valuable product that suboptimal cryopreservation engenders, there is a danger that such processes will impose a selective

  5. Cooling Rates of Lunar Volcanic Glass Beads

    Science.gov (United States)

    Hui, Hejiu; Hess, Kai-Uwe; Zhang, Youxue; Peslier, Anne; Lange, Rebecca; Dingwell, Donald; Neal, Clive

    2016-01-01

    It is widely accepted that the Apollo 15 green and Apollo 17 orange glass beads are of volcanic origin. The diffusion profiles of volatiles in these glass beads are believed to be due to degassing during eruption (Saal et al., 2008). The degree of degassing depends on the initial temperature and cooling rate. Therefore, the estimations of volatiles in parental magmas of lunar pyroclastic deposits depend on melt cooling rates. Furthermore, lunar glass beads may have cooled in volcanic environments on the moon. Therefore, the cooling rates may be used to assess the atmospheric condition in an early moon, when volcanic activities were common. The cooling rates of glasses can be inferred from direct heat capacity measurements on the glasses themselves (Wilding et al., 1995, 1996a,b). This method does not require knowledge of glass cooling environments and has been applied to calculate the cooling rates of natural silicate glasses formed in different terrestrial environments. We have carried out heat capacity measurements on hand-picked lunar glass beads using a Netzsch DSC 404C Pegasus differential scanning calorimeter at University of Munich. Our preliminary results suggest that the cooling rate of Apollo 17 orange glass beads may be 12 K/min, based on the correlation between temperature of the heat capacity curve peak in the glass transition range and glass cooling rate. The results imply that the parental magmas of lunar pyroclastic deposits may have contained more water initially than the early estimations (Saal et al., 2008), which used higher cooling rates, 60-180 K/min in the modeling. Furthermore, lunar volcanic glass beads could have been cooled in a hot gaseous medium released from volcanic eruptions, not during free flight. Therefore, our results may shed light on atmospheric condition in an early moon.

  6. Transient Response to Rapid Cooling of a Stainless Steel Sodium Heat Pipe

    Science.gov (United States)

    Mireles, Omar R.; Houts, Michael G.

    2011-01-01

    Compact fission power systems are under consideration for use in long duration space exploration missions. Power demands on the order of 500 W, to 5 kW, will be required for up to 15 years of continuous service. One such small reactor design consists of a fast spectrum reactor cooled with an array of in-core alkali metal heat pipes coupled to thermoelectric or Stirling power conversion systems. Heat pipes advantageous attributes include a simplistic design, lack of moving parts, and well understood behavior. Concerns over reactor transients induced by heat pipe instability as a function of extreme thermal transients require experimental investigations. One particular concern is rapid cooling of the heat pipe condenser that would propagate to cool the evaporator. Rapid cooling of the reactor core beyond acceptable design limits could possibly induce unintended reactor control issues. This paper discusses a series of experimental demonstrations where a heat pipe operating at near prototypic conditions experienced rapid cooling of the condenser. The condenser section of a stainless steel sodium heat pipe was enclosed within a heat exchanger. The heat pipe - heat exchanger assembly was housed within a vacuum chamber held at a pressure of 50 Torr of helium. The heat pipe was brought to steady state operating conditions using graphite resistance heaters then cooled by a high flow of gaseous nitrogen through the heat exchanger. Subsequent thermal transient behavior was characterized by performing an energy balance using temperature, pressure and flow rate data obtained throughout the tests. Results indicate the degree of temperature change that results from a rapid cooling scenario will not significantly influence thermal stability of an operating heat pipe, even under extreme condenser cooling conditions.

  7. Effectiveness of hand cooling and a cooling jacket on post-exercise cooling rates in hyperthermic athletes.

    Science.gov (United States)

    Maroni, Tessa; Dawson, Brian; Barnett, Kimberley; Guelfi, Kym; Brade, Carly; Naylor, Louise; Brydges, Chris; Wallman, Karen

    2018-01-24

    This study compared the effects of a hand cooling glove (∼16°C water temperature; subatmospheric pressure of -40 mmHg) and a cooling jacket (CJ) on post-exercise cooling rates (gastrointestinal core temperature, Tc; skin temperature, Tsk) and cognitive performance (the Stroop Colour-Word test). Twelve male athletes performed four trials (within subjects, counterbalanced design) involving cycling at a workload equivalent to 75% ⩒O 2 max in heat (35.7 ± 0.2°C, 49.2 ± 2.6% RH) until a Tc of 39°C or exhaustion occurred. A 30-min cooling period (in 22.3 ± 0.3°C, 42.1 ± 3.6% RH) followed, where participants adopted either one-hand cooling (1H), two-hand cooling (2H), wore a CJ or no cooling (NC). No significant differences were seen in Tc and Tsk cooling rates between trials; however, moderate effect sizes (d = 0.50-0.76) suggested Tc cooling rates to be faster for 1H, 2H and CJ compared to NC after 5 min; 1H and CJ compared to NC after 10 min and for CJ to be faster than 2H at 25-30 min. Reaction times on the cognitive test were similar between all trials after the 30 min cooling/no-cooling period (p > .05). In conclusion, Tc cooling rates were faster with 1H and CJ during the first 10 min compared to NC, with minimal benefit associated with 2H cooling. Reaction time responses were not impacted by the use of the glove(s) or CJ.

  8. Effect of cooling rate on crystallization in an aluminophosphosilicate melt

    DEFF Research Database (Denmark)

    Liu, S. J.; Zhang, Yanfei; Yue, Yuanzheng

    2011-01-01

    The effect of cooling rate on spontaneous crystallization behavior of an alumino-phospho-silicate melt is studied by means of differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and viscometry. The cooling rates of 160, 2100 and 12000 K/s are attained by subjecting...

  9. The appearance of erythrocyte membrane elevations Effects of cooling rates

    NARCIS (Netherlands)

    Goekoop, J.G.; Spies, F.; Wisse, D.M.; Vries, E. de; Verkleij, A.J.; Kempen, G.M.J. van

    Low cooling rates during the freezing procedure of normal human blood reveals red cell membrane elevations in freeze-etch electron microscopy. When high cooling rate is applied, these morphological changes are present, if the blood samples are quenched from 5 °C. The number of elevations is

  10. Influence of Cooling Rate on Microsegregation Behavior of Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Md. Imran Khan

    2014-01-01

    Full Text Available The effect of cooling rate on microstructure and microsegregation of three commercially important magnesium alloys was investigated using Wedge (V-shaped castings of AZ91D, AM60B, and AE44 alloys. Thermocouples were distributed to measure the cooling rate at six different locations of the wedge casts. Solute redistribution profiles were drawn based on the chemical composition analysis obtained by EDS/WDS analysis. Microstructural and morphological features such as dendrite arm spacing and secondary phase particle size were analyzed using both optical and scanning electron microscopes. Dendritic arm spacing and secondary phase particle size showed an increasing trend with decreasing cooling rate for the three alloys. Area percentage of secondary phase particles decreased with decreasing cooling rate for AE44 alloy. The trend was different for AZ91D and AM60B alloys, for both alloys, area percentage of β-Mg17Al12 increased with decreasing cooling rate up to location 4 and then decreased slightly. The tendency for microsegregation was more severe at slower cooling rates, possibly due to prolonged back diffusion. At slower cooling rate, the minimum concentration of aluminum at the dendritic core was lower compared to faster cooled locations. The segregation deviation parameter and the partition coefficient were calculated from the experimentally obtained data.

  11. Mechanical response of local rapid cooling by spray water on constrained steel frame structure at high temperature in fire

    Directory of Open Access Journals (Sweden)

    Xia Yunchun

    2015-01-01

    Full Text Available Locally rapid cooling of spray water had strong impact on high temperature steel structure. When temperature of beam reached 600°C and cooling rate was more than 20°C/s, the maximum axial tension could reach more than 5 times of the originally compressive force. The compressive bending moment at joint of beam-to-column changed to tensile bending moment, and the maximum bending moment could reach above 4 times as that when heated. After rapid cooling by spray water, deflection at mid-span increased slightly.

  12. Rapid cooling of the neutron star in Cassiopeia A triggered by neutron superfluidity in dense matter.

    Science.gov (United States)

    Page, Dany; Prakash, Madappa; Lattimer, James M; Steiner, Andrew W

    2011-02-25

    We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the (3)P(2) channel. We find that the critical temperature for this superfluid transition is ≃0.5×10(9) K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star. © 2011 American Physical Society

  13. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions.

    Science.gov (United States)

    Lobato, I; Rojas, J; Landauro, C V; Torres, J

    2009-02-04

    The structural evolution and dynamics of silver nanodrops Ag(2869) (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 10(13) K s(-1) the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 10(12) K s(-1)), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  14. The influence of cooling rate on the ferrite content of stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J.W.; Allen, S.M.; Eagar, T.W.

    1989-03-24

    Electron-beam surface melting was used to rapidly solidify a series of high-purity 59% Fe-Ni-Cr alloys at cooling rates between 7 /degree/C/s and 7.5 /times/ 10/sup 6/ /degree/C/s. The primary solidification mode was identified in each of the resolidified melts using optical metallography; the residual ferrite content was measured using a vibrating sample magnetometer. The cooling rate was shown to dramatically alter the residual ferrite content of these alloys through its influence on the amount of solute redistribution that occurs during solidification and through its subsequent influence on the extent of the solid-state transformation of ferrite. The results show that the solidification mode, cooling rate, and specific alloy composition are equally important, interrelated factors in the prediction of the residual ferrite. The residual ferrite content of primary-austenite solidified alloys decreases with increasing cooling rate whereas the residual ferrite content of primary-ferrite solidified alloys increases with increasing cooling rate. Exceptions to this general behavior occur when: ferrite transforms to austenite by a massive transformation in fully-ferritic-solidified alloys and an alloy changes its mode of solidification from primary-ferrite at low cooling rates to primary-austenite at high cooling rates. 12 refs., 7 figs., 4 tabs.

  15. EFFECT OF COOLING RATES ON THE MICROSTRUCTURE AND ...

    African Journals Online (AJOL)

    B eutectic prepared under various cooling rates had been investigated using differential thermal analysis (DTA), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was observed that for ...

  16. Structural evolution in the crystallization of rapid cooling silver melt

    Science.gov (United States)

    Tian, Z. A.; Dong, K. J.; Yu, A. B.

    2015-03-01

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald's rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid-solid phase transition.

  17. Properties of polycrystals and nanotwinned structures in silicon during rapid cooling process

    Science.gov (United States)

    Gao, Tinghong; Li, Kaiwen; Tian, Zean; Xie, Quan; Hu, Xuechen; Li, Yidan; Luo, Xiangyan; Ren, Lei

    2017-11-01

    The evolution characteristics of polycrystals and nano-twinned structures during the rapid solidification of silicon under cooling rate of 1010 K s‑1 are investigated based on molecular dynamics simulation. The microstructural properties of silicon were analyzed by several structural characterization methods. The distorted tetrahedral units with 5 nearest-neighbor atoms play different roles in three stages of the quenching process. As transitional structures, they play a significant part in liquid to liquid and liquid to crystal transition, and break the translational symmetry of the crystalline structures. The tetrahedral units can aggregate to form polycrystals with high stability in this system. When the temperature was decreased at a cooling rate of 1010 K s‑1, Coherent twin boundaries, having excellent structural stability and configurational continuity, were easily formed between zinc-blende and wurtzite structures.

  18. The influence of cooling rate on the microstructure of stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J.W.

    1988-09-01

    The emergence of high energy density welding, laser surface modification and rapid solidification as commonly used metallurgical processing techniques has greatly increased the range of cooling rates that can be accessed during the solidification of metals and alloys. The microstructures which develop during these rapid cooling conditions may be significantly different from those which develop during low cooling rate conditions as the result of access to new metastable phases with the additional kinetic limitations that accompany rapid solidification. This investigation explores the influence of cooling rate on a series of seven ternary alloys which span the line of two-fold saturation in the Fe-Ni-Cr system. High speed electron beam surface melting was used to resolidify these alloys at scan speeds up to 5 m/s. The resulting cooling rates were estimated from dendrite arm spacing measurements and were confirmed by heat flow modeling to vary from 7 /times/ 10/sup 0/ /degree/C/s to 8 /times/ 10/sup 6/ /degree/C/s. The microstructures that developed from each solidification condition were examined using optical metallography, electron microprobe analysis, scanning electron microscopy and a vibrating sample magnetometer. These results were used to create diagrams to predict the primary mode of solidification, the ferrite content and the complex microstructural morphologies which develop as a function of interface velocity and composition. 158 refs., 90 figs., 45 tabs.

  19. Metallographic cooling rates of L-group ordinary chondrites

    Science.gov (United States)

    Bennett, Marvin E.; Mcsween, Harry Y., Jr.

    1993-01-01

    Shock metamorphism appears to be a ubiquitous feature in L-group ordinary chondrites. Brecciation and heterogeneous melting obscure much of the early history of this meteorite group and have caused confusion as to whether L chondrites have undergone thermal metamorphism within onion-shell or rubble-pile parent bodies. Employing the most recent shock criteria, we have examined 55 Antarctic and 24 non-Antarctic L chondrites in order to identify those which have been least affected by post-accretional shock. Six low-shock samples (those with shock grade less than S4) of petrographic types L3-L5 were selected from both populations and metallographic cooling rates were obtained following the technique of Willis and Goldstein. All non-Antarctic L6 chondrites inspected were too heavily shocked to be included in this group. However, 4 shocked L6 chondrites were analyzed in order to determine what effects shock may impose on metallographic cooling rates. Metallographic cooling rates were derived by analyzing the cores of taenite grains and then measuring the distance to the nearest grain edge. Taenites were identified using backscatter imaging on a Cameca SX-50 electron microprobe. Using backscatter we were able to locate homogeneous, rust-free, nearly spherical grains. M-shaped profiles taken from grain traverses were also used to help locate the central portions of selected grains. All points which contained phosphorus above detection limits were discarded. Plots of cooling-rate data are summarized and data from the high-shock samples are presented. The lack of coherency of cooling rates for individual samples is indicative of heterogeneous cooling following shock. The data confirms the statement expressed by numerous workers that extreme care must be taken when selecting samples of L chondrites for cooling-rate studies. Data for the 6 non-Antarctic low-shock samples are also presented. The samples display a general trend in cooling rates. The lowest metamorphic grade

  20. Solute partitioning under continuous cooling conditions as a cooling rate indicator. [in lunar rocks

    Science.gov (United States)

    Onorato, P. I. K.; Hopper, R. W.; Yinnon, H.; Uhlmann, D. R.; Taylor, L. A.; Garrison, J. R.; Hunter, R.

    1981-01-01

    A model of solute partitioning in a finite body under conditions of continuous cooling is developed for the determination of cooling rates from concentration profile data, and applied to the partitioning of zirconium between ilmenite and ulvospinel in the Apollo 15 Elbow Crater rocks. Partitioning in a layered composite solid is described numerically in terms of concentration profiles and diffusion coefficients which are functions of time and temperature, respectively; a program based on the model can be used to calculate concentration profiles for various assumed cooling rates given the diffusion coefficients in the two phases and the equilibrium partitioning ratio over a range of temperatures. In the case of the Elbow Rock gabbros, the cooling rates are calculated from measured concentration ratios 10 microns from the interphase boundaries under the assumptions of uniform and equilibrium initial conditions at various starting temperatures. It is shown that the specimens could not have had uniform concentrations profiles at the previously suggested initial temperature of 1350 K. It is concluded that even under conditions where the initial temperature, grain sizes and solute diffusion coefficients are not well characterized, the model can be used to estimate the cooling rate of a grain assemblage to within an order of magnitude.

  1. Structural evolution in the crystallization of rapid cooling silver melt

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Z.A., E-mail: ze.tian@gmail.com [School of Physics and Electronics, Hunan University, Changsha 410082 (China); Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Dong, K.J.; Yu, A.B. [Laboratory for Simulation and Modelling of Particulate Systems School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2015-03-15

    The structural evolution in a rapid cooling process of silver melt has been investigated at different scales by adopting several analysis methods. The results testify Ostwald’s rule of stages and Frank conjecture upon icosahedron with many specific details. In particular, the cluster-scale analysis by a recent developed method called LSCA (the Largest Standard Cluster Analysis) clarified the complex structural evolution occurred in crystallization: different kinds of local clusters (such as ico-like (ico is the abbreviation of icosahedron), ico-bcc like (bcc, body-centred cubic), bcc, bcc-like structures) in turn have their maximal numbers as temperature decreases. And in a rather wide temperature range the icosahedral short-range order (ISRO) demonstrates a saturated stage (where the amount of ico-like structures keeps stable) that breeds metastable bcc clusters. As the precursor of crystallization, after reaching the maximal number bcc clusters finally decrease, resulting in the final solid being a mixture mainly composed of fcc/hcp (face-centred cubic and hexagonal-closed packed) clusters and to a less degree, bcc clusters. This detailed geometric picture for crystallization of liquid metal is believed to be useful to improve the fundamental understanding of liquid–solid phase transition. - Highlights: • A comprehensive structural analysis is conducted focusing on crystallization. • The involved atoms in our analysis are more than 90% for all samples concerned. • A series of distinct intermediate states are found in crystallization of silver melt. • A novelty icosahedron-saturated state breeds the metastable bcc state.

  2. Combination of Cooling Curve and Micro-Chemical Phase Analysis of Rapidly Quenched Magnesium AM60B Alloy

    Science.gov (United States)

    Marchwica, P. C.; Gesing, A. J.; Sokolowski, J. H.; Blawert, C.; Jekl, J.; Berkmortel, R.

    Macro test samples of magnesium alloy AM60B were melted and quenched at maximum instantaneous cooling rates ranging from -5°C/s to -500°C/s and the resultant cooling curves were analyzed. Characteristic reactions on these curves corresponding to formation of individual phases were identified with the aid of literature data as well as metallographic and micro-chemical analysis. The results indicate that these phases, their size and location in the micro structure, their chemistry and their relative proportions all change in response to the increase in the cooling rate. These rapid cooling rates are typical of real industrial solidification processes such as die casting. These findings can be used to improve future computer models of casting solidification processes for magnesium and for other alloys.

  3. Controlled rate cooling of fungi using a stirling cycle freezer.

    Science.gov (United States)

    Ryan, Matthew J; Kasulyte-Creasey, Daiva; Kermode, Anthony; San, Shwe Phue; Buddie, Alan G

    2014-01-01

    The use of a Stirling cycle freezer for cryopreservation is considered to have significant advantages over traditional methodologies including N2 free operation, application of low cooling rates, reduction of sample contamination risks and control of ice nucleation. The study assesses the suitability of an 'N2-free' Stirling Cycle controlled rate freezer for fungi cryopreservation. In total, 77 fungi representing a broad taxonomic coverage were cooled using the N2 free cooler following a cooling rate of -1 degrees C min(-1). Of these, 15 strains were also cryopreserved using a traditional 'N2 gas chamber' controlled rate cooler and a comparison of culture morphology and genomic stability against non-cryopreserved starter cultures was undertaken. In total of 75 fungi survived cryopreservation, only a recalcitrant Basidiomycete and filamentous Chromist failed to survive. No changes were detected in genomic profile after preservation, suggesting that genomic function is not adversely compromised as a result of using 'N2 free' cooling. The results demonstrate the potential of 'N2-free' cooling for the routine cryopreservation of fungi in Biological Resource Centres.

  4. Influence of cryogenic cooling rate on mechanical properties of tool steels

    Science.gov (United States)

    Mazor, G.; Ladizhensky, I.; Shapiro, A.

    2017-09-01

    The effect of the rapid cryogenic treatment on hardness and wear resistance of several kinds of tool steel was examined. Two ways of cryogenic cooling were evaluated: direct immersion of the metallic samples into liquid nitrogen and three-stage rapid cryogenic cooling (1 - precooling in LN2 to -20°C, 2 - formation on the sample of a frost layer from air by natural humidity, 3 - second cooling of the frost-covered sample in LN2 to -195.7°C). Material in “as is” conditions and after a preliminary heat treatment (850°C) were used as the reference points. The HV microhardness and the wear rate under dry abrasive friction were evaluated. Despite the very different types of the examined metals’ nature, microstructure, and hardening mechanisms, the rapid cryogenic cooling improves both the hardness and the wear resistance values. For all investigated metals rapid cryogenic cooling assisted with the frost layer produces the best results.

  5. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cavallo, Dario, E-mail: Dario.cavallo@unige.it [University of Genoa, Dept. of Chemistry and Industrial Chemistry, Via Dodecaneso 31, 16146 Genoa (Italy); Portale, Giuseppe [ESRF, Dubble CRG, Netherlands Organization of Scientific Research (NWO), 38043 Grenoble (France); Androsch, René [Martin-Luther-University Halle-Wittenberg, Center of Engineering Sciences, D-06099 Halle/S. (Germany)

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  6. Effect of cooling rate on the microstructure and mechanical ...

    Indian Academy of Sciences (India)

    ... attributed to the presence of manganese. In addition, variation in cooling rate led to increase in strength but severely affected percentage elongation albeit in an acceptable limit of 6%. This effect is discussed in the light of degree of banding of strips and microstructural constituents generated during heat treatment of steel ...

  7. MEASURING THE EVOLUTIONARY RATE OF COOLING OF ZZ Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Fraser, Oliver; Riecken, T. S.; Kronberg, M. E. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Bischoff-Kim, Agnes [Georgia College and State University, Milledgeville, GA 31061 (United States); Corsico, A. H. [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata (Argentina); Montgomery, M. H.; Winget, D. E.; Hermes, J. J.; Winget, K. I.; Falcon, Ross E.; Reaves, D. [Department of Astronomy, University of Texas at Austin, Austin, TX 78759 (United States); Kepler, S. O.; Romero, A. D. [Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, RS (Brazil); Chandler, D. W. [Meyer Observatory, Central Texas Astronomical Society, 3409 Whispering Oaks, Temple, TX 76504 (United States); Kuehne, J. W. [McDonald Observatory, Fort Davis, TX 79734 (United States); Sullivan, D. J. [Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand); Von Hippel, T. [Embry-Riddle Aeronautical University, 600 South Clyde Morris Boulevard, Daytona Beach, FL 32114 (United States); Mullally, F. [SETI Institute, NASA Ames Research Center, MS 244-30, Moffet Field, CA 94035 (United States); Shipman, H. [Delaware Asteroseismic Research Center, Mt. Cuba Observatory, Greenville, DE 19807 (United States); and others

    2013-07-01

    We have finally measured the evolutionary rate of cooling of the pulsating hydrogen atmosphere (DA) white dwarf ZZ Ceti (Ross 548), as reflected by the drift rate of the 213.13260694 s period. Using 41 yr of time-series photometry from 1970 November to 2012 January, we determine the rate of change of this period with time to be dP/dt = (5.2 {+-} 1.4) Multiplication-Sign 10{sup -15} s s{sup -1} employing the O - C method and (5.45 {+-} 0.79) Multiplication-Sign 10{sup -15} s s{sup -1} using a direct nonlinear least squares fit to the entire lightcurve. We adopt the dP/dt obtained from the nonlinear least squares program as our final determination, but augment the corresponding uncertainty to a more realistic value, ultimately arriving at the measurement of dP/dt = (5.5 {+-} 1.0) Multiplication-Sign 10{sup -15} s s{sup -1}. After correcting for proper motion, the evolutionary rate of cooling of ZZ Ceti is computed to be (3.3 {+-} 1.1) Multiplication-Sign 10{sup -15} s s{sup -1}. This value is consistent within uncertainties with the measurement of (4.19 {+-} 0.73) Multiplication-Sign 10{sup -15} s s{sup -1} for another similar pulsating DA white dwarf, G 117-B15A. Measuring the cooling rate of ZZ Ceti helps us refine our stellar structure and evolutionary models, as cooling depends mainly on the core composition and stellar mass. Calibrating white dwarf cooling curves with this measurement will reduce the theoretical uncertainties involved in white dwarf cosmochronometry. Should the 213.13 s period be trapped in the hydrogen envelope, then our determination of its drift rate compared to the expected evolutionary rate suggests an additional source of stellar cooling. Attributing the excess cooling to the emission of axions imposes a constraint on the mass of the hypothetical axion particle.

  8. The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate

    Science.gov (United States)

    Liu, Yulin; Liu, Ming; Luo, Lei; Wang, Jijie; Liu, Chunzhong

    2014-01-01

    In AA2618 aluminum alloy, the iron- and nickel-rich intermetallics formed during solidification are of great effect on the mechanical properties of the alloy at both room temperature and elevated temperatures. However, the solidification behavior of the alloy and the formation mechanism of the intermetallics during solidification of the alloy are not clear. This research fills the gap and contributes to understanding the intermetallic of the alloy. The results showed that cooling rate was of great influence on the formation of the intermetallics. Under the condition of slow cooling, the as-cast microstructures of the alloy were complex with many coarse eutectic compounds including Al9FeNi, Al7(CuNi)5, Si, Al2Cu and Al2CuMg. The phase Al9FeNi was the dominant intermetallic compound, which precipitated at the earlier stage of the solidification by eutectic reaction L → α-Al + Al9FeNi. Increasing the cooling rate would suppress the formation of the coarse eutectic intermetallics. Under the condition of near-rapid cooling, the as-cast microstructures of the alloy consisted of metastable intermetallics Al9FeNi and Al2Cu; the equilibrium eutectic compounds were suppressed. This research concluded that intermetallics could be refined to a great extent by near-rapid cooling. PMID:28788281

  9. The Solidification Behavior of AA2618 Aluminum Alloy and the Influence of Cooling Rate.

    Science.gov (United States)

    Liu, Yulin; Liu, Ming; Luo, Lei; Wang, Jijie; Liu, Chunzhong

    2014-12-09

    In AA2618 aluminum alloy, the iron- and nickel-rich intermetallics formed during solidification are of great effect on the mechanical properties of the alloy at both room temperature and elevated temperatures. However, the solidification behavior of the alloy and the formation mechanism of the intermetallics during solidification of the alloy are not clear. This research fills the gap and contributes to understanding the intermetallic of the alloy. The results showed that cooling rate was of great influence on the formation of the intermetallics. Under the condition of slow cooling, the as-cast microstructures of the alloy were complex with many coarse eutectic compounds including Al₉FeNi, Al₇(CuNi)₅, Si, Al₂Cu and Al₂CuMg. The phase Al₉FeNi was the dominant intermetallic compound, which precipitated at the earlier stage of the solidification by eutectic reaction L → α-Al + Al₉FeNi. Increasing the cooling rate would suppress the formation of the coarse eutectic intermetallics. Under the condition of near-rapid cooling, the as-cast microstructures of the alloy consisted of metastable intermetallics Al₉FeNi and Al₂Cu; the equilibrium eutectic compounds were suppressed. This research concluded that intermetallics could be refined to a great extent by near-rapid cooling.

  10. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  11. Role of intracellular freezing in the death of cells cooled at supraoptimal rates. [Preservation of erythrocytes, bone marrow cells, and yeasts by freezing

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1976-01-01

    Cooling velocity is one of the major factors that determines whether viable cells can be frozen to temperatures that permit indefinite storage. Cooling either too slowly or too rapidly tends to be damaging. Optimum cooling rates are reported for mouse marrow stem cells, yeast, and human red cells.

  12. Apparatus and method for rapid cooling of large area substrates in vacuum

    Science.gov (United States)

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2010-09-28

    The present invention is directed to an apparatus and method for rapid cooling of a large substrate in a vacuum environment. A first cooled plate is brought into close proximity with one surface of a flat substrate. The spatial volume between the first cooling plate and the substrate is sealed and brought to a higher pressure than the surrounding vacuum level to increase the cooling efficiency. A second cooled plate is brought into close proximity with the opposite surface of the flat substrate. A second spatial volume between the second cooling plate and the substrate is sealed and the gas pressure is equalized to the gas pressure in the first spatial volume. The equalization of the gas pressure on both sides of the flat substrate eliminates deflection of the substrate and bending stress in the substrate.

  13. Superfluid phases of triplet pairing and rapid cooling of the neutron star in Cassiopeia A

    Directory of Open Access Journals (Sweden)

    Lev B. Leinson

    2015-02-01

    Full Text Available In a simple model it is demonstrated that the neutron star surface temperature evolution is sensitive to the phase state of the triplet superfluid condensate. A multicomponent triplet pairing of superfluid neutrons in the core of a neutron star with participation of several magnetic quantum numbers leads to neutrino energy losses exceeding the losses from the unicomponent pairing. A phase transition of the neutron condensate into the multicomponent state triggers more rapid cooling of superfluid core in neutron stars. This makes it possible to simulate an anomalously rapid cooling of neutron stars within the minimal cooling paradigm without employing any exotic scenarios suggested earlier for rapid cooling of isolated neutron star in Cassiopeia A.

  14. Controlled cooling versus rapid freezing of teratozoospermic semen samples: Impact on sperm chromatin integrity

    Directory of Open Access Journals (Sweden)

    Shivananda N Kalludi

    2011-01-01

    Full Text Available Aim: The present study evaluates the impact of controlled slow cooling and rapid freezing techniques on the sperm chromatin integrity in teratozoospermic and normozoospermic samples. Setting: The study was done in a university infertility clinic, which is a tertiary healthcare center serving the general population. Design: It was a prospective study designed in vitro. Materials and Methods: Semen samples from normozoospermic (N=16 and teratozoospermic (N=13 infertile men were cryopreserved using controlled cooling and rapid freezing techniques. The sperm chromatin integrity was analyzed in fresh and frozen-thawed samples. Statistical Analysis Used: Data were reported as mean and standard error (mean ± SEM of mean. The difference between two techniques was determined by a paired t-test. Results: The freeze-thaw induced chromatin denaturation was significantly (P<0.01 elevated in the post-thaw samples of normozoospermic and teratozoospermic groups. Compared to rapid freezing, there was no difference in the number of red sperms (with DNA damage by the controlled slow cooling method in both normozoospermic and teratozoospermic groups. Freeze-thaw induced sperm chromatin denaturation in teratozoospermic samples did not vary between controlled slow cooling and rapid freezing techniques. Conclusions: Since the controlled slow cooling technique involves the use of expensive instrument and is a time consuming protocol, rapid freezing can be a good alternative technique for teratozoospermic and normozoospermic samples when sperm DNA damage is a concern.

  15. Heating and cooling rates and their etTects upon heart rate in the ...

    African Journals Online (AJOL)

    1988-03-16

    Mar 16, 1988 ... have investigated aspects of thermoregulation, but the results obtained are contradictory, and no heart rate measurements were done. The purpose of this study was to investigate the heating and cooling rates of the angulate tortoise, Chersina angulata, in the eastern Cape Province,. South Africa.

  16. Heating and cooling rates and their effects upon heart rate in the ...

    African Journals Online (AJOL)

    ... rates increase with increasing body temperature, and for all body temperatures heart rates were greater during heating than during cooling. This suggests that the cardiovascular system plays a role in the heat exchange of the tortoises, but further study is required to completely understand the thermoregulatory process.

  17. Sensitivity analysis of radiative heating and cooling rates in planetary atmospheres: general linearization and adjoint approaches

    Science.gov (United States)

    Ustinov, E. A.

    2002-01-01

    Radiative heating and cooling provide primary source and ultimate sink of energy driving lower planetary atmospheres. Evaluating the sensitivities of atmospheric dynamics models on these primary atmospheric parameters requires knowing how heating and cooling rates depend on these same parameters. We discuss two approaches that make it possible to directly compute the sensitivities of heating and cooling rates in parallel with evaluation of heating and cooling rates themselves.

  18. Secular Cooling Rates of the Mantle : Various Influences

    Science.gov (United States)

    Rainey, E.; van den Berg, A. P.; Yuen, D. A.

    2002-12-01

    The history of secular cooling of the mantle is an old important issue, which has been attacked for many years using temperature-dependent viscosity as the primary agent (Tozer, 1972. Phys. Earth Planet. Int., 6, 182-197). In this work we have ventured to look at the impact of variable thermal conductivity on the secular cooling rates predicted by models using just temperature-dependent viscosity. We have found the following salient results. (1) A delayed secular cooling is found as in the constant viscosity models (van den Berg and Yuen, 2002, Earth Planet. Sci. Lett., 199, 403-413, van den Berg et al., 2002, Phys. Earth Planet. Inter., 129, 359-375). We have applied an exponential temperature and pressure dependent viscosity model, using thermal viscosity contrast up to 3000 and fixed presssure viscosity contrast of 100 for this verification. (2) A purely depth-dependent thermal conductivity k(P) cannot catch the destructive effect of temperature dependent conductivity on the negative thermal buoynacy of cold downwellings, driving the convective circulation. These k(P) models also lack feedback physics between time-dependent internal heating and variable thermal conductivity k(T,P), thus stressing the need to use k(T,P) whenever there is a strong source of heat present. (3) Large-differences occur between predictions from 2-D numerical models based on Partial Differential Equations (PDE) and averaged parameterized convection models, formulated using an Ordinary Differential Equation (ODE), within the framework of integrating the nonlinear ODE for the volume average temperature. The ODE results for this comparison are computed using the time series of volume average quantities (viscosity, conductivity) obtained from the 2-D PDE results. The comparison shows that the 1-2 Gyr delay in secular cooling, characteristic for full convection PDE models, is not reproduced in the ODE results from parameterized convection models. The temperature dependence of the ice thermal

  19. The I-Xe System in Lodranites Suggests Impact-related Rapid Cooling

    Science.gov (United States)

    Crowther, S. A.; Whitby, J. A.; Busfield, A.; Holland, G.; Busemann, H.; Gilmour, J. D.

    2009-03-01

    The I-Xe system of three lodranites has been investigated. Two metal and one silicate separate from GRA 95209 gave ages consistent with each other (and the I-Xe age of Acapulco feldspar), suggesting the parent material underwent a period of rapid cooling.

  20. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose.

    Science.gov (United States)

    Mhd Haniffa, Mhd Abd Cader; Ching, Yern Chee; Chuah, Cheng Hock; Yong Ching, Kuan; Nazri, Nik; Abdullah, Luqman Chuah; Nai-Shang, Liou

    2017-10-01

    Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2I helical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Thermal Balance in Dense Molecular Clouds: Radiative Cooling Rates and Emission-Line Luminosities

    Science.gov (United States)

    Neufeld, David A.; Lepp, Stephen; Melnick, Gary J.

    1995-01-01

    We consider the radiative cooling of fully shielded molecular astrophysical gas over a wide range of temperatures ( 10 K line strengths that contribute to the total radiative cooling rate, and we have obtained example spectra for the submillimeter emission expected from molecular cloud cores. Many of the important cooling lines will be detectable using the Infrared Space Observatory and the Submillimeter Wave Astronomy Satellite.

  2. Effect of thawing time, cooling rate and boron nutrition on freezing point of the primordial shoot in norway spruce buds.

    Science.gov (United States)

    Räisänen, Mikko; Repo, Tapani; Lehto, Tarja

    2006-04-01

    Effects of cooling rates on bud frost hardiness have been studied but there is little information on bud responses to thawing. Since the cell wall pore size has been found to increase with boron (B) deficiency, B deficiency may affect the supercooling ability of buds in winter. The effects of duration of thawing time and rate of cooling on bud frost hardiness of Norway spruce (Picea abies) were studied in a B fertilization trial in February 2003 and March 2005. Frost hardiness of apical buds was determined by differential thermal analysis (DTA) and visual scoring of damage. In 2003, the freezing point of primordial shoots of buds (T(f)), i.e. the low-temperature exotherm (LTE), was, on average, -39 degrees C when buds were thawed for less than 3 h and the T(f) increased to -21 degrees C after 18 h of thawing. During the first 4 h of thawing, the rate of dehardening was 6 degrees C h(-1). In 2005, buds dehardened linearly from -39 degrees C to -35 degrees C at a rate of 0.7 degrees C h(-1). In 2003, different cooling rates of 1-5 degrees C h(-1) had a minor effect on T(f) but in 2005 with slow cooling rates T(f) decreased. In both samplings, at cooling rates of 2 and 1 degrees C h(-1), T(f) was slightly higher in B-fertilized than in non-fertilized trees. By contrast, at very short thawing times in 2003, T(f) was somewhat lower in B-fertilized trees. There was little evidence of reduced frost hardiness in trees with low B status. This study showed that buds deharden rapidly when exposed to above-freezing temperatures in winter, but if cooled again they reharden more slowly. According to this study, rapid dehardening of buds has to be taken into account in assessments of frost hardiness.

  3. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    OpenAIRE

    Lobato, I.; Rojas, J.; Landauro, C.V.; Torres, J

    2008-01-01

    The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidifica...

  4. Melting and crystallization of poly(3-hydroxybutyrate: effect of heating/cooling rates on phase transformation

    Directory of Open Access Journals (Sweden)

    Renate Maria Ramos Wellen

    2015-06-01

    Full Text Available AbstractWe studied the crystallization and melting phenomena of poly (3- hydroxybutyrate (PHB, a biodegradable and biocompatible semi-crystalline thermoplastic, obtained from renewable resources. Its high crystallinity motivated several studies on crystallization and melting behavior, and also on ways to increase the amorphous polymer fraction. The effect of heating and cooling rates on the crystallization and melting of commercial PHB was investigated by differential scanning calorimetry. Several rates, ranging from 2.5 to 20 °C min–1, were used to study the phase changes during heating/cooling/reheating cycles. The results showed that PHB partially crystallizes from the melt during the cooling cycle and partially cold crystallizes on reheating, and that the relative amount of polymer crystallizing in each stage strongly depends on the cooling rate. The melt and cold crystallization temperatures, as well as the rates of phase change, depend strongly on the cooling and heating rates.

  5. Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity

    Energy Technology Data Exchange (ETDEWEB)

    Suplicz, A.; Szabo, F.; Kovacs, J.G., E-mail: kovacs@pt.bme.hu

    2013-12-20

    Highlights: • BN, talc and TiO{sub 2} in 30 vol% were compounded with polypropylene matrix. • According to the DSC measurements, the fillers are good nucleating agents. • The thermal conductivity of the fillers influences the cooling rate of the melt. • The higher the cooling rate is, the lower the crystallinity in the polymer matrix. - Abstract: Three different nano- and micro-sized ceramic powders (boron-nitride (BN), talc and titanium-dioxide (TiO{sub 2})) in 30 vol% have been compounded with a polypropylene (PP) matrix. Scanning electron microscopy (SEM) shows that the particles are dispersed smoothly in the matrix and larger aggregates cannot be discovered. The cooling gradients and the cooling rate in the injection-molded samples were estimated with numerical simulations and finite element analysis software. It was proved with differential scanning calorimetry (DSC) measurements that the cooling rate has significant influence on the crystallinity of the compounds. At a low cooling rate BN works as a nucleating agent so the crystallinity of the compound is higher than that of unfilled PP. On the other hand, at a high cooling rate, the crystallinity of the compound is lower than that of unfilled PP because of its higher thermal conductivity. The higher the thermal conductivity is, the higher the real cooling rate in the material, which influences the crystallization kinetics significantly.

  6. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  7. Rapid shelf‐wide cooling response of a stratified coastal ocean to hurricanes

    Science.gov (United States)

    Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-01-01

    Abstract Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead‐of‐eye‐center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation‐validated, high‐resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid‐Atlantic hurricanes were investigated: Hurricane Irene (2011)—with an inshore Mid‐Atlantic Bight (MAB) track during the late summer stratified coastal ocean season—and Tropical Storm Barry (2007)—with an offshore track during early summer. For both storms, the critical ahead‐of‐eye‐center depth‐averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead‐of‐eye‐center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3‐D coupled atmosphere‐ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels. PMID:28944132

  8. Rapid shelf-wide cooling response of a stratified coastal ocean to hurricanes.

    Science.gov (United States)

    Seroka, Greg; Miles, Travis; Xu, Yi; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2017-06-01

    Large uncertainty in the predicted intensity of tropical cyclones (TCs) persists compared to the steadily improving skill in the predicted TC tracks. This intensity uncertainty has its most significant implications in the coastal zone, where TC impacts to populated shorelines are greatest. Recent studies have demonstrated that rapid ahead-of-eye-center cooling of a stratified coastal ocean can have a significant impact on hurricane intensity forecasts. Using observation-validated, high-resolution ocean modeling, the stratified coastal ocean cooling processes observed in two U.S. Mid-Atlantic hurricanes were investigated: Hurricane Irene (2011)-with an inshore Mid-Atlantic Bight (MAB) track during the late summer stratified coastal ocean season-and Tropical Storm Barry (2007)-with an offshore track during early summer. For both storms, the critical ahead-of-eye-center depth-averaged force balance across the entire MAB shelf included an onshore wind stress balanced by an offshore pressure gradient. This resulted in onshore surface currents opposing offshore bottom currents that enhanced surface to bottom current shear and turbulent mixing across the thermocline, resulting in the rapid cooling of the surface layer ahead-of-eye-center. Because the same baroclinic and mixing processes occurred for two storms on opposite ends of the track and seasonal stratification envelope, the response appears robust. It will be critical to forecast these processes and their implications for a wide range of future storms using realistic 3-D coupled atmosphere-ocean models to lower the uncertainty in predictions of TC intensities and impacts and enable coastal populations to better respond to increasing rapid intensification threats in an era of rising sea levels.

  9. New method for vitrifying water and other liquids by rapid cooling of their aerosols

    Science.gov (United States)

    Mayer, Erwin

    1985-07-01

    A method for the vitrification of pure liquid water and dilute aqueous solutions is described which is the only one without a liquid cryomedium for heat transfer: rapid cooling of aqueous aerosol droplets on a solid cryoplate. This method is not limited to water and aqueous solutions, but can be used for the vitrification of any liquid aerosol, the only impurity being some codeposited vapor. The method can be applied in diverse fields such as cryobiology, cryomicroscopy, and low-temperature spectroscopy of water and dilute aqueous solutions to avoid the formation of crystalline ice.

  10. Thermal shock resistance behavior of a functionally graded ceramic: Effects of finite cooling rate

    Directory of Open Access Journals (Sweden)

    Zhihe Jin

    2014-01-01

    Full Text Available This work presents a semi-analytical model to explore the effects of cooling rate on the thermal shock resistance behavior of a functionally graded ceramic (FGC plate with a periodic array of edge cracks. The FGC is assumed to be a thermally heterogeneous material with constant elastic modulus and Poisson's ratio. The cooling rate applied at the FGC surface is modeled using a linear ramp function. An integral equation method and a closed form asymptotic temperature solution are employed to compute the thermal stress intensity factor (TSIF. The thermal shock residual strength and critical thermal shock of the FGC plate are obtained using the SIF criterion. Thermal shock simulations for an Al2O3/Si3N4 FGC indicate that a finite cooling rate leads to a significantly higher critical thermal shock than that under the sudden cooling condition. The residual strength, however, is relatively insensitive to the cooling rate.

  11. Research on rapid-cooling press hardening process and its effect for formability of ultra high strength steel

    Science.gov (United States)

    Ying, L.; Hu, P.; Zhao, X.; Shi, D. Y.; Dai, M. H.; Yu, H. Y.; Chang, Y.

    2013-05-01

    In this study, a new rapid-cooling process in press hardening based on theoretical analysis, experimental test and optimal formability simulation were investigated for improving formability and obdurability of 22MnB5 boron steel. A series of non-isothermal flow behaviors in different plastic strain rates from 0.001s-1 to 0.1s-1 was investigated by thermal-mechanical uniaxial tensile tests. Furthermore, martensite transformation measurement was also involved in the temperature range from 600° to 800°. According to an interrelated Norton-Hoff constitutive model was developed to describe the complicated thermal-mechanical-phase transformation couple model, a typical deep drawing box used to simulate formability so as to compare with actual press hardening experiments used by the self-developed multi-field coupled static-explicit FE software KMAS and dynamic-explicit commercial software LS-DYNA respectively. The results showed the rapid-cooling process indicate the validity and efficiency of meeting the forming performance characteristics and the optimal process which temperature range from 650°C˜700°C can contribute to improve formability of press hardening manufacture.

  12. Crystallization history of lunar picritic basalt sample 12002 - Phase-equilibria and cooling-rate studies

    Science.gov (United States)

    Walker, D.; Kirkpatrick, R. J.; Longhi, J.; Hays, J. F.

    1976-01-01

    Experimental crystallization of a lunar picrite composition (sample 12002) at controlled linear cooling rates produces systematic changes in the temperature at which crystalline phases appear, in the texture, and in crystal morphology as a function of cooling rate. Phases crystallize in the order olivine, chromium spinel, pyroxene, plagioclase, and ilmenite during equilibrium crystallization, but ilmenite and plagioclase reverse their order of appearance and silica crystallizes in the groundmass during controlled cooling experiments. The partition of iron and magnesium between olivine and liquid is independent of cooling rate, temperature, and pressure. Comparison of the olivine nucleation densities in the lunar sample and in the experiments indicates that the sample began cooling at about 1 deg C/hr. Pyroxene size, chemistry, and growth instability spacings, as well as groundmass coarseness, all suggest that the cooling rate subsequently decreased by as much as a factor of 10 or more. The porphyritic texture of this sample, then, is produced at a decreasing, rather than a discontinuously increasing, cooling rate.

  13. Effects of solidification cooling rate on the corrosion resistance of Mg–Zn–Ca alloy

    Directory of Open Access Journals (Sweden)

    Debao Liu

    2014-10-01

    Full Text Available This study was carried out to investigate the effect of solidification cooling rate on the corrosion resistance of an Mg–Zn–Ca alloy developed for biomedical applications. A wedge shaped copper mould was used to obtain different solidification cooling rates. Electrochemical and immersion tests were employed to measure the corrosion resistance of Mg–Zn–Ca alloy. It was found that increasing cooling rate resulted in a significant improvement in the corrosion resistance of the Mg–Zn–Ca alloy. The findings were explained in terms of solidification behaviour in association with the change in solubility of the alloying elements, microstructural homogeneity and refinement and chemical homogeneity as well as the increased cooling rates.

  14. Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectoid Steel Under Cyclic Heat Treatment

    Science.gov (United States)

    Maji, Soma; Subhani, Amir Raza; Show, Bijay Kumar; Maity, Joydeep

    2017-07-01

    A systematic study has been carried out to ascertain the effect of cooling rate on structure and mechanical properties of eutectoid steel subjected to a novel incomplete austenitization-based cyclic heat treatment process up to 4 cycles. Each cycle consists of a short-duration holding (6 min) at 775 °C (above A1) followed by cooling at different rates (furnace cooling, forced air cooling and ice-brine quenching). Microstructure and properties are found to be strongly dependent on cooling rate. In pearlitic transformation regime, lamellar disintegration completes in 61 h and 48 min for cyclic furnace cooling. This leads to a spheroidized structure possessing a lower hardness and strength than that obtained in as-received annealed condition. On contrary, lamellar disintegration does not occur for cyclic forced air cooling with high air flow rate (78 m3 h-1). Rather, a novel microstructure consisting of submicroscopic cementite particles in a `interweaved pearlite' matrix is developed after 4 cycles. This provides an enhancement in hardness (395 HV), yield strength (473 MPa) and UTS (830 MPa) along with retention of a reasonable ductility (%Elongation = 19) as compared to as-received annealed condition (hardness = 222 HV, YS = 358 MPa, UTS = 740 MPa, %Elongation = 21).

  15. Effect of cooling rate on the microstructure and hardness of austenitic stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, A. [ISEC - IPC, Quinta da Nora, Coimbra (Portugal); Loureiro, A. [DEM - FCTUC, Polo II, Coimbra (Portugal)

    2004-07-01

    The aim of this work is to study the effect of the cooling rate on the microstructure and hardness of the melted material of welds in steels AISI 304 and AISI 316L. The increase of weld heat input, consequently the decrease in the cooling rate, produces only a smooth increase of the ferrite content and a small decrease of hardness in the melted material of autogeneous TIG welds. (orig.)

  16. Effect of Cooling Rate on the Dendrite Coherency Point During Solidification of Al2024 Alloy

    Science.gov (United States)

    Ghoncheh, M. H.; Shabestari, S. G.

    2015-03-01

    Most research related to dendrite coherency point (DCP) has been done on cast aluminum alloys and at a low cooling rate condition. In this research, the DCP of a wrought aluminum alloy is calculated in the range of high cooling rates used in the direct-chill casting process. The two-thermocouple thermal analysis technique was used to determine the DCP of Al2024 alloy. The aim of this work is to investigate the effect of different cooling rates on the dendrite coherency characteristics of Al2024. The cooling rates used in the present study range from 0.4 to 17.5 °C s-1. Also, the effect of 1.2 wt pct Al-5Ti-1B grain refiner on the DCP was studied. To calculate the solid fraction at dendrite coherency, solid fraction versus time is plotted based on Newtonian technique. The results show that by increasing the cooling rate, both time and temperature of dendrite coherency are decreased. Also, by adding the Al-5Ti-1B master alloy, dendrite coherency temperature is reduced and dendrite impingement is postponed. To reduce casting defects occurring during equiaxed solidification, e.g., macrosegregation, porosities, and hot tearing, these two operations which lead to postpone the transition from mass to inter-dendritic feeding, or dendrite coherency, can be useful. By increasing the cooling rate, solid fraction at dendrite coherency increases initially and then decreases at higher cooling rates. Presence of grain refiner leads to increasing of solid fraction at DCP. Thus, by delaying the dendrite coherency and increasing the solid fraction at DCP, semi-solid forming can be performed on parts with higher solid fraction and less shrinkage. Microstructural evaluation was carried out to present the correlation between the cooling rate and solid fraction in 2024 aluminum alloy.

  17. Influence of cooling rate on microstructure of Ti-Nb alloy for orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Afonso, C.R.M. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, CEP 13083-970, Campinas-SP (Brazil); Aleixo, G.T. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, CEP 13083-970, Campinas-SP (Brazil); Ramirez, A.J. [LME - Electron Microscopy Lab, LNLS - Brazilian Laboratory of Synchrotron Light, CP 6192, CEP 13084-971, Campinas-SP (Brazil); Caram, R. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, CEP 13083-970, Campinas-SP (Brazil)]. E-mail: rcaram@fem.unicamp.br

    2007-05-16

    Beta titanium alloys form one of the most versatile group of materials with respect to processing, microstructure and mechanical properties, mainly in applications as biomaterials. Development of new Ti-based alloys for implant application involves more biocompatible metallic alloying elements, such as Nb, Ta, Zr and Mo. Heat treatment of Ti alloys plays an important role in determining microstructure. The aim of this work is the analysis of microstructure and phases formed during water quenching of {beta} Ti-20Nb alloy through different cooling rates. Ti-20Nb alloy was swaged at 780-860 deg. C and then machined as a cylinder. Cylindrical sample was treated within the {beta} field and then water quenched from the bottom imposing different cooling rates through the sample. Samples from different regions (cooling rates) were characterized by using X-ray diffractometry (XRD), scanning (SEM) and transmission electron microscopy (TEM), and Vickers microhardness. XRD results showed the increase of {beta}/{alpha} phases peak intensity ratio increase with decreasing of cooling rate. As the distance from the bottom (water source) of Ti-20Nb sample decreases, the imposed cooling rate increases, the volume of {alpha} martensite acicular phase increases and the size decreases with diminishing of {alpha} phase quantity. The lowest elastic modulus E = 74 GPa was found for water quenched sample under a cooling rate of 160 K/s.

  18. Numerical Modelling of Micro-Stresses in Carbonised Austenitic Cast Steel under Rapid Cooling Conditions

    Directory of Open Access Journals (Sweden)

    Tuleja J.

    2017-06-01

    Full Text Available The paper presents a method of the numerical modelling of micro-stresses in carbonised austenitic cast steel being developed during rapid cooling due to differences in the values of thermal expansion coefficients for this material phases – carbides and austenitic matrix. Micro-stresses are indicated as the main cause of crack initiation in the tooling elements of carburising furnaces being mainly made of austenitic cast steel. A calculation model of carbonised and thermally fatigued austenitic cast steel was developed based on the microstructure images obtained using light microscopy techniques and the phase composition evaluated with the X-ray diffraction method. The values of the stress tensor components and the reduced stress in the complex models of test material structure were determined numerically by the finite element method. The effort analysis was performed and the areas where development of cracks is to be expected were identified, which was experimentally confirmed.

  19. Precipitation of metallic chromium during rapid cooling of Cr2O3 slags

    Directory of Open Access Journals (Sweden)

    J. Burja

    2017-01-01

    Full Text Available The slag systems of CaO-SiO2- Cr2O3 and Al2O3-CaO-MgO-SiO2- Cr2O3 were analyzed. These slag systems occur in the production of stainless steel and are important from the process metallurgy point of view. Synthetic slag samples with different chromium oxide content were prepared and melted. The melted slag samples where then rapidly cooled on large steel plates, so that the high temperature microstructure was preserved. The samples were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The precipitation of different chromium oxide phases was studied, but most importantly the precipitation of metallic chromium was observed. These findings help us interpret industrial slag samples.

  20. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques. The crystallization, magnetic, mechanical and corrosion behaviour were studied for the prepared materials as a function of quenching rate from liquid to the solid state. Higher quench rates produced a more amorphous ...

  1. The Effect of Cooling Rate on the Microstructure of High Pressure Die Casting Alloys

    Science.gov (United States)

    McAdams, Ian R.

    The current research project explored the effect that heat extraction has on the micro-constituents of the A380 and Silafont 36 high pressure die casting (HPDC) alloys. Phase evolution and distribution, SDAS measurements, and the alpha and beta iron-bearing phases were all examined as a function of heat extraction. Literature was found to be limited on the quantification of the micro-constituents of these two alloys as a function of cooling rate. Different cooling rate apparatuses were used to manipulate the alloys via heat extraction. Magma simulations of the mold were run and Pandat thermodynamic calculations determined the solidus and liquidus of the alloys based on composition. Statistical testing was done on the SDAS measurements. The A380 alpha and beta phase were measured along with the SDAS to create quantitative correlation. Beginning with the A380 microstructure, the FCC-Al, beta/alpha phase, and the Al-Cu phases appeared in the slow and fast cooled sample confirmed by visual and EDS analysis. Cooling rate has the ability to refine microstructure and distribute phases more effectively at higher heat extraction rates but heat extraction rates cannot eliminate the type of phases formed and their specific morphology within the A380 alloy seen at lower cooling rates. The reason is due to the similar phases in fast and slow cooled samples. Higher heat extraction rates can however form unpredicted phase with chemical compositions not usually seen. The reason is due to unique phases with Cu/Zn/Mg found in the A380. The beta phase composition contains Al-Si-Fe and the alpha phase composition contained Al-Si-Fe-Mn. Manganese was also seen to substitute for the Fe to create the Mn-alpha phase with the A380 alloy. The Al-Cu phase appears to have used the iron-bearing phases as nucleation spot thus confirming its phase order to be after that of the FCC, Al-Si eutectic, and iron bearing phases. All confirmed by EDS and visual analysis. The Al-FCC, Alpha-Mn, Al

  2. Spatial variations in cooling rate in the mantle section of the Samail ophiolite in Oman: Implications for formation of lithosphere at mid-ocean ridges

    Science.gov (United States)

    Dygert, Nick; Kelemen, Peter B.; Liang, Yan

    2017-05-01

    To understand how the mantle cools beneath mid-ocean ridge spreading centers, we applied a REE-in-two-pyroxene thermometer and major element thermometers to peridotites from the Wadi Tayin massif in the southern part of the Samail ophiolite in the Sultanate of Oman, which represent more than 10 km of structural depth beneath the paleo-Moho. Closure temperatures for REEs in pyroxenes deduced from the REE-in-two-pyroxene thermometer (TREE) decrease smoothly and systematically with depth in the section, from >1300 °C near the crust to <1100 °C near the metamorphic sole, consistent with previously observed, similar variations in mineral thermometers with lower cooling temperatures. Estimated cooling rates decrease from ∼0.3 °C/y just below the crust-mantle transition zone (MTZ) to ∼10-3 °C/y at a depth of six km below the MTZ. Cooling rates derived from Ca-in-olivine thermometry also decrease moving deeper into the section. These variations in cooling rate are most consistent with conductive cooling of the mantle beneath a cold overlying crust. In turn, this suggests that hydrothermal circulation extended to the MTZ near the axis of the fast-spreading ridge where the igneous crust of the Samail ophiolite formed. These observations are consistent with the Sheeted Sills model for accretion of lower oceanic crust, and with previous work demonstrating very rapid cooling rates in the crust of the Wadi Tayin massif. Our observations, combined with previous results, suggest that efficient hydrothermal circulation beneath fast spreading centers cools the uppermost mantle from magmatic temperatures to <1000 °C as quickly as tectonic exhumation at amagmatic spreading centers. In contrast, thermometers sensitive to cooling over lower temperature intervals indicate that the Wadi Tayin peridotites cooled more slowly than tectonically exhumed peridotites sampled near the seafloor along mid-ocean ridges. Hydrothermal cooling of the crust may have waned, so that the crust

  3. Effect of particulate thermophoresis in reducing the fouling rate advantages of effusion-cooling

    Science.gov (United States)

    Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    To predict small-particle diffusional mass transfer (deposition), including particle thermophoresis, transpiration cooling, and variable properties, the coupled ordinary differential equations governing self-similar laminar boundary layers are solved numerically. Under typical combustion turbine conditions, although diffusional deposition rates can be dramatically reduced by transpiration cooling (e.g., by some 5-decades for mainstream submicron particles corresponding to a Schmidt number of about 100 and a wall transpiration-cooled to Tw/Te = 0.8), actual deposition rate reductions will be smaller than previously expected (by about 1 decade for particles with Sc of about 100), owing to thermophoretic particle drift caused by the colder wall. Such microdroplets, small enough to behave like heavy molecules in combustion systems, are often important because they can cause adherence of the much larger ash particles which inertially impact on the same surface.

  4. Effect of Cooling Rates on Shape and Crystal Size Distributions of Mefenamic Acid Polymorph in Ethyl Acetate

    Science.gov (United States)

    Mudalip, S. K. Abdul; Adam, F.; Parveen, J.; Abu Bakar, M. R.; Amran, N.; Sulaiman, S. Z.; Che Man, R.; Arshad, Z. I. Mohd; Shaarani, S. Md.

    2017-06-01

    This study investigate the effect of cooling rates on mefenamic acid crystallisation in ethyl acetate. The cooling rate was varied from 0.2 to 5 °C/min. The in-line conductivity system and turbidity system were employed to detect the onset of the crystallization process. The crystals produced were analysed using optical microscopy and Fourier transform infrared spectroscopy (FTIR). It was found that the crystals produced at different cooling rates were needle-like and exhibit polymorphic form type I. However, the aspect ratio and crystal size distributions were varied with the increased of cooling rate. A high crystals aspect ratio and narrower CSD (100-900 μm) was obtained at cooling rate of 0.5 °C/min. Thus, can be suggested as the most suitable cooling rate for crystallization of mefenamic acid in ethyl acetate.

  5. Investigation on the Effect of Cooling Rate on Hot Tearing Susceptibility of Al2024 Alloy Using Thermal Analysis

    Science.gov (United States)

    Shabestari, S. G.; Ghoncheh, M. H.

    2015-12-01

    Effect of different cooling rates and Al-5Ti-1B grain refiner on hot tearing susceptibility of Al2024 alloy were studied using thermal analysis. Influence of cooling rates on microsegregation, and the amount of gas and shrinkage porosities was investigated. The cooling rates used in the present study range from 0.4 to 17.5 K s-1. To evaluate the hot tearing susceptibility, Clyne and Davies' criterion is used. To calculate solid fraction during solidification, solid fraction vs time is plotted based on Newtonian technique via thermal analysis. The results show that the hot tearing susceptibility reduces initially by increasing the cooling rate and then increases at higher cooling rates. Hot tearing susceptibility is decreased by grain refinement. Solidification characteristics of Al2024 e.g., microsegregation, gas, and shrinkage porosities are decreased by increasing cooling rate.

  6. Rapid on-site monitoring of Legionella pneumophila in cooling tower water using a portable microfluidic system.

    Science.gov (United States)

    Yamaguchi, Nobuyasu; Tokunaga, Yusuke; Goto, Satoko; Fujii, Yudai; Banno, Fumiya; Edagawa, Akiko

    2017-06-08

    Legionnaires' disease, predominantly caused by the bacterium Legionella pneumophila, has increased in prevalence worldwide. The most common mode of transmission of Legionella is inhalation of contaminated aerosols, such as those generated by cooling towers. Simple, rapid and accurate methods to enumerate L. pneumophila are required to prevent the spread of this organism. Here, we applied a microfluidic device for on-chip fluorescent staining and semi-automated counting of L. pneumophila in cooling tower water. We also constructed a portable system for rapid on-site monitoring and used it to enumerate target bacterial cells rapidly flowing in the microchannel. A fluorescently-labelled polyclonal antibody was used for the selective detection of L. pneumophila serogroup 1 in the samples. The counts of L. pneumophila in cooling tower water obtained using the system and fluorescence microscopy were similar. The detection limit of the system was 10 4  cells/ml, but lower numbers of L. pneumophila cells (10 1 to 10 3  cells/ml) could be detected following concentration of 0.5-3 L of the water sample by filtration. Our technique is rapid to perform (1.5 h), semi-automated (on-chip staining and counting), and portable for on-site measurement, and it may therefore be effective in the initial screening of Legionella contamination in freshwater.

  7. Magnetocaloric and Hopkinson effects in slowly and rapidly cooled Gd{sub 7}Pd{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Talik, Ewa; Guzik, Adam; Oboz, Monika; Zajdel, Pawel; Ziolkowski, Grzegorz [Silesia Univ., Katowice (Poland). Inst. of Physics

    2016-01-15

    Gd{sub 7}Pd{sub 3} intermetallic compound was prepared as slowly cooled polycrystal and rapidly cooled (rc) casts. The slowly cooled polycrystalline samples were obtained by melting in an induction coil. The rc-cast Gd{sub 7}Pd{sub 3} sample was obtained by means of a mould casting technique. The samples were characterized by means of X-ray diffraction, SQUID magnetometry and scanning electron microscopy in order to elucidate the Hopkinson effect and magnetocaloric properties in relation to the technological aspects. The investigated ferromagnetic system is sensitive to grain size. The magnetocaloric and Hopkinson effect decreases with the decrease of the grain size. The results were compared to the data of single crystal obtained by the Czochralski method from a levitating melt.

  8. Numerical model of crustal accretion and cooling rates of fast-spreading mid-ocean ridges

    Directory of Open Access Journals (Sweden)

    P. Machetel

    2013-10-01

    Full Text Available We designed a thermo-mechanical numerical model for fast-spreading mid-ocean ridge with variable viscosity, hydrothermal cooling, latent heat release, sheeted dyke layer, and variable melt intrusion possibilities. The model allows for modulating several accretion possibilities such as the "gabbro glacier" (G, the "sheeted sills" (S or the "mixed shallow and MTZ lenses" (M. These three crustal accretion modes have been explored assuming viscosity contrasts of 2 to 3 orders of magnitude between strong and weak phases and various hydrothermal cooling conditions depending on the cracking temperatures value. Mass conservation (stream-function, momentum (vorticity and temperature equations are solved in 2-D cartesian geometry using 2-D, alternate direction, implicit and semi-implicit finite-difference scheme. In a first step, an Eulerian approach is used solving iteratively the motion and temperature equations until reaching steady states. With this procedure, the temperature patterns and motions that are obtained for the various crustal intrusion modes and hydrothermal cooling hypotheses display significant differences near the mid-ocean ridge axis. In a second step, a Lagrangian approach is used, recording the thermal histories and cooling rates of tracers travelling from the ridge axis to their final emplacements in the crust far from the mid-ocean ridge axis. The results show that the tracer's thermal histories are depending on the temperature patterns and the crustal accretion modes near the mid-ocean ridge axis. The instantaneous cooling rates obtained from these thermal histories betray these discrepancies and might therefore be used to characterize the crustal accretion mode at the ridge axis. These deciphering effects are even more pronounced if we consider the average cooling rates occurring over a prescribed temperature range. Two situations were tested at 1275–1125 °C and 1050–850 °C. The first temperature range covers mainly the

  9. Influence of cooling rate and tempering on precipitation and hardness of vanadium microalloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Guenduez, S. [Karabuek Technical Education Faculty, Zonguldak Karaelmas University, 78200 Karabuek (Turkey)]. E-mail: sgunduz@hotmail.com; Cochrane, R.C. [Department of Materials, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)]. E-mail: mtlrcc@ecu-01.novell.leeds.ac.uk

    2005-07-01

    In the present work precipitate distributions in a C-Mn-Al-V-N microalloyed steel and hardness were examined for as-received, heat-treated and heat-treated and tempered samples. Examination of as-received and heat-treated samples from the vanadium microalloyed steels using transmission electron microscopy revealed quite different precipitate distributions. The type and sizes of the precipitate particles and also hardness of the steel samples were markedly affected as the austenitisation time and cooling rates were changed. Tempering steel samples after air cooling produced fine matrix precipitates which are closely spaced, obstruct moving dislocations and hence make the steel harder.

  10. Are Melt Migration Rates Through the Mantle Universally Rapid?

    Science.gov (United States)

    Reagan, M. K.; Sims, K. W.

    2001-12-01

    Significant enrichments in 226Ra over 230Th have been observed in basalts erupted in nearly all tectonic settings. These enrichments generally are greatest in lavas with low concentrations of U, Th and other incompatible elements, including those from mid-ocean ridges and "depleted" volcanic arcs. Excesses of 226Ra over 230Th in mid-ocean ridge settings are commonly attributed to smaller bulk partition coefficients for Ra with respect to Th during mantle melting, and extraction of ingrown Ra into melts slowly migrating through interconnected pore space. In contrast, 226Ra excesses in basalts from volcanic arcs have been attributed to fluid additions from subducting slabs to the sources of the basalt and rapid (102 - 103y) melt migration to the surface (e.g. Turner et al., 2001). Such rapid melt velocities imply channeled flow rather than diffuse porous flow, and suggest that basalts from other tectonic settings migrate similarly rapidly. Here, we show that the compositions of basalts from both arc and mid-ocean ridge settings indeed can be explained by melting models involving rapid transit times to the surface. Simple fluxed melting models and rapid transfer of melt to the surface explain the U-Th-Ra systematics and incompatible trace element compositions of arc basalts. The U-Th-Ra and trace element data for young MORB from the East Pacific Rise (Sims et al. 2001) and the Siqueiros transform (Lundstrom et al. 1999) are modeled using simple 2-d polybaric melting based on Braun et al. (2000) and rapid melt migration rates. Successful models mix small-degree fractional melts derived from a broad cross-sectional area of mantle at depth with high-degree melts derived from a small cross-sectional area of shallow mantle that is the aged residue of the small degree melt.

  11. Effect of cooling rate on structural and electromagnetic properties of high-carbon ferrochrome powders

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian-ping [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Chen, Jin, E-mail: chenjin_ty@126.com [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Hao, Jiu-jiu; Guo, Li-na [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Liu, Jin-ying [The 12th Institute of China Electronics Technology Group Corporation, Beijing 100016 (China)

    2016-03-01

    The structural and electromagnetic properties of high-carbon ferrochrome powders (HCFCP) obtained at different cooling rates were respectively investigated by means of optical microscope, X-ray diffractometer, electron probe as well as the vector network analyzer in the frequency range of 1–18 GHz. The results show that the cell structure of main phase, (Cr,Fe){sub 7}C{sub 3}, transforms from hexagonal to orthogonal with the improvement of cooling rate. Meanwhile the mass ratio of Cr to Fe in (Cr,Fe){sub 7}C{sub 3} gradually declines, while that for CrFe goes up. Both the real part and the imaginary part of relative complex permittivity of HCFCP are in an increasing order with cooling rate rising in most frequencies. For comparison, the relative complex permeability presents an opposite changing tendency. The peaks of the imaginary part of relative complex permeability appearing in low and high frequencies are attributed to nature resonance. The reflection loss of HCFCP gradually decreases as cooling rate reduces and frequency enhances. At 2.45 GHz, the algebraic sum of dielectric loss factor and magnetic loss factor increases first and then decreases in the temperature extent from 298 K to 1273 K. - Highlights: • The changes of phases in structure and composition are found as cooling rate rises. • The relation between dielectric property and covalent bond is preliminarily studied. • The forming factor of peaks in the imaginary part of permeability is determined. • The reflection loss is analyzed basing on morphology features of particle. • The effect of temperature on loss factor is discussed from 298 K to 1273 K.

  12. Core temperature cooling in healthy volunteers after rapid intravenous infusion of cold and room temperature saline solution.

    Science.gov (United States)

    Moore, Tracy M; Callaway, Clifton W; Hostler, David

    2008-02-01

    Studies have suggested that inducing mild hypothermia improves neurologic outcomes after traumatic brain injury, major stroke, traumatic hemorrhage, and cardiac arrest. Although infusion of cold normal saline solution is a simple and inexpensive method for initiating hypothermia, human cold-defense mechanisms potentially make this route stressful or ineffective. We hypothesize that rapid infusion of 30 mL/kg of cold (4 degrees C, 39.2 degrees F) 0.9% saline solution during 30 minutes to healthy subjects (aged 27 [standard deviation (SD) 4] years) will reduce core body temperature to the therapeutic range of 33 degrees C to 35 degrees C (91.4 degrees F to 95 degrees F). Sixteen subjects were randomly assigned to receive either cold (4 degrees C, 39.2 degrees F) or room temperature (23 degrees C, 73.4 degrees F) normal saline solution. Subjects were not informed of their assignment, but blinding was not possible after initiation of the infusion. Core temperature, skin temperature, and vital signs were recorded every 2 minutes. Subjects indicated global discomfort during the infusion on a 100-mm visual analog scale at 5-minute intervals. Core temperature decreased in both the cold saline solution (1.0 degrees C [SD 0.4 degrees C]/1.8 degrees F [0.7 degrees F]) and room temperature saline solution (0.5 degrees C [SD 0.1 degrees C]/0.9 degrees F [0.2 degrees F]) groups, whereas skin temperature was unchanged. Slopes calculated from the core temperature cooling curves indicate that the majority of cooling occurred during the first half of the infusion. Examination of the core temperature cooling curves revealed a 2-phase temporal pattern in 30-minute cooling curves. The early phase, spanning 0 to 14 minutes, demonstrated rapid cooling in both groups, with a larger effect observed in subjects receiving cold saline solution. In this pilot study of healthy volunteers, rapid administration of cold saline solution to awake normothermic volunteers resulted in 1 degrees C (1

  13. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al-5Mg-Mn Alloys Solidified Under Near-Rapid Cooling.

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-29

    Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (alloy with low Fe content (alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.

  14. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Science.gov (United States)

    Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong

    2016-01-01

    Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (alloy with low Fe content (alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888

  15. Effect of cooling rate on shear bond strength of veneering porcelain to a zirconia ceramic material.

    Science.gov (United States)

    Komine, Futoshi; Saito, Ayako; Kobayashi, Kazuhisa; Koizuka, Mai; Koizumi, Hiroyasu; Matsumura, Hideo

    2010-12-01

    The purpose of the present study was to evaluate the effect of cooling rates after firing procedures of veneering porcelain on shear bond strength between veneering porcelain and a zirconium dioxide (zirconia; ZrO₂) ceramic material. A total of 48 ZrO₂ disks were divided equally into three groups. Two veneering porcelains that are recommended for ZrO₂ material - Cerabien ZR (CZR), IPS e.max Ceram (EMX) - and one that is recommended for metal ceramics - Super Porcelain AAA (AAA) were assessed. Each group was then further divided into two subgroups (n = 8) according to cooling time (0 or 4 min) after porcelain firing. Specimens were fabricated by veneering the porcelain on the ZrO₂ disks, after which shear bond testing was conducted. Bond strength differed significantly by cooling time in ZrO₂-AAA (P veneering porcelain to a zirconia material depending on porcelain material used.

  16. Evaluation of Cooling Rate Effects on the Mechanical Properties of Die Cast Magnesium Alloy AM60

    Science.gov (United States)

    Sharifi, P.; Fan, Y.; Anaraki, H. B.; Banerjee, A.; Sadayappan, K.; Wood, J. T.

    2016-10-01

    With the increased application of magnesium high-pressure die castings (HPDC), it is necessary to better understand process-structure-mechanical properties. In the case of HPDC, ductility and yield strength strongly depend on porosity, grain size, and the skin thickness. In this contribution, a new method is developed which employs knowledge of local cooling rates to predict the grain size and the skin thickness of HPDC magnesium components. The centreline cooling curve, together with the die temperature, and the thermodynamic properties of the alloy are then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting. The local cooling rate is used to calculate the resulting grain size and skin thickness via established relationships. The prediction of skin thickness and average grain size of skin region determined from this method compares quite well with the experimental results. Due to the presence of externally solidified grains, this method underestimates the grain size value in the core region, as compared to the experiment. Finally, we predict the locally varying yield strength using a modified Hall-Petch equation.

  17. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-09-01

    The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.

    Science.gov (United States)

    Willenbring, Jane K; von Blanckenburg, Friedhelm

    2010-05-13

    Over geologic timescales, CO(2) is emitted from the Earth's interior and is removed from the atmosphere by silicate rock weathering and organic carbon burial. This balance is thought to have stabilized greenhouse conditions within a range that ensured habitable conditions. Changes in this balance have been attributed to changes in topographic relief, where varying rates of continental rock weathering and erosion are superimposed on fluctuations in organic carbon burial. Geological strata provide an indirect yet imperfectly preserved record of this change through changing rates of sedimentation. Widespread observations of a recent (0-5-Myr) fourfold increase in global sedimentation rates require a global mechanism to explain them. Accelerated uplift and global cooling have been given as possible causes, but because of the links between rates of erosion and the correlated rate of weathering, an increase in the drawdown of CO(2) that is predicted to follow may be the cause of global climate change instead. However, globally, rates of uplift cannot increase everywhere in the way that apparent sedimentation rates do. Moreover, proxy records of past atmospheric CO(2) provide no evidence for this large reduction in recent CO(2) concentrations. Here we question whether this increase in global weathering and erosion actually occurred and whether the apparent increase in the sedimentation rate is due to observational biases in the sedimentary record. As evidence, we recast the ocean dissolved (10)Be/(9)Be isotope system as a weathering proxy spanning the past approximately 12 Myr (ref. 14). This proxy indicates stable weathering fluxes during the late-Cenozoic era. The sum of these observations shows neither clear evidence for increased erosion nor clear evidence for a pulse in weathered material to the ocean. We conclude that processes different from an increase in denudation caused Cenozoic global cooling, and that global cooling had no profound effect on spatially and

  19. A rapid method to estimate Westergren sedimentation rates

    Science.gov (United States)

    Alexy, Tamas; Pais, Eszter; Meiselman, Herbert J.

    2009-01-01

    The erythrocyte sedimentation rate (ESR) is a nonspecific but simple and inexpensive test that was introduced into medical practice in 1897. Although it is commonly utilized in the diagnosis and follow-up of various clinical conditions, ESR has several limitations including the required 60 min settling time for the test. Herein we introduce a novel use for a commercially available computerized tube viscometer that allows the accurate prediction of human Westergren ESR rates in as little as 4 min. Owing to an initial pressure gradient, blood moves between two vertical tubes through a horizontal small-bore tube and the top of the red blood cell (RBC) column in each vertical tube is monitored continuously with an accuracy of 0.083 mm. Using data from the final minute of a blood viscosity measurement, a sedimentation index (SI) was calculated and correlated with results from the conventional Westergren ESR test. To date, samples from 119 human subjects have been studied and our results indicate a strong correlation between SI and ESR values (R2=0.92). In addition, we found a close association between SI and RBC aggregation indices as determined by an automated RBC aggregometer (R2=0.71). Determining SI on human blood is rapid, requires no special training and has minimal biohazard risk, thus allowing physicians to rapidly screen for individuals with elevated ESR and to monitor therapeutic responses. PMID:19791973

  20. Influence of cooling rates and addition of Equex pasta on cooled and frozen-thawed semen of generic gray (Canis lupus) and Mexican gray wolves (C. l. baileyi).

    Science.gov (United States)

    Zindl, C; Asa, C S; Günzel-Apel, A-R

    2006-10-01

    A current priority for the preservation of the endangered Mexican gray wolf (Canis lupus baileyi) is the development of a sperm-based genome resource bank for subsequent use in artificial insemination. To optimize the quality of cryopreserved sperm, the procedures involved in processing semen before and during freezing need to be improved. The aim of this study were to examine the effects of: (i) different cooling periods before freezing and (ii) addition of Equex pasta (Minitüb, Tübingen, Germany) on the characteristics of sperm from the generic gray wolf and the Mexican gray wolf after cooling and cryopreservation. For Mexican wolf sperm, cooling for 0.5 and 1.0 h had a less detrimental effect on cell morphology than cooling for 2.5 h, whereas the slower cooling rate (2.5 h) had a less detrimental effect on functional parameters and seemed to cause less damage to plasma membrane and acrosome integrity than 0.5 and 1.0 h. For the generic gray wolf, cooling semen for 2.5 h had less detrimental effect on plasma membrane integrity and viability; together with the 0.5 h cooling time, it yielded the highest percentages of intact acrosomes. As previously shown in the domestic dog, Equex pasta had no beneficial effect on sperm characteristics in either wolf species.

  1. Improving Cooling Rate During Solidification by Eliminating the Metal-Mold Interfacial Gap

    Science.gov (United States)

    Zeng, Long; Zhang, Wei; Ji, Yanliang; Huang, Yujin; Li, Jianguo

    2015-07-01

    A new solidification process called non-interfacial-gap permanent-mold casting (NIGPMC) is proposed to improve the cooling rate by eliminating the metal-mold interfacial gap. High-Cr steel ingots were prepared by this process and conventional permanent-mold casing (CPMC) separately. Comparing with CPMC, the primary dendrite arm spacing obtained by NIGPMC is greatly refined. It is demonstrated that the NIGPMC is a promising pathway to refine the microstructure of the large ingot.

  2. Influence of several methodological factors on the growth of Clostridium perfringens in cooling rate challenge studies.

    Science.gov (United States)

    Smith, Sarah; Juneja, Vijay; Schaffner, Donald W

    2004-06-01

    Proper temperature control is essential in preventing Clostridium perfringens food poisoning. The U.S. Department of Agriculture Food Safety and Inspection Service cooling guidelines offer two options for the cooling of meat products: follow a standard time-temperature schedule or validate that alternative cooling regimens result in no more than a 1-log CFU/g increase of C. perfringens and no growth of Clostridium botulinum. The latter option requires laboratory challenge studies to validate the efficacy of a given cooling process. Accordingly, the objective of this study was to investigate the role of several methodological variables that might be encountered during typical C. perfringens challenge studies. Variables studied included plastic bag type (Whirlpak or Spiral Biotech), sealing method (Multivac or FoodSaver), initial spore inoculum size (1 to approximately 3 log CFU/g), and growth environment (ground beef or Trypticase-peptone-glucose-yeast extract [TPGY] broth). The major factors that affected growth were sample bag type and growth environment. Samples incubated in Whirlpak bags showed significantly less growth than those incubated in Spiral Biotech bags, which was likely due to the former bag's greater oxygen permeability. C. perfringens spores showed shorter germination, outgrowth, and lag times and C. perfringens cells showed faster growth rates in ground beef compared with TPGY broth. No significant difference was observed between two different sealing methods. Initial spore inoculum levels in the range studied had no significant effect on final C. perfringens cell concentration.

  3. Study of the Al-Si-X system by different cooling rates and heat treatment

    Directory of Open Access Journals (Sweden)

    Miguel Angel Suarez

    2012-10-01

    Full Text Available The solidification behavior of the Al-12.6% Si (A1, the hypereutectic Al-20%Si (A2 and the Al-20%Si-1.5% Fe-0.5%Mn (A3 (in wt. (% alloys, at different cooling rates is reported and discussed. The cooling rates ranged between 0.93 °C/s and 190 °C/s when cast in sand and copper wedge-shaped molds, respectively. A spheroidization heat treatment was carried out to the alloys in the as-cast condition at 540 °C for 11 hours and quench in water with a subsequent heat treatment at 170 °C for 5 hours with the purpose of improving the mechanical properties. The samples were characterized by optical microscopy, scanning electron microscopy and mechanically by tensile test, in order to evaluate the response of the heat treatment on the different starting microstructures and mechanical properties. It was found that alloys cooled at rates greater than 10.8 °C/s had a smaller particle size and better distribution, also showed a greater response to spheroidization heat treatment of all silicon (Si phases. The spheroidization heat treatment caused an increase in the ultimate tensile stress (UTS and elongation when compared with the alloys in the as-cast condition. The highest UTS value of 174 MPa was obtained for the (A1 alloy.

  4. Effect of cooling rate on mechanical properties of carbon fibre fabric and polypropylene composites

    Science.gov (United States)

    Lee, Joon Seok; Kim, Jong Won

    2017-09-01

    In this study, thermoplastic composites were fabricated using carbon fibre fabric and polypropylene. The effects of the cooling rate, which is a process parameter, on the mechanical properties of the composites were investigated. The degree of crystallinity, tensile properties, flexural properties, drop-weight impact, interlaminar fracture toughness, and fracture surface of the fabricated composites were investigated for composites prepared at cooling rates of 0.6, 1.1, 3.2, and 7.1 °C min-1. The increase in the cooling rate during composite fabrication was found to decrease the stiffness of the composite because the degree of crystallinity of the matrix decreased. In addition, the tensile and flexural properties were somewhat reduced, but the energy absorption and fracture toughness were significantly increased owing to the increased ductility. Therefore, the results of this study can be applied to material-design scenarios in which the tensile and flexural properties are somewhat reduced, but high damage tolerance is required in composite material.

  5. Cooling Rate Study of Nickel-Rich Material During Thermal Treatment and Quench

    Science.gov (United States)

    Thomas, Fransua; Murguia, Silvia Briseno (Editor)

    2016-01-01

    To investigate quench cracking that results from water quenching after heat treatment of binary and Ni-rich material, cooling rates of specimens were measured during quenching and hardness post-thermal treatment. For specific applications binary Ni-Ti is customarily thermally treated and quenched to attain desired mechanical properties and hardness. However, one problem emerging from this method is thermal cracking, either during the heat treatment process or during the specimen's application. This can result in material and equipment failure as well as financial losses. The objective of the study is to investigate the internal cooling rate of 60-NiTi during quenching and determine possible factors causing thermal cracking. Cubic (1 in.3) samples of both material were heat treated in air at 1000 deg C for 2 hrs and quenched in room temperature water using two methods: (1) dropped in the water and (2) agitated in the water. Hardness of the two fore-mentioned methods was measured post heat treatment. Results indicate that the quenching method had an effect on cooling rate during quenching but hardness was observed to be essentially the same through the thickness of the samples.

  6. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary

    NARCIS (Netherlands)

    Vellekoop, Johan; Sluijs, Appy|info:eu-repo/dai/nl/311474748; Smit, Jan; Schouten, Stefan|info:eu-repo/dai/nl/137124929; Weijers, Johan W H|info:eu-repo/dai/nl/310911516; Sinninghe Damsté, Jaap S.|info:eu-repo/dai/nl/07401370X; Brinkhuis, Henk|info:eu-repo/dai/nl/095046097

    2014-01-01

    The mass extinction at the Cretaceous-Paleogene boundary, ~66 Ma, is thought to be caused by the impact of an asteroid at Chic-xulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling,

  7. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary

    NARCIS (Netherlands)

    Vellekoop, J.; Sluijs, A.; Smit, J.; Schouten, S.; Weijers, J.W.H.; Damsté, J.S.S.; Brinkhuis, H.

    2014-01-01

    The mass extinction at the Cretaceous-Paleogene boundary, ~66 Ma, is thought to be caused by the impact of an asteroid at Chic-xulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling,

  8. Tennis in hot and cool conditions decreases the rapid muscle torque production capacity of the knee extensors but not of the plantar flexors.

    Science.gov (United States)

    Girard, Olivier; Racinais, Sébastien; Périard, Julien D

    2014-04-01

    To assess the time course of changes in rapid muscle force/torque production capacity and neuromuscular activity of lower limb muscles in response to prolonged (∼2 h) match-play tennis under heat stress. The rates of torque development (RTD) and electromyographic activity (EMG; ie, root mean square) rise were recorded from 0 to 30, -50, -100 and -200 ms during brief (3-5 s) explosive maximal isometric voluntary contractions (MVC) of the knee extensors (KE) and plantar flexors (PF), along with the peak RTD within the entirety of the torque-time curve. These values were recorded in 12 male tennis players before (prematch) and after (postmatch, 24 and 48 h) match-play in HOT (∼37°C) and COOL (∼22°C) conditions. The postmatch core temperature was greater in the HOT (∼39.4°C) vs COOL (∼38.7°C) condition (ptorque. Furthermore, the rate of KE EMG activity rise remained unchanged. Conversely, the PF contractile RTD and rate of EMG activity rise were unaffected by the exercise or environmental conditions. In the KE, a reduction in maximal torque production capacity following prolonged match-play tennis appears to account for the decrease in the rate of torque development, independent of environmental conditions, while remaining unchanged in the PF.

  9. Tolerance of brown bear spermatozoa to conditions of pre-freezing cooling rate and equilibration time.

    Science.gov (United States)

    López-Urueña, E; Alvarez, M; Gomes-Alves, S; Martínez-Rodríguez, C; Borragan, S; Anel-López, L; de Paz, P; Anel, L

    2014-06-01

    Specific protocols for the cryopreservation of endangered Cantabrian brown bear spermatozoa are critical to create a genetic resource bank. The aim of this study was to assess the effect of cooling rates and equilibration time before freezing on post-thawed brown bear spermatozoa quality. Electroejaculates from 11 mature bears were extended to 100 × 10(6) spermatozoa/mL in a TES-Tris-Fructose-based extender, cryopreserved following performance of the respective cooling/equilibration protocol each sample was assigned to, and stored at -196 °C for further assessment. Before freezing, after thawing, and after 1 hour's incubation post-thawing at 37 °C (thermal stress test), the quality of the samples was assessed for motility by computer-assisted semen analysis, and for viability (SYBR-14/propidium iodide), acrosomal status (peanut agglutinin-fluorescein isothiocyanate /propidium iodide), and sperm chromatin stability (SCSA) by flow cytometry. In experiment 1, three cooling rates (0.25 °C/min, 1 °C/min, and 4 °C/min) to 5 °C were assessed. After thawing, total motility (%TM) was higher and percentage of damaged acrosomes (%dACR) was lower (P bear sperm. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Relationship between cooling rate and microsegregation in bottom-chilled directionally solidified ductile irons

    Directory of Open Access Journals (Sweden)

    Chang W.S.

    2013-01-01

    Full Text Available This study explores the relationship between cooling rate and microsegregation of directionally solidified ductile iron. The unidirectional heat transfer system used in this research is made up of a copper mold kept chilled by circulating water and embedded in the bottom of Furan sand mold. Thermocouples are connected to the computer measuring system to record the cooling curves of the castings at a distance of 0, 30, 60 and 90 mm from the chilled copper mold surface. Alloys including Mn, Cr, Cu, Ni and Ti were added to the specimens. Electron microprobe analysis (EPMA was employed to examine distribution of elements between the dendrite arms and nodular graphite. Results show that unidirectional heat transfer affects directly the solidification mode and microstructure of the casting. The cooling curves reveal that local solidification time increases with increasing distance from the chilled copper mold surface. Different solidification rates with corresponding microstructure and element segregation were observed in the same unidirectionally solidified casting. Local solidification time was closely related to element segregation. The effective segregation coefficient (Keff calculated using the Scheil equation was found to vary, according to the stage of solidification. The actual segregation characteristics of complex alloys generally follow the Scheil equation.

  11. Hardening by cooling rate control and post-firing heat treatment in Pd-Ag-Sn alloy for bonding porcelain.

    Science.gov (United States)

    Yu, Young-Jun; Seol, Hyo-Joung; Cho, Mi-Hyang; Kim, Hyung-Il; Kwon, Yong Hoon

    2016-01-01

    The aim of this study was to determine the hardening effect by controlling the cooling rate during the porcelain firing process and performing an additional post-firing heat treatment in a Pd-Ag-Sn alloy. The most effective cooling rate for alloy hardening was determined by cooling the specimens at various cooling rates after oxidation treatment. A subsequent porcelain firing simulation followed by cooling at the selected cooling rate was performed. A post-firing heat treatment was then done at 600°C in a porcelain furnace. The hardening mechanism was characterized by a hardness test, X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. Alloy softening occurred during the porcelain firing process followed by cooling at a controlled cooling rate. A post-firing heat treatment allowed apparent precipitation hardening. It is advisable to perform a postfiring heat treatment at 600°C in a porcelain furnace by annealing metal substructure after porcelain fusing.

  12. Influence of cooling rate and antimony addition content on graphite morphology and mechanical properties of a ductile iron

    Directory of Open Access Journals (Sweden)

    Liu Zhe

    2012-05-01

    Full Text Available Cooling rate and inoculation practice can greatly affect the graphite morphology of ductile irons. In the present research, the effects of the cooling rate and antimony addition on the graphite morphology and mechanical properties of ductile irons have been studied. Three ductile iron castings were prepared through solidification under cooling conditions S (slow, M (medium and F (fast. The cooling rates around the equilibrium eutectic temperature (1,150 ℃ for these cooling conditions (S, M and F were set at 0.21 ℃·min-1, 0.32 ℃·min-1 and 0.37 ℃·min-1, respectively. In addition, four ductile iron castings were prepared by adding 0.01%, 0.02%, 0.03% and 0.04% (by weight antimony, respectively under the slow cooling condition. The results show that the nodularity index, tensile strength and hardness of the ductile iron castings without antimony addition are all improved with the increase of cooling rate, while the ductile iron casting solidified under the medium cooling rate possesses the largest number of graphite nodules. Furthermore, for the four antimony containing castings, the graphite morphology and tensile strength are also improved by the antimony additions, and the effect of antimony addition is intensified when the addition increases from 0.01% to 0.03%. Moreover, the rare earth elements (REE/antimony ratio of 2 appears to be the most effective for fine nodular graphite formation in ductile iron.

  13. Helium release rates and ODH calculations from RHIC magnet cooling line failure

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, C.J.; Than, Y.; Tuozzolo, J.

    2011-03-28

    A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT{reg_sign} model, which simulated the 4.5K/4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.

  14. Cooling curve analysis in binary Al-Cu alloys: Part II- Effect of Cooling Rate and Grain Refinement on The Thermal and Thermodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    Mehdi Dehnavi

    2015-09-01

    Full Text Available The Al-Cu alloys have been widely used in aerospace, automobile, and airplane applications. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys for grain refinement. The cooling curve analysis (CCA has been used extensively in metal casting industry to predict microstructure constituents, grain refinement and to calculate the latent heat of solidification. The aim of this study is to investigate the effect of cooling rate and grain refinement on the thermal and thermodynamic characteristics of Al-Cu alloys by cooling curve analysis. To do this, Al-Cu alloys containing 3.7, and 4.8 wt.% Cu were melted and solidified with 0.04, 0.19, 0.42, and 1.08 K/s cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. Some samples were Grain refined by Al-5Ti-1B to see the effect of grain refinement on the aforementioned properties. The results show that, in a well refined alloy, nucleation will occur in a shorter time, and a undercooling approximately decreases to zero. The other results show that, with considering the cooling rate being around 0.1 °C/s, the Newtonian method is efficient in calculating the latent heat of solidification.

  15. The Effect of Cooling Rate on Microstructure and Mechanical Properties of Zr-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Weihong Fu

    2013-01-01

    Full Text Available The aim of the present study is to shed some insights on the effect of cooling rate on the microstructure and mechanical properties for glass-forming alloys. A crystalline gradient was observed in the microstructure of 12 mm diameter Zr51Al9.96Ni14.34Cu24.9 (Zr51 alloy sample from the edge to center due to uneven cooling rates. Microhardness results indicate that the lower the cooling rate, the higher the hardness for the studied alloy.

  16. In Situ Synchrotron X-Ray Diffraction and Small Angle X-Ray Scattering Studies on Rapidly Heated and Cooled Ti-Al and Al-Cu-Mg Alloys Using Laser-Based Heating

    Science.gov (United States)

    Kenel, C.; Schloth, P.; Van Petegem, S.; Fife, J. L.; Grolimund, D.; Menzel, A.; Van Swygenhoven, H.; Leinenbach, C.

    2016-03-01

    Beam-based additive manufacturing (AM) typically involves high cooling rates in a range of 103-104 K/s. Therefore, new techniques are required to understand the non-equilibrium evolution of materials at appropriate time scales. Most technical alloys have not been optimized for such rapid solidification, and microstructural, phase, and elemental solubility behavior can be very different. In this work, the combination of complementary in situ synchrotron micro-x-ray diffraction (microXRD) and small angle x-ray scattering (SAXS) studies with laser-based heating and rapid cooling is presented as an approach to study alloy behavior under processing conditions similar to AM techniques. In rapidly solidified Ti-48Al, the full solidification and phase transformation sequences are observed using microXRD with high temporal resolution. The high cooling rates are achieved by fast heat extraction. Further, the temperature- and cooling rate-dependent precipitation of sub-nanometer clusters in an Al-Cu-Mg alloy can be studied by SAXS. The sensitivity of SAXS on the length scales of the newly formed phases allows their size and fraction to be determined. These techniques are unique tools to help provide a deeper understanding of underlying alloy behavior and its influence on resulting microstructures and properties after AM. Their availability to materials scientists is crucial for both in-depth investigations of novel alloys and also future production of high-quality parts using AM.

  17. Impact of irrigation flow rate and intrapericardial fluid on cooled-tip epicardial radiofrequency ablation.

    Science.gov (United States)

    Aryana, Arash; O'Neill, Padraig Gearoid; Pujara, Deep K; Singh, Steve K; Bowers, Mark R; Allen, Shelley L; d'Avila, André

    2016-08-01

    The optimal irrigation flow rate (IFR) during epicardial radiofrequency (RF) ablation has not been established. This study specifically examined the impact of IFR and intrapericardial fluid (IPF) accumulation during epicardial RF ablation. Altogether, 452 ex vivo RF applications (10 g for 60 seconds) delivered to the epicardial surface of bovine myocardium using 3 open-irrigated ablation catheters (ThermoCool SmartTouch, ThermoCool SmartTouch-SF, and FlexAbility) and 50 in vivo RF applications delivered (ThermoCool SmartTouch-SF) in 4 healthy adult swine in the presence or absence of IPF were examined. Ex vivo, RF was delivered at low (≤3 mL/min), reduced (5-7 mL/min), and high (≥10 mL/min) IFRs using intermediate (25-35 W) and high (35-45 W) power. In vivo, applications were delivered (at 9.3 ± 2.2 g for 60 seconds at 39 W) using reduced (5 mL/min) and high (15 mL/min) IFRs. Ex vivo, surface lesion diameter inversely correlated with IFR, whereas maximum lesion diameter and depth did not differ. While steam pops occurred more frequently at low IFR using high power (ThermoCool SmartTouch and ThermoCool SmartTouch-SF), tissue disruption was rare and did not vary with IFR. In vivo, charring/steam pop was not detected. Although there were no discernible differences in lesion size with IFR, surface lesion diameter, maximum diameter, depth, and volume were all smaller in the presence of IPF at both IFRs. Cooled-tip epicardial RF ablation created using reduced IFRs (5-7 mL/min) yields lesion sizes similar to those created using high IFRs (≥10 mL/min) without an increase in steam pop/tissue disruption, whereas the presence of IPF significantly reduces the lesion size. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  18. Effect of Glaze Cooling Rate on Mechanical Properties of Conventional and Pressed Porcelain on Zirconia.

    Science.gov (United States)

    Longhini, Diogo; Rocha, Cibele Oliveira de Melo; Medeiros, Igor Studart; Fonseca, Renata Garcia; Adabo, Gelson Luis

    2016-01-01

    The aim of this study was to characterize a conventional and a pressed porcelain for zirconia core as to biaxial flexural strength (BFS), apparent fracture toughness (FT) and microstructure composition, and to investigate the effect of glaze cooling rate on the BFS of the zirconia/porcelain bilayers. Monolayers of conventional porcelain Vita VM9 and pressed porcelain Vita PM9 (n=15) (12 mm diameter x 1.2 mm thick) were prepared for the BFS test (MPa). Apparent fracture toughness (MPa.m1/2) was measured by indentation technique (n=15). t-Student test was performed for statistical analysis. Scanning electron microscopy and x-ray diffraction were used to analyze the porcelain's microstructure. For the BFS of bilayers, zirconia discs (12 mm diameter x 1 mm thick) (Vita In-Ceram YZ) were veneered with the two porcelains (1 mm thick). After the glaze firing simulation, the specimens were submitted to fast or slow cooling (n=15). Apparent fracture toughness (MPa.m1/2) was measured on the porcelain surface of bilayers (n=15) and residual stress was calculated. Two-way ANOVA (porcelain and cooling method) was used for the bilayer analysis (a=0.05). Vita PM9 monolayer exhibited significantly higher BFS (pporcelains. For bilayer specimens, the two-way ANOVA for BFS was significant for the porcelain variable only (pporcelain seems to be mechanically more effective for zirconia veneering.

  19. Survival of mouse embryos after vitrification depending on the cooling rate of the cryoprotectant solution.

    Science.gov (United States)

    Hredzák, R; Ostró, A; Zdilová, Viera; Maracek, I; Kacmárik, J

    2006-03-01

    The aim of the study was to determine the relationship between the rate of cooling of eight-cell mouse embryos to the temperature of liquid nitrogen (-196 degrees C) and their developmental capacity after thawing on the basis of their ability to leave the zona pellucida ('hatching') during in vitro culturing. Eight-cell embryos were obtained from superovulated female mice and divided into three experimental and one control group. Embryos from the experimental groups were cryopreserved by the vitrification method using ethylene glycol as cryoprotectant. The vitrification protocols used in the study differed in the rate of cooling of the cryoprotectant solution. Embryos from the first group were frozen in conventional 0.25-ml plastic straws, those from the second group in pipetting 'tips', and embryos from the third group, placed in vitrification solution, were introduced dropwise directly into liquid nitrogen. The control group of embryos was cultured in vitro without freezing in a culturing medium in an environment consisting of 95% air and 5% CO2. The developmental capacity of thawed embryos was assessed on the basis of their ability to leave the zona pellucida ('hatching') after three days of in vitro culturing. In the control group 95.1% of embryos 'hatched'. A significantly higher number of embryos that 'hatched' after thawing was observed in the group introduced dropwise directly into liquid nitrogen (60.0%) compared to the group frozen in pipetting 'tips' (37.9%). The group frozen in straws yielded significantly the lowest proportion of 'hatching' embryos (8.1%). These results showed that increasing cooling rates during vitrification of embryos improved their survival.

  20. Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP)

    KAUST Repository

    Wafai, Husam

    2016-09-20

    Fiber-reinforced composites with improved dissipation of energy during impact loading have recently been developed based on a polypropylene copolymer commonly called impact polypropylene (IPP). Composites made of IPP reinforced with glass fibers (GF) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF-IPP composites on shear behavior, which is critical in impact applications, using [±45]s monotonic and cyclic (load/unload) tensile specimens. The specimens were manufactured under a wide range of cooling rates (3 °C/min, 22 °C/min, 500–1000 °C/min). Mainly dominated by the properties of the matrix, the global shear behavior of GF-IPP composites differed considerably with respect to the cooling rate. However, the performance of the fiber-matrix interface (chemically modified) appeared to be unaffected by the range of cooling rates used in this study. We found that the cooling rate has a minor effect on the rate of damage accumulation, while it strongly modifies the shear-activated rate-dependant viscoelastic behavior. © 2016 Elsevier Ltd

  1. Effect of Cooling Rate on the Microstructure and Mechanical Properties of Cu/Al Bimetal Fabricated by Compound Casting

    Science.gov (United States)

    Liu, Guoping; Wang, Qudong; Zhang, Li; Ye, Bing; Jiang, Haiyan; Ding, Wenjiang

    2018-02-01

    Cu/Al bimetal was fabricated successfully by compound casting at different cooling rates in the range from 0.8 K/s to 1.83 K/s (0.8 °C/s to 1.83 °C/s). Interfacial cooling curve, microstructure evolution, bonding strength, and interfacial formation mechanism of Cu/Al bimetal were investigated simultaneously. Results show that the transition zone consists of the intermetallic compounds (IMCs) and the remelting zone. The IMCs are identified as Al4Cu9, AlCu, and Al2Cu, types of which are not affected by the cooling rate. The cooling rate primarily influences the thickness of IMCs, the microstructure of the remelting zone, and the morphology of the remelting zone/Al interface. The Cu/Al bimetal produced at the cooling rate of 1.02 K/s (1.02 °C/s) has relatively higher bonding strength than those at the cooling rates of 0.8 K/s and 1.83 K/s (0.8 °C/s and 1.83 °C/s). Shear fracture primarily occurs on the hard brittle IMCs rather than on the remelting zone. Based on the cooling curve and diffusion analysis, a new bonding mechanism of Cu/Al bimetal is proposed.

  2. The Effect of Cooling Rate on the Apparent Bond Strength of Porcelain-Metal Couples,

    Science.gov (United States)

    1981-03-06

    IADR Program and Abstracts 53:742, 1974. 10. Dykema, R. W., Johnston, J. F., and Cunningham, D. M.: The veneered gold crown. The Dental Clinics of...AD-A097 492 ARMY INST OF DENTAL RESEARCH WASHINGTON DC F/G 11/2 THE EFFECT OF COOLING RATE ON THE APPARENT BOND STRENGTH OF POR-’ETC(U) MAR 81 J...porcelain- metal couples John W. Guinn, III, B.S., D.D.S. William H. Griswold, B.S., D.D.S. Stanley G. Vermilyea, B.S.,D.M.D., M.S. U.S. Army Dental

  3. DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.; Sullivan, M.; D’Andrea, C. B.; Castander, F. J.; Casas, R.; Prajs, S.; Papadopoulos, A.; Nichol, R. C.; Karpenka, N. V.; Bernard, S. R.; Brown, P.; Cartier, R.; Cooke, J.; Curtin, C.; Davis, T. M.; Finley, D. A.; Foley, R. J.; Gal-Yam, A.; Goldstein, D. A.; González-Gaitán, S.; Gupta, R. R.; Howell, D. A.; Inserra, C.; Kessler, R.; Lidman, C.; Marriner, J.; Nugent, P.; Pritchard, T. A.; Sako, M.; Smartt, S.; Smith, R. C.; Spinka, H.; Thomas, R. C.; Wolf, R. C.; Zenteno, A.; Abbott, T. M. C.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Crocce, M.; Cunha, C. E.; Costa, L. N. da; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Marshall, J. L.; Martini, P.; Miller, C. J.; Miquel, R.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Walker, A. R.; Wester, W.

    2016-02-03

    We present DES14X3taz, a new hydrogen-poor superluminous supernova (SLSN-I) discovered by the Dark Energy Survey (DES) supernova program, with additional photometric data provided by the Survey Using DECam for Superluminous Supernovae. Spectra obtained using Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy on the Gran Telescopio CANARIAS show DES14X3taz is an SLSN-I at z = 0.608. Multi-color photometry reveals a double-peaked light curve: a blue and relatively bright initial peak that fades rapidly prior to the slower rise of the main light curve. Our multi-color photometry allows us, for the first time, to show that the initial peak cools from 22,000 to 8000 K over 15 rest-frame days, and is faster and brighter than any published core-collapse supernova, reaching 30% of the bolometric luminosity of the main peak. No physical Ni-56-powered model can fit this initial peak. We show that a shock-cooling model followed by a magnetar driving the second phase of the light curve can adequately explain the entire light curve of DES14X3taz. Models involving the shock-cooling of extended circumstellar material at a distance of similar or equal to 400 R-circle dot are preferred over the cooling of shock-heated surface layers of a stellar envelope. We compare DES14X3taz to the few double-peaked SLSN-I events in the literature. Although the rise. times and characteristics of these initial peaks differ, there exists the tantalizing possibility that they can be explained by one physical interpretation

  4. The effects of radiant cooling versus convective cooling on human eye tear film stability and blinking rate

    DEFF Research Database (Denmark)

    Nygaard, Linette; Uth, Simon C.; Bolashikov, Zhecho Dimitrov

    2014-01-01

    The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation. The subj......The effect of indoor temperature, radiant and convective cooling on tear film stability and eye blink frequency was examined. 24 human subjects were exposed to the non-uniform environment generated by localised chilled beam and a chilled ceiling combined with overhead mixing ventilation....... The subjects participated in four two-hour experiments. The room air temperature was kept at 26 °C or 28 °C. Tear film samples were collected after 30 min of acclimatisation and at the end of the exposures. Eye blinking frequency was analysed for the first and last 15 min of each exposure. The tear film...

  5. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    Science.gov (United States)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-10-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  6. Effects of Heating and Cooling Rates on Phase Transformations in 10 Wt Pct Ni Steel and Their Application to Gas Tungsten Arc Welding

    Science.gov (United States)

    Barrick, Erin J.; Jain, Divya; DuPont, John N.; Seidman, David N.

    2017-12-01

    10 wt pct Ni steel is a high-strength steel that possesses good ballistic resistance from the deformation induced transformation of austenite to martensite, known as the transformation-induced-plasticity effect. The effects of rapid heating and cooling rates associated with welding thermal cycles on the phase transformations and microstructures, specifically in the heat-affected zone, were determined using dilatometry, microhardness, and microstructural characterization. Heating rate experiments demonstrate that the Ac3 temperature is dependent on heating rate, varying from 1094 K (821 °C) at a heating rate of 1 °C/s to 1324 K (1051 °C) at a heating rate of 1830 °C/s. A continuous cooling transformation diagram produced for 10 wt pct Ni steel reveals that martensite will form over a wide range of cooling rates, which reflects a very high hardenability of this alloy. These results were applied to a single pass, autogenous, gas tungsten arc weld. The diffusion of nickel from regions of austenite to martensite during the welding thermal cycle manifests itself in a muddled, rod-like lath martensitic microstructure. The results of these studies show that the nickel enrichment of the austenite in 10 wt pct Ni steel plays a critical role in phase transformations during welding.

  7. Effect of cooling rate on microstructural formation and hardness of 30CrNi3Mo steel

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Z.X. [Tianjin University, School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin (China); Tianjin University of Commerce, School of Mechanical Engineering, Tianjin (China); Liu, Y.C.; Yu, L.M.; Gao, Z.M. [Tianjin University, School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin (China)

    2009-06-15

    The variation of microstructural formation and the hardness of the 30CrNi3Mo steel were systematically explored as a function of applied cooling rates in the range of 1-500 C/min. According to the measured Rockwell hardness results, four characteristic stages could be separated as different ranges of cooling rates, which corresponds well with the microstructural evolution observed. With the applied cooling rate increasing, the transformed structure evolves from granular bainite, lower bainite, self-tempered martensite, to finally martensite without self-tempering. Among them, the self-tempered martensite, obtained in the transformed specimens cooled with rates of 25-80 C/min, exhibits the highest hardness values due to the precipitation of fine carbides within it. (orig.)

  8. Rapid cooling and exhumation as a consequence of extension and crustal thinning: Inferences from the Late Miocene to Pliocene Palu Metamorphic Complex, Sulawesi, Indonesia

    Science.gov (United States)

    Hennig, Juliane; Hall, Robert; Forster, Margaret A.; Kohn, Barry P.; Lister, Gordon S.

    2017-08-01

    Metamorphic complexes forming high mountains of 1.5-2 km in Western Sulawesi were previously considered to be Mesozoic or older basement of Gondwana crust. However, many of the metamorphic rocks are much younger than previously thought. Some have Eocene sedimentary protoliths. New geothermobarometric and geochronological data from metamorphic rocks of the Palu Metamorphic Complex (PMC) and associated granitoids provide information on the timing and mechanisms of Neogene metamorphism and contemporaneous rapid exhumation. The metamorphic rocks are strongly deformed and some were partially melted to form migmatites. Schists contain relict andalusite, cordierite, staurolite and Mn-rich garnet which are wrapped by a pervasive fabric. 40Ar/39Ar dating of biotite, white mica and amphibole from strongly deformed, mylonitic schists and recrystallised amphibolites reveals cooling occurred in the Early Pliocene (c. 5.3-4.8 Ma) in the northern part and during the Late Pliocene (c. 3.1-2.7 Ma) in the southern part of the PMC. U-Pb, 40Ar/39Ar and (U-Th)/He analyses of various minerals from PMC metamorphic and S-type magmatic rocks give very similar mid to Late Pliocene ages, indicating very fast cooling and rapid exhumation, and show the high speed at which tectonic processes, including magmatism, exhumation, and reworking into a sediment, must have occurred. The high rates could be unique to this area but we suggest they record the true speed of metamorphic complex exhumation in a very young orogenic belt. Rates in older orogens appear lower because they are averages measured over longer periods of time. Contemporaneous magmatism and deformation are interpreted as a consequence of decompressional melting due to extension and thinning of the crust, promoted by possible detachment faults and normal faulting at the major NW-trending Palu-Koro and Tambarana Faults. In contrast, I-type magmatic rocks, separated from the PMC by the Palu-Koro Fault, were exhumed from upper crustal

  9. Influence of cooling rate on crystallization, structure and mechanical properties of MCMgAl6Zn1 alloy

    OpenAIRE

    L.A. Dobrzański; M. Król; T. Tański

    2010-01-01

    This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl6Zn1 castmagnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. Theapparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and2.4°C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning ...

  10. Parametrization of the average ionization and radiative cooling rates of carbon plasmas in a wide range of density and temperature

    OpenAIRE

    Gil de la Fe, Juan Miguel; Rodriguez Perez, Rafael; Florido, Ricardo; Garcia Rubiano, Jesus; Mendoza, M. A.; Nuez, A. de la; Espinosa, G.; Martel Escobar, Carlos; Mínguez Torres, Emilio

    2013-01-01

    In this work we present an analysis of the influence of the thermodynamic regime on the monochromatic emissivity, the radiative power loss and the radiative cooling rate for optically thin carbon plasmas over a wide range of electron temperature and density assuming steady state situations. Furthermore, we propose analytical expressions depending on the electron density and temperature for the average ionization and cooling rate based on polynomial fittings which are valid for the whole range...

  11. Effect of cooling rate during solidification on the hard phases of M23C6-type of cast CoCrMo alloy

    Directory of Open Access Journals (Sweden)

    M. Alvarez-Vera

    2016-07-01

    Full Text Available Microstructural morphology of CoCrMo alloy by control of the cooling rate during the solidification was investigated. Samples were obtained using both an induction furnace for slow cooling rate and electric arc furnace for fast cooling rate. Microstructural characterizations were performed with metallographic techniques. It was found that the difference between the formation temperature of hard secondary phases of M23C6-type carbides determine the reduction of carbide size by increasing the cooling rate.

  12. Determination of critical cooling rates in metallic glass forming alloy libraries through laser spike annealing.

    Science.gov (United States)

    Bordeenithikasem, Punnathat; Liu, Jingbei; Kube, Sebastian A; Li, Yanglin; Ma, Tianxing; Scanley, B Ellen; Broadbridge, Christine C; Vlassak, Joost J; Singer, Jonathan P; Schroers, Jan

    2017-08-02

    The glass forming ability (GFA) of metallic glasses (MGs) is quantified by the critical cooling rate (R C ). Despite its key role in MG research, experimental challenges have limited measured R C to a minute fraction of known glass formers. We present a combinatorial approach to directly measure R C for large compositional ranges. This is realized through the use of compositionally-graded alloy libraries, which were photo-thermally heated by scanning laser spike annealing of an absorbing layer, then melted and cooled at various rates. Coupled with X-ray diffraction mapping, GFA is determined from direct R C measurements. We exemplify this technique for the Au-Cu-Si system, where we identify Au 56 Cu 27 Si 17 as the alloy with the highest GFA. In general, this method enables measurements of R C over large compositional areas, which is powerful for materials discovery and, when correlating with chemistry and other properties, for a deeper understanding of MG formation.

  13. Weakly doped InP layers prepared by liquid phase epitaxy using a modulated cooling rate

    Science.gov (United States)

    Krukovskyi, R.; Mykhashchuk, Y.; Kost, Y.; Krukovskyi, S.; Saldan, I.

    2017-04-01

    Epitaxial structures based on InP are widely used to manufacture a number of devices such as microwave transistors, light-emitting diodes, lasers and Gunn diodes. However, their temporary instability caused by heterogeneity of resistivity along the layer thickness and the influence of various external or internal factors prompts the need for the development of a new reliable technology for their preparation. Weak doping by Yb, Al and Sn together with modulation of the cooling rate applied to prepare InP epitaxial layers is suggested to be adopted within the liquid phase epitaxy (LPE) method. The experimental results confirm the optimized conditions created to get a uniform electron concentration in the active n-InP layer. A sharp profile of electron concentration in the n+-InP(substrate)/n-InP/n+-InP epitaxial structure was observed experimentally at the proposed modulated cooling rate of 0.3 °С-1.5 °С min-1. The proposed technological method can be used to control the electrical and physical properties of InP epitaxial layers to be used in Gunn diodes.

  14. Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary.

    Science.gov (United States)

    Vellekoop, Johan; Sluijs, Appy; Smit, Jan; Schouten, Stefan; Weijers, Johan W H; Sinninghe Damsté, Jaap S; Brinkhuis, Henk

    2014-05-27

    The mass extinction at the Cretaceous-Paleogene boundary, ∼ 66 Ma, is thought to be caused by the impact of an asteroid at Chicxulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling, a so-called "impact winter" phase. Here we document a major decline in sea surface temperature during the first months to decades following the impact event, using TEX86 paleothermometry of sediments from the Brazos River section, Texas. We interpret this cold spell to reflect, to our knowledge, the first direct evidence for the effects of the formation of dust and aerosols by the impact and their injection in the stratosphere, blocking incoming solar radiation. This impact winter was likely a major driver of mass extinction because of the resulting global decimation of marine and continental photosynthesis.

  15. Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary

    Science.gov (United States)

    Vellekoop, Johan; Sluijs, Appy; Smit, Jan; Schouten, Stefan; Weijers, Johan W. H.; Sinninghe Damsté, Jaap S.; Brinkhuis, Henk

    2014-01-01

    The mass extinction at the Cretaceous–Paleogene boundary, ∼66 Ma, is thought to be caused by the impact of an asteroid at Chicxulub, present-day Mexico. Although the precise mechanisms that led to this mass extinction remain enigmatic, most postulated scenarios involve a short-lived global cooling, a so-called “impact winter” phase. Here we document a major decline in sea surface temperature during the first months to decades following the impact event, using TEX86 paleothermometry of sediments from the Brazos River section, Texas. We interpret this cold spell to reflect, to our knowledge, the first direct evidence for the effects of the formation of dust and aerosols by the impact and their injection in the stratosphere, blocking incoming solar radiation. This impact winter was likely a major driver of mass extinction because of the resulting global decimation of marine and continental photosynthesis. PMID:24821785

  16. Effect of Mn and Fe on the Formation of Fe- and Mn-Rich Intermetallics in Al–5Mg–Mn Alloys Solidified Under Near-Rapid Cooling

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    2016-01-01

    Full Text Available Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt % to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %, intermetallic Al6(Fe,Mn was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe, intermetallic Al6(Fe,Mn became the dominant phase, even in the alloy with low Mn content (0.39 wt %. Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn to become the primary phase at a lower Mn content.

  17. An improved thermoregulatory model for cooling garment applications with transient metabolic rates

    Science.gov (United States)

    Westin, Johan K.

    Current state-of-the-art thermoregulatory models do not predict body temperatures with the accuracies that are required for the development of automatic cooling control in liquid cooling garment (LCG) systems. Automatic cooling control would be beneficial in a variety of space, aviation, military, and industrial environments for optimizing cooling efficiency, for making LCGs as portable and practical as possible, for alleviating the individual from manual cooling control, and for improving thermal comfort and cognitive performance. In this study, we adopt the Fiala thermoregulatory model, which has previously demonstrated state-of-the-art predictive abilities in air environments, for use in LCG environments. We validate the numerical formulation with analytical solutions to the bioheat equation, and find our model to be accurate and stable with a variety of different grid configurations. We then compare the thermoregulatory model's tissue temperature predictions with experimental data where individuals, equipped with an LCG, exercise according to a 700 W rectangular type activity schedule. The root mean square (RMS) deviation between the model response and the mean experimental group response is 0.16°C for the rectal temperature and 0.70°C for the mean skin temperature, which is within state-of-the-art variations. However, with a mean absolute body heat storage error 3¯ BHS of 9.7 W˙h, the model fails to satisfy the +/-6.5 W˙h accuracy that is required for the automatic LCG cooling control development. In order to improve model predictions, we modify the blood flow dynamics of the thermoregulatory model. Instead of using step responses to changing requirements, we introduce exponential responses to the muscle blood flow and the vasoconstriction command. We find that such modifications have an insignificant effect on temperature predictions. However, a new vasoconstriction dependency, i.e. the rate of change of hypothalamus temperature weighted by the

  18. Rotational Laser Cooling of MgH+ Ions and Rotational Rate Measurements

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Staanum, Peter; Højbjerre, Klaus

    blackbody radiation field. To undertake such modelling, we will carry out measurements of a series of transition rates between rotational states in the vibronic ground state at room temperature. The measurements will be performed by the same Resonance Enhanced Multi-Photon Dissociation (REMPD) process used......A method of laser cooling vibrationally and translationally cold trapped MgH+ ions to the rotational ground state using optical pumping was recently demonstrated in our group [1]. This method relies on the 293 K blackbody radiation to redistribute population among the rotational states, while...... exciting a single rovibrational transition within the X1Σ+ electronic ground state for optical pumping into the rovibrational ground state. To model the expected rotational state distributions after the application of the laser beam, one has to know the various rotational transitions rates in the present...

  19. The Relationship between Dendrite Arm Spacing and Cooling Rate of Al-Si Casting Alloys in High Pressure Die Casting

    Science.gov (United States)

    Cho, Jae-Ik; Kim, Cheol-Woo; Kim, Young-Chan; Choi, Se-Weon; Kang, Chang-Seog

    The effects of cooling rate on the solidification behavior of Al-8.5%Si-3%Cu and Al-11%Si-3%Cu alloys were studied during high pressure die casting (HPDC). The HPDC experiment was conducted by using the dies with 3 steps for 3 different cooling rates. Because of the high in both melt temperature and pressure, it was difficult to obtain the temperature profile directly from HPDC specimen. Therefore, in this study, cylindrical bar castings with different diameter were poured to acquire the cooling curves at the solidification range of 15°C/s up to 100°C/s and then the microstructures were compared to estimate the cooling rate in HPDC. The solidification characteristics including liquidus/solidus temperature and dendrite arm spacing of each alloy and each cooling rate was analyzed and the results showed strong proportional relationship between dendrite arm spacing and cooling rate in HPDC. The results were also compared with the actual die casting specimens and MAGMA simulation.

  20. Multi-Resolution Rapid Prototyping of Vehicle Cooling Systems: Approach and Test Results

    Science.gov (United States)

    2014-08-01

    components within the system. 3. System-level: assembly of reduced-order models of components for rapid generation of results for the entire vehicle...using reduced-order models (with increased resolution) on specific components/ assemblies , while using regular reduced-order models for the remaining...Single and Multi-Evaporator Subcritical Vapor Compression Systems”, M.S. Thesis, University of Illinois at Urbana- Champaign. Siegel, J., 2007, Corba

  1. Rapid short-duration hypothermia with cold saline and endovascular cooling before reperfusion reduces microvascular obstruction and myocardial infarct size

    Directory of Open Access Journals (Sweden)

    Heiberg Einar

    2008-04-01

    Full Text Available Abstract Background The aim of this study was to evaluate the combination of a rapid intravenous infusion of cold saline and endovascular hypothermia in a closed chest pig infarct model. Methods Pigs were randomized to pre-reperfusion hypothermia (n = 7, post-reperfusion hypothermia (n = 7 or normothermia (n = 5. A percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 min. Hypothermia was started after 25 min of ischemia or immediately after reperfusion by infusion of 1000 ml of 4°C saline and endovascular hypothermia. Area at risk was evaluated by in vivo SPECT. Infarct size was evaluated by ex vivo MRI. Results Pre-reperfusion hypothermia reduced infarct size/area at risk by 43% (46 ± 8% compared to post-reperfusion hypothermia (80 ± 6%, p Conclusion Rapid hypothermia with cold saline and endovascular cooling before reperfusion reduces myocardial infarct size and microvascular obstruction. A novel finding is that hypothermia at the onset of reperfusion reduces microvascular obstruction without reducing myocardial infarct size. Intravenous administration of cold saline combined with endovascular hypothermia provides a method for a rapid induction of hypothermia suggesting a potential clinical application.

  2. Effect of rapid cooling and acidic pH on cellular homeostasis of Pectinatus frisingensis, a strictly anaerobic beer-spoilage bacterium.

    Science.gov (United States)

    Chihib, N E; Tholozan, J L

    1999-06-01

    Pectinatus frisingensis is a strictly anaerobic mesophilic bacterium involved in bottled beer spoilage. Cellular volume, adenylate energy charge, intracellular pH and intracellular potassium concentration measurements were performed in late exponential-phase cell suspensions placed in different physiological conditions, to evaluate the capability of this bacterium to maintain cellular homeostasis. The intracellular pH was calculated from the intracellular accumulation of a [carboxyl-14C]benzoic acid. Optimum physiological conditions were the presence of a carbon source and pH of 6.2, hostile conditions were a pH 4.5, absence of a carbon source, and rapid cooling treatment. The cell was able to maintain a higher intracellular pH than the external pH under all conditions. Intracellular volume was lower at pH 4.5 than at pH 6.2. A low net potassium efflux rate was routinely measured in starving cells, while glucose addition promoted immediate net potassium uptake from the medium. Cooling treatment resulted in sudden net potassium efflux from the cell, a decrease of the intracellular pH, and low modifications of the adenylate energy charge in metabolizing-glucose cell suspensions. Thus, cold treatment perturbs the P. frisingensis homeostasis but the bacteria were able to restore their homeostasis in the presence of a carbon source, and under warm conditions.

  3. Enthalpy Relaxation of a DGEBA Epoxy as a function of Time, Temperature, and Cooling Rate

    Science.gov (United States)

    Clarkson, Caitlyn M.; McCoy, John D.; Kropka, Jamie M.

    2015-03-01

    Enthalpy relaxation resulting from physical aging of a DGEBA epoxy, Epon 828, cross-linked with an amine curative, Jeffamine T-403, was studied for two isothermal aging temperatures at sequential aging times up to two weeks. Results were analyzed using the peak shift method to obtain the relaxation parameters β, δ (H*), and χ. The individual effects of cooling rate from the equilibrated state, aging time, and aging temperature were isolated to understand the initial state of the glassy epoxy and its evolution during physical aging. [Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Influence of quench rates on the properties of rapidly solidified ...

    Indian Academy of Sciences (India)

    Unknown

    A K PANDA, I CHATTORAJ, S BASU* and A MITRA. National Metallurgical Laboratory, Jamshedpur 831 007, India. *Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, India. Abstract. FeNbCuSiB based materials were produced in the form of ribbons by rapid solidification techniques.

  5. Tuning the Mechanical and Antimicrobial Performance of a Cu-Based Metallic Glass Composite through Cooling Rate Control and Annealing

    Directory of Open Access Journals (Sweden)

    Victor M. Villapún

    2017-05-01

    Full Text Available The influence of cooling rate on the wear and antimicrobial performance of a Cu52Z41Al7 (at. % bulk metallic glass (BMG composite was studied and the results compared to those of the annealed sample (850 °C for 48 h and to pure copper. The aim of this basic research is to explore the potential use of the material in preventing the spread of infections. The cooling rate is controlled by changing the mould diameter (2 mm and 3 mm upon suction casting and controlling the mould temperature (chiller on and off. For the highest cooling rate conditions CuZr is formed but CuZr2 starts to crystallise as the cooling rate decreases, resulting in an increase in the wear resistance and brittleness, as measured by scratch tests. A decrease in the cooling rate also increases the antimicrobial performance, as shown by different methodologies (European, American and Japanese standards. Annealing leads to the formation of new intermetallic phases (Cu10Zr7 and Cu2ZrAl resulting in maximum scratch hardness and antimicrobial performance. However, the annealed sample corrodes during the antimicrobial tests (within 1 h of contact with broth. The antibacterial activity of copper was proved to be higher than that of any of the other materials tested but it exhibits very poor wear properties. Cu-rich BMG composites with optimised microstructure would be preferable for some applications where the durability requirements are higher than the antimicrobial needs.

  6. Effect of Cooling Rate on the Mechanical Strength of Carbon Fiber-Reinforced Thermoplastic Sheets in Press Forming

    Science.gov (United States)

    Tatsuno, D.; Yoneyama, T.; Kawamoto, K.; Okamoto, M.

    2017-07-01

    The purpose of this study is to elucidate the effect of the cooling rate of the carbon fiber-reinforced thermoplastic (CFRTP) sheets on the mechanical property in the press forming within 1 min cycle time. In order to pay attention only to the compression stage after the deformation stage in press forming, a flat sheet of dimensions 200 mm × 100 mm × 3 mm was produced. It was fabricated by stacking 15 CFRTP sheets of 0.2-mm-thick plain woven fabric impregnated with PA6, preheating them to 280 °C and pressing them at 5 MPa using a die cooled from near the melting temperature of PA6 with various cooling rates. Cooling rate of -26 °C/s with pressure holding time (defined in this study as the period that the pressure sensor detects high pressure) of 7 s and that of -4.4 °C/s with pressure holding time of 18 s gave a flexural strength of 536 and 733 MPa, respectively. It was found that the cooling rate during pressure holding is related to the mechanical property of press-formed CFRTP part.

  7. Effect of Cooling Rate on Microstructures and Mechanical Properties in SA508 Gr4N High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minchul; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The microstructure of Ni-Cr-Mo low alloy steel is a mixture of tempered martensite and tempered lower bainite and that of Mn-Mo-Ni low alloy steel is predominantly tempered upper bainite. Higher strength and toughness steels are very attractive as an eligible RPV steel, so several researchers have studied to use the Ni-Cr-Mo low alloy steel for the NPP application. Because of the thickness of reactor vessel, there are large differences in austenitizing cooling rates between the surface and the center locations of thickness in RPV. Because the cooling rates after austenitization determine the microstructure, it would affect the mechanical properties in Ni-Cr-Mo low alloy steel, and it may lead to inhomogeneous characteristics when the commercial scale of RPV is fabricated. In order to apply the Ni-Cr-Mo low alloy steel to RPV, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite and bainite fractions on mechanical properties in Ni-Cr-Mo low alloy steel were examined by controlling the cooling rate after austenitization. First of all, continuous cooling transformation(CCT) diagram was established from the dilatometric analyses. Then, the phase fractions at each cooling rate were quantitatively evaluated. Finally, the mechanical properties were correlated with the phase fraction, especially fraction of martensite in Ni-Cr-Mo low alloy steel.

  8. Influence of cooling rate on crystallization, structure and mechanical properties of MCMgAl6Zn1 alloy

    Directory of Open Access Journals (Sweden)

    L.A. Dobrzański

    2010-07-01

    Full Text Available This work presents an influence of cooling rate on crystallization process, structure and mechanical properties of MCMgAl6Zn1 castmagnesium alloy. The experiments were performed using the novel Universal Metallurgical Simulator and Analyzer Platform. Theapparatus enabled recording the temperature during refrigerate magnesium alloy with three different cooling rates, i.e. 0.6, 1.2 and2.4°C/s and calculate a first derivative. Based on first derivative results, nucleation temperature, beginning of nucleation of eutecticand solidus temperature were described. It was fund that the formation temperatures of various thermal parameters, mechanicalproperties (hardness and ultimate compressive strength and grain size are shifting with an increasing cooling rate.

  9. Effect of cooling rate on properties of plasma nitrided AISI 1010 steel

    OpenAIRE

    ALVES Jr, Clodomiro; Lima, José de Anchieta; HAJEK, VACLAV; Cunha, João Batista Marimon; Santos,Carlos Alberto

    2007-01-01

    In this work, AISI 1010 steel samples were plasma nitrided into 20% N 2 100 Pa and 400 Pa for N 2 and H 2 , respectively), temperatures of 500 and 580 °C, during 2 h. Three different procedures for cooling were accomplished after nitriding. In the first procedure the cooling occurred naturally, that is, the sample was kept on substrate holder. In the second one the sample was pulled off and cooling in a cold surface. Finally, in the third cooling process the sample was...

  10. Influence of veneering porcelain thickness and cooling rate on residual stresses in zirconia molar crowns.

    Science.gov (United States)

    Al-Amleh, Basil; Neil Waddell, J; Lyons, Karl; Swain, Michael V

    2014-03-01

    The aim of this study was to investigate the influence of increasing veneering porcelain thickness in clinically representative zirconia molar crowns on the residual stresses under fast and slow cooling protocols. Six veneered zirconia copings (Procera, Nobel Biocare AB, Gothenburg, Sweden) based on a mandibular molar form, were divided into 3 groups with flattened cusp heights that were 1mm, 2mm, or 3mm. Half the samples were fast cooled during final glazing; the other half were slow cooled. Vickers indentation technique was used to determine surface residual stresses. Normality distribution within each sample was done using Kolmogorov-Smirnov & Shapiro-Wilk tests, and one-way ANOVA tests used to test for significance between various cusp heights within each group. Independent t-tests used to evaluate significance between each cusp height group with regards to cooling. Compressive stresses were recorded with fast cooling, while tensile stresses with slow cooling. The highest residual compressive stresses were recorded on the fast cooled 1mm cusps which was significantly higher than the 2 and 3mm fast cooled crowns (Pveneering porcelain thickness increased in the fast cooled group (Pveneering porcelain thickness compared to the basic flat plate model. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Second-generation stars in globular clusters from rapid radiative cooling of pre-supernova massive star winds

    Science.gov (United States)

    Lochhaas, Cassandra; Thompson, Todd A.

    2017-09-01

    Following work by Wünsch and collaborators, we investigate a self-enrichment scenario for second-generation star formation in globular clusters wherein wind material from the first-generation massive stars rapidly radiatively cools. Radiative energy loss allows retention of fast winds within the central regions of clusters, where it fuels star formation. Secondary star formation occurs in ˜3-5 Myr, before supernovae, producing uniform iron abundances in both populations. We derive the critical criteria for radiative cooling of massive star winds and the second-generation mass as a function of cluster mass, radius and metallicity. We derive a critical condition on M/R, above which second-generation star formation can occur. We speculate that above this threshold the strong decrease in the cluster wind energy and momentum allows ambient gas to remain from the cluster formation process. We reproduce large observed second-generation fractions of ˜30-80 per cent if wind material mixes with ambient gas. Importantly, the mass of ambient gas required is only of order the first generation's stellar mass. Second-generation helium enrichment ΔY is inversely proportional to mass fraction in the second generation; a large second generation can form with ΔY ˜ 0.001-0.02, while a small second generation can reach ΔY ˜ 0.16. Like other self-enrichment models for the second generation, we are not able to simultaneously account for both the full range of the Na-O anticorrelation and the second-generation fraction.

  12. Investigation of Micro Hardness, Cooling Rate and Microstructure of ATIG Welded samples of Al-SiC composite

    Directory of Open Access Journals (Sweden)

    Pichumani Sivachidambaram

    2018-01-01

    Full Text Available Activated TIG welding has been performed on Al – 8% SiC composite 5mm plate with various fluxes such as Al2O3, MnO2, CaO, MgO, SiO2 & TiO2, to study & analyze the Microstructure, Micro hardness and cooling rate. Correlation study between micro hardness, microstructure and cooling rate for Constant Current TIG welding and Activated TIG welding on Al-SiC composite are also carried out to analyze the relation between the effect of cooling rate on microstructure & the effect of microstructure on micro hardness. The experimental results of ATIG welding on Al-SiC composite shows fine grain weld microstructure on ATIG – SiO2 & ATIG – TiO2, which results in higher micro hardness. Micro hardness values are taken in different locations of weld surface at 1mm, 2mm & 3mm below the weld surface and the same is also observed along the weld zone to heat affected zone upto 12mm for the center of the weldment. Minimum micro hardness values found in ATIG – MnO2, ATIG – CaO & ATIG – MgO are due to intermediate micro structure between coarse and fine in heat affected zone. ATIG – Al2O3 weld zone & heat affected zone and heat affected zone of ATIG – MnO2, ATIG – CaO & ATIG – MgO shows coarse microstructure leading to reduction in micro hardness value. Cooling rate for the different CCTIG & ATIG welding are recorded and correlation between the micro structures are studied. Coarse micro structure in weld zone and heat affected zone have least cooling rate whereas fine micro structure in weld zone resulted at higher cooling rate. Heat affected zone strongly depends on temperature gradient between the weld center and weldment’s heat affected zone.

  13. Heart rate variability in sleeping preterm neonates exposed to cool and warm thermal conditions.

    Directory of Open Access Journals (Sweden)

    Erwan Stéphan-Blanchard

    Full Text Available Sudden infant death syndrome (SIDS remains the main cause of postneonatal infant death. Thermal stress is a major risk factor and makes infants more vulnerable to SIDS. Although it has been suggested that thermal stress could lead to SIDS by disrupting autonomic functions, clinical and physiopathological data on this hypothesis are scarce. We evaluated the influence of ambient temperature on autonomic nervous activity during sleep in thirty-four preterm neonates (mean ± SD gestational age: 31.4±1.5 weeks, postmenstrual age: 36.2±0.9 weeks. Heart rate variability was assessed as a function of the sleep stage at three different ambient temperatures (thermoneutrality and warm and cool thermal conditions. An elevated ambient temperature was associated with a higher basal heart rate and lower short- and long-term variability in all sleep stages, together with higher sympathetic activity and lower parasympathetic activity. Our study results showed that modification of the ambient temperature led to significant changes in autonomic nervous system control in sleeping preterm neonates. The latter changes are very similar to those observed in infants at risk of SIDS. Our findings may provide greater insight into the thermally-induced disease mechanisms related to SIDS and may help improve prevention strategies.

  14. Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs.

    Science.gov (United States)

    Overhoff, Kirk A; Engstrom, Josh D; Chen, Bo; Scherzer, Brian D; Milner, Thomas E; Johnston, Keith P; Williams, Robert O

    2007-01-01

    An ultra-rapid freezing (URF) technology has been developed to produce high surface area powders composed of solid solutions of an active pharmaceutical ingredient (API) and a polymer stabilizer. A solution of API and polymer excipient(s) is spread on a cold solid surface to form a thin film that freezes in 50 ms to 1s. This study provides an understanding of how the solvent's physical properties and the thin film geometry influence the freezing rate and consequently the final physico-chemical properties of URF-processed powders. Theoretical calculations of heat transfer rates are shown to be in agreement with infrared images with 10ms resolution. Danazol (DAN)/polyvinylpyrrolidone (PVP) powders, produced from both acetonitrile (ACN) and tert-butanol (T-BUT) as the solvent, were amorphous with high surface areas (approximately 28-30 m2/g) and enhanced dissolution rates. However, differences in surface morphology were observed and attributed to the cooling rate (film thickness) as predicted by the model. Relative to spray-freezing processes that use liquid nitrogen, URF also offers fast heat transfer rates as a result of the intimate contact between the solution and cold solid surface, but without the complexity of cryogen evaporation (Leidenfrost effect). The ability to produce amorphous high surface area powders with submicron primary particles with a simple ultra-rapid freezing process is of practical interest in particle engineering to increase dissolution rates, and ultimately bioavailability.

  15. Cooling rates of LL, L and H chondrites and constraints on the duration of peak thermal conditions: Diffusion kinetic modeling and implications for fragmentation of asteroids and impact resetting of petrologic types

    Science.gov (United States)

    Ganguly, Jibamitra; Tirone, Massimiliano; Domanik, Kenneth

    2016-11-01

    We have carried out detailed thermometric and cooling history studies of several LL-, L- and H-chondrites of petrologic types 5 and 6. Among the selected samples, the low-temperature cooling of St. Séverin (LL6) has been constrained in an earlier study by thermochronological data to an average rate of ∼2.6 °C/My below 500 °C. However, numerical simulations of the development of Fe-Mg profiles in Opx-Cpx pairs using this cooling rate grossly misfit the measured compositional profiles. Satisfactory simulation of the latter and low temperature thermochronological constraints requires a two-stage cooling model with a cooling rate of ∼50-200 °C/ky from the peak metamorphic temperature of ∼875 °C down to 450 °C, and then transitioning to very slow cooling with an average rate of ∼2.6 °C/My. Similar rapid high temperature cooling rates (200-600 °C/ky) are also required to successfully model the compositional profiles in the Opx-Cpx pairs in the other samples of L5, L6 chondrites. For the H-chondrite samples, the low temperature cooling rates were determined earlier to be 10-20 °C/My by metallographic method. As in St. Séverin, these cooling rates grossly misfit the compositional profiles in the Opx-Cpx pairs. Modeling of these profiles requires very rapid cooling, ∼200-400 °C/ky, from the peak temperatures (∼810-830 °C), transitioning to the metallographic rates at ∼450-500 °C. We interpret the rapid high temperature cooling rates to the exposure of the samples to surface or near surface conditions as a result of fragmentation of the parent body by asteroidal impacts. Using the thermochronological data, the timing of the presumed impact is constrained to be ∼4555-4560 My before present for St. Séverin. We also deduced similar two stage cooling models in earlier studies of H-chondrites and mesosiderites that could be explained, using the available geochronological data, by impact induced fragmentation at around the same time. Diffusion kinetic

  16. Influence of Cooling Rate on Phase Formationin Spray-Formed H13 Tool Steel

    Energy Technology Data Exchange (ETDEWEB)

    K. M. Mchugh; Y. Lin; Y. Zhou; E. J. Lavernia

    2006-04-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern’s features. The pattern is removed and the die is fitted into a standard holding fixture. This approach results in significant cost and lead-time savings compared to conventional machining, Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life over conventional dies. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die’s properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate and other processing parameters during spray processing and heat treatment of H13 tool steel influence phase formation. Results of case studies on spray-formed die performance in forging, extrusion and die casting, conducted by industry during production runs, will be described.

  17. A rare large right atrial myxoma with rapid growth rate.

    Science.gov (United States)

    Kelly, Shawn C; Steffen, Kelly; Stys, Adam T

    2014-10-01

    Atrial myxomas are the most common benign intracavitary cardiac neoplasms. They most frequently occur in the left atrium. Right atrial tumors are rare, comprising 20 percent of myxomas achieving an incidence of 0.02 percent. Due to their rarity, right atrial tumor development and associated clinical symptoms has not been well described. The classical clinical triad for the presentation of left atrial myxomas--heart failure, embolic events, and constitutional symptoms--may not be applicable to right sided tumors. Also, natural development of myxoma is not well described, as surgical resection is the common practice. Previously ascribed growth rates of myxomas refer mostly to left atrial ones, as right atrial tumors are rare. We present a case of right atrial myxoma with growth rates exceeding those previously described.

  18. Regional variations in subsidence rate of lithospheric plates: implication for thermal cooling models

    Science.gov (United States)

    Lago, Bernard; Cazenave, Anny; Marty, Jean-Charles

    Although simple thermal models of lithospheric cooling predict to first order the general behaviour of observed seafloor depth with increasing age, important regional variations in seafloor subsidence, in the range 250-400 m Ma1/2, are reported for several lithospheric plates. Such variations cannot be accounted for by classical cooling models unless implausible variations in asthenospheric temperature of ˜550°C are assumed. Here we present an alternative cooling model, which assumes that at the ridge axis the temperature may deviate from the mean asthenospheric temperature. Such a model satisfactorily explains the data provided that the temperature deviation is ±100°C only.

  19. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  20. Star Formation Rates in Cooling Flow Clusters: A UV Pilot Study with Archival XMM-Newton Optical Monitor Data

    Science.gov (United States)

    Hicks, A. K.; Mushotzky, R.

    2005-12-01

    We have analyzed XMM-Newton Optical Monitor UV (180-400 nm) data for a sample of 33 galaxies. Thirty are cluster member galaxies, and nine are central cluster galaxies (CCGs) in cooling flow clusters having mass deposition rates between 8 and 525 Msolar yr-1. By comparing the ratio of UV to 2MASS J-band fluxes, we find a significant UV excess in many, but not all, cooling flow CCGs, consistent with several previous studies based on optical imaging data (McNamara & O'Connell Cardiel et al.; Crawford et al.). This UV excess is a direct indication of the presence of young massive stars and, therefore, recent star formation. Using the Starburst99 model of continuous star formation over a 900 Myr period, we derive star formation rates of 0.2-219 Msolar yr-1 for the cooling flow sample. For two-thirds of this sample, it is possible to equate Chandra/XMM cooling flow mass deposition rates with UV-inferred star formation rates, for a combination of starburst lifetime and IMF slope. This is a pilot study of the well-populated XMM UV cluster archive, and a more extensive follow-up study is currently underway.

  1. Effect of cooling rates and Zr addition on the microstructure and corrosion behaviors of the Mg–Zn–Gd alloys

    Science.gov (United States)

    Zhang, Jinyang; Jia, Peng; Xu, Shumin; Lou, Gui; Zhou, Guorong; Zhao, Degang; Teng, Xinying

    2018-01-01

    The grain size of Mg96Zn1Gd3 alloys was refined by increasing cooling rate and adding Zr refiner. At the cooling rate of 122.8 K s‑1, the primary dendrite spacing decreased from 12.5 to 6.4 μm with the Zr addition in Mg96Zn1Gd3 alloy casting into a copper mold. At the 0.3 K s‑1, the long-period stacking ordered structure phase (LPSO) only was formed in Mg96Zn1Gd3 alloy casting into a sand mold. The research concerned on mechanical properties showed that hardness of Mg95.8Zn1Gd3Zr0.2 alloy was increased from 82.7 to 121.1 HBW with the increase of the cooling rate. About the high temperature performance, the melt temperature of the second phase was 882 K, and it was not changed with the Zr addition and the change of cooling rates. However, the excellent corrosion resistance corresponded to the large grain size was changed by the formation of the LPSO phase in Mg96Zn1Gd3 alloy.

  2. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  3. Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift.

    Science.gov (United States)

    Heberer, Bianca; Anzenbacher, Thomas; Neubauer, Franz; Genser, Johann; Dong, Yunpeng; Dunkl, István

    2014-03-17

    The western sector of the Qinling-Dabie orogenic belt plays a key role in both Late Jurassic to Early Cretaceous "Yanshanian" intracontinental tectonics and Cenozoic lateral escape triggered by India-Asia collision. The Taibai granite in the northern Qinling Mountains is located at the westernmost tip of a Yanshanian granite belt. It consists of multiple intrusions, constrained by new Late Jurassic and Early Cretaceous U-Pb zircon ages (156 ± 3 Ma and 124 ± 1 Ma). Applying various geochronometers ( 40 Ar/ 39 Ar on hornblende, biotite and K-feldspar, apatite fission-track, apatite [U-Th-Sm]/He) along a vertical profile of the Taibai Mountain refines the cooling and exhumation history. The new age constraints record the prolonged pre-Cenozoic intracontinental deformation as well as the cooling history mostly related to India-Asia collision. We detected rapid cooling for the Taibai granite from ca. 800 to 100 °C during Early Cretaceous (ca. 123 to 100 Ma) followed by a period of slow cooling from ca. 100 Ma to ca. 25 Ma, and pulsed exhumation of the low-relief Cretaceous peneplain during Cenozoic times. We interpret the Early Cretaceous rapid cooling and exhumation as a result from activity along the southern sinistral lithospheric scale tear fault of the recently postulated intracontinental subduction of the Archean/Palaeoproterozoic North China Block beneath the Alashan Block. A Late Oligocene to Early Miocene cooling phase might be triggered either by the lateral motion during India-Asia collision and/or the Pacific subduction zone. Late Miocene intensified cooling is ascribed to uplift of the Tibetan Plateau.

  4. Modification of n-Si Characteristics by Annealing and Cooling at Different Rates

    Directory of Open Access Journals (Sweden)

    Subhi K. Salih

    2003-01-01

    for samples annealed at lower than 550°C. For samples annealed at higher temperatures, quenching gave better dark-current density vs. potential plots. SEM measurements showed parallel results to these findings. Enhanced surface textures were observed for slowly cooled wafers from temperatures below 550°C. Samples quenched from temperatures above 550°C showed better surfaces than slowly cooled counterparts.

  5. The efect of cooling rate on the properties of alloyed cast-iron sizing roll

    Directory of Open Access Journals (Sweden)

    P. Jelić

    2010-01-01

    Full Text Available Directional heat transfer was investigated by temperature measurements in the casting and in the mould using thermocouples. Measurements were performed in operating conditions during pouring, solidification, and cooling of the casting. Total measurement time was 35,5 hours. After cutting, specimens were extracted for metallographic and hardness testing. Test results provided confirmation of directional heat transfer (directional cooling that would ensure acquirement of a desired casting structure and mechanical properties.

  6. Cooling rate dependence of simulated ${\\rm Cu_{64.5}Zr_{35.5}}$ metallic glass structure

    CERN Document Server

    Ryltsev, R E; Chtchelkatchev, N M

    2016-01-01

    Using molecular dynamics simulations with embedded atom model potential, we study structural evolution of ${\\rm Cu_{64.5}Zr_{35.5}}$ alloy during the cooling in a wide range of cooling rates $\\gamma\\in(1.5\\cdot 10^{9},10^{13})$ K/s. Investigating short- and medium-range order, we show that structure of ${\\rm Cu_{64.5}Zr_{35.5}}$ metallic glass essentially depends on cooling rate. In particular, a decrease of the cooling rate leads to a increase of abundances of both the icosahedral-like clusters and Frank-Kasper Z16 polyhedra. The amounts of these clusters in the glassy state drastically increase at the $\\gamma_{\\rm min}=1.5\\cdot 10^{9}$ K/s. Analysing the structure of the glass at $\\gamma_{\\rm min}$, we observe the formation of nano-sized crystalline grain of ${\\rm Cu_2Zr}$ intermetallic compound with the structure of ${\\rm Cu_2Mg}$ Laves phase. The structure of this compound is isomorphous with that for ${\\rm Cu_5Zr}$ intermetallic compound. Both crystal lattices consist of two type of clusters: Cu-centered...

  7. Development of a reliable low-cost controlled cooling rate instrument for the cryopreservation of hematopoietic stem cells.

    Science.gov (United States)

    Shu, Zhiquan; Kang, Xianjiang; Chen, Hsiuhung; Zhou, Xiaoming; Purtteman, Jester; Yadock, David; Heimfeld, Shelly; Gao, Dayong

    2010-04-01

    An optimal cooling rate is one of the critical factors influencing the survival of cells during cryopreservation. We describe a novel device, called the box-in-box, that has been developed for optimal cryopreservation of human hematopoietic stem cells (HSC). This work presents the design of the device, a mathematical formulation describing the expected temperature histories of samples during the freezing process, along with actual experimental results of thermal profile tests. In experiments, when the box-in-box device was transferred from room temperature to a -80 degrees C freezer, a cooling rate of -1 to -3.5 degrees C/min, which has been widely used for the cryopreservation of HSC, was achieved. In order to evaluate this device further, HSC cryopreservation was compared between the box-in-box device and a commercially available controlled-rate freezer (CryoMed). The experimental data, including total cell population and CD34(+) hematopoietic progenitor cell recovery rates, viability and cell culture colony assays, showed that the box-in-box worked as well as the CryoMed instrument. There was no significant difference in either survival rate or the culture/colony outcome between the two devices. The box-in-box device can work as a cheap, durable, reliable and maintenance-free instrument for the cryopreservation of HSC. This concept of a box-in-box may also be adapted to other cooling rates to support cryopreservation of a wide variety of tissues and cells.

  8. Clast Selection and Metallographic Cooling Rates: Initial Results on Type 1A and 2A Mesosiderites

    Science.gov (United States)

    Baecker, B.; Cohen, B. A.; Rubin, A. E.; Frasl, B.; Corrigan, C. M.

    2017-01-01

    We initiated a comprehensive study on selected clasts and metal of mesosiderites using SEM, electron microprobe and the complete suite of noble gases. Here we report initial results on the petrography of selected clasts and metallographic cooling rates using the central Ni method used in sev-eral publications. We focus on the approach of selecting grains in least recrystallized mesosiderites. Hence, especially (lithic) clasts in type 1A, 1B, 2A and 2B are the first choice. They provide highest primitive-ness and least annealing/metamorphism. All grains selected should be in close proximity to each other. Lithic clasts in mesosiderites are of high interest be-cause of their igneous texture and similarity to eucrites and howardite petrography. We find pyrox-enes (px) and plagioclase (plag) attached to each other which implies a common formation history. It will be interesting to see differences and similarities in their noble gas inventory (CRE ages, trapped components and closure temperature). In addition, we will investi-gate variations of the lithic clasts toward similar grains in the thick sections which are not igneous. Plag grains are the best bases for noble gas measurements con-cerning He to Ar and Ar-Ar dating since it delivers im-portant target elements. We focus on plag grains in close contact to olivine (olv) / px grains to assess weth-er both grains show noble gas patterns being similar or different. Phosphate grains are suitable for Kr and Xe measurements since they yield REE abundances (tar-get elements).

  9. THE FORMATION OF SECONDARY STELLAR GENERATIONS IN MASSIVE YOUNG STAR CLUSTERS FROM RAPIDLY COOLING SHOCKED STELLAR WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Wünsch, R.; Palouš, J.; Ehlerová, S. [Astronomical Institute, Academy of Sciences of the Czech Republic, Boční II 1401, 141 31 Prague (Czech Republic); Tenorio-Tagle, G. [Instituto Nacional de Astrofísica Optica y Electrónica, AP 51, 72000 Puebla, México (Mexico)

    2017-01-20

    We study a model of rapidly cooling shocked stellar winds in young massive clusters and estimate the circumstances under which secondary star formation, out of the reinserted winds from a first stellar generation (1G), is possible. We have used two implementations of the model: a highly idealized, computationally inexpensive, spherically symmetric semi-analytic model, and a complex, three-dimensional radiation-hydrodynamic, simulation; they are in a good mutual agreement. The results confirm our previous findings that, in a cluster with 1G mass 10{sup 7} M {sub ⊙} and half-mass–radius 2.38 pc, the shocked stellar winds become thermally unstable, collapse into dense gaseous structures that partially accumulate inside the cluster, self-shield against ionizing stellar radiation, and form the second generation (2G) of stars. We have used the semi-analytic model to explore a subset of the parameter space covering a wide range of the observationally poorly constrained parameters: the heating efficiency, η {sub he}, and the mass loading, η {sub ml}. The results show that the fraction of the 1G stellar winds accumulating inside the cluster can be larger than 50% if η {sub he} ≲ 10%, which is suggested by the observations. Furthermore, for low η {sub he}, the model provides a self-consistent mechanism predicting 2G stars forming only in the central zones of the cluster. Finally, we have calculated the accumulated warm gas emission in the H30 α recombination line, analyzed its velocity profile, and estimated its intensity for super star clusters in interacting galaxies NGC4038/9 (Antennae) showing that the warm gas should be detectable with ALMA.

  10. Rapid quantification of viable Legionella in nuclear cooling tower waters using filter cultivation, fluorescent in situ hybridization and solid-phase cytometry.

    Science.gov (United States)

    Baudart, J; Guillaume, C; Mercier, A; Lebaron, P; Binet, M

    2015-05-01

    To develop a rapid and sensitive method to quantify viable Legionella spp. in cooling tower water samples. A rapid, culture-based method capable of quantifying as few as 600 Legionella microcolonies per litre within 2 days in industrial waters was developed. The method combines a short cultivation step of microcolonies on GVPC agar plate, specific detection of Legionella cells by a fluorescent in situ hybridization (FISH) approach, and a sensitive enumeration using a solid-phase cytometer. Following optimization of the cultivation conditions, the qualitative and quantitative performance of the method was assessed and the method was applied to 262 nuclear power plant cooling water samples. The performance of this method was in accordance with the culture method (NF-T 90-431) for Legionella enumeration. The rapid detection of viable Legionella in water is a major concern to the effective monitoring of this pathogenic bacterium in the main water sources involved in the transmission of legionellosis infection (Legionnaires' disease). The new method proposed here appears to be a robust, efficient and innovative means for rapidly quantifying cultivable Legionella in cooling tower water samples within 48 h. © 2015 The Society for Applied Microbiology.

  11. Effect of Cooling Rate on Microstructure and Centerline Segregation of a High-Strength Steel for Shipbuilding

    Science.gov (United States)

    Ye, Qibin; Liu, Zhenyu; Wang, Guodong

    Ultra-fast cooling (UFC) has been increasingly applied in industry, but accompanying with great changes of rolling strategy. It is therefore of importance to evaluate the characteristics of steels produced by UFC as compared to those processed by conventional accelerated cooling (ACQ. The present study examines the microstructure through thickness and centerline segregation of solute elements between UFC and ACC steels, both of which were rolled at a final rolling temperature at around non-recrystallized temperature. UFC steel showed the pronounced microstructural transition from lath-type bainite with Widmanstätten ferrite at subsurface to acicular ferrite in an average size of 5 µm dispersed with degenerate pearlite in the interior. In contrast, ACC steel had the homogeneous microstructure through the thickness, which was distinguished with coarser polygonal ferrite grains and pearlite nodules. Moreover, the centerline segregation was significantly suppressed by applying UFC at a higher cooling rate of 40 K/s compared to 17K/s for ACC steel. The significant differences in the microstructure and centerline segregation caused by various cooling rate is discussed from the view of γ→α transformation.

  12. A slow cooling rate of indomethacin melt spatially confined in microcontainers increases the physical stability of the amorphous drug without influencing its biorelevant dissolution behaviour

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    /min, whereas cracks and an uneven surface were observed when cooling at rates of 23 and 36 K/min. The uneven surface is hypothesised to be the main reason for the lower physical stability, as the cracks could act as nucleation sites for crystal growth. The rate of cooling was not seen to have any effect...

  13. The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere.

    Science.gov (United States)

    Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang

    2012-11-01

    It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere

  14. The effects of concentration and heating-cooling rate on rheological properties of Plantago lanceolata seed mucilage

    DEFF Research Database (Denmark)

    Hesarinejad, Mohammad Ali; Sami Jokandan, Maryam; Mohammadifar, Mohammad Amin

    2017-01-01

    In this study, the effect of concentration (0.5, 1, 1.5 and 2%) and heating-cooling rate (1, 5 and 10 °C min−1) on the rheological properties of Plantago lanceolata seed mucilage (PLSM) solutions were investigated. It was observed that the gum dispersions exhibited viscoelastic properties under...... information. The results revealed that PLSM had high total sugar content (87.35%), and it is likely an arabinoxylomannan-type polysaccharide....

  15. Influence of cooling rate on structural and magnetic properties of (Fe78Nb8B141-xTbx alloys

    Directory of Open Access Journals (Sweden)

    G. Ziółkowski

    2017-05-01

    Full Text Available In the presented work we are focused on the influence of cooling rate on structural and magnetic properties of (Fe78Nb8B141-xTbx (x = 0.08, 0.1, 0.12 nanocrystalline bulk alloys. The samples were fabricated using the vacuum suction technique with different cooling rates controlled by different sample diameters (from 0.5 to 1.5 mm. The increased Nb content leads to the formation of specific microstructure and allows obtaining ultra-high coercive alloys just after casting without any additional treatment. The coercivity exceeds 8.6 T at the room temperature in case of optimal chemical and preparation conditions (x = 0.12, d = 0.5 mm and 5.6 T for x = 0.1. The impact of Tb content as well as the cooling rate on magnetic and structural (XRD, SEM, MFM properties is widely discussed in the context of reduction of rare earths in the RE-based permanent magnets.

  16. Effects of cooling rate on vermicular graphite percentage in a brake drum produced by one-step cored wire injection

    Directory of Open Access Journals (Sweden)

    Yu-shuang Feng

    2015-09-01

    Full Text Available In this research, a vermicular graphite cast iron brake drum was produced by cored wire injection in a one-step method. Silica sand and low-density alumina-silicate ceramic were used as molding materials in order to investigate the effect of cooling rate on percentage of vermicular graphite and mechanical properties of the brake drum casting. Several thermocouples were inserted into the casting in the desired positions to measure the temperature change. By means of one-step cored wire injection, the two residual concentrations of Mg and RE were effectively controlled in the ranges of 0.013%-0.017% and 0.019%-0.025%, respectively, which are crucial for the production of vermicular graphite cast iron and the formation of vermicular graphite. In addition, the cooling rate had a significant effect on the vermicular graphite percentage. In the case of the silica mold brake drum casting, there was an obvious difference in the cooling rate with the wall change, leading to a change in vermicular graphite percentage from 70.8% to 90%. In the low-density alumina-silicate ceramic mold casting, no obvious change in temperature was detected by the thermocouples and the percentage of the vermicular graphite was stable at 85%. Therefore, the vermicular graphite cast iron brake drum with a better combination of mechanical properties could be obtained.

  17. A GTA Welding Cooling Rate Analysis on Stainless Steel and Aluminum Using Inverse Problems

    Directory of Open Access Journals (Sweden)

    Elisan dos Santos Magalhaes

    2017-01-01

    Full Text Available This work presents an analysis of the thermal influence of the heat transfer by convection and radiation during GTA (gas tungsten arc welding process. The authors’ in-house C++ previously-developed code was modified to calculate the amount of heat transfer by convection and radiation. In this software, an iterative Broydon-Fletcher-Goldfarb-Shanno (BFGS inverse method was applied to estimate the amount of heat delivered to the plate when the appropriate sensitivity criteria were defined. The methodology was validated by accomplishing lab-controlled experiments on stainless steel AISI 304L and aluminum 6065 T5 plates. Due to some experimental singularities, the forced thermal convection induced by the electromagnetic field and thermal-capillary force were disregarded. Significant examples of these singularities are the relatively small weld bead when compared to the sample size and the reduced time of the welding process. In order to evaluate the local Nusselt number, empirical correlations for flat plates were used. The thermal emission was a dominant cooling effect on the aluminum cooling. However, it did not present the same behavior as the stainless steel samples. The study found that the heat losses by convection and radiation of the weld pool do not affect the cooling process significantly.

  18. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tilocca, Antonio [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2013-09-21

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ∼10{sup 3} atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their

  19. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-10-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  20. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    Science.gov (United States)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  1. Thermal Disk Winds in X-Ray Binaries: Realistic Heating and Cooling Rates Give Rise to Slow, but Massive, Outflows

    Science.gov (United States)

    Higginbottom, N.; Proga, D.; Knigge, C.; Long, K. S.

    2017-02-01

    A number of X-ray binaries exhibit clear evidence for the presence of disk winds in the high/soft state. A promising driving mechanism for these outflows is mass loss driven by the thermal expansion of X-ray heated material in the outer disk atmosphere. Higginbottom & Proga recently demonstrated that the properties of thermally driven winds depend critically on the shape of the thermal equilibrium curve, since this determines the thermal stability of the irradiated material. For a given spectral energy distribution, the thermal equilibrium curve depends on an exact balance between the various heating and cooling mechanisms at work. Most previous work on thermally driven disk winds relied on an analytical approximation to these rates. Here, we use the photoionization code cloudy to generate realistic heating and cooling rates which we then use in a 2.5D hydrodynamic model computed in ZEUS to simulate thermal winds in a typical black hole X-ray binary. We find that these heating and cooling rates produce a significantly more complex thermal equilibrium curve, with dramatically different stability properties. The resulting flow, calculated in the optically thin limit, is qualitatively different from flows calculated using approximate analytical rates. Specifically, our thermal disk wind is much denser and slower, with a mass-loss rate that is a factor of two higher and characteristic velocities that are a factor of three lower. The low velocity of the flow—{v}\\max ≃ 200 km s-1—may be difficult to reconcile with observations. However, the high mass-loss rate—15 × the accretion rate—is promising, since it has the potential to destabilize the disk. Thermally driven disk winds may therefore provide a mechanism for state changes.

  2. Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event

    NARCIS (Netherlands)

    Wagner, F.; Aaby, B.; Visscher, H.

    2002-01-01

    By applying the inverse relation between numbers of leaf stomata and atmospheric CO2 concentration, stomatal frequency analysis of fossil birch leaves from lake deposits in Denmark reveals a century-scale CO2 change during the prominent Holocene cooling event that occurred in the North Atlantic

  3. Rapid Cooling Of The Neutron Star In The Quiescent Super-Eddington Transient XTE J1701-462

    NARCIS (Netherlands)

    Fridriksson, Joel K.; Homan, J.; Wijnands, R.; Mendez, M.; Cackett, E. M.; Altamirano, D.; Belloni, T. M.; Brown, E. F.; Degenaar, N.; Lewin, W. H. G.

    2010-01-01

    In the past decade the observing of cooling neutron star transients after long-duration (year or longer) outbursts has entered as a new approach to constraining the properties of matter inside neutron stars. We present Chandra and XMM-Newton observations of the super-Eddington neutron star transient

  4. Rapid Cooling of the Neutron Star in the Quiescent Super-Eddington Transient XTE J1701--462

    NARCIS (Netherlands)

    Fridriksson, Joel K.; Homan, Jeroen; Wijnands, Rudy; Méndez, Mariano; Cackett, Edward M.; Altamirano, Diego; Belloni, Tomaso M.; Brown, Edward F.; Degenaar, Nathalie; Lewin, Walter H. G.

    2009-01-01

    In the past decade the observing of cooling neutron star transients after long-duration (year or longer) outbursts has entered as a new approach to constraining the properties of matter inside neutron stars. We present Chandra and XMM-Newton observations of the super-Eddington neutron star transient

  5. Groundmass crystallisation and cooling rates of lava-like ignimbrites: the Grey's Landing ignimbrite, southern Idaho, USA

    Science.gov (United States)

    Ellis, B. S.; Cordonnier, B.; Rowe, M. C.; Szymanowski, D.; Bachmann, O.; Andrews, G. D. M.

    2015-10-01

    Constraining magmatic and eruptive processes is key to understanding how volcanoes operate. However, reconstructing eruptive and pre-eruptive processes requires the ability to see through any post-eruptive modification of the deposit. The well-preserved Grey's Landing ignimbrite from the central Snake River Plain provides an opportunity to systematically investigate the post-eruptive processes occurring through a single deposit sheet. Despite overall compositional homogeneity in both bulk and glass compositions, the Grey's Landing ignimbrite does preserve differences in the abundance of Li in plagioclase crystals which are strongly associated with the host lithology. Li abundances in plagioclase from the quickly cooled upper and basal vitrophyres are typically low (average 5 ppm, n = 262) while plagioclase from the microcrystalline interior of the deposit has higher Li contents (average 33 ppm, n = 773). Given that no other trace elemental parameter in plagioclase varies, we interpret the variability in Li to reflect a post-depositional process. Groundmass crystallisation of a rhyolite like Grey's Landing requires ˜50 % crystallisation of sanidine and variable amounts of a silica-rich phase (quartz, tridymite, cristobalite) and plagioclase to satisfy mass balance. We suggest the low affinity of Li for sanidine causes migration of groundmass Li into plagioclase during crystallisation. Even within the microcrystalline interior of the deposit, the morphology of the groundmass varies. The more marginal, finer-grained regions are dominated by cristobalite as the SiO2-rich phase while tridymite and quartz are additionally found in the more slowly cooled, coarser-grained portions of thick sections of the ignimbrite. Numerical models of cooling and crystallisation tested against field observations indicate that the groundmass crystallisation occurred relatively rapidly following emplacement (a maximum of a few years where the ignimbrite is thickest). These numerical

  6. Production of bovine cloned embryos with donor cells frozen at a slow cooling rate in a conventional freezer (20 C)

    Science.gov (United States)

    Chacon, L.; Gomez, M.C.; Jenkins, J.A.; Leibo, S.P.; Wirtu, G.; Dresser, B.L.; Pope, C.E.

    2009-01-01

    Summary Usually, fibroblasts are frozen in dimethyl sulphoxide (DMSO, 10% v/v) at a cooling rate of 1 C/min in a low-temperature (80 C) freezer (LTF) before storage in liquid nitrogen (LN2); however, a LTF is not always available. The purpose of the present study was to evaluate apoptosis and viability of bovine fibroblasts frozen in a LTF or conventional freezer (CF; 20 C) and their subsequent ability for development to blastocyst stage after fusion with enucleated bovine oocytes. Percentages of live cells frozen in LTF (49.5%) and CF (50.6%) were similar, but significantly less than non-frozen control (88%). In both CF and LTF, percentages of live apoptotic cells exposed to LN2 after freezing were lower (4% and 5%, respectively) as compared with unexposed cells (10% and 18%, respectively). Cells frozen in a CF had fewer cell doublings/24 h (0.45) and required more days (9.1) to reach 100% confluence at the first passage (P) after thawing and plating as compared with cells frozen in a LTF (0.96 and 4.0 days, respectively). Hypoploidy at P12 was higher than at P4 in cells frozen in either a CF (37.5% vs. 19.2%) or in a LTF (30.0% vs. 15.4%). A second-generation cryo-solution reduced the incidence of necrosis (29.4%) at 0 h after thawing as compared with that of a first generation cryo-solution (DMEM + DMSO, 60.2%). The percentage of apoptosis in live cells was affected by cooling rate (CF = 1.9% vs. LFT = 0.7%). Development of bovine cloned embryos to the blastocyst stage was not affected by cooling rate or freezer type. ?? 2009 Cambridge University Press.

  7. Net Reaction Rate and Neutrino Cooling Rate for the Urca Process in Departure from Chemical Equilibrium in the Crust of Fast-accreting Neutron Stars

    Science.gov (United States)

    Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping

    We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.

  8. INFLUENCE OF THE COOLING RATE AND THE BLEND RATIO ON THE PHYSICAL STABILTIY OF CO-AMORPHOUS NAPROXEN/INDOMETHACIN

    DEFF Research Database (Denmark)

    Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian

    2016-01-01

    and the blend ratio play major roles with regard to the resulting physical stability. Therefore, in the present study, co-amorphous naproxen-indomethacin (NAP/IND) was prepared by melt-quenching at three different cooling rates and at ten different NAP/IND blend ratios. The samples were analyzed using XRPD...... the optimal naproxen molar fraction led to significant recrystallization during storage. Either naproxen or γ-indomethacin recrystallized until a naproxen molar fraction of about 0.6 in the residual co-amorphous phase was reached again. In conclusion, the physical stability of co-amorphous NAP/IND may...

  9. The influence of cooling rate and Fe/Cr content on the evolution of Fe-rich compounds in a secondary Al-Si-Cu diecasting alloy

    Science.gov (United States)

    Fabrizi, A.; Timelli, G.

    2016-03-01

    This study investigates the morphological evolution of primary α-Al(Fe,Mn,Cr)Si phase in a secondary Al-Si-Cu alloy with respect to the initial Fe and Cr contents as well as to the cooling rate. The solidification experiments have been designed in order to cover a wide range of cooling rates, and the Fe and Cr contents have been varied over two levels. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes occurring at different experimental conditions. The morphological evolution of the α-Fe phase has been also analysed by observing deep etched samples. By changing the cooling rate, α-Al15(Fe,Mn,Cr)3Si2 dodecahedron crystals, as well as Chinese- script, branched structures and dendrites form, while primary coarse β-Al5(Fe,Mn)Si needles appear in the alloy with the highest Fe content at low cooling rates.

  10. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model.

    Science.gov (United States)

    Sun, Guanghao; Matsui, Takemi

    2015-01-01

    Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s.

  11. Effect of soda lime flux on evaluation of the critical cooling rate of Pd82Si18 amorphous ribbon

    Directory of Open Access Journals (Sweden)

    Xutong Wang

    2017-09-01

    Full Text Available Herein, we propose an experimental method based on the Barandiaran–Colmenero relation for evaluating the critical cooling rate (Rc of Pd82Si18 amorphous ribbon. In this method, to determine the inherent Rc of glass ribbon, heterogeneous nucleation is suppressed during the differential scanning calorimeter measurement process by adding soda lime flux. The Rc values of Pd82Si18 amorphous ribbon were determined before and after soda lime treatment. The experimental results indicate that the Rc values of the treated and non-treated ribbon are 10.27 and 148.39 K/s, respectively. The Rc value of the treated sample is in good agreement with a previous experimental result. Johnson’s relation gives Rc = 22.86 K/s, which confirms the validity of the present results. The results indicate that soda lime flux greatly suppresses heterogeneous nucleation during the measurement process and the inherent Rc of Pd82Si18 is revised. This method provides a new way for evaluating the critical cooling rate by suppressing heterogeneous nucleation.

  12. The influence of cooling rate on the accuracy of normoxic polymer gel dosimeters

    Science.gov (United States)

    DeDeene, Y.; Pittomvils, G.; Visalatchi, S.

    2007-05-01

    Polymer gel dosimeters offer a wide range of applications in the three-dimensional verification of complex radiation dose distributions such as in intensity-modulated radiotherapy (IMRT). With the release of polymer gel dosimeters that can be fabricated in normal atmospheric ('normoxic') conditions, the gel manufacturing process has been significantly simplified. Gel dosimeters are calibrated by use of a series of calibration vials irradiated with known doses or by use of a calibration phantom with a known dose distribution. The overall accuracy of the polymer gel dosimeters is determined by different dosimetric properties. In this study, we show the influence of the temperature history during storage of the gel dosimeter on the dose response curve for two gel dosimeters using the monomers acrylamide/N,N'-methylene-bis-acrylamide (nPAG) and methacrylic acid (nMAG) respectively and bis[tetrakis(hydroxymethyl)phosphonium]sulphate (THP) as antioxidant in both gel dosimeters. This study reveals that differences in temperature history after fabrication of normoxic polymer gel dosimeters may compromise the dosimetric accuracy. It was found that the acrylamide based gel dosimeter (nPAG) is less dependent on the post-manufacture temperature history than the methacrylic acid based gel dosimeter (nMAG). The importance of an equal temperature history for the gel dosimeter and calibration vials is emphasized by this study. A reproducibility study has also been performed on the nPAG gel dosimeter when additional efforts are made to control the temperature changes upon cooling.

  13. Determination of rapid chlorination rate constants by a stopped-flow spectrophotometric competition kinetics method.

    Science.gov (United States)

    Song, Dean; Liu, Huijuan; Qiang, Zhimin; Qu, Jiuhui

    2014-05-15

    Free chlorine is extensively used for water and wastewater disinfection nowadays. However, it still remains a big challenge to determine the rate constants of rapid chlorination reactions although competition kinetics and stopped-flow spectrophotometric (SFS) methods have been employed individually to investigate fast reaction kinetics. In this work, we proposed an SFS competition kinetics method to determine the rapid chlorination rate constants by using a common colorimetric reagent, N,N-diethyl-p-phenylenediamine (DPD), as a reference probe. A kinetic equation was first derived to estimate the reaction rate constant of DPD towards chlorine under a given pH and temperature condition. Then, on that basis, an SFS competition kinetics method was proposed to determine directly the chlorination rate constants of several representative compounds including tetracycline, ammonia, and four α-amino acids. Although Cl2O is more reactive than HOCl, its contribution to the overall chlorination kinetics of the test compounds could be neglected in this study. Finally, the developed method was validated through comparing the experimentally measured chlorination rate constants of the selected compounds with those obtained or calculated from literature and analyzing with Taft's correlation as well. This study demonstrates that the SFS competition kinetics method can measure the chlorination rate constants of a test compound rapidly and accurately. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Investigating cryoinjury using simulations and experiments. 1: TF-1 cells during two-step freezing (rapid cooling interrupted with a hold time).

    Science.gov (United States)

    Ross-Rodriguez, L U; Elliott, J A W; McGann, L E

    2010-08-01

    There is significant interest in designing a cryopreservation protocol for hematopoietic stem cells (HSC) which does not rely on dimethyl sulfoxide (Me(2)SO) as a cryoprotectant. Computer simulations that describe cellular osmotic responses during cooling and warming can be used to optimize the viability of cryopreserved HSC; however, a better understanding of cellular osmotic parameters is required for these simulations. As a model for HSC, the erythroleukemic human cell line TF-1 was used in this study. Simulations, based on the osmotic properties of TF-1 cells and on the solution properties of the intra- and extracellular compartments, were used to interpret cryoinjury associated with a two-step cryopreservation protocol. Calculated intracellular supercooling was used as an indicator of cryoinjury related to intracellular ice formation. Simulations were applied to the two-step cooling protocol (rapid cooling interrupted with a hold time) for TF-1 cells in the absence of Me(2)SO or other cryoprotectants and optimized by minimizing the indicator of cryoinjury. A comparison of simulations and experimental measurements of membrane integrity supports the concept that, for two-step cooling, increasing intracellular supercooling is the primary contributor to potential freezing injury due to the increase in the likelihood of intracellular ice formation. By calculating intracellular supercooling for each step separately and comparing these calculations with cell recovery data, it was demonstrated that it is not optimal simply to limit overall supercooling during two-step freezing procedures. More aptly, appropriate limitations of supercooling differ from the first step to the second step. This study also demonstrates why high cell recovery after cryopreservation could be achieved in the absence of traditional cryoprotectants. (c) 2010 Elsevier Inc. All rights reserved.

  15. Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization.

    Science.gov (United States)

    Chee Loong, Teo; Idris, Ani

    2014-12-01

    Biodiesel with improved yield was produced from microalgae biomass under simultaneous cooling and microwave heating (SCMH). Nannochloropsis sp. and Tetraselmis sp. which were known to contain higher lipid species were used. The yield obtained using this novel technique was compared with the conventional heating (CH) and microwave heating (MWH) as the control method. The results revealed that the yields obtained using the novel SCMH were higher; Nannochloropsis sp. (83.33%) and Tetraselmis sp. (77.14%) than the control methods. Maximum yields were obtained using SCMH when the microwave was set at 50°C, 800W, 16h of reaction with simultaneous cooling at 15°C; and water content and lipid to methanol ratio in reaction mixture was kept to 0 and 1:12 respectively. GC analysis depicted that the biodiesel produced from this technique has lower carbon components (<19 C) and has both reasonable CN and IV reflecting good ignition and lubricating properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Numerical studies of fast ion slowing down rates in cool magnetized plasma using LSP

    Science.gov (United States)

    Evans, Eugene S.; Kolmes, Elijah; Cohen, Samuel A.; Rognlien, Tom; Cohen, Bruce; Meier, Eric; Welch, Dale R.

    2016-10-01

    In MFE devices, rapid transport of fusion products from the core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. The first-orbit trajectories of most fusion products from small field-reversed configuration (FRC) devices will traverse the SOL, allowing those particles to deposit their energy in the SOL and be exhausted along the open field lines. Thus, the fast ion slowing-down time should affect the energy balance of an FRC reactor and its neutron emissions. However, the dynamics of fast ion energy loss processes under the conditions expected in the FRC SOL (with ρe CPU time for each simulation. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  17. Field trial of three different Plasmodium vivax-detecting rapid diagnostic tests with and without evaporative cool box storage in Afghanistan

    Directory of Open Access Journals (Sweden)

    Mohammad Nader

    2011-06-01

    Full Text Available Abstract Background Accurate parasitological diagnosis of malaria is essential for targeting treatment where more than one species coexist. In this study, three rapid diagnostic tests (RDTs (AccessBio CareStart (CSPfPan, CareStart PfPv (CSPfPv and Standard Diagnostics Bioline (SDBPfPv were evaluated for their ability to detect natural Plasmodium vivax infections in a basic clinic setting. The potential for locally made evaporative cooling boxes (ECB to protect the tests from heat damage in high summer temperatures was also investigated. Methods Venous blood was drawn from P. vivax positive patients in Jalalabad, Afghanistan and tested against a panel of six RDTs. The panel comprised two of each test type; one group was stored at room temperature and the other in an ECB. RDT results were evaluated against a consensus gold standard based on two double-read reference slides and PCR. The sensitivity, specificity and a measure of global performance for each test were determined and stratified by parasitaemia level and storage condition. Results In total, 306 patients were recruited, of which 284 were positive for P. vivax, one for Plasmodium malariae and none for Plasmodium falciparum; 21 were negative. All three RDTs were specific for malaria. The sensitivity and global performance index for each test were as follows: CSPfPan [98.6%, 95.1%], CSPfPv [91.9%, 90.5%] and SDBPfPv [96.5%, 82.9%], respectively. CSPfPv was 16% less sensitive to a parasitaemia below 5,000/μL. Room temperature storage of SDBPfPv led to a high proportion of invalid results (17%, which reduced to 10% in the ECB. Throughout the testing period, the ECB maintained ~8°C reduction over ambient temperatures and never exceeded 30°C. Conclusions Of the three RDTs, the CSPfPan test was the most consistent and reliable, rendering it appropriate for this P. vivax predominant region. The CSPfPv test proved unsuitable owing to its reduced sensitivity at a parasitaemia below 5,000/

  18. Assessment of external heat transfer coefficient during oocyte vitrification in liquid and slush nitrogen using numerical simulations to determine cooling rates.

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2012-01-01

    In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.

  19. An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate

    Directory of Open Access Journals (Sweden)

    Wuseong You

    2017-12-01

    Full Text Available In this paper, we designed and analyzed advanced sodium-cooled fast reactor cores using uranium-free metallic fuels for maximizing burning rate of transuranics (TRU nuclides from PWR spent fuels. It is well known that the removal of fertile nuclides such as 238U from fuels in liquid metal cooled fast reactor leads to the degradation of important safety parameters such as the Doppler coefficient, coolant void worth, and delayed neutron fraction. To resolve the degradation of the Doppler coefficient, we considered adding resonant nuclides to the uranium-free metallic fuels. The analysis results showed that the cores using uranium-free fuels loaded with tungsten instead of uranium have a significantly lower burnup reactivity swing and more negative Doppler coefficients than the core using uranium-free fuels without resonant nuclides. In addition, we considered the use of axially central B4C absorber region and moderator rods to further improve safety parameters such as sodium void worth, burnup reactivity swing, and the Doppler coefficient. The results of the analysis showed that the final design core can consume ~353 kg per cycle and satisfies self-controllability under unprotected accidents. The fuel cycle analysis showed that the PWR–SFR coupling fuel cycle option drastically reduces the amount of waste going to repository and the SFR burner can consume the amount of TRUs discharged from 3.72 PWRs generating the same electricity.

  20. Insight into the Physical and Dynamical Processes that Control Rapid Increases in Total Flash Rate

    Science.gov (United States)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2015-01-01

    Rapid increases in total lightning (also termed "lightning jumps") have been observed for many decades. Lightning jumps have been well correlated to severe and hazardous weather occurrence. The main focus of lightning jump work has been on the development of lightning algorithms to be used in real-time assessment of storm intensity. However, in these studies it is typically assumed that the updraft "increases" without direct measurements of the vertical motion, or specification of which updraft characteristic actually increases (e.g., average speed, maximum speed, or convective updraft volume). Therefore, an end-to-end physical and dynamical basis for coupling rapid increases in total flash rate to increases in updraft speed and volume must be understood in order to ultimately relate lightning occurrence to severe storm metrics. Herein, we use polarimetric, multi-Doppler, and lightning mapping array measurements to provide physical context as to why rapid increases in total lightning are closely tied to severe and hazardous weather.

  1. Rapid prediction of long-term rates of contaminant desorption from soils and sediments.

    Science.gov (United States)

    Johnson, M D; Weber, W J

    2001-01-15

    A method using heated and superheated (subcritical) water is described for rapid prediction of long-term desorption rates from contaminated geosorbents. Rates of contaminant release are measured at temperatures between 75 and 150 degrees C using a dynamic water desorption technique. The subcritical desorption rate data are then modeled to calculate apparent activation energies, and these activation energies are used to predict desorption behaviors at any desired ambient temperature. Predictions of long-term release rates based on this methodology were found to correlate well with experimental 25 degrees C desorption data measured over periods of up to 640 days, even though the 25 degrees C desorption rates were observed to vary by up to 2 orders of magnitude for different geosorbent types and initial solid phase contaminant loading levels. Desorption profiles measured under elevated temperature and pressure conditions closely matched those at 25 degrees C and ambient pressure, but the time scales associated with the high-temperature measurements were up to 3 orders of magnitude lower. The subcritical water technique rapidly estimates rates of desorption-resistant contaminant release as well as those for more labile substances. The practical implications of the methodology are significant because desorption observed under field conditions and ambient temperatures typically proceeds over periods of months or years, while the high temperature experiments used for prediction of such field desorption phenomena can be completed within periods of only hours or days.

  2. Influence of Cooling on the Glycolysis Rate and Development of PSE (Pale, Soft, Exudative Meat

    Directory of Open Access Journals (Sweden)

    Mayka Reghiany Pedrão

    2015-04-01

    Full Text Available The aim of this work was to evaluate pH values fall rate in chicken breast meat under commercial refrigeration processing conditions and the development of PSE (pale, soft, exudative meat. Broiler breast samples from the Cobb breed, both genders, at 47 days of age (n = 100 were taken from refrigerated carcasses (RS immersed in water and ice in a tank chilled at 0°C (±2. pH and temperature (T values were recorded at several periods throughout refrigeration in comparison to samples left at room T as control (CS. The ultimate pH (pHu value of 5.86 for RS carcasses were only reached at 11°C after 8.35 h post mortem (PM while, for CS samples, pHu value was 5.94 at 22°C after 4.08 h PM. Thus, under commercial refrigeration conditions, the glycolysis rate was retarded by over 4.0 h PM and the breast meat color was affected. At 24.02 h PM, PSE meat incidence was 30% while for CS, meat remained dark and PSE meat was not detected. Results show retardation in the glycolysis rate and PSE meat development was promoted by the refrigeration treatment when compared with samples stored at processing room temperature.

  3. Rapid rates of soil production in the western Southern Alps, New Zealand

    Science.gov (United States)

    Larsen, I. J.; Almond, P. C.; Eger, A.; Stone, J. O.; Malcolm, B.; Montgomery, D. R.

    2012-12-01

    Quantifying rates of soil production is necessary for determining the relative magnitude of the processes that drive the evolution of mountain topography and for assessing proposed links among tectonic uplift, erosion, weathering, and global biogeochemical cycles. However, little is known about the role soil production plays in the denudation of rapidly uplifting mountains. We addressed this problem by sampling soil and river sediment from five catchments in the rapidly uplifting and high rainfall portion of the western Southern Alps, New Zealand. Soils were sampled from ridgetops with subalpine forest and dense alpine shrubland vegetation. Results from 11 measurements of in situ-produced 10Be in soils from three catchments show that rock is rapidly converted to soil, with the highest measured rate approaching 2 mm yr-1. Soil production rates at two of the ridgetops decline exponentially as soil depth increases, consistent with previously proposed soil production functions. The third site exhibits an ambiguous soil production rate-depth relationship. The y-intercepts, or maximum predicted soil production rate where the soil depth is equal to zero, at the sites with well-defined soil production functions are 7-9 times greater than those in other tectonically-active mountains and 1-2 orders of magnitude greater than values from drier and more tectonically-quiescent landscapes, indicating that rock can be converted to soil at substantially higher rates than previously recognized. The maximum predicted soil production rate values are 1.5 to 2.5 times lower than watershed-scale denudation rates inferred from in situ 10Be concentrations in stream sediment, indicating that soil production rates approach, but do not reach catchment-averaged values, which also reflect denudation by bedrock landslides. Ongoing work on additional samples will lead to a refinement of the soil production functions and provide rates for two additional sites. In-progress measurement of zirconium

  4. Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air

    Science.gov (United States)

    Kashiwaya, Yoshiaki

    2017-10-01

    A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure ( P_{{{O}2 }} ) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.

  5. Effect of cryoprotectants and cooling rates on fertility potential of sperm in the giant freshwater prawn, Macrobrachium rosenbergii (De Man).

    Science.gov (United States)

    Valentina Claudet, P; Narasimman, Selvakumar; Natesan, Munuswamy

    2016-08-01

    This study evaluates freezing protocol with suitable cryoprotectants and their effects on the fertility potential of sperm in the cryopreserved spermatophores of Macrobrachium rosenbergii. Spermatophores, collected using electroejaculation, were suspended in dimethyl sulfoxide (DMSO), propylene glycol (PG), methanol, glycerol and ethylene glycol (EG) at different concentrations (10, 15 & 20% v/v), prepared in sterile-filtered pond water. Based on the cryoprotectant toxicity assay, DMSO and PG were used individually as well as in combination with three freezing protocols (i.e. -1.5, -3 and -5°C/min and to final temperature of -39°C) and plunged into liquid nitrogen at -196°C. After 90 days of storage (-196°C) thawing was done at 35°C in a water bath for 1min. Results showed that fresh and cryopreserved spermatophores held for 90 days registered sperm viability of 91.4±2.9% and 50.4±1.9% respectively. Further, fertility potential of sperm was assessed based on acrosome reactivity using calcium ionophore (A23187). Observations indicated that cryopreserved sperm registered 28.3±2.2% of acrosome reactivity compared to freshly collected spermatophores (85.3±2.5%). Thus, one-step slow cooling rate of -1.5°C/min between 27°C and -39°C stored in liquid nitrogen at -196°C with DMSO (10%)+PG (10%) seems to be amenable for cryopreservation of spermatophores, compared to other cooling rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Crystal Phases Formed in a CaO-Fe2O3 System Under a High Cooling Rate in Air

    Science.gov (United States)

    Kashiwaya, Yoshiaki

    2017-12-01

    A CaO-Fe2O3 system is a fundamental binary system for the iron ore sintering process. Although the basic reactions have been investigated since the 1960s, melting and solidification caused by the combustion of coke results in an unstable state owing to extreme temperature variations. In this study, using a hot thermocouple method, samples of 10 pct CaO-90 pct Fe2O3 and 20 pct CaO-80 pct Fe2O3 were melted on a thermocouple and quenched with several techniques. The obtained samples were precisely examined by XRD. It was found that the sample containing 10 pct CaO-90 pct Fe2O3 changed to 10 pct CaO-13 pct FeO-77 pct Fe2O3 under an oxygen partial pressure ( P_{{{O}2 }} ) of 0.21 during melting. For the 10 pct CaO sample, the crystal phases found at a low cooling rate (509 K/s) were WFss, C4WF8 (C: CaO, W: FeO, F: Fe2O3), and C2W4F9. When the sample composition was 20 pct CaO, the precipitated crystal phases were C4WF4, C4F7, and C4WF8. On the other hand, the crystal phases for high cooling rates (1590 and 7900 K/s) with 10 pct CaO were WFss (solid solution of WF and F), F, and C2W4F9. The formation of the equilibrium phases WFss, F, C4WF4, and C4WF8 can be understood by examining the isothermal section of the phase diagrams, while the unstable phases C2W4F9 and C4F7 are discussed on the basis of the reactions under an equilibrium state.

  7. Influence of hot plastic deformation and cooling rate on martensite and bainite start temperatures in 22MnB5 steel

    Energy Technology Data Exchange (ETDEWEB)

    Nikravesh, M., E-mail: nikravesh@yahoo.com [Department of Material Science and Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of); Naderi, M. [Department of Mining and Metallurgy, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Akbari, G.H. [Department of Material Science and Engineering, Shahid Bahonar University, Kerman (Iran, Islamic Republic of)

    2012-04-01

    Highlights: Black-Right-Pointing-Pointer Reduction of cooling rate, can cause to increase or decrease M{sub s} and M{sub f}. Black-Right-Pointing-Pointer 40% hot plastic deformation hindered the martensitic transformation. Black-Right-Pointing-Pointer Hot plastic deformation, caused to decrease M{sub f} and M{sub s}, while B{sub s} increased. Black-Right-Pointing-Pointer The critical cooling rate increased 40 Degree-Sign C/s due to apply 40% hot deformation. - Abstract: During hot stamping process, hot forming, cooling and phase transformations are performed in a single step. As a matter of fact, multifunctional phenomena happen and affect each other. Among these phenomena, martensitic and bainitic transformations have the greatest importance. In the current research, the start temperatures of martensite and bainite of 22MnB5 boron steel have been measured in undeformed and 40% deformed conditions, and in various cooling rates from 0.4 Degree-Sign C/s to 100 Degree-Sign C/s by means of deformation dilatometer. It is concluded that, reduction of cooling rate, could bring about an increase or decrease in M{sub s} and M{sub f}, depending on other phases formation before martensite. Also, hot plastic deformation, hindered the martensitic transformation and decreased M{sub f} and M{sub s} especially at lower cooling rates, while B{sub s} increased. Furthermore, the critical cooling rate, increased about 40 Degree-Sign C/s by applying 40% hot plastic deformation.

  8. Implications for Metallographic Cooling Rates, Derived from Fine-Scale Analytical Traverses Across Kamacite, Taenite, and Tetrataenite in the Butler Iron Meteorite

    Science.gov (United States)

    Jones, J. H.; Ross, D. K.; Chabot, N. L.; Keller, L. P.

    2016-01-01

    The "M-shaped" Ni concentrations across Widmanstatten patterns in iron meteorites, mesosiderites, and ordinary chondrites are commonly used to calculate cooling rates. As Ni-poor kamacite exolves from Ni-rich taenite, Ni concentrations build up at the kamacite-taenite interface because of the sluggish diffusivity of Ni. Quantitative knowledge of experimentally-determined Ni diffusivities, coupled with the shape of the M-profile, have been used to allow calculation of cooling rates that pertained at low temperatures, less than or equal to 500 C. However, determining Ni metallographic cooling rates are challenging, due to the sluggish diffusivity of Ni at low temperatures. There are three potential difficulties in using Ni cooling rates at low temperatures: (i) Ni diffusivities are typically extrapolated from higher-temperature measurements; (ii) Phase changes occur at low temperatures that may be difficult to take into account; and (iii) It appears that Ge in kamacite and taenite has continued to equilibrate (or attempted to equilibrate) at temperatures below those that formed the M-shaped Ni profile. Combining Ni measurements with those of other elements has the potential to provide a way to confirm or challenge Ni-determined cooling rates, as well as provide insight into the partitioning behaviors of elements during the cooling of iron meteorites. Despite these benefits, studies that examine elemental profiles of Ni along with other elements in iron meteorites are limited, often due to the low concentration levels of the other elements and associated analytical challenges. The Butler iron meteorite provides a good opportunity to conduct a multi-element analytical study, due to the higher concentration levels of key elements in addition to Fe and Ni. In this work, we perform combined analysis for six elements in the Butler iron to determine the relative behaviors of these elements during the evolution of iron meteorites, with implications for metallographic cooling

  9. Influence of Cooling on the Glycolysis Rate and Development of PSE (Pale, Soft, Exudative) Meat

    OpenAIRE

    Mayka Reghiany Pedrão; Talita Kato; Adriana Lourenço Soares; Elza Iouko Ida; Fábio Augusto Garcia Coró; Moises Grespan; Fernanda Paião; Massami Shimokomaki

    2015-01-01

    The aim of this work was to evaluate pH values fall rate in chicken breast meat under commercial refrigeration processing conditions and the development of PSE (pale, soft, exudative) meat. Broiler breast samples from the Cobb breed, both genders, at 47 days of age (n = 100) were taken from refrigerated carcasses (RS) immersed in water and ice in a tank chilled at 0°C (±2). pH and temperature (T) values were recorded at several periods throughout refrigeration in comparison to samples left at...

  10. Giant increase in cross-magnetic-field transport rate as an electron-positron plasma cools

    Science.gov (United States)

    Aguirre, F. F.; Ordonez, C. A.

    2017-10-01

    An electron-positron plasma in thermal equilibrium within a uniform magnetic field is studied using a classical trajectory Monte Carlo simulation. The cross-magnetic-field single-particle diffusion coefficient is evaluated as a function of the magnetic field strength and plasma temperature. The transport rate is found to increase by many orders of magnitude as the plasma temperature is lowered, for a magnetic field strength of 1 T. The sharp dependence on temperature is due to electrons and positrons becoming temporarily correlated and drifting across the magnetic field before dissociating.

  11. The impact of increased loading rate on granular media, rapid depth filtration of wastewater.

    Science.gov (United States)

    Williams, Gordon J; Sheikh, Bahman; Holden, Robert B; Kouretas, Tom J; Nelson, Kara L

    2007-11-01

    The impact of loading rate on tertiary filtration of wastewater was studied using a pilot-scale, dual-media, rapid depth filtration system. Loading rates of 12.2, 15.3, 18.3, 21.4, and 24.4m/h were tested on parallel filter columns treating the same coagulated secondary wastewater to determine the impact on removal of turbidity, particles (2-15 microm), total coliform bacteria, Escherichia coli, and MS2 bacteriophage, as well as on the particle deposition profile in the filter bed. Increasing the loading rate from 12.2 to 24.4m/h decreased the removal efficiencies for all metrics. The observed impact of loading rate on particle removal was similar to that predicted by a clean-bed filtration model, although the model significantly underestimated the removal efficiencies of the smaller particles. For two loading rates, 12.2 and 18.3m/h, the effect of coagulant dose was also studied; the negative impact of loading rate on removal efficiency was eliminated by increasing the coagulant dose for the higher loading rate, which also resulted in removal of particles deeper in the filter bed. For all conditions studied, loading rate had no observable impact on the ability to disinfect filter effluents with chloramines. The results of this research indicate that loading rates higher than those typically used in tertiary filtration can produce acceptable effluent quality, and support a regulatory approach based on filter effluent turbidity.

  12. Comparison of heat transfer in liquid and slush nitrogen by numerical simulation of cooling rates for French straws used for sperm cryopreservation.

    Science.gov (United States)

    Sansinena, M; Santos, M V; Zaritzky, N; Chirife, J

    2012-05-01

    Slush nitrogen (SN(2)) is a mixture of solid nitrogen and liquid nitrogen, with an average temperature of -207 °C. To investigate whether plunging a French plastic straw (commonly used for sperm cryopreservation) in SN(2) substantially increases cooling rates with respect to liquid nitrogen (LN(2)), a numerical simulation of the heat conduction equation with convective boundary condition was used to predict cooling rates. Calculations performed using heat transfer coefficients in the range of film boiling confirmed the main benefit of plunging a straw in slush over LN(2) did not arise from their temperature difference (-207 vs. -196 °C), but rather from an increase in the external heat transfer coefficient. Numerical simulations using high heat transfer (h) coefficients (assumed to prevail in SN(2)) suggested that plunging in SN(2) would increase cooling rates of French straw. This increase of cooling rates was attributed to a less or null film boiling responsible for low heat transfer coefficients in liquid nitrogen when the straw is placed in the solid-liquid mixture or slush. In addition, predicted cooling rates of French straws in SN(2) tended to level-off for high h values, suggesting heat transfer was dictated by heat conduction within the liquid filled plastic straw. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Effects of the Cooling Rate on the Plasticity of Pd40.5Ni40.5P19 Bulk Metallic Glasses

    Science.gov (United States)

    Li, Yang; Qiu, Sheng-Bao; Shao, Yang; Yao, Ke-Fu

    2011-11-01

    We prepare Pd40.5Ni40.5P19 glassy samples with purified ingots by copper mold casting at a high cooling rate and by water quenching at a low cooling rate. Both of them exhibit different supercooled liquid regions and multiple glass transition characteristics in their differential scanning calorimetric curves. The plasticity of the glassy sample prepared by copper mold casting is about 5% while that prepared by water quenching is almost zero (0.2%), indicating that cooling rate has influenced the plasticity of glassy alloys. By using high resolution TEM image analysis, it is revealed that there exist characteristic regions with different contrasts in the full glassy samples. The characteristic size is about 20-40 nm for the glassy sample prepared by water quenching and 2-4 nm for the one prepared by copper mold casting. The large difference in the plasticity of the glassy samples prepared by different cooling rates is believed to be related to the difference in the size of the characteristic nanoscale structures. The results indicate that adjusting cooling rate in preparation of glassy samples could modify the thermal and mechanical properties of the glassy alloys.

  14. Effectiveness of eugenol sedation to reduce the metabolic rates of cool and warm water fish at high loading densities

    Science.gov (United States)

    Cupp, Aaron R.; Hartleb, Christopher F.; Fredricks, Kim T.; Gaikowski, Mark P.

    2016-01-01

    Effects of eugenol (AQUI-S®20E, 10% active eugenol) sedation on cool water, yellow perch Perca flavescens (Mitchill), and warm water, Nile tilapia Oreochromis niloticus L. fish metabolic rates were assessed. Both species were exposed to 0, 10, 20 and 30 mg L−1 eugenol using static respirometry. In 17°C water and loading densities of 60, 120 and 240 g L−1, yellow perch controls (0 mg L−1 eugenol) had metabolic rates of 329.6–400.0 mg O2 kg−1 h−1, while yellow perch exposed to 20 and 30 mg L−1 eugenol had significantly reduced metabolic rates of 258.4–325.6 and 189.1–271.0 mg O2 kg−1 h−1 respectively. Nile tilapia exposed to 30 mg L−1 eugenol had a significantly reduced metabolic rate (424.5 ± 42.3 mg O2 kg−1 h−1) relative to the 0 mg L−1 eugenol control (546.6 ± 53.5 mg O2 kg−1 h−1) at a loading density of 120 g L−1 in 22°C water. No significant differences in metabolic rates for Nile tilapia were found at 240 or 360 g L−1 loading densities when exposed to eugenol. Results suggest that eugenol sedation may benefit yellow perch welfare at high densities (e.g. live transport) due to a reduction in metabolic rates, while further research is needed to assess the benefits of eugenol sedation on Nile tilapia at high loading densities.

  15. Enhanced mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joint using two-pass friction stir processing with rapid cooling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Nan, E-mail: xunan@hhu.edu.cn; Bao, Yefeng

    2016-02-08

    In this study, tungsten inert gas (TIG) welded AZ31 magnesium alloy joint was subjected to two-pass rapid cooling friction stir processing (RC-FSP). The main results show that, two-pass RC-FSP causes the significant dissolution of the coarse eutectic β-Mg{sub 17}Al{sub 12} phase into the magnesium matrix and the remarkable grain refinement in the stir zone. The low-hardness region which frequently located at heat-affected zone was eliminated. The stir zone showed ultrafine grains of 3.1 μm, and exhibited a good combination of ultrahigh tensile strength of 284 MPa and large elongation of 7.1%. This work provides an effective strategy to enhance the strength of TIG welded magnesium alloy joint without ductility loss.

  16. Theoretical prediction of the effect of heat transfer parameters on cooling rates of liquid-filled plastic straws used for cryopreservation of spermatozoa.

    Science.gov (United States)

    Sansinen, M; Santos, M V; Zaritzky, N; Baez, R; Chirife, J

    2010-01-01

    Heat transfer plays a key role in cryopreservation of liquid semen in plastic straws. The effect of several parameters on the cooling rate of a liquid-filled polypropylene straw when plunged into liquid nitrogen was investigated using a theoretical model. The geometry of the straw containing the liquid was assimilated as two concentric finite cylinders of different materials: the fluid and the straw; the unsteady-state heat conduction equation for concentric cylinders was numerically solved. Parameters studied include external (convection) heat transfer coefficient (h), the thermal properties of straw manufacturing material and wall thickness. It was concluded that the single most important parameter affecting the cooling rate of a liquid column contained in a straw is the external heat transfer coefficient in LN2. Consequently, in order to attain maximum cooling rates, conditions have to be designed to obtain the highest possible heat transfer coefficient when the plastic straw is plunged in liquid nitrogen.

  17. Thermophoretically enhanced mass transport rates to solid and transpiration-cooled walls across turbulent (law-of-the-wall) boundary layers

    Science.gov (United States)

    Gokoglu, Suleyman A.; Rosner, Daniel E.

    1985-01-01

    Convective-diffusion mass transfer rate predictions are made for both solid wall and transpiration-cooled 'law-of-the-wall' nonisothermal turbulent boundary layers (TBLs), including the mechanism of thermophoresis, i.e., small particle mass transport 'down a temperature gradient'. The present calculations are confined to low mass-loading situations but span the entire particle size range from vapor molecules to particles near the onset of inertial ('eddy') impaction. It is shown that, when Sc is much greater than 1, thermophoresis greatly increases particle deposition rates to internally cooled solid walls, but only partially offsets the appreciable reduction in deposition rates associated with dust-free gas-transpiration-cooled surfaces. Thus, efficient particle sampling from hot dusty gases can be carried out using transpiration 'shielded' probe surfaces.

  18. In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Scipioni Bertoli, Umberto; Guss, Gabe; Wu, Sheldon; Matthews, Manyalibo J.; Schoenung, Julie M.

    2017-12-01

    Detailed understanding of the complex melt pool physics plays a vital role in predicting optimal processing regimes in laser powder bed fusion additive manufacturing. In this work, we use high framerate video recording of Selective Laser Melting (SLM) to provide useful insight on the laser-powder interaction and melt pool evolution of 316 L powder layers, while also serving as a novel instrument to quantify cooling rates of the melt pool. The experiment was performed using two powder types – one gas- and one water-atomized – to further clarify how morphological and chemical differences between these two feedstock materials influence the laser melting process. Finally, experimentally determined cooling rates are compared with values obtained through computer simulation, and the relationship between cooling rate and grain cell size is compared with data previously published in the literature.

  19. Background and anthropogenic radionuclide derived dose rates to freshwater ecosystem - Nuclear power plant cooling pond - Reference organisms

    Energy Technology Data Exchange (ETDEWEB)

    Nedveckaite, T., E-mail: tatjana@cablenet.lt [Institute of Physics of the Center of Physical Science and Technology, Savanoriu av, 231, LT-02300, Vilnius (Lithuania); Filistovic, V. [Institute of Physics of the Center of Physical Science and Technology, Savanoriu av, 231, LT-02300, Vilnius (Lithuania); Marciulioniene, D. [Institute of Botany, Zaliuju ezeru 49, LT-08406, Vilnius (Lithuania); Prokoptchuk, N.; Plukiene, R.; Gudelis, A.; Remeikis, V. [Institute of Physics of the Center of Physical Science and Technology, Savanoriu av, 231, LT-02300, Vilnius (Lithuania); Yankovich, T. [AREVA Resources Canada Inc., P.O. Box 9204, 817-45th Street West, Saskatoon, SK S7K 3X5 (Canada); Beresford, N.-A. [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Av., Bailrigg, Lancaster, LA1 4AP (United Kingdom)

    2011-08-15

    The radiological assessment of non-human biota to demonstrate protection is now accepted by a number of international and national bodies. Therefore, it is necessary to develop a scientific basis to assess and evaluate exposure of biota to ionizing radiation. Radionuclides from the Ignalina Nuclear Power Plant (Lithuania) were discharged into Lake Druksiai cooling pond. Additional radionuclide migration and recharge to this lake from a hypothetical near-surface, low-level radioactive waste disposal, to be situated 1.5 km from the lake, had been simulated using RESRAD-OFFSITE code. This paper uses ERICA Integrated Approach with associated tools and databases to compare the radiological dose to freshwater reference organisms. Based on these data, it can be concluded that background dose rates to non-human biota in Lake Druksiai far exceed those attributable to anthropogenic radionuclides. With respect the fishery and corresponding annual committed effective human dose as a result of this fish consumption Lake Druksiai continues to be a high-productivity water body with intensive angling and possible commercial fishing. - Highlights: > Dose rates to the reference organisms are lower than expected from the background radioactivity. > Pelagic fish part of adult human annual committed effective dose would be as small as a few {mu}Sv y{sup -1}. > With respect the fishery Lake Druksiai continues to be a high-productivity water body.

  20. STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

    Directory of Open Access Journals (Sweden)

    Marija Macenić

    2018-01-01

    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  1. Controlled precipitation for enhanced dissolution rate of flurbiprofen: development of rapidly disintegrating tablets.

    Science.gov (United States)

    Essa, Ebtessam A; Elmarakby, Amira O; Donia, Ahmed M A; El Maghraby, Gamal M

    2017-09-01

    The aim of this work was to investigate the potential of controlled precipitation of flurbiprofen on solid surface, in the presence or absence of hydrophilic polymers, as a tool for enhanced dissolution rate of the drug. The work was extended to develop rapidly disintegrated tablets. This strategy provides simple technique for dissolution enhancement of slowly dissolving drugs with high scaling up potential. Aerosil was dispersed in ethanolic solution of flurbiprofen in the presence and absence of hydrophilic polymers. Acidified water was added as antisolvent to produce controlled precipitation. The resultant particles were centrifuged and dried at ambient temperature before monitoring the dissolution pattern. The particles were also subjected to FTIR spectroscopic, X-ray diffraction and thermal analyses. The FTIR spectroscopy excluded any interaction between flurbiprofen and excipients. The thermal analysis reflected possible change in the crystalline structure and or crystal size of the drug after controlled precipitation in the presence of hydrophilic polymers. This was further confirmed by X-ray diffraction. The modulation in the crystalline structure and size was associated with a significant enhancement in the dissolution rate of flurbiprofen. Optimum formulations were successfully formulated as rapidly disintegrating tablet with subsequent fast dissolution. Precipitation on a large solid surface area is a promising strategy for enhanced dissolution rate with the presence of hydrophilic polymers during precipitation process improving the efficiency.

  2. Not cool with cooling

    Science.gov (United States)

    Blain, Barry

    2010-09-01

    I confess that I may have missed the point of Roland Ennos's article "Urban cool" (August pp22-25), which describes methods of cooling cities by mitigating and reversing the effect of solar heating and includes an illustration of "evapotranspiration" in, of all places, Greater Manchester.

  3. Effects of Cooling Fluid Flow Rate on the Critical Heat Flux and Flow Stability in the Plate Fuel Type 2 MW TRIGA Reactor

    Directory of Open Access Journals (Sweden)

    H. P. Rahardjo

    2017-12-01

    Full Text Available The conversion program of the 2 MW TRIGA reactor in Bandung consisted of the replacement of cylindrical fuel (produced by General Atomic with plate fuel (produced by BATAN. The replacement led into the change of core cooling process from upward natural convection type to downward forced convection type, and resulted in different thermohydraulic safety criteria, such as critical heat flux (CHF limit, boiling limit, and cooling fluid flow stability. In this paper, a thermohydraulic safety analysis of the converted TRIGA reactor is presented by considering the Dynamic Nucleate Boiling Ratio (DNBR criterion, Onset Nucleate Boiling Ratio (ONBR limit, and cooling fluid flow stability at various cooling fluid flow rate.The numerical analyses were performed using the HEATHYD program on the hottest channels of reactor core.The combination of heat transfer and fluid flow analysis were conducted for reactor operation at 2 MW with 20 fuel element bundles and four control rod bundles. Incoming fluid flow to the cooling channel was fixed at 44.5 °C temperature and 1.9970 bar pressure, and its flow rate was varied from 1.25 to 3.5 m3/h. By inputting these values, as well as the total power of fuel elements per bundle, the wall temperature distribution of the plate fuel element, cooling fluid temperature distribution, and pressure losses in the channels were obtained for the analysis of CHF limit, boiling limit, and flow stability. It was shown that no boiling occurred for the cooling fluid flow rate range of 2.4 to 3.5 m3/h, and even at the cooling fluid flow rate of 1.25 m3/h where some bubbles occurred, the DNBR was higher than the critical limit (more than 23 while the flow stability criterion in some channels were slightly less than 1 (unstable. At the cooling fluid flow rate of 1.4 m3/h, however, the flow became stable in all channel. Rapid startup and high rate nitrogen removal from anaerobic sludge digester liquor using a SNAP process.

    Science.gov (United States)

    Qiao, Sen; Nishiyama, Takashi; Fujii, Tatsuo; Bhatti, Zafar; Furukawa, Kenji

    2012-02-01

    In this study, a single-stage autotrophic nitrogen removal reactor, packed with a novel acrylic fiber biomass carrier material (Biofix), was applied for nitrogen removal from sludge digester liquor. For rapid start-up, conventional activated sludge was added to the reactor soon after the attachment of anammox biomass on the Biofix carriers, which allowed conventional activated sludge to form a protective layer of biofilm around the anammox biomass. The Nitrogen removal efficiency reached 75% within 1 week at a nitrogen loading rate of 0.46 kg-N/m(3)/day for synthetic wastewater treatment. By the end of the synthetic wastewater treatment period, the maximum nitrogen removal rate had increased to 0.92 kg-N/m(3)/day at a nitrogen loading rate of 1.0 kg-N/m(3)/day. High nitrogen removal rate was also achieved during the actual raw digester liquor treatment with the highest nitrogen removal rate being 0.83 kg-N/m(3)/day at a nitrogen loading rate of 0.93 kg-N/m(3)/day. The thick biofilm on Biofix carriers allowed anammox bacteria to survive under high DO concentration of 5-6 mg/l resulting in stable and high nitrogen removal performance. FISH and CLSM analysis demonstrated that anammox bacteria coexisted and surrounded by ammonium oxidizing bacteria.

  4. Perceptual processing of natural scenes at rapid rates: effects of complexity, content, and emotional arousal.

    Science.gov (United States)

    Löw, Andreas; Bradley, Margaret M; Lang, Peter J

    2013-12-01

    During rapid serial visual presentation (RSVP), the perceptual system is confronted with a rapidly changing array of sensory information demanding resolution. At rapid rates of presentation, previous studies have found an early (e.g., 150-280 ms) negativity over occipital sensors that is enhanced when emotional, as compared with neutral, pictures are viewed, suggesting facilitated perception. In the present study, we explored how picture composition and the presence of people in the image affect perceptual processing of pictures of natural scenes. Using RSVP, pictures that differed in perceptual composition (figure-ground or scenes), content (presence of people or not), and emotional content (emotionally arousing or neutral) were presented in a continuous stream for 330 ms each with no intertrial interval. In both subject and picture analyses, all three variables affected the amplitude of occipital negativity, with the greatest enhancement for figure-ground compositions (as compared with scenes), irrespective of content and emotional arousal, supporting an interpretation that ease of perceptual processing is associated with enhanced occipital negativity. Viewing emotional pictures prompted enhanced negativity only for pictures that depicted people, suggesting that specific features of emotionally arousing images are associated with facilitated perceptual processing, rather than all emotional content.

  5. Gender-specific cold responses induce a similar body-cooling rate but different neuroendocrine and immune responses.

    Science.gov (United States)

    Solianik, Rima; Skurvydas, Albertas; Vitkauskienė, Astra; Brazaitis, Marius

    2014-08-01

    This study investigated whether there are any gender differences in body-heating strategies during cold stress and whether the immune and neuroendocrine responses to physiological stress differ between men and women. Thirty-two participants (18 men and 14 women) were exposed to acute cold stress by immersion to the manubrium level in 14 °C water. The cold stress continued until rectal temperature (TRE) reached 35.5 °C or for a maximum of 170 min. The responses to cold stress of various indicators of body temperature, insulation, metabolism, shivering, stress, and endocrine and immune function were compared between men and women. During cold stress, TRE and muscle and mean skin temperatures decreased in all subjects (Pcold strain did not differ between men and women, but men exhibited larger changes in the indicators of neuroendocrine (epinephrine level) and in immune (tumor necrosis factor-α level) responses (both Pcold stress, whereas women exhibited a greater insulative response. Despite the similar experience of cold strain in men and women, the neuroendocrine and immune responses were larger in men. Contrary to our expectations, the cooling rate was similar in men and women. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma using LSP

    Science.gov (United States)

    Evans, Eugene S.; Kolmes, Elijah; Cohen, Samuel A.; Welch, Dale R.; Rognlien, Tom; Cohen, Bruce; Meier, Eric

    2017-10-01

    We present particle-in-cell (PIC) simulations of fast-ion slowing down rates in cool, weakly-magnetized plasma (where ρe vth , e) using the fully electromagnetic PIC code LSP. These simulations use explicit algorithms, resolving ρe and λDe spatially and the electron cyclotron and plasma frequencies temporally. Scaling studies of the slowing-down time, τsd, versus fast-ion charge and background plasma density are in good agreement with unmagnetized slowing-down theory; a small anisotropy is observed between τsd in the perpendicular- and parallel-field directions. Furthermore, scaling of the fast-ion charge is confirmed as a viable way to reduce the required computational time for each simulation. The implications of slowing down processes in this regime are described for one magnetic-confinement fusion concept, the small field-reversed configuration device. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  7. Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity.

    Science.gov (United States)

    Wei, Ran; Yan, Yue-Hong; Harris, A J; Kang, Jong-Soo; Shen, Hui; Xiang, Qiao-Ping; Zhang, Xian-Chun

    2017-06-01

    The eupolypods II ferns represent a classic case of evolutionary radiation and, simultaneously, exhibit high substitution rate heterogeneity. These factors have been proposed to contribute to the contentious resolutions among clades within this fern group in multilocus phylogenetic studies. We investigated the deep phylogenetic relationships of eupolypod II ferns by sampling all major families and using 40 plastid genomes, or plastomes, of which 33 were newly sequenced with next-generation sequencing technology. We performed model-based analyses to evaluate the diversity of molecular evolutionary rates for these ferns. Our plastome data, with more than 26,000 informative characters, yielded good resolution for deep relationships within eupolypods II and unambiguously clarified the position of Rhachidosoraceae and the monophyly of Athyriaceae. Results of rate heterogeneity analysis revealed approximately 33 significant rate shifts in eupolypod II ferns, with the most heterogeneous rates (both accelerations and decelerations) occurring in two phylogenetically difficult lineages, that is, the Rhachidosoraceae-Aspleniaceae and Athyriaceae clades. These observations support the hypothesis that rate heterogeneity has previously constrained the deep phylogenetic resolution in eupolypods II. According to the plastome data, we propose that 14 chloroplast markers are particularly phylogenetically informative for eupolypods II both at the familial and generic levels. Our study demonstrates the power of a character-rich plastome data set and high-throughput sequencing for resolving the recalcitrant lineages, which have undergone rapid evolutionary radiation and dramatic changes in substitution rates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Effects of different casting mould cooling rates on microstructure and properties of sand-cast Al-7.5Si-4Cu alloy

    Directory of Open Access Journals (Sweden)

    Liu Guanglei

    2013-11-01

    Full Text Available In this work, Al-7.5Si-4Cu alloy melt modified by Al-10Sr, RE and Al-5Ti-B master alloys was poured into multi-step moulds made from three moulding sands, including quartz, alumina and chromite, to investigate comparatively the effects of different cooling rates of the casting mould on the alloy's microstructures and mechanical properties. The results show that with an increase in wall thickness, the cooling rate decreases, the dendrite arm spacing (DAS increases significantly and the mechanical properties decrease steadily. The elongation is more sensitive to the cooling rate than the tensile strength. No obvious trend of the effect of wall thickness on hardness of the alloy was found. When the cooling rate is at its greatest, the microstructures and mechanical properties are the best when using chromite sand. The improvement of the properties is mainly attributed to the decrease of the DAS, the grain refinement and the metamorphic effect. Each of the three has a strong impact on the microstructures. Furthermore, a series of fitting models was established based on the data of the DAS to predict the mechanical properties of the multivariate sand-cast Al-7.5Si-4Cu alloy.

  9. Efficient ground-state cooling of an ion in a large room-temperature linear Paul trap with a sub-Hertz heating rate

    DEFF Research Database (Denmark)

    Poulsen, Gregers; Miroshnychenko, Yevhen; Drewsen, Michael

    2012-01-01

    We demonstrate efficient resolved sideband laser cooling (99±1% ground-state population) of a single 40Ca+ ion in a large linear Paul trap (electrode spacing of 7 mm) operated at an rf drive frequency of just 3.7 MHz. For ion oscillation frequencies in the range 280–585 kHz, heating rates below o...

  10. Microstructural evolution and mechanical properties of a novel FeCrNiBSi advanced high-strength steel: Slow, accelerated and fast casting cooling rates

    Energy Technology Data Exchange (ETDEWEB)

    Askari-Paykani, Mohsen; Shahverdi, Hamid Reza, E-mail: shahverdi@modares.ac.ir; Miresmaeili, Reza

    2016-06-21

    In the current work, three different solidification routes and a two-step heat treatment process were applied to a novel FeCrNiBSi alloy system to introduce a new candidate for advanced high-strength steels. The evolution of the microstructure after solidification, heat treatment, and tensile deformation was characterized using optical and electron microscopy techniques, as well as hardness and room temperature uniaxial tensile tests. The effects of the different solidification routes and heat treatment parameters on the deformation and fracture mechanisms of this steel are discussed. Grain refinement, precipitation hardening, and solid solution as a result of the fast casting cooling rate led to an increase in strength at improved ductility. This result can be explained partly by the less severe stress/strain partitioning at the matrix grain/M{sub 2}B interfaces and better interface cohesion. Moreover, the stress/strain partitioning characteristics between the matrix grains and M{sub 2}B led to a higher initial strain hardening rate. The fast casting cooling rate further promoted ductile fracture mechanisms, which is a result of increased cleavage fracture stress. The higher casting cooling rate and two-step heat treatment resulted in a strong increase in formability index, from 8 GPa% to 24 GPa%, at which the mechanical properties occupy the TRIP envelope. Heat treatment of the fast-cooling specimens led to a small reduction in yield and tensile strength and 22% total elongation percentage improvement (from 10% to 32%).

  11. Influence of cooling rate on growth of Bacillus cereus from spore inocula in cooked rice, beans, pasta, and combination products containing meat or poultry

    Science.gov (United States)

    The objective of this study was to assess the ability of B. cereus spores to germinate and grow in order to determine a safe cooling rate for cooked rice, beans, and pasta, rice/chicken (4:1), rice/chicken/vegetables (3:1:1), rice/beef (4:1), and rice/beef/vegetables (3:1:1). Samples were inoculate...

  12. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    Science.gov (United States)

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers.

  13. Influence of thrust belt geometry and shortening rate on thermochronometer cooling ages: Insights from thermokinematic and erosion modeling of the Bhutan Himalaya

    Science.gov (United States)

    McQuarrie, Nadine; Ehlers, Todd A.

    2015-06-01

    Advancements in thermochronology and numerical modeling offer the potential to associate the age of thermochronometric samples to both exhumational and deformational processes. However, understanding how these components are related in compressional systems requires linking the geometry and magnitude of fault slip to the distribution and amount of erosion. To address this, we apply a 2-D thermokinematic model to a forward modeled balanced cross section to quantify the cooling history in fold-thrust belt settings. The restored cross section provides a kinematic path of rocks and structures necessary to reproduce the surface geology. By assigning ages to displacement amounts, we produced a range of potential velocity vectors used to calculate heat transport, erosion, and rock cooling. We test the predicted ages against a suite of previously published thermochronometric data from the Bhutan Himalaya to explore the utility of the data to constrain the timing, rate, and geometry of fault motion as well as variations in the exhumation rate. We evaluate the cooling history associated with a constant rate of shortening of 18 mm/yr, rates that are 2.0, 1.5, 0.75, and 0.5 times the constant rate, and rates that vary with time to determine which kinematic history best matches the measured cooling ages. The combination of relatively old apatite fission track and zircon (U-Th)/He measured ages and younger (15-9 Ma) 40Ar/39Ar ages from white mica is best matched with faster rates (relative to constant rates) between 11.5 and 8 Ma and slower than constant rates from 17 to 11.5 Ma and 8 Ma to present.

  14. Rapid assessment of malaria transmission using age-specific sero-conversion rates.

    Directory of Open Access Journals (Sweden)

    Laveta Stewart

    2009-06-01

    Full Text Available Malaria transmission intensity is a crucial determinant of malarial disease burden and its measurement can help to define health priorities. Rapid, local estimates of transmission are required to focus resources better but current entomological and parasitological methods for estimating transmission intensity are limited in this respect. An alternative is determination of antimalarial antibody age-specific sero-prevalence to estimate sero-conversion rates (SCR, which have been shown to correlate with transmission intensity. This study evaluated SCR generated from samples collected from health facility attendees as a tool for a rapid assessment of malaria transmission intensity.The study was conducted in north east Tanzania. Antibodies to Plasmodium falciparum merozoite antigens MSP-1(19 and AMA-1 were measured by indirect ELISA. Age-specific antibody prevalence was analysed using a catalytic conversion model based on maximum likelihood to generate SCR. A pilot study, conducted near Moshi, found SCRs for AMA-1 were highly comparable between samples collected from individuals in a conventional cross-sectional survey and those collected from attendees at a local health facility. For the main study, 3885 individuals attending village health facilities in Korogwe and Same districts were recruited. Both malaria parasite prevalence and sero-positivity were higher in Korogwe than in Same. MSP-1(19 and AMA-1 SCR rates for Korogwe villages ranged from 0.03 to 0.06 and 0.07 to 0.21 respectively. In Same district there was evidence of a recent reduction in transmission, with SCR among those born since 1998 [MSP-1(19 0.002 to 0.008 and AMA-1 0.005 to 0.014 ] being 5 to 10 fold lower than among individuals born prior to 1998 [MSP-1(19 0.02 to 0.04 and AMA-1 0.04 to 0.13]. Current health facility specific estimates of SCR showed good correlations with malaria incidence rates in infants in a contemporaneous clinical trial (MSP-1(19 r(2 = 0.78, p<0.01 & AMA-1 r

  15. Three dimensional evaluation of alveolar bone changes in response to different rapid palatal expansion activation rates

    Directory of Open Access Journals (Sweden)

    Brian LaBlonde

    Full Text Available ABSTRACT Introduction: The aim of this multi-center retrospective study was to quantify the changes in alveolar bone height and thickness after using two different rapid palatal expansion (RPE activation protocols, and to determine whether a more rapid rate of expansion is likely to cause more adverse effects, such as alveolar tipping, dental tipping, fenestration and dehiscence of anchorage teeth. Methods: The sample consisted of pre- and post-expansion records from 40 subjects (age 8-15 years who underwent RPE using a 4-banded Hyrax appliance as part of their orthodontic treatment to correct posterior buccal crossbites. Subjects were divided into two groups according to their RPE activation rates (0.5 mm/day and 0.8 mm/day; n = 20 each group. Three-dimensional images for all included subjects were evaluated using Dolphin Imaging Software 11.7 Premium. Maxillary base width, buccal and palatal cortical bone thickness, alveolar bone height, and root angulation and length were measured. Significance of the changes in the measurements was evaluated using Wilcoxon signed-rank test and comparisons between groups were done using ANOVA. Significance was defined at p ≤ 0.05. Results: RPE activation rates of 0.5 mm per day (Group 1 and 0.8 mm per day (Group 2 caused significant increase in arch width following treatment; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Buccal alveolar height and width decreased significantly in both groups. Both treatment protocols resulted in significant increases in buccal-lingual angulation of teeth; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Conclusion: Both activation rates are associated with significant increase in intra-arch widths. However, 0.8 mm/day resulted in greater increases. The 0.8 mm/day activation rate also resulted in more increased dental tipping and decreased buccal alveolar bone thickness over 0.5 mm/day.

  16. Tuning the helicity of self-assembled structure of a sugar-based organogelator by the proper choice of cooling rate.

    Science.gov (United States)

    Cui, Jiaxi; Liu, Anhua; Guan, Yan; Zheng, Jia; Shen, Zhihao; Wan, Xinhua

    2010-03-02

    A novel sugar-appended low-molecular-mass gelator, 4''-butoxy-4-hydroxy-p-terphenyl-beta-D-glucoside (BHTG), was synthesized. It formed thermally reversible gels in a variety of aqueous and organic solvents. Three-dimensional networks made up of helical ribbons were observed in the mixture of H(2)O/1,4-dioxane (40/60 v/v). The handedness of the ribbons depended on the rate of gel formation. Fast-cooling process led to right-handed ribbons, while slow-cooling process led to left-handed ones. A combinatory analyses of microscopic, spectroscopic, and diffraction techniques revealed that BHTG formed a twisted interdigitated bilayer structure with a d spacing of 3.1 nm in gels through a kinetically controlled nucleation-growth process. There were two kinds of molecular orientations of BHTG in the nuclei, clockwise and anticlockwise, which dictated the growth of ribbons. One was metastable and formed first during the cooling process of gel formation. It was able to gradually transform into the more stable latter one with further decreasing temperature. Fast-cooling process did not leave enough time for the nuclei to evolve from metastable to stable state and the ribbons grown from them exhibited right-handedness. However, the metastable nuclei transformed into the stable one when cooled slowly and directed the molecules of BHTG to grow into left-handed aggregates.

  17. Fracture Toughness in Transition Temperature Region with Cooling Rate for SA508 Gr. 4N Model Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Hyoung; Park, Sang Gyu; Wee, Dang Moon [KIAST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    Materials for reactor pressure vessel (RPV), which is the key component in the determination of the life span and safety margin of reactors, are required to have enough mechanical properties to endure the high pressure inside the reactor. Various studies have focused on improving mechanical properties by the controlling the heat treatment process of commercial RPV steel, SA508 Gr.3 Mn-Mo-Ni low alloy steel. On the other hand, some researches for identifying new material with high strength and toughness for larger capacity and longer lifetime of reactor are being conducted. SA508 Gr.4N Ni-Cr-Mo low alloy steel may be a candidate RPV material due to its excellent mechanical properties from its tempered martensitic microstructure. Wallin observed that the temperature dependency of fracture toughness is not sensitive to the chemical composition, heat treatment, and irradiation for ferritic steels. This result led to the concept of a universal shape in the median toughness-temperature curve for all 'ferritic steels'. Recently, some researches showed that F/M steel composed of the tempered martensitic microstructure has steeper temperature dependency of the measured fracture toughness than the prediction in the master curve. We also focused on the steep transition properties of SA508 Gr.4N low alloy steel with tempered martensitic structure in previous research. However, it has not yet confirmed whether that the transition properties including temperature dependency vary with phase fraction of tempered martensite. In this study, the effect of fraction of tempered martensite on the fracture toughness transition behavior in SA508 Gr.4N was assessed by controlling cooling rate after austenitization. The relationship between phase fraction and the fracture toughness variation with temperature in the transition region was analyzed. Also, the tendencies were compared with the prediction in the sta

  18. Cross-sectional study of possible association between rapid eating and high body fat rates among female Japanese college students.

    Science.gov (United States)

    Yaguchi-Tanaka, Yuri; Kawagoshi, Yumiko; Sasaki, Satoshi; Fukao, Akira

    2013-01-01

    The incidence of excessive body fat among young Japanese females with a normal BMI, which is referred to as normal weight obesity (NWO), has recently increased. Some studies have associated eating rates with BMI. However, an association between body fat rate and dietary habits has not been proven. We compared differences in dietary habits between 72 female Japanese junior college students with normal (Eating rapidly was significantly associated with body fat ratios. Our findings suggest that eating rapidly increases body fat ratios.

  19. Rapid Enhancement in General Relativistic Precession Rates due to Kozai Mechanism in Solar System Bodies

    Science.gov (United States)

    Sekhar, Aswin; Asher, David; Morbidelli, Alessandro; Werner, Stephanie; Vaubaillon, Jeremie; Li, Gongjie

    2017-06-01

    Two well known phenomena in orbital dynamics associated with low perihelion distance bodies are general relativistic (GR) precession and Lidov-Kozai (LK) oscillations.In this work, we are interested to identify bodies evolving in the near future (i.e. thousands of years in this case) into rapid sungrazing and sun colliding phases and undergoing inclination flips, due to LK like oscillations and being GR active at the same time. We find that LK mechanism leads to secular lowering of perihelion distance which in turn leads to a huge increase in GR precession of the argument of pericentre depending on the initial orbital elements. This in turn gives feedback to the LK mechanism as the eccentricity, inclination and argument of pericentre in Kozai cycles are closely correlated. In this work, we find real examples of solar system bodies which show rapid enhancement in GR precession rates due to LK like oscillations and there are cases where GR precession rate peaks to about 60 times that of the GR precession of Mercury thus showing the strength and complementary nature between these two dynamical phenomena.An analytical treatment is done on few bodies to understand the difference in their orbital evolution in the context of LK mechanism with and without GR precession term by incorporating suitable Hamiltonian dynamics. This result is subsequently matched using numerical integrations to find direct correlations. Real solar system bodies showing both GR precession and LK like oscillations are identified using compiled observational records from IAU-Minor Planet Center, Cometary Catalogue, IAU-Meteor Data Center and performing analytical plus numerical tests on them. This intermediate state (where GR and LK effects are comparable and co-exist) brings up the interesting possibility of drastic changes in GR precession rates during orbital evolution due to sungrazing and sun colliding phases induced by the LK like mechanism, thus combining both these important effects in a

  1. Palm-based diacylglycerol fat dry fractionation: effect of crystallisation temperature, cooling rate and agitation speed on physical and chemical properties of fractions

    Directory of Open Access Journals (Sweden)

    Razam Ab Latip

    2013-05-01

    Full Text Available Fractionation which separates the olein (liquid and stearin (solid fractions of oil is used to modify the physicochemical properties of fats in order to extend its applications. Studies showed that the properties of fractionated end products can be affected by fractionation processing conditions. In the present study, dry fractionation of palm-based diacylglycerol (PDAG was performed at different: cooling rates (0.05, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0°C/min, end-crystallisation temperatures (30, 35, 40, 45 and 50°C and agitation speeds (30, 50, 70, 90 and 110 rpm to determine the effect of these parameters on the properties and yield of the solid and liquid portions. To determine the physicochemical properties of olein and stearin fraction: Iodine value (IV, fatty acid composition (FAC, acylglycerol composition, slip melting point (SMP, solid fat content (SFC, thermal behaviour tests were carried out. Fractionation of PDAG fat changes the chemical composition of liquid and solid fractions. In terms of FAC, the major fatty acid in olein and stearin fractions were oleic (C18:1 and palmitic (C16:0 respectively. Acylglycerol composition showed that olein and stearin fractions is concentrated with TAG and DAG respectively. Crystallization temperature, cooling rate and agitation speed does not affect the IV, SFC, melting and cooling properties of the stearin fraction. The stearin fraction was only affected by cooling rate which changes its SMP. On the other hand, olein fraction was affected by crystallization temperature and cooling rate but not agitation speed which caused changes in IV, SMP, SFC, melting and crystallization behavior. Increase in both the crystallization temperature and cooling rate caused a reduction of IV, increment of the SFC, SMP, melting and crystallization behaviour of olein fraction and vice versa. The fractionated stearin part melted above 65°C while the olein melted at 40°C. SMP in olein fraction also reduced to a range of

  2. A method for rapid measurement of laser ablation rate of hard dental tissue

    Science.gov (United States)

    Perhavec, T.; Gorkič, A.; Bračun, D.; Diaci, J.

    2009-06-01

    The aim of the study reported here is the development of a new method which allows rapid and accurate in-vitro measurements of three-dimensional (3D) shape of laser ablated craters in hard dental tissues and the determination of crater volume, ablation rate and speed. The method is based on the optical triangulation principle. A laser sheet projector illuminates the surface of a tooth, mounted on a linear translation stage. As the tooth is moved by the translation stage a fast digital video camera captures series of images of the illuminated surface. The images are analyzed to determine a 3D model of the surface. Custom software is employed to analyze the 3D model and to determine the volume of the ablated craters. Key characteristics of the method are discussed as well as some practical aspects pertinent to its use. The method has been employed in an in-vitro study to examine the ablation rates and speeds of the two main laser types currently employed in dentistry, Er:YAG and Er,Cr:YSGG. Ten samples of extracted human molar teeth were irradiated with laser pulse energies from 80 mJ to the maximum available energy (970 mJ with the Er:YAG, and 260 mJ with the Er,Cr:YSGG). About 2000 images of each ablated tooth surface have been acquired along a translation range of 10 mm, taking about 10 s and providing close to 1 million surface measurement points. Volumes of 170 ablated craters (half of them in dentine and the other half in enamel) were determined from this data and used to examine the ablated volume per pulse energy and ablation speed. The results show that, under the same conditions, the ablated volume per pulse energy achieved by the Er:YAG laser exceeds that of the Er,Cr:YSGG laser in almost all regimes for dentine and enamel. The maximum Er:YAG laser ablation speeds (1.2 mm 3/s in dentine and 0.7 mm 3/s in enamel) exceed those obtained by the Er,Cr:YSGG laser (0.39 mm 3/s in dentine and 0.12 mm 3/s in enamel). Since the presented method proves to be easy to

  3. Evidence of refilled chamber gas pressure enhancing cooling rate during melt spinning of a Zr50Cu40Al10 alloy

    Directory of Open Access Journals (Sweden)

    Hong-wang Yang

    2015-07-01

    Full Text Available The influence of the refilled gas pressure on the glass forming behaviour of one of the best ternary glass forming alloys Zr50Cu40Al10 was studied for the melt spinning process. The amorphicity of as-quenched ribbons was characterized by X-ray diffraction (XRD and differential scanning calorimetry (DSC. The refilled chamber atmospheric pressure is crucial to the cooling rate of melt spinning. At high vacuum, at pressure less than 0.0001 atm, fully crystalline fragments are obtained. Monolithic amorphous ribbons were only obtained at a gas pressure of 0.1 atm or higher. The extended contact length between thecribbons and the copper wheel contributes to the high cooling rate of melt spinning. Higher chamber gas pressure leads to more turbulence of liquid metal beneath the nozzle; therefore, lower pressure is preferable at practical melt spinning processes once glass forming conditions are fulfilled.

  4. Effect of Cooling Rate on Precipitation Behavior and Micromechanical Properties of Ferrite in V-N Alloyed Steel During a Simulated Thermomechanical Process

    Science.gov (United States)

    Zhang, Jing; Wang, Fu-Ming; Yang, Zhan-Bing; Li, Chang-Rong

    2017-12-01

    The effect of the cooling rate after finish deformation at 1223 K (950 °C) on the microstructural evolution, V(C,N) precipitation, and micromechanical properties of ferrite in high-N V-alloyed building steel was comparatively investigated using a Gleeble-1500 thermomechanical simulator. Metallographic analysis shows that polygonal ferrite (PF) and pearlite (P) were dominant microconstituents at cooling rates ranging from 0.5 K/s to 3 K/s (0.5 °C/s to 3 °C/s). As the cooling rate increased within this range, the average ferrite grain size decreased from 6.1 ± 0.30 to 4.4 ± 0.25 μm. Besides, the sheet spacing of interphase precipitated V(C,N) particles decreased from 64.0 to 78.7 to 21.9 to 24.5 nm, and the average size of randomly precipitated particles was refined from 8.2 ± 3.24 to 6.3 ± 2.18 nm. The number density of precipitates with a size below and above 10 nm decreased, and the total number density decreased from 2482 ± 430 to 1699 ± 142 μm-2. Moreover, high-resolution transmission electron microscopy (HRTEM) observation revealed that there exists a coherent interface between the nanoscaled V(C,N) particle and the ferrite matrix. This interface lowered the nucleation energy barrier and promoted the V(C,N) particle precipitation in the ferrite matrix. Nanoindentation measurements indicated that the ferrite phase became softer, and the corresponding value of nanohardness and Young's modulus decreased as the cooling rate increased, which was caused predominantly by the decrease in precipitation hardening due to the lower number density of V(C,N) precipitates.

  5. Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12-hydroxystearic acid in vegetable oil.

    Science.gov (United States)

    Toro-Vazquez, Jorge F; Morales-Rueda, Juan; Torres-Martínez, Adriana; Charó-Alonso, Miriam A; Mallia, V Ajay; Weiss, Richard G

    2013-06-25

    Using safflower oil as the liquid phase, we investigated the organogelation properties of stearic acid (SA), (R)-12-hydroxystearic acid (HSA), and different primary and secondary amides synthesized from SA and HSA. The objective was to establish the relationship between the gelator's molecular structure, solid content, and gels' microstructure that determines the rheological properties of organogels developed at two cooling rates, 1 and 20 °C/min. The results showed that the presence of a 12-OH group in the gelator molecule makes its crystallization kinetics cooling rate dependent and modifies its crystallization behavior. Thus, SA crystallizes as large platelets, while HSA crystallizes as fibers forming gels with higher solid content, particularly at 20 °C/min. The addition to HSA of a primary or a secondary amide bonded with an alkyl group resulted in gelator molecules that crystallized as fibrillar spherulites at both cooling rates. Independent of the cooling rate, gels of HSA and its amide derivatives showed thixotropic behavior. The rheological properties of the amide's organogels depend on a balance between hydrogen-bonding sites and the alkyl chain length bonded to the amide group. However, it might also be associated with the effect that the gelators' molecular weight has on crystal growth and its consequence on fiber interpenetration among vicinal spherulites. These results were compared with those obtained with candelilla wax (CW), a well-known edible gelling additive used by the food industry. CW organogels had higher elasticity than HSA gels but lower than the gels formed by amides. Additionally, CW gels showed similar or even higher thixotropic behavior than HSA and the amide's gels. These remarkable rheological properties resulted from the microstructural organization of CW organogels. We concluded that microstructure has a more important role determining the organogels' rheology than the solid content. The fitting models developed to describe the

  6. False positive rate of rapid oral fluid HIV tests increases as kits near expiration date.

    Science.gov (United States)

    Facente, Shelley N; Dowling, Teri; Vittinghoff, Eric; Sykes, Deanna L; Colfax, Grant N

    2009-12-14

    Because a recent cluster of false positive results on the OraQuick ADVANCE Rapid HIV-1/2 Antibody Test occurred in San Francisco on test kits close to their expiration date, we decided to assess the relationship between time to expiration and rate of false positive results from tests used with oral fluid. We analyzed results of 20,904 tests with either an initial HIV-negative result (n = 20,828) or a preliminary positive result that was then negative on confirmatory tests (n = 76). We computed specificity for kits with time to expiration from or = 6 months, with exact binomial confidence intervals, then used logistic regression to estimate the independent association of time to expiration with false positive results, adjusting for site and technician effects. For 1,108 kits used in the last month before expiration, specificity was 98.83% (95% exact binomial confidence interval (CI) 98.00%-99.37%); the upper bound is below the claimed specificity of 99.60%. After adjustment using regression standardization for the effects of site, test lot, and technician factors, adjusted specificity in the last month before expiration was 99.18% (95% bootstrap confidence interval 98.60-99.57%). We found that specificity of the OraQuick ADVANCE with oral fluid declined significantly with < or = 1 month remaining to expiration, leaving little margin for error from other sources.

  7. Training of Tonal Similarity Ratings in Non-Musicians: A “Rapid Learning” Approach

    Science.gov (United States)

    Oechslin, Mathias S.; Läge, Damian; Vitouch, Oliver

    2012-01-01

    Although cognitive music psychology has a long tradition of expert–novice comparisons, experimental training studies are rare. Studies on the learning progress of trained novices in hearing harmonic relationships are still largely lacking. This paper presents a simple training concept using the example of tone/triad similarity ratings, demonstrating the gradual progress of non-musicians compared to musical experts: In a feedback-based “rapid learning” paradigm, participants had to decide for single tones and chords whether paired sounds matched each other well. Before and after the training sessions, they provided similarity judgments for a complete set of sound pairs. From these similarity matrices, individual relational sound maps, intended to display mental representations, were calculated by means of non-metric multidimensional scaling (NMDS), and were compared to an expert model through procrustean transformation. Approximately half of the novices showed substantial learning success, with some participants even reaching the level of professional musicians. Results speak for a fundamental ability to quickly train an understanding of harmony, show inter-individual differences in learning success, and demonstrate the suitability of the scaling method used for learning research in music and other domains. Results are discussed in the context of the “giftedness” debate. PMID:22629252

  8. Training of tonal similarity ratings in non-musicians: a rapid learning approach

    Directory of Open Access Journals (Sweden)

    Mathias S Oechslin

    2012-05-01

    Full Text Available Although music psychology has a long tradition of expert-novice comparisons, experimental training studies are rare. Studies on the learning progress of trained novices in hearing harmonic relationships are still largely lacking. This paper presents a simple training concept using the example of tone/triad similarity ratings, demonstrating the gradual progress of non-musicians compared to musical experts: In a feedback-based rapid learning paradigm, participants had to decide for single tones and chords whether paired sounds matched each other well. Before and after the training sessions, they provided similarity judgments for a complete set of sound pairs. From these similarity matrices, individual relational sound maps, aiming to map the mental representations, were calculated by means of non-metric multidimensional scaling (NMDS, which were compared to an expert model through procrustean transformation. Approximately half of the novices showed substantial learning success, with some participants even reaching the level of professional musicians. Results speak for a fundamental ability to quickly train an understanding of harmony, show inter-individual differences in learning success, and demonstrate the suitability of the scaling method used for music psychological research. Results are discussed in the context of the giftedness debate.

  9. Training of tonal similarity ratings in non-musicians: a "rapid learning" approach.

    Science.gov (United States)

    Oechslin, Mathias S; Läge, Damian; Vitouch, Oliver

    2012-01-01

    Although cognitive music psychology has a long tradition of expert-novice comparisons, experimental training studies are rare. Studies on the learning progress of trained novices in hearing harmonic relationships are still largely lacking. This paper presents a simple training concept using the example of tone/triad similarity ratings, demonstrating the gradual progress of non-musicians compared to musical experts: In a feedback-based "rapid learning" paradigm, participants had to decide for single tones and chords whether paired sounds matched each other well. Before and after the training sessions, they provided similarity judgments for a complete set of sound pairs. From these similarity matrices, individual relational sound maps, intended to display mental representations, were calculated by means of non-metric multidimensional scaling (NMDS), and were compared to an expert model through procrustean transformation. Approximately half of the novices showed substantial learning success, with some participants even reaching the level of professional musicians. Results speak for a fundamental ability to quickly train an understanding of harmony, show inter-individual differences in learning success, and demonstrate the suitability of the scaling method used for learning research in music and other domains. Results are discussed in the context of the "giftedness" debate.

  10. Structure formation in sugar containing pectin gels - influence of tartaric acid content (pH) and cooling rate on the gelation of high-methoxylated pectin.

    Science.gov (United States)

    Kastner, H; Kern, K; Wilde, R; Berthold, A; Einhorn-Stoll, U; Drusch, S

    2014-02-01

    The aim of the study was the application of a recently published method, using structuring parameters calculated from dG'/dt, for the characterisation of the pectin sugar acid gelation process. The influence of cooling rate and pH on structure formation of HM pectin gels containing 65 wt.% sucrose were investigated. The results show that the structure formation process as well as the properties of the final gels strongly depended on both parameters. With increasing cooling rates from 0.5 to 1.0 K/min the initial structuring temperature slightly decreased and the maximum structuring velocity increased. The lower the cooling rates, the firmer and more elastic were the final gels. With increasing acid content (decreasing pH from 2.5-2.0) the initial structuring temperatures were nearly constant. The final gel properties varied visibly but not systematically. Gels with the lowest and highest pH were less elastic and weaker compared to those with medium acid concentrations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Influence of the quenching rate and step-wise cooling temperatures on microstructural and tensile properties of PER72 ® Ni-based superalloy

    Directory of Open Access Journals (Sweden)

    Le Baillif Paul

    2014-01-01

    Full Text Available The PER72® grade is used as a wrought engine turbine disk, which is a critical high temperature component. During the heat treatment process, residual stresses are generated during the quench, which may lead to irreversible damages on the workpiece. The aim of this study is to better understand the mechanisms involved in the residual stress generation. Therefore, the influence of quenching conditions on the high temperature tensile properties and the multi-scale microstructure evolutions are investigated after cooling. PER72® specimens are annealed above the solvus temperature, directly on the servo-hydraulic testing machine. Three quenching rates are used: 30 ∘C/min, 120 ∘C/min, and 300 ∘C/min. For each condition, the cooling is interrupted at 1000 ∘C, 850 ∘C, 600 ∘C and 20 ∘C to perform isothermal tensile test. Specimens are post-mortem analysed. On one hand the fracture surface is investigated using SEM. On the other hand the microstructure evolution was observed and quantified at different scales using SEM directly on the bulk or after the chemical extraction of precipitation. The precipitation size and volume fraction statistics, X-Ray diffraction for the crystallography and composition of the different phases are investigated. It was shown that the testing temperature does not significantly influence the γ′ distribution of particles. Conversely, the γ′ precipitation is strongly influenced by the cooling rate. Notably, the average size, the distance between particles as well as the number density of γ′ precipitates are significantly modified by the cooling rate. Changes in tensile properties are related to microstructural.

  12. Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  13. Convergence of the Critical Cooling Rate for Protoplanetary Disk Fragmentation Achieved: The Key Role of Numerical Dissipation of Angular Momentum

    Science.gov (United States)

    Deng, Hongping; Mayer, Lucio; Meru, Farzana

    2017-09-01

    We carry out simulations of gravitationally unstable disks using smoothed particle hydrodynamics (SPH) and the novel Lagrangian meshless finite mass (MFM) scheme in the GIZMO code. Our aim is to understand the cause of the nonconvergence of the cooling boundary for fragmentation reported in the literature. We run SPH simulations with two different artificial viscosity implementations and compare them with MFM, which does not employ any artificial viscosity. With MFM we demonstrate convergence of the critical cooling timescale for fragmentation at {β }{crit}≈ 3. Nonconvergence persists in SPH codes. We show how the nonconvergence problem is caused by artificial fragmentation triggered by excessive dissipation of angular momentum in domains with large velocity derivatives. With increased resolution, such domains become more prominent. Vorticity lags behind density, due to numerical viscous dissipation in these regions, promoting collapse with longer cooling times. Such effect is shown to be dominant over the competing tendency of artificial viscosity to diminish with increasing resolution. When the initial conditions are first relaxed for several orbits, the flow is more regular, with lower shear and vorticity in nonaxisymmetric regions, aiding convergence. Yet MFM is the only method that converges exactly. Our findings are of general interest, as numerical dissipation via artificial viscosity or advection errors can also occur in grid-based codes. Indeed, for the FARGO code values of {β }{crit} significantly higher than our converged estimate have been reported in the literature. Finally, we discuss implications for giant planet formation via disk instability.

  14. Improvement of Cooling Technology through Atmosphere Gas Management

    Energy Technology Data Exchange (ETDEWEB)

    Renard, Michel; Dosogne, Edgaar; Crutzen, Jean Pierre; Raick, Jean Mare [DREVER INTERNATIONAL S.A., Liege (Belgium); Ji, Ma Jia; Jun, Lv; Zhi, Ma Bing [SHOUGANG Cold Rolling Mill Headquarter, Beijin (China)

    2009-12-15

    The production of advanced high strength steels requires the improvement of cooling technology. The use of high cooling rates allows relatively low levels of expensive alloying additions to ensure sufficient hardenability. In classical annealing and hot-dip galvanizing lines a mixing station is used to provide atmosphere gas containing 3-5% hydrogen and 97-95% nitrogen in the various sections of the furnace, including the rapid cooling section. Heat exchange enhancement in this cooling section can be insured by the increased hydrogen concentration. Driver international developed a patented improvement of cooling technology based on the following features: pure hydrogen gas is injected only in the rapid cooling section whereas the different sections of the furnace are supplied with pure nitrogen gas: the control of flows through atmosphere gas management allows to get high hydrogen concentration in cooling section and low hydrogen content in the other furnace zones. This cooling technology development insures higher cooling rates without additional expensive hydrogen gas consumption and without the use of complex sealing equipment between zones. In addition reduction in electrical energy consumption is obtained. This atmosphere control development can be combined with geometrical design improvements in order to get optimised cooling technology providing high cooling rates as well as reduced strip vibration amplitudes. Extensive validation of theoretical research has been conducted on industrial lines. New lines as well as existing lines, with limited modifications, can be equipped with this new development. Up to now this technology has successfully been implemented on 6 existing and 7 new lines in Europe and Asia.

  15. Rapid Mantle Ascent Rates Beneath Brazil: Diamond Bullets from a Smoking Plume?

    Science.gov (United States)

    Walter, M. J.; Frost, D. J.

    2010-12-01

    inclusions in diamonds from Juina also provide evidence for mantle ascent of this magnitude [2, 3]. The questions are (1) over what timeframe do the diamonds ascend? (2) what causes mantle ascent beneath the craton? Bulanova et al [2] were able to obtain a U/Pb age for the J1 perovskite inclusion, giving an astonishingly young model age of 101 ±7 Ma, close to the eruption age of the host kimberlite (93 ±1.5 Ma). From the time and depth differences we calculate ascent rates of about 1 to 50 cm/yr. We suggest that such rapid rates of mantle ascent beneath a craton may be ascribed to buoyant upwelling of mantle material. Diamond speedometry may provide direct evidence for a Cretaceous plume beneath Brazil, which was ultimately responsible for alkaline and kimberlite magmatism, and probably the Trindade magmatic track [6]. 1. Harte et al., Geochem. Soc. Spec. Pub, 1999, 125-153. 2. Bulanova et al., CMP, 2010, DOI:10.1007/s00410-010-0490-6. 3. Harte and Cayzer, Phys. Chem. Min., 2007. 4. Shirey et al., Science, 2002. 297, 1683- 1686. 5. Walter et al., Nature, 2008. 454, 622-625. [6] Gibson et al., J Petrol, 1995, 36, 89-229.

  16. Influence of cooling rate on the structure and mechanical properties of G17CrMoV5 – 10 cast steel

    Directory of Open Access Journals (Sweden)

    G. Golański

    2009-07-01

    Full Text Available The paper presents results of research on the influence of cooling rate on the structure and properties of G17CrMoV5 – 10 (L17HMF cast steel. The material for research was a section taken out from an outer cylinder of a steam turbine body after about 250 000 hours of operation at the temperature of 535°C and pressure 9 MPa. The investigated cast steel was subjected to heat treatment which consisted in cooling at the rates corresponding to the processes, such as: bainitic hardening, normalizing and full annealing. Tempering after the process of cooling from austenitizing temperature was carried out at the temperatures of: 700, 720 and 740°C. Performed research has proved that structures obtained after bainitic hardening and normalizing are characterized by a large strength margin which allows to apply high temperatures of tempering. It has been shown that the cast steel of bainitic structure, with similar mechanical properties as the cast steel of bainitic – ferritic structure, is characterized by almost twice as high impact energy. Full annealing and tempering of the examined cast steel ensures only the required impact strength, with mechanical properties comparable to those after service.

  17. Effect of Cooling Rate on the Longitudinal Modulus of Cu3Sn Phase of Ag-Sn-Cu Amalgam Alloy (Part II

    Directory of Open Access Journals (Sweden)

    R. H. Rusli

    2015-10-01

    Full Text Available Effects of cooling rate (at the time of solidification on the elastic constants of Cu3Sn phase of Ag-Sn-Cu dental amalgam alloy were studied. In this study, three types of alloys were made, with the composition Cu-38-37 wt% Sn by means of casting, where each alloy was subjected to different cooling rate, such as cooling on the air (AC, air blown (AB, and quenched in the water (WQ. X-ray diffraction, metallography, and Scanning Electron Microscopy with Energy Dispersive Spectroscopy studies of three alloys indicated the existence of Cu3Sn phase. Determination of the modulus of elasticity of Cu3Sn (ε phase was carried out by the measurement of longitudinal and transversal waves velocity using ultrasonic technique. The result shows that Cu3Sn (ε phase on AC gives higher modulus of elasticity values than those of Cu3Sn (ε on AB and WQ. The high modulus of elasticity value will produce a strong Ag-Sn-Cu dental amalagam alloy.

  18. Mechanical modelling of rapid cooling in porcelain tile-type systems; Modelizacion mecanica del enfriamiento rapido en sistemas tipo gres porcelanico

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, M.; Cantavella, Y.; Sanchez, E.; Hotza, D.; Boschi, A.

    2012-07-01

    This paper analyses the effect of cooling on mechanical behaviour, in particular, on the residual stresses that appear when materials of the porcelain tile type are involved. However, these compositions have a very complex microstructure, in which there are several crystalline phases and the glassy phase is not homogeneous. In this study a simpler composition was therefore formulated, using sodium feldspar as starting material to which quartz with different particle sizes was added. A viscoelastic model was used to estimate the residual stresses that develop during cooling. The parameters of the model were obtained either from the literature or were determined in laboratory tests. An assembly was designed that allowed non-contact measurement of the temperature at the top and bottom surfaces of the test pieces during cooling. The test pieces were subjected to different types of cooling and their residual stresses were then determined by the strain relaxation slotting method. (Author)

  19. Hydrogen film cooling of a small hydrogen-oxygen thrust chamber and its effect on erosion rates of various ablative materials

    Science.gov (United States)

    Hannum, N.; Roberts, W. E.; Russell, L. M.

    1977-01-01

    An experimental investigation was conducted to determine what arrangement of film-coolant-injection orifices should be used to decrease the erosion rates of small, high temperature, high pressure ablative thrust chambers without incurring a large penalty in combustion performance. All of the film cooling was supplied through holes in a ring between the outer row of injector elements and the chamber wall. The best arrangement, which had twice the number of holes as there were outer row injection elements, was also the simplest. The performance penalties, presented as a reduction in characteristic exhaust velocity efficiency, were 0.8 and 2.8 percentage points for the 10 and 20 percent cooling flows, respectively, The best film-coolant injector was then used to obtain erosion rates for 19 ablative materials. The throat erosion rate was reduced by a factor of 2.5 with a 10 percent coolant flow. Only the more expensive silica phenolic materials had low enough erosion rates to be considered for use in the nozzle throat. However, some of the cheaper materials might qualify for use in other areas of small nozzles with large throat diameters where the higher erosion rates are more acceptable.

  20. Cryopreservation of boar semen. II: Effect of cooling rate and duration of freezing point plateau on boar semen frozen in mini- and maxi-straws and plastic bags.

    Science.gov (United States)

    Bwanga, C O; Einarsson, S; Rodriguez-Martinez, H

    1991-01-01

    The post-thaw motility and the acrosome integrity of semen from 4 boars frozen with a programmable freezing machine, in mini (0.25 ml) and maxi (5 ml) plastic straws and in 10 x 5 cm Teflon FEP-plastic bags (0.12 mm thick, 5 ml), were compared. The freezing of the semen was monitored by way of thermo-couples placed in the straws and the bags. Three freezing programmes were used, namely A: from +5 degrees C, at a rate of 3 degrees C/min, to -6 degrees C, held for 1 min at -6 degrees C, and followed by a cooling rate of 20 degrees C/min to -100 degrees C; B: a similar curve except that there was no holding time at -6 degrees C and that the cooling rate was 30 degrees C/min, and C: from +5 degrees C to -100 degrees C, with a cooling rate of 35 degrees C/min, followed by storage in liquid N2. Despite the freezing curve assayed, both the mini-straws and the bags depicted much shorter freezing point plateaus as compared to the maxi-straws. Post-thaw sperm motility as well as the amount of normal apical ridges were equally significantly higher when semen was frozen in mini-straws or in bags than in maxi-straws. Significant differences in these post-thawing parameters were obtained between the freezing curves used. The stepwise freezing procedure A appeared as the best alternative for boar semen, considering this in vitro evaluation.

  1. Laser cooling of solids

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, Richard I [Los Alamos National Laboratory; Sheik-bahae, Mansoor [UNM

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  2. Rapid detoxification from opioid dependence under general anaesthesia versus standard methadone tapering: abstinence rates and withdrawal distress experiences.

    NARCIS (Netherlands)

    Krabbe, P.F.M.; Koning, J.P.; Heinen, N.; Laheij, R.J.F.; Cauter, R.M.V. van; Jong, C.A.J. de

    2003-01-01

    The aim of this work was to study abstinence rates and withdrawal effects of rapid detoxification of opioid-dependents under general anaesthesia (RD-GA) compared to standard methadone tapering (SMT) using a prospective clinical trial with a follow-up of 3 months, as a preliminary study at the

  3. Rapid detoxification from opioid dependence under general anaesthesia versus standard methadone tapering : abstinence rates and withdrawal distress experiences

    NARCIS (Netherlands)

    Krabbe, Paul F M; Koning, Jeroen P F; Heinen, Nadia; Laheij, Robert J F; van Cauter, R M Victory; De Jong, Cor A J

    The aim of this work was to study abstinence rates and withdrawal effects of rapid detoxification of opioid-dependents under general anaesthesia (RD-GA) compared to standard methadone tapering (SMT) using a prospective clinical trial with a follow-up of 3 months, as a preliminary study at the

  4. Experimental characterization of fatigue strength in butt welded joint considering the geometry and the effect of cooling rate of the weld

    Science.gov (United States)

    Arzola, Nelson; Hernández, Edgar

    2017-05-01

    In this work the experimental characterization of fatigue strength in butt welded joints considering the geometry and the post-weld cooling cycle was performed. ASTM A-36 structural steel was used as the base metal for the shielded metal arc welding process, with welding electrode E6013. Two experimental factors were established: weld bead geometry and the post-weld cooling rate. Two levels for each factor, the welding reinforcement (1 and 3 mm), and the rate of cooling, slow (quiet air) and fast (immersion in water) are evaluated respectively. For the uniaxial fatigue tests, 8 samples were selected for each treatment for a total of 32 specimens. The mechanical and fractomechanical properties of fusion zone, heat affected zone and base metal in relation to the analysis of failure mechanisms were analysed. The fatigue crack growth rates were estimated based on the counting of microstrations. Furthermore, experimental tests, such as uniaxial tension, microindentation hardness, Charpy impact and metallographic analysis, were made to know the influence of the experimental factors in the fatigue strength. On this research, about the 78.13% of the samples obtained a resistance higher than the recommended one by class FAT 100. The results showed that the geometry of the joint is the factor of greatest influence on fatigue strength for butt welded joints; the greater the weld reinforcement the lower the fatigue strength of the joint. Although it is also important to consider other geometric factors of less impact as it is the weld toe radius and the welding chord width.

  5. Effects of cooling rate and Al on MnS formation in medium-carbon non-quenched and tempered steels

    Science.gov (United States)

    Li, Meng-long; Wang, Fu-ming; Li, Chang-rong; Yang, Zhan-bing; Meng, Qing-yong; Tao, Su-fen

    2015-06-01

    The effect of Al on the morphology of MnS in medium-carbon non-quenched and tempered steel was investigated at three different cooling rates of 0.24, 0.43, and 200°C·s-1. The formation mechanisms of three types of MnS were elucidated based on phase diagram information combined with crystal growth models. The morphology of MnS is governed by the precipitation mode and the growth conditions. A monotectic reaction and subsequent fast solidification lead to globular Type I MnS. Type II MnS inclusions with different morphological characteristics form as a result of a eutectic reaction followed by the growth in the Fe matrix. Type III MnS presents a divorced eutectic morphology. At the cooling rate of 0.24°C·s-1, the precipitation of dispersed Type III MnS is significantly enhanced by the addition of 0.044wt% acid-soluble Al (Als), while Type II MnS clusters prefer to form in steels with either 0.034wt% or 0.052wt% Als. At the relatively higher cooling rates of 200°C·s-1 and 0.43°C·s-1, the formation of Type I and Type II MnS inclusions is promoted, and the influence of Al is negligible. The results of this work are expected to be employed in practice to improve the mechanical properties of non-quenched and tempered steels.

  6. Production of bovine cloned embryos with donor cells frozen at a slow cooling rate in a conventional freezer (-20 degrees C).

    Science.gov (United States)

    Chacón, Liliana; Gómez, Martha C; Jenkins, Jill A; Leibo, Stanley P; Wirtu, Gemechu; Dresser, Betsy L; Pope, C Earle

    2009-11-01

    SummaryUsually, fibroblasts are frozen in dimethyl sulphoxide (DMSO, 10% v/v) at a cooling rate of 1 degrees C/min in a low-temperature (-80 degrees C) freezer (LTF) before storage in liquid nitrogen (LN2); however, a LTF is not always available. The purpose of the present study was to evaluate apoptosis and viability of bovine fibroblasts frozen in a LTF or conventional freezer (CF; -20 degrees C) and their subsequent ability for development to blastocyst stage after fusion with enucleated bovine oocytes. Percentages of live cells frozen in LTF (49.5%) and CF (50.6%) were similar, but significantly less than non-frozen control (88%). In both CF and LTF, percentages of live apoptotic cells exposed to LN2 after freezing were lower (4% and 5%, respectively) as compared with unexposed cells (10% and 18%, respectively). Cells frozen in a CF had fewer cell doublings/24 h (0.45) and required more days (9.1) to reach 100% confluence at the first passage (P) after thawing and plating as compared with cells frozen in a LTF (0.96 and 4.0 days, respectively). Hypoploidy at P12 was higher than at P4 in cells frozen in either a CF (37.5% vs. 19.2%) or in a LTF (30.0% vs. 15.4%). A second-generation cryo-solution reduced the incidence of necrosis (29.4%) at 0 h after thawing as compared with that of a first generation cryo-solution (DMEM + DMSO, 60.2%). The percentage of apoptosis in live cells was affected by cooling rate (CF = 1.9% vs. LFT = 0.7%). Development of bovine cloned embryos to the blastocyst stage was not affected by cooling rate or freezer type.

  7. The influence of the cooling rate of a 2PbO . SiO2 melt on the constitution of silicate anions

    OpenAIRE

    Götz, J; Hoebbel, Dagobert; Wieker, Wolfgang

    1980-01-01

    The kinetics of crystallization in a 2Pbo · SiO2 melt have been investigated. A TTT-diagram was constructed, which describes the kinetic parameters for the formation of crystalline phases in the system. By means of silicate anion analysis the relationship between the cooling rates of the melt and the structure of silicate units in solid 2PbO · SiO2 has been studied. Substantial differences in the thermal treatment of the melt lead to alterations of the silicate anion constitution, which cause...

  8. The microstructure and magnetic properties of Nd8.5Tb1.5Fe83Zr1B6 ribbons obtained at various cooling rates

    Directory of Open Access Journals (Sweden)

    Dośpiał Marcin

    2015-03-01

    Full Text Available The paper presents results of microstructure and magnetic properties studies of Nd8.5Tb1.5Fe83Zr1B6 ribbons obtained by melt-spinning technique. The samples were produced using the rapid cooling of liquid alloy on the copper wheel, by applying three different linear velocities 20, 30, and 35 m/s. The microstructure of obtained ribbons was examined using X-ray diffractometry and Mössbauer spectroscopy. Magnetic measurements were performed using LakeShore vibrating sample magnetometer. The microstructure measurements were used for quantitative and qualitative analysis of phase composition. Basing on results of structure studies combined with magnetic measurements, the influence of phase composition on hysteresis loop behavior was described.

  9. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    Science.gov (United States)

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  10. Rapid Endovascular Catheter Core Cooling combined with cold saline as an Adjunct to Percutaneous Coronary Intervention For the Treatment of Acute Myocardial Infarction (The CHILL-MI trial)

    DEFF Research Database (Denmark)

    Erlinge, David; Götberg, Matthias; Lang, Irene

    2014-01-01

    OBJECTIVES: The aim of this study was to confirm the cardioprotective effects of hypothermia using a combination of cold saline and endovascular cooling. BACKGROUND: Hypothermia has been reported to reduce infarct size (IS) in patients with ST-segment elevation myocardial infarctions. METHODS: In...

  11. Severe Sepsis Manifesting as A-Fib with Rapid Ventricular Rate

    Directory of Open Access Journals (Sweden)

    Paul Nicholson

    2018-01-01

    Full Text Available Audience: This simulation is designed to educate emergency medicine residents and medical students on the diagnosis and management of an adult patient with sepsis due to a decubitus ulcer manifesting as acute-onset atrial fibrillation (A-fib with rapid ventricular response (RVR. Introduction: Adult patients frequently present critically ill from sepsis. Proper diagnosis and management require a focused but thorough history and physical exam, as well as an appropriate diagnostic workup. Management includes aggressive care with antibiotics and intravenous fluids, and may require vasoactive agents. Objectives: Learners will be able to identify and manage atrial fibrillation with rapid ventricular response. Additionally, learners will be able to identify the concurrent infection and determine the appropriate management in the setting of A-fib with RVR. The case also provides learners with the opportunity to review principles of leadership, teamwork, and effective communication. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session.

  12. Rapid activated sludge respiration inhibition test performed by CO2 producing rate using a carbon dioxide sensor.

    Science.gov (United States)

    Narita, Noboru; Takahashi, Mitsuo; Shoji, Ryo

    2005-01-01

    The rapid activated sludge inhibition test (rapid ASRI) is one of the promising bioassays to evaluate environmental risk to the ecosystem caused by various pollutants. To improve the sensitivity and stability of ASRI, the CO2 producing rate (CPR) using a carbon dioxide gas sensor was employed to examine the respiration activity of activated sludge and to compare it to that by the conventional activated sludge respiration inhibition test using oxygen uptake rate (OUR) by EC50 values derived from dose response curve. Detection of respiratory activity based on CPR has higher reliability and sensitivity than that of OUR. It should be noted that the sensitivity of CPR for evaluating toxicity is sufficiently high in terms of derived dose response curve of some model environmental pollutants and the resultant EC50 values.

  13. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Science.gov (United States)

    Stoks, Robby; De Block, Marjan

    2011-02-24

    Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  14. Al2O3:C as a sensitive OSL dosemeter for rapid assessment of environmental photon dose rates

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; Agersnap Larsen, N.; Markey, B.G.

    1997-01-01

    The use of Al2O3:C single crystals as optically stimulated luminescence (OSL) dosemeters for rapid assessment of the environmental photon dose rate is proposed. It is shown that Al2O3:C possesses higher OSL sensitivity than TL sensitivity. In TL measurements thermal quenching is a major problem...... and the energy response (equal to that of quartz) make Al2O3:C ideal for measuring the environmental dose rates in connection with luminescence dating and retrospective dosimetry using natural materials and ceramics. (C) 1997 Elsevier Science Ltd....

  15. Retrograde Renal Cooling to Minimize Ischemia

    Directory of Open Access Journals (Sweden)

    Janet L. Colli

    2013-01-01

    Full Text Available Objective: During partial nephrectomy, renal hypothermia has been shown to decrease ischemia induced renal damage which occurs from renal hilar clamping. In this study we investigate the infusion rate required to safely cool the entire renal unit in a porcine model using retrograde irrigation of iced saline via dual-lumen ureteral catheter. Materials and Methods: Renal cortical, renal medullary, bowel and rectal temperatures during retrograde cooling in a laparoscopic porcine model were monitored in six renal units. Iced normal saline was infused at 300 cc/hour, 600 cc/hour, 1000 cc/hour and gravity (800 cc/hour for 600 seconds with and without hilar clamping. Results: Retrograde cooling with hilar clamping provided rapid medullary renal cooling and significant hypothermia of the medulla and cortex at infusion rates ≥ 600 cc/hour. With hilar clamping, cortical temperatures decreased at -0.9° C/min. reaching a threshold temperature of 26.9° C, and medullary temperatures decreased at -0.90 C/min. reaching a temperature of 26.1° C over 600 seconds on average for combined data at infusion rates ≥ 600 cc/hour. The lowest renal temperatures were achieved with gravity infusion. Without renal hilum clamping, retrograde cooling was minimal at all infusion rates. Conclusions: Significant renal cooling by gravity infusion of iced cold saline via a duel lumen catheter with a clamped renal hilum was achieved in a porcine model. Continuous retrograde irrigation with iced saline via a two way ureteral catheter may be an effective method to induce renal hypothermia in patients undergoing robotic assisted and/or laparoscopic partial nephrectomy.

  16. Slow vs rapid delivery rate shock wave lithotripsy for pediatric renal urolithiasis: a prospective randomized study.

    Science.gov (United States)

    Salem, Hosni Khairy; Fathy, Hesham; Elfayoumy, Hanny; Aly, Hussein; Ghonium, Ahmed; Mohsen, Mostafa A; Hegazy, Abd El Rahim

    2014-05-01

    We compared slow vs fast shock wave frequency rates in disintegration of pediatric renal stones less than 20 mm. Our study included 60 children with solitary 10 to 20 mm radiopaque renal stones treated with shock wave lithotripsy. Patients were prospectively randomized into 2 groups, ie those undergoing lithotripsy at a rate of 80 shock waves per minute (group 1, 30 patients) and those undergoing lithotripsy at a rate of 120 shock waves per minute (group 2, 30 patients). The 2 groups were compared in terms of treatment success, anesthesia time, secondary procedures and efficiency quotient. Stone clearance rate was significantly higher in group 1 (90%) than in group 2 (73.3%, p = 0.025). A total of 18 patients in group 1 (60%) were rendered stone-free after 1 session, 8 required 2 sessions and 1 needed 3 sessions, while shock wave lithotripsy failed in 3 patients. By comparison, 8 patients (26.6%) in group 2 were rendered stone-free after 1 session, 10 (33.3%) required 2 sessions and 4 (13.3%) needed 3 sessions to become stone-free. Mean general anesthesia time was significantly longer in group 1 (p = 0.041). Postoperatively 2 patients in group 1 and 4 in group 2 suffered low grade fever (Clavien grade II). Significantly more secondary procedures (percutaneous nephrolithotomy, repeat shock wave lithotripsy) were required in group 2 (p = 0.005). The predominant stone analysis was calcium oxalate dihydrate in both groups. Efficiency quotient was 0.5869 and 0.3437 for group 1 and group 2, respectively (p = 0.0247). In children with renal stones slow delivery rates of shock wave lithotripsy have better results regarding stone clearance than fast delivery rates. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    -of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  18. Cage Culture Turbidostat: a Device for Rapid Determination of Algal Growth Rate

    OpenAIRE

    Skipnes, Olav; Eide, Ingvar; Jensen, Arne

    1980-01-01

    The present cage culture turbidostat consists of a growth chamber and a control unit. The microorganisms (photoautotrophic algae) are kept in the growth chamber by porous membranes (pore size 1 to 3 μm) which retain the algae but allow efficient exchange of the growth medium. Flow rate and composition of the medium can therefore be varied independently of algal population density. A reciprocating pumping mode of the medium is introduced to obtain more gentle clearance of membranes than that p...

  19. Rapid Heartbeat, But Dry Palms: Reactions of Heart Rate and Skin Conductance Levels to Social Rejection

    Directory of Open Access Journals (Sweden)

    Benjamin eIffland

    2014-08-01

    Full Text Available Background: Social rejection elicits negative mood, emotional distress and neural activity in networks that are associated with physical pain. However, studies assessing physiological reactions to social rejection are rare and results of these studies were found to be ambiguous. Therefore, the present study aimed to examine and specify physiological effects of social rejection.Methods: Participants (N = 50 were assigned to either a social exclusion or inclusion condition of a virtual ball-tossing game (Cyberball. Immediate and delayed physiological (skin conductance level and heart rate reactions were recorded. In addition, subjects reported levels of affect, emotional states and fundamental needs.Results: Subjects who were socially rejected showed increased heart rates. However, social rejection had no effect on subjects’ skin conductance levels. Both conditions showed heightened arousal on this measurement. Furthermore, psychological consequences of social rejection indicated the validity of the paradigm.Conclusions: Our results reveal that social rejection evokes an immediate physiological reaction. Accelerated heart rates indicate that behavior activation rather than inhibition is associated with socially threatening events. In addition, results revealed gender-specific response patterns suggesting that sample characteristics such as differences in gender may account for ambiguous findings of physiological reactions to social rejection.

  20. Rapid heartbeat, but dry palms: reactions of heart rate and skin conductance levels to social rejection.

    Science.gov (United States)

    Iffland, Benjamin; Sansen, Lisa M; Catani, Claudia; Neuner, Frank

    2014-01-01

    Social rejection elicits negative mood, emotional distress, and neural activity in networks that are associated with physical pain. However, studies assessing physiological reactions to social rejection are rare and results of these studies were found to be ambiguous. Therefore, the present study aimed to examine and specify physiological effects of social rejection. Participants (n = 50) were assigned to either a social exclusion or inclusion condition of a virtual ball-tossing game (Cyberball). Immediate and delayed physiological [skin conductance level (SCL) and heart rate] reactions were recorded. In addition, subjects reported levels of affect, emotional states, and fundamental needs. Subjects who were socially rejected showed increased heart rates. However, social rejection had no effect on subjects' SCLs. Both conditions showed heightened arousal on this measurement. Furthermore, psychological consequences of social rejection indicated the validity of the paradigm. Our results reveal that social rejection evokes an immediate physiological reaction. Accelerated heart rates indicate that behavior activation rather than inhibition is associated with socially threatening events. In addition, results revealed gender-specific response patterns suggesting that sample characteristics such as differences in gender may account for ambiguous findings of physiological reactions to social rejection.

  1. Colorimetry provides a rapid objective measurement of de novo hair growth rate in mice.

    Science.gov (United States)

    Tzung, Tien-Yi; Yang, Chia-Yi; Huang, Yung-Chang; Kao, Fu-Jen

    2009-11-01

    Depilated mice have been used as a test platform for hair growth-regulating agents. However, currently available assessment tools for hair growth in mice are less than ideal. Tristimulus colorimetry of the fur color of depilated agouti, albino, and black mice with L*, a*, and b* values were performed daily until the full growth of pelage. Using light-emitting diode (LED) irradiation (650 and 890 nm) with a daily dose of 3.5 J/cm(2) as hair growth regulators, the hair growth rates observed by the global assessment were compared with those derived from colorimetry. In contrast to a* and b* values, L* values changed more drastically over time in the anagen phase regardless of fur color. Unlike the inhibitory effect of 650 nm irradiation, LED of 890 nm promoted de novo hair regrowth in mice. The difference in hair growth rates detected by colorimetry paralleled the observation made by the global assessment. The L* value of fur color obtained by tristimulus colorimetry was a sensitive yet quantitative indicator of de novo hair growth, and could be used to project the hair growth rate in mice.

  2. Effects of short immersion time and cooling rates of copperizing process to the evolution of microstructures and copper behavior in the dead mild steel

    Science.gov (United States)

    Jatimurti, Wikan; Sutarsis, Cunika, Aprida Ulya

    2017-01-01

    In a dead mild steel with maximum carbon content of 0.15%, carbon does not contribute much to its strength. By adding copper as an alloying element, a balance between strength and ductility could be obtained through grain refining, solid solution, or Cu precipitation. This research aimed to analyse the changes in microstructures and copper behaviour on AISI 1006, including the phases formed, composition, and Cu dispersion. The addition of cooper was done by immersing steel into molten copper or so we called, copperizing using the principles of diffusion. Specimens were cut with 6 × 3 × 0.3 cm measurement then preheated to 900°C and melting the copper at 1100°C. Subsequently, the immersion of the specimens into molten copper varied to 5 and 7 minutes, and also varying the cooling rate to annealing, normalizing, and quenching. A series of test being conduct were optical microscope test, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), optical emission spectroscopy (OES), and X-ray diffraction (XRD). The results showed that the longer the immersion time and slower cooling rate, the more Cu diffused causing smaller grain size with the highest Cu diffused recorded was 0.277% in the copperized AISI 1006 steel with 7 minutes of immersion and was annealed. The grain size reduced to 23041.5404 µm2. The annealed specimens show ferrite phase, the normalized ones show polygonal ferrite phase, while the quenched ones show granular bainite phase. The phase formed is single phase Cu. In addition, the normalized and quenched specimens show that Cu dissolved in Fe crystal forming solid solution.

  3. A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate.

    Science.gov (United States)

    Isiksacan, Ziya; Erel, Ozcan; Elbuken, Caglar

    2016-11-29

    The erythrocyte sedimentation rate (ESR) is a frequently used 30 min or 60 min clinical test for screening of several inflammatory conditions, infections, trauma, and malignant diseases, as well as non-inflammatory conditions including prostate cancer and stroke. Erythrocyte aggregation (EA) is a physiological process where erythrocytes form face-to-face linear structures, called rouleaux, at stasis or low shear rates. In this work, we proposed a method for ESR measurement from EA. We developed a microfluidic opto-electro-mechanical system, using which we experimentally showed a significant correlation (R(2) = 0.86) between ESR and EA. The microfluidic system was shown to measure ESR from EA using fingerprick blood in 2 min. 40 μl of whole blood is filled in a disposable polycarbonate cartridge which is illuminated with a near infrared emitting diode. Erythrocytes were disaggregated under the effect of a mechanical shear force using a solenoid pinch valve. Following complete disaggregation, transmitted light through the cartridge was measured using a photodetector for 1.5 min. The intensity level is at its lowest at complete disaggregation and highest at complete aggregation. We calculated ESR from the transmitted signal profile. We also developed another microfluidic cartridge specifically for monitoring the EA process in real-time during ESR measurement. The presented system is suitable for ultrafast, low-cost, and low-sample volume measurement of ESR at the point-of-care.

  4. Experimental evidence that ooid size reflects a dynamic equilibrium between rapid precipitation and abrasion rates

    Science.gov (United States)

    Trower, Elizabeth J.; Lamb, Michael P.; Fischer, Woodward W.

    2017-06-01

    Ooids are enigmatic concentrically coated carbonate sand grains that reflect a fundamental mode of carbonate sedimentation and inorganic product of the carbon cycle-trends in their composition and size are thought to record changes in seawater chemistry over Earth history. Substantial debate persists concerning the roles of physical, chemical, and microbial processes in their growth, including whether carbonate precipitation on ooid surfaces is driven by seawater chemistry or microbial activity, and what role-if any-sediment transport and abrasion play. To test these ideas, we developed an approach to study ooids in the laboratory employing sediment transport stages and seawater chemistry similar to natural environments. Ooid abrasion and precipitation rates in the experiments were four orders of magnitude faster than radiocarbon net growth rates of natural ooids, implying that ooids approach a stable size representing a dynamic equilibrium between precipitation and abrasion. Results demonstrate that the physical environment is as important as seawater chemistry in controlling ooid growth and, more generally, that sediment transport plays a significant role in chemical sedimentary systems.

  5. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Directory of Open Access Journals (Sweden)

    Robby Stoks

    Full Text Available BACKGROUND: Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. METHODOLOGY/PRINCIPAL FINDING: Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. CONCLUSIONS/SIGNIFICANCE: WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  6. POSSIBLE RAPID STRAIN ACCUMULATION RATES NEAR CALI, COLOMBIA, DETERMINED FROM GPS MEASUREMENTS (1996-2003

    Directory of Open Access Journals (Sweden)

    Trenkamp Robert

    2004-06-01

    Full Text Available Global Positioning System (GPS data from southern Central America and northwestern South America collected between 1991 and 1998 reveal wide plate margin deformation along a 1400 km length of the North Andes. Also associated with the oblique subduction of the Nazca plate at the Colombia-Ecuador trench is the 'escape' of the North Andes block (NAB. The NAB is delineated by the Bocono-East Andean fault systems and the Dolores Guayaquil Megasheare to the east, the South Caribbean deformed belt on the north and the Colombia-Ecuador trench and Panama on the west. Within the NAB many damaging crustal earthquakes have occurred which is most recently exemplified on January 25, 1999 (Mw = 6.1 Armenia earthquake. Preliminary analysis of recent occupations (2003 GEORED GPS of several previously observed (1996-2001 GPS sites suggest shear strain accumulation rates in the Cauca valley near Cali of approximately 2.1 x 10-7 yr-1 and 1.6 x 10-7 yr-1. These strain rates are measured within 2 Delaunay triangles with common vertices at Cali and Restrepo, which encompass areas, located north and west of Cali.Seismicity has been monitored in the Cauca Valley for the last 17 years by the "Observatorio Sismológico del Suroccidente" (OSSO since 1987 and by the Red Sismológica Nacional del INGEOMINAS since 1993. Their catalogs list numerous shallow earthquakes near Cali but nothing larger than magnitude 5. Historically, however, several large earthquakes are associated with the "Falla Cauca Almaguer" in locations both to the south and north of Cali in the Cauca valley. Preliminary calculations using the strain rates determined for these Delaunay triangles and a simplified Kostrov formula suggest possible decadal (30 - 90 years recurrence intervals for Mw = 6.0 - 6.3 earthquakes, centenary (90 - 900 years recurrence intervals for Mw = 6.4 - 6.9 earthquakes and millennial (900+ years recurrence intervals for Mw ≥ 7 earthquakes.

  7. Rapid slowing of the atrial fibrillatory rate after administration of AZD7009 predicts conversion of atrial fibrillation

    DEFF Research Database (Denmark)

    Aunes, Maria; Egstrup, Kenneth; Frison, Lars

    2014-01-01

    BACKGROUND: Effects on the atrial fibrillatory rate (AFR) were studied during infusion with the combined potassium and sodium channel blocker AZD7009. METHODS AND RESULTS: Patients with persistent atrial fibrillation (AF) were randomized to AZD7009 or placebo. Thirty-five patients converted to si...... fpm (p=0.02), and at 10 min, -133 vs. -111 fpm (p=0.048). The AFR-SD and the exponential decay decreased. A small left atrial area was the only baseline predictor of conversion to SR. CONCLUSIONS: AZD7009 produced a significantly more rapid decrease of the AFR in converters than in non...

  8. Improvement in elastic properties of CuAl{sub 0.4}Fe{sub 1.6}O{sub 4} spinel ferrite by rapid thermal cooling

    Energy Technology Data Exchange (ETDEWEB)

    Modi, K. B., E-mail: kunalbmodi2003@yahoo.com; Shah, S. J., E-mail: kunalbmodi2003@yahoo.com; Pathak, T. K., E-mail: kunalbmodi2003@yahoo.com; Vasoya, N. H., E-mail: kunalbmodi2003@yahoo.com; Lakhani, V. K., E-mail: kunalbmodi2003@yahoo.com [Department of Physics, Saurashtra University, Rajkot-360005 (India); Yahya, A. K. [School of Physics and Materials Studies, University Technology MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-04-24

    The elastic properties of spinel ferrite composition, CuAl{sub 0.4}Fe{sub 1.6}O{sub 4}, quenched from final sintering temperature of 1373 K to liquid nitrogen temperature (∼ 80K) have been studied by means of X-ray powder diffractometry and pulse echo-overlap technique (9 MHz) at 300 K. The magnitude of elastic constants is found to enhance by 15% compared to slowly-cooled counterpart. The observed mechanical strengthening has been discussed in the light of compressive stress on the surface, with tensile stresses at interior regions and corresponding changes in structural parameters. The B{sub o}/G{sub o} ratio indicates the brittle nature of CuAl{sub 0.4}Fe{sub 1.6}O{sub 4}.

  9. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: a randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction.

    Science.gov (United States)

    Erlinge, David; Götberg, Matthias; Lang, Irene; Holzer, Michael; Noc, Marko; Clemmensen, Peter; Jensen, Ulf; Metzler, Bernhard; James, Stefan; Bötker, Hans Erik; Omerovic, Elmir; Engblom, Henrik; Carlsson, Marcus; Arheden, Håkan; Ostlund, Ollie; Wallentin, Lars; Harnek, Jan; Olivecrona, Göran K

    2014-05-13

    The aim of this study was to confirm the cardioprotective effects of hypothermia using a combination of cold saline and endovascular cooling. Hypothermia has been reported to reduce infarct size (IS) in patients with ST-segment elevation myocardial infarctions. In a multicenter study, 120 patients with ST-segment elevation myocardial infarctions (cold saline and endovascular cooling or standard of care. Hypothermia was initiated before percutaneous coronary intervention and continued for 1 h after reperfusion. The primary end point was IS as a percent of myocardium at risk (MaR), assessed by cardiac magnetic resonance imaging at 4 ± 2 days. Mean times from symptom onset to randomization were 129 ± 56 min in patients receiving hypothermia and 132 ± 64 min in controls. Patients randomized to hypothermia achieved a core body temperature of 34.7°C before reperfusion, with a 9-min longer door-to-balloon time. Median IS/MaR was not significantly reduced (hypothermia: 40.5% [interquartile range: 29.3% to 57.8%; control: 46.6% [interquartile range: 37.8% to 63.4%]; relative reduction 13%; p = 0.15). The incidence of heart failure was lower with hypothermia at 45 ± 15 days (3% vs. 14%, p cold saline and endovascular cooling was feasible and safe, and it rapidly reduced core temperature with minor reperfusion delay. The primary end point of IS/MaR was not significantly reduced. Lower incidence of heart failure and a possible effect in patients with early anterior ST-segment elevation myocardial infarctions need confirmation. (Efficacy of Endovascular Catheter Cooling Combined With Cold Saline for the Treatment of Acute Myocardial Infarction [CHILL-MI]; NCT01379261). Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Design and demonstration of heat pipe cooling for NASP and evaluation of heating methods at high heating rates

    Energy Technology Data Exchange (ETDEWEB)

    Merrigan, M.A.; Sena, J.T.

    1989-01-01

    An evaluation of two heating methods for demonstration of NASP leading edge heat pipe technology was conducted. The heating methods were and rf induction heated plasma jet and direct rf induction. Tests were conducted to determine coupling from the argon plasma jet on a surface physically similar to a heat pipe. A molybdenum tipped calorimeter was fabricated and installed in an rf induction heated plasma jet for the test. The calorimetric measurements indicated a maximum power coupling of approximately 500 W/cm{sup 2} with the rf plasma jet. The effect of change in gas composition on the heating rate was investigated using helium. An alternative to the plasma heating of a heat pipe tip, an rf concentrator was evaluated for coupling to the hemispherical tip of a heat pipe. A refractory metal heat pipe was designed, fabricated, and tested for the evaluation. The heat pipe was designed for operation at 1400 to 1900 K with power input to 1000 W/cm{sup 2} over a hemispherical nose tip. Power input of 800 W/cm{sup 2} was demonstrated using the rf concentrator. 2 refs., 13 figs.

  11. Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete?

    Science.gov (United States)

    Coombes, Martin A; Viles, Heather A; Naylor, Larissa A; La Marca, Emanuela Claudia

    2017-02-15

    Sedentary and mobile organisms grow profusely on hard substrates within the coastal zone and contribute to the deterioration of coastal engineering structures and the geomorphic evolution of rocky shores by both enhancing and retarding weathering and erosion. There is a lack of quantitative evidence for the direction and magnitude of these effects. This study assesses the influence of globally-abundant intertidal organisms, barnacles, by measuring the response of limestone, granite and marine-grade concrete colonised with varying percentage covers of Chthamalus spp. under simulated, temperate intertidal conditions. Temperature regimes at 5 and 10mm below the surface of each material demonstrated a consistent and statistically significant negative relationship between barnacle abundance and indicators of thermal breakdown. With a 95% cover of barnacles, subsurface peak temperatures were reduced by 1.59°C for limestone, 5.54°C for concrete and 5.97°C for granite in comparison to no barnacle cover. The amplitudes of short-term (15-30min) thermal fluctuations conducive to breakdown via 'fatigue' effects were also buffered by 0.70°C in limestone, 1.50°C in concrete and 1.63°C in granite. Furthermore, concentrations of potentially damaging salt ions were consistently lower under barnacles in limestone and concrete. These results indicate that barnacles do not enhance, but likely reduce rates of mechanical breakdown on rock and concrete by buffering near-surface thermal cycling and reducing salt ion ingress. In these ways, we highlight the potential role of barnacles as agents of bioprotection. These findings support growing international efforts to enhance the ecological value of hard coastal structures by facilitating their colonisation (where appropriate) through design interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Association of apneic oxygenation with decreased desaturation rates during rapid sequence intubation by a Chinese emergency medicine service

    Science.gov (United States)

    Mao, Yong; Qin, Zong-He

    2015-01-01

    Rapid and safe airway management has always been of paramount importance in successful management of critically ill and injured patients in the emergency department. The achievement rate of emergency medicine inhabitants in airway management improved enhanced essentially subsequent to finishing anaesthesiology turn. There was a slightly higher rate of quick sequence intubation in the postapneic oxygenation groups (preapneic oxygenation 6.4%; postapneic oxygenation 9.1%). The majority of patients intubated in both groups were men (preapneic oxygenation 72.3%; postapneic oxygenation 63.5%). A higher percentage of patients in the preapneic oxygenation group had a Cormack-Lehane grade III or worse view (23.2% versus 11.8%). Anaesthesiology turns should be considered as an essential component of emergency medicine training programs. A collateral curriculum of this nature should also focus on the acquisition of skills in airway management. PMID:26379959

  13. Vacuum cooling of meat products: current state-of-the-art research advances.

    Science.gov (United States)

    Feng, Chaohui; Drummond, Liana; Zhang, Zhihang; Sun, Da-Wen; Wang, Qijun

    2012-01-01

    Vacuum cooling (VC) is commonly applied for cooling of several foodstuffs, to provide exceptionally rapid cooling rates with low energy consumption and resulting in high-quality food products. However, for products such as meat and cooked meat products, the higher cooling loss of vacuum cooling compared with established methods still means lower yields, and important meat quality parameters can be negatively affected. Substantial efforts during the past ten years have aimed to improve the technology in order to offer the meat industry, especially the cooked meat industry, optimized production in terms of safety regulations and guidelines, as well as meat quality. This review presents and discusses recent VC developments directed to the cooked meat industry. The principles of VC, and the basis for improvements of this technology, are firstly discussed; future prospects for research and development in this area are later explored, particularly in relation to cooling of cooked meat and meat products.

  14. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates

    Science.gov (United States)

    Kirwan, Matthew L.; Murray, A. Brad; Donnelly, Jeffrey P.; Corbett, D. Reide

    2011-01-01

    Fluctuations in sea-level rise rates are thought to dominate the formation and evolution of coastal wetlands. Here we demonstrate a contrasting scenario in which land-use-related changes in sediment delivery rates drive the formation of expansive marshland, and vegetation feedbacks maintain their morphology despite recent sediment supply reduction. Stratigraphic analysis and radiocarbon dating in the Plum Island Estuary (Massachusetts, United States) suggest that salt marshes expanded rapidly during the eighteenth and nineteenth centuries due to increased rates of sediment delivery following deforestation associated with European settlement. Numerical modeling coupled with the stratigraphic observations suggests that existing marshland could survive, but not form under the low suspended sediment concentrations observed in the estuary today. These results suggest that many of the expansive marshes that characterize the modern North American coast are metastable relicts of high nineteenth century sediment delivery rates, and that recent observations of degradation may represent a slow return to pre-settlement marsh extent. In contrast to ecosystem management practices in which restoring pre-anthropogenic conditions is seen as a way to increase ecosystem services, our results suggest that widespread efforts to restore valuable coastal wetlands actually prevent some systems from returning to a natural state.

  15. Synthesis of renewable diesel through hydrodeoxygenation reaction from nyamplung oil (Calophyllum Inophyllum oil) using NiMo/Z and NiMo/C catalysts with rapid heating and cooling method

    Science.gov (United States)

    Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.

    2016-11-01

    The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.

  16. Steady and dynamic shear rheological behavior of semi dilute Alyssum homolocarpum seed gum solutions: influence of concentration, temperature and heating-cooling rate.

    Science.gov (United States)

    Alaeddini, Behzad; Koocheki, Arash; Mohammadzadeh Milani, Jafar; Razavi, Seyed Mohammad Ali; Ghanbarzadeh, Babak

    2017-10-30

    Alyssum homolocarpum seed gum (AHSG) solution exhibits high viscosity at low shear rates and has anionic features. However there is no information regarding the flow and dynamic properties of this gum in semi-dilute solutions. The present study aimed to investigate the dynamic and steady shear behavior of AHSG in the semi-dilute region. The viscosity profile demonestrated a shear thinning behavior at all temperatures and concentrations. An increase in the AHSG concentration was acompanied by an increase in the pseudoplasticity degree, whereas, by increasing the temperature, the pseudoplasticity of AHSG decreased. At low gum concentration, solutions had more viscosity dependence on temperature. The mechanical spectra obtained from the frequency sweep experiment demonstrated viscoelastic properties for gum solutions. AHSG solutions showed typical weak gel-like behavior, revealing G' greater than G' within the experimental range of frequency (Hz), with slight frequency dependency. The influence of temperature on viscoelastic properties of AHSG solutions was studied during both heating (5-85 °C) and cooling (85-5 °C) processes. The complex viscosity of AHSG was greater compared to the apparent viscosity, indicating the disruption of AHSG network structure under continuous shear rates and deviation from the Cox-Merz rule. During the initial heating, the storage modulus showed a decreasing trend and, with a further increase in temperature, the magnitude of storage modulus increased. The influence of temperature on the storage modulus was considerable when a higher heating rate was applied. AHSG can be applied as a thickening and stabilizing agents in food products that require good stability against temperature. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Neutronics - thermal-hydraulics coupling: application to the helium-cooled fast reactor; Couplage neutronique - thermohydraulique: application au reacteur a neutrons rapides refroidi a l'helium

    Energy Technology Data Exchange (ETDEWEB)

    Vaiana, F.

    2009-11-15

    This thesis focuses on the study of interactions between neutron-kinetics and thermal-hydraulics. Neutron-kinetics allow to calculate the power in a nuclear reactor and the temperature evolution of materials where this power is deposited is known thanks to thermal-hydraulics. Moreover, when the temperatures evolve, the densities and cross sections change. These two disciplines are thus coupled. The first part of this work corresponds to the study and development of a method which allows to simulate transients in nuclear reactors and especially with a Monte-Carlo code for neutron-kinetics. An algorithm for the resolution of the neutron transport equation has been established and validated with a benchmark. In thermal-hydraulics, a porous media approach, based on another thesis, is considered. This gives the opportunity to solve the equations on the whole core without unconscionable computation time. Finally, a theoretical study has been performed on the statistical uncertainties which result from the use of a Monte-Carlo code and which spread from the reactivity to the power and from the power to the temperatures. The second part deals with the study of a misplaced control rod withdrawing in a GFR (helium-cooled fast reactor), a fourth generation reactor. Some models allowing to calculate neutron-kinetics and thermal-hydraulics in the core (which contains assemblies built up with fuel plates) were defined. In thermal-hydraulics, a model for the core based on the porous media approach and a fuel plate homogenization model have been set up. A similar homogenization model has been studied for neutron-kinetics. Finally, the control rod withdrawing transient where we can observe the power raising and the stabilisation by thermal feedback has been performed with the Monte-Carlo code Tripoli for neutron-kinetics and the code Trio-U for thermal-hydraulics. (author)

  18. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum.

    Science.gov (United States)

    Neve, Paul; Powles, Stephen

    2005-04-01

    There has been much debate regarding the potential for reduced rates of herbicide application to accelerate evolution of herbicide resistance. We report a series of experiments that demonstrate the potential for reduced rates of the acetyl-co enzyme A carboxylase (ACCase)-inhibiting herbicide diclofop-methyl to rapidly select for resistance in a susceptible biotype of Lolium rigidum. Thirty-six percent of individuals from the original VLR1 population survived application of 37.5 g diclofop-methyl ha(-1) (10% of the recommended field application rate). These individuals were grown to maturity and bulk-crossed to produce the VLR1 low dose-selected line VLR1 (0.1). Subsequent comparisons of the dose-response characteristics of the original and low dose-selected VLR1 lines demonstrated increased tolerance of diclofop-methyl in the selected line. Two further rounds of selection produced VLR1 lines that were resistant to field-applied rates of diclofop-methyl. The LD50 (diclofop-methyl dose required to cause 50% mortality) of the most resistant line was 56-fold greater than that of the original unselected VLR1 population, indicating very large increases in mean population survival after three cycles of selection. In vitro ACCase inhibition by diclofop acid confirmed that resistance was not due to an insensitive herbicide target-site. Cross-resistance studies showed increases in resistance to four herbicides: fluazifop-P-butyl, haloxyfop-R-methyl, clethodim and imazethapyr. The potential genetic basis of the observed response and implications of reduced herbicide application rates for management of herbicide resistance are discussed.

  19. Analysis of readmission rates to the intensive care unit after implementation of a rapid response team in a University Hospital.

    Science.gov (United States)

    Bergamasco E Paula, R; Tanita, M T; Festti, J; Queiroz Cardoso, L T; Carvalho Grion, C M

    2017-10-01

    To compare readmission rates to the intensive care unit (ICU) before and after the implementation of a rapid response team (RRT), and to identify risk factors for readmission. A quasi-experimental before-after study was carried out. A University Hospital. All patients discharged from the ICU from January to December 2008 (control group) and from January 2010 to December 2012 (intervention group). Implementation of an RRT. The data included demographic parameters, diagnoses upon admission, ICU readmission, APACHE II, SOFA, and TISS 28 scores, and routine daily assessment by an RRT of patients discharged from the ICU. During the study interval, 380 patients were analyzed in the period prior to the implementation of the RRT and 1361 after implementation. There was a tendency toward decreased readmission rates one year after RRT implementation. The APACHE II score and SOFA score at ICU discharge were independent factors associated to readmission, as well as clinical referral to the ICU. The RRT intervention resulted in a sustained decrease in readmission rates one year after implementation of this service. The use of a specialized team in health institutions can be recommended for ICU survivors. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  20. Stacking with Stochastic Cooling

    CERN Document Server

    Caspers, Friedhelm

    2004-01-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles seen by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly protected from the Schottky noise of the stack. Vice versa the stack has to be efficiently shielded against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105, the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters)....

  1. Local cooling effect on perforation rates comparing the 980-1470 nm laser wavelengths used with endovenous laser ablation: double blind in vitro experimental study.

    Science.gov (United States)

    Tarhan, I A; Dumantepe, M; Yurdakul, I; Kehlibar, T; Ozler, A

    2014-03-01

    Endovenous laser treatment (EVLA) is fast gaining acceptance as an alternative to open surgery for the treatment of saphenous vein incompetence. The method of action of these techniques is based on heat, making tumescence anaesthesia necessity. Heat-induced complications may occur with inadequate application of tumescent anaesthesia. Our hypothesis was, local cooling effect of tumescent anaesthesia on tunica adventitia might be kept undamaged from disruption due to the thermal injury. We experimented with two popular laser wavelengths (980 and 1470 nm) and with two different thermal media (+4 and +24) in vitro for perforation. Twenty different 12 cm length vein pieces were numbered randomly to set up four groups of the experiment. Endovenous laser procedures were applied in same manner in a unique design test tube with same energy density per pieces on same duration (10 W/second) (linear endovenous energy density 60 J/cm). Procedure video was recorded for macroscopic perforations. All postprocedure vein segments were examined microscopically. Activities of both wavelengths were much better in cold medium (P laser was better than that of 980 nm in cold environment (P = 0.0136). It can be commented that reducing the ambient temperature is more beneficial than modifying the laser wavelength on perforation rates. Therefore we suppose tumescent anaesthesia temperature is effective on perforation independently from the wavelengths or type of the laser fibre.

  2. The Effects of Cooling Rate on the Microstructure and Mechanical Properties of Ti{sub 4}0Zr{sub 1}0Cu{sub 3}6Pd{sub 1}4 Metallic Glass Matrix Composites

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seon Yong; Lim, Ka Ram; Na, Young Sang; Kim, Seong Eon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Choi, Youn Suk [Pusan National University, Busan (Korea, Republic of)

    2016-11-15

    In this paper, we demonstrate that the microstructure and mechanical properties in the Ti{sub 4}0Zr{sub 1}0Cu{sub 3}6Pd{sub 1}4 alloy can be tailored by controlling the cooling rate during solidification. A lower cooling rate increases the volume fraction of crystalline phase such as B2 but decreases the free volume of the glassy matrix. The increase of the B2 volume fraction can dramatically enhance the toughness of the composites, since the B2 phase is relatively ductile compared to the glassy matrix and seems to have good interface stability with the matrix. From the experimental results, it was found that there is a transition point in the plasticity of the composites depending on the cooling rate. Here, we explain how the toughness of the composites varies in accordance with the cooling rate in the Ti{sub 4}0Zr{sub 1}0Cu{sub 3}6Pd{sub 1}4 alloy system.

  3. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition.

    Science.gov (United States)

    Brusatte, Stephen L; Lloyd, Graeme T; Wang, Steve C; Norell, Mark A

    2014-10-20

    The evolution of birds from theropod dinosaurs was one of the great evolutionary transitions in the history of life. The macroevolutionary tempo and mode of this transition is poorly studied, which is surprising because it may offer key insight into major questions in evolutionary biology, particularly whether the origins of evolutionary novelties or new ecological opportunities are associated with unusually elevated "bursts" of evolution. We present a comprehensive phylogeny placing birds within the context of theropod evolution and quantify rates of morphological evolution and changes in overall morphological disparity across the dinosaur-bird transition. Birds evolved significantly faster than other theropods, but they are indistinguishable from their closest relatives in morphospace. Our results demonstrate that the rise of birds was a complex process: birds are a continuum of millions of years of theropod evolution, and there was no great jump between nonbirds and birds in morphospace, but once the avian body plan was gradually assembled, birds experienced an early burst of rapid anatomical evolution. This suggests that high rates of morphological evolution after the development of a novel body plan may be a common feature of macroevolution, as first hypothesized by G.G. Simpson more than 60 years ago. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Evaluation of the use of conductimetry for the rapid and precise measurement of Salmonella spp. growth rates.

    Science.gov (United States)

    Sherry, A E; Patterson, M F; Kilpatrick, D; Madden, R H

    2006-10-01

    The growth rates of 14 Salmonella serovars in tryptone soy broth plus yeast extract (TSBYE) were estimated using conventional plating techniques and indirect conductimetry using a Don Whitley RABIT system. Both methods gave identical results for the maximum specific growth rate (mumax) P>0.05. However, using the conductimetric method, mumax for a single serovar was determined in less than 7 h, whereas the conventional method required an additional 24 h. In addition, the conductimetric method was considerably more precise, much less labour-intensive and required the use of considerably less consumables. Using conductimetry, a trained operator could accurately determine mumax for 24 serovars in 3 working days, but only one serovar using the conventional plate counting technique. Hence, the use of conductimetry can markedly increase the precision and accuracy of mumax determinations by allowing a very significant increase in the number of results obtained and in their precision. The data generated will allow the development of better mathematical growth models. The method can also be used to compare growth media and conditions and hence rapidly optimise detection protocols for this pathogen.

  5. Mutation Rates and Discriminating Power for 13 Rapidly-Mutating Y-STRs between Related and Unrelated Individuals.

    Directory of Open Access Journals (Sweden)

    Alessio Boattini

    Full Text Available Rapidly Mutating Y-STRs (RM Y-STRs were recently introduced in forensics in order to increase the differentiation of Y-chromosomal profiles even in case of close relatives. We estimate RM Y-STRs mutation rates and their power to discriminate between related individuals by using samples extracted from a wide set of paternal pedigrees and by comparing RM Y-STRs results with those obtained from the Y-filer set. In addition, we tested the ability of RM Y-STRs to discriminate between unrelated individuals carrying the same Y-filer haplotype, using the haplogroup R-M269 (reportedly characterised by a strong resemblance in Y-STR profiles as a case study. Our results, despite confirming the high mutability of RM Y-STRs, show significantly lower mutation rates than reference germline ones. Consequently, their power to discriminate between related individuals, despite being higher than the one of Y-filer, does not seem to improve significantly the performance of the latter. On the contrary, when considering R-M269 unrelated individuals, RM Y-STRs reveal significant discriminatory power and retain some phylogenetic signal, allowing the correct classification of individuals for some R-M269-derived sub-lineages. These results have important implications not only for forensics, but also for molecular anthropology, suggesting that RM Y-STRs are useful tools for exploring subtle genetic variability within Y-chromosomal haplogroups.

  6. Rapid needle-out patient-rollover approach after cone beam CT-guided lung biopsy: effect on pneumothorax rate in 1,191 consecutive patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Im [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Park, Chang Min; Goo, Jin Mo [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Sang Min [Seoul National University College of Medicine, Department of Radiology, Jongno-gu, Seoul (Korea, Republic of)

    2015-07-15

    To investigate the effect of rapid needle-out patient-rollover approach on the incidence of pneumothorax and drainage catheter placement due to pneumothorax in C-arm Cone-beam CT (CBCT)-guided percutaneous transthoracic needle biopsy (PTNB) of lung lesions. From May 2011 to December 2012, 1227 PTNBs were performed in 1191 patients with a 17-gauge coaxial needle. 617 biopsies were performed without (conventional-group) and 610 with rapid-rollover approach (rapid-rollover-group). Overall pneumothorax rates and incidences of pneumothorax requiring drainage catheter placement were compared between two groups. There were no significant differences in overall pneumothorax rates between conventional and rapid-rollover groups (19.8 % vs. 23.1 %, p = 0.164). However, pneumothorax rate requiring drainage catheter placement was significantly lower in rapid-rollover-group (1.6 %) than conventional-group (4.2 %) (p = 0.010). Multivariate analysis revealed male, age > 60, bulla crossed, fissure crossed, pleura to target distance > 1.3 cm, emphysema along needle tract, and pleural punctures ≥ 2 were significant risk factors of pneumothorax (p < 0.05). Regarding pneumothorax requiring drainage catheter placement, fissure crossed, bulla crossed, and emphysema along needle tract were significant risk factors (p < 0.05), whereas rapid-rollover approach was an independent protective factor (p = 0.002). The rapid needle-out patient-rollover approach significantly reduced the rate of pneumothorax requiring drainage catheter placement after CBCT-guided PTNB. (orig.)

  7. Seismicity and Deformation of Krafla Volcano, Iceland. Intervals of Low Seismicity Rate during Rapid Inflation Explained By the Kaiser Effect.

    Science.gov (United States)

    Heimisson, E. R.; Einarsson, P.; Sigmundsson, F.; Brandsdottir, B.

    2014-12-01

    The Krafla central volcano in NE-Iceland produced about 20 dike intrusions during a rifting episode 1975-1984. These intrusions were always preceded by inflation of the caldera. Once a dike started propagating rapid deflation was observed. The first deflation event began in December 1975 with a dike traveling laterally from the magma chamber. Leveling measurements revealed subsidence of 2 m close to the deflation center. In February 1976 a stage of inflation began and at the same time the seismicity rate in the caldera rose in good correlation with the inflation. A small intrusion started propagating in late September 1976 which was accompanied by maximum subsidence of about 14 cm. However in the next 3 inflation and deflation cycles the inflation periods were almost aseismic until the inflation level of previous cycle was exceeded. At that point a sharp increase in the caldera earthquake count was observed. This phenomenon was observed until late April 1977 when a fissure eruption occurred inside the caldera. By inverting leveling data from 87 stations for a Mogi source and regarding the volume change of the source as a measure of stress we suggest that this phenomenon can be explained by the Kaiser effect. The Kaiser effect is well known from rock mechanics where under cyclic loading and unloading rocks, and other materials, induce dramatic increase in acoustic emissions when the load exceeds that of previous cycles. Krafla demonstrated the same effect while the external stress field was not significantly changed during the aforementioned 3 inflation/deflation cycles. This condition was disturbed when eruption occurred inside the caldera. The state of stress in the vicinity of the magma chamber was changed and subsequent inflation periods were not accompanied by significant seismicity. These results indicate that the Kaiser effect is an important part of understanding the relationship between deformation and seismicity in active volcanoes. The importance of

  8. Theory of tapered laser cooling

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Hiromi; Wei, J.

    1998-03-25

    A theory of tapered laser cooling for fast circulating ion beams in a storage ring is constructed. The authors describe the fundamentals of this new cooling scheme, emphasizing that it might be the most promising way to beam crystallization. The cooling rates are analytically evaluated to study the ideal operating condition. They discuss the physical implication of the tapering factor of cooling laser, and show how to determine its optimum value. Molecular dynamics method is employed to demonstrate the validity of the present theory.

  9. Mass extinction, gradual cooling, or rapid radiation? Reconstructing the spatiotemporal evolution of the ancient angiosperm genus Hedyosmum (Chloranthaceae) using empirical and simulated approaches.

    Science.gov (United States)

    Antonelli, Alexandre; Sanmartín, Isabel

    2011-10-01

    Chloranthaceae is a small family of flowering plants (65 species) with an extensive fossil record extending back to the Early Cretaceous. Within Chloranthaceae, Hedyosmum is remarkable because of its disjunct distribution--1 species in the Paleotropics and 44 confined to the Neotropics--and a long "temporal gap" between its stem age (Early Cretaceous) and the beginning of the extant radiation (late Cenozoic). Is this gap real, reflecting low diversification and a recent radiation, or the signature of extinction? Here we use paleontological data, relaxed-clock molecular dating, diversification analyses, and parametric ancestral area reconstruction to investigate the timing, tempo, and mode of diversification in Hedyosmum. Our results, based on analyses of plastid and nuclear sequences for 40 species, suggest that the ancestor of Chloranthaceae and the Hedyosmum stem lineages were widespread in the Holarctic in the Late Cretaceous. High extinction rates, possibly associated with Cenozoic climatic fluctuations, may have been responsible for the low extant diversity of the family. Crown group Hedyosmum originated c. 36-43 Ma and colonized South America from the north during the Early-Middle Miocene (c. 20 Ma). This coincided with an increase in diversification rates, probably triggered by the uplift of the Northern Andes from the Mid-Miocene onward. This study illustrates the advantages of combining paleontological, phylogenetic, and biogeographic data to reconstruct the spatiotemporal evolution of an ancient lineage, for which the extant diversity is only a remnant of past radiations. It also shows the difficulties of inferring patterns of lineage diversification when incomplete taxon sampling is combined with high extinction rates.

  10. A very cool cooling system

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  11. Sustained large stimulation of soil heterotrophic respiration rate and its temperature sensitivity by soil warming in a cool-temperate forested peatland

    Directory of Open Access Journals (Sweden)

    Maricar Aguilos

    2013-07-01

    Full Text Available We conducted a soil warming experiment in a cool-temperate forested peatland in northern Japan during the snow-free seasons of 2007–2011, to determine whether the soil warming would change the heterotrophic respiration rate and its temperature sensitivity. We elevated the soil temperature by 3°C at 5-cm depth by using overhead infrared heaters and continuously measured hourly soil CO2 fluxes with a 15-channel automated chamber system. The 15 chambers were divided into three groups each with five replications for the control, unwarmed-trenched and warmed-trenched treatments. Soil warming enhanced heterotrophic respiration by 82% (mean of four seasons (2008–2011 observation±SD, 6.84±2.22 µmol C m−2 s−1 as compared to the unwarmed-trenched treatment (3.76±0.98 µmol C m−2 s−1. The sustained enhancement of heterotrophic respiration with soil warming suggests that global warming will accelerate the loss of carbon substantially more from forested peatlands than from other upland forest soils. Soil warming likewise enhanced temperature sensitivity slightly (Q 10, 3.1±0.08 and 3.3±0.06 in the four-season average in unwarmed- and warmed-trenched treatments, respectively, and significant effect was observed in 2009 (p<0.001 and 2010 (p<0.01. However, there was no significant difference in the basal respiration rate at 10°C (R 10, 2.2±0.52 and 2.8±1.2 µmol C m−2 s−1 between treatments, although the values tended to be high by warming throughout the study period. These results suggest that global warming will enhance not only the heterotrophic respiration rate itself but also its Q 10 in forests with high substrate availability and without severe water stress, and predictions for such ecosystems obtained by using models assuming no change in Q 10 are likely to underestimate the carbon release from the soil to the atmosphere in a future warmer environment.

  12. Rapid ice unloading in the Fleming Glacier region, southern Antarctic Peninsula, and its effect on bedrock uplift rates

    Science.gov (United States)

    Zhao, Chen; King, Matt A.; Watson, Christopher S.; Barletta, Valentina R.; Bordoni, Andrea; Dell, Matthew; Whitehouse, Pippa L.

    2017-09-01

    Rapid regional warming in the Antarctic Peninsula has led to the significant retreat and eventual collapse of several major ice shelves since the 1970s, triggering the subsequent acceleration and thinning of their feeding glaciers. The Wordie Ice Shelf, lying off the west coast of the Antarctic Peninsula, has undergone long-term disintegration since the 1960s with a substantial calving event occurring around 1989, followed by continuous steady retreat and its almost-complete disappearance. The dynamic response of the upstream glaciers to the ice shelf collapse and the response of the solid Earth to the associated mass loss are not fully understood. To quantify the mass loss from the system, we generated a digital elevation model (DEM) using airborne vertical and oblique imagery from 1966 and compared it to a DEM derived from 2008 SPOT data. This analysis reveals lowering over that time of approximately 60 m at the front of Fleming Glacier. Using IceBridge and ICESat-2/GLAS data spanning 2002-2014, we show an increased rate of mean ice-surface lowering, with rates post-2008 more than twice those of 2002-2008. We use these load change data as a basis for the simulation of viscoelastic solid Earth deformation. We subtract modeled elastic deformation rates, and a suite of modeled viscous rates, from GPS-derived three-dimensional bedrock velocities at sites to the south of Fleming Glacier to infer properties of Earth rheology. Assuming the pre-breakup bedrock uplift was positive due to post-Last Glacial Maximum (LGM) ice retreat, our viscoelastic-corrected GPS uplift rates suggest upper mantle viscosities are > 2 ×1019 Pas and likely > 1 ×1020 Pas in this region, 1-2 orders of magnitude greater than previously found for the northern Antarctic Peninsula. Horizontal velocities at the GPS site nearest the Fleming Glacier, after the application of elastic and plate tectonic corrections, point away from Marguerite Bay rather than the present glacier front. This suggests

  13. A high repetition rate TEA CO II laser operating at λ=9.3-μm for the rapid and conservative ablation and modification of dental hard tissues

    Science.gov (United States)

    Fan, Kenneth; Fried, Daniel

    2006-02-01

    TEA CO II lasers tuned to the strong mineral absorption of hydroxyapatite near λ=9-μm are ideally suited for the efficient ablation of dental hard tissues if the laser-pulse is stretched to greater than 5-10-μs to avoid plasma shielding phenomena. Such CO II lasers are capable of operating at high repetition rates for the rapid removal of dental hard tissues. An Impact 2500 TEA CO II laser system from GSI Lumonics (Rugby, UK) custom modified by LightMachinery (Ottawa, Canada) with a repetition rate of 0-500 Hz was used for rapid tissue removal. The single pulse ablation rates through enamel were determined for incident fluence ranging from (1-160 J/cm2). Lateral incisions using a computer controlled scanning stage and water spray were produced and the crater morphology and chemical composition were measured using optical microscopy and high-resolution synchrotron radiation infrared spectromicroscopy. The transmission through 2-meter length 300, 500, 750 and 1000-μm silica hollow waveguides was measured and 80% transmission was achieved with 40-mJ per pulse. The λ=9.3-μm laser pulses efficiently removed dental enamel at rates exceeding 15-μm per pulses with minimal heat accumulation. The residual energy remaining in tooth samples was measured to be 30-40% without water cooling, significantly lower than for longer CO II laser pulses. These results suggest that high repetition rate TEA CO II laser systems operating at λ=9.3-μm with pulse durations of 10-20-μs are ideally suited for dental application.

  14. Field measurement of erosion rates: time-lapse monitoring of rapid stone flaking at Howden Minster, UK

    Science.gov (United States)

    Doehne, E.; Pinchin, S.

    2012-04-01

    The use of a solar-powered, field time-lapse camera and environmental monitoring system enabled measurements of the pattern and rate of loss of stone from the surface of Howden Minster, an abandoned monastery in Yorkshire dating to 1380 AD. Acquiring a photograph every 1-3 hours allowed the stone damage to be correlated with local environmental conditions. Image comparison techniques borrowed from observational astronomy, such as blink comparison, were used to determine what elements had changed from image to image. Results indicate that loss is episodic rather than continuous and in several cases is related to specific environmental conditions, such as condensation/dew formation or high winds. Damage was found also to be synchronous, with surface change (flaking, granular disintegration, and loss of flakes) occurring at the same time on different stone blocks. Crystallization pressure from magnesium sulfate phase transitions appear to be the main cause of the loss of stone surfaces. Significant variation in surface loss rates was observed and appears to be related to variations in salt concentration. An examination of stone texture by ESEM/EDS revealed signification variations and suggests that salt concentrations are controlled in part by stone micromorphology. Quantitative data on rates of surface loss are not available from most monuments. Time-lapse methods permit the relatively inexpensive acquisition of this type of data, which is needed to aid conservation decision-making and the evaluation of interventions. Such tools should also prove useful to geomorphologists studying honeycomb weathering, the moving rocks on Death Valley's Racetrack Playa, and other phenomena that are otherwise difficult to study. Context: The rapid deterioration of magnesian limestone structures in the north of England has been a serious problem for more than one hundred years. While air quality in England has improved during this period, the rate of stone loss in these carved stone

  15. PhoU Allows Rapid Adaptation to High Phosphate Concentrations by Modulating PstSCAB Transport Rate in Sinorhizobium meliloti.

    Science.gov (United States)

    diCenzo, George C; Sharthiya, Harsh; Nanda, Anish; Zamani, Maryam; Finan, Turlough M

    2017-09-15

    Maintenance of cellular phosphate homeostasis is essential for cellular life. The PhoU protein has emerged as a key regulator of this process in bacteria, and it is suggested to modulate phosphate import by PstSCAB and control activation of the phosphate limitation response by the PhoR-PhoB two-component system. However, a proper understanding of PhoU has remained elusive due to numerous complications of mutating phoU, including loss of viability and the genetic instability of the mutants. Here, we developed two sets of strains of Sinorhizobium meliloti that overcame these limitations and allowed a more detailed and comprehensive analysis of the biological and molecular activities of PhoU. The data showed that phoU cannot be deleted in the presence of phosphate unless PstSCAB is inactivated also. However, phoU deletions were readily recovered in phosphate-free media, and characterization of these mutants revealed that addition of phosphate to the environment resulted in toxic levels of PstSCAB-mediated phosphate accumulation. Phosphate uptake experiments indicated that PhoU significantly decreased the PstSCAB transport rate specifically in phosphate-replete cells but not in phosphate-starved cells and that PhoU could rapidly respond to elevated environmental phosphate concentrations and decrease the PstSCAB transport rate. Site-directed mutagenesis results suggested that the ability of PhoU to respond to phosphate levels was independent of the conformation of the PstSCAB transporter. Additionally, PhoU-PhoU and PhoU-PhoR interactions were detected using a bacterial two-hybrid screen. We propose that PhoU modulates PstSCAB and PhoR-PhoB in response to local, internal fluctuations in phosphate concentrations resulting from PstSCAB-mediated phosphate import.IMPORTANCE Correct maintenance of cellular phosphate homeostasis is critical in all kingdoms of life and in bacteria involves the PhoU protein. This work provides novel insights into the role of the Sinorhizobium

  16. Error rate of multi-level rapid prototyping trajectories for pedicle screw placement in lumbar and sacral spine

    Directory of Open Access Journals (Sweden)

    Merc Matjaz

    2014-10-01

    Full Text Available 【Abstract】Objective: Free-hand pedicle screw placement has a high incidence of pedicle perforation which can be reduced with fluoroscopy, navigation or an alternative rapid prototyping drill guide template. In our study the error rate of multi-level templates for pedicle screw placement in lumbar and sacral regions was evaluated. Methods: A case series study was performed on 11 patients. Seventy-two screws were implanted using multilevel drill guide templates manufactured with selective laser sintering. According to the optimal screw direction preoperatively defi ned, an analysis of screw misplacement was performed. Displacement, deviation and screw length difference were measured. The learning curve was also estimated. Results: Twelve screws (17% were placed more than 3.125 mm out of its optimal position in the centre of pedicle. The tip of the 16 screws (22% was misplaced more than 6.25 mm out of the predicted optimal position. According to our predefi ned goal, 19 screws (26% were implanted inaccurately. In 10 cases the screw length was selected incorrectly: 1 (1% screw was too long and 9 (13% were too short. No clinical signs of neurovascular lesion were observed. Learning curve was insignifi cantly noticeable (P=0.129. Conclusion: In our study, the procedure of manufacturing and applying multi-level drill guide templates has a 26% chance of screw misplacement. However, that rate does not coincide with pedicle perforation incidence and neurovascular injury. These facts along with a comparison to compatible studies make it possible to summarize that multi-level templates are satisfactorily accurate and allow precise screw placement with a clinically irrelevant mistake factor. Therefore templates could potentially represent a useful tool for routine pedicle screw placement. Key words: Drill guide; Template; Inaccuracy; Perforation; Radiation exposure

  17. REACTOR COOLING

    Science.gov (United States)

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  18. Cool collapsible

    OpenAIRE

    Linnér, Fredrik

    2010-01-01

    Cool collabsible är ett projekt som har handlat om att skapa ett hopfällbart utomhusbord. Arbetet har utförts tillsammans med aka buna design consult. Projektet har fokuserats på att hitta en funktion, teknik och material för att sedan transformera detta till ett innovativt utomhusbord. Genom ett utförligt arbete med att definiera målgruppen skapades ramar som format ett bord till den typiska brukaren. Resultatet blev ett hopfällbart bord som hämtat sin inspiration från naturen. Ett bord som ...

  19. Sympathetic Cooling of Quantum Simulators

    Science.gov (United States)

    Raghunandan, Meghana; Weimer, Hendrik

    2017-04-01

    We discuss the possibility of maximizing the cooling of a quantum simulator by controlling the system-environment coupling such that the system is driven into the ground state. We make use of various analytical tools such as effective operator formalism and the quantum master equations to exactly solve the model of an Ising spin chain consisting of N particles coupled to a radiation field. We maximize the cooling by finding the dependence of the effective rate of transitions of the various excited states into the ground state. We show that by adding a single dissipative qubit, we already get quite substantial cooling rates. Volkswagen Foundation, DFG.

  20. The effectiveness of cooling conditions on temperature of canine EDTA whole blood samples

    Directory of Open Access Journals (Sweden)

    Karen M. Tobias

    2016-11-01

    Full Text Available Background Preanalytic factors such as time and temperature can have significant effects on laboratory test results. For example, ammonium concentration will increase 31% in blood samples stored at room temperature for 30 min before centrifugation. To reduce preanalytic error, blood samples may be placed in precooled tubes and chilled on ice or in ice water baths; however, the effectiveness of these modalities in cooling blood samples has not been formally evaluated. The purpose of this study was to evaluate the effectiveness of various cooling modalities on reducing temperature of EDTA whole blood samples. Methods Pooled samples of canine EDTA whole blood were divided into two aliquots. Saline was added to one aliquot to produce a packed cell volume (PCV of 40% and to the second aliquot to produce a PCV of 20% (simulated anemia. Thirty samples from each aliquot were warmed to 37.7 °C and cooled in 2 ml allotments under one of three conditions: in ice, in ice after transfer to a precooled tube, or in an ice water bath. Temperature of each sample was recorded at one minute intervals for 15 min. Results Within treatment conditions, sample PCV had no significant effect on cooling. Cooling in ice water was significantly faster than cooling in ice only or transferring the sample to a precooled tube and cooling it on ice. Mean temperature of samples cooled in ice water was significantly lower at 15 min than mean temperatures of those cooled in ice, whether or not the tube was precooled. By 4 min, samples cooled in an ice water bath had reached mean temperatures less than 4 °C (refrigeration temperature, while samples cooled in other conditions remained above 4.0 °C for at least 11 min. For samples with a PCV of 40%, precooling the tube had no significant effect on rate of cooling on ice. For samples with a PCV of 20%, transfer to a precooled tube resulted in a significantly faster rate of cooling than direct placement of the warmed tube onto ice

  1. Stochastic Cooling with Schottky Band Overlap

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Valeri; /Fermilab

    2005-12-01

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Planck equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  2. Influence of Ultrasonic Melt Treatment and Cooling Rates on the Microstructural Development and Elevated Temperature Mechanical Properties of a Hypereutectic Al-18Si-4Cu-3Ni Piston Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jea-Hee; Cho, Young-Hee; Jung, Jae-Gil; Lee, Jung-Moo [Korea Institute of Materials Science (KIMS), Changwon (Korea, Republic of); Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The influence of ultrasonic melt treatment (UST) combined with a change in cooling rates on the microstructure and elevated temperature mechanical properties of a hypereutectic Al-18Si-4Cu-3Ni piston alloy was investigated. Microstructural observation confirmed that UST effectively refined the sizes of primary Si and intermetallic compounds (e.g. ε-Al{sub 3}Ni) while promoting their homogeneous distribution. Besides the refinement of the constituent phases, the size of the dendrite arm spacing (DAS), which was hardly affected by UST, significantly deceased with increasing cooling rates. The refinement of the solidification structure in the alloy achieved through both UST and increased cooling rates resulted in an improvement in tensile properties, ultimate tensile strength and elongation in particular, after T5 heat treatment followed by overaging at 350 ℃. However, the elevated temperature yield strength of the alloy was not associated with the refinement, but was rather correlated with the 3-D interconnectivity, morphology and volume fraction of the primary Si.

  3. Cool visitors

    CERN Document Server

    2006-01-01

    Pictured, from left to right: Tim Izo (saxophone, flute, guitar), Bobby Grant (tour manager), George Pajon (guitar). What do the LHC and a world-famous hip-hop group have in common? They are cool! On Saturday, 1st July, before their appearance at the Montreux Jazz Festival, three members of the 'Black Eyed Peas' came on a surprise visit to CERN, inspired by Dan Brown's Angels and Demons. At short notice, Connie Potter (Head of the ATLAS secretariat) organized a guided tour of ATLAS and the AD 'antimatter factory'. Still curious, lead vocalist Will.I.Am met CERN physicist Rolf Landua after the concert to ask many more questions on particles, CERN, and the origin of the Universe.

  4. Cool Snacks

    DEFF Research Database (Denmark)

    Krogager, Stinne Gunder Strøm; Grunert, Klaus G; Brunsø, Karen

    2016-01-01

    Young people snack and their snacking habits are not always healthy. We address the questions whether it is possible to develop a new snack product that adolescents will find attractive, even though it is based on ingredients as healthy as fruits and vegetables, and we argue that developing...... such a product requires an interdisciplinary effort where researchers with backgrounds in psychology, anthropology, media science, philosophy, sensory science and food science join forces. We present the COOL SNACKS project, where such a blend of competences was used first to obtain thorough insight into young...... people's snacking behaviour and then to develop and test new, healthier snacking solutions. These new snacking solutions were tested and found to be favourably accepted by young people. The paper therefore provides a proof of principle that the development of snacks that are both healthy and attractive...

  5. Effects of Strain Rate and Measuring Temperature on the Elastocaloric Cooling in a Columnar-Grained Cu71Al17.5Mn11.5 Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Hui Wang

    2017-11-01

    Full Text Available Solid-state refrigeration technology based on elastocaloric effects (eCEs is attracting more and more attention from scientists and engineers. The response speed of the elastocaloric materials, which relates to the sensitivity to the strain rate and measuring temperature, is a significant parameter to evaluate the development of the elastocaloric material in device applications. Because the Cu-Al-Mn shape memory alloy (SMA possesses a good eCE and a wide temperature window, it has been reported to be the most promising elastocaloric cooling material. In the present paper, the temperature changes (ΔT induced by reversible martensitic transformation in a columnar-grained Cu71Al17.5Mn11.5 SMA fabricated by directional solidification were directly measured over the strain rate range of 0.005–0.19 s−1 and the measuring temperature range of 291–420 K. The maximum adiabatic ΔT of 16.5 K and a lower strain-rate sensitivity compared to TiNi-based SMAs were observed. With increasing strain rate, the ΔT value and the corresponding coefficient of performance (COP of the alloy first increased, then achieved saturation when the strain rate reached 0.05 s−1. When the measuring temperature rose, the ΔT value increased linearly while the COP decreased linearly. The results of our work provide theoretical reference for the design of elastocaloric cooling devices made of this alloy.

  6. High false-positive rate of human immunodeficiency virus rapid serum screening in a predominantly hispanic prenatal population.

    Science.gov (United States)

    Zacharias, Nikolaos M; Athanassaki, Ioanna D; Sangi-Haghpeykar, Haleh; Gardner, Michael O

    2004-12-01

    To identify the characteristics of the gravidas delivering at our birthing center that place them at risk for false-positive human immunodeficiency virus (HIV) enzyme-linked immunosorbent assay (ELISA). The medical records of all rapid HIV-ELISA-positive gravidas that delivered at our hospital between January 2000 and October 2001 were retrieved, and information was gathered regarding maternal demographics. The results of the Western blot tests were also retrieved and correlated to the ELISA results, across varying maternal characteristics. chi(2), Student's t-test and multivariate analysis were performed, as appropriate, using the SAS software; statistical significance was denoted by ppositive rapid HIV-ELISA out of 9,781 deliveries. Of those, 26 were confirmed as HIV infected by Western blot (overall HIV prevalence: 0.27%, ELISA-positive predictive value: 37.7%). The subgroup prevalence of HIV and positive predictive value of ELISA were 1.53 and 75% among Caucasians; 2.43 and 82.6% among African-Americans; and 0.05 and 9.8% among Hispanics, respectively (p or =5 lifetime) sexual partners was elicited in the majority of HIV-infected patients. The positive predictive value of rapid HIV-ELISA during pregnancy varies widely, depending on maternal race/ethnicity and sexual behavior. The routine disclosure of rapid intrapartum HIV serum screening results prior to Western blot confirmation should be avoided in very low-risk populations.

  7. Cooling profile following prosthetic preparation of 1-piece dental implants.

    Science.gov (United States)

    Cohen, Omer; Gabay, Eran; Machtei, Eli E

    2010-01-01

    The aim of this study was to evaluate the effect of water irrigation on heat dissipation kinetics following abutment preparation of 1-piece dental implants. UNO 1-piece dental implants were mounted on Plexiglas apparatus clamping the implant at the collar. T-type thermocouple was attached to the first thread of the implant and recorded thermal changes at 100 millisecond intervals. Implants were prepared using highspeed dental turbine at 400,000 RPM with a coarse diamond bur. Once temperature reached 47 degrees C, abutment preparation was discontinued. Thirty implants were divided into 2 groups. Group A: Passive cooling without water irrigation. Group B: Cooling with turbine's water spray adjacent to the implant (30 mL/min). The following parameters were measured: T47 (time from peak temperature to 47 degrees C), T50%, T75% (time until the temperature amplitude decayed by 50% and 75%, respectively), dTemp50%/dt decay, and dTemp75%/dt decay (cooling rate measured at 50% and 75% of amplitude decay, respectively). Water spray irrigation significantly reduced T47 (1.37+/-0.29 seconds vs 19.97+/-3.06 seconds, Pspray irrigation also increased cooling capacity ninefold: dTemp50%/dt decay (4.14+/-0.61 degrees C/s vs 0.48+/-0.06 degrees C/s, Pspray adjacent to the abutment following the cessation of implant preparation might prove beneficial for rapid cooling of the implant.

  8. Renewable Heating and Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  9. Effects of heating and cooling rate on transformation behaviors in weld heat affected zone of low carbon steel; Teitanso koban no yosetsu netsu eikyobu no hentai kyodo ni oyobosu kanetsu reikyaku sokudo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kanetsuki, Y.; Katsumata, M. [Kobe Steel, Ltd., Kobe (Japan)

    1998-01-25

    Discussions were given on effects of welding heat cycles on transformation behaviors in a weld heat affected zone (HAZ). Test pieces are low-carbon fine ferrite pearlite organization steel sheets, which have been treated with a thermomechanical control process (TMCP). The heat cycling was experimented at a maximum temperature of 1350 degC by using a high-frequency heating coil, heating rates from 0.15 to 200 degC/s, cooling rates from 10 to 80 degC/s at an elevated temperature region (higher than 900 degC), and transformation regions (lower than 900 degC) from 0.5 to 6 degC. A transformation curve in actual welding heat cycling was interpreted from these results. Shear-type inverse transformation (from ferrite to austenite) occurs in a rate region corresponding to the heating rate realized during welding. Austenite containing internal stress and a lower structure formed by this inverse transformation accelerates transformation into grain boundary ferrite (GBF) and acerous ferrite (AF). On the other hand, slow cooling in the elevated temperature region releases the internal stress, restores the lower structure, and suppresses the GBF and AF transformation. The GBF tends to precipitate pearlite in adjacent regions and deteriorates the HAZ tenacity. 17 refs., 8 figs., 1 tab.

  10. Analysis of annual cooling energy requirements for glazed academic buildings

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S.A. [Universiti Teknologi Petronas, Tronoh, Perak (Malaysia). Dept. of Mechanical Engineering; Hassan, A.H. [Vinyl Chloride Malaysia Sdn Bhd, Terengganu (Malaysia). Dept. of Engineering

    2011-07-01

    Malaysia experienced rapid increase in energy consumption in the last decade due to its high economic growth and increase in the standard living of household. Energy is becoming more costly and the situation is worsened by the global warming as a result of greenhouse gas emission. A more efficient energy usage and significant reduction in the released emission is therefore required. Space cooling with the use of air conditioners is practiced all year round in Malaysia and this accounts for 42% of total electricity energy consumption for commercial buildings and 30% of residential buildings. Reduction in the energy used for cooling in the built environment is a vital step to energy conservation in Malaysia. The objective of the present study was to analyze the annual cooling energy of highly glazed academic buildings which are located in a university in Malaysia. The outcome of the study would enable further remedial actions in reducing the energy consumption of the buildings' air conditioning system. The study is conducted by computer simulation using EnergyPlus software to calculate the cooling energy of a selected building or area. Comparison is made against the rated equipment load (i.e., the air handling unit) installed in the buildings. Since the buildings in the present study are not constructed parallel to each other the effect of building orientations with respect to the sun positions are also studied. The implications of shades such as venetian blind on the cooling energy are investigated in assessing their effectiveness in reducing the cooling energy, apart from providing thermal comfort to the occupants. In the aspect of operation, the present study includes the effects of reducing the set point air temperature and infiltration of outdoor air due to doors that are left open by the occupants. It is found from the present study that there are significant potentials for savings in the cooling energy of the buildings.

  11. Restaurant food cooling practices.

    Science.gov (United States)

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  12. Fracture behaviour of bread crust: Effect of bread cooling conditions

    NARCIS (Netherlands)

    Primo-Martín, C.; Beukelaer, H. de; Hamer, R.J.; Vliet, T. van

    2008-01-01

    The effect of air and vacuum cooling on the fracture behaviour and accompanying sound emission, moisture content and crispness of bread crust were investigated. Vacuum cooling resulted in rapid evaporative cooling of products that contained high moisture content. Fracture experiments showed a clear

  13. Rapid protein disappearance rates along the small intestine advantage poultry performance and influence the post-enteral availability of amino acids.

    Science.gov (United States)

    Truong, Ha H; Chrystal, Peter V; Moss, Amy F; Selle, Peter H; Liu, Sonia Yun

    2017-12-01

    A foundation diet, an intermediate blend and a summit diet were formulated with different levels of soyabean meal, casein and crystalline amino acids to compare 'slow' and 'rapid' protein diets. The diets were offered to male Ross 308 chicks from 7 to 28 d post-hatch and assessed parameters included growth performance, nutrient utilisation, apparent digestibility coefficients and disappearance rates of starch and protein (N) in four small intestinal segments. Digestibility coefficients and disappearance rates of sixteen amino acids in three small intestinal segments and amino acid concentrations in plasma from portal and systemic circulations from the foundation and summit diets were determined. The dietary transition significantly accelerated protein (N) disappearance rates in the distal jejunum and ileum. The transition from foundation to summit diets significantly increased starch digestibility coefficients in the ileum and disappearance rates in all four small intestinal segments. These starch responses were associated with significant enhancements in nutrient utilisation. The dietary transition linearly increased digestibility coefficients and disappearance rates of amino acids in the majority of cases. The summit diet increased plasma concentrations of five amino acids but decreased those of four amino acids relative to the foundation diet to significant extents. Plasma concentrations of free amino acids were higher in the portal than systemic circulations. Rapid protein disappearance rates advantaged poultry performance and influenced post-enteral availability of amino acids. If the underlying mechanisms are to be identified, further research into the impact of protein digestive dynamics on broiler performance is required but appears justified.

  14. Rapid ice unloading in the Fleming Glacier region, southern Antarctic Peninsula, and its effect on bedrock uplift rates

    DEFF Research Database (Denmark)

    Zhao, Chen; King, Matt A.; Watson, Christopher S.

    2017-01-01

    m at the front of Fleming Glacier. Using IceBridge and ICESat-2/GLAS data spanning 2002–2014, we show an increased rate of mean ice-surface lowering, with rates post-2008 more than twice those of 2002–2008. We use these load change data as a basis for the simulation of viscoelastic solid Earth...... deformation. We subtract modeled elastic deformation rates, and a suite of modeled viscous rates, from GPS-derived three-dimensional bedrock velocities at sites to the south of Fleming Glacier to infer properties of Earth rheology. Assuming the pre-breakup bedrock uplift was positive due to post-Last Glacial...... the Fleming Glacier, after the application of elastic and plate tectonic corrections, point away from Marguerite Bay rather than the present glacier front. This suggests that horizontal motion in the region reflects the earlier retreat of the glacier system following the LGM, compatible with a relatively...

  15. Molecular dynamics simulation studies of structural and dynamical properties of rapidly quenched Al

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.; Liu, C. Y.; Jia, Y.; Yue, G. Q.; Ke, F. S.; Zhao, H. B.; Chen, L. Y.; Wang, S. Y.; Wang, C. Z.; Ho, K. M.

    2014-01-01

    The structural and dynamical properties of rapidly quenched Al are studied by molecular dynamics simulations. The pair-correlation function of high temperature liquid Al agrees well with the experimental results. Different cooling rates are applied with high cooling rates leading to glass formation, while low cooling rates leading to crystallization. The local structures are characterized by Honeycutt–Andersen indices and Voronoi tessellation analysis. The results show that for high cooling rates, the local structures of the liquid and glassy Al are predominated by icosahedral clusters, together with considerable amount of face-centered cubic and hexagonal close packed short-range orders. These short-range order results are further confirmed using the recently developed atomic cluster alignment method. Moreover, the atomic cluster alignment clearly shows the crystal nucleation process in supercooled liquid of Al. Finally, the mean square displacement for the liquid is also analyzed, and the corresponding diffusion coefficient as a function of temperature is calculated.

  16. Use of peak decay analysis and affinity microcolumns containing silica monoliths for rapid determination of drug-protein dissociation rates.

    Science.gov (United States)

    Yoo, Michelle J; Hage, David S

    2011-04-15

    This report examined the use of silica monoliths in affinity microcolumns containing human serum albumin (HSA) to measure the dissociation rates for various drugs from this protein. Immobilized HSA and control monolith columns with dimensions of 1 mm × 4.6 mm i.d. were prepared for this work and used with a noncompetitive peak decay method. Several drugs known to bind HSA were examined, such as warfarin, diazepam, imipramine, acetohexamide, and tolbutamide. Items that were studied and optimized in this method included the sample volume, sample concentration, and elution flow rate. It was found that flow rates up to 10 mL/min could be used in this approach. Work with HSA silica monoliths at these high flow rates made it possible to provide dissociation rate constants for drugs such as warfarin in less than 40s. The dissociation rate constants that were measured gave good agreement with values reported in the literature or that had been obtained with other solutes that had similar binding affinities for HSA. This approach is a general one that should be useful in examining the dissociation of other drugs from HSA and in providing a high-throughput method for screening drug-protein interactions. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Clinical follow-up data and the rate of development of precocious and rapidly progressive puberty in patients with premature thelarche.

    Science.gov (United States)

    Çiçek, Dilek; Savas-Erdeve, Senay; Cetinkaya, Semra; Aycan, Zehra

    2018-01-26

    We aimed to evaluate the clinical follow-up data of patients with premature thelarche and determine the rate of development of precocious and early puberty in these patients. The charts of 158 girls with premature thelarche who were followed-up in our pediatric endocrinology polyclinic were reviewed. The patients were divided into three groups according to the age at onset: group 1 (0-1 month) (n=12), group 2 (1-24 months) (n=40) and group 3 (2-8 years) (n=106). At admission, the mean height standard deviation score (SDS), body weight (BW)-SDS, body mass index (BMI) and BMI-SDS were significantly higher in group 3 than in group 1 and group 2. At admission, 8.8% of the patients were obese and 24% of the patients were overweight. The majority of patients who were obese and overweight were in group 3. At the end of the follow-up, thelarche regressed in 24.7%, persisted in 32.9%, progressed in 25.9% and had a cyclic pattern in 16.5% of the patients. Precocious or rapidly progressive puberty developed in 47 of the 158 patients (29.7%). The mean age at progression to early or rapidly progressive puberty was 98.1±17.6 months. A total of 89.3% of the patients who progressed to early or rapidly progressive puberty were in group 3. Precocious or rapidly progressive puberty developed in 29.7% of subjects with premature thelarche. As patients who developed rapidly progressive puberty had a higher BW-SDS and BMI-SDS than those who did not, it is suggested that the increase in weight could stimulate rapidly progressive puberty in cases with premature thelarche.

  18. Nonconserved Residues Ala287 and Ser290 of the Cryptosporidium hominis Thymidylate Synthase Domain Facilitate Its Rapid Rate of Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Doan,L.; Martucci, W.; Vargo, M.; Atreya, C.; Anderson, K.

    2007-01-01

    Cryptosporidium hominis TS-DHFR exhibits an unusually high rate of catalysis at the TS domain, at least 10-fold greater than those of other TS enzymes. Using site-directed mutagenesis, we have mutated residues Ala287 and Ser290 in the folate-binding helix to phenylalanine and glycine, respectively, the corresponding residues in human and most other TS enzymes. Our results show that the mutant A287F, the mutant S290G, and the double mutant all have reduced affinities for methylene tetrahydrofolate and reduced rates of reaction at the TS domain. Interestingly, the S290G mutant enzyme had the lowest TS activity, with a catalytic efficiency {approx}200-fold lower than that of the wild type (WT). The rate of conformational change of the S290G mutant is {approx}80 times slower than that of WT, resulting in a change in the rate-limiting step from hydride transfer to covalent ternary complex formation. We have determined the crystal structure of ligand-bound S290G mutant enzyme, which shows that the primary effect of the mutation is an increase in the distance between the TS ligands. The kinetic and crystal structure data presented here provide the first evidence explaining the unusually fast TS rate in C. hominis.

  19. Perceptual and Cognitive Factors Imposing "Speed Limits" on Reading Rate: A Study with the Rapid Serial Visual Presentation.

    Directory of Open Access Journals (Sweden)

    Silvia Primativo

    Full Text Available Adults read at high speed, but estimates of their reading rate vary greatly, i.e., from 100 to 1500 words per minute (wpm. This discrepancy is likely due to different recording methods and to the different perceptual and cognitive processes involved in specific test conditions. The present study investigated the origins of these notable differences in RSVP reading rate (RR. In six experiments we investigated the role of many different perceptual and cognitive variables. The presence of a mask caused a steep decline in reading rate, with an estimated masking cost of about 200 wpm. When the decoding process was isolated, RR approached values of 1200 wpm. When the number of stimuli exceeded the short-term memory span, RR decreased to 800 wpm. The semantic context contributed to reading speed only by a factor of 1.4. Finally, eye movements imposed an upper limit on RR (around 300 wpm. Overall, data indicate a speed limit of 300 wpm, which corresponds to the time needed for eye movement execution, i.e., the most time consuming mechanism. Results reconcile differences in reading rates reported by different laboratories and thus provide suggestions for targeting different components of reading rate.

  20. Perceptual and Cognitive Factors Imposing "Speed Limits" on Reading Rate: A Study with the Rapid Serial Visual Presentation.

    Science.gov (United States)

    Primativo, Silvia; Spinelli, Donatella; Zoccolotti, Pierluigi; De Luca, Maria; Martelli, Marialuisa

    2016-01-01

    Adults read at high speed, but estimates of their reading rate vary greatly, i.e., from 100 to 1500 words per minute (wpm). This discrepancy is likely due to different recording methods and to the different perceptual and cognitive processes involved in specific test conditions. The present study investigated the origins of these notable differences in RSVP reading rate (RR). In six experiments we investigated the role of many different perceptual and cognitive variables. The presence of a mask caused a steep decline in reading rate, with an estimated masking cost of about 200 wpm. When the decoding process was isolated, RR approached values of 1200 wpm. When the number of stimuli exceeded the short-term memory span, RR decreased to 800 wpm. The semantic context contributed to reading speed only by a factor of 1.4. Finally, eye movements imposed an upper limit on RR (around 300 wpm). Overall, data indicate a speed limit of 300 wpm, which corresponds to the time needed for eye movement execution, i.e., the most time consuming mechanism. Results reconcile differences in reading rates reported by different laboratories and thus provide suggestions for targeting different components of reading rate.

  1. Rapid progression of gliomatosis cerebri to secondary glioblastoma, factors that affects the progression rate: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Kyung; Yu, In Kyu; Kim, Seung Min; Kim, Joo Heon; Lee, Seung Hoon; Lee, Seung Yeon [Eulji University Hospital, Daejeon (Korea, Republic of)

    2017-03-15

    Glioblastomas may develop de novo or through progression from low-grade or anaplastic astrocytomas. The term 'primary glioblastoma' refers to a glioblastoma that lacks a precursor lesion and has a clinical history of less than three months. On the other hand, the term 'secondary glioblastoma' indicates that the glioblastoma has progressed from a low-grade tumor after a long latency period and often manifests in younger patients. These subtypes of glioblastoma develop via different genetic pathways, and they differ in prognosis and response to therapy. Thus, differential diagnosis of these subtypes and prediction of the factors that affect the progression from low-grade diffuse astrocytoma to secondary glioblastoma would be clinically very important. We present a rare case of secondary glioblastoma, which developed only three months after the follow up imaging evaluations, with a history of low grade glioma, and present the factors that cause rapid progression.

  2. Comparison of burnout characteristics in jet impingement cooling and stray cooling

    Science.gov (United States)

    Cho, C. S. K.; Wu, K.

    Characteristics of spray cooling and jet impingement methods were investigated. The jet impingement cooling method created a large dry area on the test surface when the burnout heat flux was approached. In the spray cooling method, a liquid film with nucleate boiling was maintained for the entire experiment until a burnout was occurred. The spray cooling method produced a higher burnout heat flux than the jet impingement cooling method for the same liquid flow rate. In the spray cooling method, sprayed droplet velocity was a parameter for determining the burnout heat flux. The burnout heat flux in jet impingement cooling also showed dependency on the liquid jet velocity. Results of two methods for cooling the surface area were compared and correlated with the Weber number.

  3. First-pass intubation success rate during rapid sequence induction of prehospital anaesthesia by physicians versus paramedics

    NARCIS (Netherlands)

    Peters, J.H.; Wageningen, B. van; Hendriks, I.; Eijk, R.J.R.; Edwards, M.J.; Hoogerwerf, N.; Biert, J.

    2015-01-01

    INTRODUCTION: Endotracheal intubation is a frequently performed procedure for securing the airway in critically injured or ill patients. Performing prehospital intubation may be challenging and intubation skills vary. We reviewed the first-attempt tracheal intubation success rate in a Dutch

  4. From Expressive Reading to Rapid Reading: The Rise in Reading Rate During the Efficiency Movement (1910-1925)

    Science.gov (United States)

    Taylor, Laura A.

    2015-01-01

    Reading rate, a component of reading not closely attended to by educators and researchers prior to the 20th century, quickly became the subject of considerable research shortly after the turn of the century. This article uses historical content analysis to examine primary source documents from that period (1910-1925) to explore why reading rate…

  5. A Laboratory to Demonstrate the Effect of Thermal History on Semicrystalline Polymers Using Rapid Scanning Rate Differential Scanning Calorimetry

    Science.gov (United States)

    Badrinarayanan, Prashanth; Kessler, Michael R.

    2010-01-01

    A detailed understanding of the effect of thermal history on the thermal properties of semicrystalline polymers is essential for materials scientists and engineers. In this article, we describe a materials science laboratory to demonstrate the effect of parameters such as heating rate and isothermal annealing conditions on the thermal behavior of…

  6. THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY AIR-WATER EXCHANGE UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS

    Science.gov (United States)

    The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of air-water vapor phase toxicant exchange. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase air-water exchange can exceed ...

  7. Magnetostriction of the rapidly quenched Co80Nb8B12 alloy: Dependence on quenching rate, structural relaxation, and temperature

    DEFF Research Database (Denmark)

    Madurga, V.; Barandiarán, J. M.; Vázquez, M.

    1987-01-01

    Ribbons of nominal composition Co80Nb8B12 have been prepared by the single roller quenching method using different wheel velocities ranging from 26 to 42 ms−1. X-ray diffraction patterns for ribbons prepared at low velocities show crystalline peaks but characteristic for the amorphous state...... for samples prepared at velocities above 36 ms−1. Room-temperature values of the magnetostriction constant lambdas depend on the quenching rate and changes from 4×10−7 to −1×10−6 as the wheel speed increases. Zero magnetostriction samples are obtained at about 34 ms−1. Thermal treatments change the values...... of the magnetostriction in the same way as a decrease in the quenching rate does. A dependence of the magnetostriction constant on the applied stress has been found. This dependence, fully reversible, is observed at room temperature. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  8. Microbunched electron cooling for high-energy hadron beams.

    Science.gov (United States)

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  9. Cooling history of the Upper Cretaceous Palgongsan Granite, Gyeongsang Basin, SE Korea and its tectonic implication for uplift on the active continental margin

    Science.gov (United States)

    Lim, Hyoun Soo; Lee, Yong Il

    2005-07-01

    Apatite and zircon fission track analyses were carried out to reconstruct the cooling and inferred uplift history of the Cretaceous Palgongsan Granite, Gyeongsang Basin, Korea. The Palgongsan Granite is one of the Bulguksa intrusive rocks that formed by arc-related plutonism during Late Cretaceous to Early Tertiary time. Fission track dating of the Palgongsan Granite yielded nearly concordant ages of 53 and 65 Ma for apatite and zircon, respectively. The Palgongsan Granite also shows a simple cooling pattern, which suggests that it has not been affected by any thermal event after emplacement. The cooling history derived from fission track data combined with other thermochronometric data indicates that the Palgongsan Granite experienced relatively rapid cooling in earlier stage (> 30 °C/Ma). The initial rapid cooling rate during the Late Cretaceous has been caused by the large thermal contrast between the granite body and the country rocks. After reaching thermal equilibrium with the surrounding country rocks, the cooling rate of the Palgongsan Granite was abruptly decreased in late stage. In this late stage, the decelerated cooling rate is interpreted to have been controlled by uplift and erosion processes, and the average exhumation rate is calculated to be ca. 50 m/my over the temperature range from 100 °C to the surface temperature. The cooling history of the Palgongsan Granite is in good agreement with that of the Ryoke Granitic Belt in Southwest Japan, as well as those of the Taebaeksan Range and other Bulguksa intrusive rocks in the Gyeongsang Basin. This suggests that such cooling was probably caused by regional uplift and exhumation processes on the East Asian active continental margin. Compared with the uplift rates of the Andes, the uplift rates on the eastern Pacific margin appear to be higher than those on the western Pacific margin.

  10. Restaurant Food Cooling Practices†

    Science.gov (United States)

    BROWN, LAURA GREEN; RIPLEY, DANNY; BLADE, HENRY; REIMANN, DAVE; EVERSTINE, KAREN; NICHOLAS, DAVE; EGAN, JESSICA; KOKTAVY, NICOLE; QUILLIAM, DANIELA N.

    2017-01-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention’s Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study. PMID:23212014

  11. The evaluation of a rapid in situ HIV confirmation test in a programme with a high failure rate of the WHO HIV two-test diagnostic algorithm.

    Science.gov (United States)

    Klarkowski, Derryck B; Wazome, Joseph M; Lokuge, Kamalini M; Shanks, Leslie; Mills, Clair F; O'Brien, Daniel P

    2009-01-01

    Concerns about false-positive HIV results led to a review of testing procedures used in a Médecins Sans Frontières (MSF) HIV programme in Bukavu, eastern Democratic Republic of Congo. In addition to the WHO HIV rapid diagnostic test algorithm (RDT) (two positive RDTs alone for HIV diagnosis) used in voluntary counselling and testing (VCT) sites we evaluated in situ a practical field-based confirmation test against western blot WB. In addition, we aimed to determine the false-positive rate of the WHO two-test algorithm compared with our adapted protocol including confirmation testing, and whether weakly reactive compared with strongly reactive rapid test results were more likely to be false positives. 2864 clients presenting to MSF VCT centres in Bukavu during January to May 2006 were tested using Determine HIV-1/2 and UniGold HIV rapid tests in parallel by nurse counsellors. Plasma samples on 229 clients confirmed as double RDT positive by laboratory retesting were further tested using both WB and the Orgenics Immunocomb Combfirm HIV confirmation test (OIC-HIV). Of these, 24 samples were negative or indeterminate by WB representing a false-positive rate of the WHO two-test algorithm of 10.5% (95%CI 6.6-15.2). 17 of the 229 samples were weakly positive on rapid testing and all were negative or indeterminate by WB. The false-positive rate fell to 3.3% (95%CI 1.3-6.7) when only strong-positive rapid test results were considered. Agreement between OIC-HIV and WB was 99.1% (95%CI 96.9-99.9%) with no false OIC-HIV positives if stringent criteria for positive OIC-HIV diagnoses were used. The WHO HIV two-test diagnostic algorithm produced an unacceptably high level of false-positive diagnoses in our setting, especially if results were weakly positive. The most probable causes of the false-positive results were serological cross-reactivity or non-specific immune reactivity. Our findings show that the OIC-HIV confirmation test is practical and effective in field contexts

  12. The evaluation of a rapid in situ HIV confirmation test in a programme with a high failure rate of the WHO HIV two-test diagnostic algorithm.

    Directory of Open Access Journals (Sweden)

    Derryck B Klarkowski

    Full Text Available BACKGROUND: Concerns about false-positive HIV results led to a review of testing procedures used in a Médecins Sans Frontières (MSF HIV programme in Bukavu, eastern Democratic Republic of Congo. In addition to the WHO HIV rapid diagnostic test algorithm (RDT (two positive RDTs alone for HIV diagnosis used in voluntary counselling and testing (VCT sites we evaluated in situ a practical field-based confirmation test against western blot WB. In addition, we aimed to determine the false-positive rate of the WHO two-test algorithm compared with our adapted protocol including confirmation testing, and whether weakly reactive compared with strongly reactive rapid test results were more likely to be false positives. METHODOLOGY/PRINCIPAL FINDINGS: 2864 clients presenting to MSF VCT centres in Bukavu during January to May 2006 were tested using Determine HIV-1/2 and UniGold HIV rapid tests in parallel by nurse counsellors. Plasma samples on 229 clients confirmed as double RDT positive by laboratory retesting were further tested using both WB and the Orgenics Immunocomb Combfirm HIV confirmation test (OIC-HIV. Of these, 24 samples were negative or indeterminate by WB representing a false-positive rate of the WHO two-test algorithm of 10.5% (95%CI 6.6-15.2. 17 of the 229 samples were weakly positive on rapid testing and all were negative or indeterminate by WB. The false-positive rate fell to 3.3% (95%CI 1.3-6.7 when only strong-positive rapid test results were considered. Agreement between OIC-HIV and WB was 99.1% (95%CI 96.9-99.9% with no false OIC-HIV positives if stringent criteria for positive OIC-HIV diagnoses were used. CONCLUSIONS: The WHO HIV two-test diagnostic algorithm produced an unacceptably high level of false-positive diagnoses in our setting, especially if results were weakly positive. The most probable causes of the false-positive results were serological cross-reactivity or non-specific immune reactivity. Our findings show that the OIC

  13. Cooling methods used in the treatment of exertional heat illness.

    Science.gov (United States)

    Smith, J E

    2005-08-01

    To review the different methods of reducing body core temperature in patients with exertional heatstroke. The search strategy included articles from 1966 to July 2003 using the databases Medline and Premedline, Embase, Evidence Based Medicine (EBM) reviews, SPORTDiscus, and cross referencing the bibliographies of relevant papers. Studies were included if they contained original data on cooling times or cooling rates in patients with heat illness or normal subjects who were subjected to heat stress. In total, 17 papers were included in the analysis. From the evidence currently available, the most effective method of reducing body core temperature appears to be immersion in iced water, although the practicalities of this treatment may limit its use. Other methods include both evaporative and invasive techniques, and the use of chemical agents such as dantrolene. The main predictor of outcome in exertional heatstroke is the duration and degree of hyperthermia. Where possible, patients should be cooled using iced water immersion, but, if this is not possible, a combination of other techniques may be used to facilitate rapid cooling. There is no evidence to support the use of dantrolene in these patients. Further work should include a randomised trial comparing immersion and evaporative therapy in heatstroke patients.

  14. Adiabatic Cooling of Antiprotons

    CERN Document Server

    Gabrielse, G; McConnell, R; Richerme, P; Kalra, R; Novitski, E; Grzonka, D; Oelert, W; Sefzick, T; Zielinski, M; Fitzakerley, D; George, M C; Hessels, E A; Storry, C H; Weel, M; Mullers, A; Walz, J

    2011-01-01

    Adiabatic cooling is shown to be a simple and effective method to cool many charged particles in a trap to very low temperatures. Up to 3 x 10(6) (p) over bar are cooled to 3.5 K-10(3) times more cold (p) over bar and a 3 times lower (p) over bar temperature than previously reported. A second cooling method cools (p) over bar plasmas via the synchrotron radiation of embedded (p) over bar (with many fewer (p) over bar than (p) over bar) in preparation for adiabatic cooling. No (p) over bar are lost during either process-a significant advantage for rare particles.

  15. New cooling regulation technology of secondary cooling station in DCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuan; Yan, Jun-wei; Zhu, Dong-sheng; Liu, Fei-long; Lei, Jun-xi [The Key Lab of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, School of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510641 (China); Liang, Lie-quan [The Key Lab of E-Commerce Market Application Technology of Guangdong Province, Guangdong University of Business Studies, Guangzhou 510320 (China)

    2008-07-01

    In this paper, a kind of new control technology of secondary cooling station (constant flow rate/variable temperature difference) in district cooling system (DCS) is proposed in view of serial consequences including low efficiency and high operating cost caused by low temperature of supply water in DCS. This technology has been applied in DCS of Guangzhou University City. The result has already indicated that such technology can increase the supply and return temperatures of buildings, return water temperature of primary side in the plate heat exchanger unit, moreover, the efficiency of both the chiller and the whole system are improved significantly. (author)

  16. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 648 Benedum Hall, 3700 OHara Street, Pittsburgh, Pennsylvania 15261 (United States); McKeown, J. T.; LaGrange, T.; Reed, B. W.; Campbell, G. H. [Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States)

    2016-08-07

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  17. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion.

    Science.gov (United States)

    Lee, Sabrina S M; de Boef Miara, Maria; Arnold, Allison S; Biewener, Andrew A; Wakeling, James M

    2013-01-15

    Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide

  18. A system for rapid large-area monitoring of gamma dose rates in the environment based on MCP-N (LiF:Mg,Cu,P) TL detectors.

    Science.gov (United States)

    Budzanowski, M; Olko, P; Ryba, E; Woźnicka, U

    2002-01-01

    One lesson learned from the Chernobyl accident was that the spatial distribution of far-field contamination was strongly non-uniform due to local variation of atmospheric conditions, such as wind direction, rain etc. An environmental monitoring system using highly sensitive thermoluminescent LiF:Mg,Cu,P (MCP-N) detectors has been completed and field-tested. The system consists of 3000 MCP-N detectors in 1000 TLD cards (three TLDs per card), two Mikrolab automatic TL readers, heating ovens, and specially developed software which includes a database for rapid evaluation of results. The main dosimetric parameters of MCP-N dosemeters, such as thermally-induced fading, light sensitivity, minimum detectable dose, self-dose, zero-dose, energy response up to 6-7 MeV, influence of annealing and readout conditions on detector stability, have been tested. About 100 locations over an area of about 15,000 km2 in the south of Poland were selected for measurements lasting from 4 days to 3 months. The kerma rates measured over a 4 day screening period agree well with kerma rates determined over a 75 day monitoring period. Results from short- and long-term exposure periods agree well with those performed using MTS-N (LiF:Mg,Ti) over southern Poland in 1985, before the Chernobyl accident. Thus, using the system based on MCP-N detectors, one is able simultaneously to monitor environmental radiation kerma rates at a large number of locations over periods of four days or less. Provided natural background kerma rates at selected monitoring points are available prior to the accident, the system can be applied to assess kerma rates rapidly in the environment, following a nuclear accident.

  19. 3,5-Diiodo-L-thyronine administration to hypothyroid rats rapidly enhances fatty acid oxidation rate and bioenergetic parameters in liver cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Cavallo

    Full Text Available Growing evidence shows that, among triiodothyronine derivatives, 3,5 diiodo-L-thyronine (T(2 plays an important role in energy metabolism and fat storage. In the present study, short-term effects of T(2 administration to hypothyroid rats on fatty acid oxidation rate and bioenergetic parameters were investigated. Within 1 h following T(2 injection, state 3 and state 4 respiration rates, which were reduced in hypothyroid mitochondria, were noticeably increased particularly in succinate- with respect to glutamate/malate-energized mitochondria. Maximal respiratory activity, observed when glutamate/malate/succinate were simultaneously present in the respiratory medium, was significantly stimulated by T(2 treatment. A T(2-induced increase in respiratory rates was also observed when palmitoyl-CoA or L-palmitoylcarnitine were used as substrates. No significant change in respiratory control index and ADP/O ratio was observed. The activities of the mitochondrial respiratory chain complexes, especially Complex II, were increased in T(2-treated rats. In the latter, Complex V activities, assayed in both ATP synthesis and hydrolysis direction, were enhanced. The rate of fatty acid oxidation, followed by conversion of [(14C]palmitate to CO(2 and ketone bodies, was higher in hepatocytes isolated from T(2-treated rats. This increase occurs in parallel with the raise in the activity of carnitine palmitoyltransferase-I, the rate limiting enzyme of fatty acid β-oxidation, assayed in situ in digitonin-permeabilized hepatocytes. Overall, these results indicate that T(2 rapidly increases the ability of mitochondria to import and oxidize fatty acids. An emerging idea in the literature is the ability of T(2 to reduce adiposity and dyslipidemia and to prevent the development in liver steatosis. The results of the present study, showing a rapid T(2-induced increase in the ability of mitochondria to import and oxidize fatty acids, may contribute to understand the

  20. HYBRID COOLING SYSTEM FOR INDUSTRIAL APPLICATION

    African Journals Online (AJOL)

    ES Obe

    1980-03-01

    Mar 1, 1980 ... ABSTRACT. A hybrid cooling System was constructed and tested for glass-ware and plastic-ware production. The unit utilizes water-in-air stream to cool molds in glass and plastic forming processes. The rate of heat transfer between the mold surface and the two component two-phase stream was.

  1. HYBRID COOLING SYSTEM FOR INDUSTRIAL APPLICATION

    African Journals Online (AJOL)

    ES Obe

    1980-03-01

    Mar 1, 1980 ... phase alone. The enhanced cooling rate yielded speed increase in production by about 65%. The system also reduced the level of noise due to air blast at the press by limiting the use of compressed air. This cooling unit could also be used in iron and steel industries. NOTATION m liquid-to-air mass flow ...

  2. Rapid, bilateral changes in growth rate and curvature during gravitropism of cucumber hypocotyls: implications for mechanism of growth control

    Science.gov (United States)

    Cosgrove, D. J.

    1990-01-01

    The growth response of etiolated cucumber (Cucumis sativus L.) hypocotyls to gravitropic stimulation was examined by means of time-lapse photography and high-resolution analysis of surface expansion and curvature. In comparison with video analysis, the technique described here has five- to 20-fold better resolution; moreover, the mathematical fitting method (cubic splines) allows direct estimation of local and integrated curvature. After switching seedlings from a vertical to horizontal position, both upper and lower surfaces of the stem reacted after a lag of about 11 min with a two- to three-fold increase in surface expansion rate on the lower side and a cessation of expansion, or slight compression, on the upper surface. This growth asymmetry was initiated simultaneously along the length of the hypocotyl, on both upper and lower surfaces, and did not migrate basipetally from the apex. Later stages in the gravitropic response involved a complex reversal of the growth asymmetry, with the net result being a basipetal migration of the curved region. This secondary growth reversal may reflect oscillatory and/or self-regulatory behaviour of growing cells. With some qualifications, the kinetics and pattern of growth response are consistent with a mechanism involving hormone redistribution, although they do not prove such a mechanism. The growth kinetics require a growth mechanism which can be stimulated by two- to three-fold or completely inhibited within a few minutes.

  3. Live, video-rate super-resolution microscopy using structured illumination and rapid GPU-based parallel processing.

    Science.gov (United States)

    Lefman, Jonathan; Scott, Keana; Stranick, Stephan

    2011-04-01

    Structured illumination fluorescence microscopy is a powerful super-resolution method that is capable of achieving a resolution below 100 nm. Each super-resolution image is computationally constructed from a set of differentially illuminated images. However, real-time application of structured illumination microscopy (SIM) has generally been limited due to the computational overhead needed to generate super-resolution images. Here, we have developed a real-time SIM system that incorporates graphic processing unit (GPU) based in-line parallel processing of raw/differentially illuminated images. By using GPU processing, the system has achieved a 90-fold increase in processing speed compared to performing equivalent operations on a multiprocessor computer--the total throughput of the system is limited by data acquisition speed, but not by image processing. Overall, more than 350 raw images (16-bit depth, 512 × 512 pixels) can be processed per second, resulting in a maximum frame rate of 39 super-resolution images per second. This ultrafast processing capability is used to provide immediate feedback of super-resolution images for real-time display. These developments are increasing the potential for sophisticated super-resolution imaging applications.

  4. Rapid diagnosis and treatment of TIA results in low rates of stroke, myocardial infarction and vascular death.

    Science.gov (United States)

    Cocho, D; Monell, J; Planells, G; Ricciardi, A C; Pons, J; Boltes, A; Espinosa, J; Ayats, M; Garcia, N; Otermin, P

    2016-01-01

    The 90-day risk of cerebral infarction in patients with transient ischaemic attack (TIA) is estimated at between 8% and 20%. There is little consensus as to which diagnostic strategy is most effective. This study evaluates the benefits of early transthoracic echocardiography (TTE) with carotid and transcranial Doppler ultrasound in patients with TIA. Prospective study of patients with TIA in an emergency department setting. Demographic data, vascular risk factors, and ABCD(2) score were analysed. TIA aetiology was classified according to TOAST criteria. All patients underwent early vascular studies (<72hours), including TTE, carotid ultrasound, and transcranial Doppler. Primary endpoints were recurrence of stroke or TIA, myocardial infarction (MI), or vascular death during the first year. We evaluated 92 patients enrolled over 24 months. Mean age was 68.3±13 years and 61% were male. The mean ABCD(2) score was 3 points (≥5 in 30%). The distribution of TIA subtypes was as follows: 12% large-artery atherosclerosis; 30% cardioembolism; 10% small-vessel occlusion; 40% undetermined cause; and 8% rare causes. Findings from the early TTE led to a change in treatment strategy in 6 patients (6.5%) who displayed normal physical examination and ECG findings. At one year of follow-up, 3 patients had experienced stroke (3.2%) and 1 patient experienced MI (1%); no vascular deaths were identified. In our TIA patients, early vascular study and detecting patients with silent cardiomyopathy may have contributed to the low rate of vascular disease recurrence. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Cook & Chill - Rapid Chilling of Food 'in situ'

    DEFF Research Database (Denmark)

    Paul, Joachim

    2003-01-01

    Rapid cooling of products is of increasing importance for food preservation and for industrial processes. Slurry ice (Binary Ice) is a two-phase cooling fluid consisting of suspended ice crystals in an aqueous solution or mixture. Latent energy contained in the fluid yields rapid cooling which...

  6. A VERY DEEP CHANDRA OBSERVATION OF A1795: THE COLD FRONT AND COOLING WAKE

    Energy Technology Data Exchange (ETDEWEB)

    Ehlert, Steven; McDonald, Michael; Miller, Eric D.; Bautz, Mark W. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); David, Laurence P., E-mail: sehlert@space.mit.edu [Harvard-Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-02-01

    We present a new analysis of very deep Chandra observations of the galaxy cluster A1795. Utilizing nearly 750 ks of net ACIS imaging, we are able to resolve the thermodynamic structure of the intracluster medium (ICM) on length scales of ∼1 kpc near the cool core. We find several previously unresolved structures, including a high pressure feature to the north of the Brightest Cluster Galaxy (BCG) that appears to arise from the bulk motion of A1795's cool core. To the south of the cool core, we find low temperature (∼3 keV), diffuse ICM gas extending for distances of ∼50 kpc spatially coincident with previously identified filaments of Hα emission. Gas at similar temperatures is also detected in adjacent regions without any Hα emission. The X-ray gas coincident with the Hα filament has been measured to be cooling spectroscopically at a rate of ∼1 M{sub ⊙} yr{sup −1}, consistent with measurements of the star formation rate in this region as inferred from ultraviolet (UV) observations, suggesting that the star formation in this filament as inferred by its Hα and UV emission can trace its origin to the rapid cooling of dense, X-ray emitting gas. The Hα filament is not a unique site of cooler ICM, however, as ICM at similar temperatures and even higher metallicities not cospatial with Hα emission is observed just to the west of the Hα filament, suggesting that it may have been uplifted by A1795's central active galaxy. Further simulations of cool core sloshing and active galactic nucleus feedback operating in concert with one another will be necessary to understand how such a dynamic cool core region may have originated and why the Hα emission is so localized with respect to the cool X-ray gas.

  7. Effect on field fertility of addition of gelatine, different dilution rates and storage times of cooled ram semen after vaginal insemination.

    Science.gov (United States)

    Paulenz, H; Adnøy, T; Fossen, O H; Söderquist, L

    2010-08-01

    In a field trial, 633 ewes from 24 farms were inseminated vaginally using liquid semen (150 x 10(6) per dose) collected from 15 rams. The semen was either diluted with a milk-based extender (M), filled in 0.2 ml straws and stored for 12 or 24 h (M12, M24) or diluted with M but with the addition of gelatine, filled in 0.5 ml straws and stored for 12 or 24 h (G12, G24). The hypothesis was that a larger volume and the addition of gelatine would prolong the survival of the spermatozoa. The ewes, aged between 6 months and 5.5 years, were allocated into four groups and inseminated after natural oestrus by the farmers themselves with a dose of 150 x 10(6) spermatozoa. Inseminations in the groups (M12, M24, G12, G24) resulted in lambing rates of 69.6%, 63.6%, 69.4% and 58.3% (overall 65.2%), respectively. Farmer (p gelatine/storage time had not. A pair-wise comparison of the lambing rates between the four groups showed that significant lower results were only achieved for G24 compared with M12. None of the other comparisons showed significant differences. In conclusion, a higher dilution rate of the AI-dose together with the addition of gelatine to the semen extender did not lead to improved fertility results after storage for 24 h when compared with standard AI-doses used in Norway.

  8. Photoacoustic study of the influence of the cooling temperature on the CO2 emission rate by Carica papaya L. in modified atmosphere

    Science.gov (United States)

    Schramm, D. U.; Sthel, M. S.; da Silva, M. G.; Carneiro, L. O.; Silva, H. R. F.; Martins, M. L. L.; Resende, E. D.; Vitorazi, L.; Vargas, H.

    2005-06-01

    The monitoring of trace gas emitted by papaya fruits and assessments of its mass loss can contribute to improve the conditions for their storage and transport. The C02 emission rate by the papaya fruits, monitored by a commercial infrared-based gas analyzer, was influenced by the temperature and storage time. The fruits stored at temperature of 13 °C accumulated more CO2 inside the PEBD bags than those fruits stored at 6 °C. The loss of mass of the fruits progressively increased with storage time for both temperatures until the saturation of the moisture inside the PEBD bag, been more pronounced at 13 ºC.

  9. Effects of rapid versus standard HIV voluntary counselling and testing on receipt rate of HIV test results: a meta-analysis.

    Science.gov (United States)

    Wang, Yuan; Guo, Jian; Lu, Wenli

    2015-03-01

    Rapid HIV voluntary counselling and testing (RVCT) is an alternative method of standard HIV voluntary counselling and testing (SVCT). Less is known about whether RVCT improves the receipt rate of HIV test results among clients who seek HIV counselling and testing. We aimed to evaluate effectiveness of RVCT on result receipt rate. We conducted a comprehensive search of databases containing Medline, EBSCO, Web of science, and Cochrane library to identify studies published up to August 2012. Reviewers extracted information independently. Risk of bias was evaluated with Cochrane Collaboration's tool for assessing study quality. Five randomised controlled trials were included and analysed for the result receipt rate using a random-effects model. The pooled receipt rate of HIV test results in the RVCT was significantly higher than in the SVCT (RR = 1.74, 95% CI = 1.47-2.07). Our results suggest RVCT as a favourable method to increase the receipt of HIV test results. Only two included studies assessed the modification of risk behaviour after HIV-CT in a different manner; also, the sample size was small in the current meta-analysis. In future research, it is necessary to confirm the effect of RVCT on disinhibition of post-test risk behaviour. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. Cooling water distribution system

    Science.gov (United States)

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  11. A rapid, non-destructive methodology to monitor activity of sulfide-induced corrosion of concrete based on H2S uptake rate.

    Science.gov (United States)

    Sun, Xiaoyan; Jiang, Guangming; Bond, Philip L; Wells, Tony; Keller, Jurg

    2014-08-01

    Many existing methods to monitor the corrosion of concrete in sewers are either very slow or destructive measurements. To overcome these limitations, a rapid, non-invasive methodology was developed to monitor the sulfide-induced corrosion process on concrete through the measurement of the H2S uptake rates of concrete at various corrosion stages. The H2S uptake rate for a concrete coupon was determined by measuring the gaseous H2S concentrations over time in a temperature- and humidity-controlled gas-tight reactor. The reliability of this method was evaluated by carrying out repeated tests on different concrete coupons previously exposed to 50 ppm of H2S, at 30 °C and 100% relative humidity for over 32 months. The H2S uptake measurements showed good reproducibility. It was also shown that a severely corroded coupon exhibited higher sulfide uptake rates than a less corroded coupon. This could be explained by the corrosion layer in the more corroded coupon having a higher biological sulfide oxidation activity than the less corroded coupon. Additionally, temperature changes had a stronger effect on the uptake rate of the heavily corroded coupon compared to the less corroded coupon. A corrosion rate of 8.9 ± 0.5 mm/year, estimated from the H2S uptake results, agreed well with the corrosion rate observed in real sewers under similar conditions. The method could be applied to investigate important factors affecting sulfide-induced concrete corrosion, particularly temperature, fluctuating gaseous H2S concentrations, oxygen concentrations, surface pH and relative humidity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma

    Science.gov (United States)

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.

    2013-01-01

    We use geologic field mapping and sampling, photogrammetric analysis of oblique aerial photographs, and digital elevation models to document the 2008-2009 eruptive sequence at Chaitén Volcano and to estimate volumes and effusion rates for the lava dome. We also present geochemical and petrologic data that contribute to understanding the source of the rhyolite and its unusually rapid effusion rates. The eruption consisted of five major phases: 1. An explosive phase (1-11 May 2008); 2. A transitional phase (11-31 May 2008) in which low-altitude tephra columns and simultaneous lava extrusion took place; 3. An exogenous lava flow phase (June-September 2008); 4. A spine extrusion and endogenous growth phase (October 2008-February 2009); and 5. A mainly endogenous growth phase that began after the collapse of a prominent Peléean spine on 19 February 2009 and continued until the end of the eruption (late 2009 or possibly earliest 2010). The 2008-2009 rhyolite lava dome has a total volume of approximately 0.8 km3. The effusion rate averaged 66 m3s-1 during the first two weeks and averaged 45 m3s-1 for the first four months of the eruption, during which 0.5 km3 of rhyolite lava was erupted. These are among the highest rates measured world-wide for historical eruptions of silicic lava. Chaitén’s 2008-2009 lava is phenocryst-poor obsidian and microcrystalline rhyolite with 75.3±0.3% SiO2. The lava was erupted at relatively high temperature and is remarkably similar in composition and petrography to Chaitén’s pre-historic rhyolite. The rhyolite’s normative composition plots close to that of low pressure (100-200 MPa) minimum melts in the granite system, consistent with estimates of approximately 5 to 10 km source depths based on phase equilibria and geodetic studies. Calcic plagioclase, magnesian orthopyroxene and aluminous amphibole among the sparse phenocrysts suggest derivation of the rhyolite by melt extraction from a more mafic magmatic mush. High temperature

  13. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  14. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles

    Science.gov (United States)

    Penoyre, Zephyr; Haiman, Zoltán

    2018-01-01

    In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.

  15. Temperature responsive cooling apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Weker, M.L.; Stearns, R.M.

    1987-08-11

    A temperature responsive cooling apparatus is described for an air conditioner or refrigeration system in operative association with a reservoir of fluid, the air conditioner or refrigeration system having an air cooled coil and means for producing a current of air for cooling the coil, the temperature responsive cooling apparatus comprising: (a) means for transferring the fluid from the reservoir to the air conditioner temperature responsive cooling apparatus, (b) a fluid control device activated by the current of air for cooling the coil; (c) a temperature activated, nonelectrical device for terminating and initiating the flow of fluid therethrough in an intermittent fashion for enhancing the operability of the compressor associated with the refrigeration system and for reducing the quantity of fluid required to cool the coil of the refrigeration system, (d) a fluid treatment device for preventing, reducing or mitigating the deposition of nonevaporative components on the air cooled coil, and (e) means for dispersing the fluid to the air cooled coil from the fluid control device for cooling the coil and increasing the efficiency of the air conditioner thereby reducing the cost of operating and maintaining the air conditioner without damaging the air conditioner and without the deposition of nonevaporative components thereupon.

  16. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kevin Magniez

    2013-08-01

    Full Text Available The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

  17. Effects of rapid aging and lower participation rate among younger adults on the short-term trend of physical activity in the National Health and Nutrition Survey, Japan.

    Science.gov (United States)

    Nishi, Nobuo; Yoshizawa, Takeshi; Okuda, Nagako

    2017-10-01

    The National Health and Nutrition Survey, Japan, has annually monitored two indicators of physical activity in adults. They are contrasting in the association with age; the prevalence of exercise habit is lower and step counts are higher among younger participants. The present study aimed to examine the effects of rapid aging of the Japanese population and the lower participation rate among younger adults on the short-term trend of two indicators of physical activity using tabulated data. The prevalence of exercise habit and step counts by age groups (≥20 years) from 2003 to 2010 were estimated using tabulated data from the National Health and Nutrition Survey by calculating sex-specific means weighted by age-specific Japanese population data for each year (population-weighted estimates) and for a fixed year (2005; age-standardized estimates). Linear regression analyses were used to test the statistical significance of their trends. Statistically significant increasing trends in the prevalence of exercise habit were observed for the crude means (P = 0.029), the population-weighted estimates (P = 0.007) and the age-standardized estimates (P = 0.016) only in men. Statistically significant decreasing trends in the step counts were observed for the crude means (P = 0.006 in men and P = 0.033 in women) and the population-weighted estimates (P = 0.008 in men and P = 0.049 in women) both in men and women, but for the age-standardized estimates (P = 0.039) only in men. The effects of rapid aging of the Japanese population and the lower participation rate among younger adults on the short-term trend are not small, and age-standardization is necessary to observe even the short-term trend of physical activity data. Geriatr Gerontol Int 2017; 17: 1677-1682. © 2017 Japan Geriatrics Society.

  18. A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    Science.gov (United States)

    Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.

    2012-01-01

    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c) 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.

  19. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest.

    Science.gov (United States)

    Oguchi, Riichi; Hiura, Tsutom; Hikosaka, Kouki

    2017-08-01

    Gap formation increases the light intensity in the forest understorey. The growth responses of seedlings to the increase in light availability show interspecific variation, which is considered to promote biodiversity in forests. At the leaf level, some species increase their photosynthetic capacity in response to gap formation, whereas others do not. Here we address the question of whether the interspecific difference in the photosynthetic response results in the interspecific variation in the growth response. If so, the interspecific difference in photosynthetic response would also contribute to species coexistence in forests. We also address the further relevant question of why some species do not increase their photosynthetic capacity. We assumed that some cost of photosynthetic plasticity may constrain acquisition of the plasticity in some species, and hypothesized that species with larger photosynthetic plasticity exhibit better growth after gap formation and lower survivorship in the shade understorey of a cool-temperate deciduous forest. We created gaps by felling canopy trees and studied the relationship between the photosynthetic response and the subsequent growth rate of seedlings. Naturally growing seedlings of six deciduous woody species were used and their mortality was examined for 8 years. The light-saturated rate of photosynthesis (Pmax) and the relative growth rate (RGR) of the seedlings of all study species increased at gap plots. The extent of these increases varied among the species. The stimulation of RGR over 4 years after gap formation was strongly correlated with change in photosynthetic capacity of newly expanded leaves. The increase in RGR and Pmax correlated with the 8-year mortality at control plots. These results suggest a trade-off between photosynthetic plasticity and the understorey shade tolerance. Gap-demanding species may acquire photosynthetic plasticity, sacrificing shade tolerances, whereas gap-independent species may acquire

  20. Rapid Evolutionary Rates and Unique Genomic Signatures Discovered in the First Reference Genome for the Southern Ocean Salp, Salpa thompsoni (Urochordata, Thaliacea).

    Science.gov (United States)

    Jue, Nathaniel K; Batta-Lona, Paola G; Trusiak, Sarah; Obergfell, Craig; Bucklin, Ann; O'Neill, Michael J; O'Neill, Rachel J

    2016-10-30

    A preliminary genome sequence has been assembled for the Southern Ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Despite the ecological importance of this species in Antarctic pelagic food webs and its potential role as an indicator of changing Southern Ocean ecosystems in response to climate change, no genomic resources are available for S. thompsoni or any closely related urochordate species. Using a multiple-platform, multiple-individual approach, we have produced a 318,767,936-bp genome sequence, covering >50% of the estimated 602 Mb (±173 Mb) genome size for S. thompsoni Using a nonredundant set of predicted proteins, >50% (16,823) of sequences showed significant homology to known proteins and ∼38% (12,151) of the total protein predictions were associated with Gene Ontology functional information. We have generated 109,958 SNP variant and 9,782 indel predictions for this species, serving as a resource for future phylogenomic and population genetic studies. Comparing the salp genome to available assemblies for four other urochordates, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi and Oikopleura dioica, we found that S. thompsoni shares the previously estimated rapid rates of evolution for these species. High mutation rates are thus independent of genome size, suggesting that rates of evolution >1.5 times that observed for vertebrates are a broad taxonomic characteristic of urochordates. Tests for positive selection implemented in PAML revealed a small number of genes with sites undergoing rapid evolution, including genes involved in ribosome biogenesis and metabolic and immune process that may be reflective of both adaptation to polar, planktonic environments as well as the complex life history of the salps. Finally, we performed an initial survey of small RNAs, revealing the presence of known, conserved miRNAs, as well as novel miRNA genes; unique piRNAs; and mature miRNA signatures for varying developmental stages. Collectively, these

  1. The influence of rapid solidification on the microstructure of the 17Cr–9Ni–3Mo precipitation hardened steel

    Energy Technology Data Exchange (ETDEWEB)

    Ziewiec, Aneta, E-mail: aziewiec@agh.edu.pl [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków (Poland); Tasak, Edmund; Zielińska-Lipiec, Anna [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków (Poland); Ziewiec, Krzysztof [Pedagogical University of Cracow, Institute of Technology, ul. Podchorążych 2, 30-084 Kraków (Poland); Kowalska, Joanna [AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2014-12-05

    Highlights: • Model of the microstructures formed at different cooling rates was proposed. • Effect of cooling rate on the massive formation of austenite was defined. • Influence of sub-zero treatment on the volume fraction of austenite was shown. - Abstract: The 17Cr–9Ni–3Mo precipitation hardened (PH) steel was processed after re-melting using different cooling rates including copper plate chilling and the melt-spinning. The effect of different cooling rates and the sub-zero treatment on the microstructure of the 17Cr–9Ni–3Mo steel was studied. The microstructure and the phase composition of the steel was investigated using light microscopy (LM), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), the X-ray diffraction (XRD) and Mössbauer spectroscopy. The results show that the microstructure of 17Cr–9Ni–3Mo steel after rapid solidification consists of austenite and δ-ferrite. The quantity of austenite increases with the increase of cooling rate. Sub-zero treatment of the samples cooled at the rate of 4 × 10{sup 4} K/s and 2 × 10{sup 5} K/s reduces the quantity of austenite as a result of austenite → martensite transformation. For the samples cooled at the rate of 2 × 10{sup 6} K/s the quantity of austenite in the microstructure does not change when compared to the state before and after sub-zero treatment. The model for the formation of microstructures during rapid cooling was proposed.

  2. Gas turbine cooling system

    Science.gov (United States)

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  3. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries

    Science.gov (United States)

    Zhao, Rui; Gu, Junjie; Liu, Jie

    2015-01-01

    An effective battery thermal management (BTM) system is required for lithium-ion batteries to ensure a desirable operating temperature range with minimal temperature gradient, and thus to guarantee their high efficiency, long lifetime and great safety. In this paper, a heat pipe and wet cooling combined BTM system is developed to handle the thermal surge of lithium-ion batteries during high rate operations. The proposed BTM system relies on ultra-thin heat pipes which can efficiently transfer the heat from the battery sides to the cooling ends where the water evaporation process can rapidly dissipate the heat. Two sized battery packs, 3 Ah and 8 Ah, with different lengths of cooling ends are used and tested through a series high-intensity discharges in this study to examine the cooling effects of the combined BTM system, and its performance is compared with other four types of heat pipe involved BTM systems and natural convection cooling method. A combination of natural convection, fan cooling and wet cooling methods is also introduced to the heat pipe BTM system, which is able to control the temperature of battery pack in an appropriate temperature range with the minimum cost of energy and water spray.

  4. Evaporative Cooling Availability in Water Based Sensible Cooling Systems

    OpenAIRE

    Costelloe, Ben; Finn, Donal

    2001-01-01

    Recent developments have prompted a review of evaporative cooling technology as an effective means of cooling modern deep plan buildings. Prominent among these developments is the success of high temperature sensible cooling systems, such as chilled ceilings, which require a supply of cooling water at 14 to 18°C. Crucial to the success of evaporative cooling technology, as a significant means of cooling in modern applications, is the ability to generate cooling water, in an indirect circuit, ...

  5. Radiant Floor Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  6. A New Approach for Estimating Background Rates of Erosion Using Concentration of Meteoric 10-Be Adhered to River Sediment: Application to the Rapidly Eroding Waipaoa Basin, New Zealand

    Science.gov (United States)

    Reusser, L. J.; Bierman, P. R.; Pavich, M.; Finkel, R.

    2007-12-01

    New and existing data suggest that the concentration of atmospherically- produced, meteoric 10-Be adhered to river sediment provides a proxy for basin-scale erosion rates. Although the widely applied method of analyzing in situ produced 10-Be in river sediments has proven useful for estimating pre-anthropogenic rates of erosion in a variety of environments, there are lithologic limitation. In contrast, measuring the concentration of meteoric 10-Be adhered to river sediment allows erosion rate analysis in landscapes underlain by quartz-deficient or fine-grained lithologies, as well as in basins where the concentration of quartz varies spatially. By assuming that basins are in an overall isotopic steady-state, that erosion is rapid enough that decay is negligible, and that the integrated delivery rate of 10-Be from the atmosphere (D10-Be) can be estimated, basin-scale mass loss rates (Ms) can be solved by equating the 10-Be flux in from the atmosphere with the flux of 10-Be out of the basin on sediment (C10-Be) and expressed as sediment yield per unit area (Ys). Fin = Fout D10-Be * A = Ms * C10-Be Ms = (D10-Be * A)/ C10-Be Ys = D10-Be / C10-Be To validate this new approach, we examined the limited data that do exist and found reasonable correspondence between erosion rates estimated from meteoric 10-Be concentrations and estimated by other means. As a first application, we use meteoric 10-Be in river sediment to estimate basin-scale erosion rates from catchments within and near the mud-stone dominated Waipaoa River Basin draining the tectonically active east coast of New Zealand's North Island. Near total conversion of indigenous forest to pasture over the past century in the Waipaoa Basin has resulted in some of the most dramatic and widespread erosional features on the planet, and contemporary sediment yields that rank among the highest in the world (~7 million kg/(km2 * yr)). The amount of meteoric 10-Be adhered to eight river sediment samples suggests that modern

  7. Cooling and heating of crystalline ion beams

    CERN Document Server

    Schramm, U; Bussmann, M; Habs, D

    2003-01-01

    The crystallization of ion beams has recently been established in the rf quadrupole storage ring PALLAS (PAul Laser CooLing Acceleration System) for laser-cooled sup 2 sup 4 Mg sup + ion beams at an energy of about 1 eV. Yet, unexpectedly sharp constraints had to be met concerning the confinement strength and the longitudinal laser cooling rate. In this paper, related and up to now unseen heating mechanisms are pinpointed for crystalline beams. The weak but inevitable diffusive transverse heating associated with the laser cooling process itself is investigated, possibly allowing the future measurement of the latent heat of the ion crystal. As a function of the beam velocity, the influence of bending shear on the attainability of larger crystalline structures is presented. Finally, rf heating of crystalline beams of different structure is studied for discontinuous cooling.

  8. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service; CERN PhotoLab

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  9. Turbine airfoil cooling system with cooling systems using high and low pressure cooling fluids

    Science.gov (United States)

    Marsh, Jan H.; Messmann, Stephen John; Scribner, Carmen Andrew

    2017-10-25

    A turbine airfoil cooling system including a low pressure cooling system and a high pressure cooling system for a turbine airfoil of a gas turbine engine is disclosed. In at least one embodiment, the low pressure cooling system may be an ambient air cooling system, and the high pressure cooling system may be a compressor bleed air cooling system. In at least one embodiment, the compressor bleed air cooling system in communication with a high pressure subsystem that may be a snubber cooling system positioned within a snubber. A delivery system including a movable air supply tube may be used to separate the low and high pressure cooling subsystems. The delivery system may enable high pressure cooling air to be passed to the snubber cooling system separate from low pressure cooling fluid supplied by the low pressure cooling system to other portions of the turbine airfoil cooling system.

  10. Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows.

    Science.gov (United States)

    Tong, Zhongqiu; Liu, Shikun; Li, Xingang; Mai, Liqiang; Zhao, Jiupeng; Li, Yao

    2018-01-31

    Smart electrochromic windows integrated with electrochemical energy storage capacity are receiving increasing interest for green buildings. However, the fabrication of bifunctional devices that demonstrate high-rate capability with stable and desirable optical modulation still remains a great challenge. Herein, a facile sacrificial template-accelerated hydrolysis approach is presented to prepare a designed lithium-ion insertion-type material layer on a fluorine-doped tin oxide substrate, with TiO2 mesoporous nanotube array (MNTA) film as an example, with rapid Li-ion insertion kinetics and without sacrificing window transparency, to meet requirements. A bifunctional device is assembled to exhibit the optical-electrochemical superiority of MNTA nanostructures. The as-assembled bifunctional smart window exhibits strong electrochromic contrast and high-rate capability in the fast galvanostatic charge/discharge process. For instance, at 1 A g-1, it completes the charge or discharge process within only 232 s and delivers a high, reversible and stable specific capacity of 60 mA h g-1, accompanying obvious transmittance modulation in the visible spectrum, with a typical value of ca. 30.4% at 700 nm, and strong color changes between deep blue and transparency.

  11. Rapid monitoring of iron-chelating therapy in thalassemia major by a new cardiovascular MR measure: the reduced transverse relaxation rate

    Science.gov (United States)

    Kim, Daniel; Jensen, Jens H.; Wu, Ed X.; Feng, Li; Au, Wing-Yan; Cheung, Jerry S.; Ha, Shau-Yin; Sheth, Sujit S.; Brittenham, Gary M.

    2011-01-01

    In iron overload, almost all the excess iron is stored intracellularly as rapidly mobilizable ferritin iron and slowly exchangeable hemosiderin iron. Increases in cytosolic iron may produce oxidative damage that ultimately results in cardiomyocyte dysfunction. Because intracellular ferritin iron is evidently in equilibrium with the low-molecular-weight cytosolic iron pool, measurements of ferritin iron potentially provide a clinically useful indicator of changes in cytosolic iron. The cardiovascular magnetic resonance (CMR) index of cardiac iron used clinically, the effective transverse relaxation rate (R2*), is principally influenced by hemosiderin iron and changes only slowly over several months, even with intensive iron-chelating therapy. Another conventional CMR index of cardiac iron, the transverse relaxation rate (R2), is sensitive to both hemosiderin iron and ferritin iron. We have developed a new MRI measure, the ‘reduced transverse relaxation rate’ (RR2), and have proposed in previous studies that this measure is primarily sensitive to ferritin iron and largely independent of hemosiderin iron in phantoms mimicking ferritin iron and human liver explants. We hypothesized that RR2 could detect changes produced by 1 week of iron-chelating therapy in patients with transfusion-dependent thalassemia. We imaged 10 patients with thalassemia major at 1.5 T in mid-ventricular short-axis planes of the heart, initially after suspending iron-chelating therapy for 1 week and subsequently after resuming oral deferasirox. After resuming iron-chelating therapy, significant decreases were observed in the mean myocardial RR2 (7.8%, p 0.90). Although the difference between changes in RR2 and R2 was not significant (p > 0.3), RR2 was consistently more sensitive than R2 (and R2*) to the resumption of iron-chelating therapy, as judged by the effect sizes of relaxation rate differences detected. Although further studies are needed, myocardial RR2 may be a promising

  12. Development and analysis of a new integrated power and cooling ...

    Indian Academy of Sciences (India)

    Cooling needs are increasing rapidly at hot climatic countries with increased global warming. The existed vapour compression refrigeration (VCR) system demands electricity for its operation which is more expensive. The concept of a newly proposed cooling cogeneration cycle has been developed by clubbing the power ...

  13. Solar absorption cooling

    NARCIS (Netherlands)

    Kim, D.S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still

  14. Cooling of electronic equipment

    DEFF Research Database (Denmark)

    A. Kristensen, Anders Schmidt

    2003-01-01

    Cooling of electronic equipment is studied. The design size of electronic equipment decrease causing the thermal density to increase. This affect the cooling which can cause for example failures of critical components due to overheating or thermal induced stresses. Initially a pin fin heat sink...

  15. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  16. The final cool down

    CERN Multimedia

    Thursday 29th May, the cool-down of the final sector (sector 4-5) of LHC has begun, one week after the start of the cool-down of sector 1-2. It will take five weeks for the sectors to be cooled from room temperature to 5 K and a further two weeks to complete the cool down to 1.9 K and the commissioning of cryogenic instrumentation, as well as to fine tune the cryogenic plants and the cooling loops of cryostats.Nearly a year and half has passed since sector 7-8 was cooled for the first time in January 2007. For Laurent Tavian, AT/CRG Group Leader, reaching the final phase of the cool down is an important milestone, confirming the basic design of the cryogenic system and the ability to operate complete sectors. “All the sectors have to operate at the same time otherwise we cannot inject the beam into the machine. The stability and reliability of the cryogenic system and its utilities are now very important. That will be the new challenge for the coming months,” he explains. The status of the cool down of ...

  17. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  18. Initial Cooling Experiment (ICE)

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  19. Wet cooling towers: rule-of-thumb design and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Leeper, Stephen A. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1981-07-01

    A survey of wet cooling tower literature was performed to develop a simplified method of cooling tower design and simulation for use in power plant cycle optimization. The theory of heat exchange in wet cooling towers is briefly summarized. The Merkel equation (the fundamental equation of heat transfer in wet cooling towers) is presented and discussed. The cooling tower fill constant (Ka) is defined and values derived. A rule-of-thumb method for the optimized design of cooling towers is presented. The rule-of-thumb design method provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature, power requirements and construction cost. In addition, a method for simulation of cooling tower performance at various operating conditions is presented. This information is also useful in power plant cycle evaluation. Using the information presented, it will be possible to incorporate wet cooling tower design and simulation into a procedure to evaluate and optimize power plant cycles.

  20. Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst.

    Science.gov (United States)

    Choi, Dong Soo; Kim, Keun Soo; Kim, Hyeongkeun; Kim, Yena; Kim, TaeYoung; Rhy, Se-hyun; Yang, Cheol-Min; Yoon, Dae Ho; Yang, Woo Seok

    2014-11-26

    Here, we show that chemical vapor deposition growth of graphene on copper foil is strongly affected by the cooling conditions. Variation of cooling conditions such as cooling rate and hydrocarbon concentration in the cooling step has yielded graphene islands with different sizes, density of nuclei, and growth rates. The nucleation site density on Cu substrate is greatly reduced when the fast cooling condition was applied, while continuing methane flow during the cooling step also influences the nucleation and growth rate. Raman spectra indicate that the graphene synthesized under fast cooling condition and methane flow on cool-down exhibit superior quality of graphene. Further studies suggest that careful control of the cooling rate and CH4 gas flow on the cooling step yield a high quality of graphene.

  1. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin

    Science.gov (United States)

    Leonte, Mihai; Kessler, John D.; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Sylva, Sean P.

    2017-05-01

    Aerobic oxidation is an important methane sink in seawater overlying gas seeps. Recent surveys have identified active methane seeps in the waters of Hudson Canyon, US Atlantic Margin near the updip limit of methane clathrate hydrate stability. The close proximity of these seeps to the upper stability limit of methane hydrates suggests that changing bottom water temperatures may influence the release rate of methane into the overlying water column. In order to assess the significance of aerobic methane oxidation in limiting the atmospheric expression of methane released from Hudson Canyon, the total extent of methane oxidized along with integrated oxidation rates were quantified. These calculations were performed by combining the measurements of the natural levels of methane concentrations, stable carbon isotopes, and water current velocities into kinetic isotope models yielding rates ranging from 22.8 ± 17 to 116 ± 76 nM/day with an average of 62.7 ± 37 nM/day. Furthermore, an average of 63% of methane released into the water column from an average depth of 515 m was oxidized before leaving this relatively small study area (6.5 km2). Results from the kinetic isotope model were compared to previously-published but concurrently-sampled ex situ measurements of oxidation potential performed using 13C-labeled methane. Ex situ rates were substantially lower, ranging from 0.1 to 22.5 nM/day with an average of 5.6 ± 2.3 nM/day, the discrepancy likely due to the inherent differences between these two techniques. Collectively, the results reveal exceptionally-rapid methane oxidation, with turnover times for methane as low as 0.3-3.7 days, indicating that methane released to the water column is removed quantitatively within the greater extent of Hudson Canyon. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text.

  2. Chemical zonation in olivine-hosted melt inclusions: A record of syn-eruptive cooling

    Science.gov (United States)

    Newcombe, M. E.; Fabbrizio, A.; Zhang, Y.; Ma, C.; Le Voyer, M.; Guan, Y.; Eiler, J. M.; Saal, A. E.; Stolper, E. M.

    2013-12-01

    . MgO profiles in eight MIs from the subaerial hornito on Santiago Island are well described by single-stage linear cooling histories, with cooling rates ranging from ~1-4 K/s and durations of < 2 mins. MgO profiles in the two MIs so far studied from the submarine Fernandina flow show different behaviors, with one being well described by a single-stage linear cooling history with a cooling rate of ~1 K/s and the other requiring a two-stage cooling history with the lowest recorded cooling rates of the entire sample set (0.02 K/s for ~1 hr, then 0.09 K/s for ~20 mins). The differences in thermal histories determined for the three different magmatic settings may reflect differences in their eruptive styles: The two-stage cooling histories required by most of the submarine MIs could reflect slow cooling of the MIs as they travel through a lava flow or pillow interior followed by rapid quenching of the MIs as the host phenocrysts near the melt-water interface. The short, single-stage cooling histories determined by the model for MIs from a subaerial hornito are consistent with the efficient fragmentation observed during this style of volcanic eruption.

  3. Comparison of false negative rates and limits of detection following macrofoam-swab sampling of Bacillus anthracis surrogates via Rapid Viability PCR and plate culture.

    Science.gov (United States)

    Hutchison, Janine R; Piepel, Greg F; Amidan, Brett G; Hess, Becky M; Sydor, Michael A; Deatherage Kaiser, Brooke L

    2018-01-21

    We evaluated the effects of Bacillus anthracis surrogates, low surface concentrations, surface materials, and assay methods on false-negative rate (FNR) and limit of detection (LOD 95 ) for recovering Bacillus spores using a macrofoam-swab sampling procedure. Bacillus anthracis Sterne or Bacillus atrophaeus Nakamura spores were deposited over a range of low target concentrations (2 - 500 coupon -1 ) onto glass, stainless steel, vinyl tile, and plastic. Samples were assayed using a modified Rapid Viability-PCR (mRV-PCR) method and the traditional plate culture method to obtain FNR and LOD 95 results. Mean FNRs tended to be lower for mRV-PCR compared to culturing, and increased as spore concentration decreased for all surface materials. Surface material, but not B. anthracis surrogate, influenced FNRs with the mRV-PCR method. The mRV-PCR LOD 95 was lowest for glass and highest for vinyl tile. LOD 95 values overall were lower for mRV-PCR than for the culture method. This study adds to the limited data on FNR and LOD 95 for mRV-PCR and culturing methods with low concentrations of B. anthracis sampled from various surface materials by the CDC macrofoam-swab method. These are key inputs for planning characterization and clearance studies for low contamination levels of B. anthracis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. Exploitation of rapid acidification phenomena of food waste in reducing the hydraulic retention time (HRT) of high rate anaerobic digester without conceding on biogas yield.

    Science.gov (United States)

    Kuruti, Kranti; Begum, Sameena; Ahuja, Shruti; Anupoju, Gangagni Rao; Juntupally, Sudharshan; Gandu, Bharath; Ahuja, Devender Kumar

    2017-02-01

    The aim of the present work was to study and infer a full scale experience on co-digestion of 1000kg of FW (400kg cooked food waste and 600kg uncooked food waste) and 2000L of rice gruel (RG) on daily basis based on a high rate biomethanation technology called "Anaerobic gas lift reactor" (AGR). The pH of raw substrate was low (5.2-5.5) that resulted in rapid acidification phenomena with in 12h in the feed preparation tank that facilitated to obtain a lower hydraulic residence time (HRT) of 10days. At full load, AGR was fed with 245kg of total solids, 205kg of volatile solids (167kg of organic matter in terms of chemical oxygen demand) which resulted in the generation of biogas and bio manure of 140m3/day and 110kg/day respectively. The produced biogas replaced 60-70kg of LPG per day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Beam cooling with ionization losses

    Energy Technology Data Exchange (ETDEWEB)

    Rubbia, C. [INFN, Sezione di Pavia (Italy) and CERN AB Department, Geneva (Switzerland)]. E-mail: Carlo.Rubbia@cern.ch; Ferrari, A. [CERN AB Department, Geneva (Switzerland); Kadi, Y. [CERN AB Department, Geneva (Switzerland); Vlachoudis, V. [CERN AB Department, Geneva (Switzerland)

    2006-12-01

    This novel type of Ionization Cooling is an effective method in order to enhance the (strong) interaction probability of slow (few MeV/A) ions stored in a small ring. The many traversals through a thin target strongly improve the nuclear reaction rate with respect to a single-pass collision, in a steady configuration in which ionization losses of a target 'foil' (typically few hundred {mu}g/cm{sup 2} thick) are continuously recovered by an RF-cavity. With a flat foil, betatron oscillations are 'cooled', but the momentum spread diverges exponentially, since faster (slower) particles ionize less (more) than the average. In order to 'cool' the beam also longitudinally, a chromaticity has to be introduced with a wedge-shaped 'foil'. Therefore, in equilibrium conditions, multiple scattering and straggling are both balanced by phase-space compression. Classic Ionization Cooling [A.A. Kolomensky, Atomnaya Energiya 19 (1965) 534; Yu.M. Ado, V.I. Balbekov, Atomnaya Energiya 31(1) (1971) 40-44; A.N. Skrinsky, V.V. Parkhomchuk, Sov. J. Nucl. Phys. 12 (1981) 3; E.A. Perevendentsev, A.N. Skrinsky, in: Proceedings of the 12th International Conference on High Energy Acceleration, 1983, p. 485] is designed to cool the direct beam until it has been compressed and extracted for further use. In practice, this limits its applicability to non-interacting muon beams. Instead, in this new method, applicable to strongly interacting collisions, the circulating beam is not extracted. Ionization cooling provides 'in situ' storage of the beam until it is converted by a nuclear interaction with the target. Simple reactions-for instance {sup 7}Li+D->{sup 8}Li+p-are more favourably produced in the 'mirror' kinematical frame, namely with a heavier ion colliding against a gas-jet D{sub 2} target. Kinematics is generally very favourable, with angles in a narrow angular cone (around {approx}10{sup o} for the mentioned reaction) and with a

  6. Analysis of photovoltaic with water pump cooling by using ANSYS

    Science.gov (United States)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Shobry, M. Z.; Majid, M. S. A.

    2017-10-01

    Almost all regions in the world are facing with problem of increasing electricity cost from time to time. Besides, with the mankind’s anxiety about global warming, it has infused an ideology to rapidly move towards renewable energy sources since it is believed to be more reliable and safer. One example of the best alternatives to replace the fossil fuels sourced is solar energy. Photovoltaic (PV) panel is used to convert the sunlight into electricity. Unfortunately, the performance of PV panel can be affected by its operating temperature. With the increment of ambient temperature, the PV panel operating temperature also increase and will affect the performance of PV panel (in terms of power generated). With this concern, a water cooling system was installed on top of PV panel to help reduce the PV panel’s temperature. Five different water mass flow rate is tested due to investigate their impact towards the thermal performance and heat transfer rate.

  7. The initial cooling of pahoehoe flow lobes

    Science.gov (United States)

    Keszthelyi, L.; Denlinger, R.

    1996-01-01

    In this paper we describe a new thermal model for the initial cooling of pahoehoe lava flows. The accurate modeling of this initial cooling is important for understanding the formation of the distinctive surface textures on pahoehoe lava flows as well as being the first step in modeling such key pahoehoe emplacement processes as lava flow inflation and lava tube formation. This model is constructed from the physical phenomena observed to control the initial cooling of pahoehoe flows and is not an empirical fit to field data. We find that the only significant processes are (a) heat loss by thermal radiation, (b) heat loss by atmospheric convection, (c) heat transport within the flow by conduction with temperature and porosity-dependent thermal properties, and (d) the release of latent heat during crystallization. The numerical model is better able to reproduce field measurements made in Hawai'i between 1989 and 1993 than other published thermal models. By adjusting one parameter at a time, the effect of each of the input parameters on the cooling rate was determined. We show that: (a) the surfaces of porous flows cool more quickly than the surfaces of dense flows, (b) the surface cooling is very sensitive to the efficiency of atmospheric convective cooling, and (c) changes in the glass forming tendency of the lava may have observable petrographic and thermal signatures. These model results provide a quantitative explanation for the recently observed relationship between the surface cooling rate of pahoehoe lobes and the porosity of those lobes (Jones 1992, 1993). The predicted sensitivity of cooling to atmospheric convection suggests a simple field experiment for verification, and the model provides a tool to begin studies of the dynamic crystallization of real lavas. Future versions of the model can also be made applicable to extraterrestrial, submarine, silicic, and pyroclastic flows.

  8. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  9. Rapid Solidification of Sn-Cu-Al Alloys for High-Reliability, Lead-Free Solder: Part I. Microstructural Characterization of Rapidly Solidified Solders

    Science.gov (United States)

    Reeve, Kathlene N.; Choquette, Stephanie M.; Anderson, Iver E.; Handwerker, Carol A.

    2016-12-01

    Particles of Cu x Al y in Sn-Cu-Al solders have previously been shown to nucleate the Cu6Sn5 phase during solidification. In this study, the number and size of Cu6Sn5 nucleation sites were controlled through the particle size refinement of Cu x Al y via rapid solidification processing and controlled cooling in a differential scanning calorimeter. Cooling rates spanning eight orders of magnitude were used to refine the average Cu x Al y and Cu6Sn5 particle sizes down to submicron ranges. The average particle sizes, particle size distributions, and morphologies in the microstructures were analyzed as a function of alloy composition and cooling rate. Deep etching of the samples revealed the three-dimensional microstructures and illuminated the epitaxial and morphological relationships between the Cu x Al y and Cu6Sn5 phases. Transitions in the Cu6Sn5 particle morphologies from faceted rods to nonfaceted, equiaxed particles were observed as a function of both cooling rate and composition. Initial solidification cooling rates within the range of 103 to 104 °C/s were found to be optimal for realizing particle size refinement and maintaining the Cu x Al y /Cu6Sn5 nucleant relationship. In addition, little evidence of the formation or decomposition of the ternary- β phase in the solidified alloys was noted. Solidification pathways omitting the formation of the ternary- β phase agreed well with observed room temperature microstructures.

  10. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Science.gov (United States)

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  11. Indirect evaporative cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, M.J.; Chapman, H.L.; Pescod, D.

    1976-01-01

    Characteristics and applications of three indirect evaporative cooling systems are described. The rock bed regenerative unit is now in licensed production and some operational experience is available, while the plastic plate heat exchanger unit has been demonstrated to be effective. A third system, based on a rotary heat exchanger is included. Although less development has been done on it, several successful applications of the heat exchanger are operational. All systems provide comfort cooling in which building indoor temperature varies over the day at an operating cost less than 50% of that of a comparable refrigerated cooling system.

  12. Cryogenic generator cooling

    Science.gov (United States)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  13. A Chandra X-Ray Analysis of Abell 1664: Cooling, Feedback, and Star Formation in the Central Cluster Galaxy

    Science.gov (United States)

    Kirkpatrick, C. C.; McNamara, B. R.; Rafferty, D. A.; Nulsen, P. E. J.; Bîrzan, L.; Kazemzadeh, F.; Wise, M. W.; Gitti, M.; Cavagnolo, K. W.

    2009-05-01

    The brightest cluster galaxy (BCG) in the Abell 1664 cluster is unusually blue and is forming stars at a rate of ~ 23 M sun yr-1. The BCG is located within 5 kpc of the X-ray peak, where the cooling time of 3.5 × 108 yr and entropy of 10.4 keV cm2 are consistent with other star-forming BCGs in cooling flow clusters. The center of A1664 has an elongated, "barlike" X-ray structure whose mass is comparable to the mass of molecular hydrogen, ~1010 M sun in the BCG. We show that this gas is unlikely to have been stripped from interloping galaxies. The cooling rate in this region is roughly consistent with the star formation rate, suggesting that the hot gas is condensing onto the BCG. We use the scaling relations of Bîrzan et al. to show that the active galactic nucleus (AGN) is underpowered compared to the central X-ray cooling luminosity by roughly a factor of three. We suggest that A1664 is experiencing rapid cooling and star formation during a low state of an AGN feedback cycle that regulates the rates of cooling and star formation. Modeling the emission as a single-temperature plasma, we find that the metallicity peaks 100 kpc from the X-ray center, resulting in a central metallicity dip. However, a multi-temperature cooling flow model improves the fit to the X-ray emission and is able to recover the expected, centrally peaked metallicity profile.

  14. A tool for rapid screening of direct DNA agents using reaction rates and relative interaction potency: towards screening environmental contaminants for hazard.

    Science.gov (United States)

    Gavina, Jennilee M A; Rubab, Mamoona; Zhang, Huijuan; Zhu, Jiping; Nong, Andy; Feng, Yong-Lai

    2011-11-01

    DNA damage represents a potential biomarker for determining the exposure risk to chemicals and may provide early warning data for identifying chemical hazards to human health. Here, we have demonstrated a simple chromatography-based method that can be used to rapidly screen for the presence of chemical hazards as well as to determine parameters relevant to hazard assessment. In this proof-of-principle study, a simple in vitro system was used to determine the interaction of pollutants and probable carcinogens, phenyl glycidyl ether (PGE), tetrachlorohydroquinone (Cl(4)HQ), methylmethane sulfonate (MMS), styrene-7,8-oxide (SO), and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a metabolite of benzo[a]pyrene (B[a]P), with single- and double-stranded DNA probes. Differences in potency and reaction kinetics were studied for chemical and DNA type. A relative interaction potency equivalency (PEQ) of a chemical was determined by ratio of interaction potency of a chemical to BPDE as the reference chemical in the reaction with single- and double-stranded oligodeoxynucleotides. PEQs were found to be BPDE > PGE > SO > MMS > Cl(4)HQ for single-stranded oligodeoxynucleotides while they were found to be BPDE > PGE > Cl(4)HQ > MMS > SO for double-stranded oligodeoxynucleotides. Kinetics evaluation revealed that BPDE reacted with both DNA probes at a significantly faster rate, as compared to the remaining test chemicals. Equilibrium was reached within an hour for BPDE, but required a minimum of 48 h for the remaining chemicals. First-order rate constants were (1.61 ± 0.2) × 10(-3) s(-1) and (3.18 ± 0.4) × 10(-4) s(-1) for reaction of BPDE with double- and single-stranded DNA, respectively. The remaining chemicals possessed rate constants from 2 to 13 × 10(-6) s(-1) with a relative kinetic order for reaction with DNA of BPDE ≫ MMS > SO > PGE > Cl(4)HQ for ds-DNA and BPDE ≫ SO ≈ Cl(4)HQ ≈ MMS > PGE for ss-DNA. We further found that the reaction potency, defined by

  15. Thermal Energy Storage for Space Cooling--Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  16. Thermal Energy for Space Cooling--Federal Technology Alert

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  17. LHC cooling gains ground

    CERN Multimedia

    Huillet-Miraton Catherine

    The nominal cryogenic conditions of 1.9 K have been achieved in sectors 5-6 and 7-8. This means that a quarter of the machine has reached the nominal conditions for LHC operation, having attained a temperature of below 2 K (-271°C), which is colder than interstellar space! Elsewhere, the cryogenic system in Sector 8-1 has been filled with liquid helium and cooled to 2K and will soon be available for magnet testing. Sectors 6-7 and 2-3 are being cooled down and cool-down operations have started in Sector 3-4. Finally, preparations are in hand for the cool-down of Sector 1-2 in May and of Sector 4-5, which is currently being consolidated. The LHC should be completely cold for the summer. For more information: http://lhc.web.cern.ch/lhc/Cooldown_status.htm.

  18. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  19. Cooling of wood briquettes

    Directory of Open Access Journals (Sweden)

    Adžić Miroljub M.

    2013-01-01

    Full Text Available This paper is concerned with the experimental research of surface temperature of wood briquettes during cooling phase along the cooling line. The cooling phase is an important part of the briquette production technology. It should be performed with care, otherwise the quality of briquettes could deteriorate and possible changes of combustion characteristics of briquettes could happen. The briquette surface temperature was measured with an IR camera and a surface temperature probe at 42 sections. It was found that the temperature of briquette surface dropped from 68 to 34°C after 7 minutes spent at the cooling line. The temperature at the center of briquette, during the 6 hour storage, decreased to 38°C.

  20. Rapid climate variability during warm and cold periods in polar regions and Europe

    DEFF Research Database (Denmark)

    Masson-Delmotte, V.; Landais, A.; Combourieu-Nebout, N.

    2005-01-01

    rapid cooling recorded during the Holocene in Greenland ice cores and in Ammersee, Germany. The rate of warming during previous warmer interglacial periods is estimated from polar ice cores to 1.5 °C per millennium, without abrupt changes. Climate change expected for the 21st century should however......Typical rapid climate events punctuating the last glacial period in Greenland, Europe and Antarctica are compared to two rapid events occurring under warmer conditions: (i) Dansgaard-Oeschger event 25, the first abrupt warming occurring during last glacial inception; (ii) 8.2 ka BP event, the only...

  1. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  2. The Development of Rapidly Solidified Magnesium – Copper Ribbons

    Directory of Open Access Journals (Sweden)

    Pastuszak M.

    2016-06-01

    Full Text Available The aim of the present work was to plan and carry out an experiment consisting of amorphization of industrial magnesium alloy WE 43 (Mg - 4 Y - 3 RE - 0.5 Zr modified by the copper addition. Investigated alloy modified with 20% of copper was rapidly quenched with the use of melt spinning technique. The effects of cooling rate on the structure and properties of the obtained material were extensively analyzed. The structure and phase analysis of samples were examined using X-ray diffraction method (XRD while the thermal stability of the samples was determined by differential scanning calorimetry (DSC. Microstructure observations were also conducted. The microhardness tests (HV0.02 and corrosion resistance tests were carried out to investigate the properties of the material. Corrosion resistance measurements were held using a typical three-electrode system. As the result of the research, the effect of cooling rate on microstructure and properties of investigated alloy was determined.

  3. Cooling tower waste reduction

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

    1998-05-01

    At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

  4. High energy resolution and high count rate gamma spectrometry measurement of primary coolant of generation 4 sodium-cooled fast reactor; Spectrometrie gamma haute resolution et hauts taux de comptage sur primaire de reacteur de type generation 4 au sodium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Coulon, R.

    2010-11-10

    Sodium-cooled Fast Reactors are under development for the fourth generation of nuclear reactor. Breeders reactors could gives solutions for the need of energy and the preservation of uranium resources. An other purpose is the radioactive wastes production reduction by transmutation and the control of non-proliferation using a closed-cycle. These thesis shows safety and profit advantages that could be obtained by a new generation of gamma spectrometry system for SFR. Now, the high count rate abilities, allow us to study new methods of accurate power measurement and fast clad failure detection. Simulations have been done and an experimental test has been performed at the French Phenix SFR of the CEA Marcoule showing promising results for these new measurements. (author) [French] Les reacteurs a neutrons rapides refroidis au sodium sont en developpement en vue d'assurer une quatrieme generation de reacteurs repondant a la demande energetique, tout en assurant la preservation des ressources d'uranium par un fonctionnement en surgenerateur. L'objectif de la filiere est egalement d'ameliorer la gestion de la radiotoxicite des dechets produits par transmutation des actinides mineurs et de controler la non-proliferation par un fonctionnement en cycle ferme. Une instrumentation de surveillance et de controle de ce type de reacteur a ete etudiee dans cette these. La spectrometrie gamma de nouvelle generation permet, par les hauts taux de traitement aujourd'hui accessibles, d'envisager de nouvelles approches pour suivre avec une precision accrue la puissance neutronique et de detecter plus precocement des ruptures de gaine combustible. Des simulations numeriques ont ete realisees et une campagne d'essai a ete menee a bien sur le reacteur Phenix de Marcoule. Des perspectives prometteuses ont ete mises en exergue pour ces deux problematiques

  5. Correlation between regular mouthing movements and heart rate patterns during non-rapid eye movement periods in normal human fetuses between 32 and 40 weeks of gestation.

    Science.gov (United States)

    Otera, Yuka; Morokuma, Seiichi; Fukushima, Kotaro; Wake, Norio; Kato, Kiyoko

    2013-06-01

    Regular mouthing movements (RMMs) are observed during fetal non-rapid eye movement (NREM) periods. To determine the correlation between RMM and fetal heart rate (FHR) patterns during NREM periods. Fetal eye and mouth movements and FHR patterns were observed and recorded. 50 normal singleton pregnancies between 32 and 40 weeks of gestation. Changes in the power spectrum ratio of 3-minute blocks of RMM clusters, FHR with RMM clusters (HR+), and FHR without RMM clusters (HR-) were calculated at a frequency band of 0.02 Hz among 3 gestational age groups: group 1, 32-34 weeks gestation; group 2, 35-37 weeks gestation; group 3, 38-40 weeks gestation. We calculated the percentage of cases showing dominant peak ratios of RMM and HR+ in the same frequency band, the maximum correlation coefficient, and its lag time. In group 3, the dominant peaks of both RM and HR+ were present at the same frequency band, 0.06-0.08 Hz; this was not seen in the other groups' relative power spectral patterns. The percentage of cases showing dominant peaks of RMM and HR+ in the same frequency band increased with advancing gestational age. The maximum correlation coefficient in groups 1 (0.28 ± 0.11) and 3 (0.45 ± 0.14) differed significantly (p<0.05). The correlation between RMM and FHR patterns became stronger, and their rhythmicity was similar, from 38 to 40 gestational weeks, suggesting that a common center starts to govern both patterns at approximately 38 weeks gestation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Heating and cooling processes in disks

    Science.gov (United States)

    Woitke, Peter

    2015-09-01

    This chapter summarises current theoretical concepts and methods to determine the gas temperature structure in protoplanetary disks by balancing all relevant heating and cooling rates. The processes considered are non-LTE line heating/cooling based on the escape probability method, photo-ionisation heating and recombination cooling, free-free heating/cooling, dust thermal accommodation and high-energy heating processes such as X-ray and cosmic ray heating, dust photoelectric and PAH heating, a number of particular follow-up heating processes starting with the UV excitation of H2, and the release of binding energy in exothermal reactions. The resulting thermal structure of protoplanetary disks is described and discussed. 10th Lecture from Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  7. Biomedical Application of Aerospace Personal Cooling Systems

    Science.gov (United States)

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which are used by astronauts to alleviate thermal stress during extravehicular activity have been applied to the therapeutic management of multiple sclerosis. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 10 male and female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.22C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. In general, the male and female subjects' oral and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (P<0.05) lower than during the control period, approx. 0.2 - 0.5C, for both men and women wearing any of the four different garments. The corresponding ear temperatures were significantly (P<0.05) decreased approx.0.2 - 0.4C by the end of the recovery period. Compared to the control period, no significant differences were found in rectal temperatures during cooling and

  8. The effect of hand cooling during intermittent training of elite swimmers.

    Science.gov (United States)

    Zochowski, Thomas; Docherty, David

    2016-03-01

    The aim of this paper was to determine the effects of using intermittent hand cooling during high intensity, intermittent training on thermoregulatory, performance and psychophysical variables in elite level swimmers in a training pool (30.5±0.5 °C). Randomized cross-over design. Following a standard warm-up, ten male swimmers (20.3±3.2 years) were instructed to maintain the fastest 100-m time (on average) for an 8 x 100 m freestyle swimming set performed either in a training pool with cooling (TPC) or a training pool with no-cooling (TPNC). Time at 100 m, core temperature (Tc), heart rate (HR), ratings of perceived exertion (RPE), thermal comfort (ThC) and thermal sensation (ThS) were recorded following each repetition. Participants were cooled during the 90 s rest interval between repetitions using the Rapid Thermal Exchange System (RTX) (AVAcore Technologies Inc., Ann Arbor, MI, USA). There was a better performance when comparing 100 m time (1.50±1.98 s faster) for the final repetition in the TPC condition compared to the final repetition in the TPNC condition (P<0.05). There was no significant difference between Tc, HR, RPE, ThC and ThS (P<0.05). There was a performance benefit in the last set of the training block in the TPC condition that could not be attributed to any of the physiological and psychophysical measures used in the study.

  9. Cool Flame Quenching

    Science.gov (United States)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  10. Improvement of the decay heat removal characteristics of the generation IV gas-cooled fast reactor; Amelioration des caracteristiques de la dissipation de la chaleur de decroissance pour les reacteurs a neutrons rapides de quatrieme generation refroidi au gaz

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A.S.

    2010-09-07

    The main drawback of the GFR is the difficulty to evacuate decay heat following a loss-of-coolant accident (LOCA) due to the low thermal inertia of the core, as well as to the low coolant density. The present doctoral research focuses on the improvement of decay heat removal (DHR) for the Generation-IV GFR. The reference GFR system design considered in the thesis is the 2006 CEA concept, with a power of 2400 MWth. The CEA 2006 DHR strategy foresees, in all accidental cases (independent of the system pressure), that the reactor is shut down. For high pressure events, dedicated DHR loops with blowers and heat exchangers are designed to operate when the power conversion system cannot be used to provide acceptable core temperatures under natural convection conditions. For de-pressurized events, the strategy relies on a dedicated small containment (called the guard containment) providing an intermediate back-up pressure. The DHR blowers, designed to work under these pressure conditions, need to be powered either by the power grid or by batteries for at least 24 hours. The specific contributions of the present research - aimed at achieving enhanced passivity of the DHR system for the GFR - are design and analysis related to (1) the injection of heavy gas into the primary circuit after a LOCA, to enable natural convection cooling at an intermediate-pressure level, and (2) an autonomous Brayton loop to evacuate decay heat at low primary pressure in case of a loss of the guard containment pressure. Both these developments reduce the dependence on blower power availability considerably. First, the thermal-hydraulic codes used in the study - TRACE and CATHARE - are validated for gas cooling. The validation includes benchmark comparisons between the codes, serving to identify the sensitivity of the results to the different modeling assumptions. The parameters found to be the most sensitive in this analysis, such as heat transfer and friction models, are then validated via a

  11. Rapid DNA amplification using a battery-powered thin-film resistive thermocycler.

    Science.gov (United States)

    Herold, Keith E; Sergeev, Nikolay; Matviyenko, Andriy; Rasooly, Avraham

    2009-01-01

    A prototype handheld, compact, rapid thermocycler was developed for multiplex analysis of nucleic acids in an inexpensive, portable configuration. Instead of the commonly used Peltier heating/cooling element, electric thin-film resistive heater and a miniature fan enable rapid heating and cooling of glass capillaries leading to a simple, low-cost Thin-Film Resistive Thermocycler (TFRT). Computer-based pulse width modulation control yields heating rates of 6-7 K/s and cooling rates of 5 K/s. The four capillaries are closely coupled to the heater, resulting in low power consumption. The energy required by a nominal PCR cycle (20 s at each temperature) was found to be 57+/-2 J yielding an average power of approximately 1.0 W (not including the computer and the control system). Thus the device can be powered by a standard 9 V alkaline battery (or other 9 V power supply). The prototype TFRT was demonstrated (in a benchtop configuration) for detection of three important food pathogens (E. coli ETEC, Shigella dysenteriae, and Salmonella enterica). PCR amplicons were analyzed by gel electrophoresis. The 35 cycle PCR protocol using a single channel was completed in less then 18 min. Simple and efficient heating/cooling, low cost, rapid amplification, and low power consumption make the device suitable for portable DNA amplification applications including clinical point of care diagnostics and field use.

  12. A study of cooling process in bulk metallic glasses fabrication

    Science.gov (United States)

    Yang, G. N.; Shao, Y.; Yao, K. F.; Chen, S. Q.

    2015-11-01

    To study the temperature distribution and evolution during bulk metallic glasses fabrication, finite element method was taken to simulate the cooling process in glassy alloys fabricated by water quenching and copper mold casting. The temperature distribution and evolution in different-sized samples in the two methods were successfully reproduced. The result showed that the temperature distribution in the alloy was strongly affected by fabricating method. Two relations were then proposed to estimate the cooling rate in different-sized samples prepared by these two methods. By comparing the reported data of critical size and critical cooling rate, we showed that the reported critical size and critical cooling rate of metallic glasses didn't follow a heat transfer relation. Those critical-sized glassy alloys actually experienced cooling rates much larger than the critical cooling rates estimated by the classical nucleation theory or experiments on milligram-scaled samples. It results from the increasing degree of heterogeneity with sample size, and therefore a larger sample requires a faster cooling rate to avoid crystallization. This work clearly shows the temperature field evolution in bulk metallic glasses fabrication and reveals that the critical cooling rate of metallic glasses might be size-dependent.

  13. Fast Quasi-Adiabatic Gas Cooling: An Experiment Revisited

    Science.gov (United States)

    Oss, S.; Gratton, L. M.; Calza, G.; Lopez-Arias, T.

    2012-01-01

    The well-known experiment of the rapid expansion and cooling of the air contained in a bottle is performed with a rapidly responsive, yet very cheap thermometer. The adiabatic, low temperature limit is approached quite closely and measured with our apparatus. A straightforward theoretical model for this process is also presented and discussed.…

  14. Furnace for rapid thermal processing

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2001-01-01

    A Method (1) for Rapid Thermal Processing of a wafer (7), wherein the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is

  15. Cool WISPs for stellar cooling excesses

    Science.gov (United States)

    Giannotti, Maurizio; Irastorza, Igor; Redondo, Javier; Ringwald, Andreas

    2016-05-01

    Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

  16. Solenoidal ionization cooling lattices

    Directory of Open Access Journals (Sweden)

    R. C. Fernow

    2007-06-01

    Full Text Available We explore a practical approach for designing ionization cooling channels with periodic solenoidal focusing. We examine the lattice characteristics in terms of the properties of the coils and the cell geometry. The peak magnetic field in the coils is an important engineering constraint in lattice design. We examine the dependence of the peak field, momentum passband locations, and the beta function on the coil parameters. We make a systematic examination of all allowed lattice configurations taking into account the symmetry properties of the current densities and the beta function. We introduce a unique classification for comparing cooling lattice configurations. While solutions with a single coil per cell illustrate most of the effects that are important for cooling channel design, the introduction of additional coils allows more flexibility in selecting the lattice properties. We look at example solutions for the problem of the initial transverse cooling stage of a neutrino factory or muon collider and compare our results with the properties of some published cooling lattice designs. Scaling laws are used to compare solutions from different symmetry classes.

  17. Monitoring Cray Cooling Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  18. Muon ionization cooling experiment

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    A neutrino factory based on a muon storage ring is the ultimate tool for studies of neutrino oscillations, including possibly leptonic CP violation. It is also the first step towards muon colliders. The performance of this new and promising line of accelerators relies heavily on the concept of ionisation cooling of minimum ionising muons, for which much R&D is required. The concept of a muon ionisation cooling experiment has been extensively studied and first steps are now being taken towards its realisation by a joint international team of accelerator and particle physicists. The aim of the workshop is to to explore at least two versions of an experiment based on existing cooling channel designs. If such an experiment is feasible, one shall then select, on the basis of effectiveness, simplicity, availability of components and overall cost, a design for the proposed experiment, and assemble the elements necessary to the presentation of a proposal. Please see workshop website.

  19. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.; AHRENS,L.; BRENNAN,M.; HARRISON,M.; KEWISCH,J.; MACKAY,W.; PEGGS,S.; ROSER,T.; SATOGATA,T.; TRBOJEVIC,D.; YAKIMENKO,V.

    2001-06-18

    We introduce plans for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This project has a number of new features as electron coolers go: It will cool 100 GeV/nucleon ions with 50 MeV electrons; it will be the first attempt to cool a collider at storage-energy; and it will be the first cooler to use a bunched beam and a linear accelerator as the electron source. The linac will be superconducting with energy recovery. The electron source will be based on a photocathode gun. The project is carried out by the Collider-Accelerator Department at BNL in collaboration with the Budker Institute of Nuclear Physics.

  20. How cool is Uchimizu?

    Science.gov (United States)

    Solcerova, Anna; van Emmerik, Tim; Hilgersom, Koen; van de Ven, Frans; van de Giesen, Nick

    2017-04-01

    The Urban Heat Island (UHI) was first described 200 years ago, but ways to mitigate heat in urban areas reach much further into the past. Uchimizu is a 17th century Japanese tradition, in which water is sprinkled around houses, temples, and in gardens to cool the ground surface and the air, and to settle the dust. Nowadays, megacities such as Tokyo are aiming to revive the - by modern technology suppressed - method, and uchimizu is promoted by local authorities as a "clever way to feel cool". Unfortunately, the number of published studies that have quantified the cooling effects of uchimizu is limited, and only uses measurements of the surface temperature, or air temperature at a single height, as a measure of the cooling effect. In this research a dense 3D Distributed Temperature Sensing (DTS) setup was used to measure air temperature within once cubic meter of air above an urban surface with high spatial and temporal resolution. Six experiments were performed to systematically study the effect of (1) applied water amount, (2) initial surface temperature, and (3) shading on the cooling effect of uchimizu. We present the results and the subsequent analyses of these experiments, done during summer in Delft, The Netherlands. We show that this simple water sprinkling method has the potential to decrease extreme temperatures in impervious and paved parts of urban areas considerably. Besides mitigating the UHI, uchimizu practice is also an opportunity to increase awareness among citizens, and stimulate citizen participation in solving heat stress problems and energy saving. By providing refreshing insights on the cooling effect of uchimizu, we aim to contribute to the modern revival of this old tradition.

  1. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  2. Desiccant-assisted cooling fundamentals and applications

    CERN Document Server

    Brum, Nisio

    2014-01-01

    The increasing concern with indoor air quality has led to air-quality standards with increased ventilation rates. Although increasing the volume flow rate of outside air is advisable from the perspective of air-quality, it is detrimental to energy consumption, since the outside air has to be brought to the comfort condition before it is insufflated to the  conditioned ambient. Moreover, the humidity load carried within outside air has challenging HVAC engineers to design cooling units which are able to satisfactorily handle both sensible and latent contributions to the thermal load. This constitutes a favorable scenario for the use of solid desiccants to assist the cooling units. In fact, desiccant wheels have been increasingly applied by HVAC designers, allowing distinct processes for the air cooling and dehumidification. In fact, the ability of solid desiccants in moisture removal is effective enough to allow the use of evaporative coolers, in opposition to the traditional vapor-compression cycle, resultin...

  3. Assessment of bovine spermatozoa viability using different cooling protocols prior to cryopreservation

    Directory of Open Access Journals (Sweden)

    Paulo B.D. Gonçalves

    2010-11-01

    Full Text Available The aim of our study was to evaluate the effect of different cooling rates on the post-thawing quality of bovine spermatozoa. Ejaculated semen from a 24-month-old Jersey bull was collected using an artificial vagina and diluted in a commercial extender to evaluate spermatozoan concentration and motility subjectively before cooling and freezing and after thawing. Straws were allocated to four cooling curves: rapid (RD, semi-rapid (SRD, semi-slow (SSLW and slow (SLW. The temperature was decreased from 25ºC to 4ºC in 10, 50, 110 and 135 min, which represents a cooling rate of 2.06, 0.40, 0.18 and 0.15ºC/min, respectively. Then straws were frozen and stored at -196ºC. After thawing, one aliquot of each straw was used for evaluation. Spermatozoan integrity and mitochondrial function were evaluated using a combination of fluorescent probes containing 100 mg/mL FITC-PSA, 0.5 μg/mL PI and 153 μM JC-1. At the end of cooling, spermatozoan motility did not differ among RD (63.3%, SRD (66.7%, SSLW (66.7% and SLW (80.0%. However, normal spermatozoan morphology was lower in SRD (84.8% compared to RD (91.7%, SSLW (91.7% and SLW (90.3% (P<0.05. In thawed semen, spermatozoan motility and normal morphology did not differ among RD (40.0%; 88.8%, SRD (43.3%; 82.5%, SSLW (40.0%; 87.2% and SLW (36.7%; 88.0%. The percentage of damaged spermatozoa, including plasma and acrosome membrane damage and low mitochondrial potential, was higher in RD compared to the others (P<0.05. In conclusion, a rapid cooling curve is detrimental to the spermatozoa and affects the post-thaw spermatozoan integrity of bovine frozen semen.

  4. Effects of the Fe/Mn weight ratio and cooling rate on the area fractions of α-AlFeSi and β-AlFeSi phases in Al-7.5Si-3.75Cu-0.5Mg-0.55Fe-xMn aluminum alloy

    OpenAIRE

    Hernández-Rodríguez, A.; Castro-Román, M. de J.; M. Herrera-Trejo; S. Belmares-Perales; P. Orozco-González

    2014-01-01

    The effects of the Fe/Mn weight ratio (1,42 or 3,05) and cooling rate (0,1, 0,2, 0,5, or 0,6 °C/s) on the area fraction of α-AlFeSi and β-AlFeSi intermetallic compounds in Al-7.5Si-3.75Cu-0.5Mg-0.55Fe-xMn aluminum alloy were studied. It was found that the difference between the formation temperature of the β-AlFeSi phase and the formation temperature of the eutectic Al-Si may determine the possibilities of β-AlFeSi elimination/reduction by increasing the cooling rate.

  5. Effects of the Fe/Mn weight ratio and cooling rate on the area fractions of α-AlFeSi and β-AlFeSi phases in Al-7.5Si-3.75Cu-0.5Mg-0.55Fe-xMn aluminum alloy

    Directory of Open Access Journals (Sweden)

    A. Hernández-Rodríguez

    2014-07-01

    Full Text Available The effects of the Fe/Mn weight ratio (1,42 or 3,05 and cooling rate (0,1, 0,2, 0,5, or 0,6 °C/s on the area fraction of α-AlFeSi and β-AlFeSi intermetallic compounds in Al-7.5Si-3.75Cu-0.5Mg-0.55Fe-xMn aluminum alloy were studied. It was found that the difference between the formation temperature of the β-AlFeSi phase and the formation temperature of the eutectic Al-Si may determine the possibilities of β-AlFeSi elimination/reduction by increasing the cooling rate.

  6. Historical aerial imagery reveals rapid frontal retreat following the 1920’s warming in southeast Greenland

    DEFF Research Database (Denmark)

    Bjørk, Anders Anker; Kjær, Kurt H.; Korsgaard, Niels Jákup

    in the similarity of the retreat following the early century warming and the latest decade, with a majority of the 132 glaciers exhibiting larger retreat rates in the early period. Furthermore, during the mid century cooling glaciers in southeast Greenland showed a surprisingly rapid response to the cooling......The Greenland ice sheet (GIS) is undergoing massive changes in its frontal positions, velocity structure, and overall mass balance. Since 2000, marine and terrestrial terminating glaciers in southeast Greenland have experienced dramatic frontal retreat and dynamic thinning in response to increased...... demonstrate decadal sensitivity to temperature changes with rapid retreat following the early century warming (1919-1932) and glacial advance during a minor, but profound mid century cooling (1955-1972) succeeded by the present warming again leading to massive retreat. One significant finding lies...

  7. Design of the RINSE trial: the rapid infusion of cold normal saline by paramedics during CPR.

    Science.gov (United States)

    Deasy, Conor; Bernard, Stephen; Cameron, Peter; Jacobs, Ian; Smith, Karen; Hein, Cindy; Grantham, Hugh; Finn, Judith

    2011-10-13

    The International Liaison Committee on Resuscitation (ILCOR) now recommends therapeutic hypothermia (TH) (33 °C for 12-24 hours) as soon as possible for patients who remain comatose after resuscitation from shockable rhythm in out-of-hospital cardiac arrest and that it be considered for non shockable rhythms. The optimal timing of TH is still uncertain. Laboratory data have suggested that there is significantly decreased neurological injury if cooling is initiated during CPR. In addition, peri-arrest cooling may increase the rate of successful defibrillation. This study aims to determine whether paramedic cooling during CPR improves outcome compared standard treatment in patients who are being resuscitated from out-of-hospital cardiac arrest. This paper describes the methodology for a definitive multi-centre, randomised, controlled trial of paramedic cooling during CPR compared with standard treatment. Paramedic cooling during CPR will be achieved using a rapid infusion of large volume (20-40 mL/kg to a maximum of 2 litres) ice-cold (4 °C) normal saline.The primary outcome measure is survival at hospital discharge. Secondary outcome measures are rates of return of spontaneous circulation, rate of survival to hospital admission, temperature on arrival at hospital, and 12 month quality of life of survivors. This trial will test the effect of the administration of ice cold saline during CPR on survival outcomes. If this simple treatment is found to improve outcomes, it will have generalisability to prehospital services globally. ClinicalTrials.gov: NCT01172678.

  8. Elementary stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  9. Measure Guideline: Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Springer, D. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); Dakin, B. [Alliance for Residential Building Innovation (ARBI), David, CA (United States); German, A. [Alliance for Residential Building Innovation (ARBI), David, CA (United States)

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  10. Cooling of Neutron Stars

    Directory of Open Access Journals (Sweden)

    Grigorian H.

    2010-10-01

    Full Text Available We introduce the theoretical basis for modeling the cooling evolution of compact stars starting from Boltzmann equations in curved space-time. We open a discussion on observational verification of different neutron star models by consistent statistics. Particular interest has the question of existence of quark matter deep inside of compact object, which has to have a specific influence on the cooling history of the star. Besides of consideration of several constraints and features of cooling evolution, which are susceptible of being critical for internal structure of hot compact stars we have introduced a method of extraction of the mass distribution of the neutron stars from temperature and age data. The resulting mass distribution has been compared with the one suggested by supernove simulations. This method can be considered as an additional checking tool for the consistency of theoretical modeling of neutron stars. We conclude that the cooling data allowed existence of neutron stars with quark cores even with one-flavor quark matter.

  11. ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  12. Radiation cooling and gain calculation for C VI 182 A line in C/Se plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nam, C.H.; Valeo, E.; Suckewer, S.; Feldman, U.

    1986-04-01

    A model is developed which is capable of describing the evolution of gain resulting from both rapid radiative and expansion cooling of a recombining, freely expanding plasma. It is demonstrated for the particular case of a carbon/selenium plasma that the cooling rate which leads to optimal gain can be achieved by adjusting the admixture of an efficiently radiating material (selenium) in the gain medium (carbon). Comparison is made to a recent observation of gain in a recent NRL/Rochester experiment with carbon/selenium plasma for the n = 3 ..-->.. 2 transition in C VI occurring at 182 A. The predicted maximum gain is approx.10 cm/sup -1/, as compared to observation of 2 to 3 cm/sup -1/.

  13. Effect of cooling rate on the phase structure and magnetic properties of Fe{sub 26.7}Co{sub 28.5}Ni{sub 28.5}Si{sub 4.6}B{sub 8.7}P{sub 3} high entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ran; Sun, Huan; Chen, Chen [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Han, Zhenhua [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710068 (China); Li, Fushan, E-mail: fsli@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2017-08-01

    Highlights: • High entropy alloy with amorphous phase and FCC solid solution phase are successfully developed respectively. • The amorphous phase exhibits better soft magnetic properties than that of the solid solution phase. • The BCC phase transformed into FCC phase, and then into BCC phase was found in this HEA. - Abstract: The effect of cooling rate on phase structure and magnetic properties of the Fe{sub 26.7}Co{sub 28.5}Ni{sub 28.5}Si{sub 4.6}B{sub 8.7}P{sub 3} high entropy alloy (HEA) was investigated. The HEA forms into amorphous phase by melt spinning method at high cooling rate and FCC solid solution phase at low cooling rate. The soft magnetic properties of the amorphous phase (saturation magnetization B{sub s} of 1.07T and coercivity H{sub c} of 4 A/m) are better than that of the solid solution phase (B{sub s} of 1.0 T and H{sub c} of 168 A/m). In order to study the phase evolution of the present HEA, anneal experiments were conducted. It is found that crystallization products of amorphous phase are solid solution phase which constitute much of FCC and a small amount of BCC. BCC phase transforms into FCC phase, and then into BCC phase with the increase of annealing temperature.

  14. RRTM: A rapid radiative transfer model

    Energy Technology Data Exchange (ETDEWEB)

    Mlawer, E.J.; Taubman, S.J.; Clough, S.A. [Atmospheric and Environmental Research, Inc., Cambridge, MA (United States)

    1996-04-01

    A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.

  15. Electron Cooling Study for MEIC

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhang [Jefferson Lab., Newport News, VA (United States); Douglas, David R. [Jefferson Lab., Newport News, VA (United States); Derbenev, Yaroslav S. [Jefferson Lab., Newport News, VA (United States); Zhang, Yuhong [Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  16. Experimental investigations on the cooling of a motorcycle helmet with phase change material (PCM)

    National Research Council Canada - National Science Library

    Fok S.C; Tan F.L; Sua C.C

    2011-01-01

    .... This paper examines the use of phase change material (PCM) to cool a motorcycle helmet and presents the experimental investigations on the influences of the simulated solar radiation, wind speed, and heat generation rate on the cooling system...

  17. Synthesis of ZnO particles in a quench-cooled flame reactor

    DEFF Research Database (Denmark)

    Hansen, Jens Peter; Jensen, Joakim Reimer; Livbjerg, Hans

    2001-01-01

    The quench cooling of a flame by injection of cold air was studied in a flame reactor for the formation of ZnO particles in a premixed flame with a precursor jet. A rapid temperature drop downstream from the temperature peak is advantageous for the attainment of a large specific surface area....... At the highest tested production rate, the specific surface area of the ZnO particles increases from 20 to 60 m(2)/g when quenching is employed. The particles are characterized by BET surface area measurements, TEM images, and the size distributions of particle aggregates are measured by a scanning mobility...

  18. Flue gas injection control of silica in cooling towers.

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

    2011-06-01

    Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

  19. Sorption cooling: a valid extension to passive cooling

    NARCIS (Netherlands)

    Doornink, D.J.; Burger, Johannes Faas; ter Brake, Hermanus J.M.

    2008-01-01

    Passive cooling has shown to be a very dependable cryogenic cooling method for space missions. Several missions employ passive radiators to cool down their delicate sensor systems for many years, without consuming power, without exporting vibrations or producing electromagnetic interference. So for

  20. Post-recombination early Universe cooling by translation-internal inter-conversion: The role of minor constituents.

    Science.gov (United States)

    McCaffery, Anthony J

    2015-09-14

    Little is known of the mechanism by which H and H2, the principal constituents of the post-re-combination early Universe, cooled sufficiently to permit cluster formation, nucleosynthesis, and, eventually, the formation of structured objects. Radiative decay primarily cools the internal modes of H2, as Δj = - 2 jumps accompany quadrupolar emission. This, however, would be a self-limiting mechanism. In this work, a translational energy cooling mechanism based on collision-induced, translation-to-internal mode conversion, is extended, following an earlier study [A. J. McCaffery and R. J. Marsh, J. Chem. Phys. 139, 234310 (2013)] of ensembles comprising H2 in a H atom bath gas. Here, the possible influence of minor species, such as HD, on this cooling mechanism is investigated. Results suggest that the influence of HD is small but not insignificant. Conversion is very rapid and an overall translation-to-internal energy conversion efficiency of some 5% could be expected. This finding may be of use in the further development of models of this complex phase of early Universe evolution. An unexpected finding in this study was that H2 + HD ensembles are capable of very rapid translation-to-internal conversion with efficiencies of >40% and relaxation rates that appear to be relatively slow. This may have potential as an energy storage mechanism.

  1. Comments on Ionization Cooling Channel Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). Fermilab Center for Particle Astrophysics

    2013-12-04

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  2. Static Mixer for Heat Transfer Enhancement for Mold Cooling Application

    Science.gov (United States)

    Becerra, Rodolfo; Barbosa, Raul; Lee, Kye-Hwan; Park, Younggil

    Injection molding is the process by which a material is melted in a barrel and then it is injected through a nozzle in the mold cavity. When it cools down, the material solidifies into the shape of the cavity. Typical injection mold has cooling channels to maintain constant mold temperature during injection molding process. Even and constant temperature throughout the mold are very critical for a part quality and productivity. Conformal cooling improves the quality and productivity of injection molding process through the implementation of cooling channels that ``conform'' to the shape of the molded part. Recent years, the use of conformal cooling increases with advance of 3D printing technology such as Selective Laser Melting (SLM). Although it maximizes cooling, material and dimension limitations make SLM methods highly expensive. An alternative is the addition of static mixers in the molds with integrated cooling channels. A static mixer is a motionless mixing device that enhances heat transfer by producing improved flow mixing in the pipeline. In this study, the performance of the cooling channels will be evaluated with and without static mixers, by measuring temperature, pressure drop, and flow rate. The following question is addressed: Can a static mixer effectively enhance heat transfer for mold cooling application processes? This will provide insight on the development of design methods and guidelines that can be used to increase cooling efficiency at a lower cost.

  3. Two-Beam Instability in Electron Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Burov, Alexey V.; /Fermilab

    2006-04-01

    The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

  4. Rapid cooling experiments and use of an anionic nuclear probe to sense the spin transition of the 1D coordination polymers [Fe(NH2trz)3]SnF6n x H2O (NH2trz=4-amino-1,2,4-triazole).

    Science.gov (United States)

    Garcia, Yann; Ksenofontov, Vadim; Mentior, Sophie; Dîrtu, Marinela M; Gieck, Christine; Bhatthacharjee, Ashis; Gütlich, Philipp

    2008-01-01

    [Fe(NH2trz)3]SnF6n x H2O (NH(2)trz=4-amino-1,2,4-triazole; n=1 (1), n=0.5 (2)) are new 1D spin-crossover coordination polymers. Compound 2 exhibits an incomplete spin transition centred at around 210 K with a thermal hysteresis loop approximately 16 K wide. The spin transition of 2 was detected by the Mössbauer resonance of the 119Sn atom in the SnF6 (2-) anion primarily on the basis of the evolution of its local distortion. Rapid-cooling 57Fe Mössbauer and superconducting quantum interference device experiments allow dramatic widening of the hysteresis width of 2 from 16 K up to 82 K and also shift the spin-transition curve into the room temperature region. This unusual behaviour of quenched samples on warming is attributed to activation of the molecular motion of the anions from a frozen distorted form towards a regular form at temperatures well above approximately 210 K. Potential applications of this new family of materials are discussed.

  5. FNAL R and D in medium energy electron cooling

    CERN Document Server

    Nagaitsev, S; Crawford, A C; Kroc, T; MacLachlan, J; Saewert, G; Schmidt, C W; Shemyakin, A; Warner, A

    2000-01-01

    The first stage of the Fermilab Electron Cooling R and D program is now complete: a technology necessary to generate hundreds of milliamps of electron beam current at MeV energies has been demonstrated. Conceptual design studies show that with an electron beam current of 200 mA and with a cooling section of 20 m electron cooling in the 8.9 GeV/c Fermilab Recycler ring can provide antiproton stacking rates suitable for the Tevatron upgrades beyond Run II luminosity goals. A novel electron beam transport scheme with a weak magnetic field at the cathode and in the cooling section, and with discrete focusing elements in between will be used. A prototype of such an electron cooling system is now being built at Fermilab as part of the continuing R and D program. This paper describes the status of the electron cooling R and D program at Fermilab.

  6. Changes in copper sulfate crystal habit during cooling crystallization

    Science.gov (United States)

    Giulietti, M.; Seckler, M. M.; Derenzo, S.; Valarelli, J. V.

    1996-09-01

    The morphology of technical grade copper(II) sulfate pentahydrate crystals produced from batch cooling experiments in the temperature range of 70 to 30°C is described and correlated with the process conditions. A slow linear cooling rate (batch time of 90 min) predominantly caused the appearance of well-formed crystals. Exponential cooling (120 min) resulted in the additional formation of agglomerates and twins. The presence of seeds for both cooling modes led to round crystals, agglomerates and twins. Fast linear cooling (15 min) gave rise to a mixture of the former types. Broken crystals and adhering fragments were often found. Growth zoning was pronounced in seeded and linear cooling experiments. Fluid inclusions were always found and were more pronounced for larger particles. The occurrence of twinning, zoning and fluid inclusions was qualitatively explained in terms of fundamental principles.

  7. Rapid vaporization of kidney stones, ex vivo, using a Thulium fiber laser at pulse rates up to 500 Hz with a stone basket

    Science.gov (United States)

    Hardy, Luke A.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.

    2014-03-01

    The Holmium:YAG laser (λ = 2120 nm) is currently the preferred laser for fragmenting kidney stones in the clinic. However, this laser has some limitations, including operation at low pulse rates and a multimode spatial beam profile which prohibits its use with smaller, more flexible optical fibers. Our laboratory is studying the Thulium fiber laser (λ = 1908 nm) as an alternative lithotripter. The TFL has several advantages, including lower stone ablation thresholds, use with smaller and more flexible fibers, and operation at arbitrary pulse lengths and pulse rates. Previous studies have reported increased stone ablation rates with TFL operation at higher pulse rates, however, stone retropulsion remains an obstacle to even more efficient stone ablation. This study explores TFL operation at high pulse rates in combination with a stone stabilization device (e.g. stone basket) for improved efficiency. A TFL beam with pulse energy of 35 mJ, pulse duration of 500-μs, and pulse rates of 10-500 Hz was coupled into 100-μm-core, low-OH, silica fibers, in contact mode with uric acid and calcium oxalate monohydrate stones, ex vivo. TFL operation at 500 Hz produced UA and COM stone ablation rates up to 5.0 mg/s and 1.3 mg/s, respectively. High TFL pulse rates produced increased stone ablation rates sufficient for use in the clinic.

  8. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  9. Vaporization Would Cool Primary Battery

    Science.gov (United States)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  10. Cooling Floor AC Systems

    Science.gov (United States)

    Jun, Lu; Hao, Ding; Hong, Zhang; Ce, Gao Dian

    The present HVAC equipments for the residential buildings in the Hot-summer-and-Cold-winter climate region are still at a high energy consuming level. So that the high efficiency HVAC system is an urgently need for achieving the preset government energy saving goal. With its advantage of highly sanitary, highly comfortable and uniform of temperature field, the hot-water resource floor radiation heating system has been widely accepted. This paper has put forward a new way in air-conditioning, which combines the fresh-air supply unit and such floor radiation system for the dehumidification and cooling in summer or heating in winter. By analyze its advantages and limitations, we found that this so called Cooling/ Heating Floor AC System can improve the IAQ of residential building while keep high efficiency quality. We also recommend a methodology for the HVAC system designing, which will ensure the reduction of energy cost of users.

  11. AIR COOLED NEUTRONIC REACTOR

    Science.gov (United States)

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  12. The effect of the melting spinning cooling rate on transformation temperatures in ribbons Ti-Ni-Cu shape memory; Efeito da taxa de resfriamento nas temperaturas de transformacao de uma liga Ni-Cu-Ti com efeito de memoria de forma solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, A.P.; Castro, W.B.; Anselmo, G.C. dos S., E-mail: walman@dem.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2014-07-01

    Ti-Ni-Cu alloys have been attracting attention by their high performance of shape memory effect and decrease of thermal and stress hysteresis in comparison with Ti-Ni binary alloys. One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. Shape memory characteristics of Ti-37,8Cu-18,7Ni alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray diffraction. In these experiments particular attention has been paid to change of the velocity of cooling wheel from 21 to 63 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on austenitic and martensitic transformations behaviors is discussed. (author)

  13. Heating, ventilation and cooling

    CSIR Research Space (South Africa)

    Osburn, L

    2009-02-01

    Full Text Available air and diluting the humidity or mixing the cool humid air with the air from a conventional air conditioner. Climate Specific The performance of an evaporative cooler is highly dependant on atmospheric conditions. Evaporative coolers work best... that an installed system is being maintained correctly by competent persons to ensure both smooth and efficient operation as well as to prevent mould growth. Legionnaires disease is a concern within evaporative coolers if it is not maintained correctly...

  14. Laser Cooling of Solids

    Science.gov (United States)

    2009-01-01

    Panel (b) com- pares the cooling efficiencies of available thermoelectric coolers ( TECs ) with ZBLANP:Yb3+-based optical refrigerators. Devices based...on materials with low parasitic heating will outperform TECs below 200 . Coolers made from current materials are less efficient than TECs at all...luminescence extraction efficiency are being explored as well. A novel method based on the frustrated total internal reflection across a vacuum “ nano -gap” is

  15. Non-Laser Cooling Techniques

    Science.gov (United States)

    Hilico, Laurent

    We first review trapped ion radiative cooling and show that it is only efficient for high frequency oscillating particles in Penning traps. We then describe in detail resistive cooling and explain in the frame of an exercice why and how thermal equilibrium with the resistor is reached. We finally discuss buffer gas cooling in Paul traps.

  16. Numerical Analysis of Convection/Transpiration Cooling

    Science.gov (United States)

    Glass, David E.; Dilley, Arthur D.; Kelly, H. Neale

    1999-01-01

    An innovative concept utilizing the natural porosity of refractory-composite materials and hydrogen coolant to provide CONvective and TRANspiration (CONTRAN) cooling and oxidation protection has been numerically studied for surfaces exposed to a high heat flux, high temperature environment such as hypersonic vehicle engine combustor walls. A boundary layer code and a porous media finite difference code were utilized to analyze the effect of convection and transpiration cooling on surface heat flux and temperature. The boundary, layer code determined that transpiration flow is able to provide blocking of the surface heat flux only if it is above a minimum level due to heat addition from combustion of the hydrogen transpirant. The porous media analysis indicated that cooling of the surface is attained with coolant flow rates that are in the same range as those required for blocking, indicating that a coupled analysis would be beneficial.

  17. Cooling and Heating Functions of Photoionized Gas

    Energy Technology Data Exchange (ETDEWEB)

    Gnedin, Nickolay Y.; /Chicago U., EFI /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Chicago U., KICP; Hollon, Nicholas; /Chicago U., EFI /Chicago U., Astron. Astrophys. Ctr. /Chicago U., KICP

    2012-01-01

    Cooling functions of cosmic gas are a crucial ingredient for any study of gas dynamics and thermodynamics in the interstellar and intergalactic medium. As such, they have been studied extensively in the past under the assumption of collisional ionization equilibrium. However, for a wide range of applications, the local radiation field introduces a non-negligible, often dominant, modification to the cooling and heating functions. In the most general case, these modifications cannot be described in simple terms, and would require a detailed calculation with a large set of chemical species using a radiative transfer code (the well-known code Cloudy, for example). We show, however, that for a sufficiently general variation in the spectral shape and intensity of the incident radiation field, the cooling and heating functions can be approximated as depending only on (1) the photodissociation rate of molecular hydrogen, (2) the hydrogen photo-ionization rate, and (3) the photo-ionization rate of OVIII;more complex and more accurate approximations also exist. Such dependence is easy to tabulate and implement in cosmological or galactic-scale simulations, thus economically accounting for an important but rarely-included factor in the evolution of cosmic gas. We also show a few examples where the radiation environment has a large effect, the most spectacular of which is a quasar that suppresses gas cooling in its host halo without any mechanical or non-radiative thermal feedback.

  18. Ice for air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Voss, J.

    1987-04-09

    The first ice plant on an industrial scale came into service at Harmony goldmine in November 1985. This surface installation has a refrigeration output of about 5.2 MW, corresponding to 1000 t/d of ice. The ice melting tank is at a depth of 1088m. The planning and construction of this first industrial-scale ice plant were based on the result obtained from a research project which gave particular emphasis to investigating the problems related to the transport of ice in pipelines and to the ice-to-water heat transfer in ice-melting tanks. The particular advantage of ice as a coolant is that the mass circulation needed with ice is five times less than with water. It is claimed that, in the circumstances which are specific to Harmony mine, ice cooling is economically viable at a depth of only 1,100 m or thereabouts; however, calculations for very powerful cooling systems have shown that ice has a cost advantage over water + Pelton turbines only at depths of 3,000 m or more. Cost comparisons apart, this ice plant is useful for the testing of technology and safety in the production, transport and melting of the ice and prepares the way for a powerful ice cooling system which will work at great depths. 6 references.

  19. Low mass integrated cooling

    CERN Document Server

    Mapelli, Alessandro

    2014-01-01

    Low mass on - detec tor cooling systems are being developed and stud ied by the Detector Technology group (PH - DT) in the CERN Physics Department in close collaboration with LHC and non - LHC experiments . Two approaches are currently being investigated. The first approach, for barrel configurations, consists in integrating the cooli ng apparatus in light mechanical structures support ing the detectors. In this case , the thermal management can be achieved either with light cooling pipes and thin plates or with a network of microchannels embedded in thin strips of silicon or polyimide . Both configuratio ns are being investigated in the context of the 2018 upgrade program of the ALICE Inner Tracking System (ITS). Moreover, it is also possible to use a s ilicon microchannel cooling device itself as structural support for the detectors and electronics. Such a configur ation has been adopted by the NA62 collaboration for the ir GigaTracKer (GTK) as well as by the LHCb collaboration for the 2018 major upgrade of...

  20. Electron Cooling of RHIC

    CERN Document Server

    Ben-Zvi, Ilan; Barton, Donald; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Bruhwiler, David L; Burger, Al; Burov, Alexey; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Derbenev, Yaroslav S; Eidelman, Yury I; Favale, Anthony; Fedotov, Alexei V; Fischer, Wolfram; Funk, L W; Gassner, David M; Hahn, Harald; Harrison, Michael; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Koop, Ivan; Lambiase, Robert; Litvinenko, Vladimir N; MacKay, William W; Mahler, George; Malitsky, Nikolay; McIntyre, Gary; Meng, Wuzheng; Merminga, Lia; Meshkov, Igor; Mirabella, Kerry; Montag, Christoph; Nagaitsev, Sergei; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Parkhomchuk, Vasily; Parzen, George; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Sekutowicz, Jacek; Shatunov, Yuri; Sidorin, Anatoly O; Skrinsky, Aleksander Nikolayevich; Smirnov, Alexander V; Smith, Kevin T; Todd, Alan M M; Trbojevic, Dejan; Troubnikov, Grigory; Wang, Gang; Wei, Jie; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Zaltsman, Alex; Zhao, Yongxiang; ain, Animesh K

    2005-01-01

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.ags...

  1. Research on the Compatibility of the Cooling Unit in an Automotive Exhaust-based Thermoelectric Generator and Engine Cooling System

    Science.gov (United States)

    Deng, Y. D.; Liu, X.; Chen, S.; Xing, H. B.; Su, C. Q.

    2014-06-01

    The temperature difference between the hot and cold sides of thermoelectric modules is a key factor affecting the conversion efficiency of an automotive exhaust-based thermoelectric generator (TEG). In the work discussed in this paper the compatibility of TEG cooling unit and engine cooling system was studied on the basis of the heat transfer characteristics of the TEG. A new engine-cooling system in which a TEG cooling unit was inserted was simulated at high power and high vehicle speed, and at high power and low vehicle speed, to obtain temperatures and flow rates of critical inlets and outlets. The results show that coolant temperature exceeds its boiling point at high power and low vehicle speed, so the new system cannot meet cooling requirements under these conditions. Measures for improvement to optimize the cooling system are proposed, and provide a basis for future research.

  2. Mapping the dark matter in the NGC 5044 group with ROSAT: Evidence for a nearly homogeneous cooling flow with a cooling wake

    Science.gov (United States)

    David, Laurence P.; Jones, Christine; Forman, William; Daines, Stuart

    1994-01-01

    The NGC 5044 group of galaxies was observed by the ROSAT Position Sensitive Proportional Counter (PSPC) for 30 ks during its reduced pointed phase (1991 July). Due to the relatively cool gas temperature in the group (kT = 0.98 +/- 0.02 keV) and the excellent photon statistics (65,000 net counts), we are able to determine precisely a number of fundamental properties of the group within 250 kpc of the central galaxy. In particular, we present model-independent measurements of the total gravitating mass, the temperature and abundance profiles of the gas, and the mass accretion rate. Between 60 and 250 kpc, the gas is nearly isothermal with T varies as r(exp (-0.13 +/- 0.03)). The total gravitating mass of the group can be unambiguously determined from the observed density and temperature profiles of the gas using the equation of hydrostatic equilibrium. Within 250 kpc, the gravitating mass is 1.6 x 10(exp 13) solar mass, yielding a mass-to-light ratio of 130 solar mass/solar luminosity. The baryons (gas and stars) comprise 12% of the total mass within this radius. At small radii, the temperature clearly increases outward and attains a maximum value at 60 kpc. The positive temperature gradient in the center of the group confirms the existence of a cooling flow. The cooling flow region extends well beyond the temperature maximum with a cooling radius between 100 and 150 kpc. There are two distinct regions in the cooling flow separated by the temperature maximum. In the outer region, the gas is nearly isothermal with a unifor m Fe abundance of approximately 80% solar, the flow is nearly homogeneous with dot-M= 20 to 25 solar mass/year, the X-ray contours are spherically symmetric, and rho(sub gas) varies as r(exp -1.6). In the inner region, the temperature profile has a positive gradient, the mass accretion rate decreases rapidly inward, the gas density profile is steeper, and the X-ray image shows some substrucutre. NGC 5044 is offset from the centroid of the outer X

  3. Cooling lubricants; Kuehlschmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Breuer, D. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Blome, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Deininger, C. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Hahn, J.U. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Kleine, H. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Nies, E. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Pflaumbaum, W. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Stockmann, R. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Willert, G. [Berufsgenossenschaftliches Inst. fuer Arbeitssicherheit, St. Augustin (Germany); Sonnenschein, G. [Maschinenbau- und Metall-Berufsgenossenschaft, Duesseldorf (Germany)

    1996-08-01

    As a rule, the base substances used are certain liquid hydrocarbons from mineral oils as well as from native and synthetic oils. Through the addition of further substances the cooling lubricant takes on the particular qualities required for the use in question. Employees working with cooling lubricants are exposed to various hazards. The assessment of the concentrations at the work station is carried out on the basis of existing technical rules for contact with hazardous substances. However, the application/implementation of compulsory investigation and supervision in accordance with these rules is made difficult by the fact that cooling lubricants are, as a rule, made up of complicated compound mixtures. In addition to protecting employees from exposure to mists and vapours from the cooling lubricants, protection for the skin is also of particular importance. Cooling lubricants should not, if at all possible, be brought into contact with the skin. Cleansing the skin and skin care is just as important as changing working clothes regularly, and hygiene and cleanliness at the workplace. Unavoidable emissions are to be immediately collected at the point where they arise or are released and safely disposed of. This means taking into account all sources of emissions. The programme presented in this report therefore gives a very detailed account of the individual protective measures and provides recommendations for the design of technical protection facilities. (orig./MG) [Deutsch] Als Basisstoffe dienen in der Regel bestimmte fluessige Kohlenwasserstoffverbindungen aus Mineraloelen sowie aus nativen oder synthetischen Oelen. Durch die Zugabe von weiteren Stoffen erlangt der Kuehlschmierstoff seine fuer den jeweiligen Anwendungsabfall geforderten Eigenschaften. Beschaeftigte, die mit Kuehlschmierstoffen umgehen, sind unterschiedliche Gefahren ausgesetzt. Die Beurteilung der Kuehlschmierstoffkonzentrationen in der Luft am Arbeitsplatz erfolgt auf der Grundlage bestehender

  4. Laser cooling by adiabatic transfer

    Science.gov (United States)

    Norcia, Matthew; Cline, Julia; Bartolotta, John; Holland, Murray; Thompson, James

    2017-04-01

    We have demonstrated a new method of laser cooling applicable to particles with narrow linewidth optical transitions. This simple and robust cooling mechanism uses a frequency-swept laser to adiabatically transfer atoms between internal and motional states. The role of spontaneous emission is reduced (though is still critical) compared to Doppler cooling. This allows us to achieve greater slowing forces than would be possible with Doppler cooling, and may make this an appealing technique for cooling molecules. In this talk, I will present a demonstration of this technique in a cold strontium system. DARPA QUASAR, NIST, NSF PFC.

  5. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    Directory of Open Access Journals (Sweden)

    N. Tisnérat-Laborde

    2012-03-01

    Full Text Available Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year. Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr−1, with high uncertainty (~1 polyp every two to three years. We are less certain of this 210Pb growth rate estimate which is within the lowermost

  6. Experimental results for the rapid determination of the freezing point of fuels

    Science.gov (United States)

    Mathiprakasam, B.

    1984-01-01

    Two methods for the rapid determination of the freezing point of fuels were investigated: an optical method, which detected the change in light transmission from the disappearance of solid particles in the melted fuel; and a differential thermal analysis (DTA) method, which sensed the latent heat of fusion. A laboratory apparatus was fabricated to test the two methods. Cooling was done by thermoelectric modules using an ice-water bath as a heat sink. The DTA method was later modified to eliminate the reference fuel. The data from the sample were digitized and a point of inflection, which corresponds to the ASTM D-2386 freezing point (final melting point), was identified from the derivative. The apparatus was modifified to cool the fuel to -60 C and controls were added for maintaining constant cooling rate, rewarming rate, and hold time at minimum temperature. A parametric series of tests were run for twelve fuels with freezing points from -10 C to -50 C, varying cooling rate, rewarming rate, and hold time. Based on the results, an optimum test procedure was established. The results showed good agreement with ASTM D-2386 freezing point and differential scanning calorimetry results.

  7. Laser Cooling of Molecular Anions

    CERN Document Server

    Yzombard, Pauline; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-01-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarise the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C$\\_2^-$, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photo-detachment process is present, as well as Doppler laser cooling of trapped C$\\_2^-$, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources and antimatter physics.

  8. Cryogenic cooling for high power laser amplifiers

    Directory of Open Access Journals (Sweden)

    Perin J.P.

    2013-11-01

    Full Text Available Using DPSSL (Diode Pumped Solid State Lasers as pumping technology, PW-class lasers with enhanced repetition rates are developed. Each of the Yb YAG amplifiers will be diode-pumped at a wavelength of 940 nm. This is a prerequisite for achieving high repetition rates (light amplification duration 1 millisecond and repetition rate 10 Hz. The efficiency of DPSSL is inversely proportional to the temperature, for this reason the slab amplifier have to be cooled at a temperature in the range of 100 K–170 K with a heat flux of 1 MW*m−2. This paper describes the thermo-mechanical analysis for the design of the amplification laser head, presents a preliminary proposal for the required cryogenic cooling system and finally outlines the gain of cryogenic operation for the efficiency of high pulsed laser.

  9. Experimental investigation and simulation of temperature distributions in a 16Ah-LiMnNiCoO2 battery during rapid discharge rates

    Science.gov (United States)

    Panchal, S.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M.

    2017-03-01

    It is very important to have quantitative data regarding the temperature distributions of lithium-ion batteries at different discharge rates in order to design thermal management systems and also for battery thermal modellers. In this paper, the surface temperature distributions on a superior lithium polymer battery (SLPB) with lithium manganese nickel cobalt oxide (LiMnNiCoO2) cathode material (16 Ah capacity) at C/8, C/4, C/2, 1C, 2C, and 3C discharge rates are presented. Additionally, a battery thermal model is developed for this battery using a neural network approach with the Bayesian Regularization method and the simulated results are compared with experimental results in terms of temperature and voltage profiles at C/8, C/4, C/2, 1C, 2C, and 3C discharge rates. Thermal images, which were also captured during experiments with an IR camera at various discharge rates, and are reported in the paper. The results of this study show that the increased discharge rates between C/8 and 3C results in increased surface temperature distributions on the principal surface of the battery and decreased discharge capacity.

  10. High-Sequence Diversity and Rapid Virus Turnover Contribute to Higher Rates of Coreceptor Switching in Treatment-Experienced Subjects with HIV-1 Viremia.

    Science.gov (United States)

    Nedellec, Rebecca; Herbeck, Joshua T; Hunt, Peter W; Deeks, Steven G; Mullins, James I; Anton, Elizabeth D; Reeves, Jacqueline D; Mosier, Donald E

    2017-03-01

    Coreceptor switching from CCR5 to CXCR4 is common during chronic HIV-1 infection, but is even more common in individuals who have failed antiretroviral therapy (ART). Prior studies have suggested rapid mutation and/or recombination of HIV-1 envelope (env) genes during coreceptor switching. We compared the functional and genotypic changes in env of viruses from viremic subjects who had failed ART just before and after coreceptor switching and compared those to viruses from matched subjects without coreceptor switching. Analysis of multiple unique functional env clones from each subject revealed extensive diversity at both sample time points and rapid diversification of sequences during the 4-month interval in viruses from both 9 subjects with coreceptor switching and 15 control subjects. Only two subjects had envs with evidence of recombination. Three findings distinguished env clones from subjects with coreceptor switching from controls: (1) lower entry efficiency via CCR5; (2) longer V1/V2 regions; and (3), lower nadir CD4 T cell counts during prior years of infection. Most of these subjects harbored virus with lower replicative capacity associated with protease (PR) and/or reverse transcriptase inhibitor resistance mutations, and the extensive diversification tended to lead either to improved entry efficiency via CCR5 or the gain of entry function via CXCR4. These results suggest that R5X4 or X4 variants emerge from a diverse, low-fitness landscape shaped by chronic infection, multiple ART resistance mutations, the availability of target cells, and reduced entry efficiency via CCR5.

  11. Determination of glomerular filtration rate (GFR) from fractional renal accumulation of iodinated contrast material: a convenient and rapid single-kidney CT-GFR technique.

    Science.gov (United States)

    Yuan, XiaoDong; Tang, Wei; Shi, WenWei; Yu, Libao; Zhang, Jing; Yuan, Qing; You, Shan; Wu, Ning; Ao, Guokun; Ma, Tingting

    2018-02-09

    To develop a convenient and rapid single-kidney CT-GFR technique. One hundred and twelve patients referred for multiphasic renal CT and 99mTc-DTPA renal dynamic imaging Gates-GFR measurement were prospectively included and randomly divided into two groups of 56 patients each: the training group and the validation group. On the basis of the nephrographic phase images, the fractional renal accumulation (FRA) was calculated and correlated with the Gates-GFR in the training group. From this correlation a formula was derived for single-kidney CT-GFR calculation, which was validated by a paired t test and linear regression analysis with the single-kidney Gates-GFR in the validation group. In the training group, the FRA (x-axis) correlated well (r = 0.95, p < 0.001) with single-kidney Gates-GFR (y-axis), producing a regression equation of y = 1665x + 1.5 for single-kidney CT-GFR calculation. In the validation group, the difference between the methods of single-kidney GFR measurements was 0.38 ± 5.57 mL/min (p = 0.471); the regression line is identical to the diagonal (intercept = 0 and slope = 1) (p = 0.727 and p = 0.473, respectively), with a standard deviation of residuals of 5.56 mL/min. A convenient and rapid single-kidney CT-GFR technique was presented and validated in this investigation. • The new CT-GFR method takes about 2.5 min of patient time. • The CT-GFR method demonstrated identical results to the Gates-GFR method. • The CT-GFR method is based on the fractional renal accumulation of iodinated CM. • The CT-GFR method is achieved without additional radiation dose to the patient.

  12. Tarp-Assisted Cooling as a Method of Whole-Body Cooling in Hyperthermic Individuals.

    Science.gov (United States)

    Hosokawa, Yuri; Adams, William M; Belval, Luke N; Vandermark, Lesley W; Casa, Douglas J

    2017-03-01

    We investigated the efficacy of tarp-assisted cooling as a body cooling modality. Participants exercised on a motorized treadmill in hot conditions (ambient temperature 39.5°C [103.1°F], SD 3.1°C [5.58°F]; relative humidity 38.1% [SD 6.7%]) until they reached exercise-induced hyperthermia. After exercise, participants were cooled with either partial immersion using a tarp-assisted cooling method (water temperature 9.20°C [48.56°F], SD 2.81°C [5.06°F]) or passive cooling in a climatic chamber. There were no differences in exercise duration (mean difference=0.10 minutes; 95% CI -5.98 to 6.17 minutes or end exercise rectal temperature (mean difference=0.10°C [0.18°F]; 95% CI -0.05°C to 0.25°C [-0.09°F to 0.45°F] between tarp-assisted cooling (48.47 minutes [SD 8.27 minutes]; rectal temperature 39.73°C [103.51°F], SD 0.27°C [0.49°F]) and passive cooling (48.37 minutes [SD 7.10 minutes]; 39.63°C [103.33°F], SD 0.40°C [0.72°F]). Cooling time to rectal temperature 38.25°C (100.85°F) was significantly faster in tarp-assisted cooling (10.30 minutes [SD 1.33 minutes]) than passive cooling (42.78 [SD 5.87 minutes]). Cooling rates for tarp-assisted cooling and passive cooling were 0.17°C/min (0.31°F/min), SD 0.07°C/min (0.13°F/min) and 0.04°C/min (0.07°F/min), SD 0.01°C/min (0.02°F/min), respectively (mean difference=0.13°C [0.23°F]; 95% CI 0.09°C to 0.17°C [0.16°F to 0.31°F]. No sex differences were observed in tarp-assisted cooling rates (men 0.17°C/min [0.31°F/min], SD 0.07°C/min [0.13°F/min]; women 0.16°C/min [0.29°F/min], SD 0.07°C/min [0.13°F/min]; mean difference=0.02°C/min [0.04°F/min]; 95% CI -0.06°C/min to 0.10°C/min [-0.11°F/min to 0.18°F/min]). Women (0.04°C/min [0.07°F/min], SD 0.01°C/min [0.02°F/min]) had greater cooling rates than men (0.03°C/min [0.05°F/min], SD 0.01°C/min [0.02°F/min]) in passive cooling, with negligible clinical effect (mean difference=0.01°C/min [0.02°F/min]; 95% CI 0.001

  13. Keeping cool, staying virtuous

    DEFF Research Database (Denmark)

    Waltorp, Karen

    2015-01-01

    their everyday lives. I focus on love and marriage, the imperatives of appearing cool among peers, and keeping the family’s honour intact through the display of virtuous behaviour. Building on Bourdieu’s writings on the split habitus, I introduce the term composite habitus, as it underscores the aspect...... of a habitus that is split between (sometimes contradictory) composite parts. The composite habitus of the young women is more than a hysteresis effect (where disposition and field are in mismatch and the habitus misfires), as the composite habitus also opens up to a range of possible strategies. I present...

  14. Effect of Half Time Cooling on Thermoregulatory Responses and Soccer-Specific Performance Tests

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-03-01

    Full Text Available This study examined two active coolings (forearm and hand cooling, and neck cooling during a simulated half-time recovery on thermoregulatory responses and subsequent soccer-specific exercise performance. Following a 45-min treadmill run in the heat, participants (N=7 undertook 15-min recovery with either passive cooling, forearm and hand cooling, or neck cooling in a simulated cooled locker room environment. After the recovery, participants performed a 6×15-m sprint test and Yo-Yo Intermittent Recovery Level 1 test (YYIR1 in a temperate environment. During the 15-min recovery, rectal temperature fell significantly (p<0.05. Neither active coolings induced further reduction in rectal temperature compared to passive cooling. No effect of active coolings was found in repeated sprint test. However, neck cooling reduced (p<0.05 the thermal sensation (TS compared to passive cooling during the 15-min recovery. Active coolings attenuated (p<0.05 the sweat rate compared to passive cooling: 1.2±0.3 l•h-1 vs. 0.8±0.1 l•h-1 vs. 0.8±0.3 l•h-1, for passive cooling, forearm and hand cooling, and neck cooling, respectively. For passive cooling, elevated sweat rate resulted in higher (p<0.05 dehydration (2.1±0.3% compared to neck cooling (1.5±0.3% and forearm and hand cooling (1.4±0.3%. YYIR1 was improved (p<0.05 following forearm and hand cooling (869±320 m and neck cooling (814±328 m compared to passive cooling (654±311 m. Neck cooling (4.6±0.6 reduced (p=0.03 the session TS compared to passive cooling (5.3±0.5. These results suggest that active coolings effectively improved comfort and sweating response, which delayed exercise-heat induced performance diminish during a second bout of exercise.

  15. A simplified model of a mechanical cooling tower with both a fill pack and a coil

    Science.gov (United States)

    Van Riet, Freek; Steenackers, Gunther; Verhaert, Ivan

    2017-11-01

    Cooling accounts for a large amount of the global primary energy consumption in buildings and industrial processes. A substantial part of this cooling demand is produced by mechanical cooling towers. Simulations benefit the sizing and integration of cooling towers in overall cooling networks. However, for these simulations fast-to-calculate and easy-to-parametrize models are required. In this paper, a new model is developed for a mechanical draught cooling tower with both a cooling coil and a fill pack. The model needs manufacturers' performance data at only three operational states (at varying air and water flow rates) to be parametrized. The model predicts the cooled, outgoing water temperature. These predictions were compared with experimental data for a wide range of operational states. The model was able to predict the temperature with a maximum absolute error of 0.59°C. The relative error of cooling capacity was mostly between ±5%.

  16. Disparity mutagenesis model possesses the ability to realize both stable and rapid evolution in response to changing environments without altering mutation rates.

    Directory of Open Access Journals (Sweden)

    Ichiro Fujihara

    2016-08-01

    As long as the fidelity difference between the lagging and leading strand was kept high enough, the robustness of the disparity model was very high. The acceleration or slowdown of evolution can be unambiguously introduced only by environmental changes, and the seesawing mutation rate is not the necessary condition for changing the speed of evolution.

  17. Cooling performance of solar cell driven, thermoelectric cooling prototype headgear

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T.; Azuma, H.; Shimizu, H.; Obora, H.; Sato, S. [Nippon Inst. of Technology, Saitama (Japan). Dept. of Systems Engineering

    1998-11-01

    Cooling performance of solar cell-driven, thermoelectric cooling prototype headgear was examined experimentally. Three types of prototype headgear were made and examined. They were cooled by thermoelectric elements and driven by solar cells. Conventional cooling caps driven by solar cells only blow ambient air to the face with an electric fan. A thermoelectric element was set at the front of the headgear to cool the forehead. Solar cells were mounted on the top and the brim of the headgear to work the thermoelectric element. Three prototypes of headgear with solar cells and a thermoelectric element were made and tested. Refrigeration capacity and thermal comfort were examined by subject in cases of sitting, walking and bicycling. The temperature difference between ambient and cooling temperature was required to be 4-5 degrees Celsius for thermal comfort. (author)

  18. Evaporative cooling for Holstein dairy cows under grazing conditions

    Science.gov (United States)

    Valtorta, Silvia E.; Gallardo, Miriam R.

    . Twenty-four grazing Holstein cows in mid and late lactation were randomly assigned to two treatment groups: control and cooled. The trial was performed at the Experimental Dairy Unit, Rafaela Agricultural Experimental Station (INTA), Argentina. The objective was to evaluate the effects of sprinkler and fan cooling before milkings on milk production and composition. The effects of the cooling system on rectal temperature and respiration rate were also evaluated. Cooled cows showed higher milk production (1.04 l cow-1 day-1). The concentration and yield of milk fat and protein increased in response to cooling treatment. The cooling system also reduced rectal temperature and respiration rate. No effects were observed on body condition. It was concluded that evaporative cooling, which is efficient for housed animals, is also appropriate to improve yields and animal well-being under grazing systems. These results are impressive since the cooling system was utilized only before milkings, in a system where environmental control is very difficult to achieve. This trial was performed during a mild summer. The results would probably be magnified during hotter weather.

  19. Onderzoeksrapportage duurzaam koelen : EOS Renewable Cooling

    NARCIS (Netherlands)

    Broeze, J.; Sluis, van der S.; Wissink, E.

    2010-01-01

    For reducing energy use for cooling, alternative methods (that do not rely on electricity) are needed. Renewable cooling is based on naturally available resources such as evaporative cooling, free cooling, phase change materials, ground subcooling, solar cooling, wind cooling, night radiation &

  20. Permeability evolution model and numerical analysis of coupled coal deformation, failure and liquid nitrogen cooling

    Directory of Open Access Journals (Sweden)

    Chunhui ZHANG

    by flowing liquid nitrogen through gas production well in Wangyingzi mine, Liaoning province, is simulated and the results include: 1 When liquid nitrogen(LN2 is injected into a rock at warm reservoir temperature, heat from the rock will quickly transfer to the liquid nitrogen resulting in rapid cooling and contraction of coal bed. The nearer the position is to bore hole, the bigger the shrinkage deformation and thermal stress and coal fail when tension stress sufficiently built up. In this paper the tension failure band after 10 days' LN2 cooling is 0.65 m. 2 In tension failure area the cracks from cooling stimulation lead to the significant growth of permeability. The maximum permeability for element is 1.97×105 times more than that before cooling. 3 Apart from the bore hole, the thermal tensile stress leads to the growth of permeability at a rate of 1%~14%, far less than that in the tension failure area. 4 With increasing time the failure area gradually slowly grows up. It indicates that the longer cooling time does not mean better effects. 5 The cooling fracturing area is found to have a 1.0 m band. In practical engineering the pressure in hole bore and phase transition of water also influences the deformation and failure of coal, which leads to much more failure zone of cooling. 6 The evolution process of permeability of coupled coal deformation, failure and liquid introgen cooling can be better reflected by the model in this paper. This study is hoped to provide a simple but reasonable description of the permeability evolution of rocks subject to liquid nitrogen cooling.

  1. Quantitative data analysis to determine best food cooling practices in U.S. restaurants.

    Science.gov (United States)

    Schaffner, Donald W; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2015-04-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41 °F [5 °C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  2. Quantitative Data Analysis To Determine Best Food Cooling Practices in U.S. Restaurants†

    Science.gov (United States)

    Schaffner, Donald W.; Brown, Laura Green; Ripley, Danny; Reimann, Dave; Koktavy, Nicole; Blade, Henry; Nicholas, David

    2017-01-01

    Data collected by the Centers for Disease Control and Prevention (CDC) show that improper cooling practices contributed to more than 500 foodborne illness outbreaks associated with restaurants or delis in the United States between 1998 and 2008. CDC's Environmental Health Specialists Network (EHS-Net) personnel collected data in approximately 50 randomly selected restaurants in nine EHS-Net sites in 2009 to 2010 and measured the temperatures of cooling food at the beginning and the end of the observation period. Those beginning and ending points were used to estimate cooling rates. The most common cooling method was refrigeration, used in 48% of cooling steps. Other cooling methods included ice baths (19%), room-temperature cooling (17%), ice-wand cooling (7%), and adding ice or frozen food to the cooling food as an ingredient (2%). Sixty-five percent of cooling observations had an estimated cooling rate that was compliant with the 2009 Food and Drug Administration Food Code guideline (cooling to 41°F [5°C] in 6 h). Large cuts of meat and stews had the slowest overall estimated cooling rate, approximately equal to that specified in the Food Code guideline. Pasta and noodles were the fastest cooling foods, with a cooling time of just over 2 h. Foods not being actively monitored by food workers were more than twice as likely to cool more slowly than recommended in the Food Code guideline. Food stored at a depth greater than 7.6 cm (3 in.) was twice as likely to cool more slowly than specified in the Food Code guideline. Unventilated cooling foods were almost twice as likely to cool more slowly than specified in the Food Code guideline. Our data suggest that several best cooling practices can contribute to a proper cooling process. Inspectors unable to assess the full cooling process should consider assessing specific cooling practices as an alternative. Future research could validate our estimation method and study the effect of specific practices on the full

  3. Thermokarst Caves, Baydzherakhs, and Thaw Subsidence, Oh My! Combining Ground Based Geophysics and Survey Measurements With Airborne LiDAR to Understand Rates and Patterns of Rapid Permafrost Thaw

    Science.gov (United States)

    Douglas, T. A.; Hiemstra, C. A.; Bjella, K.

    2016-12-01

    Arctic and sub-Arctic discontinuous permafrost regions are nearing thaw instability. Warming temperatures, human or natural disturbance, altered precipitation, or a shift in the timing of seasonal transitions can lead to dramatic landscape changes on timescales of a few years. Much of the permafrost thaw surface expression is controlled by melting subsurface ice features, and these "hot spot" locations are currently not specifically mapped and are likely increasing in number and areal distribution. Tools are needed to identify where, how, and at what rate thermokarst, thaw subsidence, and altered hydrologic flowpaths develop. Galvanic coupled resistivity tomography (GRT) allows for an indirect qualitative identification of permafrost; frozen versus thawed, and ice-rich versus ice-poor. When GRT is combined with aboveground repeat imagery and LiDAR spatial information, permafrost landscape change can be detected and rates and scales of this change ascertained. This can also be combined with vegetation and ecological measurements to identify how rapidly subsurface changes in permafrost alter hydrologic and biogeochemical cycles. We are combining GRT, borehole mapping, airborne and ground-based LiDAR, and snow, soil, and vegetation measurements at a variety of Interior Alaska locations where permafrost landscapes have been exhibiting rapid change. Our features include an area where hillslope erosion developed subsurface thermokarst caverns meters deep and tens of meters long following intense summer precipitation events. We are studying thermokarst at a 600-m long lake that rapidly drained to expose a field of baydzherakhs meters tall and 5-10 meter across. We have also been monitoring rapid degradation and subsidence in lowland ice rich permafrost. The results from this study suggest the expression of permafrost degradation and thermokarst formation across the landscape are readily apparent and quantifiable. Baseline and recurrent surveying with these coupled

  4. Design of conformal cooling layers with self-supporting lattices for additively manufactured tooling

    OpenAIRE

    Brooks, Hadley Laurence

    2016-01-01

    Additively manufactured (AM) conformal cooling channels are currently the state of the art for high performing tooling with reduced cycle times. This paper introduces the concept of conformal cooling layers which challenges the status quo in providing higher heat transfer rates that also provide less variation in tooling temperatures.\\ud \\ud The cooling layers are filled with self-supporting repeatable unit cells that form a lattice throughout the cooling layers. The lattices increase fluid v...

  5. Direct cooled power electronics substrate

    Science.gov (United States)

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  6. Rapid Solidification: Selective Laser Melting of AlSi10Mg

    Science.gov (United States)

    Tang, Ming; Pistorius, P. Chris; Narra, Sneha; Beuth, Jack L.

    2016-03-01

    Rapid movement of the melt pool (at a speed around 1 m/s) in selective laser melting of metal powder directly implies rapid solidification. In this work, the length scale of the as-built microstructure of parts built with the alloy AlSi10Mg was measured and compared with the well-known relationship between cell size and cooling rate. Cooling rates during solidification were estimated using the Rosenthal equation. It was found that the solidification structure is the expected cellular combination of silicon with α-aluminum. The dependence of measured cell spacing on calculated cooling rate follows the well-established relationship for aluminum alloys. The implication is that cell spacing can be manipulated by changing the heat input. Microscopy of polished sections through particles of the metal powder used to build the parts showed that the particles have a dendritic-eutectic structure; the dendrite arm spacings in metal powder particles of different diameters were measured and also agree with literature correlations, showing the expected increase in secondary dendrite arm spacing with increasing particle diameter.

  7. Amorphous Phase Formation Analysis of Rapidly Solidified CoCr Droplets

    Science.gov (United States)

    Bogno, Abdoul-Aziz; Riveros, Carlos; Henein, Hani; Li, Delin

    2016-12-01

    This paper investigates amorphous phase formation and rapid solidification characteristics of a CoCr alloy. High cooling rate and high undercooling-induced rapid solidification of the alloy was achieved by impulse atomization in helium atmosphere. Two atomization experiments were carried out to generate powders of a wide size range from liquid CoCr at two different temperatures. Amorphous fraction and kinetic crystallization properties of impulse atomized powders were systematically quantified by means of differential scanning calorimetry. In addition, different but complementary characterization tools were used to analyze the powders microstructures. The fraction of amorphous phase within the investigated powders is found to be promoted by high cooling rate or smaller powder size. The critical cooling rate for amorphous phase formation, which is influenced by the oxygen content in the melt, is found to be 3 × 104 K s-1 and corresponds to a 160- µm-diameter powder atomized in helium. Hardness of the powders is found to follow a trend that is described by the Hall-Petch relation when a relatively high fraction of crystalline structures is present and decreases with the fraction of amorphous phase.