WorldWideScience

Sample records for rapid chemical-vapor sensing

  1. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing.

    Science.gov (United States)

    Yan, Hong; Zhong, Mengjuan; Lv, Ze; Wan, Pengbo

    2017-11-01

    A stretchable, transparent, and body-attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS2 (PANI/MoS2 ) nanocomposite in MoS2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high-performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real-time monitoring of environment safety and human healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Rapid thermal chemical vapor deposition growth of nanometer-thin SiC on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Steckl, A.J.; Li, J.P. (Univ. of Cincinnati, OH (United States))

    1992-08-28

    Rapid thermal chemical vapor deposition growth of [beta]-SiC ultrathin films on Si (100) was achieved using the carbonization reaction of the silicon substrate with C[sub 3]H[sub 8] gas. Growth rates of 0.5-2 nm s[sup -1] have been achieved at 1100-1300degC using C[sub 3]H[sub 8] flow rates of 7-9 standard cm[sup 3] min[sup -1]. X-ray and electron diffraction indicate single-crystal growth. Therefore nanometer-scale SiC films can be grown by controlling the reaction time to a few seconds. The activation energy at atmospheric pressure is 3.12 eV. The growth rate was found to decrease significantly at higher C[sub 3]H[sub 8] flow rates, leading to films of constant thickness beyond a certain critical reaction time. Using this regime of self-limiting growth, SiC films of 3-5 nm have been grown with relatively little sensitivity to the growth time. (orig.).

  3. Materials characterization of rapid thermal chemical vapor deposition of titanium disilicide

    Science.gov (United States)

    Gladden-Green, Dannellia Banay

    Technological advancements of novel processes and materials involving refractory metal silicides for ultra large scale integration is of paramount importance to the semiconductor industry. Scaling of devices to meet the demands for increased packing density and speed requires such novel processes and materials. Rapid thermal chemical vapor deposition (RTCVD) of titanium disilicide (TiSisb2) was investigated in an effort to meet some of the challenges of ultra large scale integration (ULSI) technology. Selective RTCVD of TiSisb2 offers an optimal technological vehicle for achieving contacts to ultra-shallow junctions. Of all of the metal silicides, TiSisb2 has the lowest resistivity and meets the microelectronics demands for a thermally stable contact. The research results presented in this dissertation explores the mechanisms of selective RTCVD of TiSisb2 in terms of thermodynamic trends and kinetic driving forces for nucleation and growth. The present research addresses the qualitative and quantitative parameters that affect the controlling mechanisms for nucleation and therefore the results provide significant data and theoretical insights into a state-of-the-art process. Just as the fundamental building block in understanding the kinetic constraints of a process lie in the realm of thermodynamic exploration, understanding the complex processes involved in RTCVD TiSisb2 begin with characterization of the mechanisms governing thin film nucleation. In this work, the early stages of growth are investigated as they offer insight into how process parameters are optimized to render desired silicide film properties. Equilibrium simulations have been used to model the CVD reaction with very good trend indicating accuracy. Empirical investigations of CVD TiSisb2 took place in a low-pressure rapid-thermal environment using the SiHsb4 + TiClsb4 gas system on silicon (100) substrates. Secondary ion mass spectroscopy (SIMS) has been used to qualify the benefits of vacuum and

  4. Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, Nicola, E-mail: nicola.lisi@enea.it [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Buonocore, Francesco; Dikonimos, Theodoros; Leoni, Enrico [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Faggio, Giuliana; Messina, Giacomo [Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Università “Mediterranea” di Reggio Calabria, 89122 Reggio Calabria (Italy); Morandi, Vittorio; Ortolani, Luca [CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna (Italy); Capasso, Andrea [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy)

    2014-11-28

    The growth of graphene by chemical vapor deposition on metal foils is a promising technique to deliver large-area films with high electron mobility. Nowadays, the chemical vapor deposition of hydrocarbons on copper is the most investigated synthesis method, although many other carbon precursors and metal substrates are used too. Among these, ethanol is a safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored the growth of graphene on copper from ethanol, focusing on processes of short duration (up to one min). We investigated the produced films by electron microscopy, Raman and X-ray photoemission spectroscopy. A graphene film with high crystalline quality was found to cover the entire copper catalyst substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than methane and other commonly used precursors. - Highlights: • Graphene films were grown by fast chemical vapor deposition of ethanol on copper. • High-temperature/short-time growth produced highly crystalline graphene. • The copper substrate was entirely covered by a graphene film in just 20 s. • Addition of H{sub 2} had a negligible effect on the crystalline quality.

  5. Synthesis of large scale graphene oxide using plasma enhanced chemical vapor deposition method and its application in humidity sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Chen, Yuming, E-mail: yumingchen@fudan.edu.cn [Institute for Electric Light Sources, Fudan University, 220 Handan Road, Shanghai 200433 (China); Engineering Research Center of Advanced Lighting Technology, Ministry of Education, 220 Handan Road, Shanghai 00433 (China)

    2016-03-14

    Large scale graphene oxide (GO) is directly synthesized on copper (Cu) foil by plasma enhanced chemical vapor deposition method under 500 °C and even lower temperature. Compared to the modified Hummer's method, the obtained GO sheet in this article is large, and it is scalable according to the Cu foil size. The oxygen-contained groups in the GO are introduced through the residual gas of methane (99.9% purity). To prevent the Cu surface from the bombardment of the ions in the plasma, we use low intensity discharge. Our experiment reveals that growth temperature has important influence on the carbon to oxygen ratio (C/O ratio) in the GO; and it also affects the amount of π-π* bonds between carbon atoms. Preliminary experiments on a 6 mm × 12 mm GO based humidity sensor prove that the synthesized GO reacts well to the humidity change. Our GO synthesis method may provide another channel for obtaining large scale GO in gas sensing or other applications.

  6. SiC/Si heterojunction diodes fabricated by self-selective and by blanket rapid thermal chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yih, P.H.; Li, J.P.; Steckl, A.J. (Univ. of Cincinnati, OH (United States). Dept. of Electrical and Computer Engineering)

    1994-03-01

    SiC/Si heterojunction diodes have been fabricated by two different rapid thermal chemical vapor deposition (RTCVD) processes: a localized self-selective growth and blanket growth. The self-selective growth of crystalline cubic ([beta]) SiC was obtained by propane carbonization of the Si substrate in regions unprotected by an SiO[sub 2] layer, producing planar diodes. Mesa diodes were fabricated using the blanket growth of polycrystalline [beta]-SiC produced by the decomposition of methylsilane (CH[sub 3]SiH[sub 3]). The SiC/Si heterojunction diodes show good rectifying properties for both device structures. Reverse breakdown voltage of 50 V was obtained with the self-selective SiC/Si diode. The mesa diodes exhibited even higher breakdown voltages (V[sub br]) of 150 V and excellent ideality factors of 1.06 at 25 C. The high V[sub br] and good forward rectifying characteristics indicate that the SiC/Si heterojunction diode represents a promising approach for the fabrication of wide-gap emitter SiC/Si heterojunction bipolar transistors.

  7. Chemical Vapor Sensing Using Dual Channel Hybrid Organic/Inorganic Field-Effect Transistors

    Science.gov (United States)

    Lewis, Shannon; Schoefer, Sebastian; Sharma, Deepak; Dodabalapur, Ananth

    2008-03-01

    We have developed a field-effect chemical sensing device architecture in which two semiconducting channels are employed, one of which is exposed to the analyte and is chemically sensitive. The second channel (usually silicon) is used for signal transduction/amplification. Such sensors work can work in many device modes including one that can be described as a ``chemical memory mode''. For the chemically sensitive channel, several classes of materials can be employed including small molecule organic semiconductors, conjugated polymers, and inorganic oxides such as SnOx. With organic semiconductor channels, it is possible to demonstrate charge trapping of volatile organic molecules with significant dipole moments such as ketones and alcohols. We will describe the physics of operation of such sensors in various modes and also outline how the selectivity/sensitivity can be enhanced by incorporating organic receptors.

  8. Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS.

    Science.gov (United States)

    Qiao, H A; Lipschultz, Kristen A; Anheier, N C; McCloy, J S

    2012-05-01

    A state-of-the-art mid-infrared prism coupler was used to study suspected anisotropy in the refractive index of forward-looking-infrared grade chemical vapor deposited (CVD) zinc sulfide. Samples were prepared with columnar grain structure in and perpendicular to the sample plane, as well as from different depths in the CVD growth body. This study was motivated by the growing industry concern among optical design engineers, as well as developers of mid-infrared systems, over the reliability of historically accepted index data. Prior photoluminescence and x-ray diffraction measurements have suggested that refractive index may vary according to sample orientation with respect to the grain structure. Measurements were conducted to provide optical dispersion and thermal index (dn/dT) data at discrete laser wavelengths between 0.633 and 10.591 μm at two temperature set points (30 °C and 90 °C). Refractive index measurements between samples exhibited an average standard deviation comparable to the uncertainty of the prism coupler measurement (0.0004 refractive index units), suggesting that the variation in refractive index as a function of sample orientation and CVD deposition time is negligible and should have no impact on subsequent optical designs. Measured dispersion data at mid-infrared wavelengths were also found to agree well with prior published measurements.

  9. A rapid fabrication of C/C composites by a thermal gradient chemical vapor infiltration method with vaporized kerosene as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiping [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: buickwang@hotmail.com; Qian Junmin [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Qiao Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Jin Zhihao [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-01-15

    A thermal gradient, atmospheric pressure chemical vapor infiltration method with simultaneous vaporized kerosene as a precursor for rapid fabrication of C/C composites was studied. By this method, carbon felts (bulk density {approx}0.2 g cm{sup -3}) were densified to C/C composites with density of 1.67 and 1.71 g cm{sup -3} when prepared at 1050 and 1150 deg. C for 6 h, respectively. X-ray diffraction result indicates that the composites have a strong ability to graphitize and the higher deposition temperature leads to the increased graphitization degree. Polarized light microscope and scanning electron microscope images reveal that fibers of the composites prepared for 6 h are surrounded by ring-shaped pyrocarbon matrix with a thickness of {approx}20 {mu}m, and that the matrix is delaminated to 4-6 layer-like regions. The deposition process is analyzed by dividing the reactor into four regions associated with specific functions and the reasons for the rapid fabrication are proposed as the short convection and diffusion path for the precursor and the existing of thermal gradient across the preform.

  10. Effects of the gas feeding method on the properties of 3C-SiC/Si(111) grown by rapid thermal chemical vapor deposition

    CERN Document Server

    Shim, H W; Suh, E K

    1998-01-01

    High-quality crystalline 3C-SiC thin films are grown by rapid thermal chemical vapor deposition (RTCVD) on Si(111) by using two different growth processes. The films are grown along the [111] direction at 1200 .deg. C. The quality of the films are investigated by X-ray diffraction, transmission electron microscopy, and transmission electron diffraction. The SiC film grown by flowing the tetramethylsilane (TMS) gas before heating the substrate up to the growth temperature does not contain many voids at the SiC/Si interface, while the SiC grown by heating the substrate before supplying the TMS gas possesses many voids at the interface. The unintentionally doped SiC film grown by gas flow before heating the substrate appears to be n-type with a carrier concentration of 1.48 x 10 sup 1 sup 6 cm sup - sup 3 , a electron mobility of 884 cm sup 2 /V centre dot s, and a resistivity of 0.462 OMEGA centre dot cm. The physical properties, such as the electrical properties, the surface morphology, and the crystallinity, ...

  11. Simple Chemical Vapor Deposition Experiment

    Science.gov (United States)

    Pedersen, Henrik

    2014-01-01

    Chemical vapor deposition (CVD) is a process commonly used for the synthesis of thin films for several important technological applications, for example, microelectronics, hard coatings, and smart windows. Unfortunately, the complexity and prohibitive cost of CVD equipment makes it seldom available for undergraduate chemistry students. Here, a…

  12. Chemical vapor deposition of sialon

    Science.gov (United States)

    Landingham, R.L.; Casey, A.W.

    A laminated composite and a method for forming the composite by chemical vapor deposition are described. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200/sup 0/C; and impinging a gas containing N/sub 2/, SiCl/sub 4/, and AlCl/sub 3/ on the surface.

  13. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique.

    Science.gov (United States)

    Mubarak, Nabisab Mujawar; Sahu, Jaya Narayan; Abdullah, Ezzat Chan; Jayakumar, Natesan Subramanian

    2016-07-01

    Multiwall carbon nanotubes (MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(II) binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared (FT-IR), Brunauer, Emmett and Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) analysis, and the adsorption of Pb(II) was studied as a function of pH, initial Pb(II) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmax was calculated to be 104.2mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ∆H(0), ∆S(0) and ∆G(0) were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal (99.9%) of Pb(II) are at pH5, MWCNT dosage 0.1g, agitation speed 160r/min and time of 22.5min with the initial concentration of 10mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(II) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium. Copyright © 2016. Published by Elsevier B.V.

  14. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  15. Handbook of chemical vapor deposition principles, technology and applications

    CERN Document Server

    Pierson, Hugh O

    1999-01-01

    Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest

  16. Automated semiconductor vacuum chemical vapor deposition facility

    Science.gov (United States)

    1982-01-01

    A semiconductor vacuum chemical vapor deposition facility (totally automatic) was developed. Wafers arrived on an air track, automatically loaded into a furnace tube, processed, returned to the track, and sent on to the next operation. The entire process was controlled by a computer.

  17. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Matlin, W.M. [Univ. of Tennessee, Knoxville, TN (United States); Stinton, D.P.; Besmann, T.M. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    A two-step forced chemical vapor infiltration process was developed that reduced infiltration times for 4.45 cm dia. by 1.27 cm thick Nicalon{sup +} fiber preforms by two thirds while maintaining final densities near 90 %. In the first stage of the process, micro-voids within fiber bundles in the cloth were uniformly infiltrated throughout the preform. In the second stage, the deposition rate was increased to more rapidly fill the macro-voids between bundles within the cloth and between layers of cloth. By varying the thermal gradient across the preform uniform infiltration rates were maintained and high final densities achieved.

  18. Making Ceramic Fibers By Chemical Vapor

    Science.gov (United States)

    Revankar, Vithal V. S.; Hlavacek, Vladimir

    1994-01-01

    Research and development of fabrication techniques for chemical vapor deposition (CVD) of ceramic fibers presented in two reports. Fibers of SiC, TiB2, TiC, B4C, and CrB2 intended for use as reinforcements in metal-matrix composite materials. CVD offers important advantages over other processes: fibers purer and stronger and processed at temperatures below melting points of constituent materials.

  19. Chemical vapor infiltration in single fiber bundles

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, D.J.; Barbero, R.S.; Currier, R.P.

    1990-01-01

    Chemical vapor infiltration (CVI) in single fiber bundles is studied under isothermal conditions. Understanding infiltration dynamics in single bundles is essential to process design and modeling efforts. Deposition of pyrolytic carbon in carbon-fiber bundles is chosen as the experimental system, with densification data obtained from thermogravimetric analysis. Data are then compared to predictions from a recently proposed CVI model for fiber bundle densification. 10 refs., 5 figs., 1 tab.

  20. Chemical vapor infiltration process modeling and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Matlin, W.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1995-12-31

    Chemical vapor infiltration is a unique method for preparing continuous fiber ceramic composites that spares the strong but relatively fragile fibers from damaging thermal, mechanical, and chemical degradation. The process is relatively complex and modeling requires detailed phenomenological knowledge of the chemical kinetics and mass and heat transport. An overview of some of the current understanding and modeling of CVI and examples of efforts to optimize the processes is given. Finally, recent efforts to scale-up the process to produce tubular forms are described.

  1. Chemical vapor deposition of group IIIB metals

    Science.gov (United States)

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  2. Characterization of Metalorganic Chemical Vapor Deposition

    Science.gov (United States)

    Jesser, W. A.

    1998-01-01

    A series of experimental and numerical investigations to develop a more complete understanding of the reactive fluid dynamics of chemical vapor deposition were conducted. In the experimental phases of the effort, a horizontal CVD reactor configuration was used for the growth of InP at UVA and for laser velocimetry measurements of the flow fields in the reactor at LaRC. This horizontal reactor configuration was developed for the growth of III-V semiconductors and has been used by our research group in the past to study the deposition of both GaAs and InP. While the ultimate resolution of many of the heat and mass transport issues will require access to a reduced-gravity environment, the series of groundbased research makes direct contributions to this area while attempting to answer the design questions for future experiments of how low must gravity be reduced and for how long must this gravity level be maintained to make the necessary measurements. It is hoped that the terrestrial experiments will be useful for the design of future microgravity experiments which likely will be designed to employ a core set of measurements for applications in the microgravity environment such as HOLOC, the Fluid Physics/Dynamics Facility, or the Schlieren photography, the Laser Imaging Velocimetry and the Laser Doppler Velocimetry instruments under development for the Advanced Fluids Experiment Module.

  3. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  4. Chemical vapor deposition coating for micromachines

    Energy Technology Data Exchange (ETDEWEB)

    MANI,SEETHAMBAL S.; FLEMING,JAMES G.; SNIEGOWSKI,JEFFRY J.; DE BOER,MAARTEN P.; IRWIN,LAWRENCE W.; WALRAVEN,JEREMY A.; TANNER,DANELLE M.; DUGGER,MICHAEL T.

    2000-04-21

    Two major problems associated with Si-based MEMS devices are stiction and wear. Surface modifications are needed to reduce both adhesion and friction in micromechanical structures to solve these problems. In this paper, the authors will present a process used to selectively coat MEMS devices with tungsten using a CVD (Chemical Vapor Deposition) process. The selective W deposition process results in a very conformal coating and can potentially solve both stiction and wear problems confronting MEMS processing. The selective deposition of tungsten is accomplished through silicon reduction of WF{sub 6}, which results in a self-limiting reaction. The selective deposition of W only on polysilicon surfaces prevents electrical shorts. Further, the self-limiting nature of this selective W deposition process ensures the consistency necessary for process control. Selective tungsten is deposited after the removal of the sacrificial oxides to minimize process integration problems. This tungsten coating adheres well and is hard and conducting, requirements for device performance. Furthermore, since the deposited tungsten infiltrates under adhered silicon parts and the volume of W deposited is less than the amount of Si consumed, it appears to be possible to release stuck parts that are contacted over small areas such as dimples. Results from tungsten deposition on MEMS structures with dimples will be presented. The effect of wet and vapor phase cleanings prior to the deposition will be discussed along with other process details. The W coating improved wear by orders of magnitude compared to uncoated parts. Tungsten CVD is used in the integrated-circuit industry, which makes this approach manufacturable.

  5. Mechanical properties of chemical vapor deposited diamond

    Science.gov (United States)

    Kant, Avinash

    The hardness, elastic modulus, subcritical crack growth and fracture toughness of chemical vapor deposited (CVD) polycrystalline diamond films have been investigated on thick (˜100 to 300 mum) free-standing films with regard to the composition, microstructure, failure mechanisms and measurement techniques. The rationale for this study was the uncertainty in measuring these properties in previous research and the variability in the composition and microstructure of the material, which may affect these properties. Two predominant micro-hardness measurement techniques, namely Vickers and Knoop indentation, were employed. Existing Young's modulus measurement techniques such as dynamic resonance and nano-indentation were reviewed for modulus measurement on these films. The validity of indentation fracture toughness measurement for CVD diamond films using micro-hardness indentation has been established based on comparison with the conventional method of tensile testing of pre-notched compact-tension samples. The fracture toughness, Ksbc, of diamond was measured using indentation methods and for the first time by the tensile testing of pre-notched fracture-mechanics type compact-tension samples. Measured Ksbc values were found to be between 5 and 7 MPa-msp{1/2} by either method. Studies on subcritical crack growth (i.e., at stress intensities less than Ksbc) indicated that CVD diamond is essentially immune to stress-corrosion cracking under sustained loads in room air, water and acid environments. Extensive studies of the microstructure and mechanisms of failure were conducted. A commonly known toughening mechanism for ceramics by weakening the grain boundary in order to promote intergranular failure and grain bridging, has been implemented to improve the toughness of CVD diamond films. Several films with nominally the same thickness but small differences in their non-diamond content were studied and a significant variation in the toughness measurements was observed

  6. Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid

    Directory of Open Access Journals (Sweden)

    Anders Lyngvi Fougner

    2016-04-01

    Full Text Available Rapid, accurate and robust glucose measurements are needed to make a safe artificial pancreas for the treatment of diabetes mellitus type 1 and 2. The present gold standard of continuous glucose sensing, subcutaneous (SC glucose sensing, has been claimed to have slow response and poor robustness towards local tissue changes such as mechanical pressure, temperature changes, etc. The present study aimed at quantifying glucose dynamics from central circulation to intraperitoneal (IP sensor sites, as an alternative to the SC location. Intraarterial (IA and IP sensors were tested in three anaesthetized non-diabetic pigs during experiments with intravenous infusion of glucose boluses, enforcing rapid glucose level excursions in the range 70--360 mg/dL (approximately 3.8--20 mmol/L. Optical interferometric sensors were used for IA and IP measurements. A first-order dynamic model with time delay was fitted to the data after compensating for sensor dynamics. Additionally, off-the-shelf Medtronic Enlite sensors were used for illustration of SC glucose sensing. The time delay in glucose excursions from central circulation (IA to IP sensor location was found to be in the range 0--26 s (median: 8.5 s, mean: 9.7 s, SD 9.5 s, and the time constant was found to be 0.5--10.2 min (median: 4.8 min, mean: 4.7 min, SD 2.9 min. IP glucose sensing sites have a substantially faster and more distinctive response than SC sites when sensor dynamics is ignored, and the peritoneal fluid reacts even faster to changes in intravascular glucose levels than reported in previous animal studies. This study may provide a benchmark for future, rapid IP glucose sensors.

  7. SAW Sensors for Chemical Vapors and Gases

    Science.gov (United States)

    Devkota, Jagannath; Ohodnicki, Paul R.; Greve, David W.

    2017-01-01

    Surface acoustic wave (SAW) technology provides a sensitive platform for sensing chemicals in gaseous and fluidic states with the inherent advantages of passive and wireless operation. In this review, we provide a general overview on the fundamental aspects and some major advances of Rayleigh wave-based SAW sensors in sensing chemicals in a gaseous phase. In particular, we review the progress in general understanding of the SAW chemical sensing mechanism, optimization of the sensor characteristics, and the development of the sensors operational at different conditions. Based on previous publications, we suggest some appropriate sensing approaches for particular applications and identify new opportunities and needs for additional research in this area moving into the future. PMID:28397760

  8. Chemical Vapor Deposition of Aluminum Oxide Thin Films

    Science.gov (United States)

    Vohs, Jason K.; Bentz, Amy; Eleamos, Krystal; Poole, John; Fahlman, Bradley D.

    2010-01-01

    Chemical vapor deposition (CVD) is a process routinely used to produce thin films of materials via decomposition of volatile precursor molecules. Unfortunately, the equipment required for a conventional CVD experiment is not practical or affordable for many undergraduate chemistry laboratories, especially at smaller institutions. In an effort to…

  9. Advances in the chemical vapor deposition (CVD) of Tantalum

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Christensen, Erik

    2014-01-01

    The chemical stability of tantalum in hot acidic media has made it a key material in the protection of industrial equipment from corrosion under such conditions. The Chemical Vapor Deposition of tantalum to achieve such thin corrosion resistant coatings is one of the most widely mentioned examples...

  10. Chemical Vapor Sensing with Monolayer MoS2

    Science.gov (United States)

    2013-01-04

    were single monolayer.20,27 Ti/Au bond -pad contacts were formed by e-beam lithography using MMA /PMMA resist and metal evaporation and lift-off in...model of the TEA molecule, in which the nitrogen atom is blue, the carbon atoms are black, and the hydrogen atoms are light gray. (c) The amplitude of the... bond . The Mo 3dyz orbitals and S 2p orbitals extend above the surface plane and are free to interactthe charge density distributions make the Mo 3dyz

  11. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  12. Epitaxial Growth of Silicon Carbide by Chemical Vapor Deposition

    Science.gov (United States)

    Bhat, Ishwara B.

    The properties of silicon carbide materials are first reviewed, with special emphasis on properties related to power device applications. Epitaxial growth methods for SiC are then discussed with emphasis on recent results for epitaxial growth by the hot-wall chemical vapor deposition method. The growth mechanism for maintaining the polytype, namely step-controlled epitaxy, is discussed. Also described is the selective epitaxial growth carried out on SiC at the author's laboratory, including some unpublished work.

  13. Research on chemical vapor deposition processes for advanced ceramic coatings

    Science.gov (United States)

    Rosner, Daniel E.

    1993-01-01

    Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work.

  14. Electrochemical Sensing for a Rapidly Evolving World

    Science.gov (United States)

    Mullen, Max Robertson

    This dissertation focuses on three projects involving the development of harsh environment gas sensors. The first project discusses the development of a multipurpose oxygen sensor electrode for use in sealing with the common electrolyte yttria stabilized zirconia. The purpose of the sealing function is to produce an internal reference environment maintained by a metal/metal oxide mixture, a criteria for miniaturization of potentiometric oxygen sensing technology. This sensor measures a potential between the internal reference and a sensing environment. The second project discusses the miniaturization of an oxygen sensor and the fabrication of a more generalized electrochemical sensing platform. The third project discusses the discovery of a new mechanism in the electrochemical sensing of ammonia through molecular recognition and the utilization of a sensor taking advantage of the new mechanism. An initial study involving the development of a microwave synthesized La0.8Sr0.2Al0.9Mn0.1O3 sensor electrode material illustrates the ability of the material developed to meet ionic and electronic conducting requirements for effective and Nernstian oxygen sensing. In addition the material deforms plastically under hot isostatic pressing conditions in a similar temperature and pressure regime with yttria stabilized zirconia to produce a seal and survive temperatures up to 1350 °C. In the second project we show novel methods to seal an oxygen environment inside a device cavity to produce an electrochemical sensor body using room temperature plasma-activated bonding and low temperature and pressure assisted plasma-activated bonding with silicon bodies, both in a clean room environment. The evolution from isostatic hot pressing methods towards room temperature complementary metal oxide semiconductor (CMOS) compatible technologies using single crystal silicon substrates in the clean room allows the sealing of devices on a much larger scale. Through this evolution in bonding

  15. Modeling of chemical vapor deposition. I. General considerations

    Science.gov (United States)

    Korec, J.; Heyen, M.

    1982-12-01

    In this study a general analysis of chemical vapor deposition (CVD) processes carried out in open flow systems is presented. In this treatment the successive process steps, namely mass transport in the gas phase, adsorption, chemical reaction and surface diffusion are included. The proposed approach allows computation of the activity of the material to be deposited; this quantity is determined by a balance between the rates of gas phase diffusion and of surface processes. An expression is presented relating the activity near the interface to the growth rate of the deposited layer. It is shown that the same approach can be used for etching conditions.

  16. Advances in modeling of chemical vapor infiltration for tube fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Technology

    1998-04-01

    The forced flow/thermal gradient chemical vapor infiltration process (FCVI) can be used for fabrication of tube-shaped components of ceramic matrix composites. Recent experimental work at Oak Ridge National Laboratory (ORNL) includes process and materials development studies using a small tube reactor. Use of FCVI for this geometry involves significant changes in fixturing as compared to disk-shaped preforms previously fabricated. The authors have used their computer model of the CVI process to simulate tube densification and to identify process modifications that will decrease processing time. This report presents recent model developments and applications.

  17. Fabrication of fiber-reinforced composites by chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; McLaughlin, J.C. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.; Probst, K.J.; Anderson, T.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Chemical Engineering; Starr, T.L. [Georgia Inst. of Tech., Atlanta, GA (United States). Dept. of Materials Science and Engineering

    1997-12-01

    Silicon carbide-based heat exchanger tubes are of interest to energy production and conversion systems due to their excellent high temperature properties. Fiber-reinforced SiC is of particular importance for these applications since it is substantially tougher than monolithic SiC, and therefore more damage and thermal shock tolerant. This paper reviews a program to develop a scaled-up system for the chemical vapor infiltration of tubular shapes of fiber-reinforced SiC. The efforts include producing a unique furnace design, extensive process and system modeling, and experimental efforts to demonstrate tube fabrication.

  18. Chemical Vapor Deposition of Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Haven, Victor E.

    1999-01-01

    Ceramic thermal barrier coatings extend the operating temperature range of actively cooled gas turbine components, therefore increasing thermal efficiency. Performance and lifetime of existing ceram ic coatings are limited by spallation during heating and cooling cycles. Spallation of the ceramic is a function of its microstructure, which is determined by the deposition method. This research is investigating metalorganic chemical vapor deposition (MOCVD) of yttria stabilized zirconia to improve performance and reduce costs relative to electron beam physical vapor deposition. Coatings are deposited in an induction-heated, low-pressure reactor at 10 microns per hour. The coating's composition, structure, and response to the turbine environment will be characterized.

  19. Low temperature deposition of crystalline silicon on glass by hot wire chemical vapor deposition

    Science.gov (United States)

    Chung, Yung-Bin; Park, Hyung-Ki; Lee, Dong-Kwon; Jo, Wook; Song, Jean-Ho; Lee, Sang-Hoon; Hwang, Nong-Moon

    2011-07-01

    Although the deposition of crystalline silicon on a glass substrate has been pursued using hot wire chemical vapor deposition or plasma enhanced chemical vapor deposition for applications in flat panel displays and solar cells, the process has been only partly successful because of the inevitable formation of an amorphous incubation layer on a glass substrate. Currently, the crystalline silicon films are prepared by depositing an amorphous silicon film on a glass substrate and then crystallizing it by excimer laser annealing (ELA), metal induced crystallization or rapid thermal annealing (RTA). Here we report a new process, which can remove the amorphous incubation layer and thereby deposit crystalline silicon directly on glass using HCl. The intrinsic crystalline silicon film has a conductivity of 3.7×10 -5 Scm -1 and the n-type doped crystalline silicon film has the Hall mobility of 15.8 cm 2V -1 s -1, whose values are comparable to those prepared by ELA and RTA, respectively.

  20. Silicon Chemical Vapor Deposition Process Using a Half-Inch Silicon Wafer for Minimal Manufacturing System

    Science.gov (United States)

    Li, Ning; Habuka, Hitoshi; Ikeda, Shin-ichi; Hara, Shiro

    A chemical vapor deposition reactor for producing thin silicon films was designed and developed for achieving a new electronic device production system, the Minimal Manufacturing, using a half-inch wafer. This system requires a rapid process by a small footprint reactor. This was designed and verified by employing the technical issues, such as (i) vertical gas flow, (ii) thermal operation using a highly concentrated infrared flux, and (iii) reactor cleaning by chlorine trifluoride gas. The combination of (i) and (ii) could achieve a low heating power and a fast cooling designed by the heat balance of the small wafer placed at a position outside of the reflector. The cleaning process could be rapid by (iii). The heating step could be skipped because chlorine trifluoride gas was reactive at any temperature higher than room temperature.

  1. Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, I; Roessler, J; Frimmer, M; Fontcuberta i Morral, A [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall, D-85748 Garching (Germany); Yu, L; Alet, Pierre Jean; Roca i Cabarrocas, P [LPICM, Ecole Polytechnique, CNRS, F-91128 Palaiseau (France); Conesa-Boj, S; Estrade, S; Peiro, F; Arbiol, J; Morante, J R [EME/XaRMAE/IN2UB, Departamento d' Electronica, Universitat de Barcelona, MartIi Franques, E-08028, Barcelona (Spain)

    2009-04-15

    Silicon nanowires have been grown with gallium as catalyst by plasma enhanced chemical vapor deposition. The morphology and crystalline structure has been studied by electron microscopy and Raman spectroscopy as a function of growth temperature and catalyst thickness. We observe that the crystalline quality of the wires increases with the temperature at which they have been synthesized. The crystalline growth direction has been found to vary between <111> and <112>, depending on both the growth temperature and catalyst thickness. Gallium has been found at the end of the nanowires, as expected from the vapor-liquid-solid growth mechanism. These results represent good progress towards finding alternative catalysts to gold for the synthesis of nanowires.

  2. Development and study of chemical vapor deposited tantalum base alloys

    Science.gov (United States)

    Meier, G. H.; Bryant, W. A.

    1976-01-01

    A technique for the chemical vapor deposition of alloys was developed. The process, termed pulsing, involves the periodic injection of reactant gases into a previously-evacuated reaction chamber where they blanket the substrate almost instantaneously. Formation of alternating layers of the alloy components and subsequent homogenization allows the formation of an alloy of uniform composition with the composition being determined by the duration and relative numbers of the various cycles. The technique has been utilized to produce dense alloys of uniform thickness and composition (Ta- 10 wt % W) by depositing alternating layers of Ta and W by the hydrogen reduction of TaCl5 and WCl6. A similar attempt to deposit a Ta - 8 wt % W - 2 wt% Hf alloy was unsuccessful because of the difficulty in reducing HfCl4 at temperatures below those at which gas phase nucleation of Ta and W occurred.

  3. Immobilization of whole cells by chemical vapor deposition of silica.

    Science.gov (United States)

    Sizemore, Susan R; Nichols, Robert; Tatum, Randi; Atanassov, Plamen; Johnson, Glenn R; Luckarift, Heather R

    2013-01-01

    Effective entrapment of whole bacterial cells onto solid-phase materials can significantly improve bioprocessing and other biotechnology applications. Cell immobilization allows integration of biocatalysts in a manner that maintains long-term cell viability and typically enhances process output. A wide variety of functionalized materials have been explored for microbial cell immobilization, and specific advantages and limitations were identified. The method described here is a simple, versatile, and scalable one-step process for the chemical vapor deposition of silica to encapsulate and stabilize viable, whole bacterial cells. The immobilized bacterial population is prepared and captured at a predefined physiological state so as to affix bacteria with a selected metabolic or catalytic capability to compatible materials and surfaces. Immobilization of Shewanella oneidensis to carbon electrodes and immobilization of Acinetobacter venetianus to adsorbent mats are described as model systems.

  4. Structural evolution during chemical vapor deposition of diamond thin films

    Science.gov (United States)

    Morell, G.; Cancel, L. M.; Figueroa, O. L.; González, J. A.; Weiner, B. R.

    2000-11-01

    In situ phase-modulated ellipsometry was employed to monitor the nucleation and growth processes of diamond thin films fabricated by chemical vapor deposition. The effective extinction coefficient (k) at 1.96 eV was used as a basis for dividing the deposition process into intervals. The film growth was aborted at various k values yielding diamond film samples that represent snapshots of the growth process at different stages. Ex situ characterization of the films was performed using Raman spectroscopy, scanning electron microscopy, and x-ray diffraction. The results indicate that the diamond film deposition process consists of various stages in which the crystalline quality, the net compressive stress, and the relative amount of non-sp3 carbon follow different trends. A correlation between the effective k value measured in situ and the film microstructure characterized ex situ was established which enables the monitoring of the diamond film growth process in real time.

  5. Measurement of gas transport properties for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  6. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  7. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    Science.gov (United States)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  8. Synthesis of mullite coatings by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mulpuri, R.P.; Auger, M.; Sarin, V.K. [Boston Univ., MA (United States)

    1996-08-01

    Formation of mullite on ceramic substrates via chemical vapor deposition was investigated. Mullite is a solid solution of Al{sub 2}O{sub 3} and SiO{sub 2} with a composition of 3Al{sub 2}O{sub 3}{circ}2SiO{sub 2}. Thermodynamic calculations performed on the AlCl{sub 3}-SiCl{sub 4}-CO{sub 2}-H{sub 2} system were used to construct equilibrium CVD phase diagrams. With the aid of these diagrams and consideration of kinetic rate limiting factors, initial process parameters were determined. Through process optimization, crystalline CVD mullite coatings have been successfully grown on SiC and Si{sub 3}N{sub 4} substrates. Results from the thermodynamic analysis, process optimization, and effect of various process parameters on deposition rate and coating morphology are discussed.

  9. Rapid response oxygen-sensing nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Ruipeng [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States); Behera, Prajna; Viapiano, Mariano S. [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Lannutti, John J., E-mail: lannutti.1@osu.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2013-08-01

    Molecular oxygen has profound effects on cell and tissue viability. Relevant sensor forms that can rapidly determine dissolved oxygen levels under biologically relevant conditions provide critical metabolic information. Using 0.5 μm diameter electrospun polycaprolactone (PCL) fiber containing an oxygen-sensitive probe, tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride, we observed a response time of 0.9 ± 0.12 s while the t{sub 95} for the corresponding film was more than two orders of magnitude greater. Interestingly, the response and recovery times of slightly larger diameter PCL fibers were 1.79 ± 0.23 s and 2.29 ± 0.13 s, respectively, while the recovery time was not statistically different likely due to the more limited interactions of nitrogen with the polymer matrix. A more than 10-fold increase in PCL fiber diameter reduces oxygen sensitivity while having minor effects on response time; conversely, decreases in fiber diameter to less than 0.5 μm would likely decrease response times even further. In addition, a 50 °C heat treatment of the electrospun fiber resulted in both increased Stern–Volmer slope and linearity likely due to secondary recrystallization that further homogenized the probe microenvironment. At exposure times up to 3600 s in length, photobleaching was observed but was largely eliminated by the use of either polyethersulfone (PES) or a PES–PCL core–shell composition. However, this resulted in 2- and 3-fold slower response times. Finally, even the non-core shell compositions containing the Ru oxygen probe result in no apparent cytotoxicity in representative glioblastoma cell populations. Highlights: • Nanofiber-based structures can self-report localized oxygen concentrations. • Ideal for tissue engineering as they allow close interaction of cells. • Nanofiber-incorporated oxygen-sensitive probes provide a perfectly linear response. • Photobleaching is largely eliminated by the use of PES–PCL core

  10. Ultrafast deposition of silicon nitride and semiconductor silicon thin films by Hot Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Schropp, R.E.I.; van der Werf, C.H.M.; Verlaan, V.; Rath, J.K.; Li, H. B. T.

    2009-01-01

    The technology of Hot Wire Chemical Vapor Deposition (HWCVD) or Catalytic Chemical Vapor Deposition (Cat-CVD) has made great progress during the last couple of years. This review discusses examples of significant progress. Specifically, silicon nitride deposition by HWCVD (HW-SiNx) is highlighted,

  11. Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors

    Science.gov (United States)

    Liang, Rongning; Chen, Lusi; Qin, Wei

    2015-07-01

    Ion-selective electrode (ISE) based potentiometric gas sensors have shown to be promising analytical tools for detection of chemical vapors. However, such sensors are only capable of detecting those vapors which can be converted into ionic species in solution. This paper describes for the first time a polymer membrane ISE based potentiometric sensing system for sensitive and selective determination of neutral vapors in the gas phase. A molecularly imprinted polymer (MIP) is incorporated into the ISE membrane and used as the receptor for selective adsorption of the analyte vapor from the gas phase into the sensing membrane phase. An indicator ion with a structure similar to that of the vapor molecule is employed to indicate the change in the MIP binding sites in the membrane induced by the molecular recognition of the vapor. The toluene vapor is used as a model and benzoic acid is chosen as its indicator. Coupled to an apparatus manifold for preparation of vapor samples, the proposed ISE can be utilized to determine volatile toluene in the gas phase and allows potentiometric detection down to parts per million levels. This work demonstrates the possibility of developing a general sensing principle for detection of neutral vapors using ISEs.

  12. Chemical vapor deposition growth of two-dimensional heterojunctions

    Science.gov (United States)

    Cui, Yu; Li, Bo; Li, JingBo; Wei, ZhongMing

    2018-01-01

    The properties of two-dimensional (2D) layered materials with atom-smooth surface and special interlayer van der Waals coupling are different from those of traditional materials. Due to the absence of dangling bonds from the clean surface of 2D layered materials, the lattice mismatch influences slightly on the growth of 2D heterojunctions, thus providing a flexible design strategy. 2D heterojunctions have attracted extensive attention because of their excellent performance in optoelectronics, spintronics, and valleytronics. The transfer method was utilized for the fabrication of 2D heterojunctions during the early stage of fundamental research on these materials. This method, however, has limited practical applications. Therefore, chemical vapor deposition (CVD) method was recently developed and applied for the preparation of 2D heterojunctions. The CVD method is a naturally down-top growth strategy that yields 2D heterojunctions with sharp interfaces. Moreover, this method effectively reduces the introduction of contaminants to the fabricated heterojunctions. Nevertheless, the CVD-growth method is sensitive to variations in growth conditions. In this review article, we attempt to provide a comprehensive overview of the influence of growth conditions on the fabrication of 2D heterojunctions through the direct CVD method. We believe that elucidating the effects of growth conditions on the CVD method is necessary to help control and improve the efficiency of the large-scale fabrication of 2D heterojunctions for future applications in integrated circuits.

  13. Chemical vapor infiltration of TiB{sub 2} composites

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Miller, J.H.; Cooley, K.C.; Lowden, R.A. [Oak Ridge National Lab., TN (United States); Starr, T.L. [Georgia Tech Research Inst., Atlanta, GA (United States)

    1993-01-01

    Efficiency of the Hall-Heroult electrolytic reduction of aluminum can be substantially improved by the use of a TiB{sub 2} cathode surface. The use of TiB{sub 2}, however, has been hampered by the brittle nature of the material and the grain-boundary attack of sintering-aid phases by molten aluminum. In the current work, TiB{sub 2} is toughened through the use of reinforcing fibers, with chemical vapor infiltration (CVI) used to produce pure TiB{sub 2}. It has been observed, however, that the formation of TiB{sub 2} from chloride precursors at fabrication temperatures below 900 to 1000{degrees}C alloys the retention of destructive levels of chlorine in the material. At higher fabrication temperatures and under appropriate infiltration conditions, as determined from the use of a process model, a TIB{sub 2}THORNEL P-25 fiber composite, 45 mm in diam and 6 mm thick, has been fabricated in 20 h. The material has been demonstrated to be stable in molten aluminum in short-duration tests.

  14. Chemical vapor infiltration of TiB[sub 2] composites

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Miller, J.H.; Cooley, K.C.; Lowden, R.A. (Oak Ridge National Lab., TN (United States)); Starr, T.L. (Georgia Tech Research Inst., Atlanta, GA (United States))

    1993-01-01

    Efficiency of the Hall-Heroult electrolytic reduction of aluminum can be substantially improved by the use of a TiB[sub 2] cathode surface. The use of TiB[sub 2], however, has been hampered by the brittle nature of the material and the grain-boundary attack of sintering-aid phases by molten aluminum. In the current work, TiB[sub 2] is toughened through the use of reinforcing fibers, with chemical vapor infiltration (CVI) used to produce pure TiB[sub 2]. It has been observed, however, that the formation of TiB[sub 2] from chloride precursors at fabrication temperatures below 900 to 1000[degrees]C alloys the retention of destructive levels of chlorine in the material. At higher fabrication temperatures and under appropriate infiltration conditions, as determined from the use of a process model, a TIB[sub 2]THORNEL P-25 fiber composite, 45 mm in diam and 6 mm thick, has been fabricated in 20 h. The material has been demonstrated to be stable in molten aluminum in short-duration tests.

  15. Growth of graphene underlayers by chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Mopeli Fabiane

    2013-11-01

    Full Text Available We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD. Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT to yield poly (methyl methacrylate (PMMA/graphene/glass or (2 inverted transfer (IT to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM and atomic force microscopy (AFM were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

  16. Anisotropic hydrogen etching of chemical vapor deposited graphene.

    Science.gov (United States)

    Zhang, Yi; Li, Zhen; Kim, Pyojae; Zhang, Luyao; Zhou, Chongwu

    2012-01-24

    We report a simple, clean, and highly anisotropic hydrogen etching method for chemical vapor deposited (CVD) graphene catalyzed by the copper substrate. By exposing CVD graphene on copper foil to hydrogen flow around 800 °C, we observed that the initially continuous graphene can be etched to have many hexagonal openings. In addition, we found that the etching is temperature dependent. Compared to other temperatures (700, 900, and 1000 °C), etching of graphene at 800 °C is most efficient and anisotropic. Of the angles of graphene edges after etching, 80% are 120°, indicating the etching is highly anisotropic. No increase of the D band along the etched edges indicates that the crystallographic orientation of etching is in the zigzag direction. Furthermore, we observed that copper played an important role in catalyzing the etching reaction, as no etching was observed for graphene transferred to Si/SiO(2) under similar conditions. This highly anisotropic hydrogen etching technology may work as a simple and convenient way to determine graphene crystal orientation and grain size and may enable the etching of graphene into nanoribbons for electronic applications. © 2011 American Chemical Society

  17. Growth of graphene underlayers by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fabiane, Mopeli; Khamlich, Saleh; Bello, Abdulhakeem; Dangbegnon, Julien; Momodu, Damilola; Manyala, Ncholu, E-mail: ncholu.manyala@up.ac.za [Department of Physics, Institute of Applied Materials, SARChI Chair in Carbon Technology and Materials, University of Pretoria, Pretoria 0028 (South Africa); Charlie Johnson, A. T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2013-11-15

    We present a simple and very convincing approach to visualizing that subsequent layers of graphene grow between the existing monolayer graphene and the copper catalyst in chemical vapor deposition (CVD). Graphene samples were grown by CVD and then transferred onto glass substrates by the bubbling method in two ways, either direct-transfer (DT) to yield poly (methyl methacrylate) (PMMA)/graphene/glass or (2) inverted transfer (IT) to yield graphene/PMMA/glass. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were used to reveal surface features for both the DT and IT samples. The results from FE-SEM and AFM topographic analyses of the surfaces revealed the underlayer growth of subsequent layers. The subsequent layers in the IT samples are visualized as 3D structures, where the smaller graphene layers lie above the larger layers stacked in a concentric manner. The results support the formation of the so-called “inverted wedding cake” stacking in multilayer graphene growth.

  18. Conversion Coatings for Aluminum Alloys by Chemical Vapor Deposition Mechanisms

    Science.gov (United States)

    Reye, John T.; McFadden, Lisa S.; Gatica, Jorge E.; Morales, Wilfredo

    2004-01-01

    With the rise of environmental awareness and the renewed importance of environmentally friendly processes, the United States Environmental Protection Agency has targeted surface pre-treatment processes based on chromates. Indeed, this process has been subject to regulations under the Clean Water Act as well as other environmental initiatives, and there is today a marked movement to phase the process out in the near future. Therefore, there is a clear need for new advances in coating technology that could provide practical options for replacing present industrial practices. Depending on the final application, such coatings might be required to be resistant to corrosion, act as chemically resistant coatings, or both. This research examined a chemical vapor deposition (CVD) mechanism to deposit uniform conversion coatings onto aluminum alloy substrates. Robust protocols based on solutions of aryl phosphate ester and multi-oxide conversion coating (submicron) films were successfully grown onto the aluminum alloy samples. These films were characterized by X-ray Photoelectron Spectroscopy (XPS). Preliminary results indicate the potential of this technology to replace aqueous-based chromate processes.

  19. Optical Diagnostics in the Combustion Chemical Vapor Deposition Proces

    Science.gov (United States)

    Luten, Henry; Oljaca, Miodrag; Tomov, Trifon; Metzger, Timothy

    1999-11-01

    Optical emission spectroscopy and IR temperature measurements are used to investigate the structure of a sub-micron droplet spray flame in the Combustion Chemical Vapor Deposition (CCVD) process. The specific system examined in this study is the deposition of barium-strontium-titanate (BaxSr1-xTiO3), a high performance ferroelectric. Spectral measurements were used to determine the decomposition rates of the precursors as well as the lifetimes and relative concentrations of the primary decomposition products. The emissions from atomic and unimolecular species reach a maximum value early in the flame and then decrease sharply, indicating very fast reaction rates. This data, however, is a function of the flame temperature. In order to arrive at proper relative concentration data, the optical emission data must be normalized using measured temperature. Two-dimensional temperature maps were obtained using a non-contact, infrared temperature sensor with peak sensitivity at 4.5 microns. It was found that the sodium emission intensity correlates with the flame temperature, and the sodium emission was used as an internal standard for removing the temperature factor and isolating the relative concentration data. While the flame temperature reaches maximum value at approximately 2 cm, the normalized emission for most species reaches peak intensity closer to the nozzle exit.

  20. Backbone-Degradable Polymers Prepared by Chemical Vapor Deposition.

    Science.gov (United States)

    Xie, Fan; Deng, Xiaopei; Kratzer, Domenic; Cheng, Kenneth C K; Friedmann, Christian; Qi, Shuhua; Solorio, Luis; Lahann, Joerg

    2017-01-02

    Polymers prepared by chemical vapor deposition (CVD) polymerization have found broad acceptance in research and industrial applications. However, their intrinsic lack of degradability has limited wider applicability in many areas, such as biomedical devices or regenerative medicine. Herein, we demonstrate, for the first time, a backbone-degradable polymer directly synthesized via CVD. The CVD co-polymerization of [2.2]para-cyclophanes with cyclic ketene acetals, specifically 5,6-benzo-2-methylene-1,3-dioxepane (BMDO), results in well-defined, hydrolytically degradable polymers, as confirmed by FTIR spectroscopy and ellipsometry. The degradation kinetics are dependent on the ratio of ketene acetals to [2.2]para-cyclophanes as well as the hydrophobicity of the films. These coatings address an unmet need in the biomedical polymer field, as they provide access to a wide range of reactive polymer coatings that combine interfacial multifunctionality with degradability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Current-Perpendicular-to-Plane Magnetoresistance in Chemical Vapor Deposition-Grown Multilayer Graphene

    Directory of Open Access Journals (Sweden)

    Sandipan Pramanik

    2013-09-01

    Full Text Available Current-perpendicular-to-plane (CPP magnetoresistance (MR effects are often exploited in various state-of-the-art magnetic field sensing and data storage technologies. Most of the CPP-MR devices are artificial layered structures of ferromagnets and non-magnets, and in these devices, MR manifests, due to spin-dependent carrier transmission through the constituent layers. In this work, we explore another class of artificial layered structure in which multilayer graphene (MLG is grown on a metallic substrate by chemical vapor deposition (CVD. We show that depending on the nature of the graphene-metal interaction, these devices can also exhibit large CPP-MR. Magnetoresistance ratios (>100% are at least two orders of magnitude higher than “transferred” graphene and graphitic samples reported in the literature, for a comparable temperature and magnetic field range. This effect is unrelated to spin injection and transport and is not adequately described by any of the MR mechanisms known to date. The simple fabrication process, large magnitude of the MR and its persistence at room temperature make this system an attractive candidate for magnetic field sensing and data storage applications and, also, underscore the need for further fundamental investigations on graphene-metal interactions.

  2. Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns

    Science.gov (United States)

    Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing

    2017-05-01

    An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.

  3. Continuous Fabrication of SiC Fiber Tows by Chemical Vapor Deposition

    Science.gov (United States)

    1993-01-01

    Niobium Carbonitride Films on Carbon Fibers," pp. 300-14 in Proceedings on the Seventh International Conference on Chemical Vapor Deposition, The...34Modeling of the Chemical Vapor Deposition of YI3a 2Cu30z, TiB•, and SiC Thin Films Onto Continuous Ceramic Tows," Ph.D. Dissertation, School of...SUJRJ Ct 7URM’S 15. NUMBER OF PAGES 98 Fibers, Silicon (Carbide. Chemical Vapor Deposition 16. PRICE CODE F SFSCURV C’A1 ’,’-,(AH.T,.)I•sJ $ ,,ui T 7

  4. Electrical characteristics and hydrogen concentration of chemical vapor deposited silicon dioxide films: Effect of water treatment

    Science.gov (United States)

    Li, S. C.; Murarka, S. P.

    1992-11-01

    The effect of exposing chemical vapor deposited silicon dioxide directly to water has been investigated. Unlike the effect of the water-related traps in thermally grown silicon dioxide, the capacitance-voltage (C-V) shift due to diffused-in water molecules is directly observed without using the method of avalanche injection. The resonate nuclear reaction technique with 15N ion beam has been used to measure the hydrogen concentration of water-boiled, as-deposited, and rapid thermal-annealed silicon dioxide films. These depth profiles show that the hydrogen-containing species, that are most likely water molecules, diffuse in and out and redistribute in the as-deposited and rapid thermal-annealed films. These hydrogen depth profiles also indicate that the amount of diffused-in water molecules in the oxide is limited by the solubility of the water in the oxide. The solubility of water in the oxide annealed at high temperatures is found to be significantly lower than that in the as-deposited oxide. It is found that diffused-in water molecules, in order to satisfy the water solubility of the oxide, play a compensating role in controlling the oxide charges. Water molecules would continue to diffuse in, and interact with oxide charges and produce charges with reverse polarity that compensate the existing oxide charges until water solubility is satisfied.

  5. Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis

  6. Diamond-coated fiber Bragg grating through the hot filament chemical vapor process for chemical durability improvement.

    Science.gov (United States)

    Alberto, Nélia; José Kalinowski, Hypolito; Neto, Victor; Nogueira, Rogério

    2017-02-20

    In recent years, the coating of fiber Bragg gratings (FBGs) with a specific material has opened up the possibility to broaden the limits of applicability of this technology. Diamond has a set of properties that makes it an attractive candidate to protect the optical fiber against chemically harsh environments, whose sensing is also a great challenge. One of the most used techniques to obtain these coatings is through the hot filament chemical vapor deposition (HFCVD); in this process, the temperature reaches, typically, around 850°C-900°C. In this work, the regeneration of a seed FBG during its coating with a nanocrystalline diamond thin film through the HFCVD process is presented. Simultaneously, the thermal monitoring of the process was also performed using the same grating. The resistance test in a corrosive medium reveals an improvement on the durability of the sensing properties of the diamond-coated FBG compared with an uncoated FBG, foreseeing a vast range of applications.

  7. Low-Pressure Chemical Vapor (LPCVD) Graphene Growth Study and Raman Characterization

    Science.gov (United States)

    2013-12-01

    films deposited for a growth study is discussed. Low pressure chemical vapor deposition was utilized to grow graphene layers onto copper foil substrates...exfoliation method (3); however, recent efforts have focused on graphene synthesis by conventional methods, such as chemical vapor deposition ( CVD ) and...ultrahigh vacuum, high temperature annealing (i.e., epitaxial graphene from SiC) (4, 5). CVD , in particular, is a promising growth technique because

  8. Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS2.

    Science.gov (United States)

    Alharbi, Abdullah; Armstrong, Darren; Alharbi, Somayah; Shahrjerdi, Davood

    2017-11-27

    Physically unclonable cryptographic primitives are promising for securing the rapidly growing number of electronic devices. Here, we introduce physically unclonable primitives from layered molybdenum disulfide (MoS2) by leveraging the natural randomness of their island growth during chemical vapor deposition (CVD). We synthesize a MoS2 monolayer film covered with speckles of multilayer islands, where the growth process is engineered for an optimal speckle density. Using the Clark-Evans test, we confirm that the distribution of islands on the film exhibits complete spatial randomness, hence indicating the growth of multilayer speckles is a spatial Poisson process. Such a property is highly desirable for constructing unpredictable cryptographic primitives. The security primitive is an array of 2048 pixels fabricated from this film. The complex structure of the pixels makes the physical duplication of the array impossible (i.e., physically unclonable). A unique optical response is generated by applying an optical stimulus to the structure. The basis for this unique response is the dependence of the photoemission on the number of MoS2 layers, which by design is random throughout the film. Using a threshold value for the photoemission, we convert the optical response into binary cryptographic keys. We show that the proper selection of this threshold is crucial for maximizing combination randomness and that the optimal value of the threshold is linked directly to the growth process. This study reveals an opportunity for generating robust and versatile security primitives from layered transition metal dichalcogenides.

  9. Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin films

    Science.gov (United States)

    Besling, W. F. A.; Goossens, A.; Meester, B.; Schoonman, J.

    1998-01-01

    Laser-induced chemical vapor deposition of silicon carbonitride thin films has been investigated using a continuous wave CO2 laser in parallel configuration with the substrate. The reactant gases in this process, hexamethyl disilazane and ammonia, are rapidly heated by CO2 laser radiation due to their absorption of the laser energy. Polymerlike silicon carbonitride films or agglomerated nanosized particles are formed depending on process conditions. Dense, smooth films or nanostructured deposits have been synthesized at low substrate temperatures (Tssilicon and can be obtained with controlled microstructures. Surface morphology, composition, and type of chemical bonding have been studied with electron microscopy and spectroscopic analysis and are correlated to the most important laser process parameters. X-ray photoelectron spectroscopy and reflectance Fourier transform infrared spectroscopy show that the deposits consist of Si-N, Si-C, and Si-O bonds, linked together in a x-ray amorphous, polymerlike structure. The nitrogen content is about 40% and can be varied by adding ammonia to the reactant gas flow. The layers are readily contaminated with oxygen after exposure to air, caused by hydrolysis and/or oxidation.

  10. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition.

    Science.gov (United States)

    Li, Xuesong; Colombo, Luigi; Ruoff, Rodney S

    2016-08-01

    Over the past decade, graphene has advanced rapidly as one of the most promising materials changing human life. Development of production-worthy synthetic methodologies for the preparation of various types of graphene forms the basis for its investigation and applications. Graphene can be used in the forms of either microflake powders or large-area thin films. Graphene powders are prepared by the exfoliation of graphite or the reduction of graphene oxide, while graphene films are prepared predominantly by chemical vapor deposition (CVD) on a variety of substrates. Both metal and dielectric substrates have been explored; while dielectric substrates are preferred over any other substrate, much higher quality graphene large-area films have been grown on metal substrates such as Cu. The focus here is on the progress of graphene synthesis on Cu foils by CVD, including various CVD techniques, graphene growth mechanisms and kinetics, strategies for synthesizing large-area graphene single crystals, graphene transfer techniques, and, finally, challenges and prospects are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electron emission from nano-structured carbon films fabricated by hot-filament chemical-vapor deposition and microwave plasma-enhanced chemical vapor deposition

    CERN Document Server

    Park, K H; Lee, K M; Oh, S G; Lee, S I; Koh, K H

    2000-01-01

    The electron-emission characteristics of nano-structured carbon films fabricated by using the HFCVD (hot- filament chemical-vapor deposition) and the MPECVD (microwave plasma-enhanced chemical-vapor deposition) methods with a metal catalyst are presented. According to our observation, neither the formation nor the alignment of nano tubes is absolutely necessary to realize carbon-based electron emitters. However, utilization of chrome as an interlayer between Si substrates and metal catalyst particles results in a great improvement in the emission characteristics and the mechanical stability. Also, fabrication of good electron-emitting carbon films on glass substrates, with sputter-deposited chrome electrodes,at a nominal temperature approx 615 .deg. C was demonstrated.

  12. Microstructure of C/C composites prepared by chemical vapor infiltration method with vaporized kerosene as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiping [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: jipingwang@gmail.com; Qian Junmin [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Jin Zhihao [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Qiao Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2006-03-15

    The microstructures of two types of C/C composites prepared from different carbon felts by a rapid densification method, thermal gradient chemical vapor infiltration with vaporized kerosene as a precursor, at 1080-1120 deg. C for 6 h were characterized by polarized light microscopy (PLM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman micro-spectrometry techniques. The experimental results show that the fibers in the two composites are both surrounded by ring-shaped pyrocarbons with rough laminar texture, but the thickness, the surface morphology of the pyrocarbons and the graphitizability of the composites depend much on the configurations of carbon felts. The C/C composite fabricated from a higher porosity carbon felt possesses larger thickness and rougher surface of pyrocarbon, and has a lower graphitizability after heat treatment at 2300 deg. C for 2 h.

  13. High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Amani, Matin; Burke, Robert A; Ji, Xiang; Zhao, Peida; Lien, Der-Hsien; Taheri, Peyman; Ahn, Geun Ho; Kirya, Daisuke; Ager, Joel W; Yablonovitch, Eli; Kong, Jing; Dubey, Madan; Javey, Ali

    2016-07-26

    One of the major challenges facing the rapidly growing field of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the development of growth techniques to enable large-area synthesis of high-quality materials. Chemical vapor deposition (CVD) is one of the leading techniques for the synthesis of TMDCs; however, the quality of the material produced is limited by defects formed during the growth process. A very useful nondestructive technique that can be utilized to probe defects in semiconductors is the room-temperature photoluminescence (PL) quantum yield (QY). It was recently demonstrated that a PL QY near 100% can be obtained in MoS2 and WS2 monolayers prepared by micromechanical exfoliation by treating samples with an organic superacid: bis(trifluoromethane)sulfonimide (TFSI). Here we have performed a thorough exploration of this chemical treatment on CVD-grown MoS2 samples. We find that the as-grown monolayers must be transferred to a secondary substrate, which releases strain, to obtain high QY by TFSI treatment. Furthermore, we find that the sulfur precursor temperature during synthesis of the MoS2 plays a critical role in the effectiveness of the treatment. By satisfying the aforementioned conditions we show that the PL QY of CVD-grown monolayers can be improved from ∼0.1% in the as-grown case to ∼30% after treatment, with enhancement factors ranging from 100 to 1500× depending on the initial monolayer quality. We also found that after TFSI treatment the PL emission from MoS2 films was visible by eye despite the low absorption (5-10%). The discovery of an effective passivation strategy will speed the development of scalable high-performance optoelectronic and electronic devices based on MoS2.

  14. Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process

    CSIR Research Space (South Africa)

    Thabethe, BS

    2013-01-01

    Full Text Available The authors report on the synthesis of tin oxide (SnO(sub2)) nanowires by a chemical vapor deposition (CVD) process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system...

  15. Vaporization of a mixed precursors in chemical vapor deposition for YBCO films

    Science.gov (United States)

    Zhou, Gang; Meng, Guangyao; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1995-01-01

    Single phase YBa2Cu3O7-delta thin films with T(c) values around 90 K are readily obtained by using a single source chemical vapor deposition technique with a normal precursor mass transport. The quality of the films is controlled by adjusting the carrier gas flow rate and the precursor feed rate.

  16. Chemical vapor deposition growth of bilayer graphene in between molybdenum disulfide sheets

    NARCIS (Netherlands)

    Kwieciñski, Wojciech; Sotthewes, Kai; Poelsema, Bene; Zandvliet, Harold J.W.; Bampoulis, Pantelis

    2017-01-01

    Direct growth of flat micrometer-sized bilayer graphene islands in between molybdenum disulfide sheets is achieved by chemical vapor deposition of ethylene at about 800 °C. The temperature assisted decomposition of ethylene takes place mainly at molybdenum disulfide step edges. The carbon atoms

  17. Growth Process Conditions of Tungsten Oxide Thin Films Using Hot-Wire Chemical Vapor Deposition

    NARCIS (Netherlands)

    Houweling, Z.S.|info:eu-repo/dai/nl/251874486; Geus, J.W.; de Jong, M.; Harks, P.P.R.M.L.; van der Werf, C.H.M.; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584

    2011-01-01

    We report the growth conditions of nanostructured tungsten oxide (WO3−x) thin films using hot-wire chemical vapor deposition (HWCVD). Two tungsten filaments were resistively heated to various temperatures and exposed to an air flow at various subatmospheric pressures. The oxygen partial pressure was

  18. Chemical Vapor Deposition of Atomically-Thin Molybdenum Disulfide (MoS2)

    Science.gov (United States)

    2015-03-01

    DISULFIDE ( MoS2 ) Daniel Kaplan Kendall Mills Venkataraman Swaminathan March 2015 Approved for public release...4. TITLE AND SUBTITLE CHEMICAL VAPOR DEPOSITION OF ATOMICALLY-THIN MOLYBDENUM DISULFIDE ( MoS2 ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER...distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A method of synthesizing monolayers of molybdenum disulfide ( MoS2 ) via

  19. A new productivity function and stability criterion in chemical vapor transport processes

    NARCIS (Netherlands)

    Klosse, K.

    1975-01-01

    The crystal growth rate in a chemical vapor transport process using a closed system is analyzed on the basis of a one-dimensional configuration. A simplified model of vapor transport enables one to obtain a set of equations yielding the rates of reaction without a complete evaluation of the partial

  20. Single Molecule Source Reagents for Chemical Vapor Deposition of B- Silicon Carbide

    Science.gov (United States)

    1992-12-10

    Phase I conclusively showed the feasibility of rational design of single molecule -source reagents that could lead to improvements in the chemical...vapor deposition of stoichiometric Beta silicon carbide. Four single molecule sources were synthesized, their decomposition pathways studied, and their

  1. Pattern Dependency and Loading Effect of Pure-Boron-Layer Chemical-Vapor Deposition

    NARCIS (Netherlands)

    Mohammadi, V.; De Boer, W.B.; Scholtes, T.L.M.; Nanver, L.K.

    2012-01-01

    The pattern dependency of pure-boron (PureB) layer chemical-vapor Deposition (CVD) is studied with respect to the correlation between the deposition rate and features like loading effects, deposition parameters and deposition window sizes. It is shown experimentally that the oxide coverage ratio and

  2. Controlling the resistivity gradient in chemical vapor deposition-deposited aluminum-doped zinc oxide

    NARCIS (Netherlands)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; M. C. M. van de Sanden,; Creatore, M.

    2012-01-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO: Al layers by focusing on the control

  3. A mathematical model and simulation results of plasma enhanced chemical vapor deposition of silicon nitride films

    NARCIS (Netherlands)

    Konakov, S.A.; Krzhizhanovskaya, V.V.

    2015-01-01

    We developed a mathematical model of Plasma Enhanced Chemical Vapor Deposition (PECVD) of silicon nitride thin films from SiH4-NH3-N2-Ar mixture, an important application in modern materials science. Our multiphysics model describes gas dynamics, chemical physics, plasma physics and electrodynamics.

  4. Plasma enhanced chemical vapor deposition silicon oxynitride optimized for application in integrated optics

    NARCIS (Netherlands)

    Worhoff, Kerstin; Driessen, A.; Lambeck, Paul; Hilderink, L.T.H.; Linders, Petrus W.C.; Popma, T.J.A.

    1999-01-01

    Silicon Oxynitride layers are grown from SiH4/N2, NH3 and N2O by Plasma Enhanced Chemical Vapor Deposition. The process is optimized with respect to deposition of layers with excellent uniformity in the layer thickness, high homogeneity of the refractive index and good reproducibility of the layer

  5. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition

    NARCIS (Netherlands)

    Jodin, Lucie; Dupuis, Anne-Claire; Rouvière, Emmanuelle; Reiss, Peter

    2006-01-01

    The preparation of the catalyst is one of the key parameters which governs the quality of carbon nanotubes (CNTs) grown by catalyzed chemical vapor deposition (CVD). We investigated the influence of three different procedures of catalyst preparation on the type and diameter of CNTs formed under

  6. Tip-based chemical vapor deposition with a scanning nano-heater

    NARCIS (Netherlands)

    Gaitas, A.

    2013-01-01

    In this preliminary effort, a moving nano-heater directs a chemical vapor deposition reaction (nano-CVD) demonstrating a tip-based nanofabrication (TBN) method. Localized nano-CVD of copper (Cu) and copper oxide (CuO) on a silicon (Si) and silicon oxide (SiO2) substrate from gasses, namely

  7. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique

  8. Industrial Scale Synthesis of Carbon Nanotubes Via Fluidized Bed Chemical Vapor Deposition: A Senior Design Project

    Science.gov (United States)

    Smith, York R.; Fuchs, Alan; Meyyappan, M.

    2010-01-01

    Senior year chemical engineering students designed a process to produce 10 000 tonnes per annum of single wall carbon nanotubes (SWNT) and also conducted bench-top experiments to synthesize SWNTs via fluidized bed chemical vapor deposition techniques. This was an excellent pedagogical experience because it related to the type of real world design…

  9. Optimization of plasma-enhanced chemical vapor deposition silicon oxynitride layers for integrated optics applications

    NARCIS (Netherlands)

    Hussein, M.G.; Worhoff, Kerstin; Sengo, G.; Sengo, G.; Driessen, A.

    2007-01-01

    Silicon oxynitride $(SiO_{x}N_{y}:H)$ layers were grown from 2% $SiH_{4}/N_{2}$ and $N_{2}O$ gas mixtures by plasma-enhanced chemical vapor deposition (PECVD). Layer properties such as refractive index, deposition rate, thickness non-uniformity and hydrogen bond content were correlated to the

  10. Kinetic Study of the Chemical Vapor Deposition of Tantalum in Long Narrow Channels

    DEFF Research Database (Denmark)

    Mugabi, James Atwoki; Eriksen, Søren; Petrushina, Irina

    2016-01-01

    A kinetic study of the chemical vapor deposition of tantalum in long narrow channels is done to optimize the industrial process for the manufacture of tantalum coated plate heat exchangers. The developed model fits well at temperatures between 750 and 850 °C, and in the pressure range of25–990 mbar...

  11. Atmospheric pressure chemical vapor deposition of ZnO: Process modeling and experiments

    NARCIS (Netherlands)

    Deelen, J. van; Illiberi, A.; Kniknie, B.; Beckers, E.H.A.; Simons, P.J.P.M.; Lankhorst, A.

    2014-01-01

    The deposition of zinc oxide has been performed by atmospheric pressure chemical vapor deposition and trends in growth rates are compared with the literature. Diethylzinc and tertiary butanol were used as the primary reactants and deposition rates above 800 nm/min were obtained. The reaction

  12. Atmospheric pressure chemical vapor deposition of ZnO: Process modeling and experiments

    NARCIS (Netherlands)

    Deelen, J. van; Illiberi, A.; Kniknie, B.; Beckers, E.H.A.; Simons, P.J.P.M.; Lankhorst, A.

    2013-01-01

    The deposition of zinc oxide has been performed by atmospheric pressure chemical vapor deposition and trends in growth rates are compared with the literature. Diethylzinc and tertiary butanol were used as the primary reactants and deposition rates above 800 nm/minwere obtained. The reaction

  13. Silicon nitride at high growth rate using hot wire chemical vapor deposition

    NARCIS (Netherlands)

    Verlaan, V.

    2008-01-01

    Amorphous silicon nitride (SiNx) is a widely studied alloy with many commercial applications. This thesis describes the application of SiNx deposited at high deposition rate using hot wire chemical vapor deposition (HWCVD) for solar cells and thin film transistors (TFTs). The deposition process of

  14. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application.

    Science.gov (United States)

    Chao, Chung-Hua; Wei, Da-Hua

    2015-10-03

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 (o)C. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 (o)C. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 (o)C by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application.

  15. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    Science.gov (United States)

    Nallon, Eric C.

    An electronic nose (e-nose) is a biologically inspired device designed to mimic the operation of the olfactory system. The e-nose utilizes a chemical sensor array consisting of broadly responsive vapor sensors, whose combined response produces a unique pattern for a given compound or mixture. The sensor array is inspired by the biological function of the receptor neurons found in the human olfactory system, which are inherently cross-reactive and respond to many different compounds. The use of an e-nose is an attractive approach to predict unknown odors and is used in many fields for quantitative and qualitative analysis. If properly designed, an e-nose has the potential to adapt to new odors it was not originally designed for through laboratory training and algorithm updates. This would eliminate the lengthy and costly R&D costs associated with materiel and product development. Although e-nose technology has been around for over two decades, much research is still being undertaken in order to find new and more diverse types of sensors. Graphene is a single-layer, 2D material comprised of carbon atoms arranged in a hexagonal lattice, with extraordinary electrical, mechanical, thermal and optical properties due to its 2D, sp2-bonded structure. Graphene has much potential as a chemical sensing material due to its 2D structure, which provides a surface entirely exposed to its surrounding environment. In this configuration, every carbon atom in graphene is a surface atom, providing the greatest possible surface area per unit volume, so that electron transport is highly sensitive to adsorbed molecular species. Graphene has gained much attention since its discovery in 2004, but has not been realized in many commercial electronics. It has the potential to be a revolutionary material for use in chemical sensors due to its excellent conductivity, large surface area, low noise, and versatile surface for functionalization. In this work, graphene is incorporated into a

  16. Rapid MR spectroscopic imaging of lactate using compressed sensing

    Science.gov (United States)

    Vidya Shankar, Rohini; Agarwal, Shubhangi; Geethanath, Sairam; Kodibagkar, Vikram D.

    2015-03-01

    Imaging lactate metabolism in vivo may improve cancer targeting and therapeutics due to its key role in the development, maintenance, and metastasis of cancer. The long acquisition times associated with magnetic resonance spectroscopic imaging (MRSI), which is a useful technique for assessing metabolic concentrations, are a deterrent to its routine clinical use. The objective of this study was to combine spectral editing and prospective compressed sensing (CS) acquisitions to enable precise and high-speed imaging of the lactate resonance. A MRSI pulse sequence with two key modifications was developed: (1) spectral editing components for selective detection of lactate, and (2) a variable density sampling mask for pseudo-random under-sampling of the k-space `on the fly'. The developed sequence was tested on phantoms and in vivo in rodent models of cancer. Datasets corresponding to the 1X (fully-sampled), 2X, 3X, 4X, 5X, and 10X accelerations were acquired. The under-sampled datasets were reconstructed using a custom-built algorithm in MatlabTM, and the fidelity of the CS reconstructions was assessed in terms of the peak amplitudes, SNR, and total acquisition time. The accelerated reconstructions demonstrate a reduction in the scan time by up to 90% in vitro and up to 80% in vivo, with negligible loss of information when compared with the fully-sampled dataset. The proposed unique combination of spectral editing and CS facilitated rapid mapping of the spatial distribution of lactate at high temporal resolution. This technique could potentially be translated to the clinic for the routine assessment of lactate changes in solid tumors.

  17. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  18. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy.

    Science.gov (United States)

    Hu, Juejun

    2010-10-11

    In this paper, I systematically investigated Micro-Cavity PhotoThermal Spectroscopy (MC-PTS), a novel technique for ultra-sensitive detection of chemical molecular species. I first derive the photothermal enhancement factor and noise characteristics of the technique using a generic theoretical model, followed by numerical analysis of a design example using chalcogenide glass micro-disk cavities. Guidelines for sensor material selection and device design are formulated based on the theoretical insight. The numerical analysis shows that this technique features a record photothermal enhancement factor of 10(4) with respect to conventional cavity-enhanced (multi-pass) infrared absorption spectroscopy, and is capable of detecting non-preconcentrated chemical vapor molecules down to the ppt level with a moderate cavity quality factor of 10(5) and a pump laser power of 0.1 W. Such performance qualifies this technique as one of the most sensitive methods for chemical vapor spectroscopic analysis.

  20. Chemical vapor deposition of atomically thin materials for membrane dialysis applications

    Science.gov (United States)

    Kidambi, Piran; Mok, Alexander; Jang, Doojoon; Boutilier, Michael; Wang, Luda; Karnik, Rohit; Microfluidics; Nanofluidics Research Lab Team

    2015-11-01

    Atomically thin 2D materials like graphene and h-BN represent a new class of membranes materials. They offer the possibility of minimum theoretical membrane transport resistance along with the opportunity to tune pore sizes at the nanometer scale. Chemical vapor deposition has emerged as the preferable route towards scalable, cost effective synthesis of 2D materials. Here we show selective molecular transport through sub-nanometer diameter pores in graphene grown via chemical vapor deposition processes. A combination of pressure driven and diffusive transport measurements shows evidence for size selective transport behavior which can be used for separation by dialysis for applications such as desalting of biomolecular or chemical solutions. Principal Investigator

  1. Synthesis of Cobalt Oxides Thin Films Fractal Structures by Laser Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    P. Haniam

    2014-01-01

    Full Text Available Thin films of cobalt oxides (CoO and Co3O4 fractal structures have been synthesized by using laser chemical vapor deposition at room temperature and atmospheric pressure. Various factors which affect the density and crystallization of cobalt oxides fractal shapes have been examined. We show that the fractal structures can be described by diffusion-limited aggregation model and discuss a new possibility to control the fractal structures.

  2. A new technique to assess dermal absorption of chemical vapor in vitro by thermogravimetric analysis (TGA)

    OpenAIRE

    Rauma, Matias

    2008-01-01

    There is a huge lack of dermal uptake data for chemicals, and it is frequent with large variations in reported permeability coefficients for chemicals with more than one data set, showing the need for a new and standardized in vitro method. The overall aim of this thesis was to develop the new method of measuring dermal absorption of chemical vapor using the TGA method. Assessment of dermal absorption by TGA (Study I) Round pieces (ø8 mm) of pig epidermis were placed on ...

  3. Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition

    OpenAIRE

    Wu, Angjian; Li, Xiaodong; Yang, Jian; Du, Changming; Shen, Wangjun; Yan, Jianhua

    2017-01-01

    Vertical graphene (VG) sheets were single-step synthesized via inductively coupled plasma (ICP)-enhanced chemical vapor deposition (PECVD) using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H2, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper tem...

  4. Metal-Organic Covalent Network Chemical Vapor Deposition for Gas Separation.

    Science.gov (United States)

    Boscher, Nicolas D; Wang, Minghui; Perrotta, Alberto; Heinze, Katja; Creatore, Mariadriana; Gleason, Karen K

    2016-09-01

    The chemical vapor deposition (CVD) polymerization of metalloporphyrin building units is demonstrated to provide an easily up-scalable one-step method toward the deposition of a new class of dense and defect-free metal-organic covalent network (MOCN) layers. The resulting hyper-thin and flexible MOCN layers exhibit outstanding gas-separation performances for multiple gas pairs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The development of chemically vapor deposited mullite coatings for the corrosion protection of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.; Hou, P.; Sengupta, A.; Basu, S.; Sarin, V. [Boston Univ., MA (United States)

    1998-05-01

    Crystalline mullite coatings have been chemically vapor deposited onto SiC substrates to enhance the corrosion and oxidation resistance of the substrate. Current research has been divided into three distinct areas: (1) Development of the deposition processing conditions for increased control over coating`s growth rate, microstructure, and morphology; (2) Analysis of the coating`s crystal structure and stability; (3) The corrosion resistance of the CVD mullite coating on SiC.

  6. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    Science.gov (United States)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  7. Introducing molecular selectivity in rapid impedimetric sensing of phthalates

    KAUST Repository

    Zia, Asif I.

    2014-05-01

    This research article reports a real-time and non-invasive detection technique for phthalates in liquids by Electrochemical Impedance Spectroscopy (EIS), incorporating molecular imprinting technique to introduce selectivity for the phthalate molecule in the detection system. A functional polymer with Bis (2-ethylhexyl) phthalate (DEHP) template was immobilized on the sensing surface of the inter-digital (ID) capacitive sensor with sputtered gold sensing electrodes fabricated over a native layer of silicon dioxide on a single crystal silicon substrate. Various concentrations (10 to 200 ppm) of DEHP in deionized MilliQ water were exposed to the sensor surface functionalized with molecular imprinted polymer (MIP) in order to capture the analyte molecule, hence introducing molecular selectivity to the testing system. Impedance spectra were obtained using EIS in order to determine sample conductance for evaluation of phthalate concentration in the solution. Electrochemical Spectrum Analyzer algorithm was used to deduce equivalent circuit and equivalent component parameters from the experimentally obtained impedance spectra employing Randle\\'s cell model curve fitting technique. Experimental results confirmed that the immobilization of the functional polymer on sensing surface introduces selectivity for phthalates in the sensing system. The results were validated by testing the samples using High Performance Liquid Chromatography (HPLC-DAD). © 2014 IEEE.

  8. Synthesis and characterization of diamond microcrystals and nanorods deposited by hot cathode direct current plasma chemical vapor deposition method

    NARCIS (Netherlands)

    Zeng, L.; Peng, H.; Wang, W.; Chen, Y.; Lei, D.; Qi, W.; Liang, J.; Zhao, J.; Kong, X.; Zhang, H.

    2008-01-01

    (111) diamond microcrystals and (100) diamond microcrystals and nanorods were synthesized on Si substrate by hot cathode direct current plasma chemical vapor deposition method. The morphology, structure, and optical properties of the diamond films were characterized by scanning electron microscopy,

  9. Chemical vapor deposition techniques and related methods for manufacturing microminiature thermionic converters

    Energy Technology Data Exchange (ETDEWEB)

    King, Donald B. (Albuquerque, NM); Sadwick, Laurence P. (Salt Lake City, UT); Wernsman, Bernard R. (Clairton, PA)

    2002-06-25

    Methods of manufacturing microminiature thermionic converters (MTCs) having high energy-conversion efficiencies and variable operating temperatures using MEMS manufacturing techniques including chemical vapor deposition. The MTCs made using the methods of the invention incorporate cathode to anode spacing of about 1 micron or less and use cathode and anode materials having work functions ranging from about 1 eV to about 3 eV. The MTCs also exhibit maximum efficiencies of just under 30%, and thousands of the devices can be fabricated at modest costs.

  10. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  11. Synthesis of single-crystalline anisotropic gold nano-crystals via chemical vapor deposition

    Science.gov (United States)

    Manna, Sohini; Kim, Jong Woo; Takahashi, Yukiko; Shpyrko, Oleg G.; Fullerton, Eric E.

    2016-05-01

    We report on a novel one-step catalyst-free, thermal chemical vapor deposition procedure to synthesize gold nanocrystals on silicon substrates. This approach yields single-crystal nanocrystals with various morphologies, such as prisms, icosahedrons, and five-fold twinned decahedrons. Our approach demonstrates that high-quality anisotropic crystals composed of fcc metals can be produced without the need for surfactants or templates. Compared with the traditional wet chemical synthesis processes, our method enables direct formation of highly pure and single crystalline nanocrystals on solid substrates which have applications in catalysis. We investigated the evolution of gold nanocrystals and established their formation mechanism.

  12. Influence of alcohol on grain growth of tin oxide in chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Yuji [New Products Development Center, Technology Development Division, Japan/Asia Pacific General Division Automotive Glass Company, Asahi Glass Co. Ltd., 426-1 Sumida, Aikawa-machi, Aiko-gun, Kanagawa 243-0301 (Japan)]. E-mail: yuuji-matsui@agc.co.jp; Mitsuhashi, Michio [New Products Development Center, Technology Development Division, Japan/Asia Pacific General Division Automotive Glass Company, Asahi Glass Co. Ltd., 426-1 Sumida, Aikawa-machi, Aiko-gun, Kanagawa 243-0301 (Japan); Yamamoto, Yuichi [Research Center, Asahi Glass Co. Ltd., 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Higashi, Seiji [Research Center, Asahi Glass Co. Ltd., 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan)

    2007-01-22

    Morphologies of tin oxide micro-grains in the early stage of film growth were analyzed for films deposited by chemical vapor deposition using tin chloride as a source material. Atomic force microscopy observations revealed increased micro-grain density and decreased size by adding methanol into the reaction system, but X-ray photoelectron spectroscopy analyses suggested that the total deposited volume was unchanged. The relative amount of chlorine contamination at the bottom of alcohol-added films increased in the order of isopropyl alcohol < ethanol < methanol. A model of chlorine desorption through reaction with alcohol, which occurred in the early stage of film growth, can explain the results.

  13. Chemical etching of copper foils for single-layer graphene growth by chemical vapor deposition

    Science.gov (United States)

    Yoshihara, Naoki; Noda, Masaru

    2017-10-01

    Chemical etching on copper surface is essential as a pre-treatment for single-layer graphene growth by chemical vapor deposition (CVD). Here, we investigated the effect of chemical etching treatment on copper foils for single-layer graphene CVD growth. The chemical etching conditions, such as the type of chemical etchants and the treatment time, were found to strongly influence the graphene domain size. Moreover, a drastic change in the layer structure of graphene sheets, which was attributed to the surface morphology of the etched copper foil, was confirmed by graphene transmittance and Raman mapping measurements.

  14. Raman and optical characterization of multilayer turbostratic graphene grown via chemical vapor deposition

    OpenAIRE

    Lenski, Daniel R.; Fuhrer, Michael S.

    2010-01-01

    We synthesize large-area graphene via atmospheric-pressure (AP) chemical vapor deposition (CVD) on copper, and transfer to SiO2 wafers. In contrast to low-pressure (LP) CVD on copper, optical contrast and atomic force microscopy measurements show AP-CVD graphene contains significant multi-layer areas. Raman spectroscopy always shows a single Lorentzian 2D peak, however systematic differences are observed in the 2D peak energy, width, and intensity for single- and multi-layer regions. We concl...

  15. Porous tungsten prepared by atmospheric-pressure chemical vapor deposition with WF6 and its characterization

    Science.gov (United States)

    Li, Ying; Yu, Xiaodong; Tan, Chengwen; Wang, Fuchi; Ma, Honglei; Yue, Jintao

    2017-05-01

    Porous tungsten (W) is used in aeronautic and aerospace engineering, power electronics field and metallurgical industry. In this study, porous W with 98wt% W was prepared on a carbon foam substrate by atmospheric-pressure chemical vapor deposition (CVD) with tungsten fluoride (WF6) as the precursor. The porous W with 78.1346% porosity displayed a pure α-W phase and the uniform surface. The mode pore diameter of porous W is 208.0 µm. In a compression test, the fracture strength of porous W is 20.3 MPa.

  16. Chemical Vapor Synthesis of Titanium Aluminides by Reaction of Aluminum Subchloride and Titanium Tetrachloride

    Science.gov (United States)

    Zakirov, Roman A.; Parfenov, Oleg G.; Solovyov, Leonid A.

    2017-11-01

    A new process for developing titanium aluminides (TiAls) using chemical vapor synthesis was investigated in a laboratory experiment. Aluminum subchloride (AlCl) was used as the reducing agent in the reaction with TiCl4 and the source of aluminum for Ti-Al alloy. Two types of products, with large crystals and fine particles, were fabricated. The large crystals were determined to be TiAl, with small amounts of Ti and Ti3Al phases. The composition of fine particles, on the other hand, varied in wide range.

  17. Transmission electron microscopy studies of YBCO coated conductor deposited using multiple-stage chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, H. [Japan Fine Ceramics Center, Material Research and Development Laboratory, 2-4-1, Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan)]. E-mail: hisasaki@jfcc.or.jp; Kato, T. [Japan Fine Ceramics Center, Material Research and Development Laboratory, 2-4-1, Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Sasaki, Y. [Japan Fine Ceramics Center, Material Research and Development Laboratory, 2-4-1, Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Hirayama, T. [Japan Fine Ceramics Center, Material Research and Development Laboratory, 2-4-1, Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Kashima, N. [Electric Power Research and Development Center, Chubu Electric Power Co., Inc., 20-1, Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya, Aichi 459-8522 (Japan); Nagaya, S. [Electric Power Research and Development Center, Chubu Electric Power Co., Inc., 20-1, Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya, Aichi 459-8522 (Japan); Izumi, T. [Superconductivity Research Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Shiohara, Y. [Superconductivity Research Center, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

    2005-10-01

    A YBCO film was deposited on Hastelloy tape with highly oriented CeO{sub 2}/Gd{sub 2}Zr{sub 2}O{sub 7} multilayer using multiple-stage chemical vapor deposition. The microstructures of the YBCO coated conductor were examined in detail using transmission electron microscopy. Analysis indicated a YBCO film about 1 {mu}m thick was deposited and consisted mainly of c-axis oriented grains. However, a-axis oriented grains were also observed in the YBCO film, and these a-axis oriented grains grew larger with increasing thickness of the YBCO film.

  18. ZnO nanowall network grown by chemical vapor deposition technique

    Science.gov (United States)

    Mukherjee, Amrita; Dhar, Subhabrata

    2015-06-01

    Network of wedge shaped ZnO nanowalls are grown on c-sapphire by Chemical Vapor Deposition (CVD) technique. Structural studies using x-ray diffraction show much better crystallinity in the nanowall sample as compared to the continuous film. Moreover, the defect related broad green luminescence is found to be suppressed in the nanowall sample. The low temperature photoluminescence study also suggests the quantum confinement of carriers in nanowall sample. Electrical studies performed on the nanowalls show higher conductivity, which has been explained in terms of the reduction of scattering cross-section as a result of 1D quantum confinement of carriers on the tip of the nanowalls.

  19. ZnO nanowall network grown by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Amrita, E-mail: but.then.perhaps@gmail.com; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2015-06-24

    Network of wedge shaped ZnO nanowalls are grown on c-sapphire by Chemical Vapor Deposition (CVD) technique. Structural studies using x-ray diffraction show much better crystallinity in the nanowall sample as compared to the continuous film. Moreover, the defect related broad green luminescence is found to be suppressed in the nanowall sample. The low temperature photoluminescence study also suggests the quantum confinement of carriers in nanowall sample. Electrical studies performed on the nanowalls show higher conductivity, which has been explained in terms of the reduction of scattering cross-section as a result of 1D quantum confinement of carriers on the tip of the nanowalls.

  20. Fabrication of GaAs-Mo-Si structures by metalorganic chemical vapor deposition and laser annealing

    Science.gov (United States)

    Okakmoto, K.; Imai, T.

    1983-06-01

    After depositing undoped polycrystalline GaAs layers on Mo layers by means of metal-organic chemical vapor deposition, the samples were immersed in SnCl2-dissolved methanol in order to undergo annealing through irradiation by a Q-switched ruby laser. Recrystallization and doping of the GaAs layers was carried out succesfully, and Schottky characteristics were observed between the top GaAs layer and the Mo layer underneath. The barrier height was measured to be 0.53 eV.

  1. Characteristics of epitaxial garnets grown by CVD using single metal alloy sources. [Chemical Vapor Deposition

    Science.gov (United States)

    Besser, P. J.; Hamilton, T. N.; Mee, J. E.; Stermer, R. L.

    1974-01-01

    Single metal alloys have been explored as the cation source in the chemical vapor deposition (CVD) of iron garnets. Growth of good quality single crystal garnet films containing as many as five different cations has been achieved over a wide range of deposition conditions. The relationship of film composition to alloy compositions and deposition conditions has been determined for several materials. By proper choice of the alloy composition and the deposition conditions, uncrazed deposits were grown on (111) gadolinium gallium garnet (GGG) substrates. Data on physical, magnetic and optical properties of representative films is presented and discussed.

  2. Fabrication and characterization of a planar gradient-index, plasma-enhanced chemical vapor deposition lens.

    Science.gov (United States)

    Beltrami, D R; Love, J D; Durandet, A; Samo, A; Cogswell, C J

    1997-10-01

    A thin, one-dimensional, gradient-index slab lens with a parabolic profile was designed and fabricated in fluorine-doped silica by use of plasma-enhanced chemical vapor deposition in a Helicon plasma reactor. The refractive-index profile of the fabricated lens was determined by the application of an inversion technique to the values of modal effective index measured with a prism coupler. The periodic refocusing property of the lens and the independence of the wavelength were measured with the fluorescence of a specially doped, thin polymer layer spin-coated onto the surface of the lens.

  3. Preparation of Bismuth Titanate Films by Electron Cyclotron Resonance Plasma Sputtering-Chemical Vapor Deposition

    OpenAIRE

    Masumoto, H.; Hirai, T.

    1995-01-01

    Bismuth titanate (Bi4Ti3O12 : BIT) thin films were prepared on the Pt courted MgO(100) substrate by electron cyclotron resonance plasma sputtering-chemical vapor deposition (ECR plasma sputtering-CVD). Bi2O3 was used as a sputtering target and tetra-isopropoxy-titanium [Ti(i-C3H7O)4] as a CVD source. The composition of films was controlled by changing RF power (PRF) of Bi2O3 target and Ti source temperature (TTi). The stoichiometric BIT film was prepared under the condition of PRF=500W, TTi=6...

  4. Remote microwave plasma enhanced chemical vapor deposition (RMPECVD) of silica and alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Desmaison, J.; Hidalgo, H.; Tristant, P.; Naudin, F.; Merle, D. [Limoges Univ. (France). Lab. de Sciences des Procedes Ceramiques et Traitements de Surface

    2002-07-01

    Alumina or silica are attractive as insulation and protective layers for sensitive substrates. Oxides are deposited by remote microwave plasma enhanced chemical vapor deposition (RMPECVD) using an oxygen plasma and a mixture of precursor gas silane or trimethylaluminum (TMA) diluted in argon, respectively for silica and alumina, injected in the afterglow. This technique allows to deposit films of SiO{sub 2} and Al{sub 2}O{sub 3} with satisfactory characteristics (density, etch rate, stoichiometry) and high deposition rate. The comparison of the best deposition conditions reveals that in case of alumina higher temperatures and lower pressures are needed. (orig.)

  5. MgB2 ultrathin films fabricated by hybrid physical chemical vapor deposition and ion milling

    Directory of Open Access Journals (Sweden)

    Narendra Acharya

    2016-08-01

    Full Text Available In this letter, we report on the structural and transport measurements of ultrathin MgB2 films grown by hybrid physical-chemical vapor deposition followed by low incident angle Ar ion milling. The ultrathin films as thin as 1.8 nm, or 6 unit cells, exhibit excellent superconducting properties such as high critical temperature (Tc and high critical current density (Jc. The results show the great potential of these ultrathin films for superconducting devices and present a possibility to explore superconductivity in MgB2 at the 2D limit.

  6. Growth and characterization of Bi2Se3 crystals by chemical vapor transport

    Directory of Open Access Journals (Sweden)

    W. H. Jiao

    2012-06-01

    Full Text Available Regularly-shaped high-quality Bi2Se3 crystals were grown by a chemical vapor transport using iodine as the transport agent. In addition to exhibiting a characteristic Dirac cone for a topological insulator, the Bi2Se3 crystals show some outstanding properties including additional crystallographic surfaces, large residual resistance ratio (∼10, and high mobility (∼8000 cm2·V−1·s−1. The low-temperature resistivity abnormally increases with applying pressures up to 1.7 GPa, and no superconductivity was observed down to 0.4 K.

  7. Phase Equilibrium of TiO2 Nanocrystals in Flame-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Liu, Changran; Camacho, Joaquin; Wang, Hai

    2017-10-23

    Nano-scale titanium oxide (TiO2) is a material useful for a wide range of applications. In a previous study, we showed that TiO2 nanoparticles of both rutile and anatase crystal phases could be synthesized over the size range of 5 to 20 nm in flame-assisted chemical vapor deposition. While rutile was unexpectedly dominant in oxygen-lean synthesis conditions, anatase is the preferred phase in oxygen-rich gases. The observation is in contrast to the 14 nm rutile-anatase crossover size derived from the existing crystal-phase equilibrium model. In the present work, we made additional measurements over a wider range of synthesis conditions; the results confirm the earlier observations. We propose an improved model for the surface energy that considers the role of oxygen desorption at high temperatures. The model successfully explains the observations made in the current and previous work. The current results provide a useful path to designing flame-assisted chemical vapor deposition of TiO2 nanocrystals with controllable crystal phases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  9. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Science.gov (United States)

    Karamat, S.; Sonuşen, S.; Çelik, Ü.; Uysallı, Y.; Oral, A.

    2016-04-01

    In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH)2 for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and LiOH was ∼6 min and for NaOH and Ba(OH)2 it was ∼15 min. KOH and LiOH peeled off graphene very efficiently as compared to NaOH and Ba(OH)2 from the Pt electrode. In case of copper, the peeling time is ∼3-5 min. Different characterizations like optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy were done to analyze the as grown and transferred graphene samples.

  10. Development of Single Crystal Chemical Vapor Deposition Diamonds for Detector Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Harris; Kass, Richard; Gan, K. K.

    2014-01-23

    With the LHC upgrades in 2013, and further LHC upgrades scheduled in 2018, most LHC experiments are planning for detector upgrades which require more radiation hard technologies than presently available. At present all LHC experiments now have some form of diamond detector. As a result Chemical Vapor Deposition (CVD) diamond has now been used extensively in beam conditions monitors as the innermost detectors in the highest radiation areas of all LHC experiments. Moreover CVD diamond is now being discussed as an alternative sensor material for tracking very close to the interaction region of the HL-LHC where the most extreme radiation conditions will exist. Our work addressed the further development of the new material, single-crystal Chemical Vapor Deposition diamond, towards reliable industrial production of large pieces and new geometries needed for detector applications. Our accomplishments include: • Developed a two U.S.companies to produce electronic grade diamond, • Worked with companies and acquired large area diamond pieces, • Performed radiation hardness tests using various proton energies: 70 MeV (Cyric, Japan), 800 MeV (Los Alamos), and 24 GeV (CERN).

  11. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. John, E-mail: ajhart@mit.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-11-15

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  12. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    Science.gov (United States)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc; Hart, A. John

    2013-11-01

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called "Robofurnace." Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  13. Suitable alkaline for graphene peeling grown on metallic catalysts using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Karamat, S., E-mail: shumailakaramat@gmail.com [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); COMSATS Institute of Information Technology, Islamabad 54000 (Pakistan); Sonuşen, S. [Sabancı Üniversitesi (SUNUM), İstanbul 34956 (Turkey); Çelik, Ü. [Nanomagnetics Instruments, Ankara (Turkey); Uysallı, Y. [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); Oral, A., E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey)

    2016-04-15

    Graphical abstract: - Highlights: • Graphene layers were grown on Pt and Cu foil via ambient pressure chemical vapor deposition method and for the delicate removal of graphene from metal catalysts, electrolysis method was used by using different alkaline (sodium hydroxide, potassium hydroxide, lithium hydroxide and barium hydroxide). • The delamination speed of PMMA/graphene stack was higher during the KOH and LiOH electrolysis as compare to NaOH and Ba(OH){sub 2}. Ba(OH){sub 2} is not advisable because of the residues left on the graphene surface which would further trapped in between graphene and SiO{sub 2}/Si surface after transfer. The average peeling time in case of Pt electrode is ∼6 min for KOH and LiOH and ∼15 min for NaOH and Ba(OH){sub 2}. • Electrolysis method also works for the Cu catalyst. The peeling of graphene was faster in the case of Cu foil due to small size of bubbles which moves faster between the stack and the electrode surface. The average peeling time was ∼3–5 min. • XPS analysis clearly showed that the Pt substrates can be re-used again. Graphene layer was transferred to SiO{sub 2}/Si substrates and to the flexible substrate by using the same peeling method. - Abstract: In chemical vapor deposition, the higher growth temperature roughens the surface of the metal catalyst and a delicate method is necessary for the transfer of graphene from metal catalyst to the desired substrates. In this work, we grow graphene on Pt and Cu foil via ambient pressure chemical vapor deposition (AP-CVD) method and further alkaline water electrolysis was used to peel off graphene from the metallic catalyst. We used different electrolytes i.e., sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH) and barium hydroxide Ba(OH){sub 2} for electrolysis, hydrogen bubbles evolved at the Pt cathode (graphene/Pt/PMMA stack) and as a result graphene layer peeled off from the substrate without damage. The peeling time for KOH and Li

  14. Development of polishing methods for Chemical Vapor Deposited Silicon Carbide mirrors for synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, B.A.; Brown, N.J.

    1987-01-01

    Material properties of Chemical Vapor Deposited Silicon Carbide (CVD SiC) make it ideal for use in mirrors for synchrotron radiation experiments. We developed methods to grind and polish flat samples of CVD SiC down to measured surface roughness values as low as 1.1 Angstroms rms. We describe the processing details, including observations we made during trial runs with alternative processing recipes. We conclude that pitch polishing using progressively finer diamond abrasive, augmented with specific water based lubricants and additives, produces superior results. Using methods based on these results, a cylindrical and a toroidal mirror, each about 100 x 300mm, were respectively finished by Continental Optical and Frank Cooke, Incorporated. WYCO Interferometry shows these mirrors have surface roughness less than 5.7 Angstroms rms. These mirrors have been installed on the LLNL/UC X-ray Calibration and Standards Facility at the Stanford Synthrotron Radiation Laboratory.

  15. Current Issues and Problems in the Chemical Vapor Deposition of Diamond

    Science.gov (United States)

    Yarbrough, Walter A.; Messier, Russell

    1990-02-01

    Current issues and problems in the chemical vapor deposition (CVD) of diamond are those which relate to its characterization, its nucleation on foreign surfaces, the question of its formation in preference to the other phases of solid carbon (for example, graphite, chaoite, or lonsdaleite), why different morphologies and crystallographic orientations (textures) are seen in different experiments or with different parameters in the same experiment, and finally whether well-crystallized metastable phases can be obtained by CVD in other material systems or are only a peculiarity of carbon chemistry. Whether a given carbon coating is justly described as diamond has been such an issue, and coatings should clearly show evidence for diamond by x-ray diffraction and Raman spectroscopy before the claim of diamond is made. Experimental results have not been consistent in many cases, and much work remains to be done before an accurate assessment can be made of the technological impact of the development.

  16. Graphene-laminated architectures obtained by chemical vapor deposition: From graphene to graphite

    Science.gov (United States)

    Kitayama, Hiroki; Shimizu, Kengo; Ohba, Tomonori

    2017-11-01

    Graphene and graphite are of great interest in materials science. Using chemical vapor deposition at various CH4:H2 ratios, we synthesized materials with graphene-laminated architectures, ranging from graphene to graphite. A lower proportion of CH4 and lower synthesis temperature produced fewer graphene layers. The transparent properties changed from transparent to semi-transparent, black, and silver as the number of graphene layers was increased. The sheet electrical resistivity ranged from 106 to 0.2 Ω □-1, and the smaller resistivity was nearly equaled as the values of highly orientated pyrolytic graphite and glassy carbon. The graphene-laminated materials featured a wide range of transmittance, reflectance, and electrical conductance properties.

  17. Photoluminescence characterization of the grain boundary thermal stability in chemical vapor deposition grown WS2

    Science.gov (United States)

    Cai, Shuang; Zhao, Weiwei; Zafar, Amina; Wu, Zhangting; Tao, Yi; Bi, Kedong; Wei, Zhiyong; Ni, Zhenhua; Chen, Yunfei

    2017-10-01

    Monolayer transition metal dichalcogenides (TMDs) such as MoS2 and WS2 have been considered as promising candidate materials in nanophotonic applications. However, the structure stability of TMDs based optoelectronic devices is highly sensitive to the working environment. Here we present a successive photoluminescence study of the thermal stability characterization of grain boundary in chemical vapor deposition grown monolayer WS2. Results show that PL intensity enhancement in grain boundaries can be significantly weakened during the annealing process. Transformation temperature starts around 210 °C, substantially lower than the surrounding non-grain-boundary area. First-principle calculations results show that the PL quenching of grain boundaries is caused by the increased structural defects induced by annealing process, which makes the transition of electrons more difficult. Our results provide a route for characterizing the structure stability of two dimensional (2D) semiconductors, calling for extra attention to nanophotonic device working condition.

  18. Macrokinetics of carbon nanotubes synthesis by the chemical vapor deposition method

    Science.gov (United States)

    Rukhov, Artem; Dyachkova, Tatyana; Tugolukov, Evgeny; Besperstova, Galina

    2017-11-01

    A new approach to studying and developing basic processes which take place on the surface of a metal catalyst during the thermal decomposition of carbonaceous substances in the carbon nanotubes synthesis by the chemical vapor deposition method was proposed. In addition, an analysis was made of the interrelationships between these thermal, diffusion, hydrodynamic and other synthesis processes. A strong effect of the catalyst regeneration stage on the stage of nanotube formation has been shown. Based on the developed approach, a mathematical model was elaborated. Comparison of the calculation and the experiment carried out with the NiO-MgO catalyst at propane flow rate of 50 mL/min (standard conditions) and ethanol flow rate 0.3 mL/min (liq.) has revealed a discrepancy of less than 10%.

  19. Sequential microcontroller-based control for a chemical vapor deposition process

    Directory of Open Access Journals (Sweden)

    Edgar Serrano Pérez

    2017-12-01

    Full Text Available A cost-effective direct liquid injection system is developed for a chemical vapor deposition process using a microcontroller. The precursor gas phase is controlled by the precise sequential injection of a liquid precursor solution to a vaporizing chamber prior deposition. The electronic control system allows the human–machine interface through a LCD display and a keypad matrix. The core of the electronic system is based on an electro mechanical injector operated in time and frequency as a sequential control system by a popular PIC16F877A chip. The software has been developed in the BASIC language and it can be easily modified through an ICSP programmer for different sequential automatized routines. The injection calibration test has proven the linearity of the injection control system for different operation parameters. The results reported the sequential injection MOCVD deposition of alumina thin film.

  20. X-ray Tomographic Study of Chemical Vapor Infiltration Processing of Ceramic Composites.

    Science.gov (United States)

    Kinney, J H; Breunig, T M; Starr, T L; Haupt, D; Nichols, M C; Stock, S R; Butts, M D; Saroyan, R A

    1993-05-07

    The fabrication of improved ceramic-matrix composites will require a better understanding of processing variables and how they control the development of the composite microstructure. Noninvasive, high-resolution methods of x-ray tomography have been used to measure the growth of silicon carbide in a woven Nicalon-fiber composite during chemical vapor infiltration. The high spatial resolution allows one to measure the densification within individual fiber tows and to follow the closure of macroscopic pores in situ. The experiments provide a direct test of a recently proposed model that describes how the surface area available for matrix deposition changes during infiltration. The measurements indicate that this surface area is independent of the fiber architecture and location within the preform and is dominated by large-scale macroporosity during the final stages of composite consolidation. The measured surface areas are in good agreement with the theoretical model.

  1. Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zardo, I.; Conesa-Boj, S.; Estradé, S.; Yu, L.; Peiro, F.; Roca I Cabarrocas, P.; Morante, J. R.; Arbiol, J.; Fontcuberta I Morral, A.

    2010-07-01

    Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the , or growth direction. When growing on the and directions, they revealed a similar crystal quality and the presence of a high density of twins along the {111} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm-1, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growth.

  2. Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area

    KAUST Repository

    Li, Henan

    2016-10-31

    Two-dimensional transition metal dichalcogenides (TMDCs) have shown great promise in electronics and optoelectronics due to their unique electrical and optical properties. Heterostructured TMDC layers such as the laterally stitched TMDCs offer the advantages of better electronic contact and easier band offset tuning. Here, we demonstrate a photoresist-free focused ion beam (FIB) method to pattern as-grown TMDC monolayers by chemical vapor deposition, where the exposed edges from FIB etching serve as the seeds for growing a second TMDC material to form desired lateral heterostructures with arbitrary layouts. The proposed lithographic and growth processes offer better controllability for fabrication of the TMDC heterostrucuture, which enables the construction of devices based on heterostructural monolayers. © 2016 American Chemical Society.

  3. Carrier dynamics in InS nanowires grown via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Othonos, Andreas [Department of Physics, Research Centre of Ultrafast Science, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus); Zervos, Matthew [Department of Mechanical and Manufacturing Engineering, Nanostructured Materials and Devices Laboratory, Materials Science Group, University of Cyprus, P.O. Box 20537, 1678 Nicosia (Cyprus)

    2010-10-15

    Transient femtosecond absorption spectroscopy and time-correlating single photon counting (TCSPC) photoluminescence (PL) were employed to study InS nanowires (NWs) grown by chemical vapor deposition (CVD) and determine the relaxation mechanisms in these nanostructures. Intensity dependent measurements revealed that Auger recombination plays an important role in the relaxation of photogenerated carriers at fluences larger than 0.4 x 10{sup 15} photons/cm{sup 2}. Calculations provided an estimated of the Auger recombination coefficient to be 1.1 {+-} 0.5 x 10{sup -31} cm{sup 6}/s. At the low fluence regime TCSPC PL revealed three relaxation mechanisms with time constants ranging from ps to nanosecond providing evidence of the importance of non-radiative decay channels associated with defect/trap states within the NWs. Auger recombination appears to dominate the carrier dynamics in InS NWs with increasing incident photon flux. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  4. Chemical vapor infiltration of TiB{sub 2} fibrous composites

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This program is designed to develop a Hall-Heroult aluminum smelting cathode with substantially improved properties. The carbon cathodes in current use require significant anode-to-cathode spacing in order to prevent shorting, causing significant electrical inefficiencies. This is due to the non-wettability of carbon by aluminum which causes instability in the cathodic aluminum pad. It is suggested that a fiber reinforced-TiB{sub 2} matrix composite would have the requisite wettability, strength, strain-to-failure, cost, and lifetime to solve this problem. The approach selected to fabricate such a cathode material is chemical vapor infiltration (CVI). This process produces high purity matrix TiB{sub 2} without damaging the relatively fragile fibers. The program is designed to evaluate potential fiber reinforcements, fabricate test specimens, and scale the process to provide demonstration components.

  5. Characterization of catalytic chemical vapor-deposited SiCN thin film coatings

    Science.gov (United States)

    Neethirajan, Suresh; Ono, Takahita; Masayoshi, Esashi

    2012-06-01

    Silicon carbonitride thin films of 480 to 730-nm thicknesses were grown on silicon substrate using ammonia and hexamethyldisilazane gas sources using catalytic chemical vapor deposition process. Compositions of silicon, carbon and nitrogen in the SiCN films were varied by changing the flow rate of ammonia gas. The effect of deposition conditions on the structural, optical and mechanical properties of SiCN thin films was examined. X-ray photoelectron spectroscopy analysis indicated that the higher flow rate of ammonia gas results in higher nitrogen and lower carbon content in the deposited thin films. The measurement of stress as a function of substrate temperature in the SiCN film showed that the stress changes from compressive to tensile in the range of 275°C to 325°C. With these preliminary characterization tests, it is expected that SiCN nano-thin films can be used for developing sensors for harsh environment.

  6. Study of surface morphology and alignment of MWCNTs grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Mohamed, N. M., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my; Shaharun, M. S., E-mail: zshukrullah@gmail.com, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: maizats@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia); Yasar, M., E-mail: Muhammad.yasar@ieee.org [Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    In this research work, Multiwalled Carbon Nanotubes (MWCNTs) have been synthesized successfully by using floating catalytic chemical vapor deposition (FCCVD) method. Different ferrocene amounts (0.1, 0.125 and 0.15 g) were used as catalyst and ethylene was used as a carbon precursor at reaction temperature of 800°C. Characterization of the grown MWCNTs was carried out by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained data showed that the catalyst weight affects the nanotubes diameter, alignment, crystallinity and growth significantly, whereas negligible influence was noticed on CNTs forest length. The dense, uniform and meadow like patterns of grown CNTs were observed for 0.15 g ferrocene. The average diameter of the grown CNTs was found in the range of 32 to 75 nm. Close inspection of the TEM images also confirmed the defects in some of the grown CNTs, where few black spots were evident in CNTs structure.

  7. Metal-free plasma-enhanced chemical vapor deposition of large area nanocrystalline graphene

    Science.gov (United States)

    Schmidt, Marek E.; Xu, Cigang; Cooke, Mike; Mizuta, Hiroshi; Chong, Harold M. H.

    2014-04-01

    This paper reports on large area, metal-free deposition of nanocrystalline graphene (NCG) directly onto wet thermally oxidized 150 mm silicon substrates using parallel-plate plasma-enhanced chemical vapor deposition. Thickness non-uniformities as low as 13% are achieved over the whole substrate. The cluster size {{L}_{\\text{a}}} of the as-obtained films is determined from Raman spectra and lies between 1.74 and 2.67 nm. The film uniformity was further confirmed by Raman mapping. The sheet resistance {{R}_{\\text{sq}}} of 3.73 \\text{k}\\Omega and charge carrier mobility μ of 2.49\\;\\text{c}{{\\text{m}}^{2}}\\;{{\\text{V}}^{-1}}\\;{{\\text{s}}^{-1}} are measured. We show that the NCG films can be readily patterned by reactive ion etching. NCG is also successfully deposited onto quartz and sapphire substrates and showed >85% optical transparency in the visible light spectrum.

  8. Carbon agent chemical vapor transport growth of Ga2O3 crystal

    Science.gov (United States)

    Jie, Su; Tong, Liu; Jingming, Liu; Jun, Yang; Guiying, Shen; Yongbiao, Bai; Zhiyuan, Dong; Youwen, Zhao

    2016-10-01

    Beta-type gallium oxide (β-Ga2O3) is a new attractive material for optoelectronic devices. Different methods had been tried to grow high quality β-Ga2O3 crystals. In this work, crystal growth of Ga2O3 has been carried out by chemical vapor transport (CVT) method in a closed quartz tube using C as transport agent and sapphire wafer as seed. The CVT mass flux has been analyzed by theoretical calculations based on equilibrium thermodynamics and 1D diffusional mass transport. The crystal growth experimental results are in agreement with the theoretical predictions. Influence factors of Ga2O3 crystal growth, such as temperature distribution, amount of C as transport agent used, have also been discussed. Structural (XRD) and optical (Raman spectroscopy, photoluminescence spectrum) properties of the CVT-Ga2O3 crystal are presented. Project supported by the National Natural Science Foundation of China (Nos. 61474104, 61504131).

  9. Synthesis of boron nitride nanotubes by Argon supported Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Ahmad, Pervaiz; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd

    2015-03-01

    Thermal Chemical Vapor Deposition technique is modified with the use of Argon gas flow inside the chamber as an alternative for vacuum and orientation of one end closed quartz test tube. The use of Argon gas not only simplified the experimental set up, but also made it ~ 18 % cost effective compared to the conventional set up. Field Emission Scanning Electron Microscopy micrographs show straight and long BNNTs along with some cotton like morphologies. Transmission electron microscopy revealed bamboo like structure inside the tube and ~0.34 nm interlayer spacing for highly crystalline nature of boron nitride nanotubes. X-ray photon spectroscopy shows B 1s peak at 191.08 eV and N 1s peak at 398.78 eV that represents h-BN. Whereas, Raman spectrum indicates a major peak at ~1379.60 (cm-1) that correspond to E2g mode of h-BN.

  10. Large single crystals of graphene on melted copper using chemical vapor deposition.

    Science.gov (United States)

    Wu, Yimin A; Fan, Ye; Speller, Susannah; Creeth, Graham L; Sadowski, Jerzy T; He, Kuang; Robertson, Alex W; Allen, Christopher S; Warner, Jamie H

    2012-06-26

    A simple method is presented for synthesizing large single crystal graphene domains on melted copper using atmospheric pressure chemical vapor deposition (CVD). This is achieved by performing the reaction above the melting point of copper (1090 °C) and using a molybdenum or tungsten support to prevent balling of the copper from dewetting. By controlling the amount of hydrogen during growth, individual single crystal domains of monolayer graphene greater than 200 μm are produced within a continuous film. Stopping growth before a complete film is formed reveals individual hexagonal domains of graphene that are epitaxially aligned in their orientation. Angular resolved photoemission spectroscopy is used to show that the graphene grown on copper exhibits a linear dispersion relationship and no sign of doping. HRTEM and electron diffraction reveal a uniform high quality crystalline atomic structure of monolayer graphene.

  11. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper.

    Science.gov (United States)

    Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Dauber, Jan; Oellers, Martin; Haupt, Federica; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2015-07-01

    Graphene research has prospered impressively in the past few years, and promising applications such as high-frequency transistors, magnetic field sensors, and flexible optoelectronics are just waiting for a scalable and cost-efficient fabrication technology to produce high-mobility graphene. Although significant progress has been made in chemical vapor deposition (CVD) and epitaxial growth of graphene, the carrier mobility obtained with these techniques is still significantly lower than what is achieved using exfoliated graphene. We show that the quality of CVD-grown graphene depends critically on the used transfer process, and we report on an advanced transfer technique that allows both reusing the copper substrate of the CVD growth and making devices with mobilities as high as 350,000 cm(2) V(-1) s(-1), thus rivaling exfoliated graphene.

  12. Uniformity of large-area bilayer graphene grown by chemical vapor deposition

    Science.gov (United States)

    Sheng, Yuewen; Rong, Youmin; He, Zhengyu; Fan, Ye; Warner, Jamie H.

    2015-10-01

    Graphene grown by chemical vapor deposition (CVD) on copper foils is a viable method for large area films for transparent conducting electrode (TCE) applications. We examine the spatial uniformity of large area films on the centimeter scale when transferred onto both Si substrates with 300 nm oxide and flexible transparent polyethylene terephthalate substrates. A difference in the quality of graphene, as measured by the sheet resistance and transparency, is found for the areas at the edges of large sheets that depends on the supporting boat used for the CVD growth. Bilayer graphene is grown with uniform properties on the centimeter scale when a flat support is used for CVD growth. The flat support provides consistent delivery of precursor to the copper catalyst for graphene growth. These results provide important insights into the upscaling of CVD methods for growing high quality graphene and its transfer onto flexible substrates for potential applications as a TCE.

  13. Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst.

    Science.gov (United States)

    Choi, Dong Soo; Kim, Keun Soo; Kim, Hyeongkeun; Kim, Yena; Kim, TaeYoung; Rhy, Se-hyun; Yang, Cheol-Min; Yoon, Dae Ho; Yang, Woo Seok

    2014-11-26

    Here, we show that chemical vapor deposition growth of graphene on copper foil is strongly affected by the cooling conditions. Variation of cooling conditions such as cooling rate and hydrocarbon concentration in the cooling step has yielded graphene islands with different sizes, density of nuclei, and growth rates. The nucleation site density on Cu substrate is greatly reduced when the fast cooling condition was applied, while continuing methane flow during the cooling step also influences the nucleation and growth rate. Raman spectra indicate that the graphene synthesized under fast cooling condition and methane flow on cool-down exhibit superior quality of graphene. Further studies suggest that careful control of the cooling rate and CH4 gas flow on the cooling step yield a high quality of graphene.

  14. Highly oriented, free-standing, superconducting NbN films growth on chemical vapor deposited graphene

    Directory of Open Access Journals (Sweden)

    Garima Saraswat

    2014-05-01

    Full Text Available NbN films are grown on chemical vapor deposited graphene using dc magnetron sputtering. The orientation and transition temperature of the deposited films is studied as a function of substrate temperature. A superconducting transition temperature of 14 K is obtained for highly oriented (111 films grown at substrate temperature of 150 °C, which is comparable to epitaxial films grown on MgO and sapphire substrates. These films show a considerably high upper critical field of ∼33 T. In addition, we demonstrate a process for obtaining flexible, free-standing NbN films by delaminating graphene from the substrate using a simple wet etching technique. These free-standing NbN layers can be transferred to any substrate, potentially enabling a range of novel superconducting thin-film applications.

  15. Characterization of ultra-short pulsed discharge plasma for CVD processing. [Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Akira (Toyohashi Univ. of Technology (Japan). Dept. of Ecological Engineering); Okazaki, Ken (Tokyo Inst. of Technology (Japan). Research Center for Carbon Recycling and Utilization); Takekoshi, Takashi (Mitsubishi Kasei Co., Okayama (Japan). Mizushima Works); Tobe, Ryoki (Anelva Corp., Tokyo (Japan). Research Development Center)

    Characteristics of pulsed discharge plasma of methane-hydrogen gas mixture and Ar gas have been studied for active control of plasma chemical vapor deposition (CVD) processing. Voltage-current characteristics, time-lag of the current pulse, and the photon emission intensity profile have been investigated using high-voltage pulses of 50-1000 ns duration. In such a pulse discharge, voltages much higher than those in a dc glow discharge can be applied without any plasma nonuniformity or arcing because voltage amplitude falls to zero before glow to arc transition. A current value of more than 10[sup 3] times those in a glow discharge can be established. Very high photon emission intensity from CH radicals and H ions have been observed near the anode in a pulsed plasma. This is different in dc plasma, where the negative glow region near the cathode is the brightest.

  16. Preparation of γ-Al2O3 films by laser chemical vapor deposition

    Science.gov (United States)

    Gao, Ming; Ito, Akihiko; Goto, Takashi

    2015-06-01

    γ- and α-Al2O3 films were prepared by chemical vapor deposition using CO2, Nd:YAG, and InGaAs lasers to investigate the effects of varying the laser wavelength and deposition conditions on the phase composition and microstructure. The CO2 laser was found to mostly produce α-Al2O3 films, whereas the Nd:YAG and InGaAs lasers produced γ-Al2O3 films when used at a high total pressure. γ-Al2O3 films had a cauliflower-like structure, while the α-Al2O3 films had a dense and columnar structure. Of the three lasers, it was the Nd:YAG laser that interacted most with intermediate gas species. This promoted γ-Al2O3 nucleation in the gas phase at high total pressure, which explains the cauliflower-like structure of nanoparticles observed.

  17. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-11-01

    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  18. Synthesis of Y-Tip Graphitic Nanoribbons from Alcohol Catalytic Chemical Vapor Deposition on Piezoelectric Substrate

    Directory of Open Access Journals (Sweden)

    Zainab Yunusa

    2015-01-01

    Full Text Available We report the synthesis of Graphitic Nanoribbons (GNRs using Alcohol Catalytic Chemical Vapor Deposition (ACCVD. Bulk GNR was synthesized directly on a piezoelectric substrate using one-step ACCVD. The synthesized GNRs were characterized by X-Ray Diffraction (XRD, Scanning Electron Microscope (SEM, Transmission Electron Microscope (TEM, Energy Dispersive X-Ray (EDX, Atomic Force Microscopy (AFM, and Raman spectroscopy. The characterization results showed Y-tip morphology of bulk and filamentous as-grown GNR having varying width that lies between tens and hundreds of nm and length of several microns. Based on the thickness obtained from the AFM and the analysis from the Raman spectroscopy, it was concluded that the synthesized GNRs are multiple-layered and graphitic in nature. With the direct synthesis of GNR on a piezoelectric substrate, it could have applications in the sensor industries, while the Y-tip GNR could have potentialities in semiconductor applications.

  19. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    KAUST Repository

    Chen, Wei

    2013-03-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found that the capacitive properties of graphene films are related to the number of graphene layers. Owing to the close attachment of graphene films on the nickel substrate and the low charge-transfer resistance, the specific capacitance of thinner graphene films is almost twice that of the thicker ones and remains stable up to 1000 cycles. These results illustrate the potential for developing high-performance graphene-based electrical energy storage devices. © 2012 Elsevier B.V. All rights reserved.

  20. Minimizing artifact formation in magnetorheological finishing of chemical vapor deposition ZnS flats

    Science.gov (United States)

    Kozhinova, Irina A.; Romanofsky, Henry J.; Maltsev, Alexander; Jacobs, Stephen D.; Kordonski, William I.; Gorodkin, Sergei R.

    2005-08-01

    The polishing performance of magnetorheological (MR) fluids prepared with a variety of magnetic and nonmagnetic ingredients was studied on four types of initial surface for chemical vapor deposition (CVD) ZnS flats from domestic and foreign sources. The results showed that it was possible to greatly improve smoothing performance of magnetorheological finishing (MRF) by altering the fluid composition, with the best results obtained for nanoalumina abrasive used with soft carbonyl iron and altered MR fluid chemistry. Surface roughness did not exceed 20 nm peak to valley and 2 nm rms after removal of 2 μm of material. The formation of orange peel and the exposure of a pebblelike structure inherent in ZnS from the CVD process were suppressed.

  1. Chemical vapor deposition polymerization the growth and properties of parylene thin films

    CERN Document Server

    Fortin, Jeffrey B

    2004-01-01

    Chemical Vapor Deposition Polymerization - The Growth and Properties of Parylene Thin Films is intended to be valuable to both users and researchers of parylene thin films. It should be particularly useful for those setting up and characterizing their first research deposition system. It provides a good picture of the deposition process and equipment, as well as information on system-to-system variations that is important to consider when designing a deposition system or making modifications to an existing one. Also included are methods to characterizae a deposition system's pumping properties as well as monitor the deposition process via mass spectrometry. There are many references that will lead the reader to further information on the topic being discussed. This text should serve as a useful reference source and handbook for scientists and engineers interested in depositing high quality parylene thin films.

  2. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  3. Growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition

    Science.gov (United States)

    Uno, Kazuyuki; Yamasaki, Yuichiro; Tanaka, Ichiro

    2017-01-01

    The growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition (mist-CVD) were experimentally investigated from the viewpoint of mist behaviors and chemical reactions. The proper growth model, either vaporization or the Leidenfrost model, was studied by supplying two kinds of mists with different kinds of sources, such as H2 16O and H2 18O for ZnO growth and ZnCl2 and thiourea for ZnS growth. Moreover, the origin of the oxygen atoms of ZnO was investigated using a quantitative analysis. The role of chloro complex of zinc in the growth of ZnS from aqueous solutions was also examined by systematic studies.

  4. Comparison between ZnO nanowires grown by chemical vapor deposition and hydrothermal synthesis

    Science.gov (United States)

    Podrezova, L. V.; Porro, S.; Cauda, V.; Fontana, M.; Cicero, G.

    2013-11-01

    Vertically aligned zinc oxide nanowires (NWs) were synthesized by two different techniques: chemical vapor deposition (CVD) and hydrothermal synthesis. To compare the effects of different growth conditions, both F-doped SnO2 (FTO) coated-glass and silicon wafers were used as substrates. Before NWs growth, all the substrates were covered with a ZnO seed layer film obtained with the same procedure, which acts as nucleation site for the subsequent growth of the nanowires both during CVD and hydrothermal synthesis. We studied the influence of the two synthesis techniques and the growth duration on the final morphology, orientation, and density of the ZnO NWs using electron microscopy and X-ray diffraction, while the NWs optical quality was addressed by UV-Vis spectroscopy. By discussing advantages and disadvantages of both synthesis methods, we finally show that the application purpose often drives the choice of the NWs growth process and the substrate to be used.

  5. Chemical Vapor Deposition and Atomic Layer Deposition of Coatings for Mechanical Applications

    Science.gov (United States)

    Doll, G. L.; Mensah, B. A.; Mohseni, H.; Scharf, T. W.

    2010-01-01

    Chemical vapor deposition (CVD) of films and coatings involves the chemical reaction of gases on or near a substrate surface. This deposition method can produce coatings with tightly controlled dimensions and novel structures. Furthermore, the non-line-of-sight-deposition capability of CVD facilitates the coating of complex-shaped mechanical components. Atomic layer deposition (ALD) is also a chemical gas phase thin film deposition technique, but unlike CVD, it utilizes “self-limiting” surface adsorption reactions (chemisorption) to control the thickness of deposited films. This article provides an overview of CVD and ALD, discusses some of their fundamental and practical aspects, and examines their advantages and limitations versus other vapor processing techniques such as physical vapor deposition in regard to coatings for mechanical applications. Finally, site-specific cross-sectional transmission electron microscopy inside the wear track of an ALD ZnO/ZrO2 8 bilayers nanolaminate coating determined the mechanisms that control the friction and wear.

  6. Low-Temperature Deposition of Zinc Oxide Film by Plasma-Assisted Mist Chemical Vapor Deposition

    Science.gov (United States)

    Takenaka, Kosuke; Okumura, Yusuke; Setsuhara, Yuichi

    2012-08-01

    Zinc oxide (ZnO) film deposition using a plasma-assisted mist chemical vapor deposition (CVD) with an inductively-coupled plasma source has been performed and the effects of the plasma exposure on film properties have been investigated with oxygen mixture ratio as a parameter. With increasing oxygen mixture ratio to Ar+O2(10%), the X-ray diffraction (XRD) results showed evident peaks of ZnO(0002), indicating that highly c-axis-oriented films were grown at low substrate temperatures below 200 °C. The deposition rate of ZnO films was as high as 100 nm/min. ZnO films with an optical transmittance of 75% for the visible region and a band gap energy of 3.32 eV have been obtained by using plasma-assisted mist CVD.

  7. Plasma-Assisted Mist Chemical Vapor Deposition of Zinc Oxide Films Using Solution of Zinc Acetate

    Science.gov (United States)

    Takenaka, Kosuke; Okumura, Yusuke; Setsuhara, Yuichi

    2013-01-01

    Zinc oxide (ZnO) film deposition has been carried out by plasma-assisted mist chemical vapor deposition (CVD) using a solution of zinc acetate [Zn(CH3COO)2], and the effects of plasma exposure on film properties have been investigated in terms of RF power. With increasing RF power, the results of the X-ray diffraction (XRD) patterns of ZnO films with plasma exposure showed the existence of crystallized ZnO films with plasma exposure. Under this condition, the substrate temperature was as low as 200 °C for a plasma exposure time of 20 min. The surface morphology shown by scanning electron microscopy (SEM) images shows that the ZnO films were textured with round grains, which is attributed to the effect of the use of mist with the precursor.

  8. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production.

    Science.gov (United States)

    Kumar, Mukul; Ando, Yoshinori

    2010-06-01

    This review article deals with the growth mechanism and mass production of carbon nanotubes (CNTs) by chemical vapor deposition (CVD). Different aspects of CNT synthesis and growth mechanism are reviewed in the light of latest progresses and understandings in the field. Materials aspects such as the roles of hydrocarbon, catalyst and catalyst support are discussed. Many new catalysts and new carbon sources are described. Growth-control aspects such as the effects of temperature, vapor pressure and catalyst concentration on CNT diameter distribution and single- or multi-wall formation are explained. Latest reports of metal-catalyst-free CNT growth are considered. The mass-production aspect is discussed from the perspective of a sustainable CNT technology. Existing problems and challenges of the process are addressed with future directions.

  9. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition during the carbonization of polyacrylonitrile fibers

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiangling; Su Shi; Kundrat, Vojtech; Abbot, Andrew M.; Ye, Haitao [School of Engineering and Applied Science, Aston University, Birmingham B4 7ET (United Kingdom); Zhou Lei [Department of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); Mushtaq, Fajer [Department of Mechanical Engineering, ETH Zurich, Zurich 8092 (Switzerland); Ouyang Defang [School of Life and Health Science, Aston University, Birmingham B4 7ET (United Kingdom); James, David; Roberts, Darren [Thermo Fisher Scientific, Stafford House, Hemel Hempstead HP2 7GE (United Kingdom)

    2013-01-14

    We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs.

  10. Macroscopic Synthesis of Vertically Aligned Carbon Nanotubes Using Floating Catalyst Chemical Vapor Deposition Method

    Science.gov (United States)

    Mirbagheri, S. Ahmad; Kazemzadeh, Asghar; Abedin Maghanaki, Amir

    2012-01-01

    In this paper, we report an efficient process to grow well-aligned carbon nanotube (CNT) arrays with a good area distribution density (about 5.6 ×107 CNT/mm2). Vertically aligned carbon nanotubes (VA-CNTs) have been produced by controlling flow rate, temperature and catalyst nanoparticles using a floating catalyst chemical vapor deposition (FC-CVD) technique. They were synthesized on quartz substrates at 800 °C from toluene as a carbon source. VA-CNT samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and their surface area and pore size were determined by nitrogen adsorption analysis. The synthesized CNTs have a length of 500 µm and diameters ranging from 120±40 nm. The CNT filaments form a strength structure and exhibit a good vertical alignment. The remarkable properties of CNTs make them attractive for separation applications, especially for water and wastewater treatment.

  11. Chemical-Vapor-Deposited Graphene as Charge Storage Layer in Flash Memory Device

    Directory of Open Access Journals (Sweden)

    W. J. Liu

    2016-01-01

    Full Text Available We demonstrated a flash memory device with chemical-vapor-deposited graphene as a charge trapping layer. It was found that the average RMS roughness of block oxide on graphene storage layer can be significantly reduced from 5.9 nm to 0.5 nm by inserting a seed metal layer, which was verified by AFM measurements. The memory window is 5.6 V for a dual sweep of ±12 V at room temperature. Moreover, a reduced hysteresis at the low temperature was observed, indicative of water molecules or −OH groups between graphene and dielectric playing an important role in memory windows.

  12. Uniformity of quantum well heterostructure GaAlAs lasers grown by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Scifres, D.R.; Burnham, R.D.; Bernstein, M.; Chung, H.; Endicott, F.; Mosby, W.; Tramontana, J.; Walker, J.; Yingling, R.D. Jr.

    1982-09-15

    The threshold current density, laser wavelength, grown layer thickness, reverse breakdown voltage, and far-field radiation pattern as a function of position on the grown wafer are reported for broad area multiple quantum well GaAlAs heterostructure lasers grown by metalorganic chemical vapor deposition. It is found that the layer thickness varies across a 1.5-in. sample by as much as 20% at the outer edges of the water, leading to a lasing wavelength shift of as much as 150 A owing to the quantum size effect. It is shown that this thickness variation has only a small effect on the threshold current density across the water such that the uniformity of threshold current density is comparable to that reported previously for molecular beam epitaxy-grown conventional double heterostructure lasers.

  13. Improved carrier mobility of chemical vapor deposition-graphene by counter-doping with hydrazine hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhiying; Zhang, Yanhui; Zhang, Haoran; Sui, Yanping; Zhang, Yaqian; Ge, Xiaoming; Yu, Guanghui, E-mail: ghyu@mail.sim.ac.cn; Xie, Xiaoming; Li, Xiaoliang [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Jin, Zhi; Liu, Xinyu [Microwave Devices and Integrated Circuits Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

    2015-03-02

    We developed a counter-doping method to tune the electronic properties of chemical vapor deposition (CVD)-grown graphene by varying the concentration and time of graphene exposure to hydrazine hydrate (N{sub 2}H{sub 4}·H{sub 2}O). The shift of G and 2D peaks of Raman spectroscopy is analyzed as a function of N{sub 2}H{sub 4}·H{sub 2}O concentration. The result revealed that N{sub 2}H{sub 4}·H{sub 2}O realized n-type doping on CVD grown graphene. X-ray photoelectron spectroscopy measurement proved the existence of nitrogen, which indicated the adsorption of N{sub 2}H{sub 4} on the surface of graphene. After counter-doping, carrier mobility, which was measured by Hall measurements, increased three fold.

  14. Numerical study of a three-dimensional chemical vapor deposition reactor with detailed chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ern, A. [CERMICS-ENPC, Noisy-le-Grand (France); Giovangigli, V. [Encole Polytechnique, Palaiseau (France); Smooke, M.D. [Yale Univ., New Haven, CT (United States)

    1996-06-01

    A numerical model of a three-dimensional, horizontal channel, chemical vapor deposition reactor is presented in order to study gallium arenide growth from trimethylgallium and arsine source reactants. Fluid flow and temperature predictions inside the reactor are obtained using the vorticity-velocity form of the three-dimensional, study-state Navier-Stokes equations coupled with a detailed energy balance equation inside the reactor and on its walls. Detailed gas phase and surface chemistry mechanisms are used to predict the chemical species profiles inside the reactor, the growth rate distribution on the substrate, and the level of carbon incorporation into the grown layer. The species diffusion velocities are written using the recent theory of iterative transport algorithms and account for both thermal diffusion and multicomponent diffusion processes. The influence of susceptor temperature and inlet composition on growth rate and carbon incorporation is found to agree well with previous numerical and experimental work. 46 refs., 15 figs., 3 tabs.

  15. Formation of SiC thin films by chemical vapor deposition with vinylsilane precursor

    Science.gov (United States)

    Doi, Takuma; Takeuchi, Wakana; Jin, Yong; Kokubun, Hiroshi; Yasuhara, Shigeo; Nakatsuka, Osamu; Zaima, Shigeaki

    2018-01-01

    We have examined the formation of SiC thin films by chemical vapor deposition (CVD) using vinylsilane and investigated the chemical bonding state and crystallinity of the prepared SiC thin films. We achieved the formation of a Si–H–less SiC film at growth temperatures as low as 600 °C. Also, we investigated the in situ doping effect of N by the incorporation of NH3 gas in the SiC growth and demonstrated that the chemical composition of N in SiC thin films was controlled by adjusting the NH3 flow rate. In addition, we examined the growth of SiC thin films on a Cu substrate and achieved the formation of a SiC thin film while avoiding any significant reaction between SiC and Cu at a growth temperature of 700 °C.

  16. Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Valentina V. Utochnikova

    2012-01-01

    Full Text Available The new reactive chemical vapor deposition (RCVD method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm3 and carboxylic acid (HCarb orH2Carb′ and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz3 and o-phenoxybenzoate thin films, and Tb(bz3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz3/Ca/Al. Electroluminescence spectra of Tb(bz3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.

  17. Fabrication of Rare Earth-Doped Transparent Glass Ceramic Optical Fibers by Modified Chemical Vapor Deposition

    CERN Document Server

    Blanc, Wilfried; Nguyen, Luan; Bhaktha, S N B; Sebbah, Patrick; Pal, Bishnu P; Dussardier, Bernard

    2011-01-01

    Rare earth (RE) doped silica-based optical fibers with transparent glass ceramic (TGC) core was fabricated through the well-known modified chemical vapor deposition (MCVD) process without going through the commonly used stage of post-ceramming. The main characteristics of the RE-doped oxyde nanoparticles namely, their density and mean diameter in the fibers are dictated by the concentration of alkaline earth element used as phase separating agent. Magnesium and erbium co-doped fibers were fabricated. Optical transmission in term of loss due to scattering as well as some spectroscopic characteristics of the erbium ions was studied. For low Mg content, nano-scale particles could be grown with and relatively low scattering losses were obtained, whereas large Mg-content causes the growth of larger particles resulting in much higher loss. However in the latter case, certain interesting alteration of the spectroscopic properties of the erbium ions were observed. These initial studies should be useful in incorporati...

  18. Anisotropic growth mechanism of tungsten diselenide domains using chemical vapor deposition method

    Science.gov (United States)

    Lee, Yoobeen; Jeong, Heekyung; Park, Yi-Seul; Han, Seulki; Noh, Jaegeun; Lee, Jin Seok

    2018-02-01

    Anisotropic transition metal dichalcogenide (TMDC) domains have stimulated a growing interest mainly due to their electronic properties that depend on the size, shape, and edge structures of the domains. In this work, we investigated the anisotropic morphogenesis and edge terminations of tungsten diselenide (WSe2) domains grown on sapphire substrates by chemical vapor deposition (CVD) using tungsten oxide (WO3) and selenium (Se) powders as precursors. We varied the amount of Se powder and growth temperature during the CVD process, which in turn caused variations in the growth mechanism and kinetic energies of precursors. We succeeded in synthesizing hexagonal, square, circular, and triangular anisotropic WSe2 domains. They were characterized using scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence (PL) analyses, and atomic force microscopy (AFM). Furthermore, we proposed the growth mechanism of anisotropic WSe2 domains with different edge terminations based on experimental observations through scanning tunneling microscope (STM).

  19. Facile synthesis of graphene on single mode fiber via chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Man, B.Y., E-mail: byman@sdnu.edu.cn [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Jiang, S.Z. [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); State Key Lab of Crystal Materials Shandong University, Jinan 250100 (China); Yang, C.; Liu, M.; Chen, C.S.; Xu, S.C. [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China); Feng, D.J. [School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Bi, D.; Liu, F.Y.; Qiu, H.W. [College of Physics and Electronics, Shandong Normal University, Jinan 250014 (China)

    2014-07-01

    Direct deposition of graphene film on the standard single mode fiber is offered using a Cu-vapor-assisted chemical vapor deposition system. The gas flow of H{sub 2} and Ar before the growth process plays a crucial role for the direct deposition of the graphene film and the layers of the graphene can be controlled by the growth time. With a large gas flow, Cu atoms are carried off with the gas flow and hard to deposit on the surface of the single mode fiber before the growth process. Consequently, uniform graphene film is obtained in this case. On the contrary, with a lower one, Cu atoms is facile to deposit on the surface of the single mode fiber and form nanodots acting as active catalytic sites for the growth of carbon nanotubes. This method presents us a promising transfer-free technique for fabrication of the photonic applications.

  20. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    Science.gov (United States)

    Grigorian, Leonid [Raymond, OH; Hornyak, Louis [Evergreen, CO; Dillon, Anne C [Boulder, CO; Heben, Michael J [Denver, CO

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  1. Catalytic Chemical Vapor Deposition Synthesis of Carbon Aerogels of High-Surface Area and Porosity

    Directory of Open Access Journals (Sweden)

    Armando Peña

    2012-01-01

    Full Text Available In this work carbon aerogels were synthesized by catalytic chemical vapor deposition method (CCVD. Ferrocene were employed as a source both of catalytic material (Fe and of carbon. Gaseous hydrogen and argon were used as reductant and carrier gas, respectively. The products of reaction were collected over alumina. The morphology and textural properties of the soot produced in the reaction chamber were investigated using Scanning Electron Microscopy, High-Resolution Transmission Electron Microscopy, X-ray photoelectron spectroscopy, and N2 physisorption (BET and BHJ methods. After the evaluation of the porous structure of the synthesized products, 780 ± 20 m2/g of SBET and 0.55 ± 0.02 cm3/g of VBJH were found. The presence of iron carbide and the partial oxidation of carbon nanostructures were revealed by XPS.

  2. Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Muñoz, R; Munuera, C; Martínez, J I; Azpeitia, J; Gómez-Aleixandre, C; García-Hernández, M

    2017-03-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650°C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω·sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies.

  3. Development of a Computational Chemical Vapor Deposition Model: Applications to Indium Nitride and Dicyanovinylaniline

    Science.gov (United States)

    Cardelino, Carlos

    1999-01-01

    A computational chemical vapor deposition (CVD) model is presented, that couples chemical reaction mechanisms with fluid dynamic simulations for vapor deposition experiments. The chemical properties of the systems under investigation are evaluated using quantum, molecular and statistical mechanics models. The fluid dynamic computations are performed using the CFD-ACE program, which can simulate multispecies transport, heat and mass transfer, gas phase chemistry, chemistry of adsorbed species, pulsed reactant flow and variable gravity conditions. Two experimental setups are being studied, in order to fabricate films of: (a) indium nitride (InN) from the gas or surface phase reaction of trimethylindium and ammonia; and (b) 4-(1,1)dicyanovinyl-dimethylaminoaniline (DCVA) by vapor deposition. Modeling of these setups requires knowledge of three groups of properties: thermodynamic properties (heat capacity), transport properties (diffusion, viscosity, and thermal conductivity), and kinetic properties (rate constants for all possible elementary chemical reactions). These properties are evaluated using computational methods whenever experimental data is not available for the species or for the elementary reactions. The chemical vapor deposition model is applied to InN and DCVA. Several possible InN mechanisms are proposed and analyzed. The CVD model simulations of InN show that the deposition rate of InN is more efficient when pulsing chemistry is used under conditions of high pressure and microgravity. An analysis of the chemical properties of DCVA show that DCVA dimers may form under certain conditions of physical vapor transport. CVD simulations of the DCVA system suggest that deposition of the DCVA dimer may play a small role in the film and crystal growth processes.

  4. Chemical vapor deposition of refractory ternary nitrides for advanced diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth; Smith, Paul Martin

    1998-09-22

    Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturing of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.

  5. Development of aerosol assisted chemical vapor deposition for thin film fabrication

    Science.gov (United States)

    Maulana, Dwindra Wilham; Marthatika, Dian; Panatarani, Camellia; Mindara, Jajat Yuda; Joni, I. Made

    2016-02-01

    Chemical vapor deposition (CVD) is widely used to grow a thin film applied in many industrial applications. This paper report the development of an aerosol assisted chemical vapor deposition (AACVD) which is one of the CVD methods. Newly developed AACVD system consists of a chamber of pyrex glass, two wire-heating elements placed to cover pyrex glass, a substrate holder, and an aerosol generator using an air brush sprayer. The temperature control system was developed to prevent condensation on the chamber walls. The control performances such as the overshoot and settling time were obtained from of the developed temperature controller. Wire-heating elements were controlled at certain setting value to heat the injected aerosol to form a thin film in the substrate. The performance of as-developed AACVD system tested to form a thin film where aerosol was sprayed into the chamber with a flow rate of 7 liters/minutes, and vary in temperatures and concentrations of precursor. The temperature control system have an overshoot around 25 °C from the desired set point temperature, very small temperature ripple 2 °C and a settling time of 20 minutes. As-developed AACVD successfully fabricated a ZnO thin film with thickness of below 1 µm. The performances of system on formation of thin films influenced by the generally controlled process such as values of setting temperature and concentration where the aerosol flow rate was fixed. Higher temperature was applied, the more uniform ZnO thin films were produced. In addition, temperature of the substrate also affected on surface roughness of the obtained films, while concentration of ZnO precursor determined the thickness of produce films. It is concluded that newly simple AACVD can be applied to produce a thin film.

  6. Development of a new laser heating system for thin film growth by chemical vapor deposition

    Science.gov (United States)

    Fujimoto, Eiji; Sumiya, Masatomo; Ohnishi, Tsuyoshi; Lippmaa, Mikk; Takeguchi, Masaki; Koinuma, Hideomi; Matsumoto, Yuji

    2012-09-01

    We have developed a new laser heating system for thin film growth by chemical vapor deposition (CVD). A collimated beam from a high-power continuous-wave 808 nm semiconductor laser was directly introduced into a CVD growth chamber without an optical fiber. The light path of the heating laser inside the chamber was isolated mechanically from the growth area by bellows to protect the optics from film coating. Three types of heat absorbers, (10 × 10 × 2 mm3) consisting of SiC, Ni/NiOx, or pyrolytic graphite covered with pyrolytic BN (PG/PBN), located at the backside of the substrate, were tested for heating performance. It was confirmed that the substrate temperature could reach higher than 1500 °C in vacuum when a PG/PBN absorber was used. A wide-range temperature response between 400 °C and 1000 °C was achieved at high heating and cooling rates. Although the thermal energy loss increased in a H2 gas ambient due to the higher thermal conductivity, temperatures up to 1000°C were achieved even in 200 Torr H2. We have demonstrated the capabilities of this laser heating system by growing ZnO films by metalorganic chemical vapor deposition. The growth mode of ZnO films was changed from columnar to lateral growth by repeated temperature modulation in this laser heating system, and consequently atomically smooth epitaxial ZnO films were successfully grown on an a-plane sapphire substrate.

  7. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions.

    Science.gov (United States)

    Luo, Paifeng; Liu, Zhaofan; Xia, Wei; Yuan, Chenchen; Cheng, Jigui; Lu, Yingwei

    2015-02-04

    Recently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length. More strikingly, CH3NH3PbI3 absorbers by LPCVD demonstrate excellent moisture-resistant feature even under laser illumination and high-temperature conditions, which indicates that our proprietary method is very suitable for the future low-cost, nonvacuum production of the new generation photovoltaic devices. Finally, high efficiency of 12.73% is successfully achieved under fully open-air conditions. To the best of our knowledge, this is the first report of efficient PSCs with such a high humidity above 60%.

  8. Highly sensitive and selective room-temperature NO{sub 2} gas sensor based on bilayer transferred chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seekaew, Yotsarayuth [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand); Phokharatkul, Ditsayut; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Wongchoosuk, Chatchawal, E-mail: chatchawal.w@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)

    2017-05-15

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO{sub 2} gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO{sub 2} sensitivity of 1.409 ppm{sup −1}. • The NO{sub 2}-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO{sub 2} detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO{sub 2} than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm{sup −1} towards NO{sub 2} over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO{sub 2}-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO{sub 2} molecules.

  9. Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition.

    Science.gov (United States)

    Hoye, Robert L Z; Muñoz-Rojas, David; Musselman, Kevin P; Vaynzof, Yana; MacManus-Driscoll, Judith L

    2015-05-27

    A close-proximity atmospheric pressure chemical vapor deposition (AP-CVD) reactor is developed for synthesizing high quality multicomponent metal oxides for electronics. This combines the advantages of a mechanically controllable substrate-manifold spacing and vertical gas flows. As a result, our AP-CVD reactor can rapidly grow uniform crystalline films on a variety of substrate types at low temperatures without requiring plasma enhancements or low pressures. To demonstrate this, we take the zinc magnesium oxide (Zn(1-x)Mg(x)O) system as an example. By introducing the precursor gases vertically and uniformly to the substrate across the gas manifold, we show that films can be produced with only 3% variation in thickness over a 375 mm(2) deposition area. These thicknesses are significantly more uniform than for films from previous AP-CVD reactors. Our films are also compact, pinhole-free, and have a thickness that is linearly controllable by the number of oscillations of the substrate beneath the gas manifold. Using photoluminescence and X-ray diffraction measurements, we show that for Mg contents below 46 at. %, single phase Zn(1-x)Mg(x)O was produced. To further optimize the growth conditions, we developed a model relating the composition of a ternary oxide with the bubbling rates through the metal precursors. We fitted this model to the X-ray photoelectron spectroscopy measured compositions with an error of Δx = 0.0005. This model showed that the incorporation of Mg into ZnO can be maximized by using the maximum bubbling rate through the Mg precursor for each bubbling rate ratio. When applied to poly(3-hexylthiophene-2,5-diyl) hybrid solar cells, our films yielded an open-circuit voltage increase of over 100% by controlling the Mg content. Such films were deposited in short times (under 2 min over 4 cm(2)).

  10. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    Science.gov (United States)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  11. Electrical properties of low pressure chemical vapor deposited silicon nitride thin films for temperatures up to 650 °C

    NARCIS (Netherlands)

    Tiggelaar, Roald M.; Groenland, A.W.; Sanders, Remco G.P.; Gardeniers, Johannes G.E.

    2009-01-01

    The results of a study on electrical conduction in low pressure chemical vapor deposited silicon nitride thin films for temperatures up to 650 °C are described. Current density versus electrical field characteristics are measured as a function of temperature for 100 and 200 nm thick stoichiometric

  12. Controlled Growth of Non-Uniform Arsenic Profiles in Silicon Reduced-Pressure Chemical Vapor Deposition Epitaxial Layers

    NARCIS (Netherlands)

    Popadic, M.; Scholtes, T.L.M.; De Boer, W.; Sarubbi, F.; Nanver, L.K.

    2009-01-01

    An empirical model of As surface segregation during reduced-pressure chemical vapor deposition Si epitaxy is presented. This segregation mechanism determines the resulting doping profile in the grown layer and is here described by a model of simultaneous and independent As adsorption and segregation

  13. Extension of the lifetime of tantalum filaments in the hot-wire (Cat) 3 Chemical Vapor Deposition process

    CSIR Research Space (South Africa)

    Knoesen, D

    2008-01-01

    Full Text Available One of the prime components of a hot-wire (Cat) Chemical Vapor Deposition system is the filament used to pyro-catalytically crack the gases like silane. Burnt out tantalum filaments were studied to determine the possible improvement of lifetime...

  14. Plasma-enhanced chemical vapor deposited silicon oxynitride films for optical waveguide bridges for use in mechanical sensors

    DEFF Research Database (Denmark)

    Storgaard-Larsen, Torben; Leistiko, Otto

    1997-01-01

    In this paper the influence of RF power, ammonia flow, annealing temperature, and annealing time on the optical and mechanical properties of plasma-enhanced chemically vapor deposited silicon oxynitride films, is presented. A low refractive index (1.47 to 1.48) film having tensile stress has been...

  15. Vertically aligned carbon nanotube field emitter arrays with Ohmic base contact to silicon by Fe-catalyzed chemical vapor deposition

    NARCIS (Netherlands)

    Morassutto, M.; Tiggelaar, Roald M.; Smithers, M.A.; Smithers, M.A.; Gardeniers, Johannes G.E.

    2016-01-01

    Abstract In this study, dense arrays of aligned carbon nanotubes are obtained by thermal catalytic chemical vapor deposition, using Fe catalyst dispersed on a thin Ta layer. Alignment of the carbon nanotubes depends on the original Fe layer thickness from which the catalyst dispersion is obtained by

  16. The influence of methanol addition during the film growth of SnO 2 by atmospheric pressure chemical vapor deposition

    NARCIS (Netherlands)

    Volintiru, I.; Graaf, A. de; Deelen, J. van; Poodt, P.W.G.

    2011-01-01

    Undoped tin oxide (SnO2) thin films have been deposited in a stagnant point flow chemical vapor deposition reactor from a water/tin tetrachloride mixture. By adding methanol during the deposition process the film electrical properties change significantly: ten times more conductive SnO 2 films are

  17. Microstructural and frictional control of diamond-like carbon films deposited on acrylic rubber by plasma assisted chemical vapor deposition

    NARCIS (Netherlands)

    Martinez-Martinez, D.; Schenkel, M.; Pei, Y.T.; Hosson, J.Th.M. De

    2011-01-01

    In this paper we concentrate on the microstructure of diamond-like carbon films prepared by plasma assisted chemical vapor deposition on acrylic rubber. The temperature variation produced by the ion impingement during plasma cleaning and subsequent film deposition was monitored and controlled as a

  18. Behavior and kinetic of hydrolysis of amine boranes in acid media employed in chemical vapor generation.

    Science.gov (United States)

    D'Ulivo, Lucia; Spiniello, Roberto; Onor, Massimo; Campanella, Beatrice; Mester, Zoltan; D'Ulivo, Alessandro

    2018-01-15

    The behavior of NaBH4 (THB) and the amine boranes, NH3BH3 (AB), tertbutylNH2BH3 (TBAB), Me2NHBH3 (DMAB) was investigated in continuous flow chemical vapor generation of H2Se from aqueous Se(IV) coupled with atomic absorption spectrometry. Unexpected higher efficiency of H2Se generation was obtained with amine boranes compared to THB (TBAB > AB > THB) using millimolar concentration of reductant (0.001-0.1 mol L(-1)) under strongly acidic conditions (HCl, HClO4, H2SO4, HNO3, 0.5-5 mol L(-1) H(+)). Analytical applicability of the CVG system was tested by the determination of Se(IV) in natural water samples certified reference materials, using 0.01 mol L(-1) TBAB in 0.5 M H2SO4. In order to explain this unexpected higher efficiency of amine boranes with respect of THB, the kinetic of hydrolysis of AB, TBAB and DMAB was investigated in acid media typically employed in chemical vapor generation for trace element determination. The kinetic was investigated by monitoring the rate the hydrogen gas evolved during hydrolysis, using a laboratory made thermostated reaction cell. Kinetics were measured for AB, TBAB and DMAB in 0.1, 0.5, 5 mol L(-1) HCl or HClO4 reaction media and in 0.1 mol L(-1) cysteine +0.1 mol L(-1) HCl or HClO4 buffer, for reaction times from 0 to 30 min. Under strongly acidic conditions, the rates of hydrogen evolution produced by amine boranes hydrolysis appear to be much slower than those predicted by a pseudo-first order reaction and using the rate constants reported in the literature. This suggests that, at elevated acidities (5 mol L(-1) HCl or HClO4), the hydrolysis of amine boranes takes place in two steps, generating a first amount of H2 (0.67-1.15 mol) much faster than the remaining about 2 mol. This evidence indicates a different mechanism of hydrolysis to the one accepted in the literature for amine boranes. The relatively high efficiencies of H2Se observed with amine borane reduction of inorganic Se(IV) at elevated

  19. Rapid sensing of l-leucine by human and murine hypothalamic neurons: Neurochemical and mechanistic insights.

    Science.gov (United States)

    Heeley, Nicholas; Kirwan, Peter; Darwish, Tamana; Arnaud, Marion; Evans, Mark L; Merkle, Florian T; Reimann, Frank; Gribble, Fiona M; Blouet, Clemence

    2018-02-07

    Dietary proteins are sensed by hypothalamic neurons and strongly influence multiple aspects of metabolic health, including appetite, weight gain, and adiposity. However, little is known about the mechanisms by which hypothalamic neural circuits controlling behavior and metabolism sense protein availability. The aim of this study is to characterize how neurons from the mediobasal hypothalamus respond to a signal of protein availability: the amino acid l-leucine. We used primary cultures of post-weaning murine mediobasal hypothalamic neurons, hypothalamic neurons derived from human induced pluripotent stem cells, and calcium imaging to characterize rapid neuronal responses to physiological changes in extracellular l-Leucine concentration. A neurochemically diverse subset of both mouse and human hypothalamic neurons responded rapidly to l-leucine. Consistent with l-leucine's anorexigenic role, we found that 25% of mouse MBH POMC neurons were activated by l-leucine. 10% of MBH NPY neurons were inhibited by l-leucine, and leucine rapidly reduced AGRP secretion, providing a mechanism for the rapid leucine-induced inhibition of foraging behavior in rodents. Surprisingly, none of the candidate mechanisms previously implicated in hypothalamic leucine sensing (K ATP channels, mTORC1 signaling, amino-acid decarboxylation) were involved in the acute activity changes produced by l-leucine. Instead, our data indicate that leucine-induced neuronal activation involves a plasma membrane Ca 2+ channel, whereas leucine-induced neuronal inhibition is mediated by inhibition of a store-operated Ca 2+ current. A subset of neurons in the mediobasal hypothalamus rapidly respond to physiological changes in extracellular leucine concentration. Leucine can produce both increases and decreases in neuronal Ca 2+ concentrations in a neurochemically-diverse group of neurons, including some POMC and NPY/AGRP neurons. Our data reveal that leucine can signal through novel mechanisms to rapidly

  20. Polymer Thin Films and Surface Modification by Chemical Vapor Deposition: Recent Progress.

    Science.gov (United States)

    Chen, Nan; Kim, Do Han; Kovacik, Peter; Sojoudi, Hossein; Wang, Minghui; Gleason, Karen K

    2016-06-07

    Chemical vapor deposition (CVD) polymerization uses vapor phase monomeric reactants to synthesize organic thin films directly on substrates. These thin films are desirable as conformal surface engineering materials and functional layers. The facile tunability of the films and their surface properties allow successful integration of CVD thin films into prototypes for applications in surface modification, device fabrication, and protective films. CVD polymers also bridge microfabrication technology with chemical and biological systems. Robust coatings can be achieved via CVD methods as antifouling, anti-icing, and antihydrate surfaces, as well as stimuli-responsive or biocompatible polymers and novel nanostructures. Use of low-energy input, modest vacuum, and room-temperature substrates renders CVD polymerization compatible with thermally sensitive substrates and devices. Compared with solution-based methods, CVD is particularly useful for insoluble materials, such as electrically conductive polymers and controllably crosslinked networks, and has the potential to reduce environmental, health, and safety impacts associated with solvents. This review discusses the relevant background and selected applications of recent advances by two methods that display and use the high retention of the organic functional groups from their respective monomers, initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization.

  1. X-ray absorption study of diamond films grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Ruckman, M.W.; Skotheim, T.A. (Brookhaven National Laboratory, Upton, New York 11973 (USA)); den Boer, M.; Zheng, Y. (The City University of New York, New York, New York 10021 (USA)); Badzian, A.R.; Badzian, T.; Messier, R. (The Pennsylvania State University, University Park, Pennsylvania 16802 (USA)); Srivatsa, A.R. (Moltech Corporation, Stony Brook, New York 11974 (USA))

    1991-05-01

    Carbon {ital k}-edge x-ray absorption fine structure (XAFS) is used to study the structure and bonding of chemical vapor deposition (CVD) grown diamond and diamond-like carbon films. Diamond films grown at 875 {degree}C on silicon using a 1% CH{sub 4} /H{sub 2} mixture have near-edge spectra resembling type 1(a) natural diamond. The {ital k}-edges of the diamond-like films grown by electron cyclotron resonance CVD at 200 {degree}C using 10{sup {minus}4} Torr of CH{sub 4} show a broad main peak lacking the sharp structure of graphite or diamond. Comparing the near edges of the CVD diamond film with other carbon compounds (i.e., graphite) and the CVD diamond film, the diamond-like film shows a strong {pi}* feature at 285 eV indicative of sp{sup 2} bonded carbon and a feature at 289 eV, the {sigma}*(C--H) resonance indicating C--H bonds. The relatively weak extended x-ray absorption fine structure (EXAFS) shows that the diamond-like carbon film is highly disordered on an atomic level.

  2. Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension

    CERN Document Server

    Jin Shi

    2003-01-01

    Chemical vapor infiltration (CVI) process is an important technology to fabricate ceramic matrix composites (CMC's). In this paper, a three-dimension numerical model is presented to describe pore microstructure evolution during the CVI process. We extend the two-dimension model proposed in [S. Jin, X.L. Wang, T.L. Starr, J. Mater. Res. 14 (1999) 3829; S. Jin. X.L. Wang, T.L. Starr, X.F. Chen, J. Comp. Phys. 162 (2000) 467], where the fiber surface is modeled as an evolving interface, to the three space dimension. The 3D method keeps all the virtue of the 2D model: robust numerical capturing of topological changes of the interface such as the merging, and fast detection of the inaccessible pores. For models in the kinetic limit, where the moving speed of the interface is constant, some numerical examples are presented to show that this three-dimension model will effectively track the change of porosity, close-off time, location and shape of all pores.

  3. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition.

    Science.gov (United States)

    Yun, YeoHeung; Shanov, Vesselin; Tu, Yi; Subramaniam, Srinivas; Schulz, Mark J

    2006-11-30

    Highly aligned arrays of multiwalled carbon nanotube (MWCNT) on layered Si substrates have been synthesized by chemical vapor deposition (CVD). The effect of the substrate design and the process parameters on the growth mechanism were studied. Adding water vapor to the reaction gas mixture of hydrogen and ethylene enhanced the growth which led to synthesis of longer CNT arrays with high density. Environmental scanning electron microscopy (ESEM), energy-dispersive spectroscopy (EDS), and atomic force microscopy (AFM) were used to analyze the CNT morphology and composition. Quadrupole mass spectroscopy (QMS) provided in-situ information on the gas spices within the reaction zone. On the basis of results, we verified the top growth mechanism and evaluated the reason of decline and stoppage of the CNT growth after extended period of deposition. Multilayered Si substrates with a top film of Al2O3, having appropriate roughness, provide favorable conditions to form catalyst islands with uniform distribution and size. Using water-assisted CVD process and optimized substrate design, our group succeeded to grow vertically aligned, patterned MWCNT up to 4-mm long. The arrays were of high purity and weak adhesion which allowed to be peeled off easily from the substrate.

  4. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Science.gov (United States)

    Djenadic, Ruzica; Winterer, Markus

    2017-02-01

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  5. Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method.

    Science.gov (United States)

    Feng, Jian-Min; Dai, Ye-Jing

    2013-05-21

    Combining carbon nanotubes (CNTs) with graphene has been proved to be a feasible method for improving the performance of graphene for some practical applications. This paper reports a water-assisted route to grow graphene on CNTs from ferrocene and thiophene dissolved in ethanol by the chemical vapor deposition method in an argon flow. A double injection technique was used to separately inject ethanol solution and water for the preparation of graphene/CNTs. First, CNTs were prepared from ethanol solution and water. The injection of ethanol solution was suspended and water alone was injected into the reactor to etch the CNTs. Thereafter, ethanol solution was injected along with water, which is the key factor in obtaining graphene/CNTs. Transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and Raman scattering analyses confirmed that the products were the hybrid materials of graphene/CNTs. X-ray photo-electron spectroscopy analysis showed the presence of oxygen rich functional groups on the surface of the graphene/CNTs. Given the activity of the graphene/CNT surface, CdS quantum dots adhered onto it uniformly through simple mechanical mixing.

  6. Biocompatibility of Titania Nanotube Coatings Enriched with Silver Nanograins by Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Piotr Piszczek

    2017-09-01

    Full Text Available Bioactivity investigations of titania nanotube (TNT coatings enriched with silver nanograins (TNT/Ag have been carried out. TNT/Ag nanocomposite materials were produced by combining the electrochemical anodization and chemical vapor deposition methods. Fabricated coatings were characterized by scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. The release effect of silver ions from TNT/Ag composites immersed in bodily fluids, has been studied using inductively coupled plasma mass spectrometry (ICP-MS. The metabolic activity assay (MTT was applied to determine the L929 murine fibroblasts adhesion and proliferation on the surface of TNT/Ag coatings. Moreover, the results of immunoassays (using peripheral blood mononuclear cells—PBMCs isolated from rats allowed the estimation of the immunological activity of TNT/Ag surface materials. Antibacterial activity of TNT/Ag coatings with different morphological and structural features was estimated against two Staphylococcus aureus strains (ATCC 29213 and H9. The TNT/Ag nanocomposite layers produced revealed a good biocompatibility promoting the fibroblast adhesion and proliferation. A desirable anti-biofilm activity against the S. aureus reference strain was mainly noticed for these TiO2 nanotube coatings, which contain dispersed Ag nanograins deposited on their surface.

  7. High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration.

    Science.gov (United States)

    Lee, Jaegeun; Kim, Teawon; Jung, Yeonsu; Jung, Kihoon; Park, Junbeom; Lee, Dong-Myeong; Jeong, Hyeon Su; Hwang, Jun Yeon; Park, Chong Rae; Lee, Kun-Hong; Kim, Seung Min

    2016-12-07

    In this study, we have developed an efficient and scalable method for improving the mechanical properties of carbon nanotube (CNT) fibers. The mechanical properties of as-synthesized CNT fibers are primarily limited by their porous structures and the weak bonding between adjacent CNTs. These result in inefficient load transfer, leading to low tensile strength and modulus. In order to overcome these limitations, we have adopted chemical vapor infiltration (CVI) to efficiently fill the internal voids of the CNT fibers with carbon species which are thermally decomposed from gas phase hydrocarbon. Through the optimization of the processing time, temperature, and gas flow velocity, we have confirmed that carbon species formed by the thermal decomposition of acetylene (C2H2) gas successfully infiltrated into porous CNT fibers and densified them at relatively low temperatures (650-750 °C). As a result, after CVI processing of the as-synthesized CNT fibers under optimum conditions, the tensile strength and modulus increased from 0.6 GPa to 1.7 GPa and from 25 GPa to 127 GPa, respectively. The CVI technique, combined with the direct spinning of CNT fibers, can open up a route to the fast and scalable fabrication of high performance CNT/C composite fibers. In addition, the CVI technique is a platform technology that can be easily adapted into other nano-carbon based yarn-like fibers such as graphene fibers.

  8. A chemical kinetic model for chemical vapor deposition of carbon nanotubes

    Science.gov (United States)

    Raji, K.; Thomas, Shijo; Sobhan, C. B.

    2011-10-01

    Carbon nanotubes (CNTs) are classified among the most promising novel materials due to their exceptional physical properties. Still, optimal fabrication of carbon nanotubes involves a number of challenges. Whatever be the fabrication method, a process optimization can be evolved only on the basis of a good theoretical model to predict the parametric influences on the final product. The work reported here investigates the dependence of the deposition parameters on the controllable parameters for carbon nanotube growth during Chemical vapor deposition (CVD), through a chemical kinetic model. The theoretical model consisted of the design equations and the energy balance equations, based on the reaction kinetics, for the plug flow and the batch reactor, which simulate the CVD system. The numerical simulation code was developed in-house in a g++ environment. The results predicted the growth conditions for CNT: the deposition temperature, pressure and number of atoms, which were found to be influenced substantially by the initial controllable parameters namely the temperature, volumetric flow rate of the carbon precursor, and the reaction time. An experimental study was also conducted on a CVD system developed in the laboratory, to benchmark the computational results. The experimental results were found to agree well with the theoretical predictions obtained from the model.

  9. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    Science.gov (United States)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  10. Thin CdS films prepared by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hiroshi Uda; Yonezawa, Hideo; Ohtsubo, Yoshikazu; Kosaka, Manabu; Sonomura, Hajimu [Kinki Univ., Osaka (Japan). Faculty of Science and Technology

    2003-01-01

    Polycrystalline CdS thin films have been deposited on borosilicate glass substrates coated with ITO film by metalorganic chemical vapor deposition using dimethyl cadmium and diethyl sulfide as source materials. The growth of CdS film occurred at substrate temperatures within the range of 280-360{sup o}C. The deposition rate increased with increasing VI/II molar ratio at any substrate temperature and showed a maximum value at the VI/II molar ratio of 4. The grain size of as-deposited CdS film prepared at substrate temperatures from 300{sup o}C to 360{sup o}C was about 0.1 {mu}m. The CdS films consist of hexagonal form with a preferential orientation of the (0 0 2) plane parallel to the substrate. Thin CdS film with high optical transmittance was prepared at 350{sup o}C with the VI/II molar ratio of 4. The CdS film deposited by MOCVD may be used as a window layer for CdS/CdTe solar cell.(author)

  11. H2-dependent attachment kinetics and shape evolution in chemical vapor deposition graphene growth

    Science.gov (United States)

    Meca, Esteban; Shenoy, Vivek B.; Lowengrub, John

    2017-09-01

    Experiments on graphene growth through chemical vapor deposition (CVD) involving methane (CH4) and hydrogen (H2) gases reveal a complex shape evolution and a non-monotonic dependence on the partial pressure of H2 ({{p}{{\\text{H}2}}} ). To explain these intriguing observations, we develop a microkinetic model for the stepwise decomposition of CH4 into mobile radicals and consider two possible mechanisms of attachment to graphene crystals: CH radicals to hydrogen-decorated edges of the crystals and C radicals to bare crystal edges. We derive an effective mass flux and an effective kinetic coefficient, both of which depend on {{p}{{\\text{H}2}}} , and incorporate these into a phase field model. The model reproduces both the non-monotonic dependence on {{p}{{\\text{H}2}}} and the characteristic shapes of graphene crystals observed in experiments. At small {{p}{{\\text{H}2}}} , growth is limited by the kinetics of attachment while at large {{p}{{\\text{H}2}}} growth is limited because the effective mass flux is small. We also derive a simple analytical model that captures the non-monotone behavior, enables the two mechanisms of attachment to be distinguished and provides guidelines for CVD growth of defect-free 2D crystals.

  12. Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, I. [Technische Universitaet Muenchen, Walter Schottky Institut and Physik Department, Garching (Germany); Conesa-Boj, S.; Estrade, S.; Peiro, F. [Universitat de Barcelona, Departament d' Electronica, Barcelona, CAT (Spain); Yu, L.; Roca i Cabarrocas, P. [Ecole Polytechnique, CNRS, LPICM, Palaiseau (France); Morante, J.R. [Universitat de Barcelona, Departament d' Electronica, Barcelona, CAT (Spain); Catalonia Institute for Energy Research, Barcelona, CAT (Spain); Arbiol, J. [Universitat de Barcelona, Departament d' Electronica, Barcelona, CAT (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA) and Institut de Ciencia de Materials de Barcelona, CSIC, Bellaterra, CAT (Spain); Fontcuberta i.Morral, A. [Technische Universitaet Muenchen, Walter Schottky Institut and Physik Department, Garching (Germany); Ecole Polytechnique Federale de Lausanne, Laboratoire des Materiaux Semiconducteurs, Institut des Materiaux, Lausanne (Switzerland)

    2010-07-15

    Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the <111>, <112> or <001> growth direction. When growing on the <112> and <111> directions, they revealed a similar crystal quality and the presence of a high density of twins along the {l_brace}111{r_brace} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm{sup -1}, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growth. (orig.)

  13. Effect of transition metal salts on the initiated chemical vapor deposition of polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, Philip; Seidel, Scott; Gupta, Malancha, E-mail: malanchg@usc.edu [Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, California 90089 (United States)

    2015-05-15

    In this work, the effect of transition metal salts on the initiated chemical vapor deposition of polymer thin films was studied using x-ray photoelectron spectroscopy. The polymerizations of 4-vinyl pyridine and 1H,1H,2H,2H-perfluorodecyl acrylate were studied using copper(II) chloride (CuCl{sub 2}) and iron(III) chloride (FeCl{sub 3}) as the transition metal salts. It was found that the surface coverages of both poly(4-vinyl pyridine) (P4VP) and poly(1H,1H,2H,2H-perfluorodecyl acrylate) were decreased on CuCl{sub 2}, while the surface coverage of only P4VP was decreased on FeCl{sub 3}. The decreased polymer surface coverage was found to be due to quenching of the propagating radicals by the salt, which led to a reduction of the oxidation state of the metal. The identification of this reaction mechanism allowed for tuning of the effectiveness of the salts to decrease the polymer surface coverage through the adjustment of processing parameters such as the filament temperature. Additionally, it was demonstrated that the ability of transition metal salts to decrease the polymer surface coverage could be extended to the fabrication of patterned cross-linked coatings, which is important for many practical applications such as sensors and microelectronics.

  14. Structure and photoluminescence of molybdenum selenide nanomaterials grown by hot filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Laboratories, Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization, P. O. Box 218, Lindfield, NSW 2070 (Australia); Zhu, M.K. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Ostrikov, K., E-mail: kostya.ostrikov@qut.edu.au [Plasma Nanoscience Laboratories, Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization, P. O. Box 218, Lindfield, NSW 2070 (Australia); Institute for Future Environments, School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Plasma Nanoscience, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia); Shao, R.W.; Zheng, K. [Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-10-25

    Molybdenum selenide nanomaterials with different structures are synthesized on silicon substrates coated with gold films by hot filament chemical vapor deposition (HFCVD) in nitrogen environment, where molybdenum trioxide and selenium powders are used as source materials. The structure and composition of the synthesized molybdenum selenide nanomaterials are studied using field emission scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the structures of molybdenum selenide change from nanoflakes to nanoparticles with the increase of content of molybdenum trioxide precursor. The photoluminescence (PL) excitation using the 325 nm line of He–Cd laser as the excitation source generates green light with the wavelength of about 512–516 nm. The formation of molybdenum selenide nanomaterials is determined by the decomposition rates of molybdenum trioxide in HFCVD. The possible factors that affect the generation of green PL bands are analyzed. These outcomes of this work enrich our knowledge on the synthesis of transition metal dichalcogenides and contribute to the development of applications of these materials in optoelectronic devices. - Highlights: • Molybdenum selenide nanoflakes, nanoparticles and hybrids produced by HFCVD. • Uncommon MoO{sub 3} and Se precursor co-location and mixing and effective MoO{sub 3} decomposition. • Morphology change from nanoflakes to nanoparticles with higher ratio of MoO{sub 3} precursor. • Strong photoluminescence emission of green light with a wavelength of ∼512–516 nm.

  15. Synthesis of boron nitride nanostructures from catalyst of iron compounds via thermal chemical vapor deposition technique

    Science.gov (United States)

    da Silva, Wellington M.; Ribeiro, Hélio; Ferreira, Tiago H.; Ladeira, Luiz O.; Sousa, Edésia M. B.

    2017-05-01

    For the first time, patterned growth of boron nitride nanostructures (BNNs) is achieved by thermal chemical vapor deposition (TCVD) technique at 1150 °C using a mixture of FeS/Fe2O3 catalyst supported in alumina nanostructured, boron amorphous and ammonia (NH3) as reagent gas. This innovative catalyst was synthesized in our laboratory and systematically characterized. The materials were characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The X-ray diffraction profile of the synthesized catalyst indicates the coexistence of three different crystal structures showing the presence of a cubic structure of iron oxide and iron sulfide besides the gamma alumina (γ) phase. The results show that boron nitride bamboo-like nanotubes (BNNTs) and hexagonal boron nitride (h-BN) nanosheets were successfully synthesized. Furthermore, the important contribution of this work is the manufacture of BNNs from FeS/Fe2O3 mixture.

  16. Chemical vapor deposition growth of large grapheme single crystal from ethanol

    Science.gov (United States)

    Chen, Xiao; Zhao, Pei; Chiashi, Shohei; Maruyama, Shigeo

    2014-03-01

    Ethanol as a precursor has proven effective in the chemical vapor deposition (CVD) synthesis of graphene on both Ni foils and Cu capsule substrates. For applications of graphene in field effect transistors or as transparent conducting electrodes, larger singe-crystal graphene without any grain boundaries shows superior electrical performance and has attracted enormous interests. Here we report a protocol to synthesize large graphene single crystals (up to 600 μm) using ethanol as precursor on commercially-available polycrystalline Cu foils. We explored the mechanism by studying the influences of different growth parameters such as pressure, flow rate and temperature. Low partial pressure and low flow rate of ethanol is essential in achieving low nucleation density over the metal surface and therefore large graphene grains can be obtained. We found that growth temperature dramatically affects the crystallinity and the growth rate of graphene grains. Moreover, this CVD growth of large graphene single crystals involves no electro-polishing or annealing treatments to the metal surface, presenting a significant simplification to the current graphene synthesis process.

  17. Hierarchical chrysanthemum-flower-like carbon nanomaterials grown by chemical vapor deposition

    Science.gov (United States)

    Ding, Er-Xiong; Geng, Hong-Zhang; Wang, Jing; Luo, Zhi-Jia; Li, Guangfen; Wang, Wen-Yi; Li, Lin-Ge; Yang, Hai-Jie; Da, Shi-Xun; Wang, Jie; Jiang, Hua; Kauppinen, Esko I.

    2016-02-01

    Novel hierarchical chrysanthemum-flower-like carbon nanomaterials (CFL-CNMs) were synthesized by thermal chemical vapor deposition based on acetylene decomposition. A scanning electron microscope and a transmission electron microscope were employed to observe the morphology and structure of the unconventional nanostructures. It is found that the CFL-CNMs look like a blooming chrysanthemum with a stem rather than a spherical flower. The carbon flower has an average diameter of 5 μm, an average stem diameter of 150 nm, branch diameters ranging from 20 to 70 nm, and branch lengths ranging from 0.5 to 3 μm. The morphologies of the CFL-CNMs are unlike any of those previously reported. Fishbone-like carbon nanofibers with a spindle-shaped catalyst locating at the tip can also be found. Furthermore, the catalyst split was proposed to elucidate the formation mechanism of CFL-CNMs. A large and glomerate catalyst particle at the tip of the carbon nanofiber splits into smaller catalyst particles which are catalytic-active points for branch formation, resulting in the formation of CFL-CNMs.

  18. Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering.

    Science.gov (United States)

    Lee, Bora; Jiao, Alex; Yu, Seungjung; You, Jae Bem; Kim, Deok-Ho; Im, Sung Gap

    2013-08-01

    Poly(N-vinylcaprolactam) (PNVCL) is a thermoresponsive polymer known to be nontoxic, water soluble and biocompatible. Here, PNVCL homopolymer was successfully synthesized for the first time by use of a one-step vapor-phase process, termed initiated chemical vapor deposition (iCVD). Fourier transform infrared spectroscopy results showed that radical polymerization took place from N-vinylcaprolactam monomers without damaging the functional caprolactam ring. A sharp lower critical solution temperature transition was observed at 31°C from the iCVD poly(N-vinylcaprolactam) (PNVCL) film. The thermoresponsive PNVCL surface exhibited a hydrophilic/hydrophobic alteration with external temperature change, which enabled the thermally modulated attachment and detachment of cells. The conformal coverage of PNVCL film on various substrates with complex topography, including fabrics and nanopatterns, was successfully demonstrated, which can further be utilized to fabricate cell sheets with aligned cell morphology. The advantage of this system is that cells cultured on such thermoresponsive surfaces could be recovered as an intact cell sheet by simply lowering the temperature, eliminating the need for conventional enzymatic treatments. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. TiOx thin films grown on Pd(100) and Pd(111) by chemical vapor deposition

    Science.gov (United States)

    Farstad, M. H.; Ragazzon, D.; Grönbeck, H.; Strømsheim, M. D.; Stavrakas, C.; Gustafson, J.; Sandell, A.; Borg, A.

    2016-07-01

    The growth of ultrathin TiOx (0≤x≤2) films on Pd(100) and Pd(111) surfaces by chemical vapor deposition (CVD), using Titanium(IV)isopropoxide (TTIP) as precursor, has been investigated by high resolution photoelectron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. Three different TiOx phases and one Pd-Ti alloy phase have been identified for both surfaces. The Pd-Ti alloy phase is observed at the initial stages of film growth. Density functional theory (DFT) calculations for Pd(100) and Pd(111) suggest that Ti is alloyed into the second layer of the substrate. Increasing the TTIP dose yields a wetting layer comprising Ti2 + species (TiOx, x ∼0.75). On Pd(100), this phase exhibits a mixture of structures with (3 × 5) and (4 × 5) periodicity with respect to the Pd(100) substrate, while an incommensurate structure is formed on Pd(111). Most importantly, on both surfaces this phase consists of a zigzag pattern similar to observations on other reactive metal surfaces. Further increase in coverage results in growth of a fully oxidized (TiO2) phase on top of the partially oxidized layer. Preliminary investigations indicate that the fully oxidized phase on both Pd(100) and Pd(111) may be the TiO2(B) phase.

  20. Control of nanoparticle agglomeration through variation of the time-temperature profile in chemical vapor synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Djenadic, Ruzica; Winterer, Markus, E-mail: markus.winterer@uni-due.de [Universität Duisburg-Essen, Nanoparticle Process Technology, Faculty of Engineering and CENIDE (Germany)

    2017-02-15

    The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.

  1. Graphene by one-step chemical vapor deposition from ferrocene vapors: Properties and electrochemical evaluation

    Science.gov (United States)

    Pilatos, George; Perdikaki, Anna V.; Sapalidis, Andreas; Pappas, George S.; Giannakopoulou, Tatiana; Tsoutsou, Dimitra; Xenogiannopoulou, Evangelia; Boukos, Nikos; Dimoulas, Athanasios; Trapalis, Christos; Kanellopoulos, Nick K.; Karanikolos, Georgios N.

    2016-02-01

    Growth of few-layer graphene using ferrocene as precursor by chemical vapor deposition is reported. The growth did not involve any additional carbon or catalyst source or external hydrocarbon gases. Parametric investigation was performed using different conditions, namely, varying growth temperature from 600 to1000 °C, and growth duration from 5 min to 3 h, as well as using fast quenching or gradual cooling after the thermal treatment, in order to examine the effect on the quality of the produced graphene. The growth took place on silicon wafers and resulted, under optimal conditions, in formation of graphene with 2-3 layers and high graphitic quality, as evidenced by Raman spectroscopy, with characteristic full width at half maximum of the 2D band of 49.46 cm-1, and I2D/IG and ID/IG intensity ratios of 1.15 and 0.26, respectively. Atomic force microscopy and X-ray photoelectron spectroscopy were employed to further evaluate graphene characteristics and enlighten growth mechanism. Electrochemical evaluation of the developed material was performed using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge measurements.

  2. Layer-selective synthesis of bilayer graphene via chemical vapor deposition

    Science.gov (United States)

    Yang, Ning; Choi, Kyoungjun; Robertson, John; Park, Hyung Gyu

    2017-09-01

    A controlled synthesis of high-quality AB-stacked bilayer graphene by chemical vapor deposition demands a detailed understanding of the mechanism and kinetics. By decoupling the growth of the two layers via a growth-and-regrowth scheme, we report the kinetics and termination mechanisms of the bilayer graphene growth on copper. We observe, for the first time, that the secondary layer growth follows Gompertzian kinetics. Our observations affirm the postulate of a time-variant transition from a mass-transport-limited to a reaction-limited regimes and identify the mechanistic disparity between the monolayer growth and the secondary-layer expansion underneath the monolayer cover. It is the continuous carbon supply that drives the expansion of the graphene secondary layer, rather than the initially captured carbon amount, suggesting an essential role of the surface diffusion of reactant adsorbates in the interspace between the top graphene layer and the underneath copper surface. We anticipate that the layer selectivity of the growth relies on the entrance energetics of the adsorbed reactants to the graphene-copper interspace across the primary-layer edge, which could be engineered by tailoring the edge termination state. The temperature-reliant saturation area of the secondary-layer expansion is understood as a result of competitive attachment of carbon and hydrogen adatoms to the secondary-layer graphene edge.

  3. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  4. Uniformly Distributed Graphene Domain Grows on Standing Copper via Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shih-Hao Chan

    2013-01-01

    Full Text Available Uniformly distributed graphene domains were synthesized on standing copper foil by a low-pressure chemical vapor deposition system. This method improved the distribution of the graphene domains at different positions on the same piece of copper foil along the forward direction of the gas flow. Scanning electron microscopy (SEM showed the average size of the graphene domains to be about ~20 m. This results show that the sheet resistance of monolayer graphene on a polyethylene terephthalate (PET substrate is about ~359 /□ whereas that of the four-layer graphene films is about ~178 /□, with a transmittance value of 88.86% at the 550 nm wavelength. Furthermore, the sheet resistance can be reduced with the addition of HNO3 resulting in a value of 84 /□. These values meet the absolute standard for touch sensor applications, so we believe that this method can be a candidate for some transparent conductive electrode applications.

  5. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface.

    Science.gov (United States)

    Zhang, Xiuyun; Wang, Lu; Xin, John; Yakobson, Boris I; Ding, Feng

    2014-02-26

    Synthesizing bilayer graphene (BLG), which has a band gap, is an important step in graphene application in microelectronics. Experimentally, it was broadly observed that hydrogen plays a crucial role in graphene chemical vapor deposition (CVD) growth on a copper surface. Here, by using ab initio calculations, we have revealed a crucial role of hydrogen in graphene CVD growth, terminating the graphene edges. Our study demonstrates the following. (i) At a low hydrogen pressure, the graphene edges are not passivated by H and thus tend to tightly attach to the catalyst surface. As a consequence, the diffusion of active C species into the area beneath the graphene top layer (GTL) is prohibited, and therefore, single-layer graphene growth is favored. (ii) At a high hydrogen pressure, the graphene edges tend to be terminated by H, and therefore, its detachment from the catalyst surface favors the diffusion of active C species into the area beneath the GTL to form the adlayer graphene below the GTL; as a result, the growth of BLG or few-layer graphene (FLG) is preferred. This insightful understanding reveals a crucial role of H in graphene CVD growth and paves a way for the controllable synthesis of BLG or FLG. Besides, this study also provides a reasonable explanation for the hydrogen pressure-dependent graphene CVD growth behaviors on a Cu surface.

  6. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.

    Science.gov (United States)

    Strudwick, Andrew James; Weber, Nils Eike; Schwab, Matthias Georg; Kettner, Michel; Weitz, R Thomas; Wünsch, Josef R; Müllen, Klaus; Sachdev, Hermann

    2015-01-27

    The realization of graphene-based, next-generation electronic applications essentially depends on a reproducible, large-scale production of graphene films via chemical vapor deposition (CVD). We demonstrate how key challenges such as uniformity and homogeneity of the copper metal substrate as well as the growth chemistry can be improved by the use of carbon dioxide and carbon dioxide enriched gas atmospheres. Our approach enables graphene film production protocols free of elemental hydrogen and provides graphene layers of superior quality compared to samples produced by conventional hydrogen/methane based CVD processes. The substrates and resulting graphene films were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Raman microscopy, sheet resistance and transport measurements. The superior quality of the as-grown graphene films on copper is indicated by Raman maps revealing average G band widths as low as 18 ± 8 cm(-1) at 514.5 nm excitation. In addition, high charge carrier mobilities of up to 1975 cm(2)/(V s) were observed for electrons in transferred films obtained from a carbon dioxide based growth protocol. The enhanced graphene film quality can be explained by the mild oxidation properties of carbon dioxide, which at high temperatures enables an uniform conditioning of the substrates by an efficient removal of pre-existing and emerging carbon impurities and a continuous suppression and in situ etching of carbon of lesser quality being co-deposited during the CVD growth.

  7. One-step synthesis of chlorinated graphene by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Liwei; Zhang, Hui; Zhang, Pingping; Sun, Xuhui, E-mail: xhsun@suda.edu.cn

    2015-08-30

    Highlights: • We developed a simple approach to synthesize the single layer chlorinated graphene. • CuCl{sub 2} on Cu surface is used as Cl source under the plasma treatment. • The formation of covalent C−Cl bond has been investigated by Raman and XPS. • Raman results indicate the p-type doping effect of chlorination. - Abstract: We developed an approach to synthesize the chlorinated single layer graphene (Cl-G) by one-step plasma enhanced chemical vapor deposition. Copper foil was simply treated with hydrochloric acid and then CuCl{sub 2} formed on the surface was used as Cl source under the assistance of plasma treatment. Compared with other two-step methods by post plasma/photochemical treatment of CVD-grown single layer graphene (SLG), one-step Cl-G synthesis approach is quite straightforward and effective. X-ray photoelectron spectroscopy (XPS) revealed that ∼2.45 atom% Cl remained in SLG. Compared with the pristine SLG, the obvious blue shifts of G band and 2D band along with the appearance of D’ band and D + G band in the Raman spectra indicate p-type doping of Cl-G.

  8. Controllable poly-crystalline bilayered and multilayered graphene film growth by reciprocal chemical vapor deposition.

    Science.gov (United States)

    Wu, Qinke; Jung, Seong Jun; Jang, Sung Kyu; Lee, Joohyun; Jeon, Insu; Suh, Hwansoo; Kim, Yong Ho; Lee, Young Hee; Lee, Sungjoo; Song, Young Jae

    2015-06-21

    We report the selective growth of large-area bilayered graphene film and multilayered graphene film on copper. This growth was achieved by introducing a reciprocal chemical vapor deposition (CVD) process that took advantage of an intermediate h-BN layer as a sacrificial template for graphene growth. A thin h-BN film, initially grown on the copper substrate using CVD methods, was locally etched away during the subsequent graphene growth under residual H2 and CH4 gas flows. Etching of the h-BN layer formed a channel that permitted the growth of additional graphene adlayers below the existing graphene layer. Bilayered graphene typically covers an entire Cu foil with domain sizes of 10-50 μm, whereas multilayered graphene can be epitaxially grown to form islands a few hundreds of microns in size. This new mechanism, in which graphene growth proceeded simultaneously with h-BN etching, suggests a potential approach to control graphene layers for engineering the band structures of large-area graphene for electronic device applications.

  9. Structural and electronic characterization of graphene grown by chemical vapor deposition and transferred onto sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Joucken, Frédéric, E-mail: frederic.joucken@unamur.be; Colomer, Jean-François; Sporken, Robert; Reckinger, Nicolas

    2016-08-15

    Highlights: • CVD graphene is transferred onto sapphire. • Transport measurements reveal relatively low charge carriers mobility. • Scanning probe microscopy experiments reveal the presence of robust contaminant layers between the graphene and the sapphire, responsible for the low carriers mobility. - Abstract: We present a combination of magnetotransport and local probe measurements on graphene grown by chemical vapor deposition on copper foil and subsequently transferred onto a sapphire substrate. A rather strong p-doping is observed (∼9 × 10{sup 12} cm{sup −2}) together with quite low carrier mobility (∼1350 cm{sup 2}/V s). Atomic force and tunneling imaging performed on the transport devices reveals the presence of contaminants between sapphire and graphene, explaining the limited performance of our devices. The transferred graphene displays ridges similar to those observed whilst graphene is still on the copper foil. We show that, on sapphire, these ridges are made of different thicknesses of the contamination layer and that, contrary to what was reported for hBN or certain transition metal dichalcogenides, no self-cleansing process of the sapphire substrate is observed.

  10. Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition.

    Science.gov (United States)

    Sheng, Yuewen; Wang, Xiaochen; Fujisawa, Kazunori; Ying, Siqi; Elias, Ana Laura; Lin, Zhong; Xu, Wenshuo; Zhou, Yingqiu; Korsunsky, Alexander M; Bhaskaran, Harish; Terrones, Mauricio; Warner, Jamie H

    2017-05-03

    We show that hexagonal domains of monolayer tungsten disulfide (WS2) grown by chemical vapor deposition (CVD) with powder precursors can have discrete segmentation in their photoluminescence (PL) emission intensity, forming symmetric patterns with alternating bright and dark regions. Two-dimensional maps of the PL reveal significant reduction within the segments associated with the longest sides of the hexagonal domains. Analysis of the PL spectra shows differences in the exciton to trion ratio, indicating variations in the exciton recombination dynamics. Monolayers of WS2 hexagonal islands transferred to new substrates still exhibit this PL segmentation, ruling out local strain in the regions as the dominant cause. High-power laser irradiation causes preferential degradation of the bright segments by sulfur removal, indicating the presence of a more defective region that is higher in oxidative reactivity. Atomic force microscopy (AFM) images of topography and amplitude modes show uniform thickness of the WS2 domains and no signs of segmentation. However, AFM phase maps do show the same segmentation of the domain as the PL maps and indicate that it is caused by some kind of structural difference that we could not clearly identify. These results provide important insights into the spatially varying properties of these CVD-grown transition metal dichalcogenide materials, which may be important for their effective implementation in fast photo sensors and optical switches.

  11. A directly patternable click-active polymer film via initiated chemical vapor deposition (iCVD)

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sung Gap; Kim, Byeong-Su; Tenhaeff, Wyatt E.; Hammond, Paula T. [Department of Chemical Engineering and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Gleason, Karen K., E-mail: kkg@mit.ed [Department of Chemical Engineering and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2009-04-30

    A new 'click chemistry' active functional polymer film was directly obtained from a commercially available monomer of propargyl acrylate (PA) via easy, one-step process of initiated chemical vapor deposition (iCVD). Fourier transform infrared (FTIR) spectra confirmed that significant amount of the click-active acetylene functional group was retained after the iCVD process. The degree of crosslinking could be controlled by intentionally adding crosslinker, such as ethylene glycol diacrylate (EGDA) that was polymerized with PA to form click-active, completely insoluble copolymer. The formed iCVD polymers could also be grafted on various inorganic substrates with silane coupling agents. These crosslinking and grafting techniques give iCVD polymers chemical and mechanical stability, which allows iCVD polymers applicable to various click chemistry without any modification of reaction conditions. Pre-patterned iCVD polymer could be obtained via photolithography and an azido-functionalized dye molecule was also successfully attached on iCVD polymer via click chemistry. Moreover, pPA film demonstrated sensitivity to e-beam irradiation, which enabled clickable substrates having nanometer scale patterns without requiring the use of an additional e-beam resist. Direct e-beam exposure of this multifunctional iCVD layer, a 200 nm pattern, and QD particles were selectively conjugated on the substrates via click chemistry. Thus, iCVD pPA has shown dual functionality as of 'clickable' e-beam sensitive material.

  12. Large-Area WS2 Film with Big Single Domains Grown by Chemical Vapor Deposition

    Science.gov (United States)

    Liu, Pengyu; Luo, Tao; Xing, Jie; Xu, Hong; Hao, Huiying; Liu, Hao; Dong, Jingjing

    2017-10-01

    High-quality WS2 film with the single domain size up to 400 μm was grown on Si/SiO2 wafer by atmospheric pressure chemical vapor deposition. The effects of some important fabrication parameters on the controlled growth of WS2 film have been investigated in detail, including the choice of precursors, tube pressure, growing temperature, holding time, the amount of sulfur powder, and gas flow rate. By optimizing the growth conditions at one atmospheric pressure, we obtained tungsten disulfide single domains with an average size over 100 μm. Raman spectra, atomic force microscopy, and transmission electron microscopy provided direct evidence that the WS2 film had an atomic layer thickness and a single-domain hexagonal structure with a high crystal quality. And the photoluminescence spectra indicated that the tungsten disulfide films showed an evident layer-number-dependent fluorescence efficiency, depending on their energy band structure. Our study provides an important experimental basis for large-area, controllable preparation of atom-thick tungsten disulfide thin film and can also expedite the development of scalable high-performance optoelectronic devices based on WS2 film.

  13. Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Wu, Angjian; Li, Xiaodong; Yang, Jian; Du, Changming; Shen, Wangjun; Yan, Jianhua

    2017-10-12

    Vertical graphene (VG) sheets were single-step synthesized via inductively coupled plasma (ICP)-enhanced chemical vapor deposition (PECVD) using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H₂, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper temperature and H₂ concentration was indispensable for the synthesis of VG sheets. Rich defects of VG were formed with a high I D / I G ratio (1.29), consistent with the dense edges structure observed in electron microscopy. Additionally, the morphologies, crystalline degree, and wettability of nanostructure carbon induced by PECVD and ICP separately were comparatively analyzed. The present work demonstrated the potential of our PECVD recipe to synthesize VG from abundant natural waste oil, which paved the way to upgrade the low-value hydrocarbons into advanced carbon material.

  14. Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Angjian Wu

    2017-10-01

    Full Text Available Vertical graphene (VG sheets were single-step synthesized via inductively coupled plasma (ICP-enhanced chemical vapor deposition (PECVD using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H2, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper temperature and H2 concentration was indispensable for the synthesis of VG sheets. Rich defects of VG were formed with a high I D / I G ratio (1.29, consistent with the dense edges structure observed in electron microscopy. Additionally, the morphologies, crystalline degree, and wettability of nanostructure carbon induced by PECVD and ICP separately were comparatively analyzed. The present work demonstrated the potential of our PECVD recipe to synthesize VG from abundant natural waste oil, which paved the way to upgrade the low-value hydrocarbons into advanced carbon material.

  15. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  16. Band gap engineering of chemical vapor deposited graphene by in situ BN doping.

    Science.gov (United States)

    Chang, Cheng-Kai; Kataria, Satender; Kuo, Chun-Chiang; Ganguly, Abhijit; Wang, Bo-Yao; Hwang, Jeong-Yuan; Huang, Kay-Jay; Yang, Wei-Hsun; Wang, Sheng-Bo; Chuang, Cheng-Hao; Chen, Mi; Huang, Ching-I; Pong, Way-Faung; Song, Ker-Jar; Chang, Shoou-Jinn; Guo, Jing-Hua; Tai, Yian; Tsujimoto, Masahiko; Isoda, Seiji; Chen, Chun-Wei; Chen, Li-Chyong; Chen, Kuei-Hsien

    2013-02-26

    Band gap opening and engineering is one of the high priority goals in the development of graphene electronics. Here, we report on the opening and scaling of band gap in BN doped graphene (BNG) films grown by low-pressure chemical vapor deposition method. High resolution transmission electron microscopy is employed to resolve the graphene and h-BN domain formation in great detail. X-ray photoelectron, micro-Raman, and UV-vis spectroscopy studies revealed a distinct structural and phase evolution in BNG films at low BN concentration. Synchrotron radiation based XAS-XES measurements concluded a gap opening in BNG films, which is also confirmed by field effect transistor measurements. For the first time, a significant band gap as high as 600 meV is observed for low BN concentrations and is attributed to the opening of the π-π* band gap of graphene due to isoelectronic BN doping. As-grown films exhibit structural evolution from homogeneously dispersed small BN clusters to large sized BN domains with embedded diminutive graphene domains. The evolution is described in terms of competitive growth among h-BN and graphene domains with increasing BN concentration. The present results pave way for the development of band gap engineered BN doped graphene-based devices.

  17. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection.

    Science.gov (United States)

    Chang, Yung-Huang; Zhang, Wenjing; Zhu, Yihan; Han, Yu; Pu, Jiang; Chang, Jan-Kai; Hsu, Wei-Ting; Huang, Jing-Kai; Hsu, Chang-Lung; Chiu, Ming-Hui; Takenobu, Taishi; Li, Henan; Wu, Chih-I; Chang, Wen-Hao; Wee, Andrew Thye Shen; Li, Lain-Jong

    2014-08-26

    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices.

  18. Composition and Morphology Control of Metal Dichalcogenides via Chemical Vapor Deposition for Photovoltaic and Nanoelectronic Applications

    Science.gov (United States)

    Samad, Leith L. J.

    The body of work reviewed here encompasses a variety of metal dichalcogenides all synthesized using chemical vapor deposition (CVD) for solar and electronics applications. The first reported phase-pure CVD synthesis of iron pyrite thin films is presented with detailed structural and electrochemical analysis. The phase-pure thin film and improved crystal growth on a metallic backing material represents one of the best options for potential solar applications using iron pyrite. Large tin-sulfur-selenide solid solution plates with tunable bandgaps were also synthesized via CVD as single-crystals with a thin film geometry. Solid solution tin-sulfur-selenide plates were demonstrated to be a new material for solar cells with the first observed solar conversion efficiencies up to 3.1%. Finally, a low temperature molybdenum disulfide vertical heterostructure CVD synthesis with layered controlled growth was achieved with preferential growth enabled by Van der Waals epitaxy. Through recognition of additional reaction parameters, a fully regulated CVD synthesis enabled the controlled growth of 1-6 molybdenum disulfide monolayers for nanoelectronic applications. The improvements in synthesis and materials presented here were all enabled by the control afforded by CVD such that advances in phase purity, growth, and composition control of several metal dichalcogenides were achieved. Further work will be able to take full advantage of these advances for future solar and electronics technologies.

  19. Chemical vapor deposition growth of boron–carbon–nitrogen layers from methylamine borane thermolysis products

    Science.gov (United States)

    Leardini, Fabrice; Flores, Eduardo; Galvis E, Andrés R.; Ferrer, Isabel J.; Ramón Ares, José; Sánchez, Carlos; Molina, Pablo; van der Meulen, Herko P.; Gómez Navarro, Cristina; López Polin, Guillermo; Urbanos, Fernando J.; Granados, Daniel; García-García, F. Javier; Demirci, Umit B.; Yot, Pascal G.; Mastrangelo, Filippo; Grazia Betti, Maria; Mariani, Carlo

    2018-01-01

    This work investigates the growth of B–C–N layers by chemical vapor deposition using methylamine borane (MeAB) as the single-source precursor. MeAB has been synthesized and characterized, paying particular attention to the analysis of its thermolysis products, which are the gaseous precursors for B–C–N growth. Samples have been grown on Cu foils and transferred onto different substrates for their morphological, structural, chemical, electronic and optical characterizations. The results of these characterizations indicate a segregation of h-BN and graphene-like (Gr) domains. However, there is an important presence of B and N interactions with C at the Gr borders, and of C interacting at the h-BN-edges, respectively, in the obtained nano-layers. In particular, there is a significant presence of C–N bonds, at Gr/h-BN borders and in the form of N doping of Gr domains. The overall B:C:N contents in the layers is close to 1:3:1.5. A careful analysis of the optical bandgap determination of the obtained B–C–N layers is presented, discussed and compared with previous seminal works with samples of similar composition.

  20. Ultraviolet-light-driven doping modulation in chemical vapor deposition grown graphene.

    Science.gov (United States)

    Iqbal, M Z; Iqbal, M W; Khan, M F; Eom, Jonghwa

    2015-08-28

    The tuning of charge carrier density of graphene is an essential factor to achieve the integration of high-efficiency electronic and optoelectronic devices. We demonstrate the reversible doping in graphene using deep ultraviolet (UV) irradiation and treatment with O2 and N2 gases. The Dirac point shift towards a positive gate voltage of chemical vapor deposition grown graphene field-effect transistors confirms the p-type doping, which is observed under UV irradiation and treatment with O2 gas, while it restores its pristine state after treatment with N2 gas under UV irradiation. The emergence of an additional peak in the X-ray photoelectron spectra during UV irradiation and treatment with O2 gas represents the oxidation of graphene, and the elimination of this peak during UV irradiation and treatment with N2 gas reveals the restoration of graphene in its pristine state. The shift in the G and 2D bands in Raman spectra towards higher and then lower wavenumber also suggests p-type doping and then reversible doping in graphene. The controlled doping and its reversibility in large area grown graphene offer a new vision for electronic applications.

  1. Substrate Effect on Plasma Clean Efficiency in Plasma Enhanced Chemical Vapor Deposition System

    Directory of Open Access Journals (Sweden)

    Shiu-Ko JangJian

    2007-01-01

    Full Text Available The plasma clean in a plasma-enhanced chemical vapor deposition (PECVD system plays an important role to ensure the same chamber condition after numerous film depositions. The periodic and applicable plasma clean in deposition chamber also increases wafer yield due to less defect produced during the deposition process. In this study, the plasma clean rate (PCR of silicon oxide is investigated after the silicon nitride deposited on Cu and silicon oxide substrates by remote plasma system (RPS, respectively. The experimental results show that the PCR drastically decreases with Cu substrate compared to that with silicon oxide substrate after numerous silicon nitride depositions. To understand the substrate effect on PCR, the surface element analysis and bonding configuration are executed by X-ray photoelectron spectroscopy (XPS. The high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS is used to analyze microelement of metal ions on the surface of shower head in the PECVD chamber. According to Cu substrate, the results show that micro Cu ion and the CuOx bonding can be detected on the surface of shower head. The Cu ion contamination might grab the fluorine radicals produced by NF3 ddissociation in the RPS and that induces the drastic decrease on PCR.

  2. Selective Chemical Vapor Deposition Growth of Cubic FeGe Nanowires That Support Stabilized Magnetic Skyrmions.

    Science.gov (United States)

    Stolt, Matthew J; Li, Zi-An; Phillips, Brandon; Song, Dongsheng; Mathur, Nitish; Dunin-Borkowski, Rafal E; Jin, Song

    2017-01-11

    Magnetic skyrmions are topologically stable vortex-like spin structures that are promising for next generation information storage applications. Materials that host magnetic skyrmions, such as MnSi and FeGe with the noncentrosymmetric cubic B20 crystal structure, have been shown to stabilize skyrmions upon nanostructuring. Here, we report a chemical vapor deposition method to selectively grow nanowires (NWs) of cubic FeGe out of three possible FeGe polymorphs for the first time using finely ground particles of cubic FeGe as seeds. X-ray diffraction and transmission electron microscopy (TEM) confirm that these micron-length NWs with ∼100 nm to 1 μm diameters have the cubic B20 crystal structure. Although Fe 13 Ge 8 NWs are also formed, the two types of NWs can be readily differentiated by their faceting. Lorentz TEM imaging of the cubic FeGe NWs reveals a skyrmion lattice phase under small applied magnetic fields (∼0.1 T) at 233 K, a skyrmion chain state at lower temperatures (95 K) and under high magnetic fields (∼0.4 T), and a larger skyrmion stability window than bulk FeGe. This synthetic approach to cubic FeGe NWs that support stabilized skyrmions opens a route toward the exploration of new skyrmion physics and devices based on similar nanostructures.

  3. Synthesis of scalable and tunable slightly oxidized graphene via chemical vapor deposition.

    Science.gov (United States)

    Sagar, Rizwan Ur Rehman; Namvari, Mina; Navale, Sachin T; Stadler, Florian J

    2017-03-15

    Semiconducting, large sheets of carbon as an active material in optoelectronic research are missing and reduced graphene oxide (rGO) can be a good candidate. However, chemical synthesis cannot produce large sheets of rGO (i.e. maximum: 20-30μm) as well as high quality rGO due to the restraints of fabrication method. Thus, a novel strategy for the synthesis of large sheets of semiconducting rGO is urgently required. Large area slightly oxidized graphene (SOG) is fabricated at the interface of silicon dioxide (SiO2) and silicon via Chemical Vapor Deposition (CVD) method, herein for the first time. Carbon atoms bond with oxygen functionalities (i.e. CO, COH) at the time of diffusion in SiO2 allowing for C/O ratios from 7 to 10 adjustable by the variation of SiO2 thickness, indicating the tunable oxidation. Moreover, electronic structure and morphology of SOG are similar to the chemically grown rGO. The fabrication mechanism of SOG is also investigated. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang

    2014-08-26

    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe 2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices. © 2014 American Chemical Society.

  5. Grain boundary-mediated nanopores in molybdenum disulfide grown by chemical vapor deposition.

    Science.gov (United States)

    Elibol, Kenan; Susi, Toma; O Brien, Maria; Bayer, Bernhard C; Pennycook, Timothy J; McEvoy, Niall; Duesberg, Georg S; Meyer, Jannik C; Kotakoski, Jani

    2017-01-26

    Molybdenum disulfide (MoS 2 ) is a particularly interesting member of the family of two-dimensional (2D) materials due to its semiconducting and tunable electronic properties. Currently, the most reliable method for obtaining high-quality industrial scale amounts of 2D materials is chemical vapor deposition (CVD), which results in polycrystalline samples. As grain boundaries (GBs) are intrinsic defect lines within CVD-grown 2D materials, their atomic structure is of paramount importance. Here, through atomic-scale analysis of micrometer-long GBs, we show that covalently bound boundaries in 2D MoS 2 tend to be decorated by nanopores. Such boundaries occur when differently oriented MoS 2 grains merge during growth, whereas the overlap of grains leads to boundaries with bilayer areas. Our results suggest that the nanopore formation is related to stress release in areas with a high concentration of dislocation cores at the grain boundaries, and that the interlayer interaction leads to intrinsic rippling at the overlap regions. This provides insights for the controlled fabrication of large-scale MoS 2 samples with desired structural properties for applications.

  6. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  7. Fabrication of Nanocarbon Composites Using In Situ Chemical Vapor Deposition and Their Applications.

    Science.gov (United States)

    He, Chunnian; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun

    2015-09-23

    Nanocarbon (carbon nanotubes (CNTs) and graphene (GN)) composites attract considerable research interest due to their fascinating applications in many fields. Here, recent developments in the field of in situ chemical vapor deposition (CVD) for the design and controlled preparation of advanced nanocarbon composites are highlighted, specifically, CNT-reinforced bulk structural composites, as well as CNT, GN, and CNT/GN functional composites, together with their practical and potential applications. In situ CVD is a very attractive approach for the fabrication of composites because of its engaging features, such as its simplicity, low-cost, versatility, and tunability. The morphologies, structures, dispersion, and interface of the resulting nanocarbon composites can be easily modulated by varying the experimental parameters (such as temperature, catalysts, carbon sources, templates or template catalysts, etc.), which enables a great potential for the in situ synthesis of high-quality nanocarbons with tailored size and dimension for constructing high-performance composites, which has not yet been achieved by conventional methods. In addition, new trends of the in situ CVD toward nanocarbon composites are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Tribological Property of C/C-SiC Composites Fabricated by Isothermal Chemical Vapor Infiltration

    Directory of Open Access Journals (Sweden)

    WANG Yueming

    2017-08-01

    Full Text Available Four kinds of C/C-SiC composites were fabricated by isothermal chemical vapor infiltration (ICVI, and the 2.5D needle-punching carbon felt was taken as the preform. The volume fraction of carbon fiber in felt is 30%. The density of C/C-SiC composites is similar (1.87-1.91 g/cm3, while the weight ratio of SiC is decreased from 56% to 15%. The microstructure and phase composition of C/C-SiC composites were observed by SEM and XRD respectively. Friction and wear behavior of the C/C-SiC composites were investigated with the MM-1000 friction machine. The results show that the average macro hardness of matrix is decreased from 98.2HRA to 65.1HRA with the decrease of SiC content from 56% to 15%, and uniformity of hardness distribution is significantly decreased. Finally, by the analysis of microtopography of friction surface and wear debris, it is found that the superficial hardness has an obvious influence on mechanism of wear during braking process. The wear mechanism of the C/C-SiC composites transforms from grain wear to the combination of grain wear and adherent wear with the decrease of surface hardness. At the same time, the average friction coefficient and mass wear rate is increased obviously during breaking process.

  9. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    KAUST Repository

    Gomez De Arco, Lewis

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4- ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness (∼ 0.9 nm) and offered sheet resistance down to 230 Ω/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (η) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138°, whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60°. Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications. © 2010 American Chemical Society.

  10. Aspects of nitrogen surface chemistry relevant to TiN chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schulberg, M.T.; Allendorf, M.D.; Outka, D.A.

    1996-08-01

    NH{sub 3} is an important component of many chemical vapor deposition (CVD) processes for TiN films, which are used for diffusion barriers and other applications in microelectronic circuits. In this study, the interaction of NH{sub 3} with TiN surfaces is examined with temperature programmed desorption (TPD) and Auger electron spectroscopy. NH{sub 3} has two adsorption states on TiN: a chemisorbed state and a multilayer state. A new method for analyzing TPD spectra in systems with slow pumping speeds yields activation energies for desorption for the two states of 24 kcal/mol and 7.3 kcal/mol, respectively. The sticking probability into the chemisorption state is {approximately}0.06. These results are discussed in the context of TiN CVD. In addition, the high temperature stability of TiN is investigated. TiN decomposes to its elements only after heating to 1300 K, showing that decomposition is unlikely to occur under CVD conditions.

  11. Optical spectroscopic characterization of amorphous germanium carbide materials obtained by X-Ray Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Paola Antoniotti

    2015-05-01

    Full Text Available Amorphous germanium carbides have been prepared by X-ray activated Chemical Vapor Deposition from germane/allene systems. The allene percentage and irradiation time (total dose were correlated to the composition, the structural features, and the optical coefficients of the films, as studied by IR and UV-VIS spectroscopic techniques. The materials composition is found to change depending on both the allene percentage in the mixture and the irradiation time. IR spectroscopy results indicate that the solids consist of randomly bound networks of carbon and germanium atoms with hydrogen atoms terminating all the dangling bonds. Moreover, the elemental analysis results, the absence of both unsaturated bonds and CH3 groups into the solids and the absence of allene autocondensation reactions products, indicate that polymerization reactions leading to mixed species, containing Ge-C bonds, are favored. Eopt values around 3.5 eV have been found in most of the cases, and are correlated with C sp3-bonding configuration. The B1/2 value, related to the order degree, has been found to be dependent on solid composition, atoms distribution in the material and hydrogenation degree of carbon atoms.

  12. Initiated chemical vapor deposited nanoadhesive for bonding National Ignition Facility's targets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tom [Univ. of California, Berkeley, CA (United States)

    2016-05-19

    Currently, the target fabrication scientists in National Ignition Facility Directorate at Lawrence Livermore National Laboratory (LLNL) is studying the propagation force resulted from laser impulses impacting a target. To best study this, they would like the adhesive used to glue the target substrates to be as thin as possible. The main objective of this research project is to create adhesive glue bonds for NIF’s targets that are ≤ 1 μm thick. Polyglycidylmethacrylate (PGMA) thin films were coated on various substrates using initiated chemical vapor deposition (iCVD). Film quality studies using white light interferometry reveal that the iCVD PGMA films were smooth. The coated substrates were bonded at 150 °C under vacuum, with low inflow of Nitrogen. Success in bonding most of NIF’s mock targets at thicknesses ≤ 1 μm indicates that our process is feasible in bonding the real targets. Key parameters that are required for successful bonding were concluded from the bonding results. They include inert bonding atmosphere, sufficient contact between the PGMA films, and smooth substrates. Average bond strength of 0.60 MPa was obtained from mechanical shearing tests. The bonding failure mode of the sheared interfaces was observed to be cohesive. Future work on this project will include reattempt to bond silica aerogel to iCVD PGMA coated substrates, stabilize carbon nanotube forests with iCVD PGMA coating, and kinetics study of PGMA thermal crosslinking.

  13. Synthesis of Hybrid Silica-Carbon Tubular Structures by Chemical Vapor Deposition with Methane or Ethene

    Directory of Open Access Journals (Sweden)

    Victor R. Sepulveda

    2017-12-01

    Full Text Available Silica microtube and carbon nanotube hybrid structures have been synthesized by catalytic chemical vapor deposition using either methane or ethene as the carbon source, and cobalt-grafted or impregnated silica tubes (200–800 nm as catalyst. The cobalt-grafted catalyst shows a high resistance to reduction (>1000 °C and selectivity to single-wall carbon nanotubes (SWCNT. While ethene deposition produces more carbonaceous material, methane experiments show higher selectivity for SWCNT. After removing the silica with an excess of HF, the carbon nanostructure endured, resulting in a coaxial carbon nanostructure. The novel hybrid nanostructures obtained consist of a submicron-sized tube, with walls that are formed by a succession of carbon/silica/carbon layers to which multiwall (20–25 nm and/or single-wall (0.6–2.0 nm carbon nanotubes are attached. This synthesis approach combines the mechanical properties of carbon nanotubes and the thermal properties of silica tubes into a synergetic nanostructured material, opening further possibilities for polymer reinforcement and potential applications in catalysis.

  14. Feasibility study of the microforming combined with selective chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Koshimizu Kazushi

    2015-01-01

    Full Text Available Microforming has been received much attention in the recent decades due to the wide use of microparts in electronics and medical applications. For the further functionalization of these micro devices, high functional surfaces with noble metals and nanomaterials are strongly required in bio- and medical fields, such as bio-sensors. To realize an efficient manufacturing process, which can deform the submillimeter scale bulk structure and can construct the micro to nanometer scale structures in one process, the present study proposes a combined process of microforming for metal foils with a selective chemical vapor deposition (SCVD on the active surfaces of the working material. To demonstrate feasibility of this proposed process, feasibility of SCVD of functional materials onto active surfaces of titanium (Ti was investigated. CVD of iron (Fe and carbon nanotubes (CNTs which construct CNTs on the patterned surfaces of the active Ti and non-active Ti oxidation layers were conducted. Ti thin films on silicon substrate and Fe were used as working materials and functional materials respectively. CNTs were grown only on the Ti surface. Consequently, selectivity of the active surface of Ti to the synthesis of Fe particles in CVD was confirmed.

  15. Exploring metalorganic chemical vapor deposition of Si-alloyed Al2O3 dielectrics using disilane

    Science.gov (United States)

    Chan, Silvia H.; Keller, Stacia; Koksaldi, Onur S.; Gupta, Chirag; DenBaars, Steven P.; Mishra, Umesh K.

    2017-04-01

    The alloying of Al2O3 films with Si is a promising route to improve gate dielectric properties in Si- and wide-bandgap- based MOS devices. Here we present a comprehensive investigation of alloyed film growth by metalorganic chemical vapor deposition (MOCVD) using trimethylaluminum, disilane, and oxygen precursors over a variety of temperature and flow conditions. Binary growth rates of Al2O3 and SiO2 were evaluated to explain the aggregate growth kinetics of Si-alloyed Al2O3 films, and refractive indices were used to monitor Si incorporation efficiencies. The temperature dependence of the reaction rate of disilane with oxygen was found to be similar to that of trimethylaluminum and oxygen, leading to well-behaved deposition behavior in the kinetic and mass-transport controlled growth regimes. Compositional predictability and stability was achieved over a wider growth space with disilane-based growths as compared to previous work, which used silane as the Si precursor instead. In situ (Al,Si)O/n-GaN MOS gate stacks were grown and showed increasing reduction of net positive fixed charges with higher Si composition.

  16. Electrical transport properties of graphene nanowalls grown at low temperature using plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Zhao, Rong; Ahktar, Meysam; Alruqi, Adel; Dharmasena, Ruchira; Jasinski, Jacek B.; Thantirige, Rukshan M.; Sumanasekera, Gamini U.

    2017-05-01

    In this work, we report the electrical transport properties of uniform and vertically oriented graphene (graphene nanowalls) directly synthesized on multiple substrates including glass, Si/SiO2 wafers, and copper foils using radio-frequency plasma enhanced chemical vapor deposition (PECVD) with methane (CH4) as the precursor at relatively low temperatures. The temperature for optimum growth was established with the aid of transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy. This approach offers means for low-cost graphene nanowalls growth on an arbitrary substrate with the added advantage of transfer-free device fabrication. The temperature dependence of the electrical transport properties (resistivity and thermopower) were studied in the temperature range, 30-300 K and analyzed with a combination of 2D-variable range hopping (VRH) and thermally activated (TA) conduction mechanisms. An anomalous temperature dependence of the thermopower was observed for all the samples and explained with a combination of a diffusion term having a linear temperature dependence plus a term with an inverse temperature dependence.

  17. Chemical vapor deposition based tungsten disulfide (WS2) thin film transistor

    KAUST Repository

    Hussain, Aftab M.

    2013-04-01

    Tungsten disulfide (WS2) is a layered transition metal dichalcogenide with a reported band gap of 1.8 eV in bulk and 1.32-1.4 eV in its thin film form. 2D atomic layers of metal dichalcogenides have shown changes in conductivity with applied electric field. This makes them an interesting option for channel material in field effect transistors (FETs). Therefore, we show a highly manufacturable chemical vapor deposition (CVD) based simple process to grow WS2 directly on silicon oxide in a furnace and then its transistor action with back gated device with room temperature field effect mobility of 0.1003 cm2/V-s using the Schottky barrier contact model. We also show the semiconducting behavior of this WS2 thin film which is more promising than thermally unstable organic materials for thin film transistor application. Our direct growth method on silicon oxide also holds interesting opportunities for macro-electronics applications. © 2013 IEEE.

  18. Plasma-Assisted Mist Chemical Vapor Deposition of Zinc Oxide Films for Flexible Electronics

    Science.gov (United States)

    Takenaka, Kosuke; Uchida, Giichiro; Setsuhara, Yuichi

    2015-09-01

    Plasma-assisted mist chemical vapor deposition of ZnO films was performed for transparent conductive oxide formation of flexible electronics. In this study, ZnO films deposition using atmospheric-pressure He plasma generated by a micro-hollow cathode-type plasma source has been demonstrated. To obtain detail information according to generation of species in the plasma, the optical emission spectra of the atmospheric pressure He plasma with and without mist were measured. The result without mist shows considerable emissions of He lines, emissions attributed to the excitation and dissociation of air including N2 and O2 (N, O, and NO radials, and N2 molecule; N2 second positive band and first positive band), while the results with mist showed strong emissions attributed to the dissociation of H2O (OH and H radicals). The deposition of ZnO films was performed using atmospheric-pressure He plasma. The XRD patterns showed no crystallization of the ZnO films irradiated with pure He. On the other hand, the ZnO film crystallized with the irradiation with He/O2 mixture plasma. These results indicate that the atmospheric-pressure He/O2 mixture plasma has sufficient reactivity necessary for the crystallization of ZnO films at room temperature. This work was supported partly by The Grant-in-Aid for Scientific Research (KAKENHI) (Grant-in-Aid for Scientific Research(C)) from the Japan Society for the Promotion of Science (JSPS).

  19. Synthesis of Graphene Nanoribbons by Ambient-Pressure Chemical Vapor Deposition and Device Integration.

    Science.gov (United States)

    Chen, Zongping; Zhang, Wen; Palma, Carlos-Andres; Lodi Rizzini, Alberto; Liu, Bilu; Abbas, Ahmad; Richter, Nils; Martini, Leonardo; Wang, Xiao-Ye; Cavani, Nicola; Lu, Hao; Mishra, Neeraj; Coletti, Camilla; Berger, Reinhard; Klappenberger, Florian; Kläui, Mathias; Candini, Andrea; Affronte, Marco; Zhou, Chongwu; De Renzi, Valentina; Del Pennino, Umberto; Barth, Johannes V; Räder, Hans Joachim; Narita, Akimitsu; Feng, Xinliang; Müllen, Klaus

    2016-11-30

    Graphene nanoribbons (GNRs), quasi-one-dimensional graphene strips, have shown great potential for nanoscale electronics, optoelectronics, and photonics. Atomically precise GNRs can be "bottom-up" synthesized by surface-assisted assembly of molecular building blocks under ultra-high-vacuum conditions. However, large-scale and efficient synthesis of such GNRs at low cost remains a significant challenge. Here we report an efficient "bottom-up" chemical vapor deposition (CVD) process for inexpensive and high-throughput growth of structurally defined GNRs with varying structures under ambient-pressure conditions. The high quality of our CVD-grown GNRs is validated by a combination of different spectroscopic and microscopic characterizations. Facile, large-area transfer of GNRs onto insulating substrates and subsequent device fabrication demonstrate their promising potential as semiconducting materials, exhibiting high current on/off ratios up to 6000 in field-effect transistor devices. This value is 3 orders of magnitude higher than values reported so far for other thin-film transistors of structurally defined GNRs. Notably, on-surface mass spectrometry analyses of polymer precursors provide unprecedented evidence for the chemical structures of the resulting GNRs, especially the heteroatom doping and heterojunctions. These results pave the way toward the scalable and controllable growth of GNRs for future applications.

  20. Chemical Vapor Deposition of Bi-Te-Ni-Fe on Magnesium Oxide Substrate and Its Seebeck Effect

    Directory of Open Access Journals (Sweden)

    Yong X. Gan

    2017-10-01

    Full Text Available In this work, a Bi-Te-Ni-Fe complex coating material was obtained on magnesium oxide substrate by a single step ambient pressure chemical vapor deposition (CVD. Nickel acetate, bismuth acetate, iron (III nitrate, and tellurium (IV chloride dissolved in N,N-dimethylformamide (DMF served as the metal sources for Ni, Bi, Fe, and Te, respectively. Hydrogen was used as the carrier gas. The substrate was kept at 500 °C in a quartz tube reaction chamber. The chemical vapor deposition time was two hours. Scanning electron microscopic observation revealed porous morphology of the deposited material with a needle-like submicron fine structure. These needle-like entities form networks with fairly uniform distribution on the substrate. Thermoelectric property test showed that the coating is p-type with a Seebeck coefficient of 179 µV/K. Time-dependent potential data were obtained to show the sensitivity of the Seebeck effect to temperature changes.

  1. Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition

    KAUST Repository

    Cheng, Yingchun

    2013-01-01

    Recently, single layer MoS2 with a direct band gap of 1.9 eV has been proposed as a candidate for two dimensional nanoelectronic devices. However, the synthetic approach to obtain high-quality MoS2 atomic thin layers is still problematic. Spectroscopic and microscopic results reveal that both single layers and tetrahedral clusters of MoS2 are deposited directly on the SiO2/Si substrate by chemical vapor deposition. The tetrahedral clusters are mixtures of 2H- and 3R-MoS2. By ex situ optical analysis, both the single layers and tetrahedral clusters can be attributed to van der Waals epitaxial growth. Due to the similar layered structures we expect the same growth mechanism for other transition-metal disulfides by chemical vapor deposition. © 2013 The Royal Society of Chemistry.

  2. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    Science.gov (United States)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  3. Germanium-on-Silicon Strain Engineered Materials for Improved Device Performance Grown by Chemical Vapor Deposition

    Science.gov (United States)

    Bharathan, Jayesh Moorkoth

    The primary goal of this research is to develop a chemical vapor deposition process for growing epitaxial films of germanium on silicon (001) substrates with two-dimensional (2-D) morphology, and a low density of threading dislocations. Growth was carried out in a reduced-pressure chemical vapor deposition (RPCVD) system by a two-step growth technique. An accurate knowledge of elastic constants of thin films is important in understanding the effect of strain on material properties. Residual thermal strain was used to measure the Poisson ratio of Ge films grown on Si(001) substrates, by the sin2Psi method and highresolution x-ray diffraction. The Poisson ratio of the Ge films was measured to be 0.25, compared to the bulk value of 0.27. The result was found to be independent of film thickness and defect density, which confirmed that the strain is associated with the elastic response of the film. The study showed that the use of Poisson ratio instead of bulk compliance values yields a more accurate description of the state of in-plane strain present in the film. The experimentally measured in-plane strain in Ge films was found to be lower than the theoretical calculations based on the differential thermal expansion coefficients of Si and Ge. The mechanism of thermal misfit strain relaxation in epitaxial Ge films grown on Si(001) substrates was investigated by x-ray diffraction, and transmission electron microscopy. Lattice misfit strain associated with Ge/(001)Si mismatched epitaxy is relieved by a network of Lomer edge misfit dislocations during the first step of the growth technique. However, thermal misfit strain energy during growth is relieved by interdiffusion mechanism at the heterointerface. Two SiGe compositions containing 0.5 and 6.0 atomic percent Si were detected that relieve the thermal mismatch strain associated with the two steps of the growth process. This study discusses the importance of interdiffusion mechanism in relieving small misfit strains

  4. Selective growth of graphene in layer-by-layer via chemical vapor deposition

    Science.gov (United States)

    Park, Jaehyun; An, Hyosub; Choi, Dong-Chul; Hussain, Sajjad; Song, Wooseok; An, Ki-Seok; Lee, Won-Jun; Lee, Naesung; Lee, Wan-Gyu; Jung, Jongwan

    2016-07-01

    Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene on a specific position. The key idea is to deposit a thin Cu layer (~40 nm thick) on pre-grown monolayer graphene and to apply additional growth. The thin Cu atop the graphene/Cu substrate acts as a catalyst to decompose methane (CH4) gas during the additional growth. The adlayer is grown selectively on the pre-grown graphene, and the thin Cu is removed through evaporation during CVD, eventually forming large-area and uniform double layer graphene. With this technology, highly uniform graphene films with precise thicknesses of 1 to 5 layers and graphene check patterns with 1 to 3 layers were successfully demonstrated. This method provides precise LBL growth for a uniform graphene film and a technique for the design of new graphene devices.Selective and precise control of the layer number of graphene remains a critical issue for the practical applications of graphene. First, it is highly challenging to grow a continuous and uniform few-layer graphene since once the monolayer graphene fully covers a copper (Cu) surface, the growth of the second layer stops, resulting in mostly nonhomogeneous films. Second, from the selective adlayer growth point of view, there is no clear pathway for achieving this. We have developed the selective growth of a graphene adlayer in layer-by-layer via chemical vapor deposition (CVD) which makes it possible to stack graphene

  5. In Situ Infrared Spectroscopy of the Gaseous Species Present in a Diamond Chemical Vapor Deposition System

    Science.gov (United States)

    Morell, G.; Weiner, B. R.

    1998-01-01

    We interfaced a Hot-Filament Chemical Vapor Deposition (HFCVD) system to the emission port of an FT-IR spectrometer, in order to study the gas phase species present during the deposition of diamond thin films. The implementation of the infrared (IR) emission technique in situ allowed the study of various carbon-containing species believed to be crucial in diamond film growth. The two IR-active vibrational fundamentals of methane, v(3)(f2) and v(4)(f2), were observed at three different filament temperatures: 1000, 1500 and 2000 C. However, the net signal of v(3) was emission, while that of v(4) was absorption. These results indicate that the v(4) fundamental is excited beyond equilibrium, while the v(3) fundamental remains mostly in the ground state. This is due to the small concentration of methane, the low energy of v(4) compared to v(3) or to the Hz vibrational mode, and symmetry considerations that forbid interaction among the four fundamentals of methane. Thus, the excitation of v(3) is more likely than its decay under HFCVD conditions, producing a non-equilibrium population. At a filament temperature of 2000 C, the v(3) (sigma(+)(3)) fundamental of acetylene and a band at 1328 cm-l also ascribed to acetylene (v5 (pi(U)) + v4) appear in net absorption. This correlates well with the onset of molecular hydrogen breaking by the filament, which occurs at temperatures around 2000 C and above. The hydrogen atoms produced in this heterogeneous reaction give rise to a chain of reactions that lead to acetylene, among other carbonaceous species.

  6. Practical silicon deposition rules derived from silane monitoring during plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bartlome, Richard, E-mail: richard.bartlome@alumni.ethz.ch; De Wolf, Stefaan; Demaurex, Bénédicte; Ballif, Christophe [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin-Film Electronics Laboratory, Rue de la Maladière 71b, 2000 Neuchâtel (Switzerland); Amanatides, Eleftherios; Mataras, Dimitrios [University of Patras, Department of Chemical Engineering, Plasma Technology Laboratory, P.O. Box 1407, 26504 Patras (Greece)

    2015-05-28

    We clarify the difference between the SiH{sub 4} consumption efficiency η and the SiH{sub 4} depletion fraction D, as measured in the pumping line and the actual reactor of an industrial plasma-enhanced chemical vapor deposition system. In the absence of significant polysilane and powder formation, η is proportional to the film growth rate. Above a certain powder formation threshold, any additional amount of SiH{sub 4} consumed translates into increased powder formation rather than into a faster growing Si film. In order to discuss a zero-dimensional analytical model and a two-dimensional numerical model, we measure η as a function of the radio frequency (RF) power density coupled into the plasma, the total gas flow rate, the input SiH{sub 4} concentration, and the reactor pressure. The adjunction of a small trimethylboron flow rate increases η and reduces the formation of powder, while the adjunction of a small disilane flow rate decreases η and favors the formation of powder. Unlike η, D is a location-dependent quantity. It is related to the SiH{sub 4} concentration in the plasma c{sub p}, and to the phase of the growing Si film, whether the substrate is glass or a c-Si wafer. In order to investigate transient effects due to the RF matching, the precoating of reactor walls, or the introduction of a purifier in the gas line, we measure the gas residence time and acquire time-resolved SiH{sub 4} density measurements throughout the ignition and the termination of a plasma.

  7. Studies in graphene growth and processing using atmospheric pressure chemical vapor deposition

    Science.gov (United States)

    Merrell, Andrew Nephi

    This dissertation focuses on graphene, a promising two-dimensional, carbon material with many favorable electronic properties. The prospect of implementing graphene into a wide variety of potential device applications is enticing, but many factors stand in the way before this goal is realized. Atmospheric pressure chemical vapor deposition (APCVD) is a graphene production method that may be compatible with large-scale growth. Motivated by the need to more fully understand APCVD growth of graphene, a system is constructed, and several studies are carried out. Specifically, a detailed study is presented which involves the effects of hydrogen and contaminant oxygen in APCVD-grown graphene. The research shows that hydrogen is an important factor to control during the cooling stage of APCVD, as it has a direct effect on the formation of oxides on the copper foil (copper is used as the catalyst for graphene growth in APCVD). It is also determined that hydrogen, as well as the reaction chamber, play an important role in the formation of SiO2 nanoparticles, which accumulate on the copper surface during graphene growth. Methods for patterning and processing graphene are also explored in this dissertation, as such methods are crucial in the realization of graphene-based devices. The method of e-beam assisted metal deposition used in conjunction with masked-CVD growth is proposed as an effective alternative to conventional processing methods such as photolithography and electron-beam lithography. The proposed methods have several advantages, which pave the way for lowering graphene/metal contact resistance, and preserving the intrinsic properties of graphene during device fabrication.

  8. Chemical vapor deposition of amorphous tungsten nitride for applications in ultra-large scale interconnect technologies

    Science.gov (United States)

    Kelsey, Jean E.

    Increasing demands on computer chip technology require exploration of novel materials and deposition techniques. The driving need to reduce device dimensions without increasing device delay time has forced a move towards copper interconnects. Copper interconnects require an encapsulating barrier layer to prevent diffusion into the dielectric layer, as well as a passivation layer to protect against oxidation. One potential material for the barrier layer is tungsten nitride (WNx). Tungsten nitride is expected to perform well as a barrier because of its refractory nature and excellent thermal, chemical, and mechanical properties. In addition, it can be deposited in amorphous form. Amorphous materials have no grain boundaries, thereby making grain boundary diffusion, a fast path diffusion mechanism, impossible. In this work, a chemical vapor deposition (CVD) process was developed for the deposition of tungsten nitride. CVD was selected because it has the potential to deposit highly conformal film. High conformality is critical in a barrier layer in order to ensure viable coverage at the bottom and sides of device structures without sacrificing critical space that would be better used by the copper metal. In this manner, the total resistivity of the interconnect is minimized. The CVD WNx process was systematically optimized for film conformality, resistivity and growth rate. This was achieved by thoroughly examining film nucleation and growth characteristics, and analyzing resulting film properties. Adhesion of copper to the CVD films was qualified using stud pull tests, while X-ray diffraction was implemented to determine crystallization temperature of the amorphous phase. Additionally, diffusion barrier properties of the CVD tungsten nitride were assessed using sputter deposited copper, and compared to those of sputter deposited tungsten nitride. Thermally activated barrier failure was studied as a function of barrier thickness using Rutherford backscattering

  9. Synthesis of chemical vapor deposition graphene on tantalum wire for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingji, E-mail: limingji@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Guo, Wenlong [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China); Li, Hongji, E-mail: hongjili@yeah.net [Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Xu, Sheng [School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Qu, Changqing; Yang, Baohe [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384 (China)

    2014-10-30

    Highlights: • The capacitance of graphene/tantalum (Ta) wire electrodes is firstly reported. • Graphene was grown on the Ta surface by hot-filament chemical vapor deposition. • Graphene/Ta wire structure is favorable for fast ion and electron transfer. • The graphene/Ta wire electrode shows high capacitive properties. - Abstract: This paper studies the synthesis and electrochemical characterization of graphene/tantalum (Ta) wires as high-performance electrode material for supercapacitors. Graphene on Ta wires is prepared by the thermal decomposition of methane under various conditions. The graphene nanosheets on the Ta wire surface have an average thickness of 1.3–3.4 nm and consist typically of a few graphene monolayers, and TaC buffer layers form between the graphene and Ta wire. A capacitor structure is fabricated using graphene/Ta wire with a length of 10 mm and a diameter of 0.6 mm as the anode and Pt wire of the same size as the cathode. The electrochemical behavior of the graphene/Ta wires as supercapacitor electrodes is characterized by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy in 1 M Na{sub 2}SO{sub 4} aqueous electrolyte. The as-prepared graphene/Ta electrode has highest capacitance of 345.5 F g{sup −1} at current density of 0.5 A g{sup −1}. The capacitance remains at about 84% after 1000 cycles at 10 A g{sup −1}. The good electrochemical performance of the graphene/Ta wire electrode is attributed to the unique nanostructural configuration, high electrical conductivity, and large specific surface area of the graphene layer. This suggests that graphene/Ta wire electrode materials have potential applications in high-performance energy storage devices.

  10. Automation of a remote plasma-enhanced chemical vapor deposition system using LabVIEW

    Science.gov (United States)

    Sharma, Rajan; Fretwell, John L.; Vaihinger, Jochen; Banerjee, Sanjay K.

    1997-08-01

    The remote plasma-enhanced chemical vapor deposition (RPCVD) system is an experimental low temperature Si/Si-Ge epitaxy system. This paper describes an integrated hardware/software automation package developed for the RPCVD system. Aspects of the system controlled by the package include pneumatic gas valves, mass flow controllers (MFCs), and a temperature controller. The package was developed on an Apple Quadra 950 platform using LabVIEWTM 3.1 and associated data acquisition and control hardware supplied by National Instruments and other vendors. The software interface allows the user to operate the system through a virtual control panel which displays critical system parameters such as chamber pressure, chamber temperature and gas flow rates, along with the states of the gas valves and the MFCs. The system can also be run in the recipe mode, in which a sequence of steps are read in from an ExcelTM file. A simulation routine scans each recipe for possible errors such as violation of valve interlocks while the recipe is being loaded. All actions, whether in the manual mode or the recipe mode, are recorded in a log file. Finally, since many of the gases used in the RPCVD process are toxic and/or flammable, there is an emphasis on safety in the entire control scheme. A safety monitor routine constantly checks for valve interlocks and pressure-valve interlocks. Upon detecting an illegal state, it automatically takes necessary action to bring the system into a safe state. In addition to these software safety features, there are also hardware interlocks to deal with such situations as power outages.

  11. Chemical vapor deposition on chabazite (CHA) zeolite membranes for effective post-combustion CO2 capture.

    Science.gov (United States)

    Kim, Eunjoo; Lee, Taehee; Kim, Hyungmin; Jung, Won-Jin; Han, Doug-Young; Baik, Hionsuck; Choi, Nakwon; Choi, Jungkyu

    2014-12-16

    Chabazite (CHA) zeolites with a pore size of 0.37 × 0.42 nm(2) are expected to separate CO2 (0.33 nm) from larger N2 (0.364 nm) in postcombustion flue gases by recognizing their minute size differences. Furthermore, the hydrophobic siliceous constituent in CHA membranes can allow for maintaining the CO2/N2 separation performance in the presence of H2O in contrast with the CO2 affinity-based membranes. In an attempt to increase the molecular sieving ability, the pore mouth size of all silica CHA (Si-CHA) particles was reduced via the chemical vapor deposition (CVD) of a silica precursor (tetraethyl orthosilicate). Accordingly, an increase of the CVD treatment duration decreased the penetration rate of CO2 into the CVD-treated Si-CHA particles. Furthermore, the CVD process was applied to siliceous CHA membranes in order to improve their CO2/N2 separation performance. Compared to the intact CHA membranes, the CO2/N2 maximum separation factor (max SF) for CVD-treated CHA membranes was increased by ∼ 2 fold under dry conditions. More desirably, the CO2/N2 max SF was increased by ∼ 3 fold under wet conditions at ∼ 50 °C, a representative temperature of the flue gas stream. In fact, the presence of H2O in the feed disfavored the permeation of N2 more than that of CO2 through CVD-modified CHA membranes and thus, contributed to the increased CO2/N2 separation factor.

  12. Structure and properties of braided sleeve preforms for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Technology

    1998-04-01

    In all composites the properties and structure of the reinforcement strongly influence the performance of the material. For some composites, however, the reinforcement also affects the fabrication process itself exerting an additional, second order influence on performance. This is the case for the chemical vapor infiltration (CVI) process for fabrication of ceramic matrix composites. In this process the matrix forms progressively as a solid deposit, first onto the fiber surfaces, then onto the previous layer of deposit, ultimately growing to fill the inter-fiber porosity. The transport of reactants to the surfaces and the evolved morphology of the matrix depend on the initial reinforcement structure. This structure can vary greatly and is controlled by such factors as fiber size and cross-section, the number of filaments and amount of twist per tow or yarn, and the weave or braid architecture. Often the choice of reinforcement is based on mechanical performance analysis or on the cost and availability of the material or on the temperature stability of the fiber. Given this choice, the composite densification process--CVI--must be optimized to attain a successful material. Ceramic fiber in the form of cylindrical braided sleeve is an attractive choice for fabrication of tube-form ceramic matrix composites. Multiple, concentric layers of sleeve can be placed over a tubular mandrel, compressed and fixed with a binder to form a freestanding tube preform. This fiber architecture is different than that created by layup of plain weave cloth--the material used in most previous CVI development. This report presents the results of the investigation of CVI densification of braided sleeve preforms and the evolution of their structure and transport properties during processing.

  13. Transparent conductive zinc-oxide-based films grown at low temperature by mist chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Takahiro [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan); Kawaharamura, Toshiyuki [Research Institute, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); School of Systems Engineering, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); Fujita, Shizuo, E-mail: fujitasz@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520 (Japan); Orita, Hiroyuki [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan)

    2015-12-31

    Atmospheric pressure mist chemical vapor deposition (Mist–CVD) systems have been developed to grow zinc-oxide-based (ZnO-based) transparent conductive oxide (TCO) films. Low-resistive aluminum-doped ZnO (AZO) TCOs, showing resistivity of the order on 10{sup −4} Ωcm, previously were grown using a safe source material zinc acetate [Zn(ac){sub 2}], at a growth temperature as high as 500 °C. To grow superior TCOs at lower temperatures, we proposed the addition of NH{sub 3} to accelerate the reaction of acetylacetonate compounds. As the result, we could grow gallium-doped ZnO (GZO) TCOs with a resistivity of 2.7 × 10{sup −3} Ω cm and transmittance higher than 90% at 300 °C by using zinc acetylacetonate [Zn(acac){sub 2}] as the Zn source. To grow boron-doped ZnO (BZO) TCOs at a lower growth temperature of 200 °C, we used boron doping along with a toluene solution of diethylzinc (DEZ), that maintained high reactivity without being flammable. These BZO TCOs showed a resistivity of 1.5 × 10{sup −3} Ω cm and transmittance higher than 90%, despite the use of a non-vacuum-based open-air technology. - Highlights: • Introduction of Mist–CVD as a non-vacuum-based, safe, and cost-effective growth technology • Process evolution of the growth technology to lower the growth temperature. • Achievement of low resistive ZnO films at 200oC.

  14. Nitride film growth morphology using remote plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wintrebert-Fouquet, M.; Butcher, K.S.A.; Chen, P.P.T. [Physics Department, Macquarie University, Sydney, NSW 2109 (Australia); Wuhrer, R. [Microstructural Analysis Unit, Faculty of Science, University of Technology, Sydney, Broadway, NSW 2007 (Australia)

    2007-06-15

    Gallium nitride and indium nitride films have been grown by remote plasma enhanced chemical vapor deposition (RPECVD) at temperatures between 570 and 650 C for GaN and between 350 and 570 C for InN on different substrates. For GaN vast improvements in film morphology and quality have resulted from reductions in background impurities when compared to previous reports. Epitaxial material can now be grown at 650 C under optimized growth conditions. Columnar growth still occurs for growth on some substrates, however film coalescence is observed when using appropriate buffer layers and epitaxial growth can also be observed. High resolution SEM images show examples of this. The root-mean-square surface roughness of epitaxial samples, as measured using atomic force microscopy, shows values of as little as 10 Angstroms. While X-ray diffraction shows that these surfaces are not amorphous but have a strong (0001) preferred axis with FWHM limited by instrumental effects to (2{theta}) 0.085 degrees. The improvement in film quality has allowed heavily doped n-type films to be grown with an electron mobility of 160 cm{sup 2}/V.s for a carrier concentration of {proportional_to}1 x 10{sup 19} cm{sup -3} at 650 C. Moss-Burstein shifted absorption data confirms the high doping level. For InN film growth by RPECVD, columnar growth is commonly observed in the temperature region of interest for films grown directly on sapphire, however film coalescence and epitaxial films are also observed for this material. X-ray diffraction indicates very sharp (0002) peaks with FWHM of (2{theta}) 0.07 degrees. High resolution SEM images show examples of film morphology at different growth temperatures. Electron backscattered diffraction images indicate a wurtzite structure even for InN films with strong deviations from the accepted lattice parameters. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Chemical Vapor Deposition Growth. Final Report, December 29, 1975 -- August 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-10-01

    The objective of this study was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array (LSSA) Project. The results of 20 months of experimental work are summarized. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures by OCLI, using impurity diffusion and other standard and near-standard processing techniques, supplemented late in the program by the in situ CVD growth of n exp + /p/p exp + sheet structures subsquently processed into experimental cells. The principal CVD process used was silane (SiH sub 4 ) pyrolysis, although a few experiments were done with the dichlorosilane (SiH sub 2 Cl sub 2 ) process for Si deposition. The evaluation of various possiblesubstrate materials, the CVD parameter investigations, and the experimental solar cell fabrication and characterization are described in considerable detail. Specific conclusions of the work are discussed, and recommendations for continued investigations in certain areas are given.

  16. Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate by oxidative/initiated chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Alper Balkan

    2017-04-01

    Full Text Available Vapor-phase synthesis techniques of polymeric nanostructures offer unique advantages over conventional, solution-based techniques because of their solventless nature. In this work, we report the fabrication of coaxial polymer nanotubes using two different chemical vapor deposition methods. The fabrication process involves the deposition of an outer layer of the conductive polyaniline (PANI by oxidative chemical vapor deposition, followed by the deposition of the inner layer of poly(2-hydroxyethyl methacrylate (pHEMA hydrogel by initiated chemical vapor deposition. The vapor-phase techniques allowed for fine-tuning of the thickness of the individual layers, keeping the functionalities of the polymers intact. The response of the single components and the coaxial nanotubes to changes in humidity was investigated for potential humidity sensor applications. For single-component conductive PANI nanotubes, the resistance changed parabolically with relative humidity because of competing effects of doping and swelling of the PANI polymer under humid conditions. Introducing a hydrogel inner layer increased the overall resistance, and enhanced swelling, which caused the resistance to continuously increase with relative humidity.

  17. Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate) by oxidative/initiated chemical vapor deposition.

    Science.gov (United States)

    Balkan, Alper; Armagan, Efe; Ozaydin Ince, Gozde

    2017-01-01

    Vapor-phase synthesis techniques of polymeric nanostructures offer unique advantages over conventional, solution-based techniques because of their solventless nature. In this work, we report the fabrication of coaxial polymer nanotubes using two different chemical vapor deposition methods. The fabrication process involves the deposition of an outer layer of the conductive polyaniline (PANI) by oxidative chemical vapor deposition, followed by the deposition of the inner layer of poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel by initiated chemical vapor deposition. The vapor-phase techniques allowed for fine-tuning of the thickness of the individual layers, keeping the functionalities of the polymers intact. The response of the single components and the coaxial nanotubes to changes in humidity was investigated for potential humidity sensor applications. For single-component conductive PANI nanotubes, the resistance changed parabolically with relative humidity because of competing effects of doping and swelling of the PANI polymer under humid conditions. Introducing a hydrogel inner layer increased the overall resistance, and enhanced swelling, which caused the resistance to continuously increase with relative humidity.

  18. Rapid sensing of melamine in milk by interference green synthesis of silver nanoparticles.

    Science.gov (United States)

    Varun, S; Kiruba Daniel, S C G; Gorthi, Sai Siva

    2017-05-01

    A highly sensitive, selective, and rapid interference green synthesis based determination of potential milk adulterant melamine has been reported here. Melamine is a nitrogenous compound added to milk for mimicking proteins, consumption of which leads to kidney stones and renal failures. Melamine interacts with ascorbic acid (AA) through strong hydrogen-bonding interactions, thus resulting in an interference/interruption in the formation of silver (Ag) nanoparticles which was confirmed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The corresponding benchmark validations for melamine spiked milk samples were performed using High Performance Liquid Chromatography (HPLC). This interference in the formation of Ag nanoparticles resulted in color change that varies with concentration of melamine, thereby enabling in-situ rapid sensing of melamine from milk to a lower limit of 0.1ppm with a linear correlation coefficient of 0.9908. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Control of lithium-t-butoxide addition during chemical vapor deposition of Li-doped diamond films by optical emission spectroscopy

    OpenAIRE

    Schreck, Matthias

    1999-01-01

    Control of lithium-t-butoxide addition during chemical vapor deposition of Li-doped diamond films by optical emission spectroscopy / B. Stritzker ... – In: Physica status solidi. A. 174. 1999. S. 65-72

  20. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  1. The Tribological Behaviors of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition

    Science.gov (United States)

    Wang, Song; Liao, Zhenhua; Liu, Yuhong; Liu, Weiqiang

    2015-11-01

    Three thin films (DLC, a-C, and TiN) were performed on Ti6Al4V by chemical vapor deposition. Carbon ion implantation was pretreated for DLC and a-C films while Ti transition layer was pretreated for TiN film to strengthen the bonding strength. X-ray diffraction, Raman measurement, nano-hardness and nano-scratch tester, and cross-section etching by FIB method were used to analyze film characteristics. Tribological behaviors of these coatings were studied by articulation with both ZrO2 and UHMWPE balls using ball-on-disk sliding. The thickness values reached ~0.46, ~0.33, and ~1.67 μm for DLC, a-C, and TiN film, respectively. Nano-hardness of the coatings compared with that of untreated and bonding strength (critical load in nano-scratch test) values of composite coatings compared with that of monolayer film all increased significantly, respectively. Under destructive test (ZrO2 ball conterface) in bovine serum lubrication, TiN coating revealed the best wear resistance while DLC showed the worst. Film failure was mainly attributed to the plowing by hard ZrO2 ball characterized by abrasive and adhesive wear. Under normal test (UHMWPE ball conterface), all coatings showed significant improvement in wear resistance both in dry sliding and bovine serum lubrication. Both DLC and a-C films showed less surface damage than TiN film due to the self-lubricating phenomenon in dry sliding. TiN film showed the largest friction coefficient both in destructive and normal tests, devoting to the big TiN grains thus leading to much rougher surface and then a higher value. The self-lubricating film formed on DLC and a-C coating could also decrease their friction coefficients. The results indicated that three coatings revealed different wear mechanisms, and thick DLC or a-C film was more promising in application in lower stress conditions such as artificial cervical disk.

  2. The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal

    Science.gov (United States)

    Hess, Peter

    2012-03-01

    The structural and electronic properties of the diamond lattice, leading to its outstanding mechanical properties, are discussed. These include the highest elastic moduli and fracture strength of any known material. Its extreme hardness is strongly connected with the extreme shear modulus, which even exceeds the large bulk modulus, revealing that diamond is more resistant to shear deformation than to volume changes. These unique features protect the ideal diamond lattice also against mechanical failure and fracture. Besides fast heat conduction, the fast vibrational movement of carbon atoms results in an extreme speed of sound and propagation of crack tips with comparable velocity. The ideal mechanical properties are compared with those of real diamond films, plates, and crystals, such as ultrananocrystalline (UNC), nanocrystalline, microcrystalline, and homo- and heteroepitaxial single-crystal chemical vapor deposition (CVD) diamond, produced by metastable synthesis using CVD. Ultrasonic methods have played and continue to play a dominant role in the determination of the linear elastic properties, such as elastic moduli of crystals or the Young's modulus of thin films with substantially varying impurity levels and morphologies. A surprising result of these extensive measurements is that even UNC diamond may approach the extreme Young's modulus of single-crystal diamond under optimized deposition conditions. The physical reasons for why the stiffness often deviates by no more than a factor of two from the ideal value are discussed, keeping in mind the large variety of diamond materials grown by various deposition conditions. Diamond is also known for its extreme hardness and fracture strength, despite its brittle nature. However, even for the best natural and synthetic diamond crystals, the measured critical fracture stress is one to two orders of magnitude smaller than the ideal value obtained by ab initio calculations for the ideal cubic lattice. Currently

  3. Desktop Systems for Manufacturing Carbon Nanotube Films by Chemical Vapor Deposition

    National Research Council Canada - National Science Library

    Kuhn, David S

    2007-01-01

    Carbon nanotubes (CNTs) exhibit exceptional electrical, thermal, and mechanical properties that could potentially transform such diverse fields as composites, electronics, cooling, energy storage, and biological sensing...

  4. Electron traps as major recombination centers in n-GaN films grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Lee, In-Hwan; Polyakov, Alexander Y.; Smirnov, Nikolai B.; Yakimov, Eugene B.; Tarelkin, Sergey A.; Turutin, Andery V.; Shemerov, Ivan V.; Pearton, Stephen J.

    2016-06-01

    For a group of n-GaN films grown by metalorganic chemical vapor deposition (MOCVD) using both straight MOCVD and epitaxial lateral overgrowth techniques (ELOG proper or pendeo overgrowth), the spectra of deep traps were measured by deep-level transient spectroscopy (DLTS) with electrical or optical injection (ODLTS). The results were compared with diffusion length measurement results obtained from electron-beam-induced current experiments. The results strongly indicate that deep electron traps near E c - 0.56 eV could be the major recombination centers determining the diffusion length values in pendeo samples.

  5. Dzyaloshinskii-Moriya interaction in Pt/Co/Pt films prepared by chemical vapor deposition with various substrate temperatures

    Directory of Open Access Journals (Sweden)

    M. Quinsat

    2017-05-01

    Full Text Available We deposited perpendicularly magnetized Co(∼1nm/Pt(6nm bilayers by thermal chemical vapor deposition (CVD on top of 3nm thick Pt layer using various deposition temperature. Observed Ms increased with the increase of deposition temperature Ts, and reached the value of pure-Co at Ts = 500°C. We measured a (left-handed negative Dzyaloshinskii-Moriya interaction in CVD films indicating a dominant role of the bottom Pt/Co interface.

  6. Characterization of Boron Carbonitride (BCN) Thin Films Deposited by Radiofrequency and Microwave Plasma Enhanced Chemical Vapor Deposition

    OpenAIRE

    M. A. Mannan; Nagano, M.; K. Shigezumi; Kida, T.; Hirao, N.; Baba, Y.

    2008-01-01

    Boron carbonitride (BCN) thin films with a thickness of ~4 µ­m were synthesized on Si (100) substrate by radiofrequency and microwave plasma enhanced chemical vapor deposition using trimethylamine borane [(CH3)3N.BH3)] as a molecular precursor. The microstructures of the films were evaluated using field emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze t...

  7. In-situ characterization of trapped charges in amorphous semiconductor films during plasma-enhanced chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    S. Nunomura

    2014-09-01

    Full Text Available The subband-gap absorption current in a hydrogenated amorphous silicon film has been measured during plasma-enhanced chemical vapor deposition. The current is probed by a near-infrared laser while photoexcited carriers are generated under visible laser illumination. The trapped charge density is determined from the magnitude of current under the assumption of carrier generation and recombination kinetics. The result indicates that trapped charges are distributed uniformly in the film during growth, and they are reduced after the growth. The trapped charge density is minimized at a growth temperature of ≈ 473 K.

  8. Direct Fabrication of Carbon Nanotubes STM Tips by Liquid Catalyst-Assisted Microwave Plasma-Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Fa-Kuei Tung

    2009-01-01

    Full Text Available Direct and facile method to make carbon nanotube (CNT tips for scanning tunneling microscopy (STM is presented. Cobalt (Co particles, as catalysts, are electrochemically deposited on the apex of tungsten (W STM tip for CNT growth. It is found that the quantity of Co particles is well controlled by applied DC voltage, concentration of catalyst solution, and deposition time. Using optimum growth condition, CNTs are successfully synthesized on the tip apex by catalyst-assisted microwave-enhanced chemical vapor deposition (CA-MPECVD. A HOPG surface is clearly observed at an atomic scale using the present CNT-STM tip.

  9. Effects of substrates on Raman spectroscopy in chemical vapor deposition grown graphene transferred with poly (methyl methacrylate)

    Science.gov (United States)

    Gui, Yangyang; Sun, Hengchao; Yan, Hui; Wang, Hao; Zhang, Yongzhe; Song, Xue Mei; Jia, Rui

    2017-09-01

    Graphene on copper foil produced through chemical vapor deposition has been transferred to different substrates and the Raman signatures from graphene on semi-insulating GaAs, n-GaAs, SiO2 (300 nm)/Si, boron-doped Si, phosphorus-doped Si have been studied. It is found that all the material varieties, morphology and lattice of substrates can influence the Raman scattering spectra from graphene. The obtained results are important for nanometrology of graphene and graphene based devices.

  10. Adsorption and desorption of P on (001) InP surface in metalorganic chemical vapor deposition by surface photoabsorption

    CERN Document Server

    Lee, T W; Moon, Y B; Yoon, E J; Kim, Y D

    1999-01-01

    We studied the surface structure of (001) InP in metalorganic chemical vapor deposition (MOCVD) ambient by surface photoabsorption (SPA). A P-dimer peak at 430 nm and an In-dimer peak at 600 nm were observed from the SPA subtraction spectra. A maximum SPA reflectivity change of 8 % between the P-stabilized and the In-stabilized surfaces was obtained at 470 nm. A first-order desorption kinetics was assumed to curve-fit the SPA signal and an activation energy of 3.36 eV was obtained.

  11. Electromechanical studies of YBaCuO tape fabricated by metal-organic chemical vapor deposition for coil applications

    Energy Technology Data Exchange (ETDEWEB)

    Shikimachi, K [Chubu Electric Power Co., Inc., 20-1, Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya 459-8522 (Japan); Kashima, N [Chubu Electric Power Co., Inc., 20-1, Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya 459-8522 (Japan); Nagaya, S [Chubu Electric Power Co., Inc., 20-1, Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya 459-8522 (Japan); Miyata, S [Nagoya Coated Conductor Center ISTEC-SRL, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8567 (Japan); Yamada, Y [Nagoya Coated Conductor Center ISTEC-SRL, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8567 (Japan); Izumi, T [ISTEC-SRL, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Nakao, K [ISTEC-SRL, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Shiohara, Y [ISTEC-SRL, 1-10-13, Shinonome, Koto-ku, Tokyo 135-0062 (Japan)

    2006-06-01

    YBCO coated conductor has high prospects for coils used in high magnetic fields, but not only its higher transport characteristics but also its adequate workability are required for coil applications. In these studies, mechanical properties of YBCO tape fabricated by multistage chemical vapor deposition were investigated by flat-wise and edgewise bend strain tests. After estimation of influences of its bend strain and its self magnetic field, a small coil of the long YBCO tape could be manufactured. Basic characteristics of the coil were investigated and maximum magnetic field of 0.4 T class was achieved in decompressed liquid nitrogen by the small YBCO coil.

  12. Oxygen source-oriented control of atmospheric pressure chemical vapor deposition of VO2 for capacitive applications

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2016-06-01

    Full Text Available Vanadium dioxides of different crystalline orientation planes have successfully been fabricated by chemical vapor deposition at atmospheric pressure using propanol, ethanol and O2 gas as oxygen sources. The thick a-axis textured monoclinic vanadium dioxide obtained through propanol presented the best electrochemical response in terms of the highest specific discharge capacity of 459 mAh g-1 with a capacitance retention of 97 % after 1000 scans under constant specific current of 2 A g-1. Finally, the electrochemical impedance spectroscopy indicated that the charge transfer of Li+ through the vanadium dioxide / electrolyte interface was easier for this sample enhancing significantly its capacitance performance.

  13. Flexible Electronics: High Pressure Chemical Vapor Deposition of Hydrogenated Amorphous Silicon Films and Solar Cells (Adv. Mater. 28/2016).

    Science.gov (United States)

    He, Rongrui; Day, Todd D; Sparks, Justin R; Sullivan, Nichole F; Badding, John V

    2016-07-01

    On page 5939, J. V. Badding and co-workers describe the unrolling of a flexible hydrogenated amorphous silicon solar cell, deposited by high-pressure chemical vapor deposition. The high-pressure deposition process is represented by the molecules of silane infiltrating the small voids between the rolled up substrate, facilitating plasma-free deposition over a very large area. The high-pressure approach is expected to also find application for 3D nanoarchitectures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hot-Wire Chemical Vapor Deposition Of Polycrystalline Silicon : From Gas Molecule To Solar Cell

    Science.gov (United States)

    van Veenendaal, P. A. T. T.

    2002-10-01

    Although the effort to investigate the use of renewable energy sources, such as wind and solar energy, has increased, their contribution to the total energy consumption remains insignificant. The conversion of solar energy into electricity through solar cells is one of the most promising techniques, but the use of these cells is limited by the high cost of electricity. The major contributions to these costs are the material and manufacturing costs. Over the past decades, the development of silicon based thin film solar cells has received much attention, because the fabrication costs are low. A promising material for use in thin film solar cells is polycrystalline silicon (poly-Si:H). A relatively new technique to deposit poly-Si:H is Hot-Wire Chemical Vapor Deposition (Hot-Wire CVD), in which the reactant gases are catalytically decomposed at the surface of a hot filament, mainly tungsten and tantalum. The main advantages of Hot-Wire CVD over PE-CVD are absence of ion bombardment, high deposition rate, low equipment cost and high gas utilization. This thesis deals with the full spectrum of deposition, characterization and application of poly-Si:H thin films, i.e. from gas molecule to solar cell. Studies on the decomposition of silane on the filament showed that the process is catalytic of nature and that silane is decomposed into Si and 4H. The dominant gas phase reaction is the reaction of Si and H with silane, resulting in SiH3, Si2H6, Si3H6 and H2SiSiH2. The film growth precursors are Si, SiH3 and Si2H4. Also, XPS results on used tantalum and tungsten filaments are discussed. The position dependent measurements show larger silicon contents at the ends of the tungsten filament, as compared to the middle, due to a lower filament temperature. This effect is insignificant for a tantalum filament. Deposition time dependent measurements show an increase in silicon content of the tungsten filament with time, while the silicon content on the tantalum filament saturates

  15. The impact of hydrogen and oxidizing impurities in chemical vapor deposition of graphene on copper

    Science.gov (United States)

    Choubak, Saman

    Graphene, the single-atom layer of carbon, has attracted scientists and technologists due to its outstanding physical and opto/electronic properties. The use of graphene in practical applications requires a reliable and cost-effective method to produce large area graphene films with low defects and controlled thicknesses. Direct growth of graphene using chemical vapor deposition (CVD) on copper, in which carbonaceous gaseous species react with the metal substrate in the presence of hydrogen at high temperatures (850-1100° C), led to high coverage of high quality graphene, opening up a promising future for methods of this type and a large step towards commercial realization of graphene products. The present thesis deals with the synthesis of graphene via low pressure CVD (LP-CVD) on copper catalyst using methane as the carbon precursor. The focus is mainly on the determination of the role of hydrogen and oxidizing impurities during graphene formation with an ultimate purpose: to elucidate a viable and reproducible method for the production of high quality graphene films compatible with industrial manufacturing processes. The role of molecular hydrogen in graphene CVD is explored in the first part of the thesis. Few studies claimed that molecular hydrogen etches graphene films on copper by conducting annealing experiments. On the other hand, we speculated that this graphene etching reaction is due to the presence of trace amount of oxygen in the furnace atmosphere. Thus, we took another approach and designed systematic annealing experiments to investigate the role of hydrogen in the etching reaction of graphene on copper foils. No evidence of graphene etching on copper was observed when purified ultra high purity (UHP) hydrogen was used at 825 °C and 500 mTorr. Nevertheless, graphene films exposed to the unpurified UHP hydrogen were etched due to the presence of oxidizing impurities. Our results show that hydrogen is not responsible for graphene etching reaction

  16. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    Science.gov (United States)

    Chadha, Tandeep S.

    Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular

  17. Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Hong (Amy); Lipschultz, Kristen A.; Anheier, Norman C.; McCloy, John S.

    2012-04-01

    A state-of-the-art mid-infrared prism coupler was used to study the refractive index properties of forward-looking-infrared (FLIR) grade zinc sulfide samples prepared with unique planar grain orientations and locations with respect to the CVD growth axis. This study was motivated by prior photoluminescence and x-ray diffraction measurements that suggested refractive index may vary according to grain orientation. Measurements were conducted to provide optical dispersion and thermal index (dn/dT) data at discrete laser wavelengths between 0.633 and 10.591 {mu}m at two temperature set points (30 C and 90 C). Refractive index measurements between samples exhibited an average standard deviation comparable to the uncertainty of the prism coupler measurement (0.0004 refractive index units), suggesting that the variation in refractive index as a function of planar grain orientation and CVD deposition time is negligible, and should have no impact on subsequent optical designs. Measured dispersion data at mid-infrared wavelengths was found to agree well with prior published measurements.

  18. Optofluidic refractive-index sensors employing bent waveguide structures for low-cost, rapid chemical and biomedical sensing.

    Science.gov (United States)

    Liu, I-Chen; Chen, Pin-Chuan; Chau, Lai-Kwan; Chang, Guo-En

    2018-01-08

    We propose and develop an intensity-detection-based refractive-index (RI) sensor for low-cost, rapid RI sensing. The sensor is composed of a polymer bent ridge waveguide (BRWG) structure on a low-cost glass substrate and is integrated with a microfluidic channel. Different-RI solutions flowing through the BRWG sensing region induce output optical power variations caused by optical bend losses, enabling simple and real-time RI detection. Additionally, the sensors are fabricated using rapid and cost-effective vacuum-less processes, attaining the low cost and high throughput required for mass production. A good RI solution of 5.31 10-4 × RIU-1 is achieved from the RI experiments. This study demonstrates mass-producible and compact RI sensors for rapid and sensitive chemical analysis and biomedical sensing.

  19. Crack-free yttria stabilized zirconia thin films by aerosol assisted chemical vapor deposition: Influence of water and carrier gas

    Energy Technology Data Exchange (ETDEWEB)

    Schlupp, M.V.F., E-mail: Meike.Schlupp@mat.ethz.ch [Nonmetallic Inorganic Materials, ETH Zuerich, Wolfgang-Pauli-Str. 10, 8093 Zuerich (Switzerland); Binder, S.; Martynczuk, J.; Prestat, M. [Nonmetallic Inorganic Materials, ETH Zuerich, Wolfgang-Pauli-Str. 10, 8093 Zuerich (Switzerland); Gauckler, L.J. [Nonmetallic Inorganic Materials, ETH Zuerich, Wolfgang-Pauli-Str. 10, 8093 Zuerich (Switzerland); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2012-11-01

    Yttria stabilized zirconia thin films are deposited on silicon single crystal substrates by aerosol assisted chemical vapor deposition from precursor solutions of zirconium and yttrium 2,4-pentanedionate in ethanol. Continuous films are obtained using pure oxygen, pure nitrogen, or mixtures of both as carrier gas. In the simultaneous presence of water and oxygen, crack formation is observed for films deposited at intermediate substrate temperatures (450 Degree-Sign C), while those deposited at low (300 Degree-Sign C) and high (600 Degree-Sign C) temperatures remain crack-free. Crack-free films can be deposited at 450 Degree-Sign C in a water-free setting, or in the presence of water using pure nitrogen as carrier gas. The addition of water to the precursor solutions also significantly reduces film growth rates. - Highlights: Black-Right-Pointing-Pointer Thin film deposition by aerosol assisted chemical vapor deposition (AA-CVD) Black-Right-Pointing-Pointer Yttria stabilized zirconia (YSZ) thin films deposited between 300 Degree-Sign C and 600 Degree-Sign C Black-Right-Pointing-Pointer Water decreases growth rates and leads to crack formation in AA-CVD of YSZ. Black-Right-Pointing-Pointer Crack-free YSZ thin films deposited using oxygen and/or nitrogen as carrier gas Black-Right-Pointing-Pointer YSZ thin films deposited by AA-CVD show low shrinkage on annealing at 1000 Degree-Sign C.

  20. Synthesis by aerosol assisted chemical vapor deposition and microstructural characterization of PbTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Cano, J.; Hurtado-Macías, A.; Antúnez-Flores, W.; Fuentes-Cobas, L.; González-Hernández, J.; Amézaga-Madrid, P.; Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx

    2013-03-01

    Thin films of PbTiO{sub 3} were deposited onto (001) silicon single-crystal substrates by aerosol assisted chemical vapor deposition method at different temperatures, using organometallic precursors. With the objective of stabilizing and homogenizing the perovskite phase, the films were annealed at 800 °C, in a Pb-rich atmosphere, for 4 and 6 h. The evolution of compositions and microstructure of the films was characterized before and after annealing, by grazing incidence X-ray diffraction, two-dimensional detection of grazing incidence diffraction with synchrotron radiation, scanning electron microscopy and high resolution transmission electron microscopy. X-ray diffraction results showed that the crystalline structure of optimized PbTiO{sub 3} films corresponded to a tetragonal perovskite-type, with lattice parameters a = 0.387(4) nm and c = 0.406(4) nm. In addition, the inverse pole figure of the fiber texture representation, had a Gaussian (1, 1, 0) component and distribution width Ω = 15°. - Highlights: ► We report the synthesis of homogeneous PbTiO{sub 3} thin films on Si substrates. ► They were synthesized by aerosol assisted chemical vapor deposition method. ► Detailed characterization by X-ray diffraction and electron microscopy was performed. ► Crystalline structure of PbTiO{sub 3} films corresponded to a tetragonal perovskite-type. ► The fiber texture representation had a Gaussian (1, 1, 0) component.

  1. Spray Chemical Vapor Deposition of Single-Source Precursors for Chalcopyrite I-III-VI2 Thin-Film Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.

    2008-01-01

    Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.

  2. Reduced-Pressure Chemical Vapor Deposition Growth of Isolated Ge Crystals and Suspended Layers on Micrometric Si Pillars.

    Science.gov (United States)

    Skibitzki, Oliver; Capellini, Giovanni; Yamamoto, Yuji; Zaumseil, Peter; Schubert, Markus Andreas; Schroeder, Thomas; Ballabio, Andrea; Bergamaschini, Roberto; Salvalaglio, Marco; Miglio, Leo; Montalenti, Francesco

    2016-10-05

    In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and μ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.

  3. Tandem solar cells deposited using hot-wire chemical vapor deposition

    Science.gov (United States)

    van Veen, M. K.

    2003-05-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique are the high deposition rate, the low equipment costs, and the scalability. The main goal of this thesis is the optimization of the material properties of both hydrogenated amorphous silicon and microcrystalline silicon, so that these materials can be incorporated as the absorbing layers in tandem solar cells. Firstly, the influence of specific deposition parameters on the material quality of hydrogenated amorphous silicon was investigated. With the use of tantalum filaments, the deposition temperature could be decreased to moderate temperatures, while the (electronic) properties of the amorphous silicon were improved. However, at these low filament temperatures the silicide formation at the filaments was enhanced, resulting in a decrease in the deposition rate and a deterioration of the material quality over time. For extensive silicide formation, even epitaxial growth on crystalline wafers was observed. By preheating the filaments at elevated temperature before deposition, the influence of silicide formation could be minimized, which resulted in an improvement in the reproducibility of the material quality. Solar cells, in which the absorbing layer was made at moderate temperature, had high open-circuit voltages and high fill factors. The best n-i-p structured cell on plain stainless steel had an initial efficiency of 7.2 %. The incorporation of amorphous silicon in p-i-n structured cells with a textured front contact resulted in a higher short-circuit current density and a higher efficiency. Occasionally, many n-i-p structured cells showed shunting problems. The number of working cells was directly correlated to the age of the filaments. The presence of silicides on the

  4. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    National Research Council Canada - National Science Library

    Pedersen, Joachim D; Esposito, Heather J; Teh, Kwok Siong

    2011-01-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm...

  5. Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    KAUST Repository

    Hwang, David

    2017-12-13

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10−5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  6. InAs/GaSb core-shell nanowires grown on Si substrates by metal-organic chemical vapor deposition

    Science.gov (United States)

    Ji, Xianghai; Yang, Xiaoguang; Du, Wenna; Pan, Huayong; Luo, Shuai; Ji, Haiming; Xu, Hongqi; Yang, Tao

    2017-06-01

    We report the growth of InAs/GaSb core-shell heterostructure nanowires with smooth sidewalls on Si substrates using metal-organic chemical vapor deposition (MOCVD) with no assistance from foreign catalysts. Sb adatoms were observed to strongly influence the morphology of the GaSb shell. In particular, Ga droplets form on the nanowire tips when a relatively low TMSb flow rate is used, whereas the droplets are missing and the radial growth of the GaSb is enhanced due to a reduction in the diffusion length of the Ga adatoms when the TMSb flow rate is increased. Moreover, transmission electron microscopy measurements revealed that the GaSb shell coherently grew on the InAs core without any misfit dislocations.

  7. Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, Markus, E-mail: markus.kratzer@unileoben.ac.at; Teichert, Christian [Institute of Physics, Montanuniversitaet Leoben, Franz Josef Straße 18, A 8700 Leoben (Austria); Bayer, Bernhard C. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Faculty of Physics, University of Vienna, Boltzmanngasse 5, A 1090 Vienna (Austria); Kidambi, Piran R. [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Matković, Aleksandar; Gajić, Radoš [Institute of Physics, Department for Solid State Physics and New Materials, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Cabrero-Vilatela, Andrea; Weatherup, Robert S.; Hofmann, Stephan [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)

    2015-03-09

    Scalably grown and transferred graphene is a highly promising material for organic electronic applications, but controlled interfacing of graphene thereby remains a key challenge. Here, we study the growth characteristics of the important organic semiconductor molecule para-hexaphenyl (6P) on chemical vapor deposited graphene that has been transferred with polymethylmethacrylate (PMMA) onto oxidized Si wafer supports. A particular focus is on the influence of PMMA residual contamination, which we systematically reduce by H{sub 2} annealing prior to 6P deposition. We find that 6P grows in a flat-lying needle-type morphology, surprisingly independent of the level of PMMA residue and of graphene defects. Wrinkles in the graphene typically act as preferential nucleation centers. Residual PMMA does however limit the length of the resulting 6P needles by restricting molecular diffusion/attachment. We discuss the implications for organic device fabrication, with particular regard to contamination and defect tolerance.

  8. Vanadyl precursors used to modify the properties of vanadium oxide thin films obtained by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Barreca, D.; Franzato, E.; Rizzi, G.A.; Tondello, E.; Vettori, U. [Univ. di Padova (Italy); Depero, L.E.; Sangaletti, L. [Univ. di Brescia (Italy). Dipt. di Chimica e Fisica per i Materiali

    1999-02-01

    Vanadium oxide thin films were prepared by chemical vapor deposition using as precursors a series of vanadyl complexes of general formula VO(L){sub 2}(H), where L is a {beta}-diketonate ligand. The depositions were carried out on {alpha}-Al{sub 2}O{sub 3} substrates in O{sub 2}, N{sub 2}, and N{sub 2} + H{sub 2}O atmospheres. In order to elucidate the role played by different ligands and synthesis conditions on the properties of the obtained films, the chemical composition of the samples was investigated by X-ray photoelectron spectroscopy, while their microstructure and surface morphology were analyzed by X-ray diffraction, Raman and atomic force microscopy. The thermal decomposition of the precursors, with particular attention to their reactivity in the presence of water vapor, was studied by mass spectrometry and Fourier transform infrared spectroscopy.

  9. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2

    Directory of Open Access Journals (Sweden)

    Rajesh Kappera

    2014-09-01

    Full Text Available Two dimensional transition metal dichalcogenides (2D TMDs offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS2. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS2 on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

  10. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiOx layers for application in solar cells

    Science.gov (United States)

    Klingsporn, M.; Kirner, S.; Villringer, C.; Abou-Ras, D.; Costina, I.; Lehmann, M.; Stannowski, B.

    2016-06-01

    Nanocrystalline silicon suboxides (nc-SiOx) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO0.8:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  11. Ultraviolet to violet lasing from CdxZn1-xO microdisks produced by chemical vapor deposition

    Science.gov (United States)

    Chen, Zuxin; Chen, Xuechen; Chu, Sheng; Peng, Rufang

    2017-10-01

    High quality (HQ) hexagonal CdxZn1-xO microdisks, with bandgap from 3.02 eV to 3.22 eV, are grown by chemical vapor deposition (CVD). Structural and composition analyses indicate that the microdisks have hexagonal shape, single crystalline and tunable Cd concentration. By optical pumping, the microdisk functions as whispering-gallery-mode (WGM) resonator. Lasing from ultravoilet (UV, 385 nm) to violet (410 nm) is demonstrated at room temperature. The HQ factor (1283) is observed, only because of the WGM type resonance. The results demonstrate that the lasing characteristics of WGM cavity from CdxZn1-xO microdisks show promising applications in low threshold violet lasers and light emitting devices.

  12. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. Aceves-Mijares

    2012-01-01

    Full Text Available Silicon Rich Oxide (SRO has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD. In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept that SRO emission properties are due to oxidation state nanoagglomerates rather than to nanocrystals. The emission mechanism is similar to Donor-Acceptor decay in semiconductors, and a wide emission spectrum, from 450 to 850 nm, has been observed. The results show that emission is a function of both silicon excess in the film and excitation energy. As a result different color emissions can be obtained by selecting the suitable excitation energy.

  13. Remote nitrogen microwave plasma chemical vapor deposition from a tetramethyldisilazane precursor. 2. Properties of deposited silicon carbonitride films

    Energy Technology Data Exchange (ETDEWEB)

    Blaszczyk-Lezak, I. [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Lodz (Poland); Wrobel, A.M. [Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, PL-90-363 Lodz (Poland)]. E-mail: amwrobel@bilbo.cbmm.lodz.pl; Bielinski, D.M. [Institute of Polymers, Faculty of Chemistry, Technical University of Lodz, 90-924 Lodz (Poland)

    2006-02-21

    The physical, optical, and mechanical properties of silicon carbonitride (Si:C:N) films produced by the remote nitrogen plasma chemical vapor deposition (RP-CVD) from tetramethyldisilazane have been investigated in relation to their chemical composition and structure. The films deposited at different substrate temperature (30-400 deg. C) were characterized in terms of their density, refractive index, hardness, elastic modulus, and friction coefficient. The correlations between the film compositional parameters, expressed by the atomic concentration ratios N / Si, C / Si, and N / C, as well as structural parameters described by the relative integrated intensities of the infrared absorption bands from the Si-N, Si-C, and SiMe units (controlled by substrate temperature) were investigated. On the basis of the results of these studies, reasonable structure-property relationships have been determined.

  14. Room Temperature Ferromagnetism of (Mn,Fe Codoped ZnO Nanowires Synthesized by Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Yongqin Chang

    2011-01-01

    Full Text Available (Mn,Fe codoped ZnO nanowires were synthesized on silicon substrates in situ using a chemical vapor deposition method. The structure and property of the products were investigated by X-ray, electron microscopy, Raman, photoluminescence, and superconducting quantum interference device magnetometer. The doped nanowires are of pure wurtzite phase with single crystalline, and the elements distribute homogeneously in the doped nanowires. Photoluminescence spectrum of the doped nanowires is dominated by a deep-level emission with a negligible near-band-edge emission. The magnetic hysteresis curve with a coercive field of 35 Oe is clearly observed at 300 K, resulting from room-temperature ferromagnetic ordering in the (Mn,Fe codoped ZnO nanowires, which has great potential applications for spintronics devices.

  15. Epitaxial growth of wide-band-gap ZnGa2O4 films by mist chemical vapor deposition

    Science.gov (United States)

    Oshima, Takayoshi; Niwa, Mifuyu; Mukai, Akira; Nagami, Tomohito; Suyama, Toshihisa; Ohtomo, Akira

    2014-01-01

    ZnGa2O4 films were grown on (100) MgAl2O4 substrates by mist chemical vapor deposition. A growth window for obtaining single spinel phase was revealed by systematic variations of precursor Zn/Ga ratio and growth temperature, where the cation stoichiometry was maintained through sublimation of excess Zn species before crystalized into ZnO. The epitaxial relationship to the substrate was identified to be cube on cube with no rotation domain. The optical properties of the fully relaxed film were characterized by using cathodoluminescence (CL) and absorption spectroscopies. A large Stokes shift was found between the CL peak energy (3.4 eV) and fundamental absorption edge (4.6 eV), reflecting typical property of Ga-based wide-band-gap oxide semiconductors.

  16. Relation between growth rate and structure of graphene grown in a 4″ showerhead chemical vapor deposition reactor

    Science.gov (United States)

    Bekdüz, B.; Beckmann, Y.; Meier, J.; Rest, J.; Mertin, W.; Bacher, G.

    2017-05-01

    The chemical vapor deposition (CVD) growth of graphene on copper is controlled by a complex interplay of substrate preparation, substrate temperature, pressure and flow of reactive gases. A large variety of recipes have been suggested in literature, often quite specific to the reactor, which is being used. Here, we report on a relation between growth rate and quality of graphene grown in a scalable 4″ CVD reactor. The growth rate is varied by substrate pre-treatment, chamber pressure, and methane to hydrogen (CH4:H2) ratio, respectively. We found that at lower growth rates graphene grains become hexagonal rather than randomly shaped, which leads to a reduced defect density and a sheet resistance down to 268 Ω/sq.

  17. Optical and structural properties of ZnO hexagonal rods prepared by thermal chemical vapor deposition technique

    Directory of Open Access Journals (Sweden)

    A Reyhani

    2014-11-01

    Full Text Available In this research, ZnO nanostructure hexagonal pyramid rods with high optical and structural quality were synthesized by the simple thermal chemical vapor deposition of Zn powder without a metal catalyst. Surface morphologies were characterized by scanning electron microscopy (SEM. XRD analyses demonstrated that ZnO hexagonal pyramid rods had a wurtzite structure with the orientation of (002. Investigation of optical properties of samples by photoluminescence spectrum exhibited a sharp UV emission peak at 380nm. The quality and composition of the ZnO pyramid rods were characterized using the Fourier transform infrared spectrum (FTIR at room temperature. In addition, the growth mechanism of ZnO hexagonal rods is also briefly discussed.

  18. Chemical Vapor Deposited Graphene-Based Derivative As High-Performance Hole Transport Material for Organic Photovoltaics.

    Science.gov (United States)

    Capasso, Andrea; Salamandra, Luigi; Faggio, Giuliana; Dikonimos, Theodoros; Buonocore, Francesco; Morandi, Vittorio; Ortolani, Luca; Lisi, Nicola

    2016-09-14

    The development of efficient charge transport layers is a key requirement for the fabrication of efficient and stable organic solar cells. A graphene-based derivative with planar resistivity exceeding 10(5) Ω/□ and work function of 4.9 eV is here produced by finely tuning the parameters of the chemical vapor deposition process on copper. After the growth, the film is transferred to glass/indium tin oxide and used as hole transport layer in organic solar cells based on a PBDTTT-C-T:[70]PCBM blend. The cells attained a maximum power conversion efficiency of 5%, matching reference cells made with state-of-the-art PSS as the hole transport layer. Our results indicate that functionalized graphene could represent an effective alternative to PSS as hole transport/electron blocking layer in solution-processed organic photovoltaics.

  19. Origin of donor and acceptor species in undoped ZnSe grown by low-pressure metalorganic chemical vapor deposition

    Science.gov (United States)

    Morimoto, Keizo

    1988-11-01

    Effects of the [H2 Se]/[Dimethylzinc] source ratio on the electrical properties in the temperature range of 15-300 K and on the cathodoluminescence properties at 77 K have been investigated for undoped ZnSe films grown in one deposition run on (100)GaAs substrates at 350 °C by metalorganic chemical vapor deposition. The properties correlated with each other and depended on the degrees of deviation from stoichiometry. The dominant donor is identified with selenium vacancy from the dependence of donor concentration on the ratio and on the film thickness. Two kinds of acceptors were introduced according to the deviation from stoichiometry. They are tentatively associated with NSe and NaZn . Extended lattice defects which reduce the electron mobility are favored at the high ratios and they seem a principal factor of the high-resistive property of this material.

  20. Tetrasilane and digermane for the ultra-high vacuum chemical vapor deposition of SiGe alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hart, John, E-mail: hartjt@udel.edu [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, DE 19716 (United States); Hazbun, Ramsey; Eldridge, David; Hickey, Ryan [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, DE 19716 (United States); Fernando, Nalin [Department of Physics, University of New Mexico, MSC 3D, P.O. Box 30001, Las Cruces, New Mexico 88003-8001 (United States); Adam, Thomas [College of Nanoscale Science and Engineering, SUNY, New York 12203 (United States); Zollner, Stefan [Department of Physics, University of New Mexico, MSC 3D, P.O. Box 30001, Las Cruces, New Mexico 88003-8001 (United States); Kolodzey, James [Department of Electrical Engineering, University of Delaware, 140 Evans Hall, Newark, DE 19716 (United States)

    2016-04-01

    Tetrasilane and digermane were used to grow epitaxial silicon germanium layers on silicon substrates in a commercial ultra-high vacuum chemical vapor deposition tool. Films with concentrations up to 19% germanium were grown at temperatures from 400 °C to 550 °C. For all alloy compositions, the growth rates were much higher compared to using mono-silane and mono-germane. The quality of the material was assessed using X-ray diffraction, atomic force microscopy, and spectroscopic ellipsometry; all indicating high quality epitaxial films with low surface roughness suitable for commercial applications. Studies of the decomposition kinetics with regard to temperature were performed, revealing an unusual growth rate maximum between the high and low temperature deposition regimes. - Highlights: • Higher order precursors tetrasilane and digermane • Low temperature deposition • Thorough film characterization with temperature • Arrhenius growth rate peak.

  1. Causal knowledge extraction by natural language processing in material science: a case study in chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Yuya Kajikawa

    2006-11-01

    Full Text Available Scientific publications written in natural language still play a central role as our knowledge source. However, due to the flood of publications, the literature survey process has become a highly time-consuming and tangled process, especially for novices of the discipline. Therefore, tools supporting the literature-survey process may help the individual scientist to explore new useful domains. Natural language processing (NLP is expected as one of the promising techniques to retrieve, abstract, and extract knowledge. In this contribution, NLP is firstly applied to the literature of chemical vapor deposition (CVD, which is a sub-discipline of materials science and is a complex and interdisciplinary field of research involving chemists, physicists, engineers, and materials scientists. Causal knowledge extraction from the literature is demonstrated using NLP.

  2. Micro-light-emitting diodes with III–nitride tunnel junction contacts grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Hwang, David; Mughal, Asad J.; Wong, Matthew S.; Alhassan, Abdullah I.; Nakamura, Shuji; DenBaars, Steven P.

    2018-01-01

    Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n++-GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 × 10‑5 to 0.01 mm2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.

  3. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material

    Directory of Open Access Journals (Sweden)

    Prashanta Dhoj Adhikari

    2014-01-01

    Full Text Available We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT–G. Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT–G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT–G structure and p–n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT–G hybrids with the present technique could provide an efficient, novel route to device fabrication.

  4. Pressure dependence of in situ boron-doped silicon films prepared by low-pressure chemical vapor deposition. II. Resistivity

    Science.gov (United States)

    Haji, L.; Hamedi, L.; Loisel, B.; Gauneau, M.; Joubert, P.; Sarret, M.

    1989-11-01

    The effects of silane pressure and temperature on the in situ boron incorporation and resistivity of low-pressure chemical vapor deposited polycrystalline silicon films were studied in the ranges of 2.5×10-3-1 Torr and 515-700 °C. By lowering the silane pressure, the boron concentration increases (up to 1×1022 cm-3) and the resistivity decreases down to about 2×10-3 Ω cm without annealing. For high deposition pressure (≥0.1 Torr), the resistivity decreases as the temperature is lowered. In this latter case the secondary-ion mass spectrometry profiles reveal a boron accumulation at the layer-substrate interface, which is always observed independently of the substrate nature.

  5. Pressure dependence of in situ boron-doped silicon films prepared by low-pressure chemical vapor deposition. I. Microstructure

    Science.gov (United States)

    Joubert, P.; Sarret, M.; Haji, L.; Hamedi, L.; Loisel, B.

    1989-11-01

    In situ boron-doped silicon films have been deposited by the low-pressure chemical vapor deposition technique in the pressure and temperature ranges of 1-2.5×10-3 Torr and 515-700 °C, respectively. These films have been investigated by means of x-ray diffraction and transmission electron microscopy in order to study the influence of the silane partial pressure and deposition temperature on the microstructure of the doped films. X-ray experiments combined with gradual etching were performed in order to check the in-depth distribution of the crystallite textures. The microstructure of the boron-doped and undoped polysilicon films are compared.

  6. Enhanced mobility of Li-doped ZnO thin film transistors fabricated by mist chemical vapor deposition

    Science.gov (United States)

    Jeon, Hye-ji; Lee, Seul-Gi; Kim, H.; Park, Jin-Seong

    2014-05-01

    Mist chemical vapor deposition (mist-CVD)-processed, lithium (Li)-doped ZnO thin film transistors (TFTs) are investigated. Li doping significantly increases the field-effect mobility in TFTs up to ˜100 times greater than that of undoped ZnO. The addition of Li into mist-CVD-grown ZnO semiconductors leads to improved film quality, which results from the enhanced crystallinity and reduced defect states, including oxygen vacancies. Our results suggest that Li doping of ZnO-based oxide semiconductors could serve as an effective strategy for high-performance, mist-CVD-processed oxide TFTs with low-cost and low-temperature fabrication.

  7. The SiNx films process research by plasma-enhanced chemical vapor deposition in crystalline silicon solar cells

    Science.gov (United States)

    Chen, Bitao; Zhang, Yingke; Ouyang, Qiuping; Chen, Fei; Zhan, Xinghua; Gao, Wei

    2017-07-01

    SiNx thin film has been widely used in crystalline silicon solar cell production because of the good anti-reflection and passivation effect. We can effectively optimize the cells performance by plasma-enhanced chemical vapor deposition (PECVD) method to change deposition conditions such as temperature, gas flow ratio, etc. In this paper, we deposit a new layer of SiNx thin film on the basis of double-layers process. By changing the process parameters, the compactness of thin films is improved effectively. The NH3 passivation technology is augmented in a creative way, which improves the minority carrier lifetime. In sight of this, a significant increase is generated in the photoelectric performance of crystalline silicon solar cell.

  8. Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility

    Science.gov (United States)

    Kabadi, N. V.; Sio, H.; Glebov, V.; Gatu Johnson, M.; MacPhee, A.; Frenje, J. A.; Li, C. K.; Seguin, F.; Petrasso, R.; Forrest, C.; Knauer, J.; Rinderknecht, H. G.

    2016-11-01

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF's absolute sensitivity to neutrons. At Omega pTOF's sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At the NIF pTOF's sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. Some possible causes of this variability are ruled out.

  9. Role of defects in tuning the electronic properties of monolayer WS{sub 2} grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jie; Zheliuk, Oleksandr; Lu, Jianming; Ye, Jianting [Zernike Institute for Advanced Materials, University of Groningen, Groningen (Netherlands); Gordiichuk, Pavlo [Zernike Institute for Advanced Materials, University of Groningen, Groningen (Netherlands); Department of Chemistry, Northwestern University, Evanston, IL (United States); Herrmann, Andreas [Zernike Institute for Advanced Materials, University of Groningen, Groningen (Netherlands); Molecular Biophysics, Department of Biology, Humboldt-Universitaet Berlin (Germany)

    2017-10-15

    Two-dimensional transition metal dichalcogenides have already attracted enormous research interest. To understand the dependence of electronic properties on the quality and defect morphology is vital for synthesizing high quality materials and the realization of functional devices. Here, we demonstrate the mapping of the conductive variations by conducting atomic force microscopy (C-AFM) in the monolayer tungsten disulfide (WS{sub 2}) grown by chemical vapor deposition. The electronic properties are strongly affected by the formation of vacancies in monolayer WS{sub 2} during growth, which is also verified by the photoluminescence. This spatial study of defects provides opportunities for optimization of the growth process for enhancing devices performance of TMDs monolayers. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Facile Fabrication of Boron-Doped Titania Nanopowders by Atmospheric Pressure Chemical Vapor Synthesis Route and its Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    K. Saberyan

    2014-04-01

    Full Text Available The Atmospheric Pressure Chemical Vapor Synthesis (APCVS route is a process that can be used for the synthesis of doped-nanocrystalline powders with very small crystallite sizes having a narrow particle size distribution and high purity. In this study, APCVS technique was used to prepare boron-doped titania nanopowders. The effects of temperature, borate flow rate and water flow rate on the amount of doped boron were studied. The resultant powders were characterized by inductively coupled plasma (ICP, X-ray diffraction (XRD, nitrogen adsorption technique (BET, UV-visible DRS spectroscopy, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The optimum boron precursor flow rate was 80 sccm. The highest amount of doped boron was attained when water flow rate was 900 sccm. In comparison to the pristine TiO2, the boron-doped TiO2 nanoparticles showed blue-shift in band-gap energy of the samples.

  11. Properties of Erbium Doped Hydrogenated Amorphous Carbon Layers Fabricated by Sputtering and Plasma Assisted Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2008-01-01

    Full Text Available We report about properties of carbon layers doped with Er3+ ions fabricated by Plasma Assisted Chemical Vapor Deposition (PACVD and by sputtering on silicon or glass substrates. The structure of the samples was characterized by X-ray diffraction and their composition was determined by Rutherford Backscattering Spectroscopy and Elastic Recoil Detection Analysis. The Absorbance spectrum was taken in the spectral range from 400 nm to 600 nm. Photoluminescence spectra were obtained using two types of Ar laser (λex=514.5 nm, lex=488 nm and also using a semiconductor laser (λex=980 nm. Samples fabricated by magnetron sputtering exhibited typical emission at 1530 nm when pumped at 514.5 nm. 

  12. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang, E-mail: xiangliwj@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 (China); Wang, Lin [Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi' an, 710032 (China); Yu, Xiaoming [The Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Feng, Yafei [Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi' an, 710032 (China); Wang, Chengtao [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 (China); Yang, Ke [The Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016 (China); Su, Daniel [School of Mechanical Engineering, Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai, 200240 (China)

    2013-07-01

    Porous tantalum (Ta), produced via chemical vapor deposition (CVD) of commercially pure Ta onto a vitreous carbon, is currently available for use in orthopedic applications. However, the relatively high manufacturing cost and the incapability to produce customized implant using medical image data have limited its application to gain widespread acceptance. In this study, Ta film was deposited on porous Ti6Al4V scaffolds using CVD technique. Digital microscopy and scanning electron microscopy indicated that the Ta coating evenly covered the entire scaffold structure. X-ray diffraction analysis showed that the coating consisted of α and β phases of Ta. Goat mesenchymal stem cells were seeded and cultured on the Ti6Al4V scaffolds with and without coating. The tetrazolium-based colorimetric assay exhibited better cell adhesion and proliferation on Ta-coated scaffolds compared with uncoated scaffolds. The porous scaffolds were subsequently implanted in goats for 12 weeks. Histological analysis revealed similar bone formation around the periphery of the coated and uncoated implants, but bone ingrowth is better within the Ta-coated scaffolds. To demonstrate the ability of producing custom implant for clinical applications via this technology, we designed and fabricated a porous Ti6Al4V scaffold with segmental mandibular shape derived from patient computerized tomography data. - Highlights: • Ta film was coated on porous Ti6Al4V scaffold using chemical vapor deposition. • Tantalum coating allowed for higher levels of cell adhesion and proliferation. • Better new bone formation occurred inside the tantalum-coated scaffolds. • Clinical image data was integrated with EBM to fabricate customized scaffold.

  13. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Jamin M.; Catledge, Shane A., E-mail: catledge@uab.edu

    2016-02-28

    Graphical abstract: - Highlights: • A detailed phase analysis after PECVD boriding shows WCoB, CoB and/or W{sub 2}CoB{sub 2}. • EDS of PECVD borides shows boron diffusion into the carbide grain structure. • Nanoindentation hardness and modulus of borides is 23–27 GPa and 600–780 GPa. • Scratch testing shows hard coating with cracking at 40N and spallation at 70N. - Abstract: Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W{sub 2}CoB{sub 2} with average hardness from 23 to 27 GPa and average elastic modulus of 600–730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  14. Bifunctional catalyst of graphite-encapsulated iron compound nanoparticle for magnetic carbon nanotubes growth by chemical vapor deposition

    Science.gov (United States)

    Saraswati, Teguh Endah; Prasiwi, Oktaviana Dewi Indah; Masykur, Abu; Anwar, Miftahul

    2017-01-01

    The carbon nanotube has widely taken great attractive in carbon nanomaterial research and application. One of its preparation methods is catalytic chemical vapor deposition (CCVD) using catalyst i.e. iron, nickel, etc. Generally, except the catalyst, carbon source gasses as the precursor are still required. Here, we report the use of the bifunctional material of Fe3O4/C which has an incorporated core/shell structures of carbon-encapsulated iron compound nanoparticles. The bifunctional catalyst was prepared by submerged arc discharge that simply performed using carbon and carbon/iron oxide electrodes in ethanol 50%. The prepared material was then used as a catalyst in thermal chemical vapor deposition at 800°C flown with ethanol vapor as the primer carbon source in a low-pressure condition. This catalyst might play a dual role as a catalyst and secondary carbon source for growing carbon nanotubes at the time. The synthesized products were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The successful formation of carbon nanotubes was assigned by the shifted X-ray diffracted peak of carbon C(002), the iron oxides of Fe3O4 and γ-Fe2O3, and the other peaks which were highly considered to the other carbon allotropes with sp2 hybridization structures. The other assignment was studied by electron microscopy which successfully observed the presence of single-wall carbon nanotubes. In addition, the as-prepared carbon nanotubes have a magnetic property which was induced by the remaining of metal catalyst inside the CNT.

  15. Chemical vapor deposition (CVD) of uranium for alpha spectrometry; Deposicion quimica de vapor (CVD) de uranio para espectrometria alfa

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez V, M. L.; Rios M, C.; Ramirez O, J.; Davila R, J. I.; Mireles G, F., E-mail: luisalawliet@gmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2015-09-15

    The uranium determination through radiometric techniques as alpha spectrometry requires for its proper analysis, preparation methods of the source to analyze and procedures for the deposit of this on a surface or substrate. Given the characteristics of alpha particles (small penetration distance and great loss of energy during their journey or its interaction with the matter), is important to ensure that the prepared sources are thin, to avoid problems of self-absorption. The routine methods used for this are the cathodic electro deposition and the direct evaporation, among others. In this paper the use of technique of chemical vapor deposition (CVD) for the preparation of uranium sources is investigated; because by this, is possible to obtain thin films (much thinner than those resulting from electro deposition or evaporation) on a substrate and comprises reacting a precursor with a gas, which in turn serves as a carrier of the reaction products to achieve deposition. Preliminary results of the chemical vapor deposition of uranium are presented, synthesizing and using as precursor molecule the uranyl acetylacetonate, using oxygen as carrier gas for the deposition reaction on a glass substrate. The uranium films obtained were found suitable for alpha spectrometry. The variables taken into account were the precursor sublimation temperatures and deposition temperature, the reaction time and the type and flow of carrier gas. Of the investigated conditions, two depositions with encouraging results that can serve as reference for further work to improve the technique presented here were selected. Alpha spectra obtained for these depositions and the characterization of the representative samples by scanning electron microscopy and X-ray diffraction are also presented. (Author)

  16. PENGARUH TEMPERATUR DEPOSISI PADA PENUMBUHAN FILM TIPIS SILIKON KARBIDA DENGAN METODE HOMEMADE HOT-MESH CHEMICAL VAPOR DEPOSITION

    Directory of Open Access Journals (Sweden)

    B Astuti

    2016-03-01

    Full Text Available Film tipis silikon karbida (SiC telah ditumbuhkan di atas substrate graphene/SiO2/Si dengan metode Homemade Hot-mesh chemical vapor deposition (Hot-Mesh CVD. Pengaruh dari temperature deposisi pada struktur dan morfologi film tipis SiC telah dipelajari dengan menggunakan X-Ray diffractometer (XRD, FESEM dan EDX, dan spektroskopi Raman. Karakterisasi XRD menunjukkan bahwa film tipis SiC memiliki struktur polikristal tipe kubik dengan orientasi (111. Kualitas film tipis SiC, dan ukuran butir kristal dari morfologi film yang dihasilkan meningkat dengan peningkatan temperatur deposisi. Dari karakterisasi spektroskopi Raman, dapati terdapat dua puncak pergeseran Raman yang dominan pada daerah sekitar 780 - 800 cm-1 dan  950 – 980 cm-1 yang merupakan mode fonon SiC-TO dan SiC-LO. Puncak pergeseran Raman tersebut bergeser ke bilangan gelombang yang lebih pendek dengan peningkatan temperature deposisi.Silicon carbide (SiC thin film grown on graphene/SiO2/Si substrate using homemade hot mesh chemical vapor deposition (Hot-Mesh SVD method has been done. Effect of  deposition temperature on structure and morphology of the thin film was studied by using X-ray diffractometer (XRD, FESEM and EDX, and Raman spectroscopy. XRD characteristics shows that SiC thin film has cubic polycrystalline structure with (111 orientation. Quality of the SiC thin film, and crystallite grain size from the film morphology was resulted increases with the increase of the deposition temperature. Based on the characterization of Raman spectroscopy, shows that two peak Raman shift in the range of 780 - 800 cm-1 and  950 – 980 cm-1 was attributed to SiC-TO and SiC-LO phonon mode.  The Raman shift peak was shifted toward the lower wavenumber with the increase of deposition temperature.

  17. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  18. Synthesis of meso-crystalline Al2O3 nano-platelet coatings using combustion chemical vapor deposition (C-CVD)

    CSIR Research Space (South Africa)

    Dhonge, BP

    2014-09-01

    Full Text Available Meso-crystalline alumina (Al2O3) coatings having a nano-platelet microstructure were synthesized using an indigenously designed combustion chemical vapor deposition facility. Aluminum acetylacetonate of 0.001 to 0.005 M concentrations dissolved...

  19. Evolution of Fe Species during the Synthesis of Over-Exchanged Fe/ZSM5 Obtained by Chemical Vapor Deposition of FeCl3

    NARCIS (Netherlands)

    Koningsberger, D.C.; Battiston, A.A.; Bitter, J.H.; Groot, F.M.F. de; Overweg, A.R.; Stephan, O.; Bokhoven, J.A. van; Kooyman, P.J.

    2003-01-01

    The evolution of iron in over-exchanged Fe/ZSM5 prepared via chemical vapor deposition of FeCl{3} was studied at each stage of the synthesis. Different characterization techniques (EXAFS, HR-XANES, }5{}7{Fe Mossbauer spectroscopy, }2{}7{Al NMR, EELS, HR-TEM, XRD, N{2} physisorption, and FTIR

  20. Evolution of Fe species during the synthesis of over-exchanged Fe/ZSM5 obtained by chemical vapor deposition of FeCl3

    NARCIS (Netherlands)

    Battiston, AA; Bitter, JH|info:eu-repo/dai/nl/160581435; de Groot, FMF|info:eu-repo/dai/nl/08747610X; Overweg, AR; Stephan, O; van Bokhoven, JA; Kooyman, PJ; van der Spek, C; Vanko, G; Koningsberger, DC

    2003-01-01

    The evolution of iron in over-exchanged Fe/ZSM5 prepared via chemical vapor deposition of FeCl3 was studied at each stage of the synthesis. Different characterization techniques (EXAFS, HR-XANES, Fe-57 Mossbauer spectroscopy, Al-27 NMR, EELS, HR-TEM, XRD, N-2 physisorption, and FTIR spectroscopy)

  1. Reduction of hydrogen-induced optical losses of plasma-enhanced chemical vapor deposition silicon oxynitride by phosphorus doping and heat treatment

    NARCIS (Netherlands)

    Hussein, M.G.; Worhoff, Kerstin; Sengo, G.; Sengo, G.; Driessen, A.

    2007-01-01

    Plasma enhanced chemical vapor deposition phosphoros-doped silicon oxynitride (SiON) layers with a refractive index of 1.505 were deposited from $N_{2}O$, 2% $SiH_{4}/N_{2}$, and 5% $PH_{3}/Ar$ gaseous mixtures. The $PH_{3}/Ar$ flow rate was varied to investigate the effect of the dopant to the

  2. Rapid manufacture of integrated self-powered sensing systems using additive manufacturing for critical structure health monitoring

    OpenAIRE

    Nie, Meng; Wharton, Julian; Stokes, Keith

    2015-01-01

    In this project, the feasibility of rapid manufacturing of integrated corrosion monitoring sensing systems within critical engineering structural components using advanced AM technologies has been demonstrated with an exemplar model structure of crevice corrosion monitoring with integrated carbon-based electrochemical sensors. Corrosion performance of all five different materials model crevice former structures built using different AM technologies have been investigated for the first time in...

  3. In situ Raman characterization of a diamond film during its growth process in a plasma jet chemical vapor deposition reactor

    Science.gov (United States)

    Rosman, N.; Abello, L.; Chabert, J. P.; Verven, G.; Lucazeau, G.

    1995-07-01

    A setup designed for characterization of a diamond film during its growth in a dc plasma jet chemical vapor deposition reactor is described. It is composed of a pulsed laser and the detector is gated in order to synchronize the Raman detection with the laser pulses. The optical components are designed for working in the visible and near UV. The installation is specially designed for remote detection and can be used in industrial reactors as well as in laboratory experiments. The detectivity of the setup is analyzed through some typical diamond spectra and it is shown that it is of the same order as that of a micro-Raman multichannel spectrometer. Some results are reported on how the temperature and the quality of the film can be controlled during the deposition process or during its etching by H2 reactive plasma. These results are discussed and confirmed by ex situ measurements including Raman, infrared, and scanning electron micrographs obtained on the same samples or in the same conditions as for in situ experiments. The secondary nucleation is responsible for the loss of Raman intensity and it could have some cyclic character.

  4. Tris(phosphino)borato silver(I) complexes as precursors for metallic silver aerosol-assisted chemical vapor deposition.

    Science.gov (United States)

    McCain, Matthew N; Schneider, Sven; Salata, Michael R; Marks, Tobin J

    2008-04-07

    A series of light- and air-stable tris(phosphino)borato silver(I) complexes has been synthesized, structurally and spectroscopically characterized, and implemented in the growth of low resistivity metallic silver thin films by aerosol-assisted chemical vapor deposition (AACVD). Of the four complexes in the series, [RB(CH2PR'2) 3]AgPEt3 (R = Ph (1, 3), (n)Bu (2, 4); R' = Ph (1, 2), (i)Pr (3, 4), complexes 1 and 2 have been characterized by single-crystal X-ray diffraction. Complex 2 represents a significant improvement over previously available nonfluorinated Ag precursors, owing to ease of handling and efficient film deposition characteristics. Thermogravimetric analysis (TGA) shows that the thermolytic properties of these complexes can be significantly modified by altering the ligand structure. Polycrystalline cubic-phase Ag thin films were grown on glass, MgO(100), and 52100 steel substrates. Ag films of thicknesses 3 microm, grown at rates of 14-18 nm/min, exhibit low levels of extraneous element contamination by X-ray photoelectron spectroscopy (XPS). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) indicate that film growth proceeds primarily via an island growth (Volmer-Weber) mechanism.

  5. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.

    2017-02-16

    Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg–Cu alloy layer with occasional intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.

  6. A nitrogen-doped graphene film prepared by chemical vapor deposition of a methanol mist containing methylated melamine resin

    Science.gov (United States)

    Mizuno, T.; Takizawa, M.; Tsuchiya, B.; Jinno, M.; Bandow, S.

    2013-11-01

    The effect of nitrogen doping on the sheet resistivity of a graphene film is systematically studied by changing the doping concentration. The nitrogen-doped graphene film is grown on a Cu foil by chemical vapor deposition using an ultrasonically generated methanol mist containing methylated melamine resin (simply called ‘melamine’). Using this method, it is found that the magnitude of the sheet resistivity is controllable by changing the melamine concentration. Increasing the melamine concentration up to ˜0.03 % causes a decrease of the sheet resistivity. We explain this by the substitutional doping of nitrogen atoms. A further increase in melamine concentration causes an increase of the sheet resistivity. This increase may be caused by the formation of pyridinic or pyrrolic N instead of substitutional N. Electron energy loss spectroscopy analyses for the carbon K-edge indicate a decrease of π ∗ character with increasing melamine concentration up to 0.08 % and then it recovers for higher concentration. This is due to a separation of the graphitic region and the defective region at high melamine concentration.

  7. Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride

    Science.gov (United States)

    Song, Jeong-Gyu; Ryu, Gyeong Hee; Kim, Youngjun; Woo, Whang Je; Ko, Kyung Yong; Kim, Yongsung; Lee, Changseung; Oh, Il-Kwon; Park, Jusang; Lee, Zonghoon; Kim, Hyungjun

    2017-11-01

    The effective synthesis of atomically thin molybdenum disulfides (MoS2) of high quality and uniformity over a large area is essential for their use in electronic and optical devices. In this work, we synthesize MoS2 that exhibit a high quality and large area uniformity using chemical vapor deposition (CVD) with volatile S organic compound and NaCl catalysts. In the latter process, the NaCl enhances the growth rate (5 min for synthesis of monolayer MoS2) and purity of the synthesized MoS2. The optical microscopy, Raman spectroscopy, x-ray photoemission spectroscopy, photoluminescence, and transmission electron microscopy measurements indicate that the NaCl-CVD MoS2 has a large grain size, clear Raman shift, strong photoluminescence, good stoichiometry, and 6-fold coordination symmetry. Moreover, we demonstrate that the electron mobility (10.4 cm2 V‑1 s‑1) and on/off current ratio (3 × 107) of monolayer MoS2 measured using a field-effect transistor are comparable to those of previously reported MoS2 synthesized using CVD.

  8. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical-chemical vapor deposition

    Science.gov (United States)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.

    2017-04-01

    Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20-25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical-chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg-Cu alloy layer with occasional intrusion of Mg-Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.

  9. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.; Metcalf, T. H.; Culbertson, J. C.; Chervin, C. N.; Stroud, R. M.; Nemeth, W.; Wang, Q.; Liu, Xiao

    2017-07-01

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline silicon is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.

  10. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  11. Controlled growth of MoS2 nanopetals on the silicon nanowire array using the chemical vapor deposition method

    Science.gov (United States)

    Chen, Shang-Min; Lin, Yow-Jon

    2018-01-01

    In order to get a physical/chemical insight into the formation of nanoscale semiconductor heterojunctions, MoS2 flakes are deposited on the silicon nanowire (SiNW) array by chemical vapor deposition (CVD). In this study, H2O2 treatment provides a favorable place where the formation of Sisbnd O bonds on the SiNW surfaces that play important roles (i.e., the nucleation centers, catalyst control centers or ;seeds;) can dominate the growth of MoS2 on the SiNWs. Using this configuration, the effect of a change in the S/MoO3 mass ratio (MS/MMoO3) on the surface morphology of MoS2 is studied. It is shown that an increase in the value of MS/MMoO3 leads to the increased nucleation rate, increasing the size of MoS2 nanopetals. This study provides valuable scientific information for directly CVD-grown edge-oriented MoS2/SiNWs heterojunctions for various nanoscale applications, including hydrogen evolution reaction and electronic and optoelectronic devices.

  12. Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors

    Science.gov (United States)

    Wang, Denggui; Zhang, Xingwang; Liu, Heng; Meng, Junhua; Xia, Jing; Yin, Zhigang; Wang, Ye; You, Jingbi; Meng, Xiang-Min

    2017-09-01

    Group IVB transition metal (Zr and Hf) dichalcogenides (TMDs) have been attracting intensive attention as promising candidates in the modern electronic and/or optoelectronic fields. However, the controllable growth of HfS2 monolayers or few layers still remains a great challenge, thus hindering their further applications so far. Here, for the first time we demonstrate the epitaxial growth of high-quality HfS2 with a controlled number of layers on c-plane sapphire substrates by chemical vapor deposition (CVD). The HfS2 layers exhibit an atomically sharp interface with the sapphire substrate, followed by flat, 2D layers with octahedral coordination. The epitaxial relationship between HfS2 and substrate was determined by x-ray diffraction and transmission electron microscopy measurements to be: HfS2 (0 0 0 1) [10-10]||sapphire (0 0 0 1)[1-100]. Moreover, a high-performance photodetector with a high on/off ratio of more than 103 and an ultrafast response rate of 130 µs for the rise and 155 µs for the decay times were fabricated based on the CVD-grown HfS2 layers on sapphire substrates. This simple and controllable approach opens up a new way to produce highly crystalline HfS2 atomic layers, which are promising materials for nanoelectronics.

  13. Low temperature plasma enhanced chemical vapor deposition of thin films combining mechanical stiffness, electrical insulation, and homogeneity in microcavities

    Science.gov (United States)

    Peter, S.; Günther, M.; Hauschild, D.; Richter, F.

    2010-08-01

    The deposition of hydrogenated amorphous carbon (a-C:H) as well as hydrogenated amorphous silicon carbonitride (SiCN:H) films was investigated in view of a simultaneous realization of a minimum Young's modulus (>70 GPa), a high electrical insulation (≥1 MV/cm), a low permittivity and the uniform coverage of microcavities with submillimeter dimensions. For the a-C:H deposition the precursors methane (CH4) and acetylene (C2H2) were used, while SiCN:H films were deposited from mixtures of trimethylsilane [SiH(CH3)3] with nitrogen and argon. To realize the deposition of micrometer thick films with the aforementioned complex requirements at substrate temperatures ≤200 °C, several plasma enhanced chemical vapor deposition methods were investigated: the capacitively coupled rf discharge and the microwave electron cyclotron resonance (ECR) plasma, combined with two types of pulsed substrate bias. SiCN:H films deposited at about 1 Pa from ECR plasmas with pulsed high-voltage bias best met the requirements. Pulsed biasing with pulse periods of about 1 μs and amplitudes of about -2 kV was found to be most advantageous for the conformal low temperature coating of the microtrenches, thereby ensuring the required mechanical and insulating film properties.

  14. Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells.

    Science.gov (United States)

    Ng, Annie; Ren, Zhiwei; Shen, Qian; Cheung, Sin Hang; Gokkaya, Huseyin Cem; So, Shu Kong; Djurišić, Aleksandra B; Wan, Yangyang; Wu, Xiaojun; Surya, Charles

    2016-12-07

    Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH3NH3PbI3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O2/N2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.

  15. Vertically aligned Si nanocrystals embedded in amorphous Si matrix prepared by inductively coupled plasma chemical vapor deposition (ICP-CVD)

    Energy Technology Data Exchange (ETDEWEB)

    Nogay, G. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Saleh, Z.M., E-mail: zaki.saleh@aauj.edu [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Physics, Arab American University–Jenin (AAUJ), Jenin, Palestine (Country Unknown); Özkol, E. [Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey); Department of Chemical Engineering, Middle East Technical University (METU), Ankara 06800 (Turkey); Turan, R. [Department of Physics, Middle East Technical University (METU), Ankara 06800 (Turkey); Center of Solar Energy Research and Application (GÜNAM), Middle East Technical University (METU), Ankara 06800 (Turkey)

    2015-06-15

    Highlights: • Inductively-coupled plasma is used for nanostructured silicon at room temperature. • Low temperature deposition allows device processing on various substrates. • Deposition pressure is the most effective parameter in controlling nanostructure. • Films consist of quantum dots in a-Si matrix and exhibit columnar vertical growth. • Films are porous to oxygen infusion along columnar grain boundaries. - Abstract: Vertically-aligned nanostructured silicon films are deposited at room temperature on p-type silicon wafers and glass substrates by inductively-coupled, plasma-enhanced chemical vapor deposition (ICPCVD). The nanocrystalline phase is achieved by reducing pressure and increasing RF power. The crystalline volume fraction (X{sub c}) and the size of the nanocrystals increase with decreasing pressure at constant power. Columnar growth of nc-Si:H films is observed by high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM). The films exhibit cauliflower-like structures with high porosity that leads to slow but uniform oxidation after exposure to air at room temperature. Films deposited at low pressures exhibit photoluminescence (PL) signals that may be deconvoluted into three distinct Gaussian components: 760–810, 920–935, and 990–1000 nm attributable to the quantum confinement and interface defect states. Hydrogen dilution is manifested in significant enhancement of the PL, but it has little effect on the nanocrystal size and X{sub c}.

  16. Cobalt(I) Olefin Complexes: Precursors for Metal-Organic Chemical Vapor Deposition of High Purity Cobalt Metal Thin Films.

    Science.gov (United States)

    Hamilton, Jeff A; Pugh, Thomas; Johnson, Andrew L; Kingsley, Andrew J; Richards, Stephen P

    2016-07-18

    We report the synthesis and characterization of a family of organometallic cobalt(I) metal precursors based around cyclopentadienyl and diene ligands. The molecular structures of the complexes cyclopentadienyl-cobalt(I) diolefin complexes are described, as determined by single-crystal X-ray diffraction analysis. Thermogravimetric analysis and thermal stability studies of the complexes highlighted the isoprene, dimethyl butadiene, and cyclohexadiene derivatives [(C5H5)Co(η(4)-CH2CHC(Me)CH2)] (1), [(C5H5)Co(η(4)-CH2C(Me)C(Me)CH2)] (2), and [(C5H5)Co(η(4)-C6H8)] (4) as possible cobalt metal organic chemical vapor deposition (MOCVD) precursors. Atmospheric pressure MOCVD was employed using precursor 1, to synthesize thin films of metallic cobalt on silicon substrates under an atmosphere (760 torr) of hydrogen (H2). Analysis of the thin films deposited at substrate temperatures of 325, 350, 375, and 400 °C, respectively, by scanning electron microscopy and atomic force microscopy reveal temperature-dependent growth features. Films grown at these temperatures are continuous, pinhole-free, and can be seen to be composed of hexagonal particles clearly visible in the electron micrograph. Powder X-ray diffraction and X-ray photoelectron spectroscopy all show the films to be highly crystalline, high-purity metallic cobalt. Raman spectroscopy was unable to detect the presence of cobalt silicides at the substrate/thin film interface.

  17. Cobalt Chemical Vapor Deposition Process on Molybdenite Basal Plane Observed by Ultrahigh-Vacuum Scanning Tunneling Microscopy

    Science.gov (United States)

    Komiyama, Masaharu; Kiyohara, Kohei; Yoda, Eisuke; Kubota, Takeshi; Okamoto, Yasuaki

    2005-07-01

    The processes of high-temperature (473 K) resulfidation and cobalt carbonyl adsorption by chemical vapor deposition (CVD) on a cleaved basal plane of a natural molybdenite (MoS2) single crystal were examined by ultrahigh-vacuum scanning tunneling microscopy (UHV-STM) on the nanometer scale. The resulfided cleaved molybdenite basal plane showed a displacement of upper terraces, and a sinusoidal structure at step edges, both of which may be caused by the electronic effect at the surface. Cobalt carbonyl appeared to be adsorbed at both the S- and Mo-terminated edges, resulting in an agglomeration at the step edges on lower terraces with a width of a few tens of nanometers. When this surface with adsorbed carbonyl was sulfided at 513 K for 1 h, most of the adsorbed carbonyl clusters appeared to be desorbed while a small part were dispersed on the terraces in small clusters of 10-20 nm in size. The obtained results are discussed in terms of the preparation of Co-Mo hydrodesulfurization (HDS) catalysts.

  18. Iron selenide films by aerosol assisted chemical vapor deposition from single source organometallic precursor in the presence of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin, E-mail: aminbadshah@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Younis, Adnan [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Khan, Malik Dilshad [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Akhtar, Javeed [Department of Physics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)

    2014-09-30

    This article presents the synthesis and characterization (multinuclear nuclear magnetic resonance, Fourier transform infrared spectroscopy, carbon–hydrogen–nitrogen–sulfur analyzer, atomic absorption spectrometry and thermogravimetric analysis) of a single source organometallic precursor namely 1-acetyl-3-(4-ferrocenylphenyl)selenourea for the fabrication of iron selenide (FeSe) films on glass substrates using aerosol assisted chemical vapor deposition (AACVD). The changes in the morphologies of the films have been monitored by the use of two different surfactants i.e. triton X-100 and tetraoctylphosphonium bromide during AACVD. The role of surfactant has been evaluated by examining the interaction of the surfactants with the precursor by using UV–vis spectroscopy and cyclic voltammetry. The fabricated FeSe films have been characterized with powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. - Highlights: • Ferrocene incorporated selenourea (FIS) has been synthesized and characterized. • FeSe thin films have been fabricated from FIS. • Mechanism of film growth was studied with cyclic voltammetry and UV–vis spectroscopy.

  19. Fiber Effects on Minicomposite Mechanical Properties for Several Silicon Carbide Fiber: Chemically Vapor-Infiltrated Silicon Carbide Matrix Systems

    Science.gov (United States)

    Morscher, Gregory N.; Martinez-Fernandez, Julian

    1999-01-01

    Several different types of SiC fiber tows were coated with BN and composited using chemically vapor-infiltrated SiC to form single-tow minicomposites. The types of SiC fiber included Nicalon(sup TM), Hi-Nicalon(sup TM), and the new Sylramic(sup TM) polycrystalline SiC fiber. The interfacial shear stresses were determined from unload-reload tensile hysteresis-loop tests. The ultimate stress and strain properties also were determined for the minicomposites. The ultimate strengths of the newer Hi-Nicalon and Sylramic fibers were superior to that of Nicalon minicomposites with similar fiber volume fractions. The Sylramic minicomposites had the lowest strain to failure and highest interfacial shear strength, respectively, because of the high modulus of the fiber and the rough surface of this fiber type. The apparent interfacial shear strength increased as the stress increased for the Sylramic minicomposites, which also was attributed to the surface roughness of this fiber.

  20. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  1. Chemical vapor deposition and analysis of thermally insulating ZrO{sub 2} layers on injection molds

    Energy Technology Data Exchange (ETDEWEB)

    Atakan, Burak; Khlopyanova, Victoria; Mausberg, Simon; Kandzia, Adrian; Pflitsch, Christian [Thermodynamik (IVG) and Cenide, Universitaet Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); Mumme, Frank [Kunststoff-Institut Luedenscheid, Karolinenstrasse 8, 58507 Luedenscheid (Germany)

    2015-07-15

    High quality injection molding requires a precise control of cooling rates. Thermal barrier coating (TBC) of zirconia with a thickness of 20-40 μm on polished stainless steel molds could provide the necessary insulating effect. This paper presents results of zirconia deposition on stainless steel substrates using chemical vapor deposition (CVD) aiming to provide the process parameters for the deposition of uniform zirconia films with such a thickness. The deposition was performed with zirconium (IV) acetylacetonate (Zr(C{sub 5}H{sub 7}O{sub 2}){sub 4}) as precursor and synthetic air as co-reactant, which allows deposition at temperatures below 600 C. The experiments were carried out in a hot-wall reactor at pressures between 7.5 mbar and 500 mbar and in a temperature range from 450 C to 600 C. Important growth parameters were characterized and growth rates between 1 and 2.5 μm/h were achieved. Thick and well adhering zirconia layers of 38 μm could be produced on steel within 40 h. The transient heat transfer rate upon contact with a hot surface was also evaluated experimentally with the thickest coatings. These exhibit a good TBC performance. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.

    Science.gov (United States)

    Samad, Leith; Bladow, Sage M; Ding, Qi; Zhuo, Junqiao; Jacobberger, Robert M; Arnold, Michael S; Jin, Song

    2016-07-26

    The fascinating semiconducting and optical properties of monolayer and few-layer transition metal dichalcogenides, as exemplified by MoS2, have made them promising candidates for optoelectronic applications. Controllable growth of heterostructures based on these layered materials is critical for their successful device applications. Here, we report a direct low temperature chemical vapor deposition (CVD) synthesis of MoS2 monolayer/multilayer vertical heterostructures with layer-controlled growth on a variety of layered materials (SnS2, TaS2, and graphene) via van der Waals epitaxy. Through precise control of the partial pressures of the MoCl5 and elemental sulfur precursors, reaction temperatures, and careful tracking of the ambient humidity, we have successfully and reproducibly grown MoS2 vertical heterostructures from 1 to 6 layers over a large area. The monolayer MoS2 heterostructure was verified using cross-sectional high resolution transmission electron microscopy (HRTEM) while Raman and photoluminescence spectroscopy confirmed the layer-controlled MoS2 growth and heterostructure electronic interactions. Raman, photoluminescence, and energy dispersive X-ray spectroscopy (EDS) mappings verified the uniform coverage of the MoS2 layers. This reaction provides an ideal method for the scalable layer-controlled growth of transition metal dichalcogenide heterostructures via van der Waals epitaxy for a variety of optoelectronic applications.

  3. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    Directory of Open Access Journals (Sweden)

    Betty T. Quinton

    2013-01-01

    Full Text Available This paper compares between the methods of growing carbon nanotubes (CNTs on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD techniques for growing CNTs on diamond: thermal CVD (T-CVD, microwave plasma-enhanced CVD (MPE-CVD, and floating catalyst thermal CVD (FCT-CVD. Scanning electron microscopy (SEM and high-resolution transmission electron microscopy (TEM were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the ID/IG peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes.

  4. A new perspective on structural and morphological properties of carbon nanotubes synthesized by Plasma Enhanced Chemical Vapor Deposition technique

    Directory of Open Access Journals (Sweden)

    A. Salar Elahi

    Full Text Available CNTs were produced on a silicon wafer by Plasma Enhanced Chemical Vapor Deposition (PECVD using acetylene as a carbon source, cobalt as a catalyst and ammonia as a reactive gas. The DC-sputtering system was used to prepare cobalt thin films on Si substrates. A series of experiments was carried out to investigate the effects of reaction temperature and deposition time on the synthesis of the nanotubes. The deposition time was selected as 15 and 25 min for all growth temperatures. Energy Dispersive X-ray (EDX measurements were used to investigate the elemental composition of the Co nanocatalyst deposited on Si substrates. Atomic Force Microscopy (AFM was used to characterize the surface topography of the Co nanocatalyst deposited on Si substrates. The as-grown CNTs were characterized under Field Emission Scanning Electron Microscopy (FESEM to study the morphological properties of CNTs. Also, the grown CNTs have been investigated by High Resolution Transmission Electron Microscopy (HRTEM and Raman spectroscopy. The results demonstrated that increasing the temperature leads to increasing the diameter of CNTs. Keywords: Carbon nanotubes, Cobalt nanocatalyst, PECVD

  5. Effects of feed gas composition and catalyst thickness on carbon nanotube and nanofiber synthesis by plasma enhanced chemical vapor deposition.

    Science.gov (United States)

    Garg, R K; Kim, S S; Hash, D B; Gore, J P; Fisher, T S

    2008-06-01

    Many engineering applications require carbon nanotubes with specific characteristics such as wall structure, chirality and alignment. However, precise control of nanotube properties grown to application specifications remains a significant challenge. Plasma-enhanced chemical vapor deposition (PECVD) offers a variety of advantages in the synthesis of carbon nanotubes in that several important synthesis parameters can be controlled independently. This paper reports an experimental study of the effects of reacting gas composition (percentage methane in hydrogen) and catalyst film thickness on carbon nanotube (CNT) growth and a computational study of gas-phase composition for the inlet conditions of experimentally observed carbon nanotube growth using different chemical reaction mechanisms. The simulations seek to explain the observed effects of reacting gas composition and to identify the precursors for CNT formation. The experimental results indicate that gas-phase composition significantly affects the synthesized material, which is shown to be randomly aligned nanotube and nanofiber mats for relatively methane-rich inlet gas mixtures and non-tubular carbon for methane-lean incoming mixtures. The simulation results suggest that inlet methane-hydrogen mixture coverts to an acetylene-methane-hydrogen mixture with minor amounts of ethylene, hydrogen atom, and methyl radical. Acetylene appears to be the indicator species for solid carbon formation. The simulations also show that inlet methane-hydrogen mixture does not produce enough gas-phase precursors needed to form quality CNTs below 5% CH4 concentrations in the inlet stream.

  6. Low-level doping of nitrogen to multilayered graphene by chemical vapor deposition of methane including melamine vapor

    Science.gov (United States)

    Bandow, Shunji; Yoshida, Takahiro

    2017-12-01

    Growth of graphene doped with the low level of nitrogen is carried out on the copper foil by conventional chemical vapor deposition. Melamine is used as nitrogen source. Melamine vapor is generated by heating and carried by an argon flow (carrier flow) to a main flow of Ar including methane. Ratio of the number of molecules, melamine/methane, is controlled by changing the mixing rate of the carrier flow and the main flow. Measurements of Raman scattering, X-ray photoelectron spectroscopy, ultraviolet-visible spectroscopy and sheet resistance clarify the feature of prepared sample. At low melamine/methane ratio in the order of 10-3, quaternary N doped graphene is grown. Then the growth of pyridinic N doped graphene is going to start as increasing the melamine/methane ratio in the order of 10-2. Magnitude of the sheet resistance per one graphene layer decreases by 75% when the nitrogen is in the quaternary site, while it increases twice or more when the pyridine-like configuration increases.

  7. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst.

    Science.gov (United States)

    Bhaviripudi, Sreekar; Jia, Xiaoting; Dresselhaus, Mildred S; Kong, Jing

    2010-10-13

    In this article, the role of kinetics, in particular, the pressure of the reaction chamber in the chemical vapor deposition (CVD) synthesis of graphene using low carbon solid solubility catalysts (Cu), on both the large area thickness uniformity and the defect density are presented. Although the thermodynamics of the synthesis system remains the same, based on whether the process is performed at atmospheric pressure (AP), low pressure (LP) (0.1-1 Torr) or under ultrahigh vacuum (UHV) conditions, the kinetics of the growth phenomenon are different, leading to a variation in the uniformity of the resulting graphene growth over large areas (wafer scale). The kinetic models for APCVD and LPCVD are discussed, thereby providing insight for understanding the differences between APCVD vs LPCVD/UHVCVD graphene syntheses. Interestingly, graphene syntheses using a Cu catalyst in APCVD processes at higher methane concentrations revealed that the growth is not self-limiting, which is in contrast to previous observations for the LPCVD case. Additionally, nanoribbons and nanostrips with widths ranging from 20 to 100 nm were also observed on the APCVD grown graphene. Interactions between graphene nanofeatures (edges, folds) and the contaminant metal nanoparticles from the Cu etchant were observed, suggesting that these samples could potentially be employed to investigate the chemical reactivity of single molecules, DNA, and nanoparticles with monolayer graphene.

  8. Suppression of Graphene Nucleation by Turning Off Hydrogen Supply Just before Atmospheric Pressure Chemical Vapor Deposition Growth

    Directory of Open Access Journals (Sweden)

    Seiya Suzuki

    2017-11-01

    Full Text Available To exploit the extraordinary property of graphene in practical electrical and optical devices, it is necessary to produce large-sized, single-crystal graphene. Atmospheric pressure chemical vapor deposition (APCVD on polycrystalline Cu surface is a promising scalable route of graphene synthesis but the unavoidable multiple nucleation limits their reachable domain size. Here, we report that effective suppression of nucleation was achieved by only turning off hydrogen supply before introduction of the carbon source for graphene growth. The density of graphene decreased from 72.0 to 2.2 domains/cm2 by turning off hydrogen for 15 min. X-ray photoelectron spectroscopy and Raman spectroscopy studies show that the Cu surface was covered with 3–4 nm thick highly crystalline Cu2O, which would be caused by oxidation by residual oxidative gasses in the chamber during the turning off period. It was also revealed that elevating the temperature in Ar followed by annealing in H2/Ar before turning off hydrogen led to the enlargement of the Cu domain, resulting in the further suppression of nucleation. By optimizing such growth parameters in the CVD process, a single-crystal graphene with ~2.6 mm in diameter was successfully obtained.

  9. Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

    Science.gov (United States)

    Egberts, Philip; Han, Gang Hee; Liu, Xin Z; Johnson, A T Charlie; Carpick, Robert W

    2014-05-27

    Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive minimum up to 80 nN. No damage to the graphene was observed over this range, showing that friction force microscopy serves as a facile, high contrast probe for identifying the presence of graphene on Cu. Consistent with studies of epitaxially grown, thermally grown, and mechanically exfoliated graphene films, the friction force measured between the tip and these CVD-prepared films depends on the number of layers of graphene present on the surface and reduces friction in comparison to the substrate. Friction results on graphene indicate that the layer-dependent friction properties result from puckering of the graphene sheet around the sliding tip. Substantial hysteresis in the normal force dependence of friction is observed with repeated scanning without breaking contact with a graphene-covered region. Because of the hysteresis, friction measured on graphene changes with time and maximum applied force, unless the tip slides over the edge of the graphene island or contact with the surface is broken. These results also indicate that relatively weak binding forces exist between the copper foil and these CVD-grown graphene sheets.

  10. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport.

    Science.gov (United States)

    Ni, Guang-Xin; Zheng, Yi; Bae, Sukang; Kim, Hye Ri; Pachoud, Alexandre; Kim, Young Soo; Tan, Chang-Ling; Im, Danho; Ahn, Jong-Hyun; Hong, Byung Hee; Ozyilmaz, Barbaros

    2012-02-28

    The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 μm and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain. We find that the current high-temperature growth and wet transfer methods of CVD graphene result in quasi-periodic nanoripple arrays (NRAs). Electron-flexural phonon scattering in such partially suspended graphene devices introduces anisotropic charge transport and sets limits to both the highest possible charge mobility and lowest possible sheet resistance values. Our findings provide guidance for further improving the CVD graphene growth and transfer process.

  11. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells

    Science.gov (United States)

    Cui, Bo; Yan, Lingpeng; Gu, Huimin; Yang, Yongzhen; Liu, Xuguang; Ma, Chang-Qi; Chen, Yongkang; Jia, Husheng

    2018-01-01

    Excitation-wavelength-dependent blue-greenish fluorescent carbon quantum dots (CQDs) with graphite structure were synthesized by chemical vapor deposition (CVD) method. In comparison with those synthesized by hydrothermal method (named H-CQDs), C-CQDs have less hydrophilic terminal groups, showing good solubility in common organic solvents. Furthermore, these synthesized C-CQDs show a low LUMO energy level (LUMO = -3.84 eV), which is close to that of phenyl-C61-butyric acid methyl ester (PC61BM, LUMO = -4.01 eV), the most widely used electron acceptor in polymer solar cells. Photoluminescence quenching of the poly(3-hexylthiophene-2,5-diyl):C-CQDs blended film (P3HT:C-CQDs) indicated that a photo-induced charge transfer between P3HT and C-CQDs occurs in such a composite film. Bulk heterojunction solar cells using C-CQDs as electron acceptors or doping materials were fabricated and tested. High fill factors were achieved for these C-CQDs based polymer solar cells, demonstrating that CQDs synthesized by CVD could be alternative to the fullerene derivatives for applying in polymer solar cells.

  12. Monolayer Single-Crystal 1T'-MoTe2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect.

    Science.gov (United States)

    Naylor, Carl H; Parkin, William M; Ping, Jinglei; Gao, Zhaoli; Zhou, Yu Ren; Kim, Youngkuk; Streller, Frank; Carpick, Robert W; Rappe, Andrew M; Drndić, Marija; Kikkawa, James M; Johnson, A T Charlie

    2016-07-13

    Growth of transition metal dichalcogenide (TMD) monolayers is of interest due to their unique electrical and optical properties. Films in the 2H and 1T phases have been widely studied but monolayers of some 1T'-TMDs are predicted to be large-gap quantum spin Hall insulators, suitable for innovative transistor structures that can be switched via a topological phase transition rather than conventional carrier depletion [ Qian et al. Science 2014 , 346 , 1344 - 1347 ]. Here we detail a reproducible method for chemical vapor deposition of monolayer, single-crystal flakes of 1T'-MoTe2. Atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy confirm the composition and structure of MoTe2 flakes. Variable temperature magnetotransport shows weak antilocalization at low temperatures, an effect seen in topological insulators and evidence of strong spin-orbit coupling. Our approach provides a pathway to systematic investigation of monolayer, single-crystal 1T'-MoTe2 and implementation in next-generation nanoelectronic devices.

  13. Chemical vapor deposition of silicon nanodots on TiO{sub 2} submicronic powders in vibrated fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Cadoret, L. [Laboratoire de Genie Chimique, UMR CNRS 5503, Universite de Toulouse, ENSIACET/INPT, 4 allee Emile Monso, BP 74233, 31432 Toulouse Cedex 4 (France); Rossignol, C.; Dexpert-Ghys, J. [CEMES, UPR CNRS 8011, UPS-Toulouse, 29 rue Jean Marvig, 31055 Toulouse Cedex 4 (France); Caussat, B., E-mail: Brigitte.Caussat@ensiacet.fr [Laboratoire de Genie Chimique, UMR CNRS 5503, Universite de Toulouse, ENSIACET/INPT, 4 allee Emile Monso, BP 74233, 31432 Toulouse Cedex 4 (France)

    2010-06-15

    Silicon nanodots have been deposited on TiO{sub 2} submicronic powders in a vibrated fluidized bed chemical vapor deposition (FBCVD) reactor from silane SiH{sub 4}. Deposition conditions involving very low deposition rates have been studied. After treatment, powders are under the form of micronic agglomerates. In the operating range tested, this agglomerates formation mainly depends on the fluidization conditions and not on the CVD parameters. The best results have been obtained for anatase TiO{sub 2} powders for which the conditions of fluidization have been the most optimized. For these anatase powders, agglomerates are porous. SEM and TEM imaging prove that silicon nanodots (8-10 nm in size) have been deposited on the surface of particles and that this deposition is uniform on the whole powders and conformal around each grain, even if not fully continuous. Raman spectroscopy shows that the TiO{sub 2} powders have been partially reduced into TiO{sub 2-x} during deposition. The TiO{sub 2} stoichiometry can be recovered by annealing under air, and IR spectroscopy indicates that the deposited silicon nanodots have been at least partly oxidized into SiO{sub 2} after this annealing.

  14. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  15. Inverted polymer solar cells based on thin ZnO films grown by Mist chemical vapor deposition system

    Science.gov (United States)

    Biswas, Chandan; Ma, Zhu; Zhu, Xiaodan; Kawaharamura, Toshiyuki; Wang, Kang L.

    2014-10-01

    Extensive investigations have been conducted in order to synthesize high quality Zinc oxide (ZnO) thin films for numerous applications. These methods are either expensive to make or result polycrystalline thin films with low optoelectronic properties. Here we demonstrated a simple and inexpensive method to grow high quality ZnO thin films by a mist chemical vapor assisted depositing (Mist-CVD) system for inverted polymer solar cell (IPSC) application. The IPSC performance fabricated by Mist-CVD grown ZnO thin films were compared with two different Zn precursors (Zinc acetylacetonate hydrate and Zinc acetate dehydrate). Variations in IPSC performance on the growth temperature and growth time of the ZnO thin films were prominently demonstrated. The surface morphology of the ZnO films was investigated using scanning electron microscopy, atomic force microscopy and correlated with IPSC performance. The IPSC performance using two different precursors has been compared thoroughly. A 24% increase in solar cell efficiency (contributed from 21% increase in fill factor and 151% increase in shunt resistance) was achieved using Zinc acetate dehydrate compare to Zinc acetylacetonate hydrate precursor. The transmittance of ZnO thin films was evaluated by transmission spectroscopy. High performance IPSC can be fabricated using this simple and inexpensive method by synthesizing high quality thin ZnO films.

  16. In-situ epitaxial growth of heavily phosphorus doped SiGe by low pressure chemical vapor deposition

    CERN Document Server

    Lee, C J

    1998-01-01

    We have studied epitaxial crystal growth of Si sub 1 sub - sub x Ge sub x films on silicon substrates at 550 .deg. C by low pressure chemical vapor deposition. In a low PH sub 3 partial pressure region such as below 1.25x10 sup - sup 3 Pa, both the phosphorus and carrier concentrations increased with increasing PH sub 3 partial pressure, but the deposition rate and the Ge fraction remained constant. In a higher PH sub 3 partial pressure region, the deposition rate, the phosphorus concentration, and the carrier concentration decreased, while the Ge fraction increased. These suggest that high surface coverage of phosphorus suppresses both SiH sub 4 and GeH sub 4 adsorption/reactions on the surfaces, and its suppression effect on SiH sub 4 is actually much stronger than on GeH sub 4. In particular, epitaxial crystal growth is largely controlled by surface coverage effect of phosphorus in a higher PH sub 3 partial pressure region.

  17. Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-I2 system

    Science.gov (United States)

    Luo, Xian; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2017-06-01

    Titanium coating was prepared on SiC fiber using titanium-iodine (Ti-I2) mixture by hot-wall chemical vapor deposition. Thermodynamic analysis and experimental observation were carried out in this work. The thermodynamic analysis of the reactions in the Ti-I2 system indicates that Ti and I2 raw powder materials transform to titanium coating as follows: Ti + I2 → (TiI2, TiI3), and (TiI2, TiI3) → Ti. In theory, the conversions of TiI3 and TiI2 reach the maximum when Ti:I2 is 1:1.5, while in actual experiment that reached the maximum when Ti:I2 was 1:2, as there existed the waste of I2 due to sublimation. Typical deposited coating is relatively flat and uniform. However, as SiC is prone to react with Ti at high temperatures, the obtained coating contained some Si and C elements except for Ti. So the coating was not a pure Ti coating but contained some carbides and silicides. Deposition rate of the coating increased with the increase of temperature. The deposited thickness increased with the increase of heat preservation time, and achieved the maximum thickness at 90 min.

  18. Spectroscopic properties of nitrogen doped hydrogenated amorphous carbon films grown by radio frequency plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Hayashi, Y.; Yu, G.; Rahman, M. M.; Krishna, K. M.; Soga, T.; Jimbo, T.; Umeno, M.

    2001-06-01

    Nitrogen doped hydrogenated amorphous carbon thin films have been deposited by rf plasma-enhanced chemical vapor deposition using CH4 as the source of carbon and with different nitrogen flow rates (N2/CH4 gas ratios between 0 and 3), at 300 K. The dependence modifications of the optical and the structural properties on nitrogen incorporation were investigated using different spectroscopic techniques, such as, Raman spectroscopy, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, electron spin resonance (ESR), photoluminescence (PL) and spectroscopic ellipsometry (SE). Raman spectroscopy and IR absorption reveal an increase in sp2-bonded carbon or a change in sp2 domain size with increasing nitrogen flow rate. It is found that the configuration of nitrogen atoms incorporated into an amorphous carbon network gradually changes from nitrogen atoms surrounded by three (σ bonded) to two (π bonded) neighboring carbons with increasing nitrogen flow rate. Tauc optical gap is reduced from 2.6 to 2.0 eV, and the ESR spin density and the peak-to-peak linewidth increase sharply with increasing nitrogen flow rate. Excellent agreement has been found between the measured SE data and modeled spectra, in which an empirical dielectric function of amorphous materials and a linear void distribution along the thickness have been assumed. The influence of nitrogen on the electronic density of states is explained based on the optical properties measured by UV-VIS and PL including nitrogen lone pair band.

  19. Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition.

    Science.gov (United States)

    Chang, Ren-Jie; Lee, Chia-Hao; Lee, Min-Ken; Chen, Chun-Wei; Wen, Cheng-Yen

    2017-02-09

    Although the success of graphene research has opened up a new route for wearable electronic and optoelectronic devices, producing graphene with controllable quality and cost-effective growth on a large scale remains challenging due to the lack of understanding about its growth kinetics. Domain boundaries interrupt lattice continuity of graphene; therefore, lowering the nucleation density at the initial stage of graphene growth in the chemical vapor deposition (CVD) process is beneficial for improving the quality of graphene for applications. Herein, we show that by forming an oxide passivation layer on Cu substrates before CVD graphene growth, graphene nucleation density can be effectively decreased. The nucleation mechanism in the presence of an oxide passivation layer is of interest. The analysis of graphene growth kinetics suggests that the thickness of the boundary layer for mass transfer on the substrate surface plays an important role in controlling the reduction rate of the oxide passivation layer. A thick boundary layer created under slow gas flow causes slow reduction of the oxide passivation layer, making finite sites for graphene nucleation. The domain density in a graphene layer is therefore significantly reduced. Graphene sheets of various domain densities (ranging from 104 to 1 mm-2) can be fabricated by suitably choosing the growth parameters. The graphene sheet with a lower density of domain boundaries exhibits better electrical conductivities.

  20. One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

    Directory of Open Access Journals (Sweden)

    Egor V. Lobiak

    2017-12-01

    Full Text Available Novel nitrogen-doped carbon hybrid materials consisting of multiwalled nanotubes and porous graphitic layers have been produced by chemical vapor deposition over magnesium-oxide-supported metal catalysts. CNx nanotubes were grown on Co/Mo, Ni/Mo, or Fe/Mo alloy nanoparticles, and MgO grains served as a template for the porous carbon. The simultaneous formation of morphologically different carbon structures was due to the slow activation of catalysts for the nanotube growth in a carbon-containing gas environment. An analysis of the obtained products by means of transmission electron microscopy, thermogravimetry and X-ray photoelectron spectroscopy methods revealed that the catalyst's composition influences the nanotube/porous carbon ratio and concentration of incorporated nitrogen. The hybrid materials were tested as electrodes in a 1M H2SO4 electrolyte and the best performance was found for a nitrogen-enriched material produced using the Fe/Mo catalyst. From the electrochemical impedance spectroscopy data, it was concluded that the nitrogen doping reduces the resistance at the carbon surface/electrolyte interface and the nanotubes permeating the porous carbon provide fast charge transport in the cell.

  1. Red emission from Eu-doped GaN luminescent films grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Pan, M.; Steckl, A. J.

    2003-07-01

    Bright red emission has been obtained at room temperature from Eu-doped GaN films pumped by 325 nm HeCd laser. The luminescent films were grown by metalorganic chemical vapor deposition on GaN/Al2O3 substrates. Trimethylgallium (TMGa), ammonia (NH3), and europium 2,2,4,4-tetramethyl-3,5-heptanedionate were used as sources for Ga, N, and Eu dopant, respectively. The influence of the V/III ratio during growth on the photoluminescence (PL) intensity has been studied using a fixed TMGa flow rate of 92 μmol/min and varying the NH3 flow rate. The film growth rate (˜2 μm/h) is nearly constant with V/III ratio over the range from ˜30 to ˜1000. The Eu incorporation in GaN films was found to decrease with increasing V/III ratio. The Eu PL intensity (normalized to the Eu concentration) exhibited a maximum at a V/III ratio of ˜100.

  2. Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition

    Science.gov (United States)

    Peiyu, JI; Jun, YU; Tianyuan, HUANG; Chenggang, JIN; Yan, YANG; Lanjian, ZHUGE; Xuemei, WU

    2018-02-01

    A high growth rate fabrication of diamond-like carbon (DLC) films at room temperature was achieved by helicon wave plasma chemical vapor deposition (HWP-CVD) using Ar/CH4 gas mixtures. The microstructure and morphology of the films were characterized by Raman spectroscopy and scanning electron microscopy. The diagnosis of plasma excited by a helicon wave was measured by optical emission spectroscopy and a Langmuir probe. The mechanism of high growth rate fabrication for DLC films by HWP-CVD has been discussed. The growth rate of the DLC films reaches a maximum value of 54 μm h‑1 at the CH4 flow rate of 85 sccm, which is attributed to the higher plasma density during the helicon wave plasma discharge. The CH and H α radicals play an important role in the growth of DLC films. The results show that the H α radicals are beneficial to the formation and stabilization of C=C bond from sp2 to sp3.

  3. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    Science.gov (United States)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  4. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.

    Science.gov (United States)

    Ma, Yifei; Kim, Daekyoung; Jang, Haegyu; Cho, Sung Min; Chae, Heeyeop

    2014-12-01

    Low-temperature graphene was synthesized at 400 degrees C with inductively coupled plasma chemical vapor deposition (PECVD) process. The effects of plasma power and flow rate of various carbon containing precursors and hydrogen on graphene properties were investigated with optical emission spectroscopy (OES). Various radicals monitored by OES were correlated with graphene film properties such as sheet resistance, I(D)/I(G) ratio of Raman spectra and transparency. C2H2 was used as a main precursor and the increase of plasma power enhanced intensity of carbon (C2) radical OES intensity in plasma, reduced sheet resistance and increased transparency of graphene films. The reduced flow rate of C2H2 decreased sheet resistance and increased transparency of graphene films in the range of this study. H2 addition was found to increase sheet resistance, transparency and attributed to reduction of graphene grain and etching graphene layers. OES analysis showed that C2 radicals contribute to graphite networking and sheet resistance reduction. TEM and AFM were applied to provide credible information that graphene had been successfully grown at low temperature.

  5. Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.

    Science.gov (United States)

    Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang

    2017-05-10

    Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS2) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS2 and ReS2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at Vd = -2/+2 V. The successful synthesis of p-type ReS2 in this study could largely promote its application in novel electronic and optoelectronic devices.

  6. Preparation of hydrophobic metal-organic frameworks via plasma enhanced chemical vapor deposition of perfluoroalkanes for the removal of ammonia.

    Science.gov (United States)

    DeCoste, Jared B; Peterson, Gregory W

    2013-10-10

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m(2)/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials.

  7. On the limits of detection of a chemical vapor plume in air using the schlieren optical method

    Science.gov (United States)

    Bigger, Rory; Settles, Gary

    2007-11-01

    A modest benchtop z-type schlieren optical system employing twin parabolic mirrors is characterized in terms of its sensitivity limit using the standard-lens method of calibration. A measurement by this method of the free-convection boundary layer on a heated vertical plate in air compares well with known theory. A mixing tube and oxygen sensor are then used to image laminar plumes of both helium and carbon dioxide in air at various mixture ratios, revealing a minimum value of the refractive-index gradient across the plume-air mixing boundary at its origin that is required for visibility. Thus the schlieren detection of a chemical vapor plume must depend upon the concentration of vapor in the air and the vapor refractive index. A range of chemicals is explored in order to determine the detectable concentration limit by this means. The results are discussed in terms of the possible use of schlieren optics to detect explosive vapor plumes in air.

  8. Unpredicted surface termination of α-Fe2O3(0001) film grown by mist chemical vapor deposition

    Science.gov (United States)

    Osaka, Shun; Kubo, Osamu; Takahashi, Kazuki; Oda, Masaya; Kaneko, Kentaro; Tabata, Hiroshi; Fujita, Shizuo; Katayama, Mitsuhiro

    2017-06-01

    We analyze the surface structure of an α-Fe2O3(0001) film grown on a c-plane sapphire substrate by mist chemical vapor deposition (CVD), which has been recently developed as a simple, safe, and cost-effective film growth method. Using coaxial impact-collision ion scattering spectroscopy, we found that the atomic-layer sequence of the surface termination of an α-Fe2O3(0001) film grown by mist CVD was Fe-O3-Fe- from the top layer. This surface termination is predicted to form in an oxygen-poor environment by density functional theory combined with a thermodynamical approach despite that the mist CVD process is performed with atmospheric-pressure air. The surface structure markedly changes after annealing above 600 °C in ultrahigh vacuum. We found that only a couple of layers from the top layer transform into Fe3O4(111) after 650 °C annealing, which would be so-called biphase reconstruction. Complete transformation into a Fe3O4(111) film occurs at 700 °C, whose atomic-layer sequence is determined to be Fe-O4-Fe3- from the top layer.

  9. A sub-atmospheric chemical vapor deposition process for deposition of oxide liner in high aspect ratio through silicon vias.

    Science.gov (United States)

    Lisker, Marco; Marschmeyer, Steffen; Kaynak, Mehmet; Tekin, Ibrahim

    2011-09-01

    The formation of a Through Silicon Via (TSV) includes a deep Si trench etching and the formation of an insulating layer along the high-aspect-ratio trench and the filling of a conductive material into the via hole. The isolation of the filling conductor from the silicon substrate becomes more important for higher frequencies due to the high coupling of the signal to the silicon. The importance of the oxide thickness on the via wall isolation can be verified using electromagnetic field simulators. To satisfy the needs on the Silicon dioxide deposition, a sub-atmospheric chemical vapor deposition (SA-CVD) process has been developed to deposit an isolation oxide to the walls of deep silicon trenches. The technique provides excellent step coverage of the 100 microm depth silicon trenches with the high aspect ratio of 20 and more. The developed technique allows covering the deep silicon trenches by oxide and makes the high isolation of TSVs from silicon substrate feasible which is the key factor for the performance of TSVs for mm-wave 3D packaging.

  10. Chemical Vapor Deposition of TaC/SiC on Graphite Tube and Its Ablation and Microstructure Studies

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-07-01

    Full Text Available Tantalum carbide (TaC and silicon carbide (SiC layers were deposited on a graphite tube using a chemical vapor deposition process. Tantalum chloride (TaCl5 was synthesized in situ by reacting tantalum chips with chlorine at 550 °C. TaC was deposited by reacting TaCl5 with CH4 in the presence of H2 at 1050–1150 °C and 50–100 mbar. SiC was deposited at 1000 °C using methyl-tri-chloro-silane as a precursor at 50 mbar. At 1150 °C; the coating thickness was found to be about 600 μm, while at 1050 °C it was about 400 μm for the cumulative deposition time of 10 h. X-ray diffraction (XRD and X-ray Photo-Electron Spectroscopy (XPS studies confirmed the deposition of TaC and SiC and their phases. Ablation studies of the coated specimens were carried out under oxyacetylene flame up to 120 s. The coating was found to be intact without surface cracks and with negligible erosion. The oxide phase of TaC (TaO2 and Ta2O5 and the oxide phase of SiC (SiO2 were also found on the surface, which may have protected the substrate underneath from further oxidation.

  11. Enhanced mobility of Li-doped ZnO thin film transistors fabricated by mist chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hye-ji; Lee, Seul-Gi [Division of Materials Science and Engineering, Hanyang University, Seoul 133-719 (Korea, Republic of); Kim, H., E-mail: hkim_2@naver.com [Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Park, Jin-Seong, E-mail: jsparklime@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-719 (Korea, Republic of)

    2014-05-01

    Highlights: • The mist CVD Li-doped ZnO film has changed from hexagonal to tetragonal structure depending on Li amounts. • The mobility of Li-doped ZnO film has improved about 10{sup 2} times higher than that of ZnO film by mist CVD. • The addition of Li into ZnO semiconductors may be the enhanced crystallinity and reduced defect states. - Abstract: Mist chemical vapor deposition (mist-CVD)-processed, lithium (Li)-doped ZnO thin film transistors (TFTs) are investigated. Li doping significantly increases the field-effect mobility in TFTs up to ∼100 times greater than that of undoped ZnO. The addition of Li into mist-CVD-grown ZnO semiconductors leads to improved film quality, which results from the enhanced crystallinity and reduced defect states, including oxygen vacancies. Our results suggest that Li doping of ZnO-based oxide semiconductors could serve as an effective strategy for high-performance, mist-CVD-processed oxide TFTs with low-cost and low-temperature fabrication.

  12. Controlling the resistivity gradient in aluminum-doped zinc oxide grown by plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Ponomarev, M. V.; Verheijen, M. A.; Keuning, W.; van de Sanden, M. C. M.; Creatore, M.

    2012-08-01

    Aluminum-doped ZnO (ZnO:Al) grown by chemical vapor deposition (CVD) generally exhibit a major drawback, i.e., a gradient in resistivity extending over a large range of film thickness. The present contribution addresses the plasma-enhanced CVD deposition of ZnO:Al layers by focusing on the control of the resistivity gradient and providing the solution towards thin (≤300 nm) ZnO:Al layers, exhibiting a resistivity value as low as 4 × 10-4 Ω cm. The approach chosen in this work is to enable the development of several ZnO:Al crystal orientations at the initial stages of the CVD-growth, which allow the formation of a densely packed structure exhibiting a grain size of 60-80 nm for a film thickness of 95 nm. By providing an insight into the growth of ZnO:Al layers, the present study allows exploring their application into several solar cell technologies.

  13. Fabrication of ZnO Thin-Film Transistors by Chemical Vapor Deposition Method using Zinc Acetate Solution

    Science.gov (United States)

    Alias, Afishah; Hazawa, Kouta; Kawashima, Nobuaki; Fukuda, Hisashi; Uesugi, Katsuhiro

    2011-01-01

    Zinc oxide (ZnO) thin-film transistors (TFTs) were fabricated by thermal chemical vapor deposition (CVD) using aqueous solutions of zinc acetate (ZnAc2) dihydrate as a source. The precursor was supplied to the substrate by the nitrogen bubbling method through a plate with numerous orifices in the ZnAc2 solution. The ZnO thin films were grown on silicon substrates in the growth temperature (TG) range from 280 to 700 °C. The growth rate of ZnO thin films were linearly proportional to the growth temperature, which suggested that the growth rate is limited by the decomposition of ZnAc2. Depletion-mode TFTs with the ZnO film grown at TG = 350 °C was found to exhibit a relatively low saturation mobility (µsat). However, µsat increased from 1 to 14 cm2·V-1·s-1 and the operational mode was changed from the depletion mode to the enhancement mode by annealing treatment at 200 °C for 2 h under N2 ambient.

  14. Recent Progress in the Growth of Mid-Infrared Emitters by Metal-Organic Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Biefeld, R.M.; Allerman, A.A.; Kurtz, S.R.; Baucom, K.C.

    1998-01-01

    We report on recent progress and improvements in the metal-organic chemical vapor deposition (MOCVD) growth of mid-infrared lasers and using a high speed rotating disk reactor (RDR). The devices contain AlAsSb active regions. These lasers have multi-stage, type I InAsSb/InAsP quantum well active regions. A semi-metal GaAsSb/InAs layer acts as an internal electron source for the multi-stage injection lasers and AlAsSb is an electron confinement layer. These structures are the first MOCVD multi-stage devices. Growth in an RDR was necessary to avoid the previously observed Al memory effects found in conventional horizontal reactors. A single stage, optically pumped laser yielded improved power (greater than 650 mW/facet) at 80K and 3.8um. A multi-stage 3.8-3.9um laser structure operated up to T=170K. At 80K, peak power greater than 100mW and a high slope- efficiency were observed in gain guided lasers.

  15. Atomic-layer chemical-vapor-deposition of TiN thin films on Si(100) and Si(111)

    CERN Document Server

    Kim, Y S; Kim, Y D; Kim, W M

    2000-01-01

    An atomic-layer chemical vapor deposition (AL-CVD) system was used to deposit TiN thin films on Si(100) and Si(111) substrates by cyclic exposures of TiCl sub 4 and NH sub 3. The growth rate was measured by using the number of deposition cycles, and the physical properties were compared with those of TiN films grown by using conventional deposition methods. To investigate the growth mechanism, we suggest a growth model for TiN n order to calculate the growth rate per cycle with a Cerius program. The results of the calculation with the model were compared with the experimental values for the TiN film deposited using the AL-CVD method. The stoichiometry of the TiN film was examined by using Auger electron spectroscopy, and the chlorine and the oxygen impurities were examined. The x-ray diffraction and the transmission electron microscopy results for the TiN film exhibited a strong (200) peak and a randomly oriented columnar microstructure. The electrical resistivity was found to decrease with increasing deposit...

  16. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2.

    Science.gov (United States)

    Kim, In Soo; Sangwan, Vinod K; Jariwala, Deep; Wood, Joshua D; Park, Spencer; Chen, Kan-Sheng; Shi, Fengyuan; Ruiz-Zepeda, Francisco; Ponce, Arturo; Jose-Yacaman, Miguel; Dravid, Vinayak P; Marks, Tobin J; Hersam, Mark C; Lauhon, Lincoln J

    2014-10-28

    Ultrathin transition metal dichalcogenides (TMDCs) of Mo and W show great potential for digital electronics and optoelectronic applications. Whereas early studies were limited to mechanically exfoliated flakes, the large-area synthesis of 2D TMDCs has now been realized by chemical vapor deposition (CVD) based on a sulfurization reaction. The optoelectronic properties of CVD grown monolayer MoS2 have been intensively investigated, but the influence of stoichiometry on the electrical and optical properties has been largely overlooked. Here we systematically vary the stoichiometry of monolayer MoS2 during CVD via controlled sulfurization and investigate the associated changes in photoluminescence and electrical properties. X-ray photoelectron spectroscopy is employed to measure relative variations in stoichiometry and the persistence of MoOx species. As MoS2-δ is reduced (increasing δ), the field-effect mobility of monolayer transistors increases while the photoluminescence yield becomes nonuniform. Devices fabricated from monolayers with the lowest sulfur content have negligible hysteresis and a threshold voltage of ∼ 0 V. We conclude that the electrical and optical properties of monolayer MoS2 crystals can be tuned via stoichiometry engineering to meet the requirements of various applications.

  17. On the possibility to grow zinc oxide-based transparent conducting oxide films by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Abrutis, Adulfas, E-mail: adulfas.abrutis@chf.vu.lt; Silimavicus, Laimis; Kubilius, Virgaudas; Murauskas, Tomas; Saltyte, Zita; Kuprenaite, Sabina; Plausinaitiene, Valentina [Faculty of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius (Lithuania)

    2014-03-15

    Hot-wire chemical vapor deposition (HW-CVD) was applied to grow zinc oxide (ZnO)-based transparent conducting oxide (TCO) films. Indium (In)-doped ZnO films were deposited using a cold wall pulsed liquid injection CVD system with three nichrome wires installed at a distance of 2 cm from the substrate holder. The wires were heated by an AC current in the range of 0–10 A. Zn and In 2,2,6,6-tetramethyl-3,5-heptanedionates dissolved in 1,2-dimethoxyethane were used as precursors. The hot wires had a marked effect on the growth rates of ZnO, In-doped ZnO, and In{sub 2}O{sub 3} films; at a current of 6–10 A, growth rates were increased by a factor of ≈10–20 compared with those of traditional CVD at the same substrate temperature (400 °C). In-doped ZnO films with thickness of ≈150 nm deposited on sapphire-R grown at a wire current of 9 A exhibited a resistivity of ≈2 × 10{sup −3} Ωcm and transparency of >90% in the visible spectral range. These initial results reveal the potential of HW-CVD for the growth of TCOs.

  18. Tantalum coating on porous Ti6Al4V scaffold using chemical vapor deposition and preliminary biological evaluation.

    Science.gov (United States)

    Li, Xiang; Wang, Lin; Yu, Xiaoming; Feng, Yafei; Wang, Chengtao; Yang, Ke; Su, Daniel

    2013-07-01

    Porous tantalum (Ta), produced via chemical vapor deposition (CVD) of commercially pure Ta onto a vitreous carbon, is currently available for use in orthopedic applications. However, the relatively high manufacturing cost and the incapability to produce customized implant using medical image data have limited its application to gain widespread acceptance. In this study, Ta film was deposited on porous Ti6Al4V scaffolds using CVD technique. Digital microscopy and scanning electron microscopy indicated that the Ta coating evenly covered the entire scaffold structure. X-ray diffraction analysis showed that the coating consisted of α and β phases of Ta. Goat mesenchymal stem cells were seeded and cultured on the Ti6Al4V scaffolds with and without coating. The tetrazolium-based colorimetric assay exhibited better cell adhesion and proliferation on Ta-coated scaffolds compared with uncoated scaffolds. The porous scaffolds were subsequently implanted in goats for 12weeks. Histological analysis revealed similar bone formation around the periphery of the coated and uncoated implants, but bone ingrowth is better within the Ta-coated scaffolds. To demonstrate the ability of producing custom implant for clinical applications via this technology, we designed and fabricated a porous Ti6Al4V scaffold with segmental mandibular shape derived from patient computerized tomography data. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Probing electronic lifetimes and phonon anharmonicities in high-quality chemical vapor deposited graphene by magneto-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Christoph, E-mail: cneumann@physik.rwth-aachen.de; Stampfer, Christoph [JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich (Germany); Halpaap, Donatus; Banszerus, Luca; Schmitz, Michael; Beschoten, Bernd [JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Reichardt, Sven [JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Physics and Materials Science Research Unit, Université du Luxembourg, 1511 Luxembourg (Luxembourg); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-12-07

    We present a magneto-Raman study on high-quality single-layer graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride by a dry transfer technique. By analyzing the Raman D, G, and 2D peaks, we find that the structural quality of the samples is comparable with state-of-the-art exfoliated graphene flakes. From B-field dependent Raman measurements, we extract the broadening and associated lifetime of the G peak due to anharmonic effects. Furthermore, we determine the decay width and lifetime of Landau level (LL) transitions from magneto-phonon resonances as a function of laser power. At low laser power, we find a minimal decay width of 140 cm{sup −1} highlighting the high electronic quality of the CVD-grown graphene. At higher laser power, we observe an increase of the LL decay width leading to a saturation, with the corresponding lifetime saturating at a minimal value of 18 fs.

  20. Structural, optical and electrical study of undoped GaN layers obtained by metalorganic chemical vapor deposition on sapphire substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Kuoppa, Victor-Tapio, E-mail: tapio.rangel@gmail.co [Institute of Semiconductor and Solid State Physics, Johannes Kepler Universitaet, A-4040 Linz (Austria); Aguilar, Cesia Guarneros [Seccion de Electronica del Estado Solido, Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, A.P. 14740, C.P. 07360, Mexico, Distrito Federal (Mexico); Sanchez-Resendiz, Victor, E-mail: victors@sees.cinvestav.m [Seccion de Electronica del Estado Solido, Departamento de Ingenieria Electrica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, A.P. 14740, C.P. 07360, Mexico, Distrito Federal (Mexico)

    2011-01-31

    We investigate optical, structural and electrical properties of undoped GaN grown on sapphire. The layers were prepared in a horizontal reactor by low pressure metal organic chemical vapor deposition at temperatures of 900 {sup o}C and 950 {sup o}C on a low temperature grown (520 {sup o}C) GaN buffer layer on (0001) sapphire substrate. The growth pressure was kept at 10,132 Pa. The photoluminescence study of such layers revealed a band-to-band emission around 366 nm and a yellow band around 550 nm. The yellow band intensity decreases with increasing deposition temperature. X-ray diffraction, atomic force microscopy and scanning electron microscopy studies show the formation of hexagonal GaN layers with a thickness of around 1 {mu}m. The electrical study was performed using temperature dependent Hall measurements between 35 and 373 K. Two activation energies are obtained from the temperature dependent conductivity, one smaller than 1 meV and the other one around 20 meV. For the samples grown at 900 {sup o}C the mobilities are constant around 10 and 20 cm{sup 2} V{sup -1} s{sup -1}, while for the sample grown at 950 {sup o}C the mobility shows a thermally activated behavior with an activation energy of 2.15 meV.

  1. Effect of Mo concentration on shape and size of monolayer MoS2 crystals by chemical vapor deposition

    Science.gov (United States)

    Wang, Wenzhao; Zeng, Xiangbin; Wu, Shaoxiong; Zeng, Yang; Hu, Yishuo; Ding, Jia; Xu, Sue

    2017-10-01

    Monolayer molybdenum disulfide (MoS2), a new two-dimensional direct-bandgap semiconductor, has attracted research interests into applications in atomically thin electronics and optoelectronics. Growing monolayer MoS2 film by chemical vapor deposition is the most commonly used approach. Little is known, however, about the cause of the shape and size evolution. Here, we explore how the precursor’s concentration affects the MoS2 crystals’ shape and size. When S concentration is stable, the shape of the MoS2 domain evolves from triangle to hexagon and then truncated triangle, finally back to a triangle as the concentration of Mo elevates. Regulating the concentration of Mo leads to the controllable growth of MoS2 crystal. By controlling the concentration of Mo, we eventually synthesized over 100 µm monolayer MoS2 crystals. Our results are a significant step forward in realizing the ultimate promise of large atomic MoS2 monolayer crystals for flexible, electronic, optoelectronic devices.

  2. Synthesis of diamond films by pulsed liquid injection chemical vapor deposition using a mixture of acetone and water as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Apatiga, L.M., E-mail: apatiga@servidor.unam.m [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma deMexico, A.P. 1-1010, C.P. 76000 Queretaro, Qro (Mexico); Morales, J., E-mail: ippajmc@yahoo.com.m [Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma deMexico, A.P. 1-1010, C.P. 76000 Queretaro, Qro (Mexico); Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Nuevo Leon, Av. Universidad S/N, C.P. 66450 San Nicolas Nuevo Leon (Mexico)

    2009-04-02

    A chemical vapor deposition reactor based on the flash evaporation of an organic liquid precursor was used to grow diamond films on Si substrates. An effective pulsed liquid injection mechanism consisting of an injector, normally used for fuel injection in internal combustion engines, injects micro-doses of the precursor to the evaporation zone at 280 {sup o}C and is instantly evaporated. The resulting vapor mixture is transported by a carrier gas to the high-temperature reaction chamber where the diamond nucleates and grows on the substrate surface at temperatures ranging from 750 to 850 {sup o}C. The injection frequency, opening time, number of pulses and other injector parameters are controlled by a computer-driven system. The diamond film morphology and structure were characterized by scanning electron microscopy and Raman spectroscopy. The as-deposited diamond films show a ball-shaped morphology with a grain size that varies from 100 to 400 nm, as well as the characteristic diamond Raman band at 1332 cm{sup -1}. The effects of the experimental parameters and operation principle on the diamond films quality are analyzed and discussed in terms of crystallinity, composition, structure, and morphology.

  3. Catalytic Chemical Vapor Deposition of Methane to Carbon Nanotubes: Copper Promoted Effect of Ni/MgO Catalysts

    Directory of Open Access Journals (Sweden)

    Wen Yang

    2014-01-01

    Full Text Available The Ni/MgO and Ni-Cu/MgO catalysts were prepared by sol-gel method and used as the catalysts for synthesis of carbon nanotubes by thermal chemical vapor deposition. The effect of Cu on the carbon yield and structure was investigated, and the effects of calcination temperature and reaction temperature were also investigated. The catalysts and synthesized carbon materials were characterized by temperature programmed reduction (TPR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. Results showed that the addition of Cu promoted the reduction of nickel species, subsequently improving the growth and yield of CNTs. Meanwhile, CNTs were synthesized by the Ni/MgO and Ni-Cu/MgO catalysts with various calcination temperatures and reaction temperatures, and results suggested that the obtained CNTs on Ni-Cu/MgO catalyst with the calcination temperature of 500°C and the reaction temperature of 650°C were of the greatest yield and quantity of 927%.

  4. Defect structure of metal-organic chemical vapor deposition-grown epitaxial (0001) GaN/Al2O3

    Science.gov (United States)

    Wu, X. H.; Brown, L. M.; Kapolnek, D.; Keller, S.; Keller, B.; DenBaars, S. P.; Speck, J. S.

    1996-09-01

    Defect structures were investigated by transmission electron microscopy for GaN/Al2O3 (0001) epilayers grown by metal-organic chemical vapor deposition using a two-step process. The defect structures, including threading dislocations, partial dislocation bounding stacking faults, and inversion domains, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. GaN film growth was initiated at 600 °C with a nominal 20 nm nucleation layer. This was followed by high-temperature growth at 1080 °C. The near-interfacial region of the films consists of a mixture of cubic and hexagonal GaN, which is characterized by a high density of stacking faults bounded by Shockley and Frank partial dislocations. The near-interfacial region shows a high density of inversion domains. Above ˜0.5 μm thickness, the film consists of isolated threading dislocations of either pure edge, mixed, or pure screw character with a total density of ˜7×108 cm-2. The threading dislocation reduction in these films is associated with cubic to hexagonal transformation of the nucleation layer region during high temperature growth.

  5. Facile Route to the Controlled Synthesis of Tetragonal and Orthorhombic SnO2 Films by Mist Chemical Vapor Deposition.

    Science.gov (United States)

    Bae, Jae-Yoon; Park, Jozeph; Kim, Hyun You; Kim, Hyun-Suk; Park, Jin-Seong

    2015-06-10

    Two types of tin dioxide (SnO2) films were grown by mist chemical vapor deposition (Mist-CVD), and their electrical properties were studied. A tetragonal phase is obtained when methanol is used as the solvent, while an orthorhombic structure is formed with acetone. The two phases of SnO2 exhibit different electrical properties. Tetragonal SnO2 behaves as a semiconductor, and thin-film transistors (TFTs) incorporating this material as the active layer exhibit n-type characteristics with typical field-effect mobility (μ(FE)) values of approximately 3-4 cm(2)/(V s). On the other hand, orthorhombic SnO2 is found to behave as a metal-like transparent conductive oxide. Density functional theory calculations reveal that orthorhombic SnO2 is more stable under oxygen-rich conditions, which correlates well with the experimentally observed solvent effects. The present study paves the way for the controlled synthesis of functional materials by atmospheric pressure growth techniques.

  6. Heat and Mass Transfer in the Chemical Vapor Deposition of Silicon Carbide in a Porous Carbon-Carbon Composite Material for a Heat Shield

    Science.gov (United States)

    Reznik, S. V.; Mikhailovskii, K. V.; Prosuntsov, P. V.

    2017-03-01

    Physical and mathematical simulations of the chemical vapor deposition of silicon carbide in a porous carbon-carbon composite material in a chemical vapor deposition reactor for formation of a matrix of a carbon-ceramic composite material for a heat shield of an aerospace aircraft have been performed. Results of parametric calculations of the heat and mass transfer at the macro- and microlevels in representative elements of the microstructure of carbon-carbon composite materials different in residual porosity at different temperatures in the reaction zone of the reactor are presented. Features of compaction of the pore space of a carbon-carbon composite material by a silicon-carbide matrix depending on the technological parameters of the reaction medium were analyzed.

  7. Improving mechanical robustness of ultralow-k SiOCH plasma enhanced chemical vapor deposition glasses by controlled porogen decomposition prior to UV-hardening

    OpenAIRE

    Urbanowicz, Adam; Vanstreels, Kris; Verdonck,Patrick; Shamiryan, Denis; De Gendt, Stefan; Baklanov, Mikhail

    2010-01-01

    We report a new curing procedure of a plasma enhanced chemical vapor deposited SiCOH glasses for interlayer dielectric applications in microelectronic. It is demonstrated that SiOCH glasses with improved mechanical properties and ultralow dielectric constant can be obtained by controlled decomposition of the porogen molecules used to create nanoscale pores, prior to the UV-hardening step. The Young’s modulus (YM) of conventional SiOCH-based glasses with 32% open porosity hardened with porogen...

  8. CATALYTIC EFFECTS OF FERROCENE ON BONDING, OPTICAL AND STRUCTURAL PROPERTIES OF DIAMOND-LIKE CARBON FILMS DEPOSITED BY MICROWAVE SURFACE-WAVE PLASMA CHEMICAL VAPOR DEPOSITION

    OpenAIRE

    SUDIP ADHIKARI; SUNIL ADHIKARY; HIDEO UCHIDA; MASAYOSHI UMENO

    2006-01-01

    This paper reports catalytic effects of ferrocene on bonding, optical and structural properties of diamond-like carbon (DLC) thin films grown on silicon and quartz substrates by microwave surface-wave plasma chemical vapor deposition. For film deposition, helium and methane gases were used as plasma source. Bonding, optical and structural properties of the DLC films were measured both with and without using ferrocene as a catalyst. The ferrocene content in the DLC was confirmed by X-ray spect...

  9. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Flores, Erico Marlon de Moraes [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br

    2009-06-15

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L{sup - 1} KBr in 6 mol L{sup - 1} HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L{sup - 1} HCl and 2.5% m/v NaBH{sub 4} solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g{sup - 1} for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  10. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Duarte, Fábio Andrei; Bizzi, Cezar Augusto; Antes, Fabiane Goldschmidt; Dressler, Valderi Luiz; Flores, Érico Marlon de Moraes

    2009-06-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 °C and the atomization temperature was set at 650 °C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  11. Dependence of optical property on the defects in Si-doped GaN grown by metal organic chemical vapor deposition

    CERN Document Server

    Kim, C K; Yi, J H; Choi, Y H; Yoo, T K; Hong, C H

    1999-01-01

    We investigated dependence of optical property on the microstructures and defects for Si-doped GaN grown by metal organic chemical vapor deposition using photoluminescence and x-ray diffraction measurements. Radiative transitions at different wavelengths were observed to be related to the different type of microstructure which can be characterized by x-ray diffraction measurements. Attempts were made to explain the relation between optical property and microstructures.

  12. Investigation of Boron Thermal Diffusion from Atmospheric Pressure Chemical Vapor Deposited Boron Silicate Glass for N-Type Solar Cell Process Application

    OpenAIRE

    Ikuo Kurachi; Kentaro Yoshioka

    2016-01-01

    An atmospheric pressure chemical vapor deposition (AP-CVD) system has been newly developed for boron silicate glass (BSG) film deposition dedicating to solar cell manufacturing. Using the system, thermal boron diffusion from the BSG film is investigated and confirmed in terms of process stability for surface property before BSG deposition and BSG thickness. No degradation in carrier lifetime is also confirmed. A boron diffusion simulator has been newly developed and demonstrated for optimizat...

  13. Fundamental studies of the chemical vapor deposition of diamond. Final technical report, April 1, 1988--December 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Nix, W.D.

    1995-05-01

    We submit here a final technical report for the research program entitled: Fundamental Studies of the Chemical Vapor Deposition of Diamond, DOE Grant No. DE-FG05-88ER45345-M006. This research program was initiated in 1988 under the direction of the late Professor David A. Stevenson and was renewed in 1992. Unfortunately, at the end of 1992, just as the last phase of this work was getting underway, Professor Stevenson learned that he had developed mesothelioma, a form of cancer based on asbestos. Professor Stevenson died from that disease in February of 1994. Professor William D. Nix, the Chairman of the Materials Science department at Stanford was named the Principal Investigator. Professor Nix has assembled this final technical report. Much of the work of this grant was conducted by Mr. Paul Dennig, a graduate student who will receive his Ph.D. degree from Stanford in a few months. His research findings are described in the chapters of this report and in the papers published over the past few years. The main discovery of this work was that surface topology plays a crucial role in the nucleation of diamond on silicon. Dennig and his collaborators demonstrated this by showing that diamond nucleates preferentially at the tips of asperities on a silicon surface rather than in the re-entrant comers at the base of such asperities. Some of the possible reasons for this effect are described in this report. The published papers listed on the next page of this report also describe this research. Interested persons can obtain copies of these papers from Professor Nix at Stanford. A full account of all of the research results obtained in this work is given in the regular chapters that follow this brief introduction. In addition, interested readers will want to consult Mr. Dennig`s Ph.D. dissertation when it is made available later this year.

  14. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Meng, E-mail: youmou@rift.mech.tohoku.ac.jp [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Sasaki, Shinichirou [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Suzuki, Ken; Miura, Hideo [Fracture and Reliability Research Institute, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • For the first time, we succeeded in the LPCVD growth of monolayer graphene using acetylene as the precursor gas. • The growth rate is very high when acetylene is used as the source gas. Our process has exhibited the potential to shorten the growth time of CVD graphene. • We found that the domain size, defects density, layer number and the sheet resistance of graphene can be changed by changing the acetylene flow rates. • We found that it is also possible to form bilayer graphene using acetylene. However, further study are necessary to reduce the defects density. - Abstract: Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  15. Transport properties of the top and bottom surfaces in monolayer MoS2 grown by chemical vapor deposition.

    Science.gov (United States)

    Kurabayashi, S; Nagashio, K

    2017-09-14

    The advantage of MoS2, compared with graphene, is the direct growth on various oxide substrates by chemical vapor deposition (CVD) without utilizing catalytic metal substrates, which facilitates practical applications for electronics. The carrier mobility is, however, degraded from the intrinsic limit mainly due to short-range scattering caused by S vacancies formed during CVD growth. If the upper limit for the crystallinity of CVD-MoS2 on oxide substrates is determined by the MoS2/substrate interaction during growth, it will hinder the advantage. In this study, we investigated the interaction between monolayer MoS2 and a SiO2/Si substrate and the difference in crystallinity between the top and bottom S surfaces due to the MoS2/substrate interaction. Raman and photoluminescence spectroscopy indicated that doping and strain were induced in MoS2 from the substrate, but they could be removed by transferring MoS2 to a new substrate using polymers. The newly developed polymer-transfer technique enabled selective transfer of the bottom or top surface of CVD-MoS2 onto a new SiO2/Si substrate. The metal-insulator transition was clearly observed for both the normal and inverse transfers, suggesting that the crystallinity of CVD-MoS2 is high and that the crystallinity of the bottom surface interacting with the substrate was similar to that of the top free surface. These results provide positive prospects for the further improvement of the crystallinity of MoS2 on oxide substrates by reconsidering the growth conditions.

  16. Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN

    Science.gov (United States)

    Takeuchi, S.; Asazu, H.; Imanishi, M.; Nakamura, Y.; Imade, M.; Mori, Y.; Sakai, A.

    2015-12-01

    We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration of the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.

  17. Using an Atmospheric Pressure Chemical Vapor Deposition Process for the Development of V2O5 as an Electrochromic Material

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2017-02-01

    Full Text Available Vanadium pentoxide coatings were grown by atmospheric pressure chemical vapor deposition varying the gas precursor ratio (vanadium (IV chloride:water and the substrate temperature. All samples were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, cyclic voltammetry, and transmittance measurements. The water flow rate was found to affect the crystallinity and the morphological characteristics of vanadium pentoxide. Dense stacks of long grains of crystalline oxide are formed at the highest amount of water utilized for a substrate temperature of 450 °C. Accordingly, it was indicated that for higher temperatures and a constant gas precursor ratio of 1:7, the surface morphology becomes flattened, and columnar grains of uniform size and shape are indicated, keeping the high crystalline quality of the material. Hence, it was possible to define a frame of operating parameters wherein single-phase vanadium pentoxide may be reliably expected, including a gas precursor ratio of 1:7 with a substrate temperature of >450 °C. The as-grown vanadium pentoxide at 550 °C for a gas precursor ratio of 1:7 presented the best electrochemical performance, including a diffusion coefficient of 9.19 × 10−11 cm2·s−1, a charge density of 3.1 mC·cm−2, and a coloration efficiency of 336 cm2·C−1. One may then say that this route can be important for the growth of large-scale electrodes with good performance for electrochromic devices.

  18. Ni–Mo and Co–Mo alloy nanoparticles for catalytic chemical vapor deposition synthesis of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lobiak, E.V., E-mail: lobiakev@niic.sbras.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation); Shlyakhova, E.V.; Bulusheva, L.G.; Plyusnin, P.E.; Shubin, Yu.V.; Okotrub, A.V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090 (Russian Federation)

    2015-02-05

    Highlights: • Thermal decomposition of the ε-Keggin-type polyoxomolybdate clusters Mo{sub 12}O{sub 28}(μ{sub 2}-OH){sub 12}{Ni(H_2O)_3}{sub 4} and Mo{sub 12}O{sub 28}(μ{sub 2}-OH){sub 12}{Co(H_2O)_3}{sub 4} produces NiMoO{sub 4} and CoMoO{sub 4} phases. • The NiMoO{sub 4} and CoMoO{sub 4} phases are converted in alloys with a metal ratio of 1:1. • The Ni–Mo and Co–Mo alloy nanoparticles catalyze a CCVD growth of carbon nanotubes. - Abstract: Here, we show for the first time a catalytic chemical vapor deposition (CCVD) synthesis of carbon nanotubes (CNTs) using polyoxomolybdate clusters Mo{sub 12}O{sub 28}(μ{sub 2}-OH){sub 12}{Ni(H_2O)_3}{sub 4} and Mo{sub 12}O{sub 28}(μ{sub 2}-OH){sub 12}{Co(H_2O)_3}{sub 4} as a source of catalyst nanoparticles. X-ray diffraction analyses indicated that the products of thermal decomposition of the clusters contain NiMoO{sub 4} and CoMoO{sub 4} phases, which are converted into Ni–Mo and Co–Mo alloys at 900 °C in hydrogen environment. High-resolution transmission electron microscopy in combination with energy-dispersive X-ray spectroscopy confirmed the CNT growth from bimetallic nanoparticles. Synergism between two metals in an alloy resulted in large-scale production of non-bundled few-walled CNTs with narrow diameter distribution and high quality.

  19. Chemical vapor deposition-prepared sub-nanometer Zr clusters on Pd surfaces: promotion of methane dry reforming.

    Science.gov (United States)

    Mayr, Lukas; Shi, Xue-Rong; Köpfle, Norbert; Milligan, Cory A; Zemlyanov, Dmitry Y; Knop-Gericke, Axel; Hävecker, Michael; Klötzer, Bernhard; Penner, Simon

    2016-11-23

    An inverse Pd-Zr model catalyst was prepared by chemical vapor deposition (CVD) using zirconium-t-butoxide (ZTB) as an organometallic precursor. Pd-Zr interaction was then investigated with focus on the correlation of reforming performance with the oxidation state of Zr. As test reactions, dry reforming of methane (DRM) and methanol steam reforming (MSR) were chosen. Depending on treatments, either ZrOxHy or ZrO2 overlayers or Zr as sub-nanometer clusters could be obtained. Following the adsorption of ZTB on Pd(111), a partially hydroxylated Zr4+-containing layer was formed, which can be reduced to metallic Zr by thermal annealing in ultrahigh vacuum, leading to redox-active Zr0 sub-nanometer clusters. Complementary density functional theoretical (DFT) calculations showed that a single layer of ZrO2 on Pd(111) can be more easily reduced toward the metallic state than a double- and triple layer. Also, the initial and resulting layer compositions greatly depend on gas environment. The lower the water background partial pressure, the faster and more complete the reduction of Zr4+ species to Zr0 on Pd takes place. Under methanol steam reforming conditions, water activation by hydroxylation of Zr occurs. In excess of methanol, strong coking is induced by the Pd/ZrOxHy interface. In contrast, dry reforming of methane is effectively promoted if these initially metallic Zr species are present in the pre-catalyst, leading to a Pd/ZrOxHy phase boundary by oxidative activation under reaction conditions. These reaction-induced active sites for DRM are stable with respect to carbon blocking or coking. In essence, Zr doping of Pd opens specific CO2 activation channels, which are absent on pure metallic Pd.

  20. RF sputtering enhanced the morphology and photoluminescence of multi-oriented ZnO nanostructure produced by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salman, Husam S., E-mail: husam.shakir@yahoo.com [School of Physics, University Sains Malaysia, Penang 11800 (Malaysia); Dept. of Physics, College of Science, University of Basrah, Basrah (Iraq); Abdullah, M.J. [School of Physics, University Sains Malaysia, Penang 11800 (Malaysia)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A ZnO nanostructure was synthesized using the CVD and RF techniques. Black-Right-Pointing-Pointer High-quality ZnO nanorods were obtained. Black-Right-Pointing-Pointer The nanorods grow at a random angle on the substrate surface. Black-Right-Pointing-Pointer The RF sputter-coating step enhanced the structural quality of the ZnO film. - Abstract: Pure hexagonal wurtzite ZnO nanostructure was successfully synthesized by chemical vapor deposition (CVD) and RF-magnetron sputtering without using any catalysts. In the two-step process, high-quality multi-oriented ZnO nanorods were obtained. Multi-oriented spear-like ZnO rods were pre-deposited on the SiO{sub 2}/Si(1 0 0) substrate by CVD at 700 Degree-Sign C followed by RF sputtering of the ZnO nanostructure. The synthesized ZnO nanostructures were characterized by X-ray diffraction, field emission scanning electron microscopy, and photoluminescence (PL). The results show that the RF sputtering of the ZnO nanostructure, which was coated with a ZnO film produced by CVD, might have promoted the uniformity and crystalline quality of the multi-oriented spear-like ZnO film. The PL spectra revealed a sharp and dominant peak located at approximately 382 nm with a UV-to-visible PL intensity ratio (I{sub UV}/I{sub VS}) of 42 for the sample that was produced by the two-step process. The growth mechanism of the multi-oriented spear-like ZnO nanorods was investigated.

  1. Influence of the nucleation layer annealing atmosphere on the resistivity of GaN grown by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Weike, E-mail: luowk688@163.com; Li, Liang; Li, Zhonghui; Dong, Xun; Peng, Daqing; Zhang, Dongguo; Xu, Xiaojun

    2015-06-05

    Graphical abstract: LT-PL spectra of GaN samples A, B and C with sheet resistance of 1.1 × 10{sup 4} Ω/sq, 5.5 × 10{sup 4} Ω/sq and 1.0 × 10{sup 8} Ω/sq, respectively. - Highlights: • HR-GaN was fabricated by optimizing the nucleation layer annealing (NL) atmosphere. • The morphology of NLs annealed in different atmosphere has been investigated. • The resistance of GaN increased with density of edge type threading dislocations. • The PL results indicate that the HR-GaN is achieved due to the compensation of acceptor states. - Abstract: High-resistance (HR) GaN with sheet resistance of 1.0 × 10{sup 8} Ω/sq was grown on sapphire substrates using metal organic chemical vapor deposition. Sheet resistance of the GaN film increases 4 orders of magnitude by changing the nucleation layer (NL) annealing atmosphere from H{sub 2} to N{sub 2}. It is observed that the morphology of the NLs strongly depends on the annealing atmosphere. The analysis results based on high-resolution X-ray diffraction (HR-XRD) and etch pit density (EPD) measurements demonstrate that the density of edge-type threading dislocations increases with the proportion of the N{sub 2} in the annealing atmosphere. Photoluminescence (PL) spectra is employed to analyze the optical properties of GaN films. The XRD and PL results indicate the primary compensating mechanism is due to acceptor levels introduced by the increase in edge-type threading dislocations density. It is concluded that the annealing atmosphere of the NL controls sizes and densities of the nucleation islands, which affect electrical properties of GaN epitaxial films through changing the ratio of edge to screw/mixed-type threading dislocations.

  2. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C. [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico); Pérez-García, S.A. [Centro de Investigación en Materiales Avanzados, S.C., Unidad Monterrey, Apodaca, Nuevo León 66600 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico)

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  3. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  4. Deposition of titanium coating on SiC fiber by chemical vapor deposition with Ti-I{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2017-06-01

    Highlights: • The transformation paths of (Ti + I{sub 2}) powder to Ti coating is: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}) → Ti. • Uniform coating was obtained on SiC fiber, but it contained Si and C elements. • Deposition rate of the coating increased with the increase of temperature. • Deposition thickness increased with time and achieved the maximum at 90 min. - Abstract: Titanium coating was prepared on SiC fiber using titanium-iodine (Ti-I{sub 2}) mixture by hot-wall chemical vapor deposition. Thermodynamic analysis and experimental observation were carried out in this work. The thermodynamic analysis of the reactions in the Ti-I{sub 2} system indicates that Ti and I{sub 2} raw powder materials transform to titanium coating as follows: Ti + I{sub 2} → (TiI{sub 2}, TiI{sub 3}), and (TiI{sub 2}, TiI{sub 3}) → Ti. In theory, the conversions of TiI{sub 3} and TiI{sub 2} reach the maximum when Ti:I{sub 2} is 1:1.5, while in actual experiment that reached the maximum when Ti:I{sub 2} was 1:2, as there existed the waste of I{sub 2} due to sublimation. Typical deposited coating is relatively flat and uniform. However, as SiC is prone to react with Ti at high temperatures, the obtained coating contained some Si and C elements except for Ti. So the coating was not a pure Ti coating but contained some carbides and silicides. Deposition rate of the coating increased with the increase of temperature. The deposited thickness increased with the increase of heat preservation time, and achieved the maximum thickness at 90 min.

  5. Impact of microcrystalline silicon carbide growth using hot-wire chemical vapor deposition on crystalline silicon surface passivation

    Energy Technology Data Exchange (ETDEWEB)

    Pomaska, M., E-mail: m.pomaksa@fz-juelich.de [Forschungszentrum Jülich, IEK5-Photovoltaics, Wilhelm-Johnen-Strasse, 52425 Jülich (Germany); Beyer, W. [Helmholtz-Zentrum Berlin für Materialien und Energie, Silicon Photovoltaics, Kekuléstrasse 5, 12489 Berlin (Germany); Neumann, E. [Forschungszentrum Jülich, PGI-8-PT, Wilhelm-Johnen-Strasse, 52425 Jülich (Germany); Finger, F.; Ding, K. [Forschungszentrum Jülich, IEK5-Photovoltaics, Wilhelm-Johnen-Strasse, 52425 Jülich (Germany)

    2015-11-30

    Highly crystalline microcrystalline silicon carbide (μc-SiC:H) with excellent optoelectronic material properties is a promising candidate as highly transparent doped layer in silicon heterojunction (SHJ) solar cells. These high quality materials are usually produced using hot wire chemical vapor deposition under aggressive growth conditions giving rise to the removal of the underlying passivation layer and thus the deterioration of the crystalline silicon (c-Si) surface passivation. In this work, we introduced the n-type μc-SiC:H/n-type μc-SiO{sub x}:H/intrinsic a-SiO{sub x}:H stack as a front layer configuration for p-type SHJ solar cells with the μc-SiO{sub x}:H layer acting as an etch-resistant layer against the reactive deposition conditions during the μc-SiC:H growth. We observed that the unfavorable expansion of micro-voids at the c-Si interface due to the in-diffusion of hydrogen atoms through the layer stack might be responsible for the deterioration of surface passivation. Excellent lifetime values were achieved under deposition conditions which are needed to grow high quality μc-SiC:H layers for SHJ solar cells. - Highlights: • High surface passivation quality was preserved after μc-SiC:H deposition. • μc-SiC:H/μc-SiO{sub x}:H/a-SiO{sub x}:H stack a promising front layer configuration • Void expansion at a-SiO{sub x}:H/c-Si interface for deteriorated surface passivation • μc-SiC:H provides a high transparency and electrical conductivity.

  6. Chemical Vapor Deposited Diamond

    Science.gov (United States)

    1991-09-27

    TIME COVERED I DATE OF REPORT (Year. Moth . Day) is PAGj.COuNT interim [FROM TO 91-9-27 L 4 16 SUPPLENIENTARY NOTATION 7 COSATi CODES I18. SuSAECT TERMS...aluminum garnet (Nd:YAG) laser in one atmosphere of oxygen. The laser operated in the TEM00 mode with a pulse repetition rate of 1 kHz and a peak power

  7. Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution

    KAUST Repository

    Zia, Asif I.

    2015-05-01

    Reported research work presents real time non-invasive detection of phthalates in spiked aqueous samples by employing electrochemical impedance spectroscopy (EIS) technique incorporating a novel interdigital capacitive sensor with multiple sensing thin film gold micro-electrodes fabricated on native silicon dioxide layer grown on semiconducting single crystal silicon wafer. The sensing surface was functionalized by a self-assembled monolayer of 3-aminopropyltrietoxysilane (APTES) with embedded molecular imprinted polymer (MIP) to introduce selectivity for the di(2-ethylhexyl) phthalate (DEHP) molecule. Various concentrations (1-100. ppm) of DEHP in deionized MilliQ water were tested using the functionalized sensing surface to capture the analyte. Frequency response analyzer (FRA) algorithm was used to obtain impedance spectra so as to determine sample conductance and capacitance for evaluation of phthalate concentration in the sample solution. Spectrum analysis algorithm interpreted the experimentally obtained impedance spectra by applying complex nonlinear least square (CNLS) curve fitting in order to obtain electrochemical equivalent circuit and corresponding circuit parameters describing the kinetics of the electrochemical cell. Principal component analysis was applied to deduce the effects of surface immobilized molecular imprinted polymer layer on the evaluated circuit parameters and its electrical response. The results obtained by the testing system were validated using commercially available high performance liquid chromatography diode array detector system.

  8. A low cost and palm-size analyzer for rapid and sensitive protein detection by AC electrokinetics capacitive sensing.

    Science.gov (United States)

    Liu, Xiaozhu; Cheng, Cheng; Wu, Jayne; Eda, Shigetoshi; Guo, Yongcai

    2017-04-15

    Specific detection of protein biomarkers has a wide range of applications in areas such as medical science, diagnostics, and pharmacology. Quantitative detection of protein biomarkers in biological media, such as serum, is critically important in detecting disease or physiological malfunction, or tracking disease progression. Among various detection methods, electrical detection is particularly well suited for point-of-care (POC) specific protein detection, being of low cost, light weight and small form factor. A portable system for sensitive and quantitative detection of protein biomarkers will be highly valuable in controlling and preventing diseases outbreaks. Recently, an alternating current electrokinetic (ACEK) capacitive sensing method has been reported to demonstrate very promising performance on rapid and sensitive detection of specific protein from serum. In this work, a low cost and portable analyzer with good accuracy is developed to use with ACEK capacitive sensing to produce a true POC technology. The development of a board-level capacitance readout system is presented, as well as the adaption of the protocol for use with ACEK capacitive sensing. Results showed that the developed system could achieve a limit of detection of 10ng/mL, comparable to a sophisticated benchtop instrument. With its small size and light-weight similar to a smart phone, the developed system is ready to be applicable to POC diagnostics. Further, the readout system can be readily expanded for multichannel monitoring and telecommunication capabilities. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Rasmussen, Thomas B

    2005-01-01

    The opportunistic human pathogen Pseudomonas aeruginosa is the predominant micro-organism of chronic lung infections in cystic fibrosis patients. P. aeruginosa colonizes the lungs by forming biofilm microcolonies throughout the lung. Quorum sensing (QS) renders the biofilm bacteria highly tolerant......-treated biofilm. Garlic extract was administered as treatment for a mouse pulmonary infection model. Mice were treated with garlic extract or placebo for 7 days, with the initial 2 days being prophylactic before P. aeruginosa was instilled in the left lung of the mice. Bacteriology, mortality, histopathology...... and phagocytosis by PMNs, as well as leading to an improved outcome of pulmonary infections....

  10. Effects of catalyst support and chemical vapor deposition condition on synthesis of multi-walled carbon nanocoils

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Yoshiyuki, E-mail: suda@ee.tut.ac.jp; Iida, Tetsuo; Takikawa, Hirofumi; Harigai, Toru [Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Ue, Hitoshi [Fuji Research Laboratory, Tokai Carbon Co., Ltd., Oyama, Shizuoka 410-1431 (Japan); Umeda, Yoshito [Toho Gas Co., Ltd., Tokai, Aichi 476-8501 (Japan)

    2016-02-01

    Multi-walled carbon nanocoil (MWCNC) is a carbon nanotube (CNT) with helical shape. We have synthesized MWCNCs and MWCNTs hybrid by chemical vapor deposition (CVD). MWCNCs are considered to be a potential material in nanodevices, such as electromagnetic wave absorbers and field emitters. It is very important to take into account the purity of MWCNCs. In this study, we aimed to improve the composition ratio of MWCNCs to MWCNTs by changing catalyst preparation and CVD conditions. As a catalyst, Fe{sub 2}O{sub 3}/zeolite was prepared by dissolving Fe{sub 2}O{sub 3} fine powder and Y-type zeolite (catalyst support material) in ethanol with an Fe density of 0.5wt.% and with a zeolite density of 3.5wt.%. The catalyst-coated Si substrate was transferred immediately onto a hotplate and was heated at 80°C for 5 min. Similarly, Fe{sub 2}O{sub 3}/Al{sub 2}O{sub 3}, Co/zeolite/Al{sub 2}O{sub 3}, Co/zeolite, and Co/Al{sub 2}O{sub 3} were prepared. The effect of the difference of the composite catalysts on synthesis of MWCNCs was considered. The CVD reactor was heated in a tubular furnace to 660-790°C in a nitrogen atmosphere at a flow rate of 1000 ml/min. Subsequently, acetylene was mixed with nitrogen at a flow rate ratio of C{sub 2}H{sub 2}/N{sub 2} = 0.02-0.1. The reaction was kept under these conditions for 10 min. MWCNTs and MWCNCs were well grown by the catalysts of Co/zeolite and Co/Al{sub 2}O{sub 3}. The composition ratio of MWCNCs to MWCNTs was increased by using a combination of zeolite and Al{sub 2}O{sub 3}. The highest composition ratio of MWCNCs to MWCNTs was 12%.

  11. Investigation of Hot Filament Chemical Vapor Deposition (HFCVD) of Heavily Boron Doped Superconductive Diamond for Device Applications

    Science.gov (United States)

    Green, Delroy Earl

    ABSTRACT Diamond has a wide bandgap of 5.47 eV at room temperature and is the hardest known naturally occurring material with a Knoop hardness of 10,400 kg/mm2 or 10 on the Mohs scale [1]. Due to the structure of the covalent bonding of its carbon atoms, diamond is extremely strong having each carbon atom bonded to four neighboring carbon atoms. Although diamond is hard, its toughness, when compared to most engineering materials, is poor. However, because of its hardness, it can be used as an efficient cutting and drilling tool. With the exception of naturally occurring blue diamonds, which are semiconductors, diamond is a good electrical insulator. However, unlike most insulators, diamond has the highest thermal conductivity of 22 W/cm-K [1, 2] among naturally occurring materials. Although diamond is a good electrical insulator, it also shows semiconducting properties when doped with impurities. When diamond is heavily doped with boron the resulting material possess excess holes and as such it is classified as a p-type material. If excess boron doping is achieved, then the resulting material is found to behave like a superconductor at very low temperatures. In this superconducting state, the doped diamond conducts electricity. A series of boron-doped diamond films were grown by hot filament chemical vapor deposition (HFCVD) and tested to determine the optimum technique for doping diamond with boron for superconductivity. The first sets of experiments were conducted by utilizing boron powder, paste or solid (B2O3) to dope the seeded diamond during growth on various substrates. The second technique, which was conducted at Blue Wave Semiconductors Inc. commercial laboratory, involves doping with diborane gas (B6H2). Various processing parameters were optimized for diamond quality, structure, morphology, and doping. A combined analysis of scanning electron microscope, Raman mapping and Hall measurements at various temperatures were conducted to ascertain the

  12. Model-aided fabrication of fiber-reinforced ceramic composite tubes using forced-flow chemical vapor infiltration

    Science.gov (United States)

    Probst, Kent Joseph

    Fiber-reinforced ceramic composites possess high thermal conductivity, high fracture toughness, and corrosion resistance, having potential for use in fossil-energy steam plants, where corrosive environments at high temperature and pressure exist. The utilization of fiber-reinforced ceramic composite tubes may enable plant operation at higher temperatures, and may extend the lifetime of specific plant operations, improving overall efficiencies and reducing down-time. Dense, fiber-reinforced ceramic composite tubes were fabricated using forced-flow, chemical vapor infiltration. This process involved gaseous ceramic precursor infiltration throughout a fibrous preform, where a temperature gradient was applied and a ceramic precursor was forced through its surface at lower temperature. The application of a suitable temperature gradient and total flow enabled the ceramic matrix deposition to preferentially translate from the preform hot-surface to the cold-surface, resulting in a dense, ceramic composite in a reasonable total process time. Fibrous tube preforms were fabricated with Nextel(TM) 312 fiber. Silicon carbide was the reinforced ceramic matrix, which was deposited throughout the tube preform using methyltrichlorosilane. A standard set of process conditions was attempted to evaluate the feasibility in achieving dense composites. Tube preform infiltrations with variation in temperature and total flow were performed to determine effects on final density and total process time. Density characterization was performed on tube preforms infiltrated with the same process conditions for various time lengths to study the transient tube densification. Tube density profiles were characterized using X-ray computed tomography and digital image analysis, and the results from both were compared for their effectiveness in the prediction of the transient tube densification. A comprehensive process model simulated the transient tube infiltration using multiple, steady

  13. The growth and characterization of group III-nitride transistor devices grown by metalorganic chemical vapor deposition

    Science.gov (United States)

    Wong, Michael Ming

    The InAlGaN, or III-nitride, material system has received much interest from the research community. A direct wide bandgap semiconductor, GaN offers a high breakdown field (>3 x 106 V/cm) due to its large bandgap energy of 3.4 eV, high electron saturation velocity (1.5 x 10 7 cm/s, predicted peak up to 2.7 x 107 cm/s), good thermal conductivity (≥1.7 W/cm K), and reasonable mobility (800 cm 2/V s). In an AlGaN/GaN heterostructure, the formation of a two-dimensional electron gas (2DEG) leads to a higher electron mobility (2000 cm2/V s) and a high sheet density (1--5 x 1013 cm -2). This makes transistors based on the III-nitride material system ideal for high-temperature, high-power, and high-frequency applications. Two such transistors include the heterojunction field-effect transistor (HFET) and bipolar junction transistor (BJT), which includes the heterojunction bipolar transistor (HBT). Both HFETs and HBTs were studied, and the epitaxial heterostructures were grown by the metalorganic chemical vapor deposition (MOCVD) technique. The MOCVD process and system are described, along with the growth details. As material characterization is important for the optimization of growth, several of the techniques used are discussed. An extensive study to improve the performance of AlGaN/GaN HFETs is detailed. Through the use of a delta-doped, binary barrier novel device structure, the highest reported maximum drain current and transconductance is reported: IDSmax = 1.82 A/mm and gm = 331 mS/mm. The device also exhibits excellent RF characteristics. HBTs based on the III-nitride material system face a more difficult challenge associated with p-type material. Development of HBTs is still in the early stages, although there are reports of working devices. The gain is still below its potential, but many of the issues have been identified. Two novel structures are reported for the first time, a GaN/InGaN/GaN pnp HBT and a AlGaN/GaN npn graded-base and collector-up HBT. The

  14. Rapid 2D phase-contrast magnetic resonance angiography reconstruction algorithm via compressed sensing

    Science.gov (United States)

    Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo; Han, Bong-Soo

    2013-09-01

    Phase-contrast magnetic resonance angiography (PC MRA) is an excellent technique for visualization of venous vessels. However, the scan time of PC MRA is long compared with there of other MRA techniques. Recently, the potential of compressed sensing (CS) reconstruction to reduce the scan time in MR image acquisition using a sparse sampling dataset has become an active field of study. In this study, we propose a combination method to apply the CS reconstruction method to 2D PC MRA. This work was performed to enable faster 2D PC MRA imaging acquisition and to demonstrate its feasibility. We used a 0.32 T MR imaging (MRI) system and a total variation (TV)-based CS reconstruction algorithm. To validate the usefulness of our proposed reconstruction method, we used visual assessment for reconstructed images, and we measured the quantitative information for sampling rates from 12.5 to 75.0%. Based on our results, when the sampling ratio is increased, images reconstructed with the CS method have a similar level of image quality to fully sampled reconstruction images. The signal to noise ratio (SNR) and the contrast-to-noise ratio (CNR) were also closer to the reference values when the sampling ratio was increased. We confirmed the feasibility of 2D PC MRA with the CS reconstruction method. Our results provide evidence that this method can improve the time resolution of 2D PC MRA.

  15. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  16. Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics

    Directory of Open Access Journals (Sweden)

    Ritu Sharma

    2015-12-01

    Full Text Available In this paper, multi-walled carbon nanotubes are synthesized by arc-discharge and chemical vapor decomposition methods. Multi-walled carbon nanotubes are synthesized on thin film of nickel sputtered on silicon substrate by thermal chemical vapor deposition of acetylene at a temperature of 750°C. The flow of current in arc-discharge method varies in the range 50–200 A. Further arc-synthesized carbon nanotubes are characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and the results are compared with nanotubes grown by chemical vapor deposition method. XRD result shows a characteristic peak (0 0 2 at 26.54° corresponding to the presence of carbon nanotubes. SEM and TEM results give morphology of as-synthesized multi-walled nanotubes. TEM results indicate synthesis of well-graphitized carbon nanotubes by arc-discharge method. Dispersion of arc-synthesized nanotubes in SDS solution under the effect of different sonication times is studied. Dispersion of nanotubes in SDS solution is analyzed using UV–vis–NIR spectroscopy and it shows an absorption peak at 260 nm. It was found that with the increase in sonication time, the absorption peak in UV–vis–NIR spectra will increase and optimum sonication time was 2 hours. Functionalization of synthesized carbon nanotubes by H2SO4 and HNO3 acids has been studied and analysis of functionalized groups has been done using FT-IR spectroscopy and compared and the results are reported in this paper. FT-IR spectroscopy verifies the presence of carboxylic groups attached to carbon nanotubes. These functional groups may change properties of carbon nanotubes and may be used in vast applications of carbon nanotubes.

  17. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Science.gov (United States)

    Zhang, Yingwei; Luo, Yonglan; Tian, Jingqi; Asiri, Abdullah M; Al-Youbi, Abdulrahman O; Sun, Xuping

    2012-01-01

    In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs) assembled from Cu(II) and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1) RCPN binds dye-labeled single-stranded DNA (ssDNA) probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2) Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA) which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  18. Self-Assemblies of Single-Walled Carbon Nanotubes through Tunable Tethering of Pyrenes by Dextrin for Rapidly Chiral Sensing

    Directory of Open Access Journals (Sweden)

    Wei-Li Wei

    2011-01-01

    Full Text Available Pyrene-modified dextrin (Py-Dex was synthesized via the Schiff base reaction between reducing end of dextrins and 1-aminopyrene, and then self-assemblies of single-walled carbon nanotubes (SWNTs were fabricated through the tunable tethering of pyrene to SWNTs by dextrin chains. The Py-Dex-SWNTs assemblies were found to be significantly water-soluble because of the synergistic effect of dextrin chains and pyrene moieties. Py-Dex and Py-Dex-SWNTs were adequately characterized by NMR, UV-vis, fluorescence spectroscopy, Raman spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectroscopy, and transmission electron microscopy. The tethering effect of dextrin toward pyrene moieties was clearly revealed and was found to be tunable by adjusting the length of dextrin chains. The fluorescence of pyrene moieties was sufficiently quenched by SWNTs with the support of dextrin chains. Furthermore, the Py-Dex-SWNTs assemblies were used for chiral selective sensing by introducing cyclodextrins as chiral binding sites. The rapid chiral sensing was successfully tested for different enantiomers.

  19. Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen.

    Science.gov (United States)

    Alhogail, Sahar; Suaifan, Ghadeer A R Y; Zourob, Mohammed

    2016-12-15

    Listeria monocytogenes is a serious cause of human foodborne infections worldwide, which needs spending billions of dollars for inspection of bacterial contamination in food every year. Therefore, there is an urgent need for rapid, in-field and cost effective detection techniques. In this study, rapid, low-cost and simple colorimetric assay was developed using magnetic nanoparticles for the detection of listeria bacteria. The protease from the listeria bacteria was detected using D-amino acid substrate. D-amino acid substrate was linked to the carboxylic acid on the magnetic nanoparticles using EDC/NHS chemistry. The cysteine residue at the C-terminal of the substrate was used for the self-assembled monolayer formation on the gold sensor surface, which in turn the black magnetic nanobeads will mask the golden color. The color will change from black to golden color upon the cleavage of the specific peptide sequence by the Listeria protease. The sensor was tested with serial dilutions of Listeria bacteria. It was found that the appearance of the gold surface area is proportional to the bacterial concentrations in CFU/ml. The lowest detection limit of the developed sensor for Listeria was found to be 2.17×10(2) colony forming unit/ml (CFU/ml). The specificity of the biosensor was tested against four different foodborne associated bacteria (Escherichia coli, Salmonella, Shigella flexnerii and Staphylococcus aureus). Finally, the sensor was tested with artificially spiked whole milk and ground meat spiked with listeria. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Zhiyu; Zhang, Jincheng, E-mail: jchzhang@xidian.edu.cn; Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue [Key Lab of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi' an, Shaanxi 710071 (China); Su, Xujun [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123 (China); Shi, Xuefang [School of Advanced Materials and Nanotechnology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-08-25

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  1. High-durability catalytic electrode composed of Pt nanoparticle-supported carbon nanowalls synthesized by radical-injection plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Imai, Shun; Kondo, Hiroki; Cho, Hyungjun; Kano, Hiroyuki; Ishikawa, Kenji; Sekine, Makoto; Hiramatsu, Mineo; Ito, Masafumi; Hori, Masaru

    2017-10-01

    For polymer electrolyte fuel cell applications, carbon nanowalls (CNWs) were synthesized by radical-injection plasma-enhanced chemical vapor deposition, and a high density of Pt nanoparticles (>1012 cm-2) was supported on the CNWs using a supercritical fluid deposition system. The high potential cycle tests were applied and the electrochemical surface area of the Pt nanoparticle-supported CNWs did not change significantly, even after 20 000 high potential cycles. According to transmission electron microscopy observations, the mean diameter of Pt changed slightly after the cycle tests, while the crystallinity of the CNWs evaluated using Raman spectroscopy showed almost no change.

  2. Analysis of the surface photoabsorption signal during self-limited submonolayer growth of InP in metalorganic chemical vapor deposition

    CERN Document Server

    Lee, T W; Moon, Y B; Yoon, E J; Kim, Y D

    1999-01-01

    In situ, real-time monitoring of InP atomic layer epitaxy (ALE) was performed in low-pressure metalorganic chemical vapor deposition (LP-MOCVD) by surface photoabsorption (SPA). A self-limiting adsorption condition was obtained from the trimethylindium (TMIn) decomposition experiment at various conditions. It was found that the growth rate was less than 1 monolayer (ML)/cycle. From the in situ, real-time SPA measurement during InP ALE, the incomplete PH sub 3 decomposition on the methyl-terminated In surface was attributed to the self-limiting submonolayer growth per cycle.

  3. Structural properties of Al-rich AlInN grown on c-plane GaN substrate by metal-organic chemical vapor deposition.

    Science.gov (United States)

    Lin, Pei-Yin; Chen, Jr-Yu; Shih, Yi-Sen; Chang, Li

    2014-01-01

    The attractive prospect for AlInN/GaN-based devices for high electron mobility transistors with advanced structure relies on high-quality AlInN epilayer. In this work, we demonstrate the growth of high-quality Al-rich AlInN films deposited on c-plane GaN substrate by metal-organic chemical vapor deposition. X-ray diffraction, scanning electron microscopy, and scanning transmission electron microscopy show that the films lattice-matched with GaN can have a very smooth surface with good crystallinity and uniform distribution of Al and In in AlInN.

  4. Low temperature carrier transport study of monolayer MoS{sub 2} field effect transistors prepared by chemical vapor deposition under an atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com; He, Jiazhu; Tang, Dan; Lu, Youming; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050 (China); Liu, Wenjun [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, 220 Handan Road, Shanghai 200433 (China); Wu, Jing, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com [Department of Physics, National University of Singapore, 21 Lower Kent Ridge Road, 117576 Singapore (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore (Singapore)

    2015-09-28

    Large size monolayer Molybdenum disulphide (MoS{sub 2}) was successfully grown by chemical vapor deposition method under an atmospheric pressure. The electrical transport properties of the fabricated back-gate monolayer MoS{sub 2} field effect transistors (FETs) were investigated under low temperatures; a peak field effect mobility of 59 cm{sup 2}V{sup −1}s{sup −1} was achieved. With the assist of Raman measurement under low temperature, this work identified the mobility limiting factor for the monolayer MoS{sub 2} FETs: homopolar phonon scattering under low temperature and electron-polar optical phonon scattering at room temperature.

  5. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition.

    Science.gov (United States)

    Quesada-González, Miguel; Boscher, Nicolas D; Carmalt, Claire J; Parkin, Ivan P

    2016-09-28

    The work presented here describes the preparation of transparent interstitial boron-doped TiO2 thin-films by atmospheric pressure chemical vapor deposition (APCVD). The interstitial boron-doping, on TiO2, proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), is shown to enhance the crystallinity and significantly improve the photocatalytic activity of the TiO2 films. The synthesis, highly suitable for a reel-to-reel process, has been carried out in one step.

  6. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    Science.gov (United States)

    Shi, Yujun

    2015-02-17

    CONSPECTUS: Hot wire chemical vapor deposition (HWCVD), also referred to as catalytic CVD (Cat-CVD), has been used to produce Si-containing thin films, nanomaterials, and functional polymer coatings that have found wide applications in microelectronic and photovoltaic devices, in automobiles, and in biotechnology. The success of HWCVD is largely due to its various advantages, including high deposition rate, low substrate temperatures, lack of plasma-induced damage, and large-area uniformity. Film growth in HWCVD is induced by reactive species generated from primary decomposition on the metal wire or from secondary reactions in the gas phase. In order to achieve a rational and efficient optimization of the process, it is essential to identify the reactive species and to understand the chemical kinetics that govern the production of these precursor species for film growth. In this Account, we report recent progress in unraveling the complex gas-phase reaction chemistry in the HWCVD growth of silicon carbide thin films using organosilicon compounds as single-source precursors. We have demonstrated that laser ionization mass spectrometry is a powerful diagnostic tool for studying the gas-phase reaction chemistry when combined with the methods of isotope labeling and chemical trapping. The four methyl-substituted silane molecules, belonging to open-chain alkylsilanes, dissociatively adsorb on W and Ta filaments to produce methyl radical and H2 molecule. Under the typical deposition pressures, with increasing number of methyl substitution, the dominant chemistry occurring in the gas phase switches from silylene/silene reactions to free-radical short chain reactions. This change in dominant reaction intermediates from silylene/silene to methyl radicals explains the observation from thin film deposition that silicon carbide films become more C-rich with a decreasing number of Si-H bonds in the four precursor molecules. In the case of cyclic monosilacyclobutanes, we have

  7. Metalorganic chemical vapor growth and characterizations of epitaxial magnesium zinc oxide films on R-aluminum oxide substrates

    Science.gov (United States)

    Muthukumar, Sriram

    Wide energy bandgap semiconductor materials are of considerable interest for their use in short-wavelength light emitting diodes and lasers. ZnO has a direct energy bandgap of ˜3.3eV at room temperature. Its direct energy bandgap can be extended to ˜4.0eV by alloying it with MgO to form Mg xZn1-xO (0 ≤ x ≤ 0.33). Such materials are essential for the fabrication of ZnO/MgxZn1-xO heterostructures for energy band engineering. In this work, MgxZn1-x O thin films are epitaxially grown on (011¯2) R-Al2O 3 (sapphire) substrates by metalorganic chemical vapor deposition. A thin ZnO buffer layer of the order of 50A is found to be critical for the growth of single crystal MgxZn1-xO (0 ≤ x ≤ 0.33) films with a wurtzite-type structure. For Mg mole fractions of x > 0.5, the MgxZn1-xO films grow epitaxially with a cubic rocksalt-type structure. The epitaxial relationship between the wurtzite-type MgxZn1-xO films and the R-Al 2O3 substrates is determined to be (112¯0) Mgx Zn1-xO||(011¯2) Al2O3, and [0001] MgxZn1-xO||[01¯11] Al 2O3. The films appear to be dense and have a smooth surface morphology. The x-ray Deltapi(112¯0) rocking curve and Delta2θ(112¯0) full-width half maximum for Mg0.18Zn0.82O film are measured to be 0.275° and 0.175°, respectively, indicating a strong mosaicity and built in strain in the films. In-plane reflections show the lower lattice mismatch along the c-axis of the MgxZn1-xO films on R-Al2O3. High-Resolution Transmission Electron Microscopy analysis of the Mg0.3Zn0.7O/R-Al2O3 interface indicates the region in the film near the interface is crystalline though strained, and the film starts to relax farther away from the interface. The compressive in-plane residual strain in the MgxZn1-x O film, due to Mg incorporation, was calculated using moire fringes near the interface to be on the order of -0.36%. The energy bandgap of MgxZn1-xO films as a function of Mg composition is deduced using a UV-Visible spectrophotometer at room temperature

  8. Aptamer contained triple-helix molecular switch for rapid fluorescent sensing of acetamiprid.

    Science.gov (United States)

    Liu, Xin; Li, Ying; Liang, Jing; Zhu, Wenyue; Xu, Jingyue; Su, Ruifang; Yuan, Lei; Sun, Chunyan

    2016-11-01

    In this study, an aptamer-based fluorescent sensing platform using triple-helix molecular switch (THMS) was developed for the pesticide screening represented by acetamiprid. The THMS was composed of two tailored DNA probes: a label-free central target specific aptamer sequence flanked by two arm segments acting as a recognition probe; a hairpin-shaped structure oligonucleotide serving as a signal transduction probe (STP), labeled with a fluorophore and a quencher at the 3' and 5'-end, respectively. In the absence of acetamiprid, complementary bindings of two arm segments of the aptamers with the loop sequence of STP enforce the formation of THMS with the "open" configuration of STP, and the fluorescence of THMS is on. In the presence of target acetamiprid, the aptamer-target binding results in the formation of a structured aptamer/target complex, which disassembles the THMS and releases the STP. The free STP is folded to a stem loop structure, and the fluorescence is quenched. The quenched fluorescence intensity was proportional to the concentration of acetamiprid in the range from 100 to 1200nM, with the limit of detection (LOD) as low as 9.12nM. In addition, this THMS-based method has been successfully used to test and quantify acetamiprid in Chinese cabbage with satisfactory recoveries, and the results were in full agreement with those from LC-MS. The aptamer-based THMS presents distinct advantages, including high stability, remarkable sensitivity, and preservation of the affinity and specificity of the original aptamer. Most importantly, this strategy is convenient and generalizable by virtue of altering the aptamer sequence without changing the triple-helix structure. So, it is expected that this aptamer-based fluorescent assay could be extensively applied in the field of food safety inspection. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Rapid Intensification of Hurricane Karl (2010): New Remote Sensing Observations of Convective Bursts from the Global Hawk Platform

    Science.gov (United States)

    Guimond, Stephen R.; Heymsfield, Gerald M.; Reasor, Paul; Didlake, Anthony C., Jr.

    2016-01-01

    The evolution of rapidly intensifying Hurricane Karl (2010) is examined from a suite of remote sensing observations during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment. The novelties of this study are in the analysis of data from the airborne Doppler radar HIWRAP and the new Global Hawk airborne platform that allows long endurance sampling of hurricanes. Supporting data from the HAMSR microwave sounder coincident with HIWRAP and coordinated flights with the NOAA WP-3D aircraft help to provide a comprehensive understanding of the storm. The focus of the analysis is on documenting and understanding the structure, evolution and role of small scale, deep convective forcing in the storm intensification process. Deep convective bursts are sporadically initiated in the downshear quadrants of the storm and rotate into the upshear quadrants for a period of 12 h during the rapid intensification. The aircraft data analysis indicates that the bursts are being formed and maintained through a combination of two main processes: (1) convergence generated from counter-rotating mesovortex circulations and the larger vortex-scale flow and (2) the turbulent (scales of 25 km) transport of anomalously warm, buoyant air from the eye to the eyewall at low levels. The turbulent mixing across the eyewall interface and forced convective descent adjacent to the bursts assists in carving out the eye of Karl, which leads to an asymmetric enhancement of the warm core. The mesovortices play a key role in the evolution of the features described above.The Global Hawk aircraft allowed an examination of the vortex response and axisymmetrization period in addition to the burst pulsing phase. A pronounced axisymmetric development of the vortex is observed following the pulsing phase that includes a sloped eyewall structure and formation of a clear, wide eye.

  10. Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer.

    Science.gov (United States)

    Shen, Hsien-Hua; Chung, Lung-Yuan; Yao, Da-Jeng

    2015-03-01

    Dielectric breakdown is a common problem in a digital microfluidic system, which limits its application in chemical or biomedical applications. We propose a new fabrication of an electrowetting-on-dielectric (EWOD) device using Si3N4 deposited by low-pressure chemical vapor deposition (LPCVD) as a dielectric layer. This material exhibits a greater relative permittivity, purity, uniformity, and biocompatibility than polymeric films. These properties also increase the breakdown voltage of a dielectric layer and increase the stability of an EWOD system when applied in biomedical research. Medium droplets with mouse embryos were manipulated in this manner. The electrical properties of the Si3N4 dielectric layer-breakdown voltage, refractive index, relative permittivity, and variation of contact angle with input voltage-were investigated and compared with a traditional Si3N4 dielectric layer deposited as a plasma-enhanced chemical vapor deposition to confirm the potential of LPCVD Si3N4 applied as the dielectric layer of an EWOD digital microfluidic system.

  11. Lithium-ions diffusion kinetic in LiFePO4/carbon nanoparticles synthesized by microwave plasma chemical vapor deposition for lithium-ion batteries

    Science.gov (United States)

    Gao, Chao; Zhou, Jian; Liu, Guizhen; Wang, Lin

    2018-03-01

    Olivine structure LiFePO4/carbon nanoparticles are synthesized successfully using a microwave plasma chemical vapor deposition (MPCVD) method. Microwave is an effective method to synthesize nanomaterials, the LiFePO4/carbon nanoparticles with high crystallinity can shorten diffusion routes for ionic transfer and electron tunneling. Meanwhile, a high quality, complete and homogenous carbon layer with appropriate thickness coating on the surface of LiFePO4 particles during in situ chemical vapor deposition process, which can ensure that electrons are able to transfer fast enough from all sides. Electrochemical impedance spectroscopy (EIS) is carried out to collect information about the kinetic behavior of lithium diffusion in LiFePO4/carbon nanoparticles during the charging and discharging processes. The chemical diffusion coefficients of lithium ions, DLi, are calculated in the range of 10-15-10-9 cm2s-1. Nanoscale LiFePO4/carbon particles show the longer regions of the faster solid-solution diffusion, and corresponding to the narrower region of the slower two-phase diffusion during the insertion/exaction of lithium ions. The CV and galvanostatic charge-discharge measurements show that the LiFePO4/carbon nanoparticles perform an excellent electrochemical performance, especially the high rate capacity and cycle life.

  12. Large-Area Chemical Vapor Deposited MoS2 with Transparent Conducting Oxide Contacts toward Fully Transparent 2D Electronics

    KAUST Repository

    Dai, Zhenyu

    2017-09-08

    2D semiconductors are poised to revolutionize the future of electronics and photonics, much like transparent oxide conductors and semiconductors have revolutionized the display industry. Herein, these two types of materials are combined to realize fully transparent 2D electronic devices and circuits. Specifically, a large-area chemical vapor deposition process is developed to grow monolayer MoS2 continuous films, which are, for the first time, combined with transparent conducting oxide (TCO) contacts. Transparent conducting aluminum doped zinc oxide contacts are deposited by atomic layer deposition, with composition tuning to achieve optimal conductivity and band-offsets with MoS2. The optimized process gives fully transparent TCO/MoS2 2D electronics with average visible-range transmittance of 85%. The transistors show high mobility (4.2 cm2 V−1 s−1), fast switching speed (0.114 V dec−1), very low threshold voltage (0.69 V), and large switching ratio (4 × 108). To our knowledge, these are the lowest threshold voltage and subthreshold swing values reported for monolayer chemical vapor deposition MoS2 transistors. The transparent inverters show fast switching properties with a gain of 155 at a supply voltage of 10 V. The results demonstrate that transparent conducting oxides can be used as contact materials for 2D semiconductors, which opens new possibilities in 2D electronic and photonic applications.

  13. Improving the dielectric properties of an electrowetting-on-dielectric microfluidic device with a low-pressure chemical vapor deposited Si3N4 dielectric layer

    Science.gov (United States)

    Shen, Hsien-Hua; Chung, Lung-Yuan

    2015-01-01

    Dielectric breakdown is a common problem in a digital microfluidic system, which limits its application in chemical or biomedical applications. We propose a new fabrication of an electrowetting-on-dielectric (EWOD) device using Si3N4 deposited by low-pressure chemical vapor deposition (LPCVD) as a dielectric layer. This material exhibits a greater relative permittivity, purity, uniformity, and biocompatibility than polymeric films. These properties also increase the breakdown voltage of a dielectric layer and increase the stability of an EWOD system when applied in biomedical research. Medium droplets with mouse embryos were manipulated in this manner. The electrical properties of the Si3N4 dielectric layer—breakdown voltage, refractive index, relative permittivity, and variation of contact angle with input voltage—were investigated and compared with a traditional Si3N4 dielectric layer deposited as a plasma-enhanced chemical vapor deposition to confirm the potential of LPCVD Si3N4 applied as the dielectric layer of an EWOD digital microfluidic system. PMID:25825614

  14. Qualification of a sublimation tool applied to the case of metalorganic chemical vapor deposition of In₂O₃ from In(tmhd)₃ as a solid precursor.

    Science.gov (United States)

    Szkutnik, P D; Angélidès, L; Todorova, V; Jiménez, C

    2016-02-01

    A solid delivery system consisting of a source canister, a gas management, and temperature controlled enclosure designed and manufactured by Air Liquide Electronics Systems was tested in the context of gas-phase delivery of the In(tmhd)3 solid precursor. The precursor stream was delivered to a thermal metalorganic chemical vapor deposition reactor to quantify deposition yield under various conditions of carrier gas flow and sublimation temperature. The data collected allowed the determination of characteristic parameters such as the maximum precursor flow rate (18.2 mg min(-1) in specified conditions) and the critical mass (defined as the minimum amount of precursor able to attain the maximum flow rate) found to be about 2.4 g, as well as an understanding of the influence of powder distribution inside the canister. Furthermore, this qualification enabled the determination of optimal delivery conditions which allowed for stable and reproducible precursor flow rates over long deposition times (equivalent to more than 47 h of experiment). The resulting In2O3 layers was compared with those elaborated via pulsed liquid injection obtained in the same chemical vapor deposition chamber and under the same deposition conditions.

  15. Qualification of a sublimation tool applied to the case of metalorganic chemical vapor deposition of In2O3 from In(tmhd)3 as a solid precursor

    Science.gov (United States)

    Szkutnik, P. D.; Angélidès, L.; Todorova, V.; Jiménez, C.

    2016-02-01

    A solid delivery system consisting of a source canister, a gas management, and temperature controlled enclosure designed and manufactured by Air Liquide Electronics Systems was tested in the context of gas-phase delivery of the In(tmhd)3 solid precursor. The precursor stream was delivered to a thermal metalorganic chemical vapor deposition reactor to quantify deposition yield under various conditions of carrier gas flow and sublimation temperature. The data collected allowed the determination of characteristic parameters such as the maximum precursor flow rate (18.2 mg min-1 in specified conditions) and the critical mass (defined as the minimum amount of precursor able to attain the maximum flow rate) found to be about 2.4 g, as well as an understanding of the influence of powder distribution inside the canister. Furthermore, this qualification enabled the determination of optimal delivery conditions which allowed for stable and reproducible precursor flow rates over long deposition times (equivalent to more than 47 h of experiment). The resulting In2O3 layers was compared with those elaborated via pulsed liquid injection obtained in the same chemical vapor deposition chamber and under the same deposition conditions.

  16. Two step growth of high quality long n-GaN:Si nanowires using μ-GaN seed on Si(111) by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Hee; Park, Ji-Hyeon; Yoo, Hee-il [Semiconductor Materials and Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kissinger, Suthan [Department of General Studies, Physics Group, Jubail University College, Royal Commission for Jubail, Jubail 10074 (Saudi Arabia); Kim, Jin Soo; Baek, Byung June [Semiconductor Materials and Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr [Semiconductor Materials and Process Laboratory, School of Advanced Materials Engineering, Research Center for Advanced Materials Development (RCAMD), Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2013-12-02

    A two-step growth method for growing high quality long n-GaN:Si nanowires (NWs) on Si(111) substrates using metalorganic chemical vapor deposition (MOCVD) was developed. In the primary step μ-GaN seeds were grown at 710 °C by pulsed growth method using MOCVD and in the secondary stage, we suitably increased the growth temperature to 950 °C in order to grow the high quality long n-GaN:Si NWs by continuous flow mode. We grew n-GaN:Si NWs at various pairs of μ-GaN seed so as to examine its effect on the growth rate. The density and length of n-GaN:Si NWs were improved with the increase of seeds up to 10 pairs. The number of seed pairs determines the density and length of n-GaN:Si NWs, but they did not affect its diameter directly. Field emission scanning electron microscopy, X-ray diffraction, photoluminescence, cathodoluminescence and high-resolution transmission electron microscopy were used to characterize the specimens. - Highlights: • Long n-GaN:Si nanowires were grown on Si(111). • Metalorganic chemical vapor deposition with two-step process was used. • Initially, μ-GaN seeds were grown at low temperature by pulsed growth method. • The temperature was increased to grow the long nanowires by continuous flow mode. • The effect of μ-GaN seed on the growth rate was examined.

  17. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  18. Satellite Sensornet Gateway Technology Infusion Through Rapid Deployments for Environmental Sensing

    Science.gov (United States)

    Benzel, T.; Silva, F.; Deschon, A.; Ye, W.; Cho, Y.

    2008-12-01

    The Satellite Sensornet Gateway (SSG) is an ongoing ESTO Advanced Information Systems Technology project, at the University of Southern California. The major goal of SSG is to develop a turnkey solution for building environmental observation systems based on sensor networks. Our system has been developed through an iterative series of deployment-driven design, build, test, and revise which maximizes technology infusion to the earth scientist. We have designed a robust and flexible sensor network called Sensor Processing and Acquisition Network (SPAN). Our SPAN architecture emphasizes a modular and extensible design, such that core building blocks can be reused to develop different scientific observation systems. To support rapid deployment at remote locations, we employ satellite communications as the backhaul to relay in-situ sensor data to a central database. To easily support various science applications, we have developed a unified sensor integration framework that allows streamlined integration of different sensors to the system. Our system supports heterogeneous sets of sensors, from industry-grade products to research- specific prototypes. To ensure robust operation in harsh environments, we have developed mechanisms to monitor system status and recover from potential failures along with additional remote configuration and QA/QC functions. Here we briefly describe the deployments, the key science missions of the deployments and the role that the SSG technology played in each mission. We first deployed our SSG technology at the James Reserve in February 2007. In a joint deployment with the NEON project, SDSC, and UC Riverside, we set up a meteorological station, using a diverse set of sensors, with the objective of validating our basic technology components in the field. This system is still operational and streaming live sensor data. At Stunt Ranch, a UC Reserve near Malibu, CA, we partnered with UCLA biologist Phillip Rundel in order to study the drought

  19. Unusual microporous polycatenane-like metal-organic frameworks for the luminescent sensing of Ln3+ cations and rapid adsorption of iodine.

    Science.gov (United States)

    Chen, Lei; Tan, Ke; Lan, Ya-Qian; Li, Shun-Li; Shao, Kui-Zhan; Su, Zhong-Min

    2012-06-14

    Two isostructural 2D → 2D parallel → 3D inclined interpenetrating polycatenane-like metal-organic frameworks were successfully constructed based on length-adjusted tricarboxylate ligands. With the merit of being microporous, IFMC-10 can serve as host for encapsulating lanthanide cations and I(2) to exhibit luminescent sensing and rapid adsorption of iodine.

  20. Effects of rapid urban sprawl on urban forest carbon stocks: integrating remotely sensed, GIS and forest inventory data.

    Science.gov (United States)

    Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong

    2012-12-30

    Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The Impacts of Rapid Urbanization on the Thermal Environment: A Remote Sensing Study of Guangzhou, South China

    Directory of Open Access Journals (Sweden)

    Cuiping Wang

    2012-07-01

    Full Text Available The effect of urbanization on the urban thermal environment (UTE has attracted increasing research attention for its significant relationship to local climatic change and habitat comfort. Using quantitative thermal remote sensing and spatial statistics methods, here we analyze four Landsat TM/ETM+ images of Guangzhou in South China acquired respectively on 13 October 1990, 2 January 2000, 23 November 2005, and 2 January 2009, to investigate the spatiotemporal variations in the land surface temperature (LST over five land use/land cover (LULC types and over different urban/rural zones. The emphases of this study are placed on the urban heat island (UHI intensity and the relationships among LST, the normalized difference built-up index (NDBI, and the normalized difference vegetation index (NDVI. Results show that: (1 the UHI effect existed obviously over the period from 1990 to 2009 and high temperature anomalies were closely associated with built-up land and densely populated and heavily industrialized districts; (2 the UHI intensities represented by the mean LST difference between the urban downtown area and the suburban area were on average 0.88, 0.49, 0.90 and 1.16 K on the four dates, at the 99.99% confidence level; and (3 LST is related positively with NDBI and negatively with NDVI. The spatiotemporal variation of UTE of Guangzhou could be attributed to rapid urbanization, especially to the expanding built-up and developing land, declining vegetation coverage, and strengthening of anthropogenic and industrial activities which generate increasing amounts of waste heat. This study provides useful information for understanding the local climatic and environment changes that occur during rapid urbanization.

  2. Use of the Thermal Chemical Vapor Deposition to Fabricate Light-Emitting Diodes Based on ZnO Nanowire/p-GaN Heterojunction

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2011-01-01

    Full Text Available The fabrication and characteristics of grown ZnO nanowire/p-GaN heterojunction light-emitting diodes are reported. Vertically aligned ZnO nanowire arrays were grown on a p-GaN substrate by thermal chemical vapor deposition in quartz tube. The rectifying current-voltage characteristics indicate that a p-n junction was formed with a heterostructure of n-ZnO nanowire/p-GaN. The room temperature electroluminescent emission peak at 425 nm was attributed to the band offset at the interface between the n-ZnO nanowire and p-GaN and to defect-related emission from GaN; it was also found that the there exist the yellow band in the hetrojunction. It would be attributed to the deep defect level in the heterojunction.

  3. Axial heterostructure of Au-catalyzed InGaAs/GaAs nanowires grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Yuan, Huibo; Li, Lin; Li, Zaijin; Wang, Yong; Qu, Yi; Ma, Xiaohui; Liu, Guojun

    2018-01-01

    Nanowires (NWs) of GaAs and InGaAs/GaAs axial heterostructure are fabricated by metal-organic chemical vapor deposition (MOCVD) following the vapor-liquid-solid (VLS) mechanism. Thin film of Au is coated to generate catalytic droplets and the impact of film thickness on distribution of catalytic droplets is studied. With growth temperature varying, different geometries of GaAs NWs are observed and an assumption has been proposed to explain the phenomenon. InGaAs/GaAs NWs with axial heterostructures are synthesized. Most of InGaAs/GaAs NWs are perpendicular to substrates with cylindrical morphology and distinct heterostructure interface. Energy Dispersive X-ray Spectroscopy (EDX) line-scan's been applied to investigate the concentration changes of nanowires, indicating pure axial heterostructures without radial growth.

  4. Ga N nano wires and nano tubes growth by chemical vapor deposition method at different NH{sub 3} flow rate

    Energy Technology Data Exchange (ETDEWEB)

    Li, P.; Liu, Y.; Meng, X. [Wuhan University, School of Physics and Technology, Key Laboratory of Artificial Micro and Nanostructures of Ministry of Education, Wuhan 430072 (China)

    2016-11-01

    Ga N nano wires and nano tubes have been successfully synthesized via the simple chemical vapor deposition method. NH{sub 3} flow rate was found to be a crucial factor in the synthesis of different type of Ga N which affects the shape and the diameter of generated Ga N nano structures. X-ray diffraction confirms that Ga N nano wires grown on Si(111) substrate under 900 degrees Celsius and with NH{sub 3} flow rate of 50 sc cm presents the preferred orientation growth in the (002) direction. It is beneficial to the growth of nano structure through catalyst annealing. Transmission electron microscopy and scanning electron microscopy were used to measure the size and structures of the samples. (Author)

  5. Characterization of N-polar AlN in GaN/AlN/(Al,Ga)N heterostructures grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Li, Haoran; Mazumder, Baishakhi; Bonef, Bastien; Keller, Stacia; Wienecke, Steven; Speck, James S.; Denbaars, Steven P.; Mishra, Umesh K.

    2017-11-01

    In GaN/(Al,Ga)N high-electron-mobility transistors (HEMT), AlN interlayer between GaN channel and AlGaN barrier suppresses alloy scattering and significantly improves the electron mobility of the two-dimensional electron gas. While high concentrations of gallium were previously observed in Al-polar AlN interlayers grown by metal-organic chemical vapor deposition, the N-polar AlN (Al x Ga1-x N) films examined by atom probe tomography in this study exhibited aluminum compositions (x) equal to or higher than 95% over a wide range of growth conditions. The also investigated AlN interlayer in a N-polar GaN/AlN/AlGaN/ S.I. GaN HEMT structure possessed a similarly high x content.

  6. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kappera, Rajesh; Voiry, Damien; Jen, Wesley; Acerce, Muharrem; Torrel, Sol; Chhowalla, Manish, E-mail: manish1@rci.rutgers.edu [Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, New Jersey 08854 (United States); Yalcin, Sibel Ebru; Branch, Brittany; Gupta, Gautam; Mohite, Aditya D. [MPA-11 Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Lei, Sidong; Chen, Weibing; Najmaei, Sina; Lou, Jun; Ajayan, Pulickel M. [Mechanical Engineering and Materials Science Department, Rice University, Houston, Texas 77005 (United States)

    2014-09-01

    Two dimensional transition metal dichalcogenides (2D TMDs) offer promise as opto-electronic materials due to their direct band gap and reasonably good mobility values. However, most metals form high resistance contacts on semiconducting TMDs such as MoS{sub 2}. The large contact resistance limits the performance of devices. Unlike bulk materials, low contact resistance cannot be stably achieved in 2D materials by doping. Here we build on our previous work in which we demonstrated that it is possible to achieve low contact resistance electrodes by phase transformation. We show that similar to the previously demonstrated mechanically exfoliated samples, it is possible to decrease the contact resistance and enhance the FET performance by locally inducing and patterning the metallic 1T phase of MoS{sub 2} on chemically vapor deposited material. The device properties are substantially improved with 1T phase source/drain electrodes.

  7. Photovoltaic conversion of visible spectrum by GaP capped InP quantum dots grown on Si (100) by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Nripendra N. [Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Biswas, Pranab; Banerji, P., E-mail: pallab@matsc.iitkgp.ernet.in; Nagabhushan, B.; Sarkar, Krishnendu; Chowdhury, Sisir; Chaudhuri, Arunava [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Kundu, Souvik [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-01-05

    Growth of GaP capped strained InP quantum dots was carried out by metal organic chemical vapor deposition technique on Si (100) substrates to explore an alternative material system for photovoltaic conversion. Studies on reflectance spectroscopy show higher absorption of visible photons compared to scattering. Smooth and defect free interface provides low dark current with high rectification ratio. A solar cell made of five periods of quantum dots is found to provide a conversion efficiency of 4.18% with an open circuit voltage and short circuit current density of 0.52 V and 13.64 mA/cm{sup 2}, respectively, under AM 1.5 solar radiation.

  8. Resolving the nanostructure of plasma-enhanced chemical vapor deposited nanocrystalline SiO{sub x} layers for application in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Klingsporn, M.; Costina, I. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Kirner, S.; Stannowski, B. [PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie, Schwarzschildstr. 3, 12489 Berlin (Germany); Villringer, C. [Technische Hochschule Wildau, Hochschulring 1, 15745 Wildau (Germany); Abou-Ras, D. [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 15109 Berlin (Germany); Lehmann, M. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany)

    2016-06-14

    Nanocrystalline silicon suboxides (nc-SiO{sub x}) have attracted attention during the past years for the use in thin-film silicon solar cells. We investigated the relationships between the nanostructure as well as the chemical, electrical, and optical properties of phosphorous, doped, nc-SiO{sub 0.8}:H fabricated by plasma-enhanced chemical vapor deposition. The nanostructure was varied through the sample series by changing the deposition pressure from 533 to 1067 Pa. The samples were then characterized by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, Raman spectroscopy, aberration-corrected high-resolution transmission electron microscopy, selected-area electron diffraction, and a specialized plasmon imaging method. We found that the material changed with increasing pressure from predominantly amorphous silicon monoxide to silicon dioxide containing nanocrystalline silicon. The nanostructure changed from amorphous silicon filaments to nanocrystalline silicon filaments, which were found to cause anisotropic electron transport.

  9. Synthesis and characterization of silicon carbonitride films by plasma enhanced chemical vapor deposition (PECVD) using bis(dimethylamino)dimethylsilane (BDMADMS), as membrane for a small molecule gas separation

    Science.gov (United States)

    Kafrouni, W.; Rouessac, V.; Julbe, A.; Durand, J.

    2010-12-01

    Silicon carbonitride thin films have been deposited by plasma enhanced chemical vapor deposition (PECVD) from bis(dimethylamino)dimethylsilane (BDMADMS) as a function of X = (BDMADMS/(BDMADMS + NH 3)) between 0.1 and 1, and plasma power P (W) between 100 and 400 W. The microstructure of obtained materials has been studied by SEM, FTIR, EDS, ellipsometrie, and contact angle of water measurements. The structure of the materials is strongly depended on plasma parameters; we can pass from a material rich in carbon to a material rich in nitrogen. Single gas permeation tests have been carried out and we have obtained a helium permeance of about 10 -7 mol m -2 s -1 Pa -1 and ideal selectivity of helium over nitrogen of about 20.

  10. Study of structural and electronic environments of hydrogenated amorphous silicon carbonitride (a-SiCN:H) films deposited by hot wire chemical vapor deposition

    Science.gov (United States)

    Swain, Bibhu P.; Hwang, Nong M.

    2008-06-01

    Hydrogenated amorphous silicon carbon nitride (a-SiCN:H) thin films were deposited by hot wire chemical vapor deposition (HWCVD) using SiH 4, CH 4, NH 3 and H 2 as precursors. The effects of the H 2 dilution on structural and chemical bonding of a-SiCN:H has been investigated by Raman and X-ray photoelectron spectroscopy (XPS). Increasing the H 2 flow rate in the precursor gas more carbon is introduced into the a-SiCN:H network resulting in decrease of silicon content in the film from 41 at.% to 28.8 at.% and sp 2 carbon cluster increases when H 2 flow rate is increased from 0 to 20 sccm.

  11. Study of structural and electronic environments of hydrogenated amorphous silicon carbonitride (a-SiCN:H) films deposited by hot wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Bibhu P. [National Research Laboratory of Charged Nanoparticles, School of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)], E-mail: swain@snu.ac.kr; Hwang, Nong M. [National Research Laboratory of Charged Nanoparticles, School of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2008-06-30

    Hydrogenated amorphous silicon carbon nitride (a-SiCN:H) thin films were deposited by hot wire chemical vapor deposition (HWCVD) using SiH{sub 4}, CH{sub 4}, NH{sub 3} and H{sub 2} as precursors. The effects of the H{sub 2} dilution on structural and chemical bonding of a-SiCN:H has been investigated by Raman and X-ray photoelectron spectroscopy (XPS). Increasing the H{sub 2} flow rate in the precursor gas more carbon is introduced into the a-SiCN:H network resulting in decrease of silicon content in the film from 41 at.% to 28.8 at.% and sp{sup 2} carbon cluster increases when H{sub 2} flow rate is increased from 0 to 20 sccm.

  12. The relationship between structural evolution and electrical percolation of the initial stages of tungsten chemical vapor deposition on polycrystalline TiN

    Energy Technology Data Exchange (ETDEWEB)

    Rozenblat, A. [Micron Semiconductors Israel Ltd., Qiryat-Gat 82109 (Israel); Department of Physical Electronics, Electrical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Haimson, S. [Material Science Program, Tel Aviv University, Tel Aviv 69978 (Israel); Shacham-Diamand, Y. [Department of Physical Electronics, Electrical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Horvitz, D. [Micron Semiconductors Israel Ltd., Qiryat-Gat 82109 (Israel)

    2012-01-16

    This paper presents experimental results and a geometric model of the evolution of sheet resistance and surface morphology during the transition from nucleation to percolation of tungsten chemical vapor deposition over ultrathin polycrystalline titanium nitride (TiN). We observed two mechanisms of reduction in sheet resistance. At deposition temperatures higher than 310 deg. C, percolation effect is formed at {approx}35% of surface coverage, {theta}, and characterized with a sharp drop in resistance. At temperature below 310 deg. C, a reduction in resistance occurs in two steps. The first step occurs when {theta} = 35% and the second step at {theta} = 85%. We suggest a geometric model in which the electrical percolation pass is modulated by the thickness threshold of the islands at the instant of collision.

  13. Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2009-01-01

    Full Text Available Abstract Well-aligned and suspended polyvinyl pyrrolidone (PVP nanofibers with 8 mm in length were obtained by electrospinning. Using the aligned suspended PVP nanofibers array as template, aligned ultra-long silicon oxide (SiOx nanotubes with very high aspect ratios have been prepared by plasma-enhanced chemical vapor deposition (PECVD process. The inner diameter (20–200 nm and wall thickness (12–90 nm of tubes were controlled, respectively, by baking the electrospun nanofibers and by coating time without sacrificing the orientation degree and the length of arrays. The micro-PL spectrum of SiOx nanotubes shows a strong blue–green emission with a peak at about 514 nm accompanied by two shoulders around 415 and 624 nm. The blue–green emission is caused by the defects in the nanotubes.

  14. Microwave plasma enhanced chemical vapor deposition growth of few-walled carbon nanotubes using catalyst derived from an iron-containing block copolymer precursor.

    Science.gov (United States)

    Wang, Peng; Lu, Jennifer; Zhou, Otto

    2008-05-07

    The microwave plasma enhanced chemical vapor deposition (MPECVD) method is now commonly used for directional and conformal growth of carbon nanotubes (CNTs) on supporting substrates. One of the shortcomings of the current process is the lack of control of the diameter and diameter distribution of the CNTs due to difficulties in synthesizing well-dispersed catalysts. Recently, block copolymer derived catalysts have been developed which offer the potential of fine control of both the size of and the spacing between the metal clusters. In this paper we report the successful growth of CNTs with narrow diameter distribution using polystyrene-block-polyferrocenylethylmethylsilane (PS-b-PFEMS) as the catalyst precursor. The study shows that higher growth pressure leads to better CNT growth. Besides the pressure, the effects on the growth of CNTs of the growth parameters, such as temperature and precursor gas ratio, are also studied.

  15. Ni nanoparticles prepared by simple chemical method for the synthesis of Ni/NiO-multi-layered graphene by chemical vapor deposition

    Science.gov (United States)

    Ali, Mokhtar; Remalli, Nagarjuna; Gedela, Venkataramana; Padya, Balaji; Jain, Pawan Kumar; Al-Fatesh, Ahmed; Rana, Usman Ali; Srikanth, Vadali V. S. S.

    2017-02-01

    A new chemical method was used to obtain a high yield of nickel nanoparticles (Ni-NPs). The effect of solvent (distilled water, ethylene glycol, and ethanol) and surfactant (oleic acid and polyvinyl pyrrolidinone) on the morphology and crystallinity of the synthesized Ni-NPs has been investigated. The experimental results revealed that among the solvents mentioned above, ethanol gives the best results in terms of complete reduction, controlled morphology and size distribution of Ni-NPs. The surfactants played an important role in impeding the agglomeration and surface oxidation of Ni-NPs. The surfactants also affected the morphology of the Ni-NPs. The synthesized Ni-NPs are found to be quite stable in air. The best of the synthesized Ni-NPs were effectively used as catalysts for the synthesis of Ni/NiO-multi-layered graphene using catalytic chemical vapor deposition technique.

  16. Structural and electronic properties of InN epitaxial layer grown on c-plane sapphire by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Barick, Barun Kumar, E-mail: bkbarick@gmail.com; Prasad, Nivedita; Saroj, Rajendra Kumar; Dhar, Subhabrata [Department of Physics, Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2016-09-15

    Growth of InN epilayers on c-plane sapphire substrate by chemical vapor deposition technique using pure indium metal and ammonia as precursors has been systematically explored. It has been found that [0001] oriented indium nitride epitaxial layers with smooth surface morphology can be grown on c-plane sapphire substrates by optimizing the growth conditions. Bandgap of the film is observed to be Burstein–Moss shifted likely to be due to high background electron concentration. It has been found that the concentration of this unintentional doping decreases with the increase in the growth temperature and the ammonia flux. Epitaxial quality on the other hand deteriorates as the growth temperature increases. Moreover, the morphology of the deposited layer has been found to change from flat top islands to faceted mounds as the flow rate of ammonia increases. This phenomenon is expected to be related to the difference in surface termination character at low and high ammonia flow rates.

  17. Microwave Plasma Chemical Vapor Deposition of Nano-Structured Sn/C Composite Thin-Film Anodes for Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Stevenson, Cynthia; Marcinek, M.; Hardwick, L.J.; Richardson, T.J.; Song, X.; Kostecki, R.

    2008-02-01

    In this paper we report results of a novel synthesis method of thin-film composite Sn/C anodes for lithium batteries. Thin layers of graphitic carbon decorated with uniformly distributed Sn nanoparticles were synthesized from a solid organic precursor Sn(IV) tert-butoxide by a one step microwave plasma chemical vapor deposition (MPCVD). The thin-film Sn/C electrodes were electrochemically tested in lithium half cells and produced a reversible capacity of 440 and 297 mAhg{sup -1} at C/25 and 5C discharge rates, respectively. A long term cycling of the Sn/C nanocomposite anodes showed 40% capacity loss after 500 cycles at 1C rate.

  18. Epitaxial ZnO Thin Films on a-Plane Sapphire Substrates Grown by Ultrasonic Spray-Assisted Mist Chemical Vapor Deposition

    Science.gov (United States)

    Nishinaka, Hiroyuki; Kamada, Yudai; Kameyama, Naoki; Fujita, Shizuo

    2009-12-01

    High-quality epitaxial ZnO thin films were grown by an ultrasonic spray-assisted mist chemical vapor deposition (CVD) on a-plane sapphire substrates with ZnO buffer layers. The ZnO thin films were grown with c-axis orientation without notable rotational domains. Surface morphologies and electrical properties were markedly improved as an effect of the ZnO buffer layers. The mobility in the ZnO epitaxial (main) layer was estimated to be 90 cm2/(V·s), which is reasonably high compared with those in ZnO layers grown by CVD processes. Photoluminescence at a low temperature (4.5 K) revealed a free A-exiton peak, and that at room temperature showed a strong band-edge peak with little deep-level luminescence.

  19. Comparative mechanical evaluation of two 2,5D C/SiC composites processed via chemical vapor infiltration and powder infiltration/polymer injection routes

    Energy Technology Data Exchange (ETDEWEB)

    Sudre, O.; Parlier, M. [ONERA, Chatillon (France); Bouillon, E. [SEP, Saint Medard-en-Jalles (France)

    1995-12-01

    Ceramic matrix composites were processed using two matrix infiltration techniques: chemical vapor infiltration (CVI) and powder infiltration/polymer injection. However, the two composites were elaborated from an identical fiber preform, and with a similar pyrocarbon interphase deposited onto the fibers by CVI. They reached comparable densification level and had an equivalent monotonic tensile behavior, although the CVI technique gave a higher modulus and a 10% higher tensile strength. The main differences were found in the details of the mechanical behavior (Young`s modulus evolution, residual strain and unloading-loading loops) and in some fatigue behaviors. These differences were related to the matrix modulus and microstructure. Merits of the resulting composites and the two techniques were discussed.

  20. Electrical characteristics of 25 nm Pr(ZrTi)O{sub 3} thin films grown on Si by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C. H. [Materials Research Laboratory, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Friddle, P. A. [Materials Research Laboratory, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lu, X. [Materials Research Laboratory, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Chen, Haydn [Materials Research Laboratory, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Kim, Young [Material Research Laboratory, Center for Microanalysis of Materials, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wu, T. B. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China (China)

    2000-08-15

    Pb(Zr{sub 0.5}Ti{sub 0.5})O{sub 3} thin films 25 nm in thickness were grown on LaNiO{sub 3}/Pt/Ti buffered Si substrates at 600 degree sign C by metalorganic chemical vapor deposition. P-E studies showed a remanent polarization value of 8 {mu}C/cm{sup 2} with a coercive field of 200 kV/cm. In polarization fatigue studies, these films only showed slight degradation in remanent polarization up to 4x10{sup 8} cycles ({+-}3 V oscillation) before breakdown. Moreover, the effect of space charge on the C-V behavior of these films was illustrated I-V characteristics of these films were also described. (c) 2000 American Institute of Physics.

  1. Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.Q. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: robt@sjtu.edu.cn; Zhou, Z.B. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: zbzhou@sjtu.edu.cn; Chan, K.Y. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor (Malaysia); Tang, D.Y.; Cui, R.Q.; Dou, X.M. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2008-12-30

    Hydrogenated nanocrystalline silicon (nc-Si:H) grown by hot-wire chemical vapor deposition (HWCVD) has recently drawn significant attention in the area of thin-film large area optoelectronics due to possibility of high deposition rate. We report on the effects of diborane (B{sub 2}H{sub 6}) doping ratio on the microstructural and optoelectrical properties of the p-type nc-Si:H thin films grown by HWCVD at low substrate temperature of 200 deg. C and with high hydrogen dilution ratio of 98.8%. An attempt has been made to elucidate the boron doping mechanism of the p-type nc-Si:H thin films deposited by HWCVD and the correlation between the B{sub 2}H{sub 6} doping ratio, crystalline volume fraction, optical band gap and dark conductivity.

  2. Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.; Zhu, F. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Colorado 80401 (United States); Madan, A. [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Colorado 80401 (United States); MVSystems Inc, Golden Colorado 80401 (United States)

    2008-07-15

    Thin silicon intrinsic layers were deposited in the amorphous to nano-crystalline transition regime to investigate their structural and optoelectrical properties using the very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) technique. Optical emission spectroscopy (OES) was primarily used to monitor the plasma properties during the deposition. The ratio H{alpha}/Si{sup *}, estimated from OES spectra, is closely related to the microstructure of the films. With the increasing plasma power from 10 to 50 W, the ratio H{alpha}/Si{sup *} increases leading to nano-crystalline films. The ratio H{alpha}/Si{sup *} decreases with the increase of process gas pressure at constant power of 15 and 30 W. The films were nano-crystalline at low pressure and became amorphous at high pressure. (author)

  3. Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron-molybdenum alloy thin layer catalysts

    Science.gov (United States)

    Yahyazadeh, Arash; Khoshandam, Behnam

    In this study, we documented the catalytic chemical vapor deposition synthesis of carbon nanotubes (CNTs) using ferrocene and molybdenum hexacarbonyl as catalyst nanoparticle precursors and methane as a nontoxic and economical carbon source for the first time. Field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, wavelength dispersive X-ray spectrometry and transmission electron microscopy of the thin layer catalyst as a simple and cost effective catalyst preparation after methane decomposition reaction, along with Fourier transform infrared spectroscopy and Raman spectroscopy confirmed the growth of CNTs, from bimetallic nanoparticles, which are converted into iron-molybdenum alloy nanoparticles at 700 °C for pretreatment by hydrogen after chemical vapor deposition of thin layers. An investigation of the weight percentages of the chemical elements present in the CNTs synthesized from iron-molybdenum catalyst using quartz sheet substrate at 750 °C, confirmed a significant carbon yield of 75.4% which represents high catalyst activity. Additionally, multi-walled carbon nanotubes (∼16-55 nm in diameter and 1.2 μm in length) were observed in the iron-molybdenum alloy sample after methane decomposition reaction at 750 °C for 35 min. To show the role of iron and molybdenum coated on silicon substrate as two thin layer catalysts, samples were considered for CNTs growth (diameter ∼47-69 nm) at 800 °C and 830 °C, respectively. Moreover, the effect of hydrogen pretreatment was evaluated in terms of active metal coating properly. The best graphitic structure due to Raman spectroscopy outcomes (ID/IG ratio) was obtained for iron coated on a quartz sheet, which was estimated at 0.8505. Thermogravimetric analysis proved the thermal stability of the synthesized CNTs using iron thin-layer catalyst up to 350 °C.

  4. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector

    Science.gov (United States)

    Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh

    2018-01-01

    Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.

  5. Rapid formation of long Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub x} superconducting tape by chemical vapor deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Onabe, Kazunori; Doi, Toshiya; Kashima, Naoji; Nagaya, Shigeo; Saitoh, Takashi

    2003-10-15

    The six-stage CVD system, which equips an original vaporizer for a long time injection of liquid source and a six-stage reactor for a multi-formation of YBCO layers, was developed. Long YBCO tapes were prepared directly on roll milled non-textured Ag tapes at the tape-moving speeds of 5 and 10 m/h by using this CVD system. The uniformity of a 50 m-long YBCO tape was measured in detail, and it was found that this tape included a few regions with low superconducting property. The length of this low J{sub c} region was less than 10 cm, and it was considered that a human error and/or a system operation error became a cause of the non-uniformity of J{sub c} values. A 100 m-long YBCO tape was also prepared successfully at a tape-moving condition of 10 m/h x 12 h. J{sub c} of the tape through the total length determined at a criterion of 1 {mu}V/cm was 6.1 x l0{sup 4} A/cm{sup 2}, and N value estimated was 6-8.

  6. Rapid large- and site scale RPAS mission planning for remote sensing of rock falls and landslides in alpine areas

    Science.gov (United States)

    Gräupl, Thomas; Pschernig, Elias; Rokitansky, Carl-Herbert; Oleire-Oltmanns, Sebastian; Zobl, Fritz

    2014-05-01

    Since landslides and rock falls are complex phenomena involving a multitude of factors, current and historic surface data play besides geologic conditions and others an important role in analyzing hazard situation and efficient site-specific remediation actions. Especially in displacement acceleration phases which are frequently linked to bad weather conditions, data acquisition remains difficult. Therefore RPAS with their small ground sampling distance and correspondingly high resolution open up possibilities for surveying ground situations not only for visual inspection but also for geodetic data acquisition. Both, visual and geodetic data provide valuable information for geologists and related decision makers. Slides or rock falls in alpine areas pose special challenges due to mostly acute and unforeseen displacements on the one hand and geographic conditions of narrow valleys along with steep slopes on the other hand. Rapid RPAS mission planning and mission adaption for individual requirements according to different project stages (initial investigation, repeat measurements, identification of hazard zones for urgent remediation actions, etc.) is therefore of particular importance. Here we present a computer-simulation supported approach to RPAS mission planning taking the identified thematic and remote sensing targets, the relevant terrain and obstacle databases, legal restrictions, aircraft performance, sensor characteristics, and communication ranges into account in order to produce a safe and mission-optimized flight route. For the RPAS mission planning, we combine and adapt tools developed at University of Salzburg, namely a flight track generator taking into account a 3D-model of the earth surface with both, focus on large area coverage (e.g. Austria) and the highest available resolution (e.g. sub-meter for specific areas), available obstacle data bases for the mission area (e.g. cable car lines, power lines, buildings, slope stabilization constructions

  7. Towards improved characterization of northern wetlands (or other landscapes) by remote sensing - a rapid approach to collect ground truth data

    Science.gov (United States)

    Gålfalk, Magnus; Karlson, Martin; Crill, Patrick; Bastviken, David

    2017-04-01

    The calibration and validation of remote sensing land cover products is highly dependent on accurate ground truth data, which are costly and practically challenging to collect. This study evaluates a novel and efficient alternative to field surveys and UAV imaging commonly applied for this task. The method consists of i) a light weight, water proof, remote controlled RGB-camera mounted on an extendable monopod used for acquiring wide-field images of the ground from a height of 4.5 meters, and ii) a script for semi-automatic image classification. In the post-processing, the wide-field images are corrected for optical distortion and geometrically rectified so that the spatial resolution is the same over the surface area used for classification. The script distinguishes land surface components by color, brightness and spatial variability. The method was evaluated in wetland areas located around Abisko, northern Sweden. Proportional estimates of the six main surface components in the wetlands (wet and dry Sphagnum, shrub, grass, water, rock) were derived for 200 images, equivalent to 10 × 10 m field plots. These photo plots were then used as calibration data for a regional scale satellite based classification which separates the six wetland surface components using a Sentinel-1 time series. The method presented in this study is accurate, rapid, robust and cost efficient in comparison to field surveys (time consuming) and drone mapping (which require low wind speeds and no rain, suffer from battery limited flight times, have potential GPS/compass errors far north, and in some areas are prohibited by law).

  8. Selective Deposition of Multiple Sensing Materials on Si Nanobelt Devices through Plasma-Enhanced Chemical Vapor Deposition and Device-Localized Joule Heating.

    Science.gov (United States)

    Lin, Ru-Zheng; Cheng, Kuang-Yang; Pan, Fu-Ming; Sheu, Jeng-Tzong

    2017-11-22

    This paper describes a novel method, using device-localized Joule heating (JH) in a plasma enhanced atomic layer deposition (PEALD) system, for the selective deposition of platinum (Pt) and zinc oxide (ZnO) in the n- regions of n+/n-/n+ polysilicon nanobelts (SNBs). COMSOL simulations were adopted to estimate device temperature distribution. However, during ALD process, the resistance of SNB device decreased gradually and reached to minima after 20 min JH. As a result, thermal decomposition of precursors occurred during PEALD process. Selective deposition in the n- region was dominated by CVD instead of ALD. Selective deposition of Pt and ZnO films has been achieved and characterized using atomic force microscopy, scanning electron microscopy, and transmission electron microscopy.

  9. Glucose Evokes Rapid Ca2+ and Cyclic AMP Signals by Activating the Cell-Surface Glucose-Sensing Receptor in Pancreatic β-Cells

    Science.gov (United States)

    Nakagawa, Yuko; Nagasawa, Masahiro; Medina, Johan; Kojima, Itaru

    2015-01-01

    Glucose is a primary stimulator of insulin secretion in pancreatic β-cells. High concentration of glucose has been thought to exert its action solely through its metabolism. In this regard, we have recently reported that glucose also activates a cell-surface glucose-sensing receptor and facilitates its own metabolism. In the present study, we investigated whether glucose activates the glucose-sensing receptor and elicits receptor-mediated rapid actions. In MIN6 cells and isolated mouse β-cells, glucose induced triphasic changes in cytoplasmic Ca2+ concentration ([Ca2+]c); glucose evoked an immediate elevation of [Ca2+]c, which was followed by a decrease in [Ca2+]c, and after a certain lag period it induced large oscillatory elevations of [Ca2+]c. Initial rapid peak and subsequent reduction of [Ca2+]c were independent of glucose metabolism and reproduced by a nonmetabolizable glucose analogue. These signals were also blocked by an inhibitor of T1R3, a subunit of the glucose-sensing receptor, and by deletion of the T1R3 gene. Besides Ca2+, glucose also induced an immediate and sustained elevation of intracellular cAMP ([cAMP]c). The elevation of [cAMP]c was blocked by transduction of the dominant-negative Gs, and deletion of the T1R3 gene. These results indicate that glucose induces rapid changes in [Ca2+]c and [cAMP]c by activating the cell-surface glucose-sensing receptor. Hence, glucose generates rapid intracellular signals by activating the cell-surface receptor. PMID:26630567

  10. Amino-Functionalized Luminescent Metal-Organic Framework Test Paper for Rapid and Selective Sensing of SO2Gas and Its Derivatives by Luminescence Turn-On Effect.

    Science.gov (United States)

    Wang, Meng; Guo, Lin; Cao, Dapeng

    2018-02-14

    Rapid and selective sensing of sulfur dioxide (SO 2 ) gas has attracted more and more attention because SO 2 not only causes environmental pollution but also severely affects the health of human beings. Here we report an amino-functionalized luminescent metal-organic framework (MOF) material (i.e., MOF-5-NH 2 ) and further investigate its sensing property for SO 2 gas and its derivatives as a luminescent probe. The results indicate that the MOF-5-NH 2 probe can selectively and sensitively sense SO 2 derivatives (i.e., SO 3 2- ) in real time by a luminescence turn-on effect with a lower detection limit of 0.168 ppm and a response time of less than 15 s. Importantly, the luminescence turn-on phenomenon can be observed by the naked eye. We also assembled MOF-5-NH 2 into a test paper to achieve the aim of portable detection, and the lower-limit concentration of the test paper for sensing SO 2 in real time was found to be about 0.05 ppm. Moreover, MOF-5-NH 2 also shows good anti-interference ability, strong luminescence stability, and reusability, which means that this material is an excellent sensing candidate. The amino functionalization may also provide a modification strategy to design luminescent sensors for other atmospheric pollutants.

  11. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Dan; Yan, Yurong; Lei, Pinhua; Shen, Bo [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); Cheng, Wei [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); The Center for Clinical Molecular Medical detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Ju, Huangxian [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China); State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ding, Shijia, E-mail: dingshijia@163.com [Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016 (China)

    2014-10-10

    A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. - Highlights: • This paper presented a novel sensing strategy for the rapid and ultrasensitive detection for Salmonella. • Combination of rolling circle amplification and DNA–AuNPs probe is the first time for Salmonella electrochemical detection. • The method displayed excellent sensitivity and specificity for detection of Salmonella. • The fabricated biosensor was successfully applied to detect Salmonella in milk samples. - Abstract: A novel electrochemical sensing strategy was developed for ultrasensitive and rapid detection of Salmonella by combining the rolling circle amplification with DNA–AuNPs probe. The target DNA could be specifically captured by probe 1 on the sensing interface. Then the circularization mixture was added to form a typical sandwich structure. In the presence of dNTPs and phi29 DNA polymerase, the RCA was initiated to produce micrometer-long single-strand DNA. Finally, the detection probe (DNA–AuNPs) could recognize RCA product to produce enzymatic electrochemical signal. Under optimal conditions, the calibration curve of synthetic target DNA had good linearity from 10 aM to 10 pM with a detection limit of 6.76 aM (S/N = 3). The developed method had been successfully applied to detect Salmonella as low as 6 CFU mL{sup −1} in real milk sample. This proposed strategy showed great potential for clinical diagnosis, food safety and environmental monitoring.

  12. Enhanced chemical vapor deposition of diamond by wavelength-matched vibrational excitations of ethylene molecules using tunable CO2 laser irradiation

    Science.gov (United States)

    Ling, H.; Xie, Z. Q.; Gao, Y.; Gebre, T.; Shen, X. K.; Lu, Y. F.

    2009-03-01

    Wavelength-matched vibrational excitations of ethylene (C2H4) molecules using a tunable carbon dioxide (CO2) laser were employed to significantly enhance the chemical vapor deposition (CVD) of diamond in open air using a precursor gas mixture of C2H4, acetylene (C2H2), and oxygen (O2). The CH2-wag vibration mode (ν7) of the C2H4 molecules was selected to achieve the resonant excitation in the CVD process. Both laser wavelengths of 10.591 and 10.532 μm were applied to the CVD processes to compare the C2H4 excitations and diamond depositions. Compared with 10.591 μm produced by common CO2 lasers, the laser wavelength of 10.532 μm is much more effective to excite the C2H4 molecules through the CH2-wag mode. Under the laser irradiation with a power of 800 W and a wavelength of 10.532 μm, the grain size in the deposited diamond films was increased by 400% and the film thickness was increased by 300%. The quality of the diamond crystals was also significantly enhanced.

  13. Self-Catalyzed Growth of Vertical GaSb Nanowires on InAs Stems by Metal-Organic Chemical Vapor Deposition

    Science.gov (United States)

    Ji, Xianghai; Yang, Xiaoguang; Yang, Tao

    2017-06-01

    We report the first self-catalyzed growth of high-quality GaSb nanowires on InAs stems using metal-organic chemical vapor deposition (MOCVD) on Si (111) substrates. To achieve the growth of vertical InAs/GaSb heterostructure nanowires, the two-step flow rates of the trimethylgallium (TMGa) and trimethylantimony (TMSb) are used. We first use relatively low TMGa and TMSb flow rates to preserve the Ga droplets on the thin InAs stems. Then, the flow rates of TMGa and TMSb are increased to enhance the axial growth rate. Because of the slower radial growth rate of GaSb at higher growth temperature, GaSb nanowires grown at 500 °C exhibit larger diameters than those grown at 520 °C. However, with respect to the axial growth, due to the Gibbs-Thomson effect and the reduction in the droplet supersaturation with increasing growth temperature, GaSb nanowires grown at 500 °C are longer than those grown at 520 °C. Detailed transmission electron microscopy (TEM) analyses reveal that the GaSb nanowires have a perfect zinc-blende (ZB) crystal structure. The growth method presented here may be suitable for other antimonide nanowire growth, and the axial InAs/GaSb heterostructure nanowires may have strong potential for use in the fabrication of novel nanowire-based devices and in the study of fundamental quantum physics.

  14. Amorphous silicon carbonitride diaphragm for environmental-cell transmission electron microscope fabricated by low-energy ion beam induced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Matsutani, Takaomi, E-mail: matutani@ele.kindai.ac.jp [Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502 (Japan); Yamasaki, Kayo [Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502 (Japan); Imaeda, Norihiro; Kawasaki, Tadahiro [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    An amorphous silicon carbonitride (a-SiCN) diaphragm for an environmental-cell transmission electron microscope (E-TEM) was fabricated by low-energy ion beam induced chemical vapor deposition (LEIBICVD) with hexamethyldisilazane (HMDSN). The films were prepared by using gaseous HMDSN and N{sub 2}{sup +} ions with energies ranging from 300 to 600 eV. The diaphragms were applied to Si (1 0 0) and a Cu grid with 100-μm-diameter holes. With increasing ion energy, these diaphragms became perfectly smooth surfaces (RMS = 0.43 nm at 600 eV), as confirmed by atomic force microscopy and TEM. The diaphragms were amorphous and transparent to 200 kV electrons, and no charge-up was observed. Fourier transform infrared spectra and X-ray photoelectron spectra revealed that the elimination of organic compounds and formation of Si–N and C–N bonds can be promoted in diaphragms by increasing the ion impact energy. The resistance to electron beams and reaction gases in the E-cell was improved when the diaphragm was formed with high ion energy.

  15. Effect of In incorporation parameters on the electroluminescence of blue-violet InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, D.G., E-mail: dgzhao@red.semi.ac.cn [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Jiang, D.S.; Le, L.C.; Wu, L.L.; Li, L. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhu, J.J.; Wang, H. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China); Liu, Z.S. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Zhang, S.M. [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China); Jia, Q.J. [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Yang Hui [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2012-11-05

    Highlights: Black-Right-Pointing-Pointer The interface roughness of InGaN/GaN MQWs are characterized by XRD. Black-Right-Pointing-Pointer Smooth interface is very important for the blue-violet InGaN/GaN MQWs. Black-Right-Pointing-Pointer EL of InGaN MQWs could be improved by controlling In incorporation parameters. - Abstract: The growth parameters which can modify In incorporation and affect electroluminescence (EL) properties of blue-violet InGaN/GaN multiple quantum wells (MQWs) during metalorganic chemical vapor deposition (MOCVD) are investigated. It is found that a suitable increase of trimethylindium (TMIn) flux during the growth of InGaN well can increase both EL intensity and EL peak wavelength. However, when the growth temperature of well decreases from 810 to 800 Degree-Sign C, the EL intensity decreases although the EL peak wavelength increases. X-ray diffraction results demonstrate that the interface roughness plays an important role in determining the EL intensity of InGaN/GaN MQWs. It is suggested to grow blue-violet MQWs with high structural quality by suitably increasing the TMIn flux and at a relatively high growth temperature.

  16. Structure, mechanical, and frictional properties of hydrogenated fullerene-like amorphous carbon film prepared by direct current plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yongfu [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, Kaixiong; Zhang, Junyan, E-mail: zhangjunyan@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-07-28

    In this study, fullerene like carbon (FL-C) is introduced in hydrogenated amorphous carbon (a-C:H) film by employing a direct current plasma enhanced chemical vapor deposition. The film has a low friction and wear, such as 0.011 and 2.3 × 10{sup −9}mm{sup 3}/N m in the N{sub 2}, and 0.014 and 8.4 × 10{sup −8}mm{sup 3}/N m in the humid air, and high hardness and elasticity (25.8 GPa and 83.1%), to make further engineering applications in practice. It has several nanometers ordered domains consisting of less frequently cross-linked graphitic sheet stacks. We provide new evidences for understanding the reported Raman fit model involving four vibrational frequencies from five, six, and seven C-atom rings of FL-C structures, and discuss the structure evolution before or after friction according to the change in the 1200 cm{sup −1} Raman band intensity caused by five- and seven-carbon rings. Friction inevitably facilitates the transformation of carbon into FL-C nanostructures, namely, the ultra low friction comes from both such structures within the carbon film and the sliding induced at friction interface.

  17. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Kyuseung Lee

    2016-04-01

    Full Text Available In this study, self-assembled inclined (1-10-3-oriented GaN nanorods (NRs were grown on nanoimprinted (10-10 m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ∼57.5° to the [10-10]sapp direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]sapp. Uni-directionally inclined NRs were formed through the one-sided (10-11-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclined angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3 GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.

  18. Optical and morphological properties of SiN{sub x}/Si amorphous multilayer structures grown by Plasma Enhanced Chemical Vapor Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Santana, G.; Melo, O. de; Monroy, B.M.; Fandino, J.; Ortiz, A.; Alonso, J.C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, A.P. 70-360, Coyoacan (Mexico); Aguilar-Hernandez, J.; Cruz, F.; Contreras-Puentes, G. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional; Edificio 9, U.P.A.L.M. (Mexico)

    2005-08-01

    Very thin layers of Si were grown in between silicon nitride layers using Plasma Enhanced Chemical Vapor Deposition (PECVD) technique and SiH{sub 2}Cl{sub 2}/H{sub 2}/NH{sub 3} mixtures. Deposition conditions were selected to favor Si cluster formation. Room Temperature Photoluminescence (RT-PL) and optical transmission in different ranges were used to evaluate the optical and structural properties of the films. Scanning Electron Microscopy (SEM) of the cross section of cleaved samples allowed to observe a clear pattern of Si clusters embedded in the SiN matrix. The UV-VIS absorption spectra present two band edges. We assume that the higher band gap is due to the amorphous Si clusters. RT-PL spectra are characterized by two broad bands: one centered at 1.5 eV and the other at 2.1 eV. The broad luminescence centered at 2.1 eV could be associated with the higher band gap observed in absorption spectrum. After vacuum annealing of the samples at 400 and ordm;C, the band at 2.1 eV disappears. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Effect of Two-Step Metal Organic Chemical Vapor Deposition Growth on Quality, Diameter and Density of InAs Nanowires on Si (111) Substrate

    Science.gov (United States)

    Yu, Hung Wei; Anandan, Deepak; Hsu, Ching Yi; Hung, Yu Chih; Su, Chun Jung; Wu, Chien Ting; Kakkerla, Ramesh Kumar; Ha, Minh Thien Huu; Huynh, Sa Hoang; Tu, Yung Yi; Chang, Edward Yi

    2017-10-01

    High-density (˜ 80/um2) vertical InAs nanowires (NWs) with small diameters (˜ 28 nm) were grown on bare Si (111) substrates by means of two-step metal organic chemical vapor deposition. There are two critical factors in the growth process: (1) a critical nucleation temperature for a specific In molar fraction (approximately 1.69 × 10-5 atm) is the key factor to reduce the size of the nuclei and hence the diameter of the InAs NWs, and (2) a critical V/III ratio during the 2nd step growth will greatly increase the density of the InAs NWs (from 45 μm-2 to 80 μm-2) and at the same time keep the diameter small. The high-resolution transmission electron microscopy and selected area diffraction patterns of InAs NWs grown on Si exhibit a Wurtzite structure and no stacking faults. The observed longitudinal optic peaks in the Raman spectra were explained in terms of the small surface charge region width due to the small NW diameter and the increase of the free electron concentration, which was consistent with the TCAD program simulation of small diameter (< 40 nm) InAs NWs.

  20. Analysis of Vegard’s law for lattice matching In x Al 1−x N to GaN by metalorganic chemical vapor deposition

    KAUST Repository

    Foronda, Humberto M.

    2017-06-19

    Coherent InxAl1−xN (x = 0.15 to x = 0.28) films were grown by metalorganic chemical vapor deposition on GaN templates to investigate if the films obey Vegard’s Law by comparing the film stress-thickness product from wafer curvature before and after InxAl1−xN deposition. The In composition and film thickness were verified using atom probe tomography and high resolution X-ray diffraction, respectively. Ex-situ curvature measurements were performed to analyze the curvature before and after the InxAl1−xN deposition. At ∼In0.18Al0.82N, no change in curvature was observed following InAlN deposition; confirming that films of this composition are latticed matched to GaN, obeying Vegard’s law. The relaxed a0- and c0- lattice parameters of InxAl1−xN were experimentally determined and in agreement with lattice parameters predicted by Vegard’s law.