WorldWideScience

Sample records for rapid cell division

  1. Prokaryotic cell division: flexible and diverse

    NARCIS (Netherlands)

    den Blaauwen, T.

    2013-01-01

    Gram-negative rod-shaped bacteria have different approaches to position the cell division initiating Z-ring at the correct moment in their cell division cycle. The subsequent maturation into a functional division machine occurs in vastly different species in two steps with appreciable time in

  2. Accelerated cell divisions drive the outgrowth of the regenerating spinal cord in axolotls

    National Research Council Canada - National Science Library

    Rost, Fabian; Rodrigo Albors, Aida; Mazurov, Vladimir; Brusch, Lutz; Deutsch, Andreas; Tanaka, Elly M; Chara, Osvaldo

    2016-01-01

    .... Previously, we showed that regenerating stem cells in the axolotl spinal cord revert to a molecular state resembling embryonic neuroepithelial cells and functionally acquire rapid proliferative divisions...

  3. Heparan sulfate and cell division

    Directory of Open Access Journals (Sweden)

    Porcionatto M.A.

    1999-01-01

    Full Text Available Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.

  4. The fencing problem and Coleochaete cell division.

    Science.gov (United States)

    Wang, Yuandi; Dou, Mingya; Zhou, Zhigang

    2015-03-01

    The findings in this study suggest that the solution of a boundary value problem for differential equation system can be used to discuss the fencing problem in mathematics and Coleochaete, a green algae, cell division. This differential equation model in parametric expression is used to simulate the two kinds of cell division process, one is for the usual case and the case with a "dead" daughter cell.

  5. Cell Division and Evolution of Biological Tissues

    Science.gov (United States)

    Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun

    A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter

  6. Control of apoptosis by asymmetric cell division.

    Science.gov (United States)

    Hatzold, Julia; Conradt, Barbara

    2008-04-08

    Asymmetric cell division and apoptosis (programmed cell death) are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  7. Control of apoptosis by asymmetric cell division.

    Directory of Open Access Journals (Sweden)

    Julia Hatzold

    2008-04-01

    Full Text Available Asymmetric cell division and apoptosis (programmed cell death are two fundamental processes that are important for the development and function of multicellular organisms. We have found that the processes of asymmetric cell division and apoptosis can be functionally linked. Specifically, we show that asymmetric cell division in the nematode Caenorhabditis elegans is mediated by a pathway involving three genes, dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail, that directly control the enzymatic machinery responsible for apoptosis. Interestingly, the MIDA1-like protein GlsA of the alga Volvox carteri, as well as the Snail-related proteins Snail, Escargot, and Worniu of Drosophila melanogaster, have previously been implicated in asymmetric cell division. Therefore, C. elegans dnj-11 MIDA1, ces-2 HLF, and ces-1 Snail may be components of a pathway involved in asymmetric cell division that is conserved throughout the plant and animal kingdoms. Furthermore, based on our results, we propose that this pathway directly controls the apoptotic fate in C. elegans, and possibly other animals as well.

  8. An electrostatic model for biological cell division

    CERN Document Server

    Faraggi, Eshel

    2010-01-01

    Probably the most fundamental processes for biological systems is their ability to create themselves through the use of cell division and cell differentiation. In this work a simple physical model is proposed for biological cell division. The model consists of a positive ionic gradient across the cell membrane, and concentration of charge at the nodes of the spindle and on the chromosomes. A simple calculation, based on Coulomb's Law, shows that under such circumstances a chromosome will tend to break up to its constituent chromatids and that the chromatids will be separated by a distance that is an order of thirty percent of the distance between the spindle nodes. Further repulsion between the nodes will tend to stretch the cell and eventually break the cell membrane between the separated chromatids, leading to cell division. The importance of this work is in continuing the understanding of the electromagnetic basis of cell division and providing it with an analytical model. A central implication of this and...

  9. Prokaryotic cell division: flexible and diverse.

    Science.gov (United States)

    den Blaauwen, Tanneke

    2013-12-01

    Gram-negative rod-shaped bacteria have different approaches to position the cell division initiating Z-ring at the correct moment in their cell division cycle. The subsequent maturation into a functional division machine occurs in vastly different species in two steps with appreciable time in between these. The function of this time delay is unclear, but may partly be explained by competition for Lipid-II between proteins involved in length growth that interact directly with the Z-ring early in the maturation phase and the proteins involved in septum synthesis. A second possible activity of the early Z-ring might be the monitoring of or the active involvement in DNA segregation through proteins such as ZapA and ZapB/MatP and their homologues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney.

    Science.gov (United States)

    Vogetseder, Alexander; Palan, Thomas; Bacic, Desa; Kaissling, Brigitte; Le Hir, Michel

    2007-02-01

    We searched for evidence for a contribution of stem cells in growth of the proximal S3 segments of healthy rats. According to the stem cell model, stem cells are undifferentiated and slow cycling; the bulk of cycling cells are transit amplifying, rapidly cycling cells. We show the following. 1) By continuous application of a thymidine analog (ThA) for 7 days, S3 proximal epithelial cells in healthy kidneys display a high-cycling rate. 2) Slow-cycling cells, identified by lack of ThA uptake during 14 days of continuous ThA application up to death and by expression of the cell cycle protein Ki67 at death, have the same degree of differentiation as quiescent cells. 3) To detect rapidly cycling cells, rats were killed at various time points after injection of a ThA. Double immunofluorescence for ThA and a cell cycle marker was performed, with colocalization indicating successive divisions. During one week after division, daughter cells display a very low proliferation rate, indicating the absence of rapidly cycling cells. 4) Labeling with cyclin D1 showed that this low proliferation rate is due to cycle arrest. 5) More than 50% of the S3 cells entered the cell cycle 36 h after a potent proliferative stimulus (lead acetate injection). We conclude that generation of new cells in the proximal tubule relies on division of differentiated, normally slow-cycling cells. These may rapidly enter the cycle under an adequate stimulus.

  11. Sustaining protein synthesis in the absence of rapid cell division: an investigation of plasmid-encoded protein expression in Escherichia coli during very slow growth.

    Science.gov (United States)

    Flickinger, M C; Rouse, M P

    1993-01-01

    The minimum growth rate capable of supporting plasmid-encoded gene expression is determined using continuous cultures of Escherichia coli MZ9387 at dilution rates (D) as low as 5% of the maximum specific growth rate. Expression from a low copy number plasmid, pMPR166, encoding cyanase under the control of P(lac) is investigated in order to study plasmid-encoded gene expression under conditions approaching starvation. Plasmid copy number was stabilized by selection in the presence of 500 micrograms/mL chloramphenicol by constitutive expression of chloramphenicol acetyl transferase (CAT). Plasmid retention was determined by dot-blot hybridization and chloramphenicol resistance. The contribution of plasmid maintenance and cyanase expression to the maximum cell yield (Y'x/s) and the maintenance coefficient (ms) was determined for MZ9387 and MZ9387:pMPR166 under uninduced and IPTG-induced conditions. The values of Y'x/s and ms for non-plasmid-bearing cultures were 0.56 g of cell dry mass (DCM)/g of glucose and 0.26 g of glucose/g of DCM.h, respectively. The cell yield for plasmid-bearing cultures under uninduced conditions (Y 0'x/s) was 0.28 g of DCM/g of glucose, with m0s = 0.08 g of glucose/g of DCM.h. These values decreased following induction of cyanase expression. Glucose consumption in the presence of IPTG was linearly related to the growth rate at D cyanase expression alters metabolism and glucose consumption. The fraction of plasmid-free cells decreased with decreasing Damköhler number (Da). These data confirm the usefulness of Da for predicting the relationship between plasmid-free and plasmid-bearing cells where plasmids are stabilized by concentrations of antibiotic greater than the minimum plasmid-free host cell growth inhibitory concentration. Specific cyanase expression increased as the dilution rate decreased to D = 0.15 h-1. Between D = 0.15 h-1 and D = 0.14 h-1, expression decreased 7-fold. At very low dilution rates (D < or = 0.06 h-1), nonseptated

  12. Mechanics of cell division in fission yeast

    Science.gov (United States)

    Chang, Fred

    2012-02-01

    Cytokinesis is the stage of cell division in which a cell divides into two. A paradigm of cytokinesis in animal cells is that the actomyosin contractile ring provides the primary force to squeeze the cell into two. In the fission yeast Schizosaccharomyces pombe, cytokinesis also requires a actomyosin ring, which has been generally assumed to provide the force for cleavage. However, in contrast to animal cells, yeast cells assemble a cell wall septum concomitant with ring contraction and possess large (MPa) internal turgor pressure. Here, we show that the inward force generated by the division apparatus opposes turgor pressure; a decrease in effective turgor pressure leads to an increase in cleavage rate. We show that the ring cannot be the primary force generator. Scaling arguments indicate that the contractile ring can only provide a tiny fraction of the mechanical stress required to overcome turgor. Further, we show that cleavage can occur even in the absence of the contractile ring. Instead of the contractile ring, scaling arguments and modeling suggest that the large forces for cytokinesis are produced by the assembly of cell wall polymers in the growing septum.

  13. Cell Division, Differentiation and Dynamic Clustering

    CERN Document Server

    Kaneko, K; Kaneko, Kunihiko; Yomo, Tetsuya

    1993-01-01

    A novel mechanism for cell differentiation is proposed, based on the dynamic clustering in a globally coupled chaotic system. A simple model with metabolic reaction, active transport of chemicals from media, and cell division is found to show three successive stages with the growth of the number of cells; coherent growth, dynamic clustering, and fixed cell differentiation. At the last stage, disparity in activities, germ line segregation, somatic cell differentiation, and homeochaotic stability against external perturbation are found. Our results, in consistency with the experiments of the preceding paper, imply that cell differentiation can occur without a spatial pattern. From dynamical systems viewpoint, the new concept of ``open chaos" is proposed, as a novel and general scenario for systems with growing numbers of elements, also seen in economics and sociology.A

  14. Formation of a cylindrical bridge in cell division

    Science.gov (United States)

    Citron, Daniel; Schmidt, Laura E.; Reichl, Elizabeth; Ren, Yixin; Robinson, Douglas; Zhang, Wendy W.

    2007-11-01

    In nature, the shape transition associated with the division of a mother cell into two daughter cells proceeds via a variety of routes. In the cylinder-thinning route, which has been observed in Dictyostelium and most animal cells, the mother cell first forms a broad bridge-like region, also known as a furrow, between two daughter cells. The furrow then rapidly evolves into a cylindrical bridge, which thins and eventually severs the mother cell into two. The fundamental mechanism underlying this division route is not understood. Recent experiments on Dictyostelium found that, while the cylinder-thinning route persists even when key actin cross-linking proteins are missing, it is disrupted by the removal of force-generating myosin-II proteins. Other measurements revealed that mutant cells lacking myosin-II have a much more uniform tension over the cell surface than wild-type cells. This suggests that tension variation may be important. Here we use a fluid model, previously shown to reproduce the thinning dynamics [Zhang & Robinson, PNAS 102, 7186 (2005)], to test this idea. Consistent with the experiments, the model shows that the cylinder formation process occurs regardless of the exact viscoelastic properties of the cell. In contrast to the experiments, a tension variation in the model hinders, rather then expedites, the cylinder formation.

  15. Effects of Polyhydroxybutyrate Production on Cell Division

    Science.gov (United States)

    Miller, Kathleen; Rahman, Asif; Hadi, Masood Z.

    2015-01-01

    Synthetic biological engineering can be utilized to aide the advancement of improved long-term space flight. The potential to use synthetic biology as a platform to biomanufacture desired equipment on demand using the three dimensional (3D) printer on the International Space Station (ISS) gives long-term NASA missions the flexibility to produce materials as needed on site. Polyhydroxybutyrates (PHBs) are biodegradable, have properties similar to plastics, and can be produced in Escherichia coli using genetic engineering. Using PHBs during space flight could assist mission success by providing a valuable source of biomaterials that can have many potential applications, particularly through 3D printing. It is well documented that during PHB production E. coli cells can become significantly elongated. The elongation of cells reduces the ability of the cells to divide and thus to produce PHB. I aim to better understand cell division during PHB production, through the design, building, and testing of synthetic biological circuits, and identify how to potentially increase yields of PHB with FtsZ overexpression, the gene responsible for cell division. Ultimately, an increase in the yield will allow more products to be created using the 3D printer on the ISS and beyond, thus aiding astronauts in their missions.

  16. Asymmetric Cell Divisions in the Epidermis

    Science.gov (United States)

    Poulson, Nicholas D.; Lechler, Terry

    2012-01-01

    Generation of three-dimensional tissue with distinct cell types is required for the development of all organs. On its own, mitotic spindle orientation allows tissues to change in length or shape. In combination with intrinsic or extrinsic cues this can also be coupled to the generation of diverse cell fates - a process known as asymmetric cell division (ACD). Understanding ACD’s has been greatly aided by studies in invertebrate model systems, where genetics and live imaging have provided the basis for much of what we know. ACD’s also drive the development and differentiation of the epidermis in mammals. While similar to the invertebrate models, the epidermis is distinct in balancing symmetric and asymmetric divisions to yield a tissue of the correct surface area and thickness. Here we review the roles of spindle orientation in driving both morphogenesis and cell fate decisions. We highlight the epidermis as a unique model system to study not only basic mechanisms of ACD, but also to study their regulation during development. PMID:22449491

  17. Novel Coiled-Coil Cell Division Factor ZapB Stimulates Z Ring Assembly and Cell Division

    DEFF Research Database (Denmark)

    Ebersbach, Gitte; Galli, Elizabeth; Møller-Jensen, Jakob

    2008-01-01

    division. Deletion of zapB resulted in delayed cell division and the formation of ectopic Z rings and spirals whereas overexpression of ZapB resulted in nucleoid condensation and aberrant cell divisions. Localization of ZapB to the divisome depended on FtsZ but not FtsA, ZipA or FtsI and ZapB interacted...

  18. Activation of cell divisions in legume nodulation

    DEFF Research Database (Denmark)

    Nadzieja, Marcin

    the two hormones require further investigation. In order to improve understanding in these areas we aimed to develop and characterise hormone and cell division markers in Lotus japonicus. Using the extensive genetic resources available in L. japonicus, these markers may then be used to develop a more...... comprehensive understanding of specific gene functions. The markers may also be used for identification of particular cell populations, such as early nodule primordia, and used for their isolation and transcriptome profiling. We optimised a robust DII-based auxin accumulation sensor and used this sensor...... together with the transcriptional read-out of DR5 to monitor auxin dynamics during nodulation in L. japonicus. We observed that during infection, auxin accumulates specifically in infected root hairs. Using chemical inhibitors of auxin biosynthesis, we confirmed the requirement for auxin biosynthesis...

  19. Plant cortical microtubule dynamics and cell division plane orientation

    NARCIS (Netherlands)

    Chakrabortty, Bandan

    2017-01-01

    This thesis work aimed at a better understanding of the molecular basis of oriented cell division in plant cell. As, the efficiency of plant morphogenesis depends on oriented cell division, this work should contribute  towards a fundamental understanding of the  molecular basis of

  20. Cell Fate Decision Making through Oriented Cell Division

    Science.gov (United States)

    Johnston, Christopher A.

    2016-01-01

    The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control. PMID:26844213

  1. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    Science.gov (United States)

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  2. Long-term microfluidic tracking of coccoid cyanobacterial cells reveals robust control of division timing.

    Science.gov (United States)

    Yu, Feiqiao Brian; Willis, Lisa; Chau, Rosanna Man Wah; Zambon, Alessandro; Horowitz, Mark; Bhaya, Devaki; Huang, Kerwyn Casey; Quake, Stephen R

    2017-02-14

    Cyanobacteria are important agents in global carbon and nitrogen cycling and hold great promise for biotechnological applications. Model organisms such as Synechocystis sp. and Synechococcus sp. have advanced our understanding of photosynthetic capacity and circadian behavior, mostly using population-level measurements in which the behavior of individuals cannot be monitored. Synechocystis sp. cells are small and divide slowly, requiring long-term experiments to track single cells. Thus, the cumulative effects of drift over long periods can cause difficulties in monitoring and quantifying cell growth and division dynamics. To overcome this challenge, we enhanced a microfluidic cell-culture device and developed an image analysis pipeline for robust lineage reconstruction. This allowed simultaneous tracking of many cells over multiple generations, and revealed that cells expand exponentially throughout their cell cycle. Generation times were highly correlated for sister cells, but not between mother and daughter cells. Relationships between birth size, division size, and generation time indicated that cell-size control was inconsistent with the "sizer" rule, where division timing is based on cell size, or the "timer" rule, where division occurs after a fixed time interval. Instead, single cell growth statistics were most consistent with the "adder" rule, in which division occurs after a constant increment in cell volume. Cells exposed to light-dark cycles exhibited growth and division only during the light period; dark phases pause but do not disrupt cell-cycle control. Our analyses revealed that the "adder" model can explain both the growth-related statistics of single Synechocystis cells and the correlation between sister cell generation times. We also observed rapid phenotypic response to light-dark transitions at the single cell level, highlighting the critical role of light in cyanobacterial cell-cycle control. Our findings suggest that by monitoring the growth

  3. Ploidy-Dependent Unreductional Meiotic Cell Division in Polyploid Wheat

    Science.gov (United States)

    Meiosis includes one round of DNA replication and two successive nuclear divisions, i.e. meiosis I (reductional) and meiosis II (equational). This specialized cell division reduces chromosomes in half and generates haploid gametes in sexual reproduction of eukaryotes. It ensures faithful transmiss...

  4. Cell division and death inhibit glassy behaviour of confluent tissues

    CERN Document Server

    Matoz-Fernandez, D A; Sknepnek, Rastko; Barrat, J L; Henkes, S

    2016-01-01

    We investigate the effects of cell division and apopotosis on collective dynamics in two-dimensional epithelial tissues. Our model includes three key ingredients observed across many epithelia, namely cell-cell adhesion, cell death and a cell division process that depends on the surrounding environment. We show a rich non-equilibrium phase diagram depending on the ratio of cell death to cell division and on the adhesion strength. For large apopotosis rates, cells die out and the tissue disintegrates. As the death rate decreases, however, we show, consecutively, the existence of a gas-like phase, a gel-like phase, and a dense confluent (tissue) phase. Most striking is the observation that the tissue is self-melting through its own internal activity, ruling out the existence of any glassy phase.

  5. Cellular Clocks : Coupled Circadian Dispatch and Cell Division Cycles

    NARCIS (Netherlands)

    Merrow, Martha; Roenneberg, Till

    2004-01-01

    Gating of cell division by the circadian clock is well known, yet its mechanism is little understood. Genetically tractable model systems have led to new hypotheses and questions concerning the coupling of these two cellular cycles.

  6. Asymmetric cell division and its role in cell fate determination in the ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Light micrograph of an asymmetrically dividing T. indica cell at various time intervals. Progress over a 12 hr period, showing that the larger component does not undergo further division. (A) 0 h, cell division at an early stage. (B) 5 h, lower half of cell undergoing further division. (C) 12 h, differentiated ...

  7. Defect driven shapes in nematic droplets: analogies with cell division

    CERN Document Server

    Leoni, Marco; Bowick, Mark J; Marchetti, M Cristina

    2016-01-01

    Building on the striking similarity between the structure of the spindle during mitosis in living cells and nematic textures in confined liquid crystals, we use a continuum model of two-dimensional nematic liquid crystal droplets, to examine the physical aspects of cell division. The model investigates the interplay between bulk elasticity of the microtubule assembly, described as a nematic liquid crystal, and surface elasticity of the cell cortex, modelled as a bounding flexible membrane, in controlling cell shape and division. The centrosomes at the spindle poles correspond to the cores of the topological defects required to accommodate nematic order in a closed geometry. We map out the progression of both healthy bipolar and faulty multi-polar division as a function of an effective parameter that incorporates active processes and controls centrosome separation. A robust prediction, independent of energetic considerations, is that the transition from a single cell to daughters cells occurs at critical value...

  8. Asymmetric cell division in Mycobacterium tuberculosis and its unique features.

    Science.gov (United States)

    Vijay, Srinivasan; Nagaraja, Mukkayyan; Sebastian, Jees; Ajitkumar, Parthasarathi

    2014-03-01

    Recently, several reports showed that about 80 % of mid-log phase Mycobacterium smegmatis, Mycobacterium marinum, and Mycobacterium bovis BCG cells divide symmetrically with 5-10 % deviation in the septum position from the median. However, the mode of cell division of the pathogenic mycobacterial species, Mycobacterium tuberculosis, remained unclear. Therefore, in the present study, using electron microscopy, fluorescence microscopy of septum- and nucleoid-stained live and fixed cells, and live cell time-lapse imaging, we show the occurrence of asymmetric cell division with unusually deviated septum/constriction in 20 % of the 15 % septating M. tuberculosis cells in the mid-log phase population. The remaining 80 % of the 15 % septating cells divided symmetrically but with 2-5 % deviation in the septum/constriction position, as reported for M. smegmatis, M. marinum, and M. bovis BCG cells. Both the long and the short portions of the asymmetrically dividing M. tuberculosis cells with unusually deviated septum contained nucleoids, thereby generating viable short and long cells from each asymmetric division. M. tuberculosis short cells were acid fast positive and, like the long cells, further readily underwent growth and division to generate micro-colony, thereby showing that they were neither mini cells, spores nor dormant forms of mycobacteria. The freshly diagnosed pulmonary tuberculosis patients' sputum samples, which are known for the prevalence of oxidative stress conditions, also contained short cells at the same proportion as that in the mid-log phase population. The probable physiological significance of the generation of the short cells through unusually deviated asymmetric cell division is discussed.

  9. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  10. Microtubule networks for plant cell division

    NARCIS (Netherlands)

    Keijzer, de Jeroen; Mulder, B.M.; Janson, M.E.

    2014-01-01

    During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called

  11. Asymmetric Cell Division of T Cells Upon Antigen Presentation Utilizes Multiple Conserved Mechanisms

    Science.gov (United States)

    Oliaro, Jane; Van Ham, Vanessa; Sacirbegovic, Faruk; Pasam, Anupama; Bomzon, Ze’ev; Pham, Kim; Ludford-Menting, Mandy J.; Waterhouse, Nigel J.; Bots, Michael; Hawkins, Edwin D.; Watt, Sally V.; Cluse, Leonie A.; Clarke, Chris J.P.; Izon, David J.; Chang, John T.; Thompson, Natalie; Gu, Min; Johnstone, Ricky W.; Smyth, Mark J.; Humbert, Patrick O.; Reiner, Steven L.; Russell, Sarah M.

    2013-01-01

    Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naïve CD8+ T cells undergoing initial division while attached to dendritic cells during antigen presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with antigen presenting cells provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the antigen presenting cell. The cue from the antigen presenting cell is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes and orientation of the mitotic spindle during division is orchestrated by the Pins/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division. PMID:20530266

  12. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells.

    Science.gov (United States)

    Fish, Jennifer L; Kosodo, Yoichi; Enard, Wolfgang; Pääbo, Svante; Huttner, Wieland B

    2006-07-05

    The ASPM (abnormal spindle-like microcephaly-associated) protein has previously been implicated in the determination of human cerebral cortical size, but the cell biological basis of this regulation has not been studied. Here we investigate the role of Aspm in mouse embryonic neuroepithelial (NE) cells, the primary stem and progenitor cells of the mammalian brain. Aspm was found to be concentrated at mitotic spindle poles of NE cells and to be down-regulated with their switch from proliferative to neurogenic divisions. Upon RNA interference in telencephalic NE cells, Aspm mRNA is reduced, mitotic spindle poles lack Aspm protein, and the cleavage plane of NE cells is less frequently oriented perpendicular to the ventricular surface of the neuroepithelium. The alteration in the cleavage plane orientation of NE cells increases the probability that these highly polarized cells undergo asymmetric division, i.e., that apical plasma membrane is inherited by only one of the daughter cells. Concomitant with the resulting increase in abventricular cells in the ventricular zone, a larger proportion of NE cell progeny is found in the neuronal layer, implying a reduction in the number of NE progenitor cells upon Aspm knock-down relative to control. Our results demonstrate that Aspm is crucial for maintaining a cleavage plane orientation that allows symmetric, proliferative divisions of NE cells during brain development. These data provide a cell biological explanation of the primary microcephaly observed in humans with mutations in ASPM, which also has implications for the evolution of mammalian brains.

  13. Division of Labor in Biofilms: the Ecology of Cell Differentiation.

    Science.gov (United States)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-04-01

    The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental conditions, but they also differentiate into cell types that interact with each other. This allows for task differentiation and, hence, the division of labor. In this article, we focus on cell differentiation and the division of labor in three bacterial species: Myxococcus xanthus, Bacillus subtilis, and Pseudomonas aeruginosa. During biofilm formation each of these species differentiates into distinct cell types, in some cases leading to cooperative interactions. The division of labor and the cooperative interactions between cell types are assumed to yield an emergent ecological benefit. Yet in most cases the ecological benefits have yet to be elucidated. A notable exception is M. xanthus, in which cell differentiation within fruiting bodies facilitates the dispersal of spores. We argue that the ecological benefits of the division of labor might best be understood when we consider the dynamic nature of both biofilm formation and degradation.

  14. Asymmetric cell division of T cells upon antigen presentation uses multiple conserved mechanisms.

    Science.gov (United States)

    Oliaro, Jane; Van Ham, Vanessa; Sacirbegovic, Faruk; Pasam, Anupama; Bomzon, Ze'ev; Pham, Kim; Ludford-Menting, Mandy J; Waterhouse, Nigel J; Bots, Michael; Hawkins, Edwin D; Watt, Sally V; Cluse, Leonie A; Clarke, Chris J P; Izon, David J; Chang, John T; Thompson, Natalie; Gu, Min; Johnstone, Ricky W; Smyth, Mark J; Humbert, Patrick O; Reiner, Steven L; Russell, Sarah M

    2010-07-01

    Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is regulated by conserved polarity protein complexes that control the localization of cell fate determinants and spindle orientation during division. We have developed a tractable, in vitro model of naive CD8(+) T cells undergoing initial division while attached to dendritic cells during Ag presentation to investigate whether similar mechanisms might regulate asymmetric division of T cells. Using this system, we show that direct interactions with APCs provide the cue for polarization of T cells. Interestingly, the immunological synapse disseminates before division even though the T cells retain contact with the APC. The cue from the APC is translated into polarization of cell fate determinants via the polarity network of the Par3 and Scribble complexes, and orientation of the mitotic spindle during division is orchestrated by the partner of inscuteable/G protein complex. These findings suggest that T cells have selectively adapted a number of evolutionarily conserved mechanisms to generate diversity through asymmetric cell division.

  15. Indole prevents Escherichia coli cell division by modulating membrane potential

    Science.gov (United States)

    Chimerel, Catalin; Field, Christopher M.; Piñero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.

    2012-01-01

    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3–5 mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological process. Our findings have implications for our understanding of membrane biology, bacterial cell cycle control and potentially for the design of antibiotics that target the cell membrane. PMID:22387460

  16. Rapid transition towards the Division of Labor via evolution of developmental plasticity.

    Directory of Open Access Journals (Sweden)

    Sergey Gavrilets

    2010-06-01

    Full Text Available A crucial step in several major evolutionary transitions is the division of labor between components of the emerging higher-level evolutionary unit. Examples include the separation of germ and soma in simple multicellular organisms, appearance of multiple cell types and organs in more complex organisms, and emergence of casts in eusocial insects. How the division of labor was achieved in the face of selfishness of lower-level units is controversial. I present a simple mathematical model describing the evolutionary emergence of the division of labor via developmental plasticity starting with a colony of undifferentiated cells and ending with completely differentiated multicellular organisms. I explore how the plausibility and the dynamics of the division of labor depend on its fitness advantage, mutation rate, costs of developmental plasticity, and the colony size. The model shows that the transition to differentiated multicellularity, which has happened many times in the history of life, can be achieved relatively easily. My approach is expandable in a number of directions including the emergence of multiple cell types, complex organs, or casts of eusocial insects.

  17. Primitive human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell division.

    NARCIS (Netherlands)

    Giebel, B.; Zhang, T.; Beckmann, J.; Spanholtz, J.; Wernet, P.; Ho, A.; Punzel, M.

    2006-01-01

    It is often predicted that stem cells divide asymmetrically, creating a daughter cell that maintains the stem-cell capacity, and 1 daughter cell committed to differentiation. While asymmetric stem-cell divisions have been proven to occur in model organisms (eg, in Drosophila), it remains illusive

  18. Memorizing Shape to Orient Cell Division.

    Science.gov (United States)

    Michel, Marcus; Dahmann, Christian

    2016-03-21

    A century ago, Oscar Hertwig discovered that cells orient their cleavage plane orthogonal to their long axis. Reporting recently in Nature, Bosveld et al. (2016) shed light on how, showing that NuMA/Mud localization at tricellular junctions provides mitotic cells with the memory of interphase shape used to orient cleavage plane. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Cell division versus cell elongation: the control of radicle elongation during thermoinhibition of Tagetes minuta achenes.

    Science.gov (United States)

    Taylor, Nicky J; Hills, Paul N; van Staden, Johannes

    2007-12-01

    Endogenous embryo factors, which act mainly in the radicle, prevent germination in Tagetes minuta at high temperatures. These factors act to prevent cell elongation, which is critical for radicle protrusion under optimal conditions. Once the radicle has emerged both cell elongation and cell division are required for post-germination growth. Germination can be induced at high temperatures by fusicoccin, which rapidly stimulates cell elongation. In addition, priming seeds at 25 degrees C on polyethylene glycol (PEG) 6000 and mannitol could also induce germination on water at 36 degrees C, indicating that priming prevents radicle protrusion at a point subsequent to the point of control in thermoinhibited achenes. Flow cytometry studies revealed that DNA synthesis occurs during thermoinhibition and the inhibition of DNA synthesis during this process inhibits subsequent germination on water under optimal conditions, suggesting a protective role for DNA synthesis in thermoinhibited achenes of T. minuta.

  20. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  1. Polyalkoxyflavonoids as inhibitors of cell division

    Science.gov (United States)

    Semenov, V. V.; Semenova, M. N.

    2015-02-01

    Being structural analogues of natural microtubule-destabilizing cytostatics, polyalkoxyflavonoids represent a promising class of compounds for anticancer drug design. The review covers synthetic routes to various polyalkoxyflavonoids and the results of biological assays in vitro on human cancer cells and in vivo using sea urchin embryos as a model. Mechanisms of action and structure-relationship activity for polyalkoxyflavonoids are discussed. The bibliography includes 151 references.

  2. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Unknown

    have demonstrated several unique features which suggest that the regulation of cell division in this parasite is .... showed that the DNA content of each nucleus varied from. 1n to 10n on an average (Das and Lohia 2002). ..... A 1997 Primary structure of Entamoeba histolytica γ tubulin and localization of amoebic microtubule ...

  3. A crucial step in cell division identified | Center for Cancer Research

    Science.gov (United States)

    When cell division doesn’t go according to plan, the resulting daughter cells can become unstable or even cancerous. A team of CCR investigators has now discovered a crucial step required for normal cell division to occur. Read more...

  4. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  5. The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells.

    Science.gov (United States)

    Willemsen, Viola; Bauch, Marion; Bennett, Tom; Campilho, Ana; Wolkenfelt, Harald; Xu, Jian; Haseloff, Jim; Scheres, Ben

    2008-12-01

    Because plant cells do not migrate, cell division planes are crucial determinants of plant cellular architecture. In Arabidopsis roots, stringent control of cell divisions leads to a virtually invariant division pattern, including those that create new tissue layers. However, the mechanisms that control oriented cell divisions are hitherto poorly understood. Here, we reveal one such mechanism in which FEZ and SOMBRERO (SMB), two plant-specific NAC-domain transcription factors, control the delicately tuned reorientation and timing of cell division in a subset of stem cells. FEZ is expressed in root cap stem cells, where it promotes periclinal, root cap-forming cell divisions. In contrast, SMB negatively regulates FEZ activity, repressing stem cell-like divisions in the root cap daughter cells. FEZ becomes expressed in predivision stem cells, induces oriented cell division, and activates expression of its negative regulator, SMB, thus generating a feedback loop for controlled switches in cell division plane.

  6. Asymmetric cell division of stem cells in the lung and other systems

    Directory of Open Access Journals (Sweden)

    Mohamed eBerika

    2014-07-01

    Full Text Available New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric versus symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division in the lung stem cells with other tissues in different organisms.

  7. Spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium

    Directory of Open Access Journals (Sweden)

    Toshiaki Mochizuki

    2014-09-01

    Full Text Available Cell proliferation is a key regulator of tissue morphogenesis. We examined cell proliferation and cell division in zebrafish lens epithelium by visualizing cell-cycle phases and nuclear positions, using fluorescent-labeled geminin and histone proteins. Proliferation was low in the anterior region of lens epithelium and higher in the marginal zone anterior to the equator, suggesting that the proliferation zone, called the germinative zone, is formed in zebrafish lens. Interestingly, cell-division orientation was biased longitudinally in the anterior region, shifted from longitudinal to circumferential along the anterior–posterior axis of lens sphere, and was biased circumferentially in the peripheral region. These data suggest that cell-division orientation is spatially regulated in zebrafish lens epithelium. The Hertwig rule indicates that cells tend to divide along their long axes. Orientation of long axes and cell division were biased similarly in zebrafish lens epithelium, suggesting that cell geometry correlates with cell-division orientation. A cell adhesion molecule, E-cadherin, is expressed in lens epithelium. In a zebrafish e-cadherin mutant, the long axes and cell-division orientation were shifted more longitudinally. These data suggest that E-cadherin is required for the spatial pattern of cell geometry and cell-division orientation in zebrafish lens epithelium.

  8. Regulation of Cell Polarity in Motility and Cell Division in Myxococcus xanthus.

    Science.gov (United States)

    Schumacher, Dominik; Søgaard-Andersen, Lotte

    2017-09-08

    Rod-shaped Myxococcus xanthus cells are polarized with proteins asymmetrically localizing to specific positions. This spatial organization is important for regulation of motility and cell division and changes over time. Dedicated protein modules regulate motility independent of the cell cycle, and cell division dependent on the cell cycle. For motility, a leading-lagging cell polarity is established that is inverted during cellular reversals. Establishment and inversion of this polarity are regulated hierarchically by interfacing protein modules that sort polarized motility proteins to the correct cell poles or cause their relocation between cell poles during reversals akin to a spatial toggle switch. For division, a novel self-organizing protein module that incorporates a ParA ATPase positions the FtsZ-ring at midcell. This review covers recent findings concerning the spatiotemporal regulation of motility and cell division in M. xanthus and illustrates how the study of diverse bacteria may uncover novel mechanisms involved in regulating bacterial cell polarity.

  9. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex

    NARCIS (Netherlands)

    Gloerich, Martijn; Bianchini, Julie M.; Siemers, Kathleen A.; Cohen, Daniel J.; Nelson, W. James

    2017-01-01

    Both cell-cell adhesion and oriented cell division play prominent roles in establishing tissue architecture, but it is unclear how they might be coordinated. Here, we demonstrate that the cell-cell adhesion protein E-cadherin functions as an instructive cue for cell division orientation. This is

  10. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2015-12-01

    Full Text Available Cell division, during which a mother cell usually divides into two daughter cells during one cell cycle, is the most important physiological event of cell biology. We observed one-to-four cell division during imaging of live SW1736 human thyroid anaplastic carcinoma cells transfected with a plasmid expressing the hybrid protein of green fluorescent protein and histone 2B (plasmid eGFP-H2B. Analysis of the images revealed a mother cell divided into four daughter cells. And one of the abnormally divided daughter cells subsequently formed a dinucleate cell.

  11. Cell division control by the Chromosomal Passenger Complex

    Energy Technology Data Exchange (ETDEWEB)

    Waal, Maike S. van der; Hengeveld, Rutger C.C.; Horst, Armando van der; Lens, Susanne M.A., E-mail: s.m.a.lens@umcutrecht.nl

    2012-07-15

    The Chromosomal Passenger Complex (CPC) consisting of Aurora B kinase, INCENP, Survivin and Borealin, is essential for genomic stability by controlling multiple processes during both nuclear and cytoplasmic division. In mitosis it ensures accurate segregation of the duplicated chromosomes by regulating the mitotic checkpoint, destabilizing incorrectly attached spindle microtubules and by promoting the axial shortening of chromosomal arms in anaphase. During cytokinesis the CPC most likely prevents chromosome damage by imposing an abscission delay when a chromosome bridge connects the two daughter cells. Moreover, by controlling proper cytoplasmic division, the CPC averts tetraploidization. This review describes recent insights on how the CPC is capable of conducting its various functions in the dividing cell to ensure chromosomal stability.

  12. Increasing population growth by asymmetric segregation of a limiting resource during cell division

    National Research Council Canada - National Science Library

    Avraham, Nurit; Soifer, Ilya; Carmi, Miri; Barkai, Naama

    .... Notably, while deletion of WHI5 alleviates daughter cell division arrest in low‐zinc conditions, it results in a lower final population size, as cell division rate becomes progressively slower...

  13. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  14. Desynchronizing Embryonic Cell Division Waves Reveals the Robustness of Xenopus laevis Development.

    Science.gov (United States)

    Anderson, Graham A; Gelens, Lendert; Baker, Julie C; Ferrell, James E

    2017-10-03

    The early Xenopus laevis embryo is replete with dynamic spatial waves. One such wave, the cell division wave, emerges from the collective cell division timing of first tens and later hundreds of cells throughout the embryo. Here, we show that cell division waves do not propagate between neighboring cells and do not rely on cell-to-cell coupling to maintain their division timing. Instead, intrinsic variation in division period autonomously and gradually builds these striking patterns of cell division. Disrupting this pattern of division by placing embryos in a temperature gradient resulted in highly asynchronous entry to the midblastula transition and misexpression of the mesodermal marker Xbra. Remarkably, this gene expression defect is corrected during involution, resulting in delayed yet normal Xbra expression and viable embryos. This implies the existence of a previously unknown mechanism for normalizing mesodermal gene expression during involution. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    Science.gov (United States)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  16. Correlation between cationic lipid-based transfection and cell division.

    Science.gov (United States)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. Copyright © 2016. Published by Elsevier Inc.

  17. Huntingtin Regulates Mammary Stem Cell Division and Differentiation

    Directory of Open Access Journals (Sweden)

    Salah Elias

    2014-04-01

    Full Text Available Little is known about the mechanisms of mitotic spindle orientation during mammary gland morphogenesis. Here, we report the presence of huntingtin, the protein mutated in Huntington’s disease, in mouse mammary basal and luminal cells throughout mammogenesis. Keratin 5-driven depletion of huntingtin results in a decreased pool and specification of basal and luminal progenitors, and altered mammary morphogenesis. Analysis of mitosis in huntingtin-depleted basal progenitors reveals mitotic spindle misorientation. In mammary cell culture, huntingtin regulates spindle orientation in a dynein-dependent manner. Huntingtin is targeted to spindle poles through its interaction with dynein and promotes the accumulation of NUMA and LGN. Huntingtin is also essential for the cortical localization of dynein, dynactin, NUMA, and LGN by regulating their kinesin 1-dependent trafficking along astral microtubules. We thus suggest that huntingtin is a component of the pathway regulating the orientation of mammary stem cell division, with potential implications for their self-renewal and differentiation properties.

  18. Evidence for equal size cell divisions during gametogenesis in a marine green alga Monostroma angicava.

    Science.gov (United States)

    Togashi, Tatsuya; Horinouchi, Yusuke; Sasaki, Hironobu; Yoshimura, Jin

    2015-09-03

    In cell divisions, relative size of daughter cells should play fundamental roles in gametogenesis and embryogenesis. Differences in gamete size between the two mating types underlie sexual selection. Size of daughter cells is a key factor to regulate cell divisions during cleavage. In cleavage, the form of cell divisions (equal/unequal in size) determines the developmental fate of each blastomere. However, strict validation of the form of cell divisions is rarely demonstrated. We cannot distinguish between equal and unequal cell divisions by analysing only the mean size of daughter cells, because their means can be the same. In contrast, the dispersion of daughter cell size depends on the forms of cell divisions. Based on this, we show that gametogenesis in the marine green alga, Monostroma angicava, exhibits equal size cell divisions. The variance and the mean of gamete size (volume) of each mating type measured agree closely with the prediction from synchronized equal size cell divisions. Gamete size actually takes only discrete values here. This is a key theoretical assumption made to explain the diversified evolution of isogamy and anisogamy in marine green algae. Our results suggest that germ cells adopt equal size cell divisions during gametogenesis.

  19. Virtual Full-Duplex Wireless Communication via Rapid On-Off-Division Duplex

    CERN Document Server

    Guo, Dongning

    2010-01-01

    This paper introduces a novel paradigm for design- ing the physical and medium access control (MAC) layers of mobile ad hoc or peer-to-peer networks formed by half-duplex radios. A node equipped with such a radio cannot simultaneously transmit and receive useful signals at the same frequency. Unlike in conventional designs, where a node's transmission frames are scheduled away from its reception, each node transmits its signal through a randomly generated on-off duplex mask (or signature) over every frame interval, and receive a signal through each of its own off-slots. This is called rapid on-off- division duplex (RODD). Over the period of a single frame, every node can transmit a message to some or all of its peers, and may simultaneously receive a message from each peer. Thus RODD achieves virtual full-duplex communication using half-duplex radios and can simplify the design of higher layers of a network protocol stack significantly. The throughput of RODD is evaluated under some general settings, which is...

  20. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    Directory of Open Access Journals (Sweden)

    Alexander Klein

    2014-11-01

    Full Text Available We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS with the enhanced noise rejection of wavelength modulation spectroscopy (WMS. In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS and an additional 20 kHz sinusoidal modulation (WMS. The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 µm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K. A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer.

  1. Circadian Clock, Cell Division, and Cancer: From Molecules to Organism

    Science.gov (United States)

    Shostak, Anton

    2017-01-01

    As a response to environmental changes driven by the Earth’s axial rotation, most organisms evolved an internal biological timer—the so called circadian clock—which regulates physiology and behavior in a rhythmic fashion. Emerging evidence suggests an intimate interplay between the circadian clock and another fundamental rhythmic process, the cell cycle. However, the precise mechanisms of this connection are not fully understood. Disruption of circadian rhythms has a profound impact on cell division and cancer development and, vice versa, malignant transformation causes disturbances of the circadian clock. Conventional knowledge attributes tumor suppressor properties to the circadian clock. However, this implication might be context-dependent, since, under certain conditions, the clock can also promote tumorigenesis. Therefore, a better understanding of the molecular links regulating the physiological balance between the two cycles will have potential significance for the treatment of cancer and associated disorders. PMID:28425940

  2. Cell Division, a new open access online forum for and from the cell cycle community

    Directory of Open Access Journals (Sweden)

    Kaldis Philipp

    2006-04-01

    Full Text Available Abstract Cell Division is a new, open access, peer-reviewed online journal that publishes cutting-edge articles, commentaries and reviews on all exciting aspects of cell cycle control in eukaryotes. A major goal of this new journal is to publish timely and significant studies on the aberrations of the cell cycle network that occur in cancer and other diseases.

  3. Tomato fruit growth : integrating cell division, cell growth and endoreduplication by experimentation and modelling

    NARCIS (Netherlands)

    Fanwoua, J.

    2012-01-01

    Keywords: cell division, cell growth, cell endoreduplication, fruit growth, genotype, G×E interaction, model, tomato. Fruit size is a major component of fruit yield and quality of many crops. Variations in fruit size can be tremendous due to genotypic and environmental factors. The mechanisms

  4. Regulation of cell division in higher plants. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Thomas W.

    2000-02-29

    Research in the latter part of the grant period was divided into two parts: (1) expansion of the macromolecular tool kit for studying plant cell division; (2) experiments in which the roles played by plant cell cycle regulators were to be cast in the light of the emerging yeast and animal cell paradigm for molecular control of the mitotic cycle. The first objectives were accomplished to a very satisfactory degree. With regard to the second part of the project, we were driven to change our objectives for two reasons. First, the families of cell cycle control genes that we cloned encoded such closely related members that the prospects for success at raising distinguishing antisera against each were sufficiently dubious as to be impractical. Epitope tagging is not feasible in Pisum sativum, our experimental system, as this species is not realistically transformable. Therefore, differentiating the roles of diverse cyclins and cyclin-dependent kinases was problematic. Secondly, our procedure for generating mitotically synchronized pea root meristems for biochemical studies was far too labor intensive for the proposed experiments. We therefore shifted our objectives to identifying connections between the conserved proteins of the cell cycle engine and factors that interface it with plant physiology and development. In this, we have obtained some very exciting results.

  5. Celebrating Soft Matter's 10th Anniversary: Cell division: a source of active stress in cellular monolayers.

    Science.gov (United States)

    Doostmohammadi, Amin; Thampi, Sumesh P; Saw, Thuan B; Lim, Chwee T; Ladoux, Benoit; Yeomans, Julia M

    2015-10-07

    We introduce the notion of cell division-induced activity and show that the cell division generates extensile forces and drives dynamical patterns in cell assemblies. Extending the hydrodynamic models of lyotropic active nematics we describe turbulent-like velocity fields that are generated by the cell division in a confluent monolayer of cells. We show that the experimentally measured flow field of dividing Madin-Darby Canine Kidney (MDCK) cells is reproduced by our modeling approach. Division-induced activity acts together with intrinsic activity of the cells in extensile and contractile cell assemblies to change the flow and director patterns and the density of topological defects. Finally we model the evolution of the boundary of a cellular colony and compare the fingering instabilities induced by cell division to experimental observations on the expansion of MDCK cell cultures.

  6. Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions.

    Science.gov (United States)

    Azzarello, Antonino; Hoest, Thomas; Hay-Schmidt, Anders; Mikkelsen, Anne Lis

    2017-06-01

    This study included 238 good morphology blastocysts, which were transferred after vitrification-warming to 152 women by single blastocyst transfer in Holbæk Fertility Clinic, Denmark. Time-lapse recordings of transferred good morphology blastocysts were reassessed to recognize every abnormal cell division (ACD) from the 1st to the 4th cell cycle. ACDs were distinguished as failed cell divisions and multi-cell divisions. ACDs were recognized in 37.0% (no. 88/238) of good morphology blastocysts that were vitrified-warmed and transferred in our clinic. Good morphology blastocysts with ACDs showed a lower live birth rate (17.0%) than blastocyst with solely regular cell divisions (29.3%). ACDs could occur at more than one cell division in the same good morphology blastocyst. Reported as independent events, we observed ACDs occurring more frequently at the later cell cycles (1st: 1.3%; 2nd: 8.0%; 3rd: 18.5%; 4th: 18.1%). More blastocysts presented failed cell divisions (no. 95) than multi-cell divisions (no. 14). Live births were achieved from blastocysts showing multi-cell divisions at any cell cycle and failed cell divisions from the 2nd cell cycle. Analyses of the subgroup of first blastocyst transferred to each patient showed similar to results. In conclusion, good morphology blastocysts presenting ACDs can result in live birth although lower compared to blastocysts with solely regular cell division. Pre-implantation embryos in vitro may undergo self-selection or correcting processes. This supports the transfer of blastocysts instead of cleavage stage embryos, giving first priority to blastocyst showing solely regular cell divisions, and giving second priority to blastocysts presenting ACDs at any cell cycle. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Factors affecting daughter cells' arrangement during the early bacterial divisions.

    Directory of Open Access Journals (Sweden)

    Pin-Tzu Su

    Full Text Available On agar plates, daughter cells of Escherichia coli mutually slide and align side-by-side in parallel during the first round of binary fission. This phenomenon has been previously attributed to an elastic material that restricts apparently separated bacteria from being in string. We hypothesize that the interaction between bacteria and the underneath substratum may affect the arrangement of the daughter bacteria. To test this hypothesis, bacterial division on hyaluronic acid (HA gel, as an alternative substratum, was examined. Consistent with our proposition, the HA gel differs from agar by suppressing the typical side-by-side alignments to a rare population. Examination of bacterial surface molecules that may contribute to the daughter cells' arrangement yielded an observation that, with disrupted lpp, the E. coli daughter cells increasingly formed non-typical patterns, i.e. neither sliding side-by-side in parallel nor forming elongated strings. Therefore, our results suggest strongly that the early cell patterning is affected by multiple interaction factors. With oscillatory optical tweezers, we further demonstrated that the interaction force decreased in bacteria without Lpp, a result substantiating our notion that the side-by-side sliding phenomenon directly reflects the strength of in-situ interaction between bacteria and substratum.

  8. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  9. Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions

    DEFF Research Database (Denmark)

    Azzarello, Antonino; Høst, Thomas; Hay-Schmidt, Anders

    2017-01-01

    This study included 238 good morphology blastocysts, which were transferred after vitrification-warming to 152 women by single blastocyst transfer in Holbæk Fertility Clinic, Denmark. Time-lapse recordings of transferred good morphology blastocysts were reassessed to recognize every abnormal cell...... division (ACD) from the 1st to the 4th cell cycle. ACDs were distinguished as failed cell divisions and multi-cell divisions. ACDs were recognized in 37.0% (no. 88/238) of good morphology blastocysts that were vitrified-warmed and transferred in our clinic. Good morphology blastocysts with ACDs showed...... a lower live birth rate (17.0%) than blastocyst with solely regular cell divisions (29.3%). ACDs could occur at more than one cell division in the same good morphology blastocyst. Reported as independent events, we observed ACDs occurring more frequently at the later cell cycles (1st: 1.3%; 2nd: 8.0%; 3rd...

  10. Host Actin Polymerization Tunes the Cell Division Cycle of an Intracellular Pathogen

    Directory of Open Access Journals (Sweden)

    M. Sloan Siegrist

    2015-04-01

    Full Text Available Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.

  11. Uncovering the link between malfunctions in Drosophila neuroblast asymmetric cell division and tumorigenesis

    Directory of Open Access Journals (Sweden)

    Kelsom Corey

    2012-11-01

    Full Text Available Abstract Asymmetric cell division is a developmental process utilized by several organisms. On the most basic level, an asymmetric division produces two daughter cells, each possessing a different identity or fate. Drosophila melanogaster progenitor cells, referred to as neuroblasts, undergo asymmetric division to produce a daughter neuroblast and another cell known as a ganglion mother cell (GMC. There are several features of asymmetric division in Drosophila that make it a very complex process, and these aspects will be discussed at length. The cell fate determinants that play a role in specifying daughter cell fate, as well as the mechanisms behind setting up cortical polarity within neuroblasts, have proved to be essential to ensuring that neurogenesis occurs properly. The role that mitotic spindle orientation plays in coordinating asymmetric division, as well as how cell cycle regulators influence asymmetric division machinery, will also be addressed. Most significantly, malfunctions during asymmetric cell division have shown to be causally linked with neoplastic growth and tumor formation. Therefore, it is imperative that the developmental repercussions as a result of asymmetric cell division gone awry be understood.

  12. Mammalian aPKC/Par polarity complex mediated regulation of epithelial division orientation and cell fate

    Energy Technology Data Exchange (ETDEWEB)

    Vorhagen, Susanne; Niessen, Carien M., E-mail: carien.niessen@uni-koeln.de

    2014-11-01

    Oriented cell division is a key regulator of tissue architecture and crucial for morphogenesis and homeostasis. Balanced regulation of proliferation and differentiation is an essential property of tissues not only to drive morphogenesis but also to maintain and restore homeostasis. In many tissues orientation of cell division is coupled to the regulation of differentiation producing daughters with similar (symmetric cell division, SCD) or differential fate (asymmetric cell division, ACD). This allows the organism to generate cell lineage diversity from a small pool of stem and progenitor cells. Division orientation and/or the ratio of ACD/SCD need to be tightly controlled. Loss of orientation or an altered ratio can promote overgrowth, alter tissue architecture and induce aberrant differentiation, and have been linked to morphogenetic diseases, cancer and aging. A key requirement for oriented division is the presence of a polarity axis, which can be established through cell intrinsic and/or extrinsic signals. Polarity proteins translate such internal and external cues to drive polarization. In this review we will focus on the role of the polarity complex aPKC/Par3/Par6 in the regulation of division orientation and cell fate in different mammalian epithelia. We will compare the conserved function of this complex in mitotic spindle orientation and distribution of cell fate determinants and highlight common and differential mechanisms in which this complex is used by tissues to adapt division orientation and cell fate to the specific properties of the epithelium.

  13. Probabilistic model of microbial cell growth, division, and mortality.

    Science.gov (United States)

    Horowitz, Joseph; Normand, Mark D; Corradini, Maria G; Peleg, Micha

    2010-01-01

    After a short time interval of length deltat during microbial growth, an individual cell can be found to be divided with probability Pd(t)deltat, dead with probability Pm(t)deltat, or alive but undivided with the probability 1-[Pd(t)+Pm(t)]deltat, where t is time, Pd(t) expresses the probability of division for an individual cell per unit of time, and Pm(t) expresses the probability of mortality per unit of time. These probabilities may change with the state of the population and the habitat's properties and are therefore functions of time. This scenario translates into a model that is presented in stochastic and deterministic versions. The first, a stochastic process model, monitors the fates of individual cells and determines cell numbers. It is particularly suitable for small populations such as those that may exist in the case of casual contamination of a food by a pathogen. The second, which can be regarded as a large-population limit of the stochastic model, is a continuous mathematical expression that describes the population's size as a function of time. It is suitable for large microbial populations such as those present in unprocessed foods. Exponential or logistic growth with or without lag, inactivation with or without a "shoulder," and transitions between growth and inactivation are all manifestations of the underlying probability structure of the model. With temperature-dependent parameters, the model can be used to simulate nonisothermal growth and inactivation patterns. The same concept applies to other factors that promote or inhibit microorganisms, such as pH and the presence of antimicrobials, etc. With Pd(t) and Pm(t) in the form of logistic functions, the model can simulate all commonly observed growth/mortality patterns. Estimates of the changing probability parameters can be obtained with both the stochastic and deterministic versions of the model, as demonstrated with simulated data.

  14. Sequential closure of the cytoplasm and then the periplasm during cell division in Escherichia coli.

    Science.gov (United States)

    Skoog, Karl; Söderström, Bill; Widengren, Jerker; von Heijne, Gunnar; Daley, Daniel O

    2012-02-01

    To visualize the latter stages of cell division in live Escherichia coli, we have carried out fluorescence recovery after photobleaching (FRAP) on 121 cells expressing cytoplasmic green fluorescent protein and periplasmic mCherry. Our data show conclusively that the cytoplasm is sealed prior to the periplasm during the division event.

  15. Inhibition of phenylpropanoid biosynthesis increases cell wall digestibility, protoplast isolation, and facilitates sustained cell division in American elm (Ulmus americana

    Directory of Open Access Journals (Sweden)

    Jones A Maxwell P

    2012-05-01

    Full Text Available Abstract Background Protoplast technologies offer unique opportunities for fundamental research and to develop novel germplasm through somatic hybridization, organelle transfer, protoclonal variation, and direct insertion of DNA. Applying protoplast technologies to develop Dutch elm disease resistant American elms (Ulmus americana L. was proposed over 30 years ago, but has not been achieved. A primary factor restricting protoplast technology to American elm is the resistance of the cell walls to enzymatic degradation and a long lag phase prior to cell wall re-synthesis and cell division. Results This study suggests that resistance to enzymatic degradation in American elm was due to water soluble phenylpropanoids. Incubating tobacco (Nicotiana tabacum L. leaf tissue, an easily digestible species, in aqueous elm extract inhibits cell wall digestion in a dose dependent manner. This can be mimicked by p-coumaric or ferulic acid, phenylpropanoids known to re-enforce cell walls. Culturing American elm tissue in the presence of 2-aminoindane-2-phosphonic acid (AIP; 10-150 μM, an inhibitor of phenylalanine ammonia lyase (PAL, reduced flavonoid content, decreased tissue browning, and increased isolation rates significantly from 11.8% (±3.27 in controls to 65.3% (±4.60. Protoplasts isolated from callus grown in 100 μM AIP developed cell walls by day 2, had a division rate of 28.5% (±3.59 by day 6, and proliferated into callus by day 14. Heterokaryons were successfully produced using electrofusion and fused protoplasts remained viable when embedded in agarose. Conclusions This study describes a novel approach of modifying phenylpropanoid biosynthesis to facilitate efficient protoplast isolation which has historically been problematic for American elm. This isolation system has facilitated recovery of viable protoplasts capable of rapid cell wall re-synthesis and sustained cell division to form callus. Further, isolated protoplasts survived

  16. High frame-rate resolution of cell division during Candida albicans filamentation

    OpenAIRE

    Thomson, Darren D; Berman, Judith; Brand, Alexandra C

    2016-01-01

    The commensal yeast, Candida albicans, is an opportunistic pathogen in humans and forms filaments called hyphae and pseudohyphae, in which cell division requires precise temporal and spatial control to produce mononuclear cell compartments. High-frame-rate live-cell imaging (1 frame/min) revealed that nuclear division did not occur across the septal plane. We detected the presence of nucleolar fragments that may be extrachromosomal molecules carrying the ribosomal RNA genes. Cells occasionall...

  17. The cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation.

    Science.gov (United States)

    Mizukawa, Benjamin; O'Brien, Eric; Moreira, Daniel C; Wunderlich, Mark; Hochstetler, Cindy L; Duan, Xin; Liu, Wei; Orr, Emily; Grimes, H Leighton; Mulloy, James C; Zheng, Yi

    2017-09-14

    As a central regulator of cell polarity, the activity of CDC42 GTPase is tightly controlled in maintaining normal hematopoietic stem and progenitor cell (HSC/P) functions. We found that transformation of HSC/P to acute myeloid leukemia (AML) is associated with increased CDC42 expression and activity in leukemia cells. In a mouse model of AML, the loss of Cdc42 abrogates MLL-AF9 -induced AML development. Furthermore, genetic ablation of CDC42 in both murine and human MLL-AF9 (MA9) cells decreased survival and induced differentiation of the clonogenic leukemia-initiating cells. We show that MLL-AF9 leukemia cells maintain cell polarity in the context of elevated Cdc42-guanosine triphosphate activity, similar to nonmalignant, young HSC/Ps. The loss of Cdc42 resulted in a shift to depolarized AML cells that is associated with a decrease in the frequency of symmetric and asymmetric cell divisions producing daughter cells capable of self-renewal. Importantly, we demonstrate that inducible CDC42 suppression in primary human AML cells blocks leukemia progression in a xenograft model. Thus, CDC42 loss suppresses AML cell polarity and division asymmetry, and CDC42 constitutes a useful target to alter leukemia-initiating cell fate for differentiation therapy. © 2017 by The American Society of Hematology.

  18. Growth-arrest-specific protein 2 inhibits cell division in Xenopus embryos.

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    Full Text Available Growth-arrest-specific 2 gene was originally identified in murine fibroblasts under growth arrest conditions. Furthermore, serum stimulation of quiescent, non-dividing cells leads to the down-regulation of gas2 and results in re-entry into the cell cycle. Cytoskeleton rearrangements are critical for cell cycle progression and cell division and the Gas2 protein has been shown to co-localize with actin and microtubules in interphase mammalian cells. Despite these findings, direct evidence supporting a role for Gas2 in the mechanism of cell division has not been reported.To determine whether the Gas2 protein plays a role in cell division, we over-expressed the full-length Gas2 protein and Gas2 truncations containing either the actin-binding CH domain or the tubulin-binding Gas2 domain in Xenopus laevis embryos. We found that both the full-length Gas2 protein and the Gas2 domain, but not the CH domain, inhibited cell division and resulted in multinucleated cells. The observation that Gas2 domain alone can arrest cell division suggests that Gas2 function is mediated by microtubule binding. Gas2 co-localized with microtubules at the cell cortex of Gas2-injected Xenopus embryos using cryo-confocal microscopy and co-sedimented with microtubules in cytoskeleton co-sedimentation assays. To investigate the mechanism of Gas2-induced cell division arrest, we showed, using a wound-induced contractile array assay, that Gas2 stabilized microtubules. Finally, electron microscopy studies demonstrated that Gas2 bundled microtubules into higher-order structures.Our experiments show that Gas2 inhibits cell division in Xenopus embryos. We propose that Gas2 function is mediated by binding and bundling microtubules, leading to cell division arrest.

  19. Erythroleukemia cells: variants inducible for hemoglobin synthesis without commitment to terminal cell division.

    Science.gov (United States)

    Marks, P A; Chen, Z; Banks, J; Rifkind, R A

    1983-04-01

    Murine erythroleukemia cells (MELC) are virus-transformed erythroid precursors that appear to be blocked at an erythroid precursor stage comparable to the erythroid colony-forming unit (CFU-e). These cells are useful in examining factors regulating terminal differentiation. Induced MELC are characterized by a coordinated program of gene expression, including commitment to terminal cell division, accumulation of globin mRNAs and corresponding hemoglobins, and accumulation of several other proteins, including the chromatin-associated protein H1(0). Two cloned variant cell lines, DR10 and R1, have been developed from inducer-sensitive DS19 cells by selection for inducer resistance. DR10 and R1 cells fail to display commitment to terminal cell division when cultured with dimethyl sulfoxide (Me2SO), hexamethylene bisacetamide (HMBA), or butyric acid. Both cell lines are induced by all three agents to accumulate H1(0). DR10 cells are resistant to Me2SO-mediated accumulation of hemoglobin but are sensitive to HMBA- or butyric acid-mediated accumulation. R1 cells are resistant to Me2SO- and HMBA-mediated accumulation of hemoglobin but are sensitive to butyric acid-mediated accumulation. Both DR10 and R1 are commitment-negative MELC variants, displaying variable responses to inducers with respect to other features of terminal erythroid cell differentiation.

  20. Long-term outcome of skeletal Class II Division 1 malocclusion treated with rapid palatal expansion and Kloehn cervical headgear.

    Science.gov (United States)

    Filho, Roberto M A Lima; Lima, Anna Letícia

    2003-08-01

    The treatment of a patient with a skeletal Class II Division 1 malocclusion, with excessive overjet, complete overbite, airway obstruction, and severe arch length deficiency in the mandibular dental arch, is presented. The maxilla was narrow compared with the mandible, and the posterior teeth were compensated, with the maxillary teeth inclined buccally and the mandibular teeth inclined lingually. The palatal vault was extremely high. Treatment included rapid palatal expansion to correct the transverse maxillary deficiency and Kloehn cervical headgear to correct the anteroposterior skeletal discrepancy. Long-term stability (12-year follow-up) is reported.

  1. Chromosome segregation impacts on cell growth and division site selection in Corynebacterium glutamicum.

    Directory of Open Access Journals (Sweden)

    Catriona Donovan

    Full Text Available Spatial and temporal regulation of bacterial cell division is imperative for the production of viable offspring. In many rod-shaped bacteria, regulatory systems such as the Min system and nucleoid occlusion ensure the high fidelity of midcell divisome positioning. However, regulation of division site selection in bacteria lacking recognizable Min and nucleoid occlusion remains less well understood. Here, we describe one such rod-shaped organism, Corynebacterium glutamicum, which does not always place the division septum precisely at midcell. Here we now show at single cell level that cell growth and division site selection are spatially and temporally regulated by chromosome segregation. Mutants defective in chromosome segregation have more variable cell growth and aberrant placement of the division site. In these mutants, division septa constrict over and often guillotine the nucleoid, leading to nonviable, DNA-free cells. Our results suggest that chromosome segregation or some nucleoid associated factor influences growth and division site selection in C. glutamicum. Understanding growth and regulation of C. glutamicum cells will also be of importance to develop strains for industrial production of biomolecules, such as amino acids.

  2. Patterns of cell division in the filamentous Desmidiaceae, close green algal relatives of land plants.

    Science.gov (United States)

    Hall, John D; McCourt, Richard M; Delwiche, Charles F

    2008-06-01

    Patterns of cell division and cross wall formation vary among the charophytes, green algae closely related to land plants. One group of charophytes, the conjugating green algae (Zygnematophyceae), is species-rich and is known to vary substantially in the mode of cell division, but the details of these cell division patterns and their phylogenetic distribution remain poorly understood. We studied cross wall development in filamentous Desmidiaceae (a clade of conjugating green algae) using differential interference contrast and fluorescence light microscopy. All strains investigated had centripetal encroachment of a septum, but with several different developmental patterns. In most cases, cell wall formation was delayed with respect to the Cosmarium-type of cell division, and the cross wall was modified considerably after deposition in a manner specific to the particular clade of filamentous desmids. These characteristics were mapped on a phylogeny estimated from a data set of two organellar genes, and the evolutionary implications of the character state distribution were evaluated. The data suggest a complex history of evolution of cell division in this lineage and also imply that Desmidium and Spondylosium are polyphyletic. These results indicate that many features of the cell shape are determined at the time of cell division in conjugating green algae.

  3. The NAC Domain Transcription Factors FEZ and SOMBRERO Control the Orientation of Cell Division Plane in Arabidopsis Root Stem Cells

    National Research Council Canada - National Science Library

    Willemsen, Viola; Bauch, Marion; Bennett, Tom; Campilho, Ana; Wolkenfelt, Harald; Xu, Jian; Haseloff, Jim; Scheres, Ben

    2008-01-01

    .... Here, we reveal one such mechanism in which FEZ and SOMBRERO (SMB), two plant-specific NAC-domain transcription factors, control the delicately tuned reorientation and timing of cell division in a subset of stem cells...

  4. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian

    2013-01-01

    Mouse fibroblasts cultured on 7-μm-long vertical nanowires are reported on page 4006 by C. N. Prinz and co-workers. Culturing cells on this kind of substrate interferes greatly with cell function, causing the cells to develop into widely different morphologies. The cells' division is impaired...

  5. How-to-Do-It: Hands-on Activities that Relate Mendelian Genetics to Cell Division.

    Science.gov (United States)

    McKean, Heather R.; Gibson, Linda S.

    1989-01-01

    Presented is an activity designed to connect Mendelian laws with the physical processes of cell division. Included are materials production, procedures and worksheets for the meiosis-mitosis game and a genetics game. (CW)

  6. ESCRT-III mediated cell division in Sulfolobus acidocaldarius –A reconstitution perspective

    Directory of Open Access Journals (Sweden)

    Tobias eHärtel

    2014-06-01

    Full Text Available In the framework of Synthetic Biology, it has become an intriguing question what would be the minimal representation of cell division machinery. Thus, it seems appropriate to compare how cell division is realized in different microorganisms. In particular, the cell division system of Crenarchaeota lacks certain proteins found in most bacteria and Euryarchaeota, such as FtsZ, MreB or the Min system. The Sulfolobaceae family encodes functional homologs of the eukaryotic proteins Vps4 and ESCRT-III. ESCRT-III is essential for several eukaryotic pathways, e.g. budding of intralumenal vesicles (ILVs, or cytokinesis, whereas Vps4 dissociates the ESCRT-III complex from the membrane. CdvA (Cell Division A is required for the recruitment of crenarchaeal ESCRT-III proteins to the membrane at mid-cell. The proteins polymerize and form a smaller structure during constriction. Thus, ESCRT-III mediated cell division in S. acidocaldarius shows functional analogies to the Z ring observed in prokaryotes like E. coli, which has recently begun to be reconstituted in vitro. In this short perspective, we discuss the possibility of building such an in vitro cell division system on basis of archaeal ESCRT-III.

  7. Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation.

    Science.gov (United States)

    Wu, Ling Juan; Ishikawa, Shu; Kawai, Yoshikazu; Oshima, Taku; Ogasawara, Naotake; Errington, Jeff

    2009-07-08

    Coordination of chromosome segregation and cytokinesis is crucial for efficient cell proliferation. In Bacillus subtilis, the nucleoid occlusion protein Noc protects the chromosomes by associating with the chromosome and preventing cell division in its vicinity. Using protein localization, ChAP-on-Chip and bioinformatics, we have identified a consensus Noc-binding DNA sequence (NBS), and have shown that Noc is targeted to about 70 discrete regions scattered around the chromosome, though absent from a large region around the replication terminus. Purified Noc bound specifically to an NBS in vitro. NBSs inserted near the replication terminus bound Noc-YFP and caused a delay in cell division. An autonomous plasmid carrying an NBS array recruited Noc-YFP and conferred a severe Noc-dependent inhibition of cell division. This shows that Noc is a potent inhibitor of division, but that its activity is strictly localized by the interaction with NBS sites in vivo. We propose that Noc serves not only as a spatial regulator of cell division to protect the nucleoid, but also as a timing device with an important role in the coordination of chromosome segregation and cell division.

  8. Periplasmic Acid Stress Increases Cell Division Asymmetry (Polar Aging of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Michelle W Clark

    Full Text Available Under certain kinds of cytoplasmic stress, Escherichia coli selectively reproduce by distributing the newer cytoplasmic components to new-pole cells while sequestering older, damaged components in cells inheriting the old pole. This phenomenon is termed polar aging or cell division asymmetry. It is unknown whether cell division asymmetry can arise from a periplasmic stress, such as the stress of extracellular acid, which is mediated by the periplasm. We tested the effect of periplasmic acid stress on growth and division of adherent single cells. We tracked individual cell lineages over five or more generations, using fluorescence microscopy with ratiometric pHluorin to measure cytoplasmic pH. Adherent colonies were perfused continually with LBK medium buffered at pH 6.00 or at pH 7.50; the external pH determines periplasmic pH. In each experiment, cell lineages were mapped to correlate division time, pole age and cell generation number. In colonies perfused at pH 6.0, the cells inheriting the oldest pole divided significantly more slowly than the cells inheriting the newest pole. In colonies perfused at pH 7.50 (near or above cytoplasmic pH, no significant cell division asymmetry was observed. Under both conditions (periplasmic pH 6.0 or pH 7.5 the cells maintained cytoplasmic pH values at 7.2-7.3. No evidence of cytoplasmic protein aggregation was seen. Thus, periplasmic acid stress leads to cell division asymmetry with minimal cytoplasmic stress.

  9. Investigation of roles for LRR-RLKs PNL1 and PNL2 in asymmetric cell division in Arabidopsis thaliana

    OpenAIRE

    Rodriguez, Maiti Celina

    2008-01-01

    Asymmetric cell division is a vital component of plant development. It enables cell differentiation and cell diversity. A key component of asymmetric cell division is cell signaling. Signals are believed to control polarization and orientation of asymmetric divisions during stomatal development. The findings of this report suggest that PNL1 and PNL2, two LRR-RLKs found in Arabidopsis and closely related to maize PAN1 LRR-RLK, are possibly involved in the signaling events occurring during the ...

  10. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    Science.gov (United States)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    2015-04-01

    The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  11. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate.

    Directory of Open Access Journals (Sweden)

    Jordi van Gestel

    2015-04-01

    Full Text Available The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called "van Gogh bundles" of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.

  12. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin

    OpenAIRE

    Strepp, René; Scholz, Sirkka; Kruse, Sven; Speth, Volker; Reski, Ralf

    1998-01-01

    Little is known about the division of eukaryotic cell organelles and up to now neither in animals nor in plants has a gene product been shown to mediate this process. A cDNA encoding a homolog of the bacterial cell division protein FtsZ, an ancestral tubulin, was isolated from the eukaryote Physcomitrella patens and used to disrupt efficiently the genomic locus in this terrestrial seedless plant. Seven out of 51 transgenics obtained were knockout plants generated by homologous recombination; ...

  13. Omics and modelling approaches for understanding regulation of asymmetric cell divisions in arabidopsis and other angiosperm plants.

    Science.gov (United States)

    Kajala, Kaisa; Ramakrishna, Priya; Fisher, Adam; Bergmann, Dominique C; De Smet, Ive; Sozzani, Rosangela; Weijers, Dolf; Brady, Siobhan M

    2014-06-01

    Asymmetric cell divisions are formative divisions that generate daughter cells of distinct identity. These divisions are coordinated by either extrinsic ('niche-controlled') or intrinsic regulatory mechanisms and are fundamentally important in plant development. This review describes how asymmetric cell divisions are regulated during development and in different cell types in both the root and the shoot of plants. It further highlights ways in which omics and modelling approaches have been used to elucidate these regulatory mechanisms. For example, the regulation of embryonic asymmetric divisions is described, including the first divisions of the zygote, formative vascular divisions and divisions that give rise to the root stem cell niche. Asymmetric divisions of the root cortex endodermis initial, pericycle cells that give rise to the lateral root primordium, procambium, cambium and stomatal cells are also discussed. Finally, a perspective is provided regarding the role of other hormones or regulatory molecules in asymmetric divisions, the presence of segregated determinants and the usefulness of modelling approaches in understanding network dynamics within these very special cells. Asymmetric cell divisions define plant development. High-throughput genomic and modelling approaches can elucidate their regulation, which in turn could enable the engineering of plant traits such as stomatal density, lateral root development and wood formation.

  14. Changes in skeletal and dental relationship in Class II Division I malocclusion after rapid maxillary expansion: a prospective study.

    Science.gov (United States)

    Baratieri, Carolina; Alves, Matheus; Bolognese, Ana Maria; Nojima, Matilde C G; Nojima, Lincoln I

    2014-01-01

    To assess skeletal and dental changes immediately after rapid maxillary expansion (RME) in Class II Division 1 malocclusion patients and after a retention period, using cone beam computed tomography (CBCT) imaging. Seventeen children with Class II, Division 1 malocclusion and maxillary skeletal transverse deficiency underwent RME following the Haas protocol. CBCT were taken before treatment (T1), at the end of the active expansion phase (T2) and after a retention period of 6 months (T3). The scanned images were measured anteroposteriorly (SNA, SNB, ANB, overjet and MR) and vertically (N-ANS, ANS-Me, N-Me and overbite). Significant differences were identified immediately after RME as the maxilla moved forward, the mandible moved downward, overjet increased and overbite decreased. During the retention period, the maxilla relapsed backwards and the mandible was displaced forward, leaving patients with an overall increase in anterior facial height. RME treatment allowed more anterior than inferior positioning of the mandible during the retention period, thus significantly improving Class II dental relationship in 75% of the patients evaluated.

  15. Changes in skeletal and dental relationship in Class II Division I malocclusion after rapid maxillary expansion: a prospective study

    Directory of Open Access Journals (Sweden)

    Carolina Baratieri

    2014-06-01

    Full Text Available OBJECTIVE: To assess skeletal and dental changes immediately after rapid maxillary expansion (RME in Class II Division 1 malocclusion patients and after a retention period, using cone beam computed tomography (CBCT imaging. METHODS: Seventeen children with Class II, Division 1 malocclusion and maxillary skeletal transverse deficiency underwent RME following the Haas protocol. CBCT were taken before treatment (T1, at the end of the active expansion phase (T2 and after a retention period of 6 months (T3. The scanned images were measured anteroposteriorly (SNA, SNB, ANB, overjet and MR and vertically (N-ANS, ANS-Me, N-Me and overbite. RESULTS: Significant differences were identified immediately after RME as the maxilla moved forward, the mandible moved downward, overjet increased and overbite decreased. During the retention period, the maxilla relapsed backwards and the mandible was displaced forward, leaving patients with an overall increase in anterior facial height. CONCLUSION: RME treatment allowed more anterior than inferior positioning of the mandible during the retention period, thus significantly improving Class II dental relationship in 75% of the patients evaluated.

  16. SEPT9_v1 Functions in Breast Cancer Cell Division

    Science.gov (United States)

    2012-01-01

    SEPT2 with respect to the microtubule cytoskeleton of Madin-Darby canine kidney (MDCK) cells. Immunofluorescence and live cell imaging of nonpolarized...quadruplicates. Live Cell Imaging and FRAP—Cells were grown on collagen- coated coverslips for 24 h at subconfluent density and imaged in phenol red-free...organization observed by immunofluorescence microscopy (Fig. 2B). Live cell imaging of HeLa cells treated with FCF also showed gradual changes in cellmor

  17. Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte

    Science.gov (United States)

    Dalton, Caroline M.; Carroll, John

    2013-01-01

    Summary A fundamental rule of cell division is that daughter cells inherit half the DNA complement and an appropriate proportion of cellular organelles. The highly asymmetric cell divisions of female meiosis present a different challenge because one of the daughters, the polar body, is destined to degenerate, putting at risk essential maternally inherited organelles such as mitochondria. We have therefore investigated mitochondrial inheritance during the meiotic divisions of the mouse oocyte. We find that mitochondria are aggregated around the spindle by a dynein-mediated mechanism during meiosis I, and migrate together with the spindle towards the oocyte cortex. However, at cell division they are not equally segregated and move instead towards the oocyte-directed spindle pole and are excluded from the polar body. We show that this asymmetrical inheritance in favour of the oocyte is not caused by bias in the spindle itself but is dependent on an intact actin cytoskeleton, spindle–cortex proximity, and cell cycle progression. Thus, oocyte-biased inheritance of mitochondria is a variation on rules that normally govern organelle segregation at cell division, and ensures that essential maternally inherited mitochondria are retained to provide ATP for early mammalian development. PMID:23659999

  18. Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review.

    Science.gov (United States)

    Pellestor, Franck; Gatinois, Vincent; Puechberty, Jacques; Geneviève, David; Lefort, Geneviève

    2014-12-01

    To review the discovery of chromothripsis and analyze its impact on human reproduction. Database and literature analysis. University hospital. Carriers of massive and complex chromosomal rearrangements. Cytogenetic analysis and molecular testing (fluorescence in situ hybridization, microarray, whole-genome sequencing). Chromothripsis occurrence in human gametes and preimplantation embryos, with regard to the potential causative mechanisms described in literature. Databases were searched for the literature published up to March 2014. Chromothripsis is characterized by the shattering of one (or a few) chromosome segments followed by a haphazard reassembly of the fragments generated, arising through a single initial catastrophic event. Several mechanisms involving abortive apoptosis, telomere erosion, mitotic errors, micronuclei formation, and p53 inactivation might cause chromothripsis. The remarkable point is that all these plausible mechanisms have been identified in the field of human reproduction as causal factors for reproductive failures and the genesis of chromosomal abnormalities. Specific features of gametogenesis and early embryonic development such as the weakness of cell cycle and mitosis checkpoints and the rapid kinetics of division in germ cells and early cleavage embryos may contribute to the emergence of chromothripsis. The discovery of this new class of massive chromosomal rearrangement has deeply modified our understanding on the genesis of complex genomic rearrangements. Data presented in this review support the assumption that chromothripsis could operate in human germlines and during early embryonic development. Chromothripsis might arise more frequently than previously thought in both gametogenesis and early human embryogenesis. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Division of Labor in Biofilms : the Ecology of Cell Differentiation

    NARCIS (Netherlands)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    The dense aggregation of cells on a surface, as seen in biofilms, inevitably results in both environmental and cellular heterogeneity. For example, nutrient gradients can trigger cells to differentiate into various phenotypic states. Not only do cells adapt physiologically to the local environmental

  20. Pentapeptide-rich peptidoglycan at the Bacillus subtilis cell-division site

    NARCIS (Netherlands)

    Morales Angeles, Danae; Liu, Yun; Hartman, Alwin M; Borisova, Marina; de Sousa Borges, Anabela; de Kok, Niels; Beilharz, Katrin; Veening, Jan-Willem; Mayer, Christoph; Hirsch, Anna K H; Scheffers, Dirk-Jan

    Peptidoglycan (PG), the major component of the bacterial cell wall, is one large macromolecule. To allow for the different curvatures of PG at cell poles and division sites, there must be local differences in PG architecture and eventually also chemistry. Here we report such local differences in the

  1. Determination of somatic and cancer stem cell self-renewing symmetric division rate using sphere assays.

    Directory of Open Access Journals (Sweden)

    Loic P Deleyrolle

    Full Text Available Representing a renewable source for cell replacement, neural stem cells have received substantial attention in recent years. The neurosphere assay represents a method to detect the presence of neural stem cells, however owing to a deficiency of specific and definitive markers to identify them, their quantification and the rate they expand is still indefinite. Here we propose a mathematical interpretation of the neurosphere assay allowing actual measurement of neural stem cell symmetric division frequency. The algorithm of the modeling demonstrates a direct correlation between the overall cell fold expansion over time measured in the sphere assay and the rate stem cells expand via symmetric division. The model offers a methodology to evaluate specifically the effect of diseases and treatments on neural stem cell activity and function. Not only providing new insights in the evaluation of the kinetic features of neural stem cells, our modeling further contemplates cancer biology as cancer stem-like cells have been suggested to maintain tumor growth as somatic stem cells maintain tissue homeostasis. Indeed, tumor stem cell's resistance to therapy makes these cells a necessary target for effective treatment. The neurosphere assay mathematical model presented here allows the assessment of the rate malignant stem-like cells expand via symmetric division and the evaluation of the effects of therapeutics on the self-renewal and proliferative activity of this clinically relevant population that drive tumor growth and recurrence.

  2. Evolutionary Cell Biology of Division Mode in the Bacterial Planctomycetes-Verrucomicrobia- Chlamydiae Superphylum.

    Science.gov (United States)

    Rivas-Marín, Elena; Canosa, Inés; Devos, Damien P

    2016-01-01

    Bacteria from the Planctomycetes, Verrucomicrobia, and Chlamydiae (PVC) superphylum are exceptions to the otherwise dominant mode of division by binary fission, which is based on the interaction between the FtsZ protein and the peptidoglycan (PG) biosynthesis machinery. Some PVC bacteria are deprived of the FtsZ protein and were also thought to lack PG. How these bacteria divide is still one of the major mysteries of microbiology. The presence of PG has recently been revealed in Planctomycetes and Chlamydiae, and proteins related to PG synthesis have been shown to be implicated in the division process in Chlamydiae, providing important insights into PVC mechanisms of division. Here, we review the historical lack of observation of PG in PVC bacteria, its recent detection in two phyla and its involvement in chlamydial cell division. Based on the detection of PG-related proteins in PVC proteomes, we consider the possible evolution of the diverse division mechanisms in these bacteria. We conclude by summarizing what is known and what remains to be understood about the evolutionary cell biology of PVC division modes.

  3. A theory of germinal center B cell selection, division, and exit.

    Science.gov (United States)

    Meyer-Hermann, Michael; Mohr, Elodie; Pelletier, Nadége; Zhang, Yang; Victora, Gabriel D; Toellner, Kai-Michael

    2012-07-26

    High-affinity antibodies are generated in germinal centers in a process involving mutation and selection of B cells. Information processing in germinal center reactions has been investigated in a number of recent experiments. These have revealed cell migration patterns, asymmetric cell divisions, and cell-cell interaction characteristics, used here to develop a theory of germinal center B cell selection, division, and exit (the LEDA model). According to this model, B cells selected by T follicular helper cells on the basis of successful antigen processing always return to the dark zone for asymmetric division, and acquired antigen is inherited by one daughter cell only. Antigen-retaining B cells differentiate to plasma cells and leave the germinal center through the dark zone. This theory has implications for the functioning of germinal centers because compared to previous models, high-affinity antibodies appear one day earlier and the amount of derived plasma cells is considerably larger. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Suppression of a thermosensitive zipA cell division mutant by altering amino acid metabolism.

    Science.gov (United States)

    Mendoza, Daniel Vega; Margolin, William

    2017-10-23

    ZipA is essential for cell division in Escherichia coli, acting early in the process to anchor polymers of FtsZ to the cytoplasmic membrane. Along with FtsA, FtsZ and ZipA form a proto-ring at midcell that recruits additional proteins to eventually build the division septum. Cells carrying the thermosensitive zipA1 allele divide fairly normally at 30°C in rich medium but cease dividing at temperatures above 34°C, forming long filaments. In a search for suppressors of zipA1, we found that deletions of specific genes involved in amino acid biosynthesis could partially cell rescue growth and division at 34°C or 37°C, but not at 42°C. Notably, although a diverse group of amino acid biosynthetic gene deletions could partially rescue growth of zipA1 cells at 34°C, only deletions of genes related to the biosynthesis of threonine, glycine, serine and methionine could rescue at 37°C. Adding exogenous pyridoxal 5-phosphate (PLP), a cofactor for many of the enzymes affected by this study, partially suppressed zipA1 thermosensitivity. For many of the deletions, PLP had an additive rescuing effect on zipA1 Moreover, added PLP partially suppressed the thermosensitivity of ftsQ and ftsK mutants, weakly suppressed an ftsI mutant, but failed to suppress ftsA or ftsZ thermosensitive mutants. Along with the ability of a deletion of metC to partially suppress ftsK, our results suggest that perturbations of amino acid metabolic pathways, particularly those that redirect the flow of carbon away from synthesis of threonine, glycine, or methionine, are able to partially rescue some cell division defects.IMPORTANCE Cell division of bacteria such as Escherichia coli is essential for their successful colonization. It is becoming increasingly clear that nutritional status and central metabolism can affect bacterial size and shape; for example, a metabolic enzyme (OpgH) can moonlight as a regulator of FtsZ, an essential cell division protein. Here, we demonstrate a link between amino

  5. Hoxb1b controls oriented cell division, cell shape and microtubule dynamics in neural tube morphogenesis

    Science.gov (United States)

    Žigman, Mihaela; Laumann-Lipp, Nico; Titus, Tom; Postlethwait, John; Moens, Cecilia B.

    2014-01-01

    Hox genes are classically ascribed to function in patterning the anterior-posterior axis of bilaterian animals; however, their role in directing molecular mechanisms underlying morphogenesis at the cellular level remains largely unstudied. We unveil a non-classical role for the zebrafish hoxb1b gene, which shares ancestral functions with mammalian Hoxa1, in controlling progenitor cell shape and oriented cell division during zebrafish anterior hindbrain neural tube morphogenesis. This is likely distinct from its role in cell fate acquisition and segment boundary formation. We show that, without affecting major components of apico-basal or planar cell polarity, Hoxb1b regulates mitotic spindle rotation during the oriented neural keel symmetric mitoses that are required for normal neural tube lumen formation in the zebrafish. This function correlates with a non-cell-autonomous requirement for Hoxb1b in regulating microtubule plus-end dynamics in progenitor cells in interphase. We propose that Hox genes can influence global tissue morphogenesis by control of microtubule dynamics in individual cells in vivo. PMID:24449840

  6. Pseudomonas aeruginosa Transmigrates at Epithelial Cell-Cell Junctions, Exploiting Sites of Cell Division and Senescent Cell Extrusion.

    Directory of Open Access Journals (Sweden)

    Guillaume Golovkine

    2016-01-01

    Full Text Available To achieve systemic infection, bacterial pathogens must overcome the critical and challenging step of transmigration across epithelial barriers. This is particularly true for opportunistic pathogens such as Pseudomonas aeruginosa, an agent which causes nosocomial infections. Despite extensive study, details on the mechanisms used by this bacterium to transmigrate across epithelial tissues, as well as the entry sites it uses, remain speculative. Here, using real-time microscopy and a model epithelial barrier, we show that P. aeruginosa employs a paracellular transmigration route, taking advantage of altered cell-cell junctions at sites of cell division or when senescent cells are expelled from the cell layer. Once a bacterium transmigrates, it is followed by a cohort of bacteria using the same entry point. The basal compartment is then invaded radially from the initial penetration site. Effective transmigration and propagation require type 4 pili, the type 3 secretion system (T3SS and a flagellum, although flagellum-deficient bacteria can occasionally invade the basal compartment from wounded areas. In the basal compartment, the bacteria inject the T3SS toxins into host cells, disrupting the cytoskeleton and focal contacts to allow their progression under the cells. Thus, P. aeruginosa exploits intrinsic host cell processes to breach the epithelium and invade the subcellular compartment.

  7. Ultrafast video imaging of cell division from zebrafish egg using multimodal microscopic system

    Science.gov (United States)

    Lee, Sung-Ho; Jang, Bumjoon; Kim, Dong Hee; Park, Chang Hyun; Bae, Gyuri; Park, Seung Woo; Park, Seung-Han

    2017-07-01

    Unlike those of other ordinary laser scanning microscopies in the past, nonlinear optical laser scanning microscopy (SHG, THG microscopy) applied ultrafast laser technology which has high peak powers with relatively inexpensive, low-average-power. It short pulse nature reduces the ionization damage in organic molecules. And it enables us to take bright label-free images. In this study, we measured cell division of zebrafish egg with ultrafast video images using multimodal nonlinear optical microscope. The result shows in-vivo cell division label-free imaging with sub-cellular resolution.

  8. Vegetative Cell Division and Nuclear Translocation in Three Algae Species of Netrium (Zygnematales, Chlorophyta

    Directory of Open Access Journals (Sweden)

    DIAN HENDRAYANTI

    2006-03-01

    Full Text Available Three species of Netrium oblongum, N. digitus v. latum, and N. interruptum were studied for their mode in the vegetative cell division and nuclear translocation during mitosis using light and fluorescence microscopy. The process of cell division in the three species began with the prominent constriction at the chloroplast in both semicells about half way from the apex. The constriction of chloroplast was mostly visible in N. digitus v. latum. Soon after nucleus divided, septum was formed across the cell and cytokinesis occurred. Observation with fluorescence microscope showed that the movement of nucleus moved back into the center of daughter cells was not always synchronous. Division of chloroplast in N. oblongum and N. digitus v. latum were different with that of N. interruptum. Chloroplast division in two former species occured following the movement of the nucleus down semicell. However, in N. interruptum, chloroplast divided later after nucleus occupied the position at the center of the daughter cells. Cell restoration started after the completion of mitosis and cytokinesis.

  9. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    Science.gov (United States)

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  10. Increased asymmetric and multi-daughter cell division in mechanically confined microenvironments.

    Directory of Open Access Journals (Sweden)

    Henry Tat Kwong Tse

    Full Text Available As the microenvironment of a cell changes, associated mechanical cues may lead to changes in biochemical signaling and inherently mechanical processes such as mitosis. Here we explore the effects of confined mechanical environments on cellular responses during mitosis. Previously, effects of mechanical confinement have been difficult to optically observe in three-dimensional and in vivo systems. To address this challenge, we present a novel microfluidic perfusion culture system that allows controllable variation in the level of confinement in a single axis allowing observation of cell growth and division at the single-cell level. The device is capable of creating precise confinement conditions in the vertical direction varying from high (3 µm to low (7 µm confinement while also varying the substrate stiffness (E = 130 kPa and 1 MPa. The Human cervical carcinoma (HeLa model with a known 3N+ karyotype was used for this study. For this cell line, we observe that mechanically confined cell cycles resulted in stressed cell divisions: (i delayed mitosis, (ii multi- daughter mitosis events (from 3 up to 5 daughter cells, (iii unevenly sized daughter cells, and (iv induction of cell death. In the highest confined conditions, the frequency of divisions producing more than two progeny was increased an astounding 50-fold from unconfined environments, representing about one half of all successful mitotic events. Notably, the majority of daughter cells resulting from multipolar divisions were viable after cytokinesis and, perhaps suggesting another regulatory checkpoint in the cell cycle, were in some cases observed to re-fuse with neighboring cells post-cytokinesis. The higher instances of abnormal mitosis that we report in confined mechanically stiff spaces, may lead to increased rates of abnormal, viable, cells in the population. This work provides support to a hypothesis that environmental mechanical cues influences structural mechanisms of mitosis

  11. Increased asymmetric and multi-daughter cell division in mechanically confined microenvironments.

    Science.gov (United States)

    Tse, Henry Tat Kwong; Weaver, Westbrook McConnell; Di Carlo, Dino

    2012-01-01

    As the microenvironment of a cell changes, associated mechanical cues may lead to changes in biochemical signaling and inherently mechanical processes such as mitosis. Here we explore the effects of confined mechanical environments on cellular responses during mitosis. Previously, effects of mechanical confinement have been difficult to optically observe in three-dimensional and in vivo systems. To address this challenge, we present a novel microfluidic perfusion culture system that allows controllable variation in the level of confinement in a single axis allowing observation of cell growth and division at the single-cell level. The device is capable of creating precise confinement conditions in the vertical direction varying from high (3 µm) to low (7 µm) confinement while also varying the substrate stiffness (E = 130 kPa and 1 MPa). The Human cervical carcinoma (HeLa) model with a known 3N+ karyotype was used for this study. For this cell line, we observe that mechanically confined cell cycles resulted in stressed cell divisions: (i) delayed mitosis, (ii) multi- daughter mitosis events (from 3 up to 5 daughter cells), (iii) unevenly sized daughter cells, and (iv) induction of cell death. In the highest confined conditions, the frequency of divisions producing more than two progeny was increased an astounding 50-fold from unconfined environments, representing about one half of all successful mitotic events. Notably, the majority of daughter cells resulting from multipolar divisions were viable after cytokinesis and, perhaps suggesting another regulatory checkpoint in the cell cycle, were in some cases observed to re-fuse with neighboring cells post-cytokinesis. The higher instances of abnormal mitosis that we report in confined mechanically stiff spaces, may lead to increased rates of abnormal, viable, cells in the population. This work provides support to a hypothesis that environmental mechanical cues influences structural mechanisms of mitosis such as

  12. Cytokinesis: cells go back and forth about division.

    Science.gov (United States)

    Dorn, Jonas F; Maddox, Amy Shaub

    2011-10-25

    An elegant quantitative model to explain cellular oscillations during cytokinesis reveals a novel function for polar blebbing and raises the question as to why cells live right on the edge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Aspm Specifically Maintains Symmetric Proliferative Divisions of Neuroepithelial Cells

    National Research Council Canada - National Science Library

    Jennifer L. Fish; Yoichi Kosodo; Wolfgang Enard; Svante Pääbo; Wieland B. Huttner

    2006-01-01

    The ASPM (abnormal spindle-like microcephaly-associated) protein has previously been implicated in the determination of human cerebral cortical size, but the cell biological basis of this regulation has not been...

  14. Pathogenic Chlamydia Lack a Classical Sacculus but Synthesize a Narrow, Mid-cell Peptidoglycan Ring, Regulated by MreB, for Cell Division.

    Directory of Open Access Journals (Sweden)

    George Liechti

    2016-05-01

    Full Text Available The peptidoglycan (PG cell wall is a peptide cross-linked glycan polymer essential for bacterial division and maintenance of cell shape and hydrostatic pressure. Bacteria in the Chlamydiales were long thought to lack PG until recent advances in PG labeling technologies revealed the presence of this critical cell wall component in Chlamydia trachomatis. In this study, we utilize bio-orthogonal D-amino acid dipeptide probes combined with super-resolution microscopy to demonstrate that four pathogenic Chlamydiae species each possess a ≤ 140 nm wide PG ring limited to the division plane during the replicative phase of their developmental cycles. Assembly of this PG ring is rapid, processive, and linked to the bacterial actin-like protein, MreB. Both MreB polymerization and PG biosynthesis occur only in the intracellular form of pathogenic Chlamydia and are required for cell enlargement, division, and transition between the microbe's developmental forms. Our kinetic, molecular, and biochemical analyses suggest that the development of this limited, transient, PG ring structure is the result of pathoadaptation by Chlamydia to an intracellular niche within its vertebrate host.

  15. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters.

    Science.gov (United States)

    Aldea, M; Garrido, T; Pla, J; Vicente, M

    1990-11-01

    The cell division ftsQAZ cluster and the ftsZ-dependent bolA morphogene of Escherichia coli are found to be driven by gearboxes, a distinct class of promoters characterized by showing an activity that is inversely dependent on growth rate. These promoters contain specific sequences upstream from the mRNA start point, and their -10 region is essential for the inverse growth rate dependence. Gearbox promoters are essential for driving ftsQAZ and bolA gene expression so that the encoded products are synthesized at constant amounts per cell independently of cell size. This mode of regulation would be expected for the expression of proteins that either play a regulatory role in cell division or form a stoichiometric component of the septum, a structure that, independently of cell size and growth rate, is produced once per cell cycle.

  16. Phased cell division, specific division rates and other biological observations of Dinophysis populations in sub-surface layers off the south coast of Ireland

    Science.gov (United States)

    Farrell, Hazel; Velo-Suarez, Lourdes; Reguera, Beatriz; Raine, Robin

    2014-03-01

    The proportions of viable cells of Dinophysis spp. that were paired (dividing) and recently divided during a cell cycle were measured on populations of D. acuta and D. acuminata observed off the south coast of Ireland in July 2007 and July 2009. Both species exhibited phased cell division in 2009 with maximum frequency of division (fmax) 2 h after sunrise. Different patterns of division (timing of fmax) were shown by D. acuta in 2007, when the population aggregated in a thin layer was transported by a coastal jet flow. High resolution (decimetre-scale) profiles within the thin layer showed large differences in the vertical distribution of biological properties (feeding status, mortality). Values of the specific growth rate μ were compared to estimates derived in similar fashion from observations on Dinophysis populations elsewhere. Different patterns exhibited by the same species in different regions may be attributed to adaptations to latitudinal differences (length of photoperiod). The question of whether phased cell division always occurs in Dinophysis populations, and the incorporation of the potential specific division rate into models of Dinophysis growth are discussed. Comprehensive field data sets demonstrate the impact of the results on the coherence of Dinophysis populations during their transport along the Irish coast in jet-like flows towards sites of intensive shellfish culture.

  17. Cell division and the ESCRT complex: A surprise from the archaea.

    Science.gov (United States)

    Ettema, Thijs Jg; Bernander, Rolf

    2009-01-01

    The Archaea constitute the third domain of life, a separate evolutionary lineage together with the Bacteria and the Eukarya.1 Species belonging to the Archaea contain a surprising mix of bacterial (metabolism, life style, genomic organization) and eukaryotic (replication, transcription, translation) features.2 The archaeal kingdom comprises two main phyla, the Crenarchaeota and the Euryarchaeota. Regarding the cell division process in archaeal species (reviewed in ref. 3), members of the Euryarchaeota rely on an FtsZ-based cell division mechanism4 whereas, previously, no division genes had been detected in the crenarchaea. However, we recently reported the discovery of the elusive cell division machinery in crenarchaea from the genus Sulfolobus.5 The minimal machinery consists of three genes, which we designated cdvA, B and C (for cell division), organized into an operon that is widely conserved among crenarchaea. The gene products polymerize between segregating nucleoids at the early mitotic stage, forming a complex that remains associated with the leading edge of constriction throughout cytokinesis. Interestingly, CdvB and CdvC were shown to be related to the eukaryotic ESCRT-III protein sorting machinery (reviewed in ref. 6), indicating shared common ancestry and mechanistic similarities to endosomal vesicle formation and viral (HIV) budding in eukaryotes. We also demonstrated that the cdv operon is subject to checkpoint-like regulation, and that the genes display a complementary phylogenetic distribution within the Archaea domain relative to FtsZ-dependent division systems.5 Here, the findings are further explored and discussed, and topics for further investigation are suggested.

  18. Control of the meiotic cell division program in plants

    NARCIS (Netherlands)

    Wijnker, T.G.; Schnittger, A.

    2013-01-01

    While the question of why organisms reproduce sexually is still a matter of controversy, it is clear that the foundation of sexual reproduction is the formation of gametes with half the genomic DNA content of a somatic cell. This reduction in genomic content is accomplished through meiosis that, in

  19. Loss of growth homeostasis by genetic decoupling of cell division from biomass growth: implication for size control mechanisms.

    Science.gov (United States)

    Schmidt-Glenewinkel, Hannah; Barkai, Naama

    2014-12-23

    Growing cells adjust their division time with biomass accumulation to maintain growth homeostasis. Size control mechanisms, such as the size checkpoint, provide an inherent coupling of growth and division by gating certain cell cycle transitions based on cell size. We describe genetic manipulations that decouple cell division from cell size, leading to the loss of growth homeostasis, with cells becoming progressively smaller or progressively larger until arresting. This was achieved by modulating glucose influx independently of external glucose. Division rate followed glucose influx, while volume growth was largely defined by external glucose. Therefore, the coordination of size and division observed in wild-type cells reflects tuning of two parallel processes, which is only refined by an inherent feedback-dependent coupling. We present a class of size control models explaining the observed breakdowns of growth homeostasis. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  20. Effect of anolyte on growth and division of Chinese hamster cancerous cells

    Directory of Open Access Journals (Sweden)

    saeed Mohammadzadeh

    2009-04-01

    Full Text Available Background: At present, cancer can be controlled by chemotherapy, but unfortunately, this method has strong side effects and scientist try to reduce them using different substances. 2 kinds of activated water called anolyte and catholyte have electrochemical property and antibacterial and oxidative properties respectively. The aim of this research is to study the effect of anolyte on growth and division of cancerous cells. Materials and Methods: In this research, different concentration of anolyte, 1 . 7, 2, 5,8.3 and 10 percent of anolyte and control with 2 and 5 percent of serum physiologic were added on converted cell of Chinese hamster (line b11dii-FAF28 clone 237 in 12 plastic and 15 glass flasks. After adding, converted cell was counted with the help of hoemocytometer and microscope. Data of experiment analyzed and results compared by t test, as well as using Excell software their diagrams were drawn. Results: The results indicated that anolyte had significant effect on cancer cells. In concentration of 1.7% cell division was decreased but in concentration of 8.3 %, division of cancerous cells was blocked and cells were fixed. Conclusion: Considering the low amount of sodium chloride in anolyte, it seems that, this solution (Anolyte hasn’t side effects and advers effect on the cells body.

  1. The mechanics of microtubule networks in cell division.

    Science.gov (United States)

    Forth, Scott; Kapoor, Tarun M

    2017-06-05

    The primary goal of a dividing somatic cell is to accurately and equally segregate its genome into two new daughter cells. In eukaryotes, this process is performed by a self-organized structure called the mitotic spindle. It has long been appreciated that mechanical forces must be applied to chromosomes. At the same time, the network of microtubules in the spindle must be able to apply and sustain large forces to maintain spindle integrity. Here we consider recent efforts to measure forces generated within microtubule networks by ensembles of key proteins. New findings, such as length-dependent force generation, protein clustering by asymmetric friction, and entropic expansion forces will help advance models of force generation needed for spindle function and maintaining integrity. © 2017 Forth and Kapoor.

  2. Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species.

    Science.gov (United States)

    Mesejo, Carlos; Yuste, Roberto; Reig, Carmina; Martínez-Fuentes, Amparo; Iglesias, Domingo J; Muñoz-Fambuena, Natalia; Bermejo, Almudena; Germanà, M Antonietta; Primo-Millo, Eduardo; Agustí, Manuel

    2016-06-01

    Citrus is a wide genus in which most of the cultivated species and cultivars are natural parthenocarpic mutants or hybrids (i.e. orange, mandarin, tangerine, grapefruit). The autonomous increase in GA1 ovary concentration during anthesis was suggested as being the stimulus responsible for parthenocarpy in Citrus regardless of the species. To determine the exact GA-role in parthenocarpic fruit set, the following hypothesis was tested: GA triggers and maintains cell division in ovary walls causing fruit set. Obligate and facultative parthenocarpic Citrus species were used as a model system because obligate parthenocarpic Citrus sp (i.e. Citrus unshiu) have higher GA levels and better natural parthenocarpic fruit set compared to other facultative parthenocarpic Citrus (i.e. Citrus clementina). The autonomous activation of GA synthesis in C. unshiu ovary preceded cell division and CYCA1.1 up-regulation (a G2-stage cell cycle regulator) at anthesis setting a high proportion of fruits, whereas C. clementina lacked this GA-biosynthesis and CYCA1.1 up-regulation failing in fruit set. In situ hybridization experiments revealed a tissue-specific expression of GA20ox2 only in the dividing tissues of the pericarp. Furthermore, CYCA1.1 expression correlated endogenous GA1 content with GA3 treatment, which stimulated cell division and ovary growth, mostly in C. clementina. Instead, paclobutrazol (GA biosynthesis inhibitor) negated cell division and reduced fruit set. Results suggest that in parthenocarpic citrus the specific GA synthesis in the ovary walls at anthesis triggers cell division and, thus, the necessary ovary growth rate to set fruit. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Building the perfect parasite: cell division in apicomplexa.

    Directory of Open Access Journals (Sweden)

    Boris Striepen

    2007-06-01

    Full Text Available Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of the structures formed during their intracellular development have made apicomplexans the darling of electron microscopists. Dramatic technological progress over the last decade has transformed apicomplexans into respectable genetic model organisms. Extensive genomic resources are now available for many apicomplexan species. At the same time, parasite transfection has enabled researchers to test the function of specific genes through reverse and forward genetic approaches with increasing sophistication. Transfection also introduced the use of fluorescent reporters, opening the field to dynamic real time microscopic observation. Parasite cell biologists have used these tools to take a fresh look at a classic problem: how do apicomplexans build the perfect invasion machine, the zoite, and how is this process fine-tuned to fit the specific niche of each pathogen in this ancient and very diverse group? This work has unearthed a treasure trove of novel structures and mechanisms that are the focus of this review.

  4. Exploring Middle School Students' Conceptions of the Relationship between Genetic Inheritance and Cell Division

    Science.gov (United States)

    Williams, Michelle; DeBarger, Angela Haydel; Montgomery, Beronda L.; Zhou, Xuechun; Tate, Erika

    2012-01-01

    This study examines students' understanding of the normative connections between key concepts of cell division, including both mitosis and meiosis, and underlying biological principles that are critical for an in-depth understanding of genetic inheritance. Using a structural equation modeling method, we examine middle school students'…

  5. Tracking the big ones : novel dynamics of organelles and macromolecular complexes during cell division and aging

    NARCIS (Netherlands)

    Deventer, Sjoerd Jan van

    2015-01-01

    In this Thesis we address two important aspects of protein dynamics: protein synthesis and distribution upon cell division and dynamics of the protein degradation machinery. In Chapter 2, we present novel technology (Recombination-Induced Tag Exchange)to distinguish and simultaneously track old and

  6. Regulation of DNA synthesis and cell division by polyamines in Catharanthus roseus suspension cultures

    Science.gov (United States)

    R. Minocha; S.C. Minocha; A. Komamine; W.C. Shortle

    1991-01-01

    Various inhibitors of polyamine biosynthesis were used to study the role of polyamines in DNA synthesis and cell division in suspension cultures of Catharanthus roseus (L) G. Don. Arginine decarboxylase (ADC; EC 4.1.1.19) was the major enzyme responsible for putrescine production. DL α-difluoromethylarginine inhibited ADC activity, cellular...

  7. FtsZ-less prokaryotic cell division as well as FtsZ- and dynamin-less chloroplast and non-photosynthetic plastid division

    Directory of Open Access Journals (Sweden)

    Shin-Ya eMiyagishima

    2014-09-01

    Full Text Available The chloroplast division machinery is a mixture of a stromal FtsZ-based complex descended from a cyanobacterial ancestor of chloroplasts and a cytosolic dynamin-related protein (DRP 5B-based complex derived from the eukaryotic host. Molecular genetic studies have shown that each component of the division machinery is normally essential for normal chloroplast division. However, several exceptions have been found. In the absence of the FtsZ ring, nonphotosynthetic plastids are able to proliferate, likely by elongation and budding. Depletion of DRP5B impairs, but does not stop chloroplast division. Chloroplasts in glaucophytes, which possesses a peptidoglycan (PG layer, divide without DRP5B. Certain parasitic eukaryotes possess nonphotosynthetic plastids of secondary endosymbiotic origin, but neither FtsZ nor DRP5B is encoded in their genomes. Elucidation of the FtsZ- and/or DRP5B-less chloroplast division mechanism will lead to a better understanding of the function and evolution of the chloroplast division machinery and the finding of the as-yet-unknown mechanism that is likely involved in chloroplast division. Recent studies have shown that FtsZ was lost from a variety of prokaryotes, many of which lost PG by regressive evolution. In addition, even some of the FtsZ-bearing bacteria are able to divide when FtsZ and PG are depleted experimentally. In some cases, alternative mechanisms for cell division, such as budding by an increase of the cell surface-to-volume ratio, are proposed. Although PG is believed to have been lost from chloroplasts other than in glaucophytes, there is some indirect evidence for the existence of PG in chloroplasts. Such information is also useful for understanding how nonphotosynthetic plastids are able to divide in FtsZ-depleted cells and the reason for the retention of FtsZ in chloroplast division. Here we summarize information to facilitate analyses of FtsZ- and/or DRP5B-less chloroplast and nonphotosynthetic plastid

  8. Sugar beet guard cell protoplasts demonstrate a remarkable capacity for cell division enabling applications in stomatal physiology and molecular breeding

    NARCIS (Netherlands)

    Hall, R.D.; Riksen-Bruinsma, T.; Weyens, G.; LefObvre, M.; Dunwell, J.M.; Tunen, van A.; Krens, F.A.

    1997-01-01

    A highly-efficient protocol for the large-scale isolation of guard cell protoplasts from sugar beet (Beta vulgaris L.) has been developed. Optimization of conditions for culturing these protoplasts resulted in extensive cell division and colony formation, at frequencies exceeding 50%. Plants can

  9. Partitioning and Exocytosis of Secretory Granules during Division of PC12 Cells

    Directory of Open Access Journals (Sweden)

    Nickolay Vassilev Bukoreshtliev

    2012-01-01

    Full Text Available The biogenesis, maturation, and exocytosis of secretory granules in interphase cells have been well documented, whereas the distribution and exocytosis of these hormone-storing organelles during cell division have received little attention. By combining ultrastructural analyses and time-lapse microscopy, we here show that, in dividing PC12 cells, the prominent peripheral localization of secretory granules is retained during prophase but clearly reduced during prometaphase, ending up with only few peripherally localized secretory granules in metaphase cells. During anaphase and telophase, secretory granules exhibited a pronounced movement towards the cell midzone and, evidently, their tracks colocalized with spindle microtubules. During cytokinesis, secretory granules were excluded from the midbody and accumulated at the bases of the intercellular bridge. Furthermore, by measuring exocytosis at the single granule level, we showed, that during all stages of cell division, secretory granules were competent for regulated exocytosis. In conclusion, our data shed new light on the complex molecular machinery of secretory granule redistribution during cell division, which facilitates their release from the F-actin-rich cortex and active transport along spindle microtubules.

  10. miR-430 regulates oriented cell division during neural tube development in zebrafish.

    Science.gov (United States)

    Takacs, Carter M; Giraldez, Antonio J

    2016-01-15

    MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis. Copyright © 2015. Published by Elsevier Inc.

  11. Microgravity effects during fertilization, cell division, development, and calcium metabolism in sea urchins

    Science.gov (United States)

    Schatten, Heide

    1996-01-01

    The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.

  12. The exon junction complex component Magoh controls brain size by regulating neural stem cell division

    Science.gov (United States)

    Silver, Debra L.; Watkins-Chow, Dawn E.; Schreck, Karisa C.; Pierfelice, Tarran J.; Larson, Denise M.; Burnetti, Anthony J.; Liaw, Hung-Jiun; Myung, Kyungjae; Walsh, Christopher A.; Gaiano, Nicholas; Pavan, William J.

    2010-01-01

    Summary Brain structure and size requires precise division of neural stem cells (NSCs), which self-renew and generate intermediate neural progenitors (INPs) and neurons. The factors that regulate NSCs remain poorly understood, as do mechanistic explanations of how aberrant NSC division causes reduced brain size as seen in microcephaly. Here we demonstrate that Magoh, a component of the exon junction complex (EJC) that binds RNA, controls mouse cerebral cortical size by regulating NSC division. Magoh haploinsufficiency causes microcephaly due to INP depletion and neuronal apoptosis. Defective mitosis underlies these phenotypes as depletion of EJC components disrupts mitotic spindle orientation and integrity, chromosome number, and genomic stability. In utero rescue experiments revealed that a key function of Magoh is to control levels of the microcephaly-associated protein, LIS1, during neurogenesis. This study uncovers new requirements for the EJC in brain development, NSC maintenance, and mitosis, thus implicating this complex in the pathogenesis of microcephaly. PMID:20364144

  13. Force generation by a dynamic Z-ring in Escherichia coli cell division.

    Science.gov (United States)

    Allard, Jun F; Cytrynbaum, Eric N

    2009-01-06

    FtsZ, a bacterial homologue of tubulin, plays a central role in bacterial cell division. It is the first of many proteins recruited to the division site to form the Z-ring, a dynamic structure that recycles on the time scale of seconds and is required for division to proceed. FtsZ has been recently shown to form rings inside tubular liposomes and to constrict the liposome membrane without the presence of other proteins, particularly molecular motors that appear to be absent from the bacterial proteome. Here, we propose a mathematical model for the dynamic turnover of the Z-ring and for its ability to generate a constriction force. Force generation is assumed to derive from GTP hydrolysis, which is known to induce curvature in FtsZ filaments. We find that this transition to a curved state is capable of generating a sufficient force to drive cell-wall invagination in vivo and can also explain the constriction seen in the in vitro liposome experiments. Our observations resolve the question of how FtsZ might accomplish cell division despite the highly dynamic nature of the Z-ring and the lack of molecular motors.

  14. The significant role of centrosomes in stem cell division and differentiation.

    Science.gov (United States)

    Schatten, Heide; Sun, Qing-Yuan

    2011-08-01

    The role of centrosomes in stem cell division has recently been highlighted and further ascribes important functions to centrosomes in stem cell maintenance, cellular differentiation, and development. Advanced cell and molecular studies coupled with immunofluorescence, electron microscopy, and live cell imaging of specific centrosome proteins have contributed greatly to our knowledge of centrosome composition, structure, and dynamics and have uncovered new insights into mechanisms of centrosome functions in asymmetric cell division. The establishment of asymmetry and differential positioning of mother and daughter centrosomes during stem cell mitosis is important for allowing one cell to maintain stem cell characteristics while the sibling cell undergoes differentiation. Another key role for centrosomes has been revealed in primary cilia of embryonic stem cells that play significant roles in cellular signaling and are therefore critically important for stem cell decisions. Studies of signaling through primary cilia may contribute important information that may aid in the production of specific cells that are suitable for tissue repair and regeneration in the field of regenerative medicine.

  15. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    Directory of Open Access Journals (Sweden)

    Stefania Castagnetti

    2010-10-01

    Full Text Available Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  16. Cell growth, division, and death in cohesive tissues: A thermodynamic approach

    Science.gov (United States)

    Yabunaka, Shunsuke; Marcq, Philippe

    2017-08-01

    Cell growth, division, and death are defining features of biological tissues that contribute to morphogenesis. In hydrodynamic descriptions of cohesive tissues, their occurrence implies a nonzero rate of variation of cell density. We show how linear nonequilibrium thermodynamics allows us to express this rate as a combination of relevant thermodynamic forces: chemical potential, velocity divergence, and activity. We illustrate the resulting effects of the nonconservation of cell density on simple examples inspired by recent experiments on cell monolayers, considering first the velocity of a spreading front, and second an instability leading to mechanical waves.

  17. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface

    Science.gov (United States)

    Siegrist, M. Sloan; Swarts, Benjamin M.; Fox, Douglas M.; Lim, Shion An; Bertozzi, Carolyn R.

    2015-01-01

    The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology. PMID:25725012

  18. Rapid and Efficient Generation of Regulatory T Cells to Commensal Antigens in the Periphery

    Directory of Open Access Journals (Sweden)

    Katherine Nutsch

    2016-09-01

    Full Text Available Commensal bacteria shape the colonic regulatory T (Treg cell population required for intestinal tolerance. However, little is known about this process. Here, we use the transfer of naive commensal-reactive transgenic T cells expressing colonic Treg T cell receptors (TCRs to study peripheral Treg (pTreg cell development in normal hosts. We found that T cells were activated primarily in the distal mesenteric lymph node. Treg cell induction was rapid, generating >40% Foxp3+ cells 1 week after transfer. Contrary to prior reports, Foxp3+ cells underwent the most cell divisions, demonstrating that pTreg cell generation can be the dominant outcome from naive T cell activation. Moreover, Notch2-dependent, but not Batf3-dependent, dendritic cells were involved in Treg cell selection. Finally, neither deletion of the conserved nucleotide sequence 1 (CNS1 region in Foxp3 nor blockade of TGF-β (transforming growth factor-β-receptor signaling completely abrogated Foxp3 induction. Thus, these data show that pTreg cell selection to commensal bacteria is rapid, is robust, and may be specified by TGF-β-independent signals.

  19. Effects of Copaifera duckei Dwyer oleoresin on the cell wall and cell division of Bacillus cereus.

    Science.gov (United States)

    Gomes Dos Santos, Elizabeth Cristina; Donnici, Claudio Luis; Camargos, Elizabeth Ribeiro da Silva; Augusto de Rezende, Adriana; Andrade, Eloisa Helena de Aguiar; Soares, Luiz Alberto Lira; Farias, Luiz de Macêdo; Roque de Carvalho, Maria Auxiliadora; Almeida, Maria das Graças

    2013-07-01

    The aim of this work was to evaluate the antibacterial activity of Copaifera duckei oleoresin and to determine its possible mechanism of action against bacteria of clinical and food interest. The antibacterial activity was determined by agar diffusion and dilution methods; the mechanism of action by transmission electron microscopy and by SDS-PAGE; the bioactive compounds by bioautography; and the chemical analysis by GC/MS. Oleoresin showed activity against nine of the 11 strains of bacteria tested. Bacillus cereus was the most sensitive, with a MIC corresponding to 0.03125 mg ml(-1) and with a bactericidal action. Oleoresin acted on the bacterial cell wall, removing proteins and the S-layer, and interfering with the cell-division process. This activity probably can be attributed to the action of terpenic compounds, among them the bisabolene compound. Gram-negative bacteria tested were not inhibited. C. duckei oleoresin is a potential antibacterial, suggesting that this oil could be used as a therapeutic alternative, mainly against B. cereus.

  20. Localization of cytokinesis factors to the future cell division site by microtubule-dependent transport.

    Science.gov (United States)

    Atilgan, Erdinc; Burgess, David; Chang, Fred

    2012-11-01

    The mechanism by which spindle microtubules (MTs) determine the site of cell division in animal cells is still highly controversial. Putative cytokinesis "signals" have been proposed to be positioned by spindle MTs at equatorial cortical regions to increase cortical contractility and/or at polar regions to decrease contractility [Rappaport, 1986; von Dassow, 2009]. Given the relative paucity of MTs at the future division site, it has not been clear how MTs localize cytokinesis factors there. Here, we test cytokinesis models using computational and experimental approaches. We present a simple lattice-based model in which signal-kinesin complexes move by transient plus-end directed movements on MTs interspersed with occasions of uniform diffusion in the cytoplasm. In simulations, complexes distribute themselves initially at the spindle midzone and then move on astral MTs to accumulate with time at the equatorial cortex. Simulations accurately predict cleavage patterns of cells with different geometries and MT arrangements and elucidate several experimental observations that have defied easy explanation by previous models. We verify this model with experiments on indented sea urchin zygotes showing that cells often divide perpendicular to the spindle at sites distinct from the indentations. These studies support an equatorial stimulation model and provide a simple mechanism explaining how cytokinesis factors localize to the future division site. Copyright © 2012 Wiley Periodicals, Inc.

  1. Observation of polyphosphate bodies and DNA during the cell division cycle of Synechococcus elongatus PCC 7942.

    Science.gov (United States)

    Seki, Y; Nitta, K; Kaneko, Y

    2014-01-01

    Although most cyanobacterial cells contain prominent polyphosphate bodies in the central cytoplasmic area enclosed by the peripheral thylakoid membranes, their roles are not fully understood. Storing phosphate for nucleotide production might be one of their important roles in survival of the cells. As a step towards identifying a possible contribution of the polyphosphate bodies to DNA synthesis, the relationship between polyphosphate bodies and DNA throughout cell division cycle of Synechococcus elongatus PCC 7942 cells cultured under light/dark cycles was investigated with light and electron microscopy. During the dark period, the average size of polyphosphate bodies increased gradually without significant change in their number and distribution. However, during the light period, the number of polyphosphate bodies increased, while the size of each polyphosphate body decreased and cells elongated until the end of the light period, when most cells divided. The ratio of the content of polyphosphate bodies to cell length increased gradually during the dark period and decreased during the light period. Hoechst 33342-stained DNA appeared diffuse during the dark period, but in the light period it became condensed and eventually formed a wavy, rope-like structure prior to cell division. Close association between fibres containing DNA and polyphosphate bodies was demonstrated by TEM using DNA-specific staining and BrdU labelling. These regular coordinated changes of polyphosphate bodies and DNA shape during the cell division cycle, together with their intimate interaction, imply a role of polyphosphate bodies in supplying material for DNA. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Role of the Number of Microtubules in Chromosome Segregation during Cell Division

    CERN Document Server

    Bertalan, Zsolt; La Porta, Caterina A M; Zapperi, Stefano

    2015-01-01

    Faithful segregation of genetic material during cell division requires alignment of chromosomes between two spindle poles and attachment of their kinetochores to each of the poles. Failure of these complex dynamical processes leads to chromosomal instability (CIN), a characteristic feature of several diseases including cancer. While a multitude of biological factors regulating chromosome congression and bi-orientation have been identified, it is still unclear how they are integrated so that coherent chromosome motion emerges from a large collection of random and deterministic processes. Here we address this issue by a three dimensional computational model of motor-driven chromosome congression and bi-orientation during mitosis. Our model reveals that successful cell division requires control of the total number of microtubules: if this number is too small bi-orientation fails, while if it is too large not all the chromosomes are able to congress. The optimal number of microtubules predicted by our model compa...

  3. An interplay of migratory and division forces as a generic mechanism for stem cell patterns

    CERN Document Server

    Hannezo, Edouard; Joanny, Jean-François

    2015-01-01

    In many adult tissues, stem cells and differentiated cells are not homogeneously distributed : stem cells are arranged in periodic "niches", and differentiated cells are constantly produced and migrate out of these niches. In this article, we provide a general theoretical framework to study mixtures of dividing and actively migrating particles, which we apply to biological tissues. We show in particular that the interplay between the stresses arising from active cell migration and stem cell division give rise to robust stem cell patterns. The instability of the tissue leads to spatial patterns which are either steady or oscillating in time. The wavelength of the instability has an order of magnitude consistent with the biological observations. We also discuss the implications of these results for future in vitro and in vivo experiments.

  4. Divisome and segrosome components of Deinococcus radiodurans interact through cell division regulatory proteins.

    Science.gov (United States)

    Maurya, Ganesh K; Modi, Kruti; Misra, Hari S

    2016-08-01

    The Deinococcus radiodurans genome encodes many of the known components of divisome as well as four sets of genome partitioning proteins, ParA and ParB on its multipartite genome. Interdependent regulation of cell division and genome segregation is not understood. In vivo interactions of D. radiodurans' sdivisome, segrosome and other cell division regulatory proteins expressed on multicopy plasmids were studied in Escherichia coli using a bacterial two-hybrid system and confirmed by co-immunoprecipitation with the proteins made in E. coli. Many of these showed interactions both with the self and with other proteins. For example, DrFtsA, DrFtsZ, DrMinD, DrMinC, DrDivIVA and all four ParB proteins individually formed at least homodimers, while DrFtsA interacted with DrFtsZ, DrFtsW, DrFtsE, DrFtsK and DrMinD. DrMinD also showed interaction with DrFtsW, DrFtsE and DrMinC. Interestingly, septum site determining protein, DrDivIVA showed interactions with secondary genome ParAs as well as ParB1, ParB3 and ParB4 while DrMinC interacted with ParB1 and ParB3. PprA, a pleiotropic protein recently implicated in cell division regulation, neither interacted with divisome proteins nor ParBs but interacted at different levels with all four ParAs. These results suggest the formation of independent multiprotein complexes of 'DrFts' proteins, segrosome proteins and cell division regulatory proteins, and these complexes could interact with each other through DrMinC and DrDivIVA, and PprA in D. radiodurans.

  5. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli.

    Science.gov (United States)

    Lee, Dae-Hee; Feist, Adam M; Barrett, Christian L; Palsson, Bernhard Ø

    2011-01-01

    Adaptive laboratory evolution (ALE) under controlled conditions has become a valuable approach for the study of the genetic and biochemical basis for microbial adaptation under a given selection pressure. Conventionally, the timescale in ALE experiments has been set in terms of number of generations. As mutations are believed to occur primarily during cell division in growing cultures, the cumulative number of cell divisions (CCD) would be an alternative way to set the timescale for ALE. Here we show that in short-term ALE (up to 40-50 days), Escherichia coli, under growth rate selection pressure, was found to undergo approximately 10(11.2) total cumulative cell divisions in the population to produce a new stable growth phenotype that results from 2 to 8 mutations. Continuous exposure to a low level of the mutagen N-methyl-N'-nitro-N-nitrosoguanidine was found to accelerate this timescale and led to a superior growth rate phenotype with a much larger number of mutations as determined with whole-genome sequencing. These results would be useful for the fundamental kinetics of the ALE process in designing ALE experiments and provide a basis for its quantitative description.

  6. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Dae-Hee Lee

    Full Text Available Adaptive laboratory evolution (ALE under controlled conditions has become a valuable approach for the study of the genetic and biochemical basis for microbial adaptation under a given selection pressure. Conventionally, the timescale in ALE experiments has been set in terms of number of generations. As mutations are believed to occur primarily during cell division in growing cultures, the cumulative number of cell divisions (CCD would be an alternative way to set the timescale for ALE. Here we show that in short-term ALE (up to 40-50 days, Escherichia coli, under growth rate selection pressure, was found to undergo approximately 10(11.2 total cumulative cell divisions in the population to produce a new stable growth phenotype that results from 2 to 8 mutations. Continuous exposure to a low level of the mutagen N-methyl-N'-nitro-N-nitrosoguanidine was found to accelerate this timescale and led to a superior growth rate phenotype with a much larger number of mutations as determined with whole-genome sequencing. These results would be useful for the fundamental kinetics of the ALE process in designing ALE experiments and provide a basis for its quantitative description.

  7. Citral induces auxin and ethylene-mediated malformations and arrests cell division in Arabidopsis thaliana roots.

    Science.gov (United States)

    Graña, E; Sotelo, T; Díaz-Tielas, C; Araniti, F; Krasuska, U; Bogatek, R; Reigosa, M J; Sánchez-Moreiras, A M

    2013-02-01

    Citral is a linear monoterpene which is present, as a volatile component, in the essential oil of several different aromatic plants. Previous studies have demonstrated the ability of citral to alter the mitotic microtubules of plant cells, especially at low concentrations. The changes to the microtubules may be due to the compound acting directly on the treated root and coleoptile cells or to indirect action through certain phytohormones. This study, performed in Arabidopsis thaliana, analysed the short-term effects of citral on the auxin content and mitotic cells, and the long-term effects of these alterations on root development and ethylene levels. The results of this study show that citral alters auxin content and cell division and has a strong long-term disorganising effect on cell ultra-structure in A. thaliana seedlings. Its effects on cell division, the thickening of the cell wall, the reduction in intercellular communication, and the absence of root hairs confirm that citral is a strong phytotoxic compound, which has persistent effects on root development.

  8. Image analysis of neural stem cell division patterns in the zebrafish brain.

    Science.gov (United States)

    Lupperger, Valerio; Buggenthin, Felix; Chapouton, Prisca; Marr, Carsten

    2017-11-10

    Proliferating stem cells in the adult body are the source of constant regeneration. In the brain, neural stem cells (NSCs) divide to maintain the stem cell population and generate neural progenitor cells that eventually replenish mature neurons and glial cells. How much spatial coordination of NSC division and differentiation is present in a functional brain is an open question. To quantify the patterns of stem cell divisions, one has to (i) identify the pool of NSCs that have the ability to divide, (ii) determine NSCs that divide within a given time window, and (iii) analyze the degree of spatial coordination. Here, we present a bioimage informatics pipeline that automatically identifies GFP expressing NSCs in three-dimensional image stacks of zebrafish brain from whole-mount preparations. We exploit the fact that NSCs in the zebrafish hemispheres are located on a two-dimensional surface and identify between 1,500 and 2,500 NSCs in six brain hemispheres. We then determine the position of dividing NSCs in the hemisphere by EdU incorporation into cells undergoing S-phase and calculate all pairwise NSC distances with three alternative metrics. Finally, we fit a probabilistic model to the observed spatial patterns that accounts for the non-homogeneous distribution of NSCs. We find a weak positive coordination between dividing NSCs irrespective of the metric and conclude that neither strong inhibitory nor strong attractive signals drive NSC divisions in the adult zebrafish brain. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  9. Tetracycline hypersensitivity of an ezrA mutant links GalE and TseB (YpmB) to cell division

    NARCIS (Netherlands)

    Gamba, P.; Rietkötter, E.; Daniel, R.A.; Hamoen, L.W.

    2015-01-01

    Cell division in bacteria is initiated by the polymerization of FtsZ into a ring-like structure at midcell that functions as a scaffold for the other cell division proteins. In Bacillus subtilis, the conserved cell division protein EzrA is involved in modulation of Z-ring formation and coordination

  10. Cell division responsive peptides for optimized plasmid DNA delivery: the mitotic window of opportunity?

    Science.gov (United States)

    Remaut, K; Symens, N; Lucas, B; Demeester, J; De Smedt, S C

    2014-04-10

    The delivery of plasmid DNA remains hard to achieve, especially due to the presence of the nuclear membrane barrier. During cell division, however, the nuclear membrane is temporarily disassembled. We evaluated two different strategies to optimize plasmid DNA delivery in dividing cells: 1) phosphorylation responsive peptides that release plasmid DNA preferentially during mitosis and 2) chromatin targeting peptides to anchor plasmid DNA in newly formed nuclei upon cell division. Peptide/DNA particles alone were not efficient in penetrating cells. Upon co-delivery with lipid-based carriers, however, transfection efficiency drastically improved when compared to controls. For the phosphorylation responsive peptides, the presence of the phosphorylation sequence slightly increased transfection efficiency. For the chromatin targeting peptides, however, the chromatin targeting sequence did not seem to be the main reason for the improvement of transfection efficiency when applied in living cells. In conclusion, the pre-condensation of plasmid DNA with peptides improves lipid based delivery, but the nature of the peptides (cell responsive or not) does not seem to be the main reason for the improvement. It seems that the nuclear entry of foreign plasmid DNA is still under tight control, even during the mitotic window of opportunity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Endosymbiosis in trypanosomatid protozoa: the bacterium division is controlled during the host cell cycle

    Science.gov (United States)

    Catta-Preta, Carolina M. C.; Brum, Felipe L.; da Silva, Camila C.; Zuma, Aline A.; Elias, Maria C.; de Souza, Wanderley; Schenkman, Sergio; Motta, Maria Cristina M.

    2015-01-01

    Mutualism is defined as a beneficial relationship for the associated partners and usually assumes that the symbiont number is controlled. Some trypanosomatid protozoa co-evolve with a bacterial symbiont that divides in coordination with the host in a way that results in its equal distribution between daughter cells. The mechanism that controls this synchrony is largely unknown, and its comprehension might provide clues to understand how eukaryotic cells evolved when acquiring symbionts that later became organelles. Here, we approached this question by studying the effects of inhibitors that affect the host exclusively in two symbiont-bearing trypanosomatids, Strigomonas culicis and Angomonas deanei. We found that inhibiting host protein synthesis using cycloheximide or host DNA replication using aphidicolin did not affect the duplication of bacterial DNA. Although the bacteria had autonomy to duplicate their DNA when host protein synthesis was blocked by cycloheximide, they could not complete cytokinesis. Aphidicolin promoted the inhibition of the trypanosomatid cell cycle in the G1/S phase, leading to symbiont filamentation in S. culicis but not in A. deanei. Treatment with camptothecin blocked the host protozoa cell cycle in the G2 phase and induced the formation of filamentous symbionts in both species. Oryzalin, which affects host microtubule polymerization, blocked trypanosomatid mitosis and abrogated symbiont division. Our results indicate that host factors produced during the cell division cycle are essential for symbiont segregation and may control the bacterial cell number. PMID:26082757

  12. Polar flagellar biosynthesis and a regulator of flagellar number influence spatial parameters of cell division in Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Murat Balaban

    2011-12-01

    Full Text Available Spatial and numerical regulation of flagellar biosynthesis results in different flagellation patterns specific for each bacterial species. Campylobacter jejuni produces amphitrichous (bipolar flagella to result in a single flagellum at both poles. These flagella confer swimming motility and a distinctive darting motility necessary for infection of humans to cause diarrheal disease and animals to promote commensalism. In addition to flagellation, symmetrical cell division is spatially regulated so that the divisome forms near the cellular midpoint. We have identified an unprecedented system for spatially regulating cell division in C. jejuni composed by FlhG, a regulator of flagellar number in polar flagellates, and components of amphitrichous flagella. Similar to its role in other polarly-flagellated bacteria, we found that FlhG regulates flagellar biosynthesis to limit poles of C. jejuni to one flagellum. Furthermore, we discovered that FlhG negatively influences the ability of FtsZ to initiate cell division. Through analysis of specific flagellar mutants, we discovered that components of the motor and switch complex of amphitrichous flagella are required with FlhG to specifically inhibit division at poles. Without FlhG or specific motor and switch complex proteins, cell division occurs more often at polar regions to form minicells. Our findings suggest a new understanding for the biological requirement of the amphitrichous flagellation pattern in bacteria that extend beyond motility, virulence, and colonization. We propose that amphitrichous bacteria such as Campylobacter species advantageously exploit placement of flagella at both poles to spatially regulate an FlhG-dependent mechanism to inhibit polar cell division, thereby encouraging symmetrical cell division to generate the greatest number of viable offspring. Furthermore, we found that other polarly-flagellated bacteria produce FlhG proteins that influence cell division, suggesting that

  13. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    Science.gov (United States)

    Kong, Xiangyi; Yang, Shuting; Gong, Fei; Lu, Changfu; Zhang, Shuoping; Lu, Guangxiu; Lin, Ge

    2016-01-01

    Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI) treatment cycles, n = 799) were classified as follows: less than 5 cells (10C; n = 42). Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In 10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively). In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas potential irrespective of division behaviors. In NB embryos, the blastocyst formation rate increased with cell number from 7.4% (10C). In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  14. Arabidopsis brassinosteroid biosynthetic mutant dwarf7-1 exhibits slower rates of cell division and shoot induction

    Directory of Open Access Journals (Sweden)

    Schulz Burkhard

    2010-12-01

    Full Text Available Abstract Background Plant growth depends on both cell division and cell expansion. Plant hormones, including brassinosteroids (BRs, are central to the control of these two cellular processes. Despite clear evidence that BRs regulate cell elongation, their roles in cell division have remained elusive. Results Here, we report results emphasizing the importance of BRs in cell division. An Arabidopsis BR biosynthetic mutant, dwarf7-1, displayed various characteristics attributable to slower cell division rates. We found that the DWARF4 gene which encodes for an enzyme catalyzing a rate-determining step in the BR biosynthetic pathways, is highly expressed in the actively dividing callus, suggesting that BR biosynthesis is necessary for dividing cells. Furthermore, dwf7-1 showed noticeably slower rates of callus growth and shoot induction relative to wild-type control. Flow cytometric analyses of the nuclei derived from either calli or intact roots revealed that the cell division index, which was represented as the ratio of cells at the G2/M vs. G1 phases, was smaller in dwf7-1 plants. Finally, we found that the expression levels of the genes involved in cell division and shoot induction, such as PROLIFERATING CELL NUCLEAR ANTIGEN2 (PCNA2 and ENHANCER OF SHOOT REGENERATION2 (ESR2, were also lower in dwf7-1 as compared with wild type. Conclusions Taken together, results of callus induction, shoot regeneration, flow cytometry, and semi-quantitative RT-PCR analysis suggest that BRs play important roles in both cell division and cell differentiation in Arabidopsis.

  15. Peptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell division.

    Science.gov (United States)

    Cameron, Todd A; Anderson-Furgeson, James; Zupan, John R; Zik, Justin J; Zambryski, Patricia C

    2014-05-27

    The synthesis of peptidoglycan (PG) in bacteria is a crucial process controlling cell shape and vitality. In contrast to bacteria such as Escherichia coli that grow by dispersed lateral insertion of PG, little is known of the processes that direct polar PG synthesis in other bacteria such as the Rhizobiales. To better understand polar growth in the Rhizobiales Agrobacterium tumefaciens, we first surveyed its genome to identify homologs of (~70) well-known PG synthesis components. Since most of the canonical cell elongation components are absent from A. tumefaciens, we made fluorescent protein fusions to other putative PG synthesis components to assay their subcellular localization patterns. The cell division scaffolds FtsZ and FtsA, PBP1a, and a Rhizobiales- and Rhodobacterales-specific l,d-transpeptidase (LDT) all associate with the elongating cell pole. All four proteins also localize to the septum during cell division. Examination of the dimensions of growing cells revealed that new cell compartments gradually increase in width as they grow in length. This increase in cell width is coincident with an expanded region of LDT-mediated PG synthesis activity, as measured directly through incorporation of exogenous d-amino acids. Thus, unipolar growth in the Rhizobiales is surprisingly dynamic and represents a significant departure from the canonical growth mechanism of E. coli and other well-studied bacilli. Many rod-shaped bacteria, including pathogens such as Brucella and Mycobacteriu, grow by adding new material to their cell poles, and yet the proteins and mechanisms contributing to this process are not yet well defined. The polarly growing plant pathogen Agrobacterium tumefaciens was used as a model bacterium to explore these polar growth mechanisms. The results obtained indicate that polar growth in this organism is facilitated by repurposed cell division components and an otherwise obscure class of alternative peptidoglycan transpeptidases (l

  16. LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages.

    Science.gov (United States)

    Tsai, Jin-Wu; Chen, Yu; Kriegstein, Arnold R; Vallee, Richard B

    2005-09-12

    Mutations in the human LIS1 gene cause the smooth brain disease classical lissencephaly. To understand the underlying mechanisms, we conducted in situ live cell imaging analysis of LIS1 function throughout the entire radial migration pathway. In utero electroporation of LIS1 small interference RNA and short hairpin dominant negative LIS1 and dynactin cDNAs caused a dramatic accumulation of multipolar progenitor cells within the subventricular zone of embryonic rat brains. This effect resulted from a complete failure in progression from the multipolar to the migratory bipolar state, as revealed by time-lapse analysis of brain slices. Surprisingly, interkinetic nuclear oscillations in the radial glial progenitors were also abolished, as were cell divisions at the ventricular surface. Those few bipolar cells that reached the intermediate zone also exhibited a complete block in somal translocation, although, remarkably, process extension persisted. Finally, axonal growth also ceased. These results identify multiple distinct and novel roles for LIS1 in nucleokinesis and process dynamics and suggest that nuclear position controls neural progenitor cell division.

  17. PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus.

    Science.gov (United States)

    Treuner-Lange, Anke; Aguiluz, Kryssia; van der Does, Chris; Gómez-Santos, Nuria; Harms, Andrea; Schumacher, Dominik; Lenz, Peter; Hoppert, Michael; Kahnt, Jörg; Muñoz-Dorado, José; Søgaard-Andersen, Lotte

    2013-01-01

    Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z-ring at the division site. Here, we show that lack of the ParA-like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome-free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z-rings and incorrect positioning of the few Z-rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z-ring formation and is a spatial regulator of Z-ring formation and cell division. The cell cycle-dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z-ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z-ring formation to this position. © 2012 Blackwell Publishing Ltd.

  18. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  19. Judging diatoms by their cover: variability in local elasticity of Lithodesmium undulatum undergoing cell division.

    Directory of Open Access Journals (Sweden)

    Lee Karp-Boss

    Full Text Available Unique features of diatoms are their intricate cell covers (frustules made out of hydrated, amorphous silica. The frustule defines and maintains cell shape and protects cells against grazers and pathogens, yet it must allow for cell expansion during growth and division. Other siliceous structures have also evolved in some chain-forming species as means for holding neighboring cells together. Characterization and quantification of mechanical properties of these structures are crucial for the understanding of the relationship between form and function in diatoms, but thus far only a handful of studies have addressed this issue. We conducted micro-indentation experiments, using atomic force microscopy (AFM, to examine local variations in elastic (Young's moduli of cells and linking structures in the marine, chain-forming diatom Lithodesmium undulatum. Using a fluorescent tracer that is incorporated into new cell wall components we tested the hypothesis that new siliceous structures differ in elastic modulus from their older counterparts. Results show that the local elastic modulus is a highly dynamic property. Elastic modulus of stained regions was significantly lower than that of unstained regions, suggesting that newly formed cell wall components are generally softer than the ones inherited from the parent cells. This study provides the first evidence of differentiation in local elastic properties in the course of the cell cycle. Hardening of newly formed regions may involve incorporation of additional, possibly organic, material but further studies are needed to elucidate the processes that regulate mechanical properties of the frustule during the cell cycle.

  20. Relationships between rapid isometric torque characteristics and vertical jump performance in division I collegiate American football players: influence of body mass normalization.

    Science.gov (United States)

    Thompson, Brennan J; Ryan, Eric D; Sobolewski, Eric J; Smith, Doug B; Akehi, Kazuma; Conchola, Eric C; Buckminster, Tyler

    2013-10-01

    The purpose of the present study was to examine the relationships between absolute and body mass-normalized rapid isometric torque variables and vertical jump (VJ) performance of the leg extensors and flexors in elite National Collegiate Athletic Association Division I Football Bowl Subdivision collegiate American football players. Thirty-one players performed isometric maximal voluntary contractions of the leg extensor and flexor muscle groups and a countermovement VJ. Rate of torque development (RTD) and the contractile impulse (IMPULSE) were determined from 0 to 30, 0 to 50, 0 to 100, and 0 to 200 milliseconds from the onset of muscular contraction. The relationships between absolute and normalized rapid torque variables and VJ performance were assessed using correlation coefficients (r). There were no significant correlations (p > 0.05) observed between the absolute rapid torque variables and VJ performance, except for leg flexion RTD at 0-200 milliseconds (p = 0.024). All normalized rapid torque variables of the leg extensors and flexors were significantly correlated to VJ performance (p ≤ 0.001-0.026). These findings indicated that normalizing rapid torque variables to body mass improves the relationships between isometric rapid torque variables and VJ performance and normalized leg extension and flexion are both similarly related to VJ performance. Strength and conditioning professionals may use these findings in an attempt to identify and monitor dynamic sport performance. Furthermore, future studies examining the relationship between dynamic on the field performances and laboratory-based isometric strength testing may consider including normalized rapid torque variables.

  1. Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage

    DEFF Research Database (Denmark)

    Persson, H.; Købler, Carsten; Mølhave, Kristian

    2013-01-01

    beam milling and scanning electron microscopy, highly curved but intact nuclear membranes are observed, showing no direct contact between the nanowires and the DNA. The nanowires possibly induce cellular stress and high respiration rates, which trigger the formation of ROS, which in turn results in DNA......Nanowires are commonly used as tools for interfacing living cells, acting as biomolecule-delivery vectors or electrodes. It is generally assumed that the small size of the nanowires ensures a minimal cellular perturbation, yet the effects of nanowires on cell migration and proliferation remain...... largely unknown. Fibroblast behaviour on vertical nanowire arrays is investigated, and it is shown that cell motility and proliferation rate are reduced on nanowires. Fibroblasts cultured on long nanowires exhibit failed cell division, DNA damage, increased ROS content and respiration. Using focused ion...

  2. Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Shenghua Li

    2009-08-01

    Full Text Available The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella.

  3. EzrA: a spectrin-like scaffold in the bacterial cell division machinery

    Directory of Open Access Journals (Sweden)

    Robert M Cleverley

    2015-01-01

    Full Text Available Much progress has been made in identifying the components of the divisome, the assembly of proteins that undertakes the vital process of cell division in bacteria. However, how the highly interdependent processes on either side of the membrane are coordinated during division is a major unresolved question. How is the degradation and synthesis of the cell wall on the outside of the cell coordinated with cytokinesis and membrane fission, which are driven from the inside of the cell by the tubulin homologue FtsZ? A possible key mediator of such coordination is the membrane protein EzrA, as it interacts both with FtsZ and the penicillin binding proteins (PBPs that synthesize peptidoglycan. Cleverley et al. [Nature Communications (2014 5, 5421] have recently solved the crystal structure of the cytoplasmic domain of B. subtilis EzrA, which points to an important scaffolding role for EzrA in the divisome. The structure resembles the eukaryotic, cytoskeletal spectrin proteins, which link actin filaments in the cytoskeleton and also connect the actin cytoskeleton to membrane-bound integrin proteins.

  4. Morphology and ultrastructure of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation

    Science.gov (United States)

    Mikhailyuk, Tatiana; Holzinger, Andreas; Massalski, Andrzej; Karsten, Ulf

    2014-01-01

    Representatives of the closely related genera, Interfilum and Klebsormidium, are characterized by unicells, dyads or packets in Interfilum and contrasting uniseriate filaments in Klebsormidium. According to the literature, these distinct thallus forms originate by different types of cell division, sporulation (cytogony) versus vegetative cell division (cytotomy), but investigations of their morphology and ultrastructure show a high degree of similarity. Cell walls of both genera are characterized by triangular spaces between cell walls of neighbouring cells and the parental wall or central space among the walls of a cell packet, exfoliations and projections of the parental wall and cap-like and H-like fragments of the cell wall. In both genera, each cell has its individual cell wall and it also has part of the common parental wall or its remnants. Therefore, vegetative cells of Interfilum and Klebsormidium probably divide by the same type of cell division (sporulation-like). Various strains representing different species of the two genera are characterized by differences in cell wall ultrastructure, particularly the level of preservation, rupture or gelatinization of the parental wall surrounding the daughter cells. The differing morphologies of representatives of various lineages result from features of the parental wall during cell separation and detachment. Cell division in three planes (usual in Interfilum and a rare event in Klebsormidium) takes place in spherical or short cylindrical cells, with the chloroplast positioned perpendicularly or obliquely to the filament (dyad) axis. The morphological differences are mainly a consequence of differing fates of the parental wall after cell division and detachment. The development of different morphologies within the two genera mostly depends on characters such as the shape of cells, texture of cell walls, mechanical interactions between cells and the influence of environmental conditions. PMID:26504365

  5. Effect of microgravity environment on cell wall regeneration, cell divisions, growth, and differentiation of plants from protoplasts (7-IML-1)

    Science.gov (United States)

    Rasmussen, Ole

    1992-01-01

    The primary goal of this project is to investigate if microgravity has any influence on growth and differentiation of protoplasts. Formation of new cell walls on rapeseed protoplasts takes place within the first 24 hours after isolation. Cell division can be observed after 2-4 days and formation of cell aggregates after 5-7 days. Therefore, it is possible during the 7 day IML-1 Mission to investigate if cell wall formation, cell division, and cell differentiation are influenced by microgravity. Protoplasts of rapeseeds and carrot will be prepared shortly before launch and injected into 0.6 ml polyethylene bags. Eight bags are placed in an aluminum block inside the ESA Type 1 container. The containers are placed at 4 C in PTCU's and transferred to orbiter mid-deck. At 4 C all cell processes are slowed down, including cell wall formation. Latest access to the shuttle will be 12 hours before launch. In orbit the containers will be transferred from the PTC box to the 22 C Biorack incubator. The installation of a 1 g centrifuge in Biorack will make it possible to distinguish between effects of near weightlessness and effects caused by cosmic radiation and other space flight factors including vibrations. Parallel control experiments will be carried out on the ground. Other aspects of the experiment are discussed.

  6. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Erickson, Harold P

    2017-08-01

    An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria. © 2017 WILEY Periodicals, Inc.

  7. Contribution of Stochastic Partitioning at Human Embryonic Stem Cell Division to NANOG Heterogeneity

    Science.gov (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.

    2012-01-01

    Heterogeneity is an often unappreciated characteristic of stem cell populations yet its importance in fate determination is becoming increasingly evident. Although gene expression noise has received greater attention as a source of non-genetic heterogeneity, the effects of stochastic partitioning of cellular material during mitosis on population variability have not been researched to date. We examined self-renewing human embryonic stem cells (hESCs), which typically exhibit a dispersed distribution of the pluripotency marker NANOG. In conjunction with our experiments, a multiscale cell population balance equation (PBE) model was constructed accounting for transcriptional noise and stochastic partitioning at division as sources of population heterogeneity. Cultured hESCs maintained time-invariant profiles of size and NANOG expression and the data were utilized for parameter estimation. Contributions from both sources considered in this study were significant on the NANOG profile, although elimination of the gene expression noise resulted in greater changes in the dispersion of the NANOG distribution. Moreover, blocking of division by treating hESCs with nocodazole or colcemid led to a 39% increase in the average NANOG content and over 68% of the cells had higher NANOG level than the mean NANOG expression of untreated cells. Model predictions, which were in excellent agreement with these findings, revealed that stochastic partitioning accounted for 17% of the total noise in the NANOG profile of self-renewing hESCs. The computational framework developed in this study will aid in gaining a deeper understanding of how pluripotent stem/progenitor cells orchestrate processes such as gene expression and proliferation for maintaining their pluripotency or differentiating along particular lineages. Such models will be essential in designing and optimizing efficient differentiation strategies and bioprocesses for the production of therapeutically suitable stem cell progeny

  8. Histogen Layers Contributing to Adventitious Bud Formation Are Determined by their Cell Division Activities.

    Science.gov (United States)

    Nabeshima, Tomoyuki; Yang, Soo-Jung; Ohno, Sho; Honda, Keita; Deguchi, Ayumi; Doi, Motoaki; Tatsuzawa, Fumi; Hosokawa, Munetaka

    2017-01-01

    Saintpaulia ionantha is propagated by adventitious buds in horticulture, and periclinal chimeral cultivars are usually difficult to propagate. However, some periclinal chimeral cultivars can be propagated with adventitious buds, and the mechanism of which has been unknown. Striped flower cultivars "Kaname," "Concord," and "Monique" were used to investigate what causes flower color separation in adventitious shoot-derived plants by tissue culture. These cultivars were revealed to have mutated flavonoid 3', 5' hydroxylase (SiF3'5'H), WDR1 (SiWDR1), or flavonoid 3 hydroxylase (SiF3H), respectively, in their L1 layer. From our previous study using "Kaname," all flowers from adventitious shoots were colored pink, which was the epidermal color of mother plants' flowers. We used "Concrd" and "Monique" from which we obtained not only monochromatic-colored plants the same as the epidermal color of mother plants, but also plants with a monochromatic colored plants, same as the subepidermal color, and a striped flower color the same as mother plants. Histological observations revealed that epidermal cells divided actively at 14 d after culture and they were involved in the formation of adventitious shoots in the cultured leaf segments of "Kaname." On the other hand, in "Concord" and "Monique," the number of divided cells in the subepidermis was rather higher than that of epidermal cells, and subepidermal cells were sometimes involved in shoot formation. In addition, the plant and leaf size of L1-derived plants from "Concord" and "Monique" were non-vigorous and smaller than those derived from the subepidermal layer. In conclusion, periclinal chimeral cultivars of Saintpaulia can be divided into two types. One type has a high cell division activity in the L1 layer, from which only single flower-colored plants derived from L1 can be obtained as adventitious shoots. Another type has a low cell division activity in the L1 layer, from which striped flower-colored plants the same as

  9. Histogen Layers Contributing to Adventitious Bud Formation Are Determined by their Cell Division Activities

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nabeshima

    2017-10-01

    Full Text Available Saintpaulia ionantha is propagated by adventitious buds in horticulture, and periclinal chimeral cultivars are usually difficult to propagate. However, some periclinal chimeral cultivars can be propagated with adventitious buds, and the mechanism of which has been unknown. Striped flower cultivars “Kaname,” “Concord,” and “Monique” were used to investigate what causes flower color separation in adventitious shoot-derived plants by tissue culture. These cultivars were revealed to have mutated flavonoid 3′, 5′ hydroxylase (SiF3′5′H, WDR1 (SiWDR1, or flavonoid 3 hydroxylase (SiF3H, respectively, in their L1 layer. From our previous study using “Kaname,” all flowers from adventitious shoots were colored pink, which was the epidermal color of mother plants' flowers. We used “Concrd” and “Monique” from which we obtained not only monochromatic-colored plants the same as the epidermal color of mother plants, but also plants with a monochromatic colored plants, same as the subepidermal color, and a striped flower color the same as mother plants. Histological observations revealed that epidermal cells divided actively at 14 d after culture and they were involved in the formation of adventitious shoots in the cultured leaf segments of “Kaname.” On the other hand, in “Concord” and “Monique,” the number of divided cells in the subepidermis was rather higher than that of epidermal cells, and subepidermal cells were sometimes involved in shoot formation. In addition, the plant and leaf size of L1-derived plants from “Concord” and “Monique” were non-vigorous and smaller than those derived from the subepidermal layer. In conclusion, periclinal chimeral cultivars of Saintpaulia can be divided into two types. One type has a high cell division activity in the L1 layer, from which only single flower-colored plants derived from L1 can be obtained as adventitious shoots. Another type has a low cell division activity

  10. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure

    Science.gov (United States)

    Beltrán-Heredia, Elena; Almendro-Vedia, Víctor G.; Monroy, Francisco; Cao, Francisco J.

    2017-01-01

    Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force). We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive spontaneous

  11. Modeling the Mechanics of Cell Division: Influence of Spontaneous Membrane Curvature, Surface Tension, and Osmotic Pressure.

    Science.gov (United States)

    Beltrán-Heredia, Elena; Almendro-Vedia, Víctor G; Monroy, Francisco; Cao, Francisco J

    2017-01-01

    Many cell division processes have been conserved throughout evolution and are being revealed by studies on model organisms such as bacteria, yeasts, and protozoa. Cellular membrane constriction is one of these processes, observed almost universally during cell division. It happens similarly in all organisms through a mechanical pathway synchronized with the sequence of cytokinetic events in the cell interior. Arguably, such a mechanical process is mastered by the coordinated action of a constriction machinery fueled by biochemical energy in conjunction with the passive mechanics of the cellular membrane. Independently of the details of the constriction engine, the membrane component responds against deformation by minimizing the elastic energy at every constriction state following a pathway still unknown. In this paper, we address a theoretical study of the mechanics of membrane constriction in a simplified model that describes a homogeneous membrane vesicle in the regime where mechanical work due to osmotic pressure, surface tension, and bending energy are comparable. We develop a general method to find approximate analytical expressions for the main descriptors of a symmetrically constricted vesicle. Analytical solutions are obtained by combining a perturbative expansion for small deformations with a variational approach that was previously demonstrated valid at the reference state of an initially spherical vesicle at isotonic conditions. The analytic approximate results are compared with the exact solution obtained from numerical computations, getting a good agreement for all the computed quantities (energy, area, volume, constriction force). We analyze the effects of the spontaneous curvature, the surface tension and the osmotic pressure in these quantities, focusing especially on the constriction force. The more favorable conditions for vesicle constriction are determined, obtaining that smaller constriction forces are required for positive spontaneous

  12. Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria.

    Science.gov (United States)

    Lea-Smith, David J; Ortiz-Suarez, Maite L; Lenn, Tchern; Nürnberg, Dennis J; Baers, Laura L; Davey, Matthew P; Parolini, Lucia; Huber, Roland G; Cotton, Charles A R; Mastroianni, Giulia; Bombelli, Paolo; Ungerer, Petra; Stevens, Tim J; Smith, Alison G; Bond, Peter J; Mullineaux, Conrad W; Howe, Christopher J

    2016-11-01

    Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms. © 2016 American Society of Plant Biologists. All Rights Reserved.

  13. Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Lina; Li, Yaqiong; Xie, Qi; Wu, Yaorong

    2017-09-01

    Drought stress is one of the abiotic stresses that limit plant growth and agricultural productivity. To further understand the mechanism of drought tolerance and identify the genes involved in this process, a genetic screen for altered drought response was conducted in Arabidopsis. One mutant with enhanced drought tolerance was isolated and named Arabidopsis drought tolerance mutant 1 (atdtm1), which has larger lateral organs, prolonged growth duration, increased relative water content and a reduced leaf stomatal density compared with the wild type. The loss of AtDTM1 increases cell division during leaf development. The phenotype is caused by the loss of a T-DNA tagged gene encoding CYCLIN-DEPENDENT KINASE C;2 (CDKC;2), which functions in the regulation of transcription by influencing the phosphorylation status of RNA polymerase II (Pol II). Here, we show that CDKC;2 affects the transcription of downstream genes such as cell cycle genes and genes involved in stomatal development, resulting in altered plant organ size as well as drought tolerance of the plant. These results reveal the crucial role of CDKC;2 in modulating both cell division and the drought response in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. BMP and Hh signaling affects primordial germ cell division in Drosophila.

    Science.gov (United States)

    Sato, Takuya; Ogata, Jun; Niki, Yuzo

    2010-10-01

    The germline is segregated from the remainder of the soma during early embryonic development in metazoan species. In Drosophila, female primordial germ cells (PGCs) continue to proliferate during larval development, and become germline stem cells at the early pupal stage. To elucidate the roles of growth factors in larval PGC division, we examined expression patterns of a bone morphogenetic protein (BMP) growth factor, Decapentaplegic (Dpp), and Hedgehog (Hh), along with factors downstream of each, in the ovary during larval development. Dpp signaling appeared in the ovarian soma from early larval development, and was prominent in the terminal filament cells at late larval stage, whereas Hh appeared in the ovarian soma and PGCs from the third instar larval stage. The number of PGCs decreased when components of these signal transduction pathways were abrogated by RNAi in the PGCs, indicating that both Dpp and Hh signals directly regulate PGC proliferation. Experiments on the up- and down-regulation of Dpp and Hh with a tissue-specific Gal4 driver indicated that Dpp and Hh act as extrinsic and autocrine growth factors. Furthermore, heat-pulse experiments with hs-Gal4 showed that Dpp is active in PGC proliferation throughout larval development, whereas Hh has effects only during late larval development. In addition to Dpp, the reduction of Glass bottom boat (Gbb), another BMP molecule, caused a decrease in the number of PGCs and initiation of larval PGCs differentiation into cystocytes, indicating that Gbb functions to promote PGC division and repress differentiation.

  15. Quantum counting: Operator methods for discrete population dynamics with applications to cell division.

    Science.gov (United States)

    Robinson, T R; Haven, E; Fry, A M

    2017-11-01

    The set of natural numbers may be identified with the spectrum of eigenvalues of an operator (quantum counting), and the dynamical equations of populations of discrete, countable items may be formulated using operator methods. These equations take the form of time dependent operator equations, involving Hamiltonian operators, from which the statistical time dependence of population numbers may be determined. The quantum operator method is illustrated by a novel approach to cell population dynamics. This involves Hamiltonians that mimic the process of stimulated cell division. We evaluate two different models, one in which the stimuli are expended in the division process and one in which the stimuli act as true catalysts. While the former model exhibits only bounded cell population variations, the latter exhibits two distinct regimes; one has bounded population fluctuations about a mean level and in the other, the population can undergo growth to levels that are orders of magnitude above threshold levels, through an instability that could be interpreted as a cancerous growth phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mechanics of kinetochore microtubules and their interactions with chromosomes during cell division

    Science.gov (United States)

    Nazockdast, Ehssan; Fürthauer, Sebastian; Redemann, Stephanie; Baumgart, Johannes; Lindow, Norbert; Kratz, Andrea; Prohaska, Steffen; Müller-Reichert, Thomas; Shelley, Michael

    2016-11-01

    The accurate segregation of chromosomes, and subsequent cell division, in Eukaryotic cells is achieved by the interactions of an assembly of microtubules (MTs) and motor-proteins, known as the mitotic spindle. We use a combination of our computational platform for simulating cytoskeletal assemblies and our structural data from high-resolution electron tomography of the mitotic spindle, to study the kinetics and mechanics of MTs in the spindle, and their interactions with chromosomes during chromosome segregation in the first cell division in C.elegans embryo. We focus on kinetochore MTs, or KMTs, which have one end attached to a chromosome. KMTs are thought to be a key mechanical component in chromosome segregation. Using exploratory simulations of MT growth, bending, hydrodynamic interactions, and attachment to chromosomes, we propose a mechanical model for KMT-chromosome interactions that reproduces observed KMT length and shape distributions from electron tomography. We find that including detailed hydrodynamic interactions between KMTs is essential for agreement with the experimental observations.

  17. Sonic hedgehog signaling regulates mode of cell division of early cerebral cortex progenitors and increases astrogliogenesis

    Directory of Open Access Journals (Sweden)

    Geissy LL Araújo

    2014-03-01

    Full Text Available The morphogen Sonic Hedgehog (SHH plays a critical role in the development of different tissues. In the central nervous system, SHH is well known to contribute to the patterning of the spinal cord and separation of the brain hemispheres. In addition, it has recently been shown that SHH signaling also contributes to the patterning of the telencephalon and establishment of adult neurogenic niches. In this work, we investigated whether SHH signaling influences the behavior of neural progenitors isolated from the dorsal telencephalon, which generate excitatory neurons and macroglial cells in vitro. We observed that SHH increases proliferation of cortical progenitors and generation of astrocytes, whereas blocking SHH signaling with cyclopamine has opposite effects. In both cases, generation of neurons did not seem to be affected. However, cell survival was broadly affected by blockade of SHH signaling. SHH effects were related to three different cell phenomena: mode of cell division, cell cycle length and cell growth. Together, our data in vitro demonstrate that SHH signaling controls cell behaviors that are important for proliferation of cerebral cortex progenitors, as well as differentiation and survival of neurons and astroglial cells.

  18. Rapid magnetic cell delivery for large tubular bioengineered constructs.

    Science.gov (United States)

    Gonzalez-Molina, J; Riegler, J; Southern, P; Ortega, D; Frangos, C C; Angelopoulos, Y; Husain, S; Lythgoe, M F; Pankhurst, Q A; Day, R M

    2012-11-07

    Delivery of cells into tubular tissue constructs with large diameters poses significant spatial and temporal challenges. This study describes preliminary findings for a novel process for rapid and uniform seeding of cells onto the luminal surface of large tubular constructs. Fibroblasts, tagged with superparamagnetic iron oxide nanoparticles (SPION), were directed onto the luminal surface of tubular constructs by a magnetic field generated by a k4-type Halbach cylinder device. The spatial distribution of attached cells, as measured by the mean number of cells, was compared with a conventional, dynamic, rotational cell-delivery technique. Cell loading onto the constructs was measured by microscopy and magnetic resonance imaging. The different seeding techniques employed had a significant effect on the spatial distribution of the cells (p same construct was significantly different for the dynamic rotation technique (p delivery techniques and is amenable to a variety of tubular organs where rapid loading and uniform distribution of cells for therapeutic applications are required.

  19. The tension at the top of the animal pole decreases during meiotic cell division.

    Directory of Open Access Journals (Sweden)

    Setsuko K Satoh

    Full Text Available Meiotic maturation is essential for the reproduction procedure of many animals. During this process an oocyte produces a large egg cell and tiny polar bodies by highly asymmetric division. In this study, to fully understand the sophisticated spatiotemporal regulation of accurate oocyte meiotic division, we focused on the global and local changes in the tension at the surface of the starfish (Asterina pectinifera oocyte in relation to the surface actin remodeling. Before the onset of the bulge formation, the tension at the animal pole globally decreased, and started to increase after the onset of the bulge formation. Locally, at the onset of the bulge formation, tension at the top of the animal pole began to decrease, whereas that at the base of the bulge remarkably increased. As the bulge grew, the tension at the base of the bulge additionally increased. Such a change in the tension at the surface was similar to the changing pattern of actin distribution. Therefore, meiotic cell division was initiated by the bulging of the cortex, which had been weakened by actin reduction, and was followed by contraction at the base of the bulge, which had been reinforced by actin accumulation. The force generation system is assumed to allow the meiotic apparatus to move just under the membrane in the small polar body. Furthermore, a detailed comparison of the tension at the surface and the cortical actin distribution indicated another sophisticated feature, namely that the contraction at the base of the bulge was more vigorous than was presumed based on the actin distribution. These features of the force generation system will ensure the precise chromosome segregation necessary to produce a normal ovum with high accuracy in the meiotic maturation.

  20. Live imaging of individual cell divisions in mouse neuroepithelium shows asymmetry in cilium formation and Sonic hedgehog response

    Directory of Open Access Journals (Sweden)

    Piotrowska-Nitsche Karolina

    2012-05-01

    Full Text Available Abstract Background Primary cilia are microtubule-based sensory organelles that play important roles in developmental signaling pathways. Recent work demonstrated that, in cell culture, the daughter cell that inherits the older mother centriole generates a primary cilium and responds to external stimuli prior to its sister cell. This asynchrony in timing of cilia formation could be especially critical during development as cell divisions are required for both differentiation and maintenance of progenitor cell niches. Methods Here we integrate several fluorescent markers and use ex vivo live imaging of a single cell division within the mouse E8.5 neuroepithelium to reveal both the formation of a primary cilium and the transcriptional response to Sonic hedgehog in the daughter cells. Results We show that, upon cell division, cilia formation and the Sonic hedgehog response are asynchronous between the daughter cells. Conclusions Our results demonstrate that we can directly observe single cell divisions within the developing neuroepithelium and concomitantly monitor cilium formation or Sonic hedgehog response. We expect this method to be especially powerful in examining whether cellular behavior can lead to both differentiation and maintenance of cells in a progenitor niche.

  1. The Relationship between Cell Number, Division Behavior and Developmental Potential of Cleavage Stage Human Embryos: A Time-Lapse Study.

    Directory of Open Access Journals (Sweden)

    Xiangyi Kong

    Full Text Available Day 3 cleavage embryo transfer is routine in many assisted reproductive technology centers today. Embryos are usually selected according to cell number, cell symmetry and fragmentation for transfer. Many studies have showed the relationship between cell number and embryo developmental potential. However, there is limited understanding of embryo division behavior and their association with embryo cell number and developmental potential. A retrospective and observational study was conducted to investigate how different division behaviors affect cell number and developmental potential of day 3 embryos by time-lapse imaging. Based on cell number at day 3, the embryos (from 104 IVF/intracytoplasmic sperm injection (ICSI treatment cycles, n = 799 were classified as follows: less than 5 cells (10C; n = 42. Division behavior, morphokinetic parameters and blastocyst formation rate were analyzed in 5 groups of day 3 embryos with different cell numbers. In 10C embryos increased compared to 7-8C embryos (45.8%, 33.3% vs. 11.1%, respectively. In ≥5C embryos, FR and DC significantly reduced developmental potential, whereas 10C. In NB embryos, the cell cycle elongation or shortening was the main cause for abnormally low or high cell number, respectively. After excluding embryos with abnormal division behaviors, the developmental potential, implantation rate and live birth rate of day 3 embryos increased with cell number.

  2. Pacific Islands Coral Reef Ecosystems Division (CRED) Rapid Ecological Assessment (REA) algae species lists (NODC Accession 0010352)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quadrats were sampled along consecutively placed transect lines as part of Rapid Ecological Assessments conducted at sites in American Pacific Islands: CRED REA...

  3. Bacterial cell division regulation by Ser/Thr kinases: a structural perspective.

    Science.gov (United States)

    Ruggiero, Alessia; De Simone, Paola; Smaldone, Giovanni; Squeglia, Flavia; Berisio, Rita

    2012-12-01

    Recent genetic, biochemical and structural studies have established that eukaryotic-like Ser/Thr protein-kinases are critical mediators of developmental changes and host pathogen interactions in bacteria. Although with lower abundance compared to their homologues from eukaryotes, Ser/Thr protein-kinases are widespread in gram-positive bacteria. These data underline a key role of reversible Ser/Thr phosphorylation in bacterial physiology and virulence. Numerous studies have revealed how phosphorylation/dephosphorylation of Ser/Thr protein-kinases governs cell division and cell wall biosynthesis and that Ser/Thr protein kinases are responsible for distinct phenotypes, dependent on different environmental signals. In this review we discuss the current understandings of Ser/Thr protein-kinases functional processes based on structural data.

  4. High Antioxidant Activity Facilitates Maintenance of Cell Division in Leaves of Drought Tolerant Maize Hybrids.

    Science.gov (United States)

    Avramova, Viktoriya; AbdElgawad, Hamada; Vasileva, Ivanina; Petrova, Alexandra S; Holek, Anna; Mariën, Joachim; Asard, Han; Beemster, Gerrit T S

    2017-01-01

    We studied the impact of drought on growth regulation in leaves of 13 maize varieties with different drought sensitivity and geographic origins (Western Europe, Egypt, South Africa) and the inbred line B73. Combining kinematic analysis of the maize leaf growth zone with biochemical measurements at a high spatial resolution allowed us to examine the correlation between the regulation of the cellular processes cell division and elongation, and the molecular redox-regulation in response to drought. Moreover, we demonstrated differences in the response of the maize lines to mild and severe levels of water deficit. Kinematic analysis indicated that drought tolerant lines experienced less impact on leaf elongation rate due to a smaller reduction of cell production, which, in turn, was due to a smaller decrease of meristem size and number of cells in the leaf meristem. Clear differences in growth responses between the groups of lines with different geographic origin were observed in response to drought. The difference in drought tolerance between the Egyptian hybrids was significantly larger than between the European and South-African hybrids. Through biochemical analyses, we investigated whether antioxidant activity in the growth zone, contributes to the drought sensitivity differences. We used a hierarchical clustering to visualize the patterns of lipid peroxidation, H2O2 and antioxidant concentrations, and enzyme activities throughout the growth zone, in response to stress. The results showed that the lines with different geographic region used different molecular strategies to cope with the stress, with the Egyptian hybrids responding more at the metabolite level and African and the European hybrids at the enzyme level. However, drought tolerance correlated with both, higher antioxidant levels throughout the growth zone and higher activities of the redox-regulating enzymes CAT, POX, APX, and GR specifically in leaf meristems. These findings provide evidence for a link

  5. Advances in a rapidly emerging field of hair follicle stem cell research.

    Science.gov (United States)

    Mokos, Zrinka Bukvić; Mosler, Elvira Lazić

    2014-03-01

    Human skin maintains the ability to regenerate during adulthood, as it constantly renews itself throughout adult life, and the hair follicle (HF) undergoes a perpetual cycle of growth and degeneration. The study of stem cells (SCs) in the epidermis and skin tissue engineering is a rapidly emerging field, where advances have been made in both basic and clinical research. Advances in basic science include the ability to assay SCs of the epidermis in vivo, identification of an independent interfollicular epidermal SC, and improved ability to analyze individual SCs divisions, as well as the recent hair organ regeneration via the bioengineered hair follicular unit transplantation (FUT) in mice. Advances in the clinic include recognition of the importance of SCs for wound repair and for gene therapy in inherited skin diseases, for example epidermolysis bullosa. The study of the HF stem cells (HFSCs) started by identification of epidermal SC in the HF bulge as quiescent "label retaining cells". The research of these cells emerged rapidly after the identification of bulge cell molecular markers, such as keratin 15 (K15) and CD34 in mice and CD200 in humans, which allowed the isolation and characterization of bulge cells from follicles. This paper provides an overview of the current knowledge on epidermal SCs in the HF describing their essential characteristics and the control of follicle SCs fate, their role in alopecia, as well as their use in tissue engineering.

  6. Dynamic interplay of spectrosome and centrosome organelles in asymmetric stem cell divisions.

    Science.gov (United States)

    Bang, Chi; Cheng, Jun

    2015-01-01

    Stem cells have remarkable self-renewal ability and differentiation potency, which are critical for tissue repair and tissue homeostasis. Recently it has been found, in many systems (e.g. gut, neurons, and hematopoietic stem cells), that the self-renewal and differentiation balance is maintained when the stem cells divide asymmetrically. Drosophila male germline stem cells (GSCs), one of the best characterized model systems with well-defined stem cell niches, were reported to divide asymmetrically, where centrosome plays an important role. Utilizing time-lapse live cell imaging, customized tracking, and image processing programs, we found that most acentrosomal GSCs have the spectrosomes reposition from the basal end (wild type) to the apical end close to hub-GSC interface (acentrosomal GSCs). In addition, these apically positioned spectrosomes were mostly stationary while the basally positioned spectrosomes were mobile. For acentrosomal GSCs, their mitotic spindles were still highly oriented and divided asymmetrically with longer mitosis duration, resulting in asymmetric divisions. Moreover, when the spectrosome was knocked out, the centrosomes velocity decreased and centrosomes located closer to hub-GSC interface. We propose that in male GSCs, the spectrosome recruited to the apical end plays a complimentary role in ensuring proper spindle orientation when centrosome function is compromised.

  7. Dynamic interplay of spectrosome and centrosome organelles in asymmetric stem cell divisions.

    Directory of Open Access Journals (Sweden)

    Chi Bang

    Full Text Available Stem cells have remarkable self-renewal ability and differentiation potency, which are critical for tissue repair and tissue homeostasis. Recently it has been found, in many systems (e.g. gut, neurons, and hematopoietic stem cells, that the self-renewal and differentiation balance is maintained when the stem cells divide asymmetrically. Drosophila male germline stem cells (GSCs, one of the best characterized model systems with well-defined stem cell niches, were reported to divide asymmetrically, where centrosome plays an important role. Utilizing time-lapse live cell imaging, customized tracking, and image processing programs, we found that most acentrosomal GSCs have the spectrosomes reposition from the basal end (wild type to the apical end close to hub-GSC interface (acentrosomal GSCs. In addition, these apically positioned spectrosomes were mostly stationary while the basally positioned spectrosomes were mobile. For acentrosomal GSCs, their mitotic spindles were still highly oriented and divided asymmetrically with longer mitosis duration, resulting in asymmetric divisions. Moreover, when the spectrosome was knocked out, the centrosomes velocity decreased and centrosomes located closer to hub-GSC interface. We propose that in male GSCs, the spectrosome recruited to the apical end plays a complimentary role in ensuring proper spindle orientation when centrosome function is compromised.

  8. Fruit illumination stimulates cell division but has no detectable effect on fruit size in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Okello, Robert C O; Heuvelink, Ep; de Visser, Pieter H B; Lammers, Michiel; de Maagd, Ruud A; Marcelis, Leo F M; Struik, Paul C

    2015-05-01

    Light affects plant growth through assimilate availability and signals regulating development. The effects of light on growth of tomato fruit were studied using cuvettes with light-emitting diodes providing white, red or blue light to individual tomato trusses for different periods during daytime. Hypotheses tested were as follows: (1) light-grown fruits have stronger assimilate sinks than dark-grown fruits, and (2) responses depend on light treatment provided, and fruit development stage. Seven light treatments [dark, 12-h white, 24-h white, 24-h red and 24-h blue light, dark in the first 24 days after anthesis (DAA) followed by 24-h white light until breaker stage, and its reverse] were applied. Observations were made between anthesis and breaker stage at fruit, cell and gene levels. Fruit size and carbohydrate content did not respond to light treatments while cell division was strongly stimulated at the expense of cell expansion by light. The effects of light on cell number and volume were independent of the combination of light color and intensity. Increased cell division and decreased cell volume when fruits were grown in the presence of light were not clearly corroborated by the expression pattern of promoters and inhibitors of cell division and expansion analyzed in this study, implying a strong effect of posttranscriptional regulation. Results suggest the existence of a complex homeostatic regulatory system for fruit growth in which reduced cell division is compensated by enhanced cell expansion. © 2014 Scandinavian Plant Physiology Society.

  9. Mathematical models of tissue stem and transit target cell divisions and the risk of radiation- or smoking-associated cancer.

    Directory of Open Access Journals (Sweden)

    Mark P Little

    2017-02-01

    Full Text Available There is compelling biological data to suggest that cancer arises from a series of mutations in single target cells, resulting in defects in cell renewal and differentiation processes which lead to malignancy. Because much mutagenic damage is expressed following cell division, more-rapidly renewing tissues could be at higher risk because of the larger number of cell replications. Cairns suggested that renewing tissues may reduce cancer risk by partitioning the dividing cell populations into lineages comprising infrequently-dividing long-lived stem cells and frequently-dividing short-lived daughter transit cells. We develop generalizations of three recent cancer-induction models that account for the joint maintenance and renewal of stem and transit cells, also competing processes of partially transformed cell proliferation and differentiation/apoptosis. We are particularly interested in using these models to separately assess the probabilities of mutation and development of cancer associated with "spontaneous" processes and with those linked to a specific environmental mutagen, specifically ionizing radiation or cigarette smoking. All three models demonstrate substantial variation in cancer risks, by at least 20 orders of magnitude, depending on the assumed number of critical mutations required for cancer, and the stem-cell and transition-cell mutation rates. However, in most cases the conditional probabilities of cancer being mutagen-induced range between 7-96%. The relative risks associated with mutagen exposure compared to background rates are also stable, ranging from 1.0-16.0. Very few cancers, generally 0.3 between lifetime cancer-site specific radiation risk and the probability of that cancer being mutagen-induced. These results do not depend on the assumed critical number of mutations leading to cancer, or on the assumed mutagen-associated mutation rate, within the generally-accepted ranges tested. However, there are borderline

  10. Par1b links lumen polarity with LGN-NuMA positioning for distinct epithelial cell division phenotypes

    NARCIS (Netherlands)

    Lazaro-Dieguez, Francisco; Cohen, David; Fernandez, Dawn; Hodgson, Louis; van IJzendoorn, Sven C. D.; Muesch, Anne

    2013-01-01

    Columnar epithelia establish their luminal domains and their mitotic spindles parallel to the basal surface and undergo symmetric cell divisions in which the cleavage furrow bisects the apical domain. Hepatocyte lumina interrupt the lateral domain of neighboring cells perpendicular to two basal

  11. Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus cell division.

    Science.gov (United States)

    Veiga, Helena; Jorge, Ana M; Pinho, Mariana G

    2011-06-01

    The Gram-positive pathogen Staphylococcus aureus divides by synthesizing the septum in three orthogonal planes over three consecutive division cycles. This process has to be tightly coordinated with chromosome segregation to avoid bisection of the nucleoid by the septum. Here we show that deletion of the nucleoid occlusion effector Noc in S. aureus results in the formation of Z-rings over the nucleoid, as well as in DNA breaks, indicating that Noc has an important role as an antiguillotine checkpoint that prevents septa from forming over the DNA. Furthermore, Noc deleted cells show multiple Z-rings which are no longer placed in perpendicular planes. We propose that the axis of chromosome segregation has a role in determining the placement of the division septum. This is achieved via the action of Noc which restricts the placement of the division septum to one of an infinite number of potential division planes that exist in S. aureus. © 2011 Blackwell Publishing Ltd.

  12. LKB1-AMPK modulates nutrient-induced changes in the mode of division of intestinal epithelial crypt cells in mice.

    Science.gov (United States)

    Blackmore, Katherine; Zhou, Weinan; Dailey, Megan J

    2017-09-01

    Nutrient availability influences intestinal epithelial stem cell proliferation and tissue growth. Increases in food result in a greater number of epithelial cells, villi height and crypt depth. We investigated whether this nutrient-driven expansion of the tissue is the result of a change in the mode of intestinal epithelial stem cell division and if LKB1-AMPK signaling plays a role. We utilized in vivo and in vitro experiments to test this hypothesis. C57BL/6J mice were separated into four groups and fed varying amounts of chow for 18 h: (1) ad libitum, (2) 50% of their average daily intake (3) fasted or (4) fasted for 12 h and refed. Mice were sacrificed, intestinal sections excised and immunohistochemically processed to determine the mitotic spindle orientation. Epithelial organoids in vitro were treated with no (0 mM), low (5 mM) or high (20 mM) amounts of glucose with or without an activator (Metformin) or inhibitor (Compound C) of LKB1-AMPK signaling. Cells were then processed to determine the mode of stem cell division. Fasted mice show a greater % of asymmetrically dividing cells compared with the other feeding groups. Organoids incubated with 0 mM glucose resulted in a greater % of asymmetrically dividing cells compared with the low or high-glucose conditions. In addition, LKB1-AMPK activation attenuated the % of symmetric division normally seen in high-glucose conditions. In contrast, LKB1-AMPK inhibition attenuated the % of asymmetric division normally seen in no glucose conditions. These data suggest that nutrient availability dictates the mode of division and that LKB1-AMPK mediates this nutrient-driven effect on intestinal epithelial stem cell proliferation. Impact statement The underlying cell biology of changes in the polarity of mitotic spindles and its relevance to tissue growth is a new concept and, thus, these data provide novel findings to begin to explain how this process contributes to the regeneration and growth of tissues. We

  13. Function of the aux and rol genes of the Ri plasmid in plant cell division in vitro.

    Science.gov (United States)

    Nemoto, Keiichirou; Hara, Masamitsu; Suzuki, Masashi; Seki, Hikaru; Oka, Atsuhiro; Muranaka, Toshiya; Mano, Yoshihiro

    2009-12-01

    Auxin-autonomous growth in vitro may be related to the integration and expression of the aux and rol genes from the root-inducing (Ri) plasmid in plant cells infected by agropine-type Agrobacterium rhizogenes. To elucidate the functions of the aux and rol genes in plant cell division, plant cell lines transformed with the aux1 and aux2 genes or with the rolABCD genes were established using tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells. The introduction of the aux1 and aux2 genes enabled the auxin-autonomous growth of BY-2 cells, but the introduction of the rolABCD genes did not affect the auxin requirement of the BY-2 cells. The results clearly show that the aux genes are necessary for auxinautotrophic cell division, and that the rolABCD genes are irrelevant in auxin autotrophy.

  14. Intestinal stem cell division and genetic diversity. A computer and experimental analysis.

    Science.gov (United States)

    Tsao, J L; Davis, S D; Baker, S M; Liskay, R M; Shibata, D

    1997-08-01

    Somatic mutations are expected to arise with age. This process is accelerated in mice lacking the DNA mismatch repair gene Pms2. The distributions of microsatellite alleles present in small patches of normal Pms2 -/- intestines revealed a general increase in genetic diversity or the number of mutations with age. However, the patterns were complex with different distributions and variances present within a single mouse. Computer simulations indicate that the experimental data are consistent with mutation rates between 0.0020 and 0.0025 mutations per division, nonrandom cell death, and an effective population size of 20 or fewer cells. Small numbers of cells exacerbate the random accumulation of mutations expected of a stochastic mutation process. The computer simulations and experimental data are consistent with known patterns of intestinal development and renewal by small numbers of stem cells and demonstrate relatively high mutation rates in histologically normal epithelium. These findings provide background for the analysis of microsatellite mutations in normal and tumor tissue lacking mismatch repair and further support the hypothesis that microsatellite loci can function as molecular tumor clocks.

  15. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo.

    Directory of Open Access Journals (Sweden)

    Åsmund H Eikenes

    2015-01-01

    Full Text Available Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo.

  16. ALIX and ESCRT-III coordinately control cytokinetic abscission during germline stem cell division in vivo.

    Science.gov (United States)

    Eikenes, Åsmund H; Malerød, Lene; Christensen, Anette Lie; Steen, Chloé B; Mathieu, Juliette; Nezis, Ioannis P; Liestøl, Knut; Huynh, Jean-René; Stenmark, Harald; Haglund, Kaisa

    2015-01-01

    Abscission is the final step of cytokinesis that involves the cleavage of the intercellular bridge connecting the two daughter cells. Recent studies have given novel insight into the spatiotemporal regulation and molecular mechanisms controlling abscission in cultured yeast and human cells. The mechanisms of abscission in living metazoan tissues are however not well understood. Here we show that ALIX and the ESCRT-III component Shrub are required for completion of abscission during Drosophila female germline stem cell (fGSC) division. Loss of ALIX or Shrub function in fGSCs leads to delayed abscission and the consequent formation of stem cysts in which chains of daughter cells remain interconnected to the fGSC via midbody rings and fusome. We demonstrate that ALIX and Shrub interact and that they co-localize at midbody rings and midbodies during cytokinetic abscission in fGSCs. Mechanistically, we show that the direct interaction between ALIX and Shrub is required to ensure cytokinesis completion with normal kinetics in fGSCs. We conclude that ALIX and ESCRT-III coordinately control abscission in Drosophila fGSCs and that their complex formation is required for accurate abscission timing in GSCs in vivo.

  17. Synthesis and Evaluation of Quinazolines as Inhibitors of the Bacterial Cell Division Protein FtsZ.

    Science.gov (United States)

    Nepomuceno, Gabriella M; Chan, Katie M; Huynh, Valerie; Martin, Kevin S; Moore, Jared T; O'Brien, Terrence E; Pollo, Luiz A E; Sarabia, Francisco J; Tadeus, Clarissa; Yao, Zi; Anderson, David E; Ames, James B; Shaw, Jared T

    2015-03-12

    The bacterial cell division protein FtsZ is one of many potential targets for the development of novel antibiotics. Recently, zantrin Z3 was shown to be a cross-species inhibitor of FtsZ; however, its specific interactions with the protein are still unknown. Herein we report the synthesis of analogues that contain a more tractable core structure and an analogue with single-digit micromolar inhibition of FtsZ's GTPase activity, which represents the most potent inhibitor of Escherichia coli FtsZ reported to date. In addition, the zantrin Z3 core has been converted to two potential photo-cross-linking reagents for proteomic studies that could shed light on the molecular interactions between FtsZ and molecules related to zantrin Z3.

  18. From cell differentiation to cell collectives : Bacillus subtilis uses division of labor to migrate

    NARCIS (Netherlands)

    van Gestel, Jordi; Vlamakis, Hera; Kolter, Roberto

    The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In

  19. Germ band differentiation in the stomatopod Gonodactylaceus falcatus and the origin of the stereotyped cell division pattern in Malacostraca (Crustacea).

    Science.gov (United States)

    Fischer, Antje H L; Pabst, Tino; Scholtz, Gerhard

    2010-11-01

    We analysed aspects of the embryonic development of the stomatopod crustacean Gonodactylaceus falcatus focusing on the cell division in the ectoderm of the germ band. As in many other malacostracan crustaceans, the growth zone in the caudal papilla is formed by 19 ectoteloblasts and 8 mesoteloblasts arranged in rings. These teloblasts give rise to the cellular material of the largest part of the post-naupliar germ band in a stereotyped cell division pattern. The regularly arranged cells of the genealogical units produced by the ectoteloblast divide twice in longitudinal direction. The intersegmental furrows form within the descendants of one genealogical unit in the ectoderm. Hence, embryos of G. falcatus share some features of the stereotyped cell division pattern with that in other malacostracan crustaceans, which is unique among arthropods. In contrast to the other malacostracan taxa studied so far, stomatopods show slightly oblique spindle direction and a tilted position of the cells within the genealogical units. The inclusion of data on Leptostraca suggests that aspects of stereotyped cell divisions in the germ band must be assumed for the ground pattern of Malacostraca. Moreover, Stomatopoda and Leptostraca share the lateral displacement of cells during the mediolateral divisions of the ectodermal genealogical units in the post-naupliar germ band. The Caridoida within the Eumalacostraca apomorphically evolved the strict longitudinal orientation of spindle axes and cell positions, reaching the highest degree of regularity in the Peracarida. The phylogenetic analysis of the distribution of developmental characters is the prerequisite for the analysis of the evolution of developmental patterns and mechanisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  1. Interrogating cell division errors using random and chromosome-specific missegregation approaches.

    Science.gov (United States)

    Ly, Peter; Cleveland, Don W

    2017-07-03

    Accurate segregation of the duplicated genome in mitosis is essential for maintaining genetic stability. Errors in this process can cause numerical and/or structural chromosome abnormalities - hallmark genomic features commonly associated with both tumorigenesis and developmental disorders. A cell-based approach was recently developed permitting inducible missegregation of the human Y chromosome by selectively disrupting kinetochore assembly onto the Y centromere. Although this strategy initially requires several steps of genetic manipulation, it is easy to use, highly efficient and specific for the Y without affecting the autosomes or the X, and does not require cell cycle synchronization or mitotic perturbation. Here we describe currently available tools for studying chromosome segregation errors, aneuploidy, and micronuclei, as well as discuss how the Y-specific missegregation system has been used to elucidate how chromosomal micronucleation can trigger a class of extensive rearrangements termed chromothripsis. The combinatorial use of these different tools will allow unresolved aspects of cell division defects and chromosomal instability to be experimentally explored.

  2. Absence of the Polar Organizing Protein PopZ Results in Reduced and Asymmetric Cell Division in Agrobacterium tumefaciens.

    Science.gov (United States)

    Howell, Matthew; Aliashkevich, Alena; Salisbury, Anne K; Cava, Felipe; Bowman, Grant R; Brown, Pamela J B

    2017-09-01

    Agrobacterium tumefaciens is a rod-shaped bacterium that grows by polar insertion of new peptidoglycan during cell elongation. As the cell cycle progresses, peptidoglycan synthesis at the pole ceases prior to insertion of new peptidoglycan at midcell to enable cell division. The A. tumefaciens homolog of the Caulobacter crescentus polar organelle development protein PopZ has been identified as a growth pole marker and a candidate polar growth-promoting factor. Here, we characterize the function of PopZ in cell growth and division of A. tumefaciens Consistent with previous observations, we observe that PopZ localizes specifically to the growth pole in wild-type cells. Despite the striking localization pattern of PopZ, we find the absence of the protein does not impair polar elongation or cause major changes in the peptidoglycan composition. Instead, we observe an atypical cell length distribution, including minicells, elongated cells, and cells with ectopic poles. Most minicells lack DNA, suggesting a defect in chromosome segregation. Furthermore, the canonical cell division proteins FtsZ and FtsA are misplaced, leading to asymmetric sites of cell constriction. Together, these data suggest that PopZ plays an important role in the regulation of chromosome segregation and cell division.IMPORTANCEA. tumefaciens is a bacterial plant pathogen and a natural genetic engineer. However, very little is known about the spatial and temporal regulation of cell wall biogenesis that leads to polar growth in this bacterium. Understanding the molecular basis of A. tumefaciens growth may allow for the development of innovations to prevent disease or to promote growth during biotechnology applications. Finally, since many closely related plant and animal pathogens exhibit polar growth, discoveries in A. tumefaciens may be broadly applicable for devising antimicrobial strategies. Copyright © 2017 American Society for Microbiology.

  3. The Nuclear Matrix Protein Megator Regulates Stem Cell Asymmetric Division through the Mitotic Checkpoint Complex in Drosophila Testes.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-12-01

    Full Text Available In adult Drosophila testis, asymmetric division of germline stem cells (GSCs is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2. However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor, a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2 and monopolar spindle 1 (Mps1 of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division.

  4. Diel in situ picophytoplankton cell death cycles coupled with cell division

    NARCIS (Netherlands)

    Llabres, M.; Agustí, S.; Herndl, G.J.

    2011-01-01

    The diel variability in picophytoplankton cell death was analyzed by quantifying the proportion of dead cyanobacteria Prochlorococcus and Synechococcus cells along several in situ diel cycles in the open Mediterranean Sea. During the diel cycle, total cell abundance varied on average 2.8 +/- 0.6 and

  5. Rapid Mobilization Reveals a Highly Engraftable Hematopoietic Stem Cell.

    Science.gov (United States)

    Hoggatt, Jonathan; Singh, Pratibha; Tate, Tiffany A; Chou, Bin-Kuan; Datari, Shruti R; Fukuda, Seiji; Liu, Liqiong; Kharchenko, Peter V; Schajnovitz, Amir; Baryawno, Ninib; Mercier, Francois E; Boyer, Joseph; Gardner, Jason; Morrow, Dwight M; Scadden, David T; Pelus, Louis M

    2018-01-11

    Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROβ, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A rapid mitochondrial toxicity assay utilizing rapidly changing cell energy metabolism.

    Science.gov (United States)

    Sanuki, Yosuke; Araki, Tetsuro; Nakazono, Osamu; Tsurui, Kazuyuki

    2017-01-01

    Drug-induced liver injury is a major cause of safety-related drug-marketing withdrawals. Several drugs have been reported to disrupt mitochondrial function, resulting in hepatotoxicity. The development of a simple and effective in vitro assay to identify the potential for mitochondrial toxicity is thus desired to minimize the risk of causing hepatotoxicity and subsequent drug withdrawal. An in vitro test method called the "glucose-galactose" assay is often used in drug development but requires prior-culture of cells over several passages for mitochondrial adaptation, thereby restricting use of the assay. Here, we report a rapid version of this method with the same predictability as the original method. We found that replacing the glucose in the medium with galactose resulted in HepG2 cells immediately shifting their energy metabolism from glycolysis to oxidative phosphorylation due to drastic energy starvation; in addition, the intracellular concentration of ATP was reduced by mitotoxicants when glucose in the medium was replaced with galactose. Using our proposed rapid method, mitochondrial dysfunction in HepG2 cells can be evaluated by drug exposure for one hour without a pre-culture step. This rapid assay for mitochondrial toxicity may be more suitable for high-throughput screening than the original method at an early stage of drug development.

  7. The role of GlsA in the evolution of asymmetric cell division in the green alga Volvox carteri.

    Science.gov (United States)

    Cheng, Qian; Fowler, Rachel; Tam, Lai-wa; Edwards, Lisseth; Miller, Stephen M

    2003-07-01

    Volvox carteri, a green alga in the order Volvocales, contains two completely differentiated cell types, small motile somatic cells and large reproductive cells called gonidia, that are set apart from each other during embryogenesis by a series of visibly asymmetric cell divisions. Mutational analysis has revealed a class of genes (gonidialess, gls) that are required specifically for asymmetric divisions in V. carteri, but that are dispensable for symmetric divisions. Previously we cloned one of these genes, glsA, and showed that it encodes a chaperone-like protein (GlsA) that has close orthologs in a diverse set of eukaryotes, ranging from fungi to vertebrates and higher plants. In the present study we set out to explore the role of glsA in the evolution of asymmetric division in the volvocine algae by cloning and characterizing a glsA ortholog from one of the simplest members of the group, Chlamydomonas reinhardtii, which does not undergo asymmetric divisions. This ortholog (which we have named gar1, for glsA related) is predicted to encode a protein that is 70% identical to GlsA overall, and that is most closely related to GlsA in the same domains that are most highly conserved between GlsA and its other known orthologs. We report that a gar1 transgene fully complements the glsA mutation in V. carteri, a result that suggests that asymmetric division probably arose through the modification of a gene whose product interacts with GlsA, but not through a modification of glsA itself.

  8. Loss of PodJ in Agrobacterium tumefaciens Leads to Ectopic Polar Growth, Branching, and Reduced Cell Division.

    Science.gov (United States)

    Anderson-Furgeson, James C; Zupan, John R; Grangeon, Romain; Zambryski, Patricia C

    2016-07-01

    Agrobacterium tumefaciens is a rod-shaped Gram-negative bacterium that elongates by unipolar addition of new cell envelope material. Approaching cell division, the growth pole transitions to a nongrowing old pole, and the division site creates new growth poles in sibling cells. The A. tumefaciens homolog of the Caulobacter crescentus polar organizing protein PopZ localizes specifically to growth poles. In contrast, the A. tumefaciens homolog of the C. crescentus polar organelle development protein PodJ localizes to the old pole early in the cell cycle and accumulates at the growth pole as the cell cycle proceeds. FtsA and FtsZ also localize to the growth pole for most of the cell cycle prior to Z-ring formation. To further characterize the function of polar localizing proteins, we created a deletion of A. tumefaciens podJ (podJAt). ΔpodJAt cells display ectopic growth poles (branching), growth poles that fail to transition to an old pole, and elongated cells that fail to divide. In ΔpodJAt cells, A. tumefaciens PopZ-green fluorescent protein (PopZAt-GFP) persists at nontransitioning growth poles postdivision and also localizes to ectopic growth poles, as expected for a growth-pole-specific factor. Even though GFP-PodJAt does not localize to the midcell in the wild type, deletion of podJAt impacts localization, stability, and function of Z-rings as assayed by localization of FtsA-GFP and FtsZ-GFP. Z-ring defects are further evidenced by minicell production. Together, these data indicate that PodJAt is a critical factor for polar growth and that ΔpodJAt cells display a cell division phenotype, likely because the growth pole cannot transition to an old pole. How rod-shaped prokaryotes develop and maintain shape is complicated by the fact that at least two distinct species-specific growth modes exist: uniform sidewall insertion of cell envelope material, characterized in model organisms such as Escherichia coli, and unipolar growth, which occurs in several

  9. Rapid induction of senescence in human cervical carcinoma cells

    Science.gov (United States)

    Goodwin, Edward C.; Yang, Eva; Lee, Chan-Jae; Lee, Han-Woong; Dimaio, Daniel; Hwang, Eun-Seong

    2000-09-01

    Expression of the bovine papillomavirus E2 regulatory protein in human cervical carcinoma cell lines repressed expression of the resident human papillomavirus E6 and E7 oncogenes and within a few days caused essentially all of the cells to synchronously display numerous phenotypic markers characteristic of cells undergoing replicative senescence. This process was accompanied by marked but in some cases transient alterations in the expression of cell cycle regulatory proteins and by decreased telomerase activity. We propose that the human papillomavirus E6 and E7 proteins actively prevent senescence from occurring in cervical carcinoma cells, and that once viral oncogene expression is extinguished, the senescence program is rapidly executed. Activation of endogenous senescence pathways in cancer cells may represent an alternative approach to treat human cancers.

  10. Rapid neurogenesis through transcriptional activation in human stem cells.

    Science.gov (United States)

    Busskamp, Volker; Lewis, Nathan E; Guye, Patrick; Ng, Alex H M; Shipman, Seth L; Byrne, Susan M; Sanjana, Neville E; Murn, Jernej; Li, Yinqing; Li, Shangzhong; Stadler, Michael; Weiss, Ron; Church, George M

    2014-11-17

    Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Evolutionary transition towards permanent chloroplasts? - Division of kleptochloroplasts in starved cells of two species of Dinophysis (Dinophyceae.

    Directory of Open Access Journals (Sweden)

    Pernille Møller Rusterholz

    Full Text Available Species within the marine toxic dinoflagellate genus Dinophysis are phagotrophic organisms that exploit chloroplasts (kleptochloroplasts from other protists to perform photosynthesis. Dinophysis spp. acquire the kleptochloroplasts from the ciliate Mesodinium rubrum, which in turn acquires the chloroplasts from a unique clade of cryptophytes. Dinophysis spp. digest the prey nuclei and all other cell organelles upon ingestion (except the kleptochloroplasts and they are therefore believed to constantly acquire new chloroplasts as the populations grow. Previous studies have, however, indicated that Dinophysis can keep the kleptochloroplasts active during long term starvation and are able to produce photosynthetic pigments when exposed to prey starvation. This indicates a considerable control over the kleptochloroplasts and the ability of Dinophysis to replicate its kleptochloroplasts was therefore re-investigated in detail in this study. The kleptochloroplasts of Dinophysis acuta and Dinophysis acuminata were analyzed using confocal microscopy and 3D bioimaging software during long term starvation experiments. The cell concentrations were monitored to confirm cell divisions and samples were withdrawn each time a doubling had occurred. The results show direct evidence of kleptochloroplastidic division and that the decreases in total kleptochloroplast volume, number of kleptochloroplasts and number of kleptochloroplast centers were not caused by dilution due to cell divisions. This is the first report of division of kleptochloroplasts in any protist without the associated prey nuclei. This indicates that Dinophysis spp. may be in a transitional phase towards possessing permanent chloroplasts, which thereby potentially makes it a key organism to understand the evolution of phototrophic protists.

  12. LocZ is a new cell division protein involved in proper septum placement in Streptococcus pneumoniae

    Czech Academy of Sciences Publication Activity Database

    Holečková, Nela; Doubravová, Linda; Massidda, Orietta; Molle, Virginie; Buriánková, Karolína; Benada, Oldřich; Kofroňová, Olga; Ulrych, Aleš; Branny, Pavel

    2015-01-01

    Roč. 6, č. 1 (2015), s. 1-13 ISSN 2150-7511 R&D Projects: GA ČR GAP207/12/1568; GA ČR GAP302/12/0256 Institutional support: RVO:61388971 Keywords : cell division * septum placement * Streptococcus pneumoniae Subject RIV: EE - Microbiology, Virology Impact factor: 6.975, year: 2015

  13. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division

    Science.gov (United States)

    Szwedziak, Piotr; Wang, Qing; Bharat, Tanmay A M; Tsim, Matthew; Löwe, Jan

    2014-01-01

    Membrane constriction is a prerequisite for cell division. The most common membrane constriction system in prokaryotes is based on the tubulin homologue FtsZ, whose filaments in E. coli are anchored to the membrane by FtsA and enable the formation of the Z-ring and divisome. The precise architecture of the FtsZ ring has remained enigmatic. In this study, we report three-dimensional arrangements of FtsZ and FtsA filaments in C. crescentus and E. coli cells and inside constricting liposomes by means of electron cryomicroscopy and cryotomography. In vivo and in vitro, the Z-ring is composed of a small, single-layered band of filaments parallel to the membrane, creating a continuous ring through lateral filament contacts. Visualisation of the in vitro reconstituted constrictions as well as a complete tracing of the helical paths of the filaments with a molecular model favour a mechanism of FtsZ-based membrane constriction that is likely to be accompanied by filament sliding. DOI: http://dx.doi.org/10.7554/eLife.04601.001 PMID:25490152

  14. Microgravity Effecs During Fertilization, Cell Division, Development, and Calcium Metabolism in Sea Urchins

    Science.gov (United States)

    Schatten, Heide

    1999-01-01

    Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. Fundamental occurrences in cell biology which are likely to depend on gravity include cytoskeletal dynamics, chromatin and centrosome cycling, and ion immobilization. These events can be studied during fertilization and embryogenesis within invertebrate systems. We have chosen the sea urchin system to study the effects of microgravity on cytoskeletal processes and calcium metabolism during fertilization, cell division, development, and embryogenesis. Experiments during an aircraft parabolic flight (KC-135) demonstrated: (1) the viability of sea urchin eggs prior to fertilization, (2) the suitability of our specimen containment system, (3) the feasibility of fertilization in a reduced gravity environment (which was achieved during 25 seconds of reduced gravity under parabolic flight conditions). Two newly developed pieces of spaceflight hardware made further investigations possible on a spaceflight (STS-77); (1) the Aquatic Research Facility (ARF), and (2) the Fertilization Syringe Unit (FSU). The Canadian Space Agency developed ARF to conduct aquatic spaceflight experiments requiring controlled conditions of temperature, humidity, illumination, and fixation at predetermined time points. It contained a control centrifuge which simulated the 1 g environment of earth during spaceflight. The FSU was developed at the Kennedy Space Center (KSC) by the Bionetics Corporation specifically to enable the crew to perform sea urchin fertilization operations in space.

  15. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance

    Directory of Open Access Journals (Sweden)

    Dempwolff Felix

    2012-12-01

    Full Text Available Abstract Background In eukaryotic cells, dynamin and flotillin are involved in processes such as endocytosis and lipid raft formation, respectively. Dynamin is a GTPase that exerts motor-like activity during the pinching off of vesicles, while flotillins are coiled coil rich membrane proteins with no known enzymatic activity. Bacteria also possess orthologs of both classes of proteins, but their function has been unclear. Results We show that deletion of the single dynA or floT genes lead to no phenotype or a mild defect in septum formation in the case of the dynA gene, while dynA floT double mutant cells were highly elongated and irregularly shaped, although the MreB cytoskeleton appeared to be normal. DynA colocalizes with FtsZ, and the dynA deletion strain shows aberrant FtsZ rings in a subpopulation of cells. The mild division defect of the dynA deletion is exacerbated by an additional deletion in ezrA, which affects FtsZ ring formation, and also by the deletion of a late division gene (divIB, indicating that DynA affects several steps in cell division. DynA and mreB deletions generated a synthetic defect in cell shape maintenance, showing that MreB and DynA play non-epistatic functions in cell shape maintenance. TIRF microscopy revealed that FloT forms many dynamic membrane assemblies that frequently colocalize with the division septum. The deletion of dynA did not change the pattern of localization of FloT, and vice versa, showing that the two proteins play non redundant roles in a variety of cellular processes. Expression of dynamin or flotillin T in eukaryotic S2 cells revealed that both proteins assemble at the cell membrane. While FloT formed patch structures, DynA built up tubulated structures extending away from the cells. Conclusions Bacillus subtilis dynamin ortholog DynA plays a role during cell division and in cell shape maintenance. It shows a genetic link with flotillin T, with both proteins playing non-redundant functions at

  16. A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division.

    Directory of Open Access Journals (Sweden)

    Scott A Hoose

    Full Text Available Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms.

  17. A systematic analysis of cell cycle regulators in yeast reveals that most factors act independently of cell size to control initiation of division.

    Science.gov (United States)

    Hoose, Scott A; Rawlings, Jeremy A; Kelly, Michelle M; Leitch, M Camille; Ababneh, Qotaiba O; Robles, Juan P; Taylor, David; Hoover, Evelyn M; Hailu, Bethel; McEnery, Kayla A; Downing, S Sabina; Kaushal, Deepika; Chen, Yi; Rife, Alex; Brahmbhatt, Kirtan A; Smith, Roger; Polymenis, Michael

    2012-01-01

    Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene deletions that altered cell cycle progression did not change cell size. Our results highlight a strong requirement for ribosomal biogenesis and protein synthesis for initiation of cell division. We also identified numerous factors that have not been previously implicated in cell cycle control mechanisms. We found that CBS, which catalyzes the synthesis of cystathionine from serine and homocysteine, advances START in two ways: by promoting cell growth, which requires CBS's catalytic activity, and by a separate function, which does not require CBS's catalytic activity. CBS defects cause disease in humans, and in animals CBS has vital, non-catalytic, unknown roles. Hence, our results may be relevant for human biology. Taken together, these findings significantly expand the range of factors required for the timely initiation of cell division. The systematic identification of non-essential regulators of cell division we describe will be a valuable resource for analysis of cell cycle progression in yeast and other organisms.

  18. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Erica S Martins-Duarte

    Full Text Available Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite's DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM. When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13-25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment. Light microscopy examination early (6 and 24h post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition--with the appearance of 'tethered' parasites--malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results

  19. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    Energy Technology Data Exchange (ETDEWEB)

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  20. Model-Based Analysis of Arabidopsis Leaf Epidermal Cells Reveals Distinct Division and Expansion Patterns for Pavement and Guard Cells1[W][OA

    Science.gov (United States)

    Asl, Leila Kheibarshekan; Dhondt, Stijn; Boudolf, Véronique; Beemster, Gerrit T.S.; Beeckman, Tom; Inzé, Dirk; Govaerts, Willy; De Veylder, Lieven

    2011-01-01

    To efficiently capture sunlight for photosynthesis, leaves typically develop into a flat and thin structure. This development is driven by cell division and expansion, but the individual contribution of these processes is currently unknown, mainly because of the experimental difficulties to disentangle them in a developing organ, due to their tight interconnection. To circumvent this problem, we built a mathematic model that describes the possible division patterns and expansion rates for individual epidermal cells. This model was used to fit experimental data on cell numbers and sizes obtained over time intervals of 1 d throughout the development of the first leaf pair of Arabidopsis (Arabidopsis thaliana). The parameters were obtained by a derivative-free optimization method that minimizes the differences between the predicted and experimentally observed cell size distributions. The model allowed us to calculate probabilities for a cell to divide into guard or pavement cells, the maximum size at which it can divide, and its average cell division and expansion rates at each point during the leaf developmental process. Surprisingly, average cell cycle duration remained constant throughout leaf development, whereas no evidence for a maximum cell size threshold for cell division of pavement cells was found. Furthermore, the model predicted that neighboring cells of different sizes within the epidermis expand at distinctly different relative rates, which could be verified by direct observations. We conclude that cell division seems to occur independently from the status of cell expansion, whereas the cell cycle might act as a timer rather than as a size-regulated machinery. PMID:21693673

  1. Auxin as an inducer of asymmetrical division generating the subsidiary cells in stomatal complexes of Zea mays.

    Science.gov (United States)

    Livanos, Pantelis; Giannoutsou, Eleni; Apostolakos, Panagiotis; Galatis, Basil

    2015-01-01

    The data presented in this work revealed that in Zea mays the exogenously added auxins indole-3-acetic acid (IAA) and 1-napthaleneacetic acid (NAA), promoted the establishment of subsidiary cell mother cell (SMC) polarity and the subsequent subsidiary cell formation, while treatment with auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA) and 1-napthoxyacetic acid (NOA) specifically blocked SMC polarization and asymmetrical division. Furthermore, in young guard cell mother cells (GMCs) the PIN1 auxin efflux carriers were mainly localized in the transverse GMC faces, while in the advanced GMCs they appeared both in the transverse and the lateral ones adjacent to SMCs. Considering that phosphatidyl-inositol-3-kinase (PI3K) is an active component of auxin signal transduction and that phospholipid signaling contributes in the establishment of polarity, treatments with the specific inhibitor of the PI3K LY294002 were carried out. The presence of LY294002 suppressed polarization of SMCs and prevented their asymmetrical division, whereas combined treatment with exogenously added NAA and LY294002 restricted the promotional auxin influence on subsidiary cell formation. These findings support the view that auxin is involved in Z. mays subsidiary cell formation, probably functioning as inducer of the asymmetrical SMC division. Collectively, the results obtained from treatments with auxin transport inhibitors and the appearance of PIN1 proteins in the lateral GMC faces indicate a local transfer of auxin from GMCs to SMCs. Moreover, auxin signal transduction seems to be mediated by the catalytic function of PI3K.

  2. Cosuppression of Eukaryotic Release Factor 1-1 in Arabidopsis Affects Cell Elongation and Radial Cell Division

    Science.gov (United States)

    Petsch, Katherine Anne; Mylne, Joshua; Botella, José Ramón

    2005-01-01

    The role of the eukaryotic release factor 1 (eRF1) in translation termination has previously been established in yeast; however, only limited characterization has been performed on any plant homologs. Here, we demonstrate that cosuppression of eRF1-1 in Arabidopsis (Arabidopsis thaliana) has a profound effect on plant morphology, resulting in what we term the broomhead phenotype. These plants primarily exhibit a reduction in internode elongation causing the formation of a broomhead-like cluster of malformed siliques at the top of the inflorescence stem. Histological analysis of broomhead stems revealed that cells are reduced in height and display ectopic lignification of the phloem cap cells, some phloem sieve cells, and regions of the fascicular cambium, as well as enhanced lignification of the interfascicular fibers. We also show that cell division in the fascicular cambial regions is altered, with the majority of vascular bundles containing cambial cells that are disorganized and possess enlarged nuclei. This is the first attempt at functional characterization of a release factor in vivo in plants and demonstrates the importance of eRF1-1 function in Arabidopsis. PMID:16113224

  3. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  4. Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes.

    Science.gov (United States)

    Qian, Wei; Huang, Xiaohua; Kang, Bin; El-Sayed, Mostafa A

    2010-01-01

    Novel methods and technologies that could extend and complement the capabilities of the prevailing fluorescence microscope in following the cell cycle under different perturbations are highly desirable in the area of biological and biomedical imaging. We report a newly designed instrument for long-term light scattering live cell imaging based on integrating a homebuilt environmental cell incubation minichamber and an angled dark-field illumination system into a conventional inverted light microscope. Peptide-conjugated gold nanoparticles that are selectively delivered to either the cytoplasmic or nuclear region of the cell are used as light scattering contrast agents. The new system enables us to carry out continuous and intermittence-free dark-field live cell imaging over several tens of hours. A variety of applications of this imaging system are demonstrated, such as monitoring the nuclear uptake of peptide-conjugated gold nanoparticles, tracking the full cycle of cancer cells from birth to division, following the chromosome dynamics during cell mitosis, and observing the intracellular distribution of gold nanoparticles after cell division. We also discuss the overall effect of nuclear targeting gold nanoparticles on the cell viability of parent and daughter cells.

  5. Deliberate ROS production and auxin synergistically trigger the asymmetrical division generating the subsidiary cells in Zea mays stomatal complexes.

    Science.gov (United States)

    Livanos, Pantelis; Galatis, Basil; Apostolakos, Panagiotis

    2016-07-01

    Subsidiary cell generation in Poaceae is an outstanding example of local intercellular stimulation. An inductive stimulus emanates from the guard cell mother cells (GMCs) towards their laterally adjacent subsidiary cell mother cells (SMCs) and triggers the asymmetrical division of the latter. Indole-3-acetic acid (IAA) immunolocalization in Zea mays protoderm confirmed that the GMCs function as local sources of auxin and revealed that auxin is polarly accumulated between GMCs and SMCs in a timely-dependent manner. Besides, staining techniques showed that reactive oxygen species (ROS) exhibit a closely similar, also time-dependent, pattern of appearance suggesting ROS implication in subsidiary cell formation. This phenomenon was further investigated by using the specific NADPH-oxidase inhibitor diphenylene iodonium, the ROS scavenger N-acetyl-cysteine, menadione which leads to ROS overproduction, and H2O2. Treatments with diphenylene iodonium, N-acetyl-cysteine, and menadione specifically blocked SMC polarization and asymmetrical division. In contrast, H2O2 promoted the establishment of SMC polarity and subsequently subsidiary cell formation in "younger" protodermal areas. Surprisingly, H2O2 favored the asymmetrical division of the intervening cells of the stomatal rows leading to the creation of extra apical subsidiary cells. Moreover, H2O2 altered IAA localization, whereas synthetic auxin analogue 1-napthaleneacetic acid enhanced ROS accumulation. Combined treatments with ROS modulators along with 1-napthaleneacetic acid or 2,3,5-triiodobenzoic acid, an auxin efflux inhibitor, confirmed the crosstalk between ROS and auxin functioning during subsidiary cell generation. Collectively, our results demonstrate that ROS are critical partners of auxin during development of Z. mays stomatal complexes. The interplay between auxin and ROS seems to be spatially and temporarily regulated.

  6. Settlement and cell division of diatom Navicula can be influenced by light of various qualities and intensities.

    Science.gov (United States)

    Cao, Shan; Wang, Jiadao; Chen, Darong

    2013-11-01

    Diatom settlement and cell division is important in two major aspects. Firstly, biofouling is a costly problem in the shipping industry that necessitates the effective inhibition of diatom settlement and proliferation. Secondly, biological coatings on the basis of ordered and densely packed cell lawns of diatom are useful for nano- and biotechnology. This study demonstrated that the settlement and cell division of the marine unicellular diatom Navicula sp. can be influenced by light-emitting diodes of various light qualities and intensities. Except for blue light, the settlement of diatoms was reduced by weak (approx. 0.14-6 µE m(-2) s(-1)) green, yellow or red light. When the irradiance intensity, however, was higher than 8-9 µE m(-2) s(-1), the settlement was stimulated. This phenomenon could be explained by the hypothesis of spatial interference between a chloroplast and a holdfast-like structure. Densely packed lawn of diatoms with uniform distribution can be fabricated for nanotechnologies, using blue light that stimulates diatom cell division. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. glsA, a Volvox gene required for asymmetric division and germ cell specification, encodes a chaperone-like protein.

    Science.gov (United States)

    Miller, S M; Kirk, D L

    1999-02-01

    The gls genes of Volvox are required for the asymmetric divisions that set apart cells of the germ and somatic lineages during embryogenesis. Here we used transposon tagging to clone glsA, and then showed that it is expressed maximally in asymmetrically dividing embryos, and that it encodes a 748-amino acid protein with two potential protein-binding domains. Site-directed mutagenesis of one of these, the J domain (by which Hsp40-class chaperones bind to and activate specific Hsp70 partners) abolishes the capacity of glsA to rescue mutants. Based on this and other considerations, including the fact that the GlsA protein is associated with the mitotic spindle, we discuss how it might function, in conjunction with an Hsp70-type partner, to shift the division plane in asymmetrically dividing cells.

  8. Design, synthesis and antibacterial activity of cinnamaldehyde derivatives as inhibitors of the bacterial cell division protein FtsZ.

    Science.gov (United States)

    Li, Xin; Sheng, Juzheng; Huang, Guihua; Ma, Ruixin; Yin, Fengxin; Song, Di; Zhao, Can; Ma, Shutao

    2015-06-05

    In an attempt to discover potential antibacterial agents against the increasing bacterial resistance, novel cinnamaldehyde derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activity against nine significant pathogens using broth microdilution method, and their cell division inhibitory activity against four representative strains. In the in vitro antibacterial activity, the newly synthesized compounds generally displayed better efficacy against Staphylococcus aureus ATCC25923 than the others. In particular, compounds 3, 8 and 10 exerted superior or comparable activity to all the reference drugs. In the cell division inhibitory activity, all the compounds showed the same trend as their in vitro antibacterial activity, exhibiting better activity against S. aureus ATCC25923 than the other strains. Additionally, compounds 3, 6, 7 and 8 displayed potent cell division inhibitory activity with an MIC value of below 1 μg/mL, over 256-fold better than all the reference drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Activation of intracellular angiotensin AT2 receptors induces rapid cell death in human uterine leiomyosarcoma cells

    DEFF Research Database (Denmark)

    Zhao, Yi; Lützen, Ulf; Fritsch, Jürgen

    2015-01-01

    of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high...... densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor...... agonist, Compound 21 (C21) penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped from the cell death, displayed activation of the mitochondrial apoptotic pathway, i...

  10. Rapid flow-induced responses in endothelial cells

    Science.gov (United States)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  11. Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: Concept of a leading edge

    Energy Technology Data Exchange (ETDEWEB)

    Wientjes, F.B.; Nanninga, N. (Univ. of Amsterdam (Netherlands))

    1989-06-01

    The rate at which the peptidoglycan of Escherichia coli is synthesized during the division cycle was studied with two methods. One method involved synchronization of E. coli MC4100 lysA cultures by centrifugal elutriation and subsequent pulse-labeling of the synchronously growing cultures with (meso-{sup 3}H)diaminopimelic acid (({sup 3}H)Dap). The second method was autoradiography of cells pulse-labeled with ({sup 3}H)Dap. It was found that the peptidoglycan is synthesized at a more or less exponentially increasing rate during the division cycle with a slight acceleration in this rate as the cells start to constrict. Apparently, polar cap formation requires synthesis of extra surface components, presumably to accommodate for a change in the surface-to-volume ratio. Furthermore, it was found that the pool size of Dap was constant during the division cycle. Close analysis of the topography of ({sup 3}H)Dap incorporation at the constriction site revealed that constriction proceeded by synthesis of peptidoglycan at the leading edge of the invaginating cell envelope. During constriction, no reallocation of incorporation occurred, i.e., the incorporation at the leading edge remained high throughout the process of constriction. Impairment of penicillin-binding protein 3 by mutation or by the specific {beta}-lactam antibiotic furazlocillin did not affect ({sup 3}H)Dap incorporation during initiation of constriction. However, the incorporation at the constriction site was inhibited in later stages of the constriction process. It is concluded that during division at least two peptidoglycan-synthesizing systems are operating sequentially.

  12. α6 Integrin (α6high/Transferrin Receptor (CD71low Keratinocyte Stem Cells Are More Potent for Generating Reconstructed Skin Epidermis Than Rapid Adherent Cells

    Directory of Open Access Journals (Sweden)

    Elodie Metral

    2017-01-01

    Full Text Available The epidermis basal layer is composed of two keratinocyte populations: Keratinocyte Stem cells (KSC and Transitory Amplifying (TA cells that arise from KSC division. Unfortunately, no specific marker exists to differ between KSC and TA cells. Here, we aimed at comparing two different methods that pretended to isolate these two populations: (i the rapid adhesion method on coated substrate and (ii the flow cytometry method, which is based on the difference in cell surface expressions of the α6 integrin and transferrin receptor (CD71. Then, we compared different parameters that are known to discriminate KSC and TA populations. Interestingly, we showed that both methods allow enrichment in stem cells. However, cell sorting by flow cytometry (α6high/CD71low phenotype leads to a better enrichment of KSC since the colony forming efficiency is five times increased versus total cell suspension, whereas it is only 1.4 times for the adhesion method. Moreover, α6high/CD71low cells give rise to a thicker pluristratified epithelium with lower seeding density and display a low Ki67 positive cells number, showing that they have reached the balance between proliferation and differentiation. We clearly demonstrated that cells isolated by a rapid adherent method are not the same population as KSC isolated by flow cytometry following α6high/CD71low phenotype.

  13. Universal Protein Distributions in a Model of Cell Growth and Division

    CERN Document Server

    Brenner, Naama; Osmanovic, Dino; Rabin, Yitzhak; Salman, Hanna; Stein, D L

    2015-01-01

    Protein distributions measured under a broad set of conditions in bacteria and yeast exhibit a universal skewed shape, with variances depending quadratically on means. For bacteria these properties are reproduced by protein accumulation and division dynamics across generations. We present a stochastic growth-and-division model with feedback which captures these observed properties. The limiting copy number distribution is calculated exactly, and a single parameter is found to determine the distribution shape and the variance-to-mean relation. Estimating this parameter from bacterial temporal data reproduces the measured universal distribution shape with high accuracy, and leads to predictions for future experiments.

  14. Rapid thermal sintering of the metallizations of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, A.; El Omari, H.; Boyeaux, J.P. [Institut National des Sciences Appliquees de Lyon, Villeurbanne (France). Lab. de Physique de la Matiere; Hartiti, B.; Muller, J.C. [CNRS, Strasbourg (France). Lab. de Physique et Applications des Semiconducteurs; Nam, L.Q.; Sarti, D. [Photowatt International S.A., Bourgoin Jallieu (France)

    1994-12-31

    Rapid Thermal Processing (RTP) using radiation from tungsten halogen lamps as a heat source is a very promising candidate to replace conventional furnace annealing as it offers many advantages such as a reduced overall thermal budget and a lower gas consumption. In this paper the authors show that with moderate temperature, RTP can be used to obtain screen printed contacts with low contacts resistivity and without degrading the transport properties of the solar cell base region. They investigate on Polix multicrystalline solar cells the possibility to replace the conventional sintering by a RTP annealing of the Ag front grid and of the back Al/Ag contact in a single step performed after the antireflection coating deposition.

  15. Sea urchin akt activity is Runx-dependent and required for post-cleavage stage cell division

    KAUST Repository

    Robertson, Anthony J.

    2013-03-25

    In animal development following the initial cleavage stage of embryogenesis, the cell cycle becomes dependent on intercellular signaling and controlled by the genomically encoded ontogenetic program. Runx transcription factors are critical regulators of metazoan developmental signaling, and we have shown that the sea urchin Runx gene runt-1, which is globally expressed during early embryogenesis, functions in support of blastula stage cell proliferation and expression of the mitogenic genes pkc1, cyclinD, and several wnts. To obtain a more comprehensive list of early runt-1 regulatory targets, we screened a Strongylocentrotus purpuratus microarray to identify genes mis-expressed in mid-blastula stage runt-1 morphants. This analysis showed that loss of Runx function perturbs the expression of multiple genes involved in cell division, including the pro-growth and survival kinase Akt (PKB), which is significantly underexpressed in runt-1 morphants. Further genomic analysis revealed that Akt is encoded by two genes in the S. purpuratus genome, akt-1 and akt-2, both of which contain numerous canonical Runx target sequences. The transcripts of both genes accumulate several fold during blastula stage, contingent on runt-1 expression. Inhibiting Akt expression or activity causes blastula stage cell cycle arrest, whereas overexpression of akt-1 mRNA rescues cell proliferation in runt-1 morphants. These results indicate that post-cleavage stage cell division requires Runx-dependent expression of akt.

  16. Composition and dynamics of the nucleolinus, a link between the nucleolus and cell division apparatus in surf clam (Spisula) oocytes.

    Science.gov (United States)

    Alliegro, Mark C; Hartson, Steven; Alliegro, Mary Anne

    2012-02-24

    The nucleolinus is a little-known cellular structure, discovered over 150 years ago (Agassiz, L. (1857) Contributions to the Natural History of the United States of America, First Monograph, Part IIL, Little, Brown and Co., Boston) and thought by some investigators in the late 19th to mid-20th century to function in the formation of the centrosomes or spindle. A role for the nucleolinus in formation of the cell division apparatus has recently been confirmed in oocytes of the surf clam, Spisula solidissima (Alliegro, M. A., Henry, J. J., and Alliegro, M. C. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 13718-13723). However, we know so little about the composition and dynamics of this compartment, it is difficult to construct mechanistic hypotheses or even to be sure that prior reports were describing analogous structures in the cells of mammals, amphibians, plants, and other organisms where it was observed. Surf clam oocytes are an attractive model to approach this problem because the nucleolinus is easily visible by light microscopy, making it accessible by laser microsurgery as well as isolation by common cell fractionation techniques. In this report, we analyze the macromolecular composition of isolated Spisula nucleolini and examine the relationship of this structure to the nucleolus and cell division apparatus. Analysis of nucleolinar RNA and protein revealed a set of molecules that overlaps with but is nevertheless distinct from the nucleolus. The proteins identified were primarily ones involved in nucleic acid metabolism and cell cycle regulation. Monoclonal antibodies generated against isolated nucleolini revealed centrosomal forerunners in the oocyte cytoplasm. Finally, induction of damage to the nucleolinus by laser microsurgery altered the trafficking of α- and γ-tubulin after fertilization. These observations strongly support a role for the nucleolinus in cell division and represent our first clues regarding mechanism.

  17. The Asymmetric Cell Division Regulators Par3, Scribble and Pins/Gpsm2 Are Not Essential for Erythroid Development or Enucleation.

    Directory of Open Access Journals (Sweden)

    Christina B Wölwer

    Full Text Available Erythroid enucleation is the process by which the future red blood cell disposes of its nucleus prior to entering the blood stream. This key event during red blood cell development has been likened to an asymmetric cell division (ACD, by which the enucleating erythroblast divides into two very different daughter cells of alternate molecular composition, a nucleated cell that will be removed by associated macrophages, and the reticulocyte that will mature to the definitive erythrocyte. Here we investigated gene expression of members of the Par, Scribble and Pins/Gpsm2 asymmetric cell division complexes in erythroid cells, and functionally tested their role in erythroid enucleation in vivo and ex vivo. Despite their roles in regulating ACD in other contexts, we found that these polarity regulators are not essential for erythroid enucleation, nor for erythroid development in vivo. Together our results put into question a role for cell polarity and asymmetric cell division in erythroid enucleation.

  18. Disorganization of cell division of methicillin-resistant Staphylococcus aureus by methanolic extract from Phyllanthus columnaris stem bark

    Energy Technology Data Exchange (ETDEWEB)

    Adnalizawati, A. Siti Noor; Nazlina, I. [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yaacob, W. A. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    The in vitro activity of methanolic extract from Phyllanthus columnaris stem bark was studied against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300 and MRSA BM1 (clinical strain) using time-kill curves in conjunction with scanning and transmission electron microscopy. The extract showed more markedly bactericidal activity in MRSA BM1 clinical strain within less than 4 h by 6.25-12.5 mg/mL and within 6 h by 1.56 mg/mL. Scanning electron microscopy of MRSA BM1 revealed distortion of cell whilst transmission electron microscopy revealed disruption in cell wall division.

  19. Designing Multicomponent Nanosystems for Rapid Detection of Circulating Tumor Cells.

    Science.gov (United States)

    Banerjee, Shashwat S; Khobragade, Vrushali; Khandare, Jayant

    2017-01-01

    Detection of circulating tumor cells (CTCs) in the blood circulation holds immense promise as it predicts the overall probability of patient survival. Therefore, CTC-based technologies are gaining prominence as a "liquid biopsy" for cancer diagnostics and prognostics. Here, we describe the design and synthesis of two distinct multicomponent magnetic nanosystems for rapid capture and detection of CTCs. The multifunctional Magneto-Dendrimeric Nano System (MDNS) composed of an anchoring dendrimer that is conjugated to multiple agents such as near infrared (NIR) fluorescent cyanine 5 NHS (Cy5), glutathione (GSH), transferrin (Tf), and iron oxide (Fe3O4) magnetic nanoparticle (MNP) for simultaneous tumor cell-specific affinity, multimodal high resolution confocal imaging, and cell isolation. The second nanosystem is a self-propelled microrocket that is composed of carbon nanotube (CNT), chemically conjugated with targeting ligand such as transferrin on the outer surface and Fe3O4 nanoparticles in the inner surface. The multicomponent nanosystems described here are highly efficient in targeting and isolating cancer cells thus benefiting early diagnosis and therapy of cancer.

  20. Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella.

    Directory of Open Access Journals (Sweden)

    Maria E Francia

    Full Text Available Apicomplexa are intracellular parasites that cause important human diseases including malaria and toxoplasmosis. During host cell infection new parasites are formed through a budding process that parcels out nuclei and organelles into multiple daughters. Budding is remarkably flexible in output and can produce two to thousands of progeny cells. How genomes and daughters are counted and coordinated is unknown. Apicomplexa evolved from single celled flagellated algae, but with the exception of the gametes, lack flagella. Here we demonstrate that a structure that in the algal ancestor served as the rootlet of the flagellar basal bodies is required for parasite cell division. Parasite striated fiber assemblins (SFA polymerize into a dynamic fiber that emerges from the centrosomes immediately after their duplication. The fiber grows in a polarized fashion and daughter cells form at its distal tip. As the daughter cell is further elaborated it remains physically tethered at its apical end, the conoid and polar ring. Genetic experiments in Toxoplasma gondii demonstrate two essential components of the fiber, TgSFA2 and 3. In the absence of either of these proteins cytokinesis is blocked at its earliest point, the initiation of the daughter microtubule organizing center (MTOC. Mitosis remains unimpeded and mutant cells accumulate numerous nuclei but fail to form daughter cells. The SFA fiber provides a robust spatial and temporal organizer of parasite cell division, a process that appears hard-wired to the centrosome by multiple tethers. Our findings have broader evolutionary implications. We propose that Apicomplexa abandoned flagella for most stages yet retained the organizing principle of the flagellar MTOC. Instead of ensuring appropriate numbers of flagella, the system now positions the apical invasion complexes. This suggests that elements of the invasion apparatus may be derived from flagella or flagellum associated structures.

  1. A P-Loop NTPase Regulates Quiescent Center Cell Division and Distal Stem Cell Identity through the Regulation of ROS Homeostasis in Arabidopsis Root.

    Science.gov (United States)

    Yu, Qianqian; Tian, Huiyu; Yue, Kun; Liu, Jiajia; Zhang, Bing; Li, Xugang; Ding, Zhaojun

    2016-09-01

    Reactive oxygen species (ROS) are recognized as important regulators of cell division and differentiation. The Arabidopsis thaliana P-loop NTPase encoded by APP1 affects root stem cell niche identity through its control of local ROS homeostasis. The disruption of APP1 is accompanied by a reduction in ROS level, a rise in the rate of cell division in the quiescent center (QC) and the promotion of root distal stem cell (DSC) differentiation. Both the higher level of ROS induced in the app1 mutant by exposure to methyl viologen (MV), and treatment with hydrogen peroxide (H2O2) rescued the mutant phenotype, implying that both the increased rate of cell division in the QC and the enhancement in root DSC differentiation can be attributed to a low level of ROS. APP1 is expressed in the root apical meristem cell mitochondria, and its product is associated with ATP hydrolase activity. The key transcription factors, which are defining root distal stem niche, such as SCARECROW (SCR) and SHORT ROOT (SHR) are both significantly down-regulated at both the transcriptional and protein level in the app1 mutant, indicating that SHR and SCR are important downstream targets of APP1-regulated ROS signaling to control the identity of root QC and DSCs.

  2. Systemic Control of Cell Division and Endoreduplication by NAA and BAP by Modulating CDKs in Root Tip Cells of Allium cepa

    Directory of Open Access Journals (Sweden)

    Jigna G. Tank

    2014-01-01

    Full Text Available Molecular mechanism regulated by auxin and cytokinin during endoreduplication, cell division, and elongation process is studied by using Allium cepa roots as a model system. The activity of CDK genes modulated by auxin and cytokinin during cell division, elongation, and endoreduplication process is explained in this research work. To study the significance of auxin and cytokinin in the management of cell division and endoreduplication process in plant meristematic cells at molecular level endoreduplication was developed in root tips of Allium cepa by giving colchicine treatment. There were inhibition of vegetative growth, formation of c-tumor at root tip, and development of endoreduplicated cells after colchicine treatment. This c-tumor was further treated with NAA and BAP to reinitiate vegetative growth in roots. BAP gave positive response in reinitiation of vegetative growth of roots from center of c-tumor. However, NAA gave negative response in reinitiation of vegetative growth of roots from c-tumor. Further, CDKs gene expression analysis from normal, endoreduplicated, and phytohormone (NAA or BAP treated root tip was done and remarkable changes in transcription level of CDK genes in normal, endoreduplicated, and phytohormones treated cells were observed.

  3. Plasmonic cell nanocoating: a new concept for rapid microbial screening.

    Science.gov (United States)

    Xu, Ke; Bui, Minh-Phuong N; Fang, Aiqin; Abbas, Abdennour

    2017-11-01

    Nanocoating of single microbial cells with gold nanostructures can confer optical, electrical, thermal, and mechanical properties to microorganisms, thus enabling new avenues for their control, study, application, and detection. Cell nanocoating is often performed using layer-by-layer (LbL) deposition. LbL is time-consuming and relies on nonspecific electrostatic interactions, which limit potential applications for microbial diagnostics. Here, we show that, by taking advantage of surface molecules densely present in the microbial outer layers, cell nanocoating with gold nanoparticles can be achieved within seconds using surface molecules, including disulfide- bond-containing (Dsbc) proteins and chitin. A simple activation of these markers and their subsequent interaction with gold nanoparticles allow specific microbial screening and quantification of bacteria and fungi within 5 and 30 min, respectively. The use of plasmonics and fluorescence as transduction methods offers a limit of detection below 35 cfu mL-1 for E. coli bacteria and 1500 cfu mL-1 for M. circinelloides fungi using a hand-held fluorescent reader. Graphical abstract A new concept for rapid microbial screening by targeting disulfide - bond-containing (Dsbc) proteins and chitin with reducing agents and gold nanoparticles.

  4. Construction of synthetic nucleoli and what it tells us about propagation of sub-nuclear domains through cell division.

    Science.gov (United States)

    Grob, Alice; McStay, Brian

    2014-01-01

    The cell nucleus is functionally compartmentalized into numerous membraneless and dynamic, yet defined, bodies. The cell cycle inheritance of these nuclear bodies (NBs) is poorly understood at the molecular level. In higher eukaryotes, their propagation is challenged by cell division through an "open" mitosis, where the nuclear envelope disassembles along with most NBs. A deeper understanding of the mechanisms involved can be achieved using the engineering principles of synthetic biology to construct artificial NBs. Successful biogenesis of such synthetic NBs demonstrates knowledge of the basic mechanisms involved. Application of this approach to the nucleolus, a paradigm of nuclear organization, has highlighted a key role for mitotic bookmarking in the cell cycle propagation of NBs.

  5. Microcystin quota, cell division and microcystin net production of precultured Microcystis aeruginosa CYA 228 (Chroococcales, Cyanophyceae) under field conditions

    DEFF Research Database (Denmark)

    Lyck, S.; Christoffersen, K.

    2003-01-01

    The relationship between the specific cell division rate (mu(c)), the specific microcystin (mcyst) production rate (mu(mcyst)) and the cellular content of mcyst (Q(mcyst)) was investigated during growth of Microcystis aeruginosa strain CYA 228 cells in the field (microcosms), and the results were...... compared with previous data obtained from batch cultures. Growth of an easily recognizable unicellular culture alga in the field made it possible to evaluate different ways of expressing mcyst field data as the ratio of mcyst to dry weight, protein or chlorophyll a (Chl a) against the mcyst quota....... The population of CYA 228 cells increased from day 1 to day 7, but decreased from day 7 to day 17. More than a threefold variation was observed in Q(mcyst) of M. aeruginosa cells under field conditions, which indicates that the relationship between mu(c) and mu(mcyst) was not strictly linear. The data from...

  6. Optimized Tetrazine Derivatives for Rapid Bioorthogonal Decaging in Living Cells.

    Science.gov (United States)

    Fan, Xinyuan; Ge, Yun; Lin, Feng; Yang, Yi; Zhang, Gong; Ngai, William Shu Ching; Lin, Zhi; Zheng, Siqi; Wang, Jie; Zhao, Jingyi; Li, Jie; Chen, Peng R

    2016-11-02

    The inverse-electron-demand Diels-Alder (iDA) reaction has recently been repurposed as a bioorthogonal decaging reaction by accelerating the elimination process after an initial cycloaddition between trans-cyclooctene (TCO) and tetrazine (TZ). Herein, we systematically surveyed 3,6-substituted TZ derivatives by using a fluorogenic TCO-coumarin reporter followed by LC-MS analysis, which revealed that the initial iDA cycloaddition step was greatly accelerated by electron-withdrawing groups (EWGs) while the subsequent elimination step was strongly suppressed by EWGs. In addition, smaller substituents facilitated the decaging process. These findings promoted us to design and test unsymmetric TZs bearing an EWG group and a small non-EWG group at the 3- and 6-position, respectively. These TZs showed remarkably enhanced decaging rates, enabling rapid iDA-mediated protein activation in living cells. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells.

    Science.gov (United States)

    Jutras, Brandon Lyon; Scott, Molly; Parry, Bradley; Biboy, Jacob; Gray, Joe; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2016-08-16

    Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae-a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense" relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum.

  8. Division of labor: subsets of dorsal-appendage-forming cells control the shape of the entire tube.

    Science.gov (United States)

    Boyle, Michael J; French, Rachael L; Cosand, K Amber; Dorman, Jennie B; Kiehart, Daniel P; Berg, Celeste A

    2010-10-01

    The function of an organ relies on its form, which in turn depends on the individual shapes of the cells that create it and the interactions between them. Despite remarkable progress in the field of developmental biology, how cells collaborate to make a tissue remains an unsolved mystery. To investigate the mechanisms that determine organ structure, we are studying the cells that form the dorsal appendages (DAs) of the Drosophila melanogaster eggshell. These cells consist of two differentially patterned subtypes: roof cells, which form the outward-facing roof of the lumen, and floor cells, which dive underneath the roof cells to seal off the floor of the tube. In this paper, we present three lines of evidence that reveal a further stratification of the DA-forming epithelium. Laser ablation of only a few cells in the anterior of the region causes a disproportionately severe shortening of the appendage. Genetic alteration through the twin peaks allele of tramtrack69 (ttk(twk)), a female-sterile mutation that leads to severely shortened DAs, causes no such shortening when removed from a majority of the DA-forming cells, but rather, produces short appendages only when removed from cells in the very anterior of the tube-forming tissue. Additionally we show that heterotrimeric G-protein function is required for DA morphogenesis. Like TTK69, Gbeta 13F is not required in all DA-forming follicle cells but only in the floor and leading roof cells. The different phenotypes that result from removal of Gbeta 13F from each region demonstrate a striking division of function between different DA-forming cells. Gbeta mutant floor cells are unable to control the width of the appendage while Gbeta mutant leading roof cells fail to direct the elongation of the appendage and the convergent-extension of the roof-cell population. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. A mutant of Chlamydomonas without LHCSR maintains high rates of photosynthesis, but has reduced cell division rates in sinusoidal light conditions.

    Directory of Open Access Journals (Sweden)

    Michael Cantrell

    Full Text Available The LHCSR protein belongs to the light harvesting complex family of pigment-binding proteins found in oxygenic photoautotrophs. Previous studies have shown that this complex is required for the rapid induction and relaxation of excess light energy dissipation in a wide range of eukaryotic algae and moss. The ability of cells to rapidly regulate light harvesting between this dissipation state and one favoring photochemistry is believed to be important for reducing oxidative stress and maintaining high photosynthetic efficiency in a rapidly changing light environment. We found that a mutant of Chlamydomonas reinhardtii lacking LHCSR, npq4lhcsr1, displays minimal photoinhibition of photosystem II and minimal inhibition of short term oxygen evolution when grown in constant excess light compared to a wild type strain. We also investigated the impact of no LHCSR during growth in a sinusoidal light regime, which mimics daily changes in photosynthetically active radiation. The absence of LHCSR correlated with a slight reduction in the quantum efficiency of photosystem II and a stimulation of the maximal rates of photosynthesis compared to wild type. However, there was no reduction in carbon accumulation during the day. Another novel finding was that npq4lhcsr1 cultures underwent fewer divisions at night, reducing the overall growth rate compared to the wild type. Our results show that the rapid regulation of light harvesting mediated by LHCSR is required for high growth rates, but it is not required for efficient carbon accumulation during the day in a sinusoidal light environment. This finding has direct implications for engineering strategies directed at increasing photosynthetic productivity in mass cultures.

  10. The cytological changes of tobacco zygote and proembryo cells induced by beta-glucosyl Yariv reagent suggest the involvement of arabinogalactan proteins in cell division and cell plate formation

    Directory of Open Access Journals (Sweden)

    Yu Miao

    2012-08-01

    Full Text Available Abstract Background In dicotyledonous plant, the first asymmetric zygotic division and subsequent several cell divisions are crucial for proembryo pattern formation and later embryo development. Arabinogalactan proteins (AGPs are a family of extensively glycosylated cell surface proteins that are thought to have important roles in various aspects of plant growth and development, including embryogenesis. Previous results from our laboratory show that AGPs are concerned with tobacco egg cell fertilization and zygotic division. However, how AGPs interact with other factors involved in zygotic division and proembryo development remains unknown. Results In this study, we used the tobacco in vitro zygote culture system and series of meticulous cell biology techniques to investigate the roles of AGPs in zygote and proembryo cell division. For the first time, we examined tobacco proembryo division patterns detailed to every cell division. The bright-field images and statistical results both revealed that with the addition of an exogenous AGPs inhibitor, beta-glucosyl Yariv (beta-GlcY reagent, the frequency of aberrant division increased remarkably in cultured tobacco zygotes and proembryos, and the cell plate specific locations of AGPs were greatly reduced after beta-GlcY treatment. In addition, the accumulations of new cell wall materials were also significantly affected by treating with beta-GlcY. Detection of cellulose components by Calcofluor white stain showed that strong fluorescence was located in the newly formed wall of daughter cells after the zygotic division of in vivo samples and the control samples from in vitro culture without beta-GlcY treatment; while there was only weak fluorescence in the newly formed cell walls with beta-GlcY treatment. Immunocytochemistry examination with JIM5 and JIM7 respectively against the low- and high-esterified pectins displayed that these two pectins located in opposite positions of zygotes and proembryos in

  11. Tetracycline hypersensitivity of an ezrA mutant links GalE and TseB (YpmB to cell division

    Directory of Open Access Journals (Sweden)

    Pamela eGamba

    2015-04-01

    Full Text Available Cell division in bacteria is initiated by the polymerization of FtsZ into a ring-like structure at midcell that functions as a scaffold for the other cell division proteins. In Bacillus subtilis, the conserved cell division protein EzrA is involved in modulation of Z-ring formation and coordination of septal peptidoglycan synthesis. Here, we show that an ezrA mutant is hypersensitive to tetracycline, even when the tetracycline efflux pump TetA is present. This effect is not related to the protein translation inhibiting activity of tetracycline. Overexpression of FtsL suppresses this phenotype, which appears to be related to the intrinsic low FtsL levels in an ezrA mutant background. A transposon screen indicated that the tetracycline effect can also be suppressed by overproduction of the cell division protein ZapA. In addition, tetracycline sensitivity could be suppressed by transposon insertions in galE and the unknown gene ypmB, which was renamed tseB (tetracycline sensitivity suppressor of ezrA. GalE is an epimerase using UDP-glucose and UDP-N-acetylglucosamine as substrate. Deletion of this protein bypasses the synthetic lethality of zapA ezrA and sepF ezrA double mutations, indicating that GalE influences cell division. The transmembrane protein TseB contains an extracytoplasmic peptidase domain, and a GFP fusion shows that the protein is enriched at cell division sites. A tseB deletion causes a shorter cell phenotype, indicating that TseB plays a role in cell division. Why a deletion of ezrA renders B. subtilis cells hypersensitive for tetracycline remains unclear. We speculate that this phenomenon is related to the tendency of tetracycline analogues to accumulate into the lipid bilayer, which may destabilize certain membrane proteins.

  12. Tetracycline hypersensitivity of an ezrA mutant links GalE and TseB (YpmB) to cell division.

    Science.gov (United States)

    Gamba, Pamela; Rietkötter, Eva; Daniel, Richard A; Hamoen, Leendert W

    2015-01-01

    Cell division in bacteria is initiated by the polymerization of FtsZ into a ring-like structure at midcell that functions as a scaffold for the other cell division proteins. In Bacillus subtilis, the conserved cell division protein EzrA is involved in modulation of Z-ring formation and coordination of septal peptidoglycan synthesis. Here, we show that an ezrA mutant is hypersensitive to tetracycline, even when the tetracycline efflux pump TetA is present. This effect is not related to the protein translation inhibiting activity of tetracycline. Overexpression of FtsL suppresses this phenotype, which appears to be related to the intrinsic low FtsL levels in an ezrA mutant background. A transposon screen indicated that the tetracycline effect can also be suppressed by overproduction of the cell division protein ZapA. In addition, tetracycline sensitivity could be suppressed by transposon insertions in galE and the unknown gene ypmB, which was renamed tseB (tetracycline sensitivity suppressor of ezrA). GalE is an epimerase using UDP-glucose and UDP-N-acetylglucosamine as substrate. Deletion of this protein bypasses the synthetic lethality of zapA ezrA and sepF ezrA double mutations, indicating that GalE influences cell division. The transmembrane protein TseB contains an extracytoplasmic peptidase domain, and a GFP fusion shows that the protein is enriched at cell division sites. A tseB deletion causes a shorter cell phenotype, indicating that TseB plays a role in cell division. Why a deletion of ezrA renders B. subtilis cells hypersensitive for tetracycline remains unclear. We speculate that this phenomenon is related to the tendency of tetracycline analogs to accumulate into the lipid bilayer, which may destabilize certain membrane proteins.

  13. AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation.

    Directory of Open Access Journals (Sweden)

    Sofia Moreira

    Full Text Available In Arabidopsis thaliana, lateral roots (LRs initiate from anticlinal cell divisions of pericycle founder cells. The formation of LR primordia is regulated antagonistically by the phytohormones cytokinin and auxin. It has previously been shown that cytokinin has an inhibitory effect on the patterning events occurring during LR formation. However, the molecular players involved in cytokinin repression are still unknown. In a similar manner to protoxylem formation in Arabidopsis roots, in which AHP6 (ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 acts as a cytokinin inhibitor, we reveal that AHP6 also functions as a cytokinin repressor during early stages of LR development. We show that AHP6 is expressed at different developmental stages during LR formation and is required for the correct orientation of cell divisions at the onset of LR development. Moreover, we demonstrate that AHP6 influences the localization of the auxin efflux carrier PIN1, which is necessary for patterning the LR primordia. In summary, we show that the inhibition of cytokinin signaling through AHP6 is required to establish the correct pattern during LR initiation.

  14. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice

    DEFF Research Database (Denmark)

    Sakamori, Ryotaro; Das, Soumyashree; Yu, Shiyan

    2012-01-01

    Cdc42 and Rab8a are critical regulators of these processes in mice. Conditional ablation of Cdc42 in the mouse intestinal epithelium resulted in the formation of large intracellular vacuolar structures containing microvilli (microvillus inclusion bodies) in epithelial enterocytes, a phenotype...... reminiscent of human microvillus inclusion disease (MVID), a devastating congenital intestinal disorder that results in severe nutrient deprivation. Further analysis revealed that Cdc42-deficient stem cells had cell division defects, reduced capacity for clonal expansion and differentiation into Paneth cells......, and increased apoptosis. Cdc42 deficiency impaired Rab8a activation and its association with multiple effectors, and prevented trafficking of Rab8a vesicles to the midbody. This impeded cytokinesis, triggering crypt apoptosis and disrupting epithelial morphogenesis. Rab8a was also required for Cdc42-GTP...

  15. A rapid method of fruit cell isolation for cell size and shape measurements

    Directory of Open Access Journals (Sweden)

    Johnston Jason W

    2009-04-01

    Full Text Available Abstract Background Cell size is a structural component of fleshy fruit, contributing to important traits such as fruit size and texture. There are currently a number of methods for measuring cell size; most rely either on tissue sectioning or digestion of the tissue with cell wall degrading enzymes or chemicals to release single cells. Neither of these approaches is ideal for assaying large fruit numbers as both require a considerable time to prepare the tissue, with current methods of cell wall digestions taking 24 to 48 hours. Additionally, sectioning can lead to a measurement of a plane that does not represent the widest point of the cell. Results To develop a more rapid way of measuring fruit cell size we have developed a protocol that solubilises pectin in the middle lamella of the plant cell wall releasing single cells into a buffered solution. Gently boiling small fruit samples in a 0.05 M Na2CO3 solution, osmotically balanced with 0.3 M mannitol, produced good cell separation with little cellular damage in less than 30 minutes. The advantage of combining a chemical treatment with boiling is that the cells are rapidly killed. This stopped cell shape changes that could potentially occur during separation. With this method both the rounded and angular cells of the apple cultivars SciRos 'Pacific Rose' and SciFresh 'Jazz'™ were observed in the separated cells. Using this technique, an in-depth analysis was performed measuring cell size from 5 different apple cultivars. Cell size was measured using the public domain ImageJ software. For each cultivar a minimum of 1000 cells were measured and it was found that each cultivar displayed a different distribution of cell size. Cell size within cultivars was similar and there was no correlation between flesh firmness and cell size. This protocol was tested on tissue from other fleshy fruit including tomato, rock melon and kiwifruit. It was found that good cell separation was achieved with flesh

  16. Phosphorylation of Serine 148 in Giardia lamblia End-binding 1 Protein is Important for Cell Division.

    Science.gov (United States)

    Kim, Juri; Lee, Hye-Yeon; Lee, Kyu-Ho; Park, Soon-Jung

    2017-07-01

    Giardia lamblia is a unicellular organism, showing a polarity with two nuclei and cytoskeletal structures. Accurate positioning of these organelles is essential for division of G. lamblia, which is poorly understood. Giardia lamblia end-binding 1 (GlEB1) protein and G. lamblia aurora kinase (GlAK) have been shown to modulate microtubule (MT) distribution during cytokinesis. A direct association between GlEB1 and GlAK was demonstrated. Like GlEB1, GlAK was also found at nuclear envelopes and median bodies of G. lamblia. In vitro kinase assays using Giardia lysates immunoprecipitated with anti-GlAK antibodies or recombinant GlAK suggested that GlEB1 is a substrate of GlAK. Site-directed mutagenesis indicated that threonine-205 in GlAK was auto-phosphorylated and that GlAK phosphorylated serine (Ser)-148 in GlEB1. Ectopic expression of a mutant GlEB1 (with conversion of Ser-148 into alanine of GlEB1) resulted in an increased number of Giardia cells with division defects. Treatment of G. lamblia with an AK inhibitor triggered cytokinesis defects, and ectopic expression of a phospho-mimetic mutant GlEB1 (with conversion of Ser-148 into aspartate) rescued the defects in Giardia cell division caused by the AK inhibitor. These results suggested that phosphorylation of GlEB1 played a role in cytokinesis in G. lamblia. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  17. Somatic mosaicism in families with hemophilia B: 11% of germline mutations originate within a few cell divisions post-fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Knoell, A.; Ketterling, R.P.; Vielhaber, E. [Mayo Clinic/Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Previous molecular estimates of mosaicism in the dystrophin and other genes generally have focused on the transmission of the mutated allele to two or more children by an individual without the mutation in leukocyte DNA. We have analyzed 414 families with hemophilia B by direct genomic sequencing and haplotype analysis, and have deduced the origin of mutation in 56 families. There was no origin individual who transmitted a mutant allele to more than one child. However, somatic mosaicism was detected by sequence analysis of four origin individuals (3{female} and 1{male}). The sensitivity of this analysis is typically one part in ten. In one additional female who had close to a 50:50 ratio of mutant to normal alleles, three of four noncarrier daughters inherited the haplotype associated with the mutant allele. This highlights a caveat in molecular analysis: a presumptive carrier in a family with sporadic disease does not necessarily have a 50% probability of transmitting the mutant allele to her offspring. After eliminating those families in which mosaicism could not be detected because of a total gene deletion or absence of DNA from a deduced origin individual, 5 of 43 origin individuals exhibited somatic mosaicism at a level that reflects a mutation within the first few cell divisions after fertilization. In one patient, analysis of cervical scrapings and buccal mucosa confirm the generalized distribution of somatic mutation. Are the first few cell divisions post-fertilization highly mutagenic, or do mutations at later divisions also give rise to somatic mosaicism? To address this question, DNA from origin individuals are being analyzed to detect somatic mosaicism at a sensitivity of 1:1000. Single nucleotide primer extension (SNuPE) has been utilized in eight families to date and no mosaicism has been detected. When the remaining 30 samples are analyzed, it will be possible to compare the frequency of somatic mosaicism at 0.1-10% with that of {ge}10%.

  18. Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics.

    Science.gov (United States)

    Jogler, Christian; Waldmann, Jost; Huang, Xiaoluo; Jogler, Mareike; Glöckner, Frank Oliver; Mascher, Thorsten; Kolter, Roberto

    2012-12-01

    Members of the Planctomycetes clade share many unusual features for bacteria. Their cytoplasm contains membrane-bound compartments, they lack peptidoglycan and FtsZ, they divide by polar budding, and they are capable of endocytosis. Planctomycete genomes have remained enigmatic, generally being quite large (up to 9 Mb), and on average, 55% of their predicted proteins are of unknown function. Importantly, proteins related to the unusual traits of Planctomycetes remain largely unknown. Thus, we embarked on bioinformatic analyses of these genomes in an effort to predict proteins that are likely to be involved in compartmentalization, cell division, and signal transduction. We used three complementary strategies. First, we defined the Planctomycetes core genome and subtracted genes of well-studied model organisms. Second, we analyzed the gene content and synteny of morphogenesis and cell division genes and combined both methods using a "guilt-by-association" approach. Third, we identified signal transduction systems as well as sigma factors. These analyses provide a manageable list of candidate genes for future genetic studies and provide evidence for complex signaling in the Planctomycetes akin to that observed for bacteria with complex life-styles, such as Myxococcus xanthus.

  19. Biological Insights from a Simulation Model of the Critical FtsZ Accumulation Required for Prokaryotic Cell Division.

    Science.gov (United States)

    Dow, Claire E; van den Berg, Hugo A; Roper, David I; Rodger, Alison

    2015-06-23

    A simulation model of prokaryotic Z-ring assembly, based on the observed behavior of FtsZ in vitro as well as on in vivo parameters, is used to integrate critical processes in cell division. According to the model, the cell's ability to divide depends on a "contraction parameter" (χ) that links the force of contraction to the dynamics of FtsZ. This parameter accurately predicts the outcome of division. Evaluating the GTP binding strength, the FtsZ polymerization rate, and the intrinsic GTP hydrolysis/dissociation activity, we find that inhibition of GTP-FtsZ binding is an inefficient antibacterial target. Furthermore, simulations indicate that the temperature sensitivity of the ftsZ84 mutation arises from the conversion of FtsZ to a dual-specificity NTPase. Finally, the sensitivity to temperature of the rate of ATP hydrolysis, over the critical temperature range, leads us to conclude that the ftsZ84 mutation affects the turnover rate of the Z-ring much less strongly than previously reported.

  20. Characterization of the minimum domain required for targeting budding yeast myosin II to the site of cell division

    Directory of Open Access Journals (Sweden)

    Tolliday Nicola J

    2006-06-01

    Full Text Available Abstract Background All eukaryotes with the exception of plants use an actomyosin ring to generate a constriction force at the site of cell division (cleavage furrow during mitosis and meiosis. The structure and filament forming abilities located in the C-terminal or tail region of one of the main components, myosin II, are important for localising the molecule to the contractile ring (CR during cytokinesis. However, it remains poorly understood how myosin II is recruited to the site of cell division and how this recruitment relates to myosin filament assembly. Significant conservation between species of the components involved in cytokinesis, including those of the CR, allows the use of easily genetically manipulated organisms, such as budding yeast (Saccharomyces cerevisiae, in the study of cytokinesis. Budding yeast has a single myosin II protein, named Myo1. Unlike most other class II myosins, the tail of Myo1 has an irregular coiled coil. In this report we use molecular genetics, biochemistry and live cell imaging to characterize the minimum localisation domain (MLD of budding yeast Myo1. Results We show that the MLD is a small region in the centre of the tail of Myo1 and that it is both necessary and sufficient for localisation of Myo1 to the yeast bud neck, the pre-determined site of cell division. Hydrodynamic measurements of the MLD, purified from bacteria or yeast, show that it is likely to exist as a trimer. We also examine the importance of a small region of low coiled coil forming probability within the MLD, which we call the hinge region. Removal of the hinge region prevents contraction of the CR. Using fluorescence recovery after photobleaching (FRAP, we show that GFP-tagged MLD is slightly more dynamic than the GFP-tagged full length molecule but less dynamic than the GFP-tagged Myo1 construct lacking the hinge region. Conclusion Our results define the intrinsic determinant for the localization of budding yeast myosin II and show

  1. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Aneesh Panoli

    Full Text Available The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2 are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development.

  2. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus

    DEFF Research Database (Denmark)

    Jensen, Rasmus Bugge

    2006-01-01

    Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication...

  3. Phylogeography, salinity adaptations and metabolic potential of the Candidate Division KB1 Bacteria based on a partial single cell genome.

    Directory of Open Access Journals (Sweden)

    Lisa M Nigro

    2016-08-01

    Full Text Available Deep-sea hypersaline anoxic basins (DHABs and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that has been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome (SAG of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis – previously developed based on 14C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines - that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source.

  4. The Escherichia coli cell division protein ZipA forms homodimers prior to association with FtsZ.

    Science.gov (United States)

    Skoog, Karl; Daley, Daniel O

    2012-02-21

    ZipA is an essential component of the cell division machinery in E. coli and other closely related bacteria. It is an integral membrane protein that binds to FtsZ, tethering it to the inner membrane. ZipA also induces bundling of FtsZ protofilaments and may play a role in regulating FtsA activity; however, the molecular details behind these observations are not clear. In this study we have analyzed the oligomeric state of ZipA in vivo, by chemical cross-linking, and in vitro, by native gel electrophoresis (BN-PAGE). Our data indicate that ZipA can self-associate as a homodimer and that this self-interaction is not dependent on the FtsZ-binding domain. This observation rules out the possibility that FtsZ polymers mediate the ZipA self-interaction. Given this observation, it is possible that a certain population of ZipA is recruited to the division septum in a homodimeric form.

  5. Conformation of cytoskeletal elements during the division of infected Lupinus albus L. nodule cells.

    Science.gov (United States)

    Fedorova, Elena E; de Felipe, María R; Pueyo, José J; Lucas, M Mercedes

    2007-01-01

    Lupin nodule cells maintain their ability to divide for several cycles after being infected by endosymbiotic rhizobia. The conformation of the cytoskeletal elements of nodule cells was studied by fluorescence labelling, immunocytochemistry, and laser confocal and transmission electron microscopy. The dividing infected cells showed the normal microtubule and actin patterns of dividing plant cells. The clustered symbiosomes were tethered to the spindle-pole regions and moved to the cell poles during spindle elongation. In metaphase, anaphase, and early telophase, the symbiosomes were found at opposite cell poles where they did not interfere with the spindle filaments or phragmoplast. This symbiosome positioning was comparable with that of the organelles (which ensures organelle inheritance during plant cell mitosis). Tubulin microtubules and actin microfilaments appeared to be in contact with the symbiosomes. The possible presence of actin molecular motor myosin in nodules was analysed using a monoclonal antibody against the myosin light chain. The antigen was detected in protein extracts of nodule and root cytosol as bands of approximately 20 kDa (the size expected). In the nodules, an additional polypeptide of 65 kDa was found. Immunogold techniques revealed the antigen to be localized over thin microfilaments linked to the cell wall, as well as over the thicker microfilament bundles and surrounding the symbiosomes. The pattern of cytoskeleton rearrangement in dividing infected cells, along with the presence of myosin antigen, suggests that the positioning of symbiosomes in lupin nodule cells might depend on the same mechanisms used to partition genuine plant cell organelles during mitosis.

  6. Dynamic FtsA and FtsZ localization and outer membrane alterations during polar growth and cell division in Agrobacterium tumefaciens.

    Science.gov (United States)

    Zupan, John R; Cameron, Todd A; Anderson-Furgeson, James; Zambryski, Patricia C

    2013-05-28

    Growth and cell division in rod-shaped bacteria have been primarily studied in species that grow predominantly by peptidoglycan (PG) synthesis along the length of the cell. Rhizobiales species, however, predominantly grow by PG synthesis at a single pole. Here we characterize the dynamic localization of several Agrobacterium tumefaciens components during the cell cycle. First, the lipophilic dye FM 4-64 predominantly stains the outer membranes of old poles versus growing poles. In cells about to divide, however, both poles are equally labeled with FM 4-64, but the constriction site is not. Second, the cell-division protein FtsA alternates from unipolar foci in the shortest cells to unipolar and midcell localization in cells of intermediate length, to strictly midcell localization in the longest cells undergoing septation. Third, the cell division protein FtsZ localizes in a cell-cycle pattern similar to, but more complex than, FtsA. Finally, because PG synthesis is spatially and temporally regulated during the cell cycle, we treated cells with sublethal concentrations of carbenicillin (Cb) to assess the role of penicillin-binding proteins in growth and cell division. Cb-treated cells formed midcell circumferential bulges, suggesting that interrupted PG synthesis destabilizes the septum. Midcell bulges contained bands or foci of FtsA-GFP and FtsZ-GFP and no FM 4-64 label, as in untreated cells. There were no abnormal morphologies at the growth poles in Cb-treated cells, suggesting unipolar growth uses Cb-insensitive PG synthesis enzymes.

  7. The garlic allelochemical diallyl disulfide affects tomato root growth by influencing cell division, phytohormone balance and expansin gene expression

    Directory of Open Access Journals (Sweden)

    Fang Cheng

    2016-08-01

    Full Text Available Diallyl disulfide (DADS is a volatile organosulfur compound derived from garlic (Allium sativum L., and it is known as an allelochemical responsible for the strong allelopathic potential of garlic. The anticancer properties of DADS have been studied in experimental animals and various types of cancer cells, but to date, little is known about its mode of action as an allelochemical at the cytological level. The current research presents further studies on the effects of DADS on tomato (Solanum lycopersicum L. seed germination, root growth, mitotic index and cell size in root meristem, as well as the phytohormone levels and expression profile of auxin biosynthesis genes (FZYs, auxin transport genes (SlPINs and expansin genes (EXPs in tomato root. The results showed a biphasic, dose-dependent effect on tomato seed germination and root growth under different DADS concentrations. Lower concentrations (0.01-0.62 mM of DADS significantly promoted root growth, whereas higher levels (6.20-20.67 mM showed inhibitory effects. Cytological observations showed that the cell length of root meristem was increased and that the mitotic activity of meristematic cells in seedling root tips was enhanced at lower concentrations of DADS. In contrast, DADS at higher concentrations inhibited root growth by affecting both the length and division activity of meristematic cells. However, the cell width of the root meristem was not affected. Additionally, DADS increased the IAA and ZR contents of seedling roots in a dose-dependent manner. The influence on IAA content may be mediated by the up-regulation of FZYs and PINs. Further investigation into the underlying mechanism revealed that the expression levels of tomato EXPs were significantly affected by DADS. The expression levels of EXPB2 and beta-expansin precursor were increased after 3 d, and those of EXP1, EXPB3 and EXLB1 were increased after 5 d of DADS treatment (0.41 mM. This result suggests that tomato root growth

  8. Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division

    KAUST Repository

    An, Xiaomeng

    2017-06-21

    Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.

  9. Conserved components, but distinct mechanisms for the placement and assembly of the cell division machinery in unicellular and filamentous ascomycetes.

    Science.gov (United States)

    Seiler, Stephan; Justa-Schuch, Daniela

    2010-12-01

    Cytokinesis is essential for cell proliferation, yet its molecular description is challenging, because >100 conserved proteins must be spatially and temporally co-ordinated. Despite the high importance of a tight co-ordination of cytokinesis with chromosome and organelle segregation, the mechanism for determining the cell division plane is one of the least conserved aspects of cytokinesis in eukaryotic cells. Budding and fission yeast have developed fundamentally distinct mechanisms to ensure proper nuclear segregation. The extent to which these pathways are conserved in multicellular fungi remains unknown. Recent progress indicates common components, but different mechanisms that are required for proper selection of the septation site in the different groups of Ascomycota. Cortical cues are used in yeast- and filament-forming species of the Saccharomycotina clade that are established at the incipient bud site or the hyphal tip respectively. In contrast, septum formation in the filament-forming Pezizomycotina species Aspergillus nidulans and Neurospora crassa seems more closely related to the fission yeast programme in that they may combine mitotic signals with a cell end-based marker system and Rho GTPase signalling. Thus, significant differences in the use and connection of conserved signalling modules become apparent that reflect the phylogenetic relationship of the analysed models. © 2010 Blackwell Publishing Ltd.

  10. Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities

    NARCIS (Netherlands)

    Hut, HMJ; Kampinga, HH; Sibon, OCM

    The effect of heat shock on centrosomes has been mainly studied in interphase cells. Centrosomes play a key role in proper segregation of DNA during mitosis. However, the direct effect and consequences of heat shock on mitotic cells and a possible cellular defense system against proteotoxic stress

  11. Suppression of cell division by pKi-67 antisense-RNA and recombinant protein.

    Science.gov (United States)

    Duchrow, M; Schmidt, M H; Zingler, M; Anemüller, S; Bruch, H P; Broll, R

    2001-01-01

    The human antigen defined by the monoclonal antibody Ki-67 (pKi-67) is a human nuclear protein strongly associated with cell proliferation and found in all tissues studied. It is widely used as a marker of proliferating cells, yet its function is unknown. To investigate its function we suppressed pKi-67 expression by antisense RNA and overexpressed a partial structure of pKi-67 in HeLa cells. A BrdU-incorporation assay showed a significant decrease in DNA synthesis after antisense inhibition. Cell cycle analysis indicated a higher proportion of cells in G1 phase and a lower proportion of cells in S phase while the number of G(2)/M phase cells remained constant. Overexpression of a recombinant protein encoding three of the repetitive elements from exon 13 of pKi-67 had a similar effect to that obtained by antisense inhibition. The similarity of the effect of expressing 'Ki-67 repeats' and pKi-67 antisense RNA could be explained by a negative effect on the folding of the endogenous protein in the endoplasmatic reticulum. Furthermore excessive self-association of pKi-67 via the repeat structure could inhibit its nuclear transport, preventing it from getting to its presumptive site of action. We conclude that the Ki-67 protein has an important role in the regulation of the cell cycle, which is mediated in part by its repetitive elements. Copyright 2001 S. Karger AG, Basel

  12. The receptor-like kinases GSO1 and GSO2 together regulate root growth in Arabidopsis through control of cell division and cell fate specification.

    Science.gov (United States)

    Racolta, Adriana; Bryan, Anthony C; Tax, Frans E

    2014-02-01

    The root apical meristem of Arabidopsis is established post-embryonically as the main source of root cells, and its activity is maintained by complex bidirectional signaling between stem cells and mature cells. The receptor-like kinases GASSHO1 (GSO1) and GSO2 have been shown to regulate aerial epidermal function and seedling growth in Arabidopsis. Here we show that gso1; gso2 seedlings also have root growth and patterning defects. Analyses of mutant root morphology indicate abnormal numbers of cells in longitudinal files and radial cell layers, as well as aberrant stem cell division planes. gso1; gso2 double mutants misexpress markers for stem cells and differentiated root cell types. In addition, gso1; gso2 root growth defects, but not marker missexpression or patterning phenotypes, are rescued by growth on media containing metabolizable sugars. We conclude that GSO1 and GSO2 function together in intercellular signaling to positively regulate cell proliferation, differentiation of root cell types, and stem cell identity. In addition, GSO1 and GSO2 control seedling root growth by modulating sucrose response after germination. Copyright © 2013 Wiley Periodicals, Inc.

  13. ASPM regulates symmetric stem cell division by tuning Cyclin E ubiquitination.

    Science.gov (United States)

    Capecchi, Mario R; Pozner, Amir

    2015-11-19

    We generate a mouse model for the human microcephaly syndrome by mutating the ASPM locus, and demonstrate a premature exhaustion of the neuronal progenitor pool due to dysfunctional self-renewal processes. Earlier studies have linked ASPM mutant progenitor excessive cell cycle exit to a mitotic orientation defect. Here, we demonstrate a mitotic orientation-independent effect of ASPM on cell cycle duration. We pinpoint the cell fate-determining factor to the length of time spent in early G1 before traversing the restriction point. Characterization of the molecular mechanism reveals an interaction between ASPM and the Cdk2/Cyclin E complex, regulating the Cyclin activity by modulating its ubiquitination, phosphorylation and localization into the nucleus, before the cell is fated to transverse the restriction point. Thus, we reveal a novel function of ASPM in mediating the tightly coordinated Ubiquitin- Cyclin E- Retinoblastoma- E2F bistable-signalling pathway controlling restriction point progression and stem cell maintenance.

  14. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants.

    Science.gov (United States)

    Siddique, Shahid; Radakovic, Zoran S; De La Torre, Carola M; Chronis, Demosthenis; Novák, Ondřej; Ramireddy, Eswarayya; Holbein, Julia; Matera, Christiane; Hütten, Marion; Gutbrod, Philipp; Anjam, Muhammad Shahzad; Rozanska, Elzbieta; Habash, Samer; Elashry, Abdelnaser; Sobczak, Miroslaw; Kakimoto, Tatsuo; Strnad, Miroslav; Schmülling, Thomas; Mitchum, Melissa G; Grundler, Florian M W

    2015-10-13

    Sedentary plant-parasitic cyst nematodes are biotrophs that cause significant losses in agriculture. Parasitism is based on modifications of host root cells that lead to the formation of a hypermetabolic feeding site (a syncytium) from which nematodes withdraw nutrients. The host cell cycle is activated in an initial cell selected by the nematode for feeding, followed by activation of neighboring cells and subsequent expansion of feeding site through fusion of hundreds of cells. It is generally assumed that nematodes manipulate production and signaling of the plant hormone cytokinin to activate cell division. In fact, nematodes have been shown to produce cytokinin in vitro; however, whether the hormone is secreted into host plants and plays a role in parasitism remained unknown. Here, we analyzed the spatiotemporal activation of cytokinin signaling during interaction between the cyst nematode, Heterodera schachtii, and Arabidopsis using cytokinin-responsive promoter:reporter lines. Our results showed that cytokinin signaling is activated not only in the syncytium but also in neighboring cells to be incorporated into syncytium. An analysis of nematode infection on mutants that are deficient in cytokinin or cytokinin signaling revealed a significant decrease in susceptibility of these plants to nematodes. Further, we identified a cytokinin-synthesizing isopentenyltransferase gene in H. schachtii and show that silencing of this gene in nematodes leads to a significant decrease in virulence due to a reduced expansion of feeding sites. Our findings demonstrate the ability of a plant-parasitic nematode to synthesize a functional plant hormone to manipulate the host system and establish a long-term parasitic interaction.

  15. Inhibition of Cell Division and DNA Replication Impair Mouse-Naïve Pluripotency Exit.

    Science.gov (United States)

    Waisman, Ariel; Vazquez Echegaray, Camila; Solari, Claudia; Cosentino, María Soledad; Martyn, Iain; Deglincerti, Alessia; Ozair, Mohammad Zeeshan; Ruzo, Albert; Barañao, Lino; Miriuka, Santiago; Brivanlou, Ali; Guberman, Alejandra

    2017-09-01

    The cell cycle has gained attention as a key determinant for cell fate decisions, but the contribution of DNA replication and mitosis in stem cell differentiation has not been extensively studied. To understand if these processes act as "windows of opportunity" for changes in cell identity, we established synchronized cultures of mouse embryonic stem cells as they exit the ground state of pluripotency. We show that initial transcriptional changes in this transition do not require passage through mitosis and that conversion to primed pluripotency is linked to lineage priming in the G1 phase. Importantly, we demonstrate that impairment of DNA replication severely blocks transcriptional switch to primed pluripotency, even in the absence of p53 activity induced by the DNA damage response. Our data suggest an important role for DNA replication during mouse embryonic stem cell differentiation, which could shed light on why pluripotent cells are only receptive to differentiation signals during G1, that is, before the S phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Disruption of an M. tuberculosis membrane protein causes a magnesium-dependent cell division defect and failure to persist in mice.

    Directory of Open Access Journals (Sweden)

    Nichole Goodsmith

    2015-02-01

    Full Text Available The identification of Mycobacterium tuberculosis genes necessary for persistence in vivo provides insight into bacterial biology as well as host defense strategies. We show that disruption of M. tuberculosis membrane protein PerM (Rv0955 resulted in an IFN-γ-dependent persistence defect in chronic mouse infection despite the mutant's near normal growth during acute infection. The perM mutant required increased magnesium for replication and survival; incubation in low magnesium media resulted in cell elongation and lysis. Transcriptome analysis of the perM mutant grown in reduced magnesium revealed upregulation of cell division and cell wall biosynthesis genes, and live cell imaging showed PerM accumulation at the division septa in M. smegmatis. The mutant was acutely sensitive to β-lactam antibiotics, including specific inhibitors of cell division-associated peptidoglycan transpeptidase FtsI. Together, these data implicate PerM as a novel player in mycobacterial cell division and pathogenesis, and are consistent with the hypothesis that immune activation deprives M. tuberculosis of magnesium.

  17. The asymmetric cell division machinery in the spiral-cleaving egg and embryo of the marine annelid Platynereis dumerilii.

    Science.gov (United States)

    Nakama, Aron B; Chou, Hsien-Chao; Schneider, Stephan Q

    2017-12-11

    Over one third of all animal phyla utilize a mode of early embryogenesis called 'spiral cleavage' to divide the fertilized egg into embryonic cells with different cell fates. This mode is characterized by a series of invariant, stereotypic, asymmetric cell divisions (ACDs) that generates cells of different size and defined position within the early embryo. Astonishingly, very little is known about the underlying molecular machinery to orchestrate these ACDs in spiral-cleaving embryos. Here we identify, for the first time, cohorts of factors that may contribute to early embryonic ACDs in a spiralian embryo. To do so we analyzed stage-specific transcriptome data in eggs and early embryos of the spiralian annelid Platynereis dumerilii for the expression of over 50 candidate genes that are involved in (1) establishing cortical domains such as the partitioning defective (par) genes, (2) directing spindle orientation, (3) conveying polarity cues including crumbs and scribble, and (4) maintaining cell-cell adhesion between embryonic cells. In general, each of these cohorts of genes are co-expressed exhibiting high levels of transcripts in the oocyte and fertilized single-celled embryo, with progressively lower levels at later stages. Interestingly, a small number of key factors within each ACD module show different expression profiles with increased early zygotic expression suggesting distinct regulatory functions. In addition, our analysis discovered several highly co-expressed genes that have been associated with specialized neural cell-cell recognition functions in the nervous system. The high maternal contribution of these 'neural' adhesion complexes indicates novel general adhesion functions during early embryogenesis. Spiralian embryos are champions of ACD generating embryonic cells of different size with astonishing accuracy. Our results suggest that the molecular machinery for ACD is already stored as maternal transcripts in the oocyte. Thus, the spiralian egg can

  18. Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics

    OpenAIRE

    Gao, Xuefeng; McDonald, J. Tyson; Hlatky, Lynn; Enderling, Heiko

    2012-01-01

    Glioblastoma multiforme (GBM) is one of the most aggressive human malignancies with a poor patient prognosis. Ionizing radiation (IR) either alone or adjuvant after surgery is part of standard treatment for GBM but remains primarily non-curative. The mechanisms underlying tumor radioresistance are manifold and, in part, accredited to a special subpopulation of tumorigenic cells. The so-called glioma stem cells (GSCs) are bestowed with the exclusive ability to self-renew and repopulate the tum...

  19. An automated image analysis framework for segmentation and division plane detection of single live Staphylococcus aureus cells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy

    CERN Document Server

    Wollman, Adam J M; Foster, Simon; Leake, Mark C

    2016-01-01

    Staphylococcus aureus is an important pathogen, giving rise to antimicrobial resistance in cell strains such as Methicillin Resistant S. aureus (MRSA). Here we report an image analysis framework for automated detection and image segmentation of cells in S. aureus cell clusters, and explicit identification of their cell division planes. We use a new combination of several existing analytical tools of image analysis to detect cellular and subcellular morphological features relevant to cell division from millisecond time scale sampled images of live pathogens at a detection precision of single molecules. We demonstrate this approach using a fluorescent reporter GFP fused to the protein EzrA that localises to a mid-cell plane during division and is involved in regulation of cell size and division. This image analysis framework presents a valuable platform from which to study candidate new antimicrobials which target the cell division machinery, but may also have more general application in detecting morphological...

  20. Mitochondrial division inhibitor 1 (mdivi-1) enhances death receptor-mediated apoptosis in human ovarian cancer cells

    Science.gov (United States)

    Wang, Jingnan; Hansen, Karyn; Edwards, Robert; Van Houten, Bennett; Qian, Wei

    2014-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) based strategy is a promising targeted therapeutic approach for the treatment of a variety of cancers including ovarian cancer. However, the inherent or acquired resistance of tumor cells to TRAIL limits the potential application of TRAIL-mediated therapy. In this study, we identified that mitochondrial division inhibitor-1 (mdivi-1) is able to enhance the sensitivity of human ovarian cancer cells to death receptor ligands including TRAIL, FAS ligands, and TNF-α. Importantly, the combination of TRAIL and mdivi-1 has no apparent cytotoxic effect on non-transformed human cells, indicating a significant therapeutic window. We identified that caspase-8 and not the modulation of TRAIL receptors is required for the combination effect of TRAIL and mdivi-1. We further demonstrated that the enhanced efficacy of combination of mdivi-1 and death ligands is not dependent on the originally reported target of mdivi-1, Drp1, and is also not dependent on the two important pro-apoptotic Bcl-2 family proteins Bax and Bak. Thus, our study presents a novel strategy in enhancing the apoptotic effect of death receptor ligands and provides a new effective TRAIL-based combination approach for treating human ovarian cancer. PMID:25446129

  1. C. elegans GATA factors EGL-18 and ELT-6 function downstream of Wnt signaling to maintain the progenitor fate during larval asymmetric divisions of the seam cells.

    Science.gov (United States)

    Gorrepati, Lakshmi; Thompson, Kenneth W; Eisenmann, David M

    2013-05-01

    The C. elegans seam cells are lateral epithelial cells arrayed in a single line from anterior to posterior that divide in an asymmetric, stem cell-like manner during larval development. These asymmetric divisions are regulated by Wnt signaling; in most divisions, the posterior daughter in which the Wnt pathway is activated maintains the progenitor seam fate, while the anterior daughter in which the Wnt pathway is not activated adopts a differentiated hypodermal fate. Using mRNA tagging and microarray analysis, we identified the functionally redundant GATA factor genes egl-18 and elt-6 as Wnt pathway targets in the larval seam cells. EGL-18 and ELT-6 have previously been shown to be required for initial seam cell specification in the embryo. We show that in larval seam cell asymmetric divisions, EGL-18 is expressed strongly in the posterior seam-fated daughter. egl-18 and elt-6 are necessary for larval seam cell specification, and for hypodermal to seam cell fate transformations induced by ectopic Wnt pathway overactivation. The TCF homolog POP-1 binds a site in the egl-18 promoter in vitro, and this site is necessary for robust seam cell expression in vivo. Finally, larval overexpression of EGL-18 is sufficient to drive expression of a seam marker in other hypodermal cells in wild-type animals, and in anterior hypodermal-fated daughters in a Wnt pathway-sensitized background. These data suggest that two GATA factors that are required for seam cell specification in the embryo independently of Wnt signaling are reused downstream of Wnt signaling to maintain the progenitor fate during stem cell-like divisions in larval development.

  2. In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Hisao Moriya

    2006-07-01

    Full Text Available Intracellular biochemical parameters, such as the expression level of gene products, are considered to be optimized so that a biological system, including the parameters, works effectively. Those parameters should have some permissible range so that the systems have robustness against perturbations, such as noise in gene expression. However, little is known about the permissible range in real cells because there has been no experimental technique to test it. In this study, we developed a genetic screening method, named "genetic tug-of-war" (gTOW that evaluates upper limit copy numbers of genes in a model eukaryote Saccharomyces cerevisiae, and we applied it for 30 cell-cycle related genes (CDC genes. The experiment provided unique quantitative data that could be used to argue the system-level properties of the cell cycle such as robustness and fragility. The data were used to evaluate the current computational model, and refinements to the model were suggested.

  3. You are what you talk: quorum sensing induces individual morphologies and cell division modes in Dinoroseobacter shibae.

    Science.gov (United States)

    Patzelt, Diana; Wang, Hui; Buchholz, Ina; Rohde, Manfred; Gröbe, Lothar; Pradella, Silke; Neumann, Alexander; Schulz, Stefan; Heyber, Steffi; Münch, Karin; Münch, Richard; Jahn, Dieter; Wagner-Döbler, Irene; Tomasch, Jürgen

    2013-12-01

    Dinoroseobacter shibae, a member of the Roseobacter clade abundant in marine environments, is characterized by a pronounced pleomorphism. Cell shapes range from variable-sized ovoid rods to long filaments with a high copy number of chromosomes. Time-lapse microscopy shows cells dividing either by binary fission or by budding from the cell poles. Here we demonstrate that this morphological heterogeneity is induced by quorum sensing (QS). D. shibae utilizes three acylated homoserine lactone (AHL) synthases (luxI1-3) to produce AHLs with unsaturated C18 side chains. A ΔluxI1-knockout strain completely lacking AHL biosynthesis was uniform in morphology and divided by binary fission only. Transcriptome analysis revealed that expression of genes responsible for control of cell division was reduced in this strain, providing the link between QS and the observed phenotype. In addition, flagellar biosynthesis and type IV secretion system (T4SS) were downregulated. The wild-type phenotype and gene expression could be restored through addition of synthetic C18-AHLs. Their effectiveness was dependent on the number of double bonds in the acyl side chain and the regulated trait. The wild-type expression level of T4SS genes was fully restored even by an AHL with a saturated C18 side chain that has not been detected in D. shibae. QS induces phenotypic individualization of D. shibae cells rather than coordinating the population. This strategy might be beneficial in unpredictably changing environments, for example, during algal blooms when resource competition and grazing exert fluctuating selective pressures. A specific response towards non-native AHLs might provide D. shibae with the capacity for complex interspecies communication.

  4. Amoebiasis and its effect on cell division in the midgut of the African ...

    African Journals Online (AJOL)

    of epithelia in the mammalian alimentary canal, (Leblond &. Walker 1956; Cleaver 1967; .... mature epithelial cells. Results. Controls. The controls, which were parasite-free and which were given neither colchicine nor 3H thymidine, were used for comparative purposes to evaluate the quality of processing of the tissues.

  5. How-to-Do-It: Cytokinin Induced Cell Division & Differentiation Using Intact Plants.

    Science.gov (United States)

    Bohnsack, Charles W.

    1989-01-01

    Presents a procedure by which cytokinins are used to induce a population of dividing and differentiating cells on the cut surface of the roots of an intact plant. Includes the method used, results, and suggestions for a variety of variables that may be tested. (RT)

  6. Digging out Roots: Pattern Formation, Cell Division, and Morphogenesis in Plants

    NARCIS (Netherlands)

    Scheres, B.J.G.; Heidstra, R.

    1999-01-01

    The analysis of plant development by genetic, molecular, and surgical approaches has accumulated a large body of data, and yet it remains a challenge to uncover the basic mechanisms that are operating. Early steps of development, when the zygote and its daughter cells organize the embryonic

  7. Aurora Kinase A deficiency during skin development impairs cell division and stratification

    Science.gov (United States)

    Torchia, Enrique C.; Zhang, Lei; Huebner, Aaron J.; Sen, Subrata; Roop, Dennis R.

    2012-01-01

    Aurora Kinase-A (Aurora-A) promotes timely entry into mitosis, centrosome maturation, and formation of bipolar spindles. To address the role of Aurora-A in skin development and homeostasis, we interbred a floxed Aurora-A (Aurora-Afl) mouse with the Cre-deleter strain, K14.Cre. Aurora-Afl/fl;Krt14.Cre (Aurora-A−/−) mice died shortly after birth. These mice had translucent skin, and histological evaluation showed that the dorsal skin was very thin and fragile with frank erosions. Although the expression of the basal layer marker Krt14 and the differentiation marker Krt1 was evident in Aurora-A−/− epidermis, there was a marked reduction in the number of suprabasal layers and basal keratinocytes. Dye exclusion assays also showed defects in barrier function. Unlike WT cells, Aurora-A−/− basal progenitors were delayed in forming two layers at E13.5 when embryonic skin begins to stratify. Increased numbers of mitotic cells, apoptotic bodies, and polyploid keratinocytes were evident in Aurora-A−/− epidermis, indicating that a deficiency in Aurora-A promotes aberrant mitosis, mitotic slippage and cell death. Lastly, Aurora-A−/− keratinocytes displayed centrosomal abnormalities that included centrosomes located at non-apical sites in basal cells. Thus, the deletion of Aurora-A in the developing epidermis alters centrosome function of basal keratinocytes and markedly impairs their ability to divide and stratify. PMID:22832491

  8. Aurora kinase-A deficiency during skin development impairs cell division and stratification.

    Science.gov (United States)

    Torchia, Enrique C; Zhang, Lei; Huebner, Aaron J; Sen, Subrata; Roop, Dennis R

    2013-01-01

    Aurora kinase-A (Aurora-A) promotes timely entry into mitosis, centrosome maturation, and formation of bipolar spindles. To address the role of Aurora-A in skin development and homeostasis, we interbred a floxed Aurora-A (Aurora-A(fl)) mouse with the Cre-deleter strain, K14.Cre. Aurora-A(fl/fl);Krt14.Cre (Aurora-A(-/-)) mice died shortly after birth. These mice had translucent skin, and histological evaluation showed that the dorsal skin was very thin and fragile with frank erosions. Although the expression of the basal layer marker keratin 14 and the differentiation marker keratin 1 was evident in Aurora-A(-/-) epidermis, there was a marked reduction in the number of suprabasal layers and basal keratinocytes. Dye exclusion assays also showed defects in barrier function. Unlike wild-type cells, Aurora-A(-/-) basal progenitors were delayed in forming two layers at embryonic day (E)13.5 when embryonic skin begins to stratify. Increased numbers of mitotic cells, apoptotic bodies, and polyploid keratinocytes were evident in Aurora-A(-/-) epidermis, indicating that a deficiency in Aurora-A promotes aberrant mitosis, mitotic slippage, and cell death. Finally, Aurora-A(-/-) keratinocytes displayed centrosomal abnormalities that included centrosomes located at nonapical sites in basal cells. Thus, the deletion of Aurora-A in the developing epidermis alters centrosome function of basal keratinocytes and markedly impairs their ability to divide and stratify.

  9. Factors Influencing Academic Performance of Students Enrolled in a Lower Division Cell Biology Core Course

    Science.gov (United States)

    Soto, Julio G.; Anand, Sulekha

    2009-01-01

    Students' performance in two semesters of our Cell Biology course was examined for this study. Teaching strategies, behaviors, and pre-course variables were analyzed with respect to students' performance. Pre-semester and post-semester surveys were administered to ascertain students' perceptions about class difficulty, amount of study and effort…

  10. Moderate-Grade Germinal Matrix Haemorrhage Activates Cell Division in the Neonatal Mouse Subventricular Zone.

    Science.gov (United States)

    Dawes, William J; Zhang, Xinyu; Fancy, Stephen P J; Rowitch, David; Marino, Silvia

    2016-01-01

    Precise temporal and spatial control of the neural stem/progenitor cells within the subventricular zone (SVZ) germinal matrix of the brain is important for normal development in the third trimester and the early postnatal period. The high metabolic demands of proliferating germinal matrix precursors, coupled with the flimsy structure of the germinal matrix cerebral vasculature, are thought to account for the high rates of haemorrhage in extremely- and very-low-birth-weight preterm infants. Germinal matrix haemorrhage can commonly extend to intraventricular haemorrhage (IVH). Because neural stem/progenitor cells are sensitive to microenvironmental cues from the ventricular, intermediate, and basal domains within the germinal matrix, haemorrhage has been postulated to impact neurological outcomes through aberration of normal neural stem/progenitor cell behaviour. We developed an animal model of neonatal germinal matrix haemorrhage using stereotactic injection of autologous blood into the mouse neonatal germinal matrix. Pathological analysis at 4 days postinjury showed high rates of intraventricular extension and ventricular dilatation but low rates of parenchymal disruption outside the germinal zone, recapitulating key features of human "Papile grade III" IVH. At 4 days postinjury we observed proliferation in the wall of the lateral ventricle with significantly increased numbers of transient amplifying cells within the SVZ and the corpus callosum. Analysis at 21 days postinjury revealed that cortical development was also affected, with increased neuronal and concomitant reduced oligodendroglial differentiation. At the molecular level, we showed downregulation of the expression of the transmembrane receptor Notch2 in CD133+ve cells of the SVZ, raising the possibility that the burst of precocious proliferation seen in our experimental mouse model and the skewed differentiation could be mediated by downregulation of the Notch pathway within the proximal

  11. Ashwagandha supplementation enhances ovarian tumoricidal activity of NK cells | Division of Cancer Prevention

    Science.gov (United States)

    DESCRIPTION (provided by applicant): Ovarian cancer (OVCA) is a fatal malignancy of women with highest case to death ratio among gynecological cancers. OVCA differs from other malignancies that it mainly disseminates locally in the peritoneal and abdominal cavity. Thus, factors in tumor microenvironment play critical roles in tumor progression as well as prevention of OVCA metastasis. Innate immune cells are members of tumor microenvironment and first responders to a developing tumor. |

  12. Parenchymatous cell division characterizes the fungal cortex of some common foliose lichens.

    Science.gov (United States)

    Sanders, William B; de Los Ríos, Asunción

    2017-02-01

    Lichen-forming fungi produce diverse vegetative tissues, some closely resembling those of plants. Yet it has been repeatedly affirmed that none is a true parenchyma, in which cellular compartments are subdivided from all adjacent neighbors by cross walls adjoining older cross walls. Using transmission electron microscopy (TEM), we tested this assumption by examining patterns of septum formation in the parenchyma-like cortex of three lichens of different phylogenetic affinities: Sticta canariensis, Leptogium cyanescens, and Endocarpon pusillum. In the cortex of all three lichens, new septa adjoined perpendicularly or obliquely to previous septa. Septal walls possessed an electron-transparent core (median) layer covered on both sides by layers of intermediate electron density. At septal junctures, the core layer of the newer septum was not continuous with that of the older septum. Amorphous, electron-dense material often became deposited in the core region of older septal walls, and the septum gradually delaminated along its median into what could then be recognized as the distinct walls of neighboring cells. However, cells maintained continuity at pores, where adjacent remnants of the electron-transparent core layer suggested septal partition rather than secondary establishment of a lateral wall connection via anastomosis. Although fungal tissues first arise by the coalescence of filaments early in lichen ontogeny, the mature cortical tissues of some lichens are comparable to true parenchyma in the unrestricted orientation of their septal cross walls and the resulting ontogenetic relationship among neighboring cell compartments. © 2017 Botanical Society of America.

  13. Insights into nucleotide recognition by cell division protein FtsZ from a mant-GTP competition assay and molecular dynamics

    NARCIS (Netherlands)

    Schaffner-Barbero, C.; Gil-Redondo, R.; Ruiz-Avila, L.B.; Huecas, S.; Läppchen, T.; den Blaauwen, T.; Diaz, J.F.; Morreale, A.; Andreu, J.M.

    2010-01-01

    Essential cell division protein FtsZ forms the bacterial cytokinetic ring and is a target for new antibiotics. FtsZ monomers bind GTP and assemble into filaments. Hydrolysis to GDP at the association interface between monomers leads to filament disassembly. We have developed a homogeneous

  14. Development and Application of a Two-Tier Multiple-Choice Diagnostic Test for High School Students' Understanding of Cell Division and Reproduction

    Science.gov (United States)

    Sesli, Ertugrul; Kara, Yilmaz

    2012-01-01

    This study involved the development and application of a two-tier diagnostic test for measuring students' understanding of cell division and reproduction. The instrument development procedure had three general steps: defining the content boundaries of the test, collecting information on students' misconceptions, and instrument development.…

  15. Culturally relevant inquiry-based laboratory module implementations in upper-division genetics and cell biology teaching laboratories.

    Science.gov (United States)

    Siritunga, Dimuth; Montero-Rojas, María; Carrero, Katherine; Toro, Gladys; Vélez, Ana; Carrero-Martínez, Franklin A

    2011-01-01

    Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students' interest in pursuing a research career. In this paper, we present a model for the implementation of laboratory research in the undergraduate teaching laboratory using a culturally relevant approach to engage students. Laboratory modules were implemented in upper-division genetics and cell biology courses using cassava as the central theme. Students were asked to bring cassava samples from their respective towns, which allowed them to compare their field-collected samples against known lineages from agricultural stations at the end of the implementation. Assessment of content and learning perceptions revealed that our novel approach allowed students to learn while engaged in characterizing Puerto Rican cassava. In two semesters, based on the percentage of students who answered correctly in the premodule assessment for content knowledge, there was an overall improvement of 66% and 55% at the end in the genetics course and 24% and 15% in the cell biology course. Our proposed pedagogical model enhances students' professional competitiveness by providing students with valuable research skills as they work on a problem to which they can relate.

  16. On the embryonic cell division beyond the contractile ring mechanism: experimental and computational investigation of effects of vitelline confinement, temperature and egg size

    Directory of Open Access Journals (Sweden)

    Evgeny Gladilin

    2015-12-01

    Full Text Available Embryonic cell division is a mechanical process which is predominantly driven by contraction of the cleavage furrow and response of the remaining cellular matter. While most previous studies focused on contractile ring mechanisms of cytokinesis, effects of environmental factors such as pericellular vitelline membrane and temperature on the mechanics of dividing cells were rarely studied. Here, we apply a model-based analysis to the time-lapse imaging data of two species (Saccoglossus kowalevskii and Xenopus laevis with relatively large eggs, with the goal of revealing the effects of temperature and vitelline envelope on the mechanics of the first embryonic cell division. We constructed a numerical model of cytokinesis to estimate the effects of vitelline confinement on cellular deformation and to predict deformation of cellular contours. We used the deviations of our computational predictions from experimentally observed cell elongation to adjust variable parameters of the contractile ring model and to quantify the contribution of other factors (constitutive cell properties, spindle polarization that may influence the mechanics and shape of dividing cells. We find that temperature affects the size and rate of dilatation of the vitelline membrane surrounding fertilized eggs and show that in native (not artificially devitellinized egg cells the effects of temperature and vitelline envelope on mechanics of cell division are tightly interlinked. In particular, our results support the view that vitelline membrane fulfills an important role of micromechanical environment around the early embryo the absence or improper function of which under moderately elevated temperature impairs normal development. Furthermore, our findings suggest the existence of scale-dependent mechanisms that contribute to cytokinesis in species with different egg size, and challenge the view of mechanics of embryonic cell division as a scale-independent phenomenon.

  17. Bacteriocin protein BacL1 of Enterococcus faecalis targets cell division loci and specifically recognizes L-Ala2-cross-bridged peptidoglycan.

    Science.gov (United States)

    Kurushima, Jun; Nakane, Daisuke; Nishizaka, Takayuki; Tomita, Haruyoshi

    2015-01-01

    Bacteriocin 41 (Bac41) is produced from clinical isolates of Enterococcus faecalis and consists of two extracellular proteins, BacL1 and BacA. We previously reported that BacL1 protein (595 amino acids, 64.5 kDa) is a bacteriolytic peptidoglycan D-isoglutamyl-L-lysine endopeptidase that induces cell lysis of E. faecalis when an accessory factor, BacA, is copresent. However, the target of BacL1 remains unknown. In this study, we investigated the targeting specificity of BacL1. Fluorescence microscopy analysis using fluorescent dye-conjugated recombinant protein demonstrated that BacL1 specifically localized at the cell division-associated site, including the equatorial ring, division septum, and nascent cell wall, on the cell surface of target E. faecalis cells. This specific targeting was dependent on the triple repeat of the SH3 domain located in the region from amino acid 329 to 590 of BacL1. Repression of cell growth due to the stationary state of the growth phase or to treatment with bacteriostatic antibiotics rescued bacteria from the bacteriolytic activity of BacL1 and BacA. The static growth state also abolished the binding and targeting of BacL1 to the cell division-associated site. Furthermore, the targeting of BacL1 was detectable among Gram-positive bacteria with an L-Ala-L-Ala-cross-bridging peptidoglycan, including E. faecalis, Streptococcus pyogenes, or Streptococcus pneumoniae, but not among bacteria with alternate peptidoglycan structures, such as Enterococcus faecium, Enterococcus hirae, Staphylococcus aureus, or Listeria monocytogenes. These data suggest that BacL1 specifically targets the L-Ala-L-Ala-cross-bridged peptidoglycan and potentially lyses the E. faecalis cells during cell division. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Bacteriocin Protein BacL1 of Enterococcus faecalis Targets Cell Division Loci and Specifically Recognizes l-Ala2-Cross-Bridged Peptidoglycan

    Science.gov (United States)

    Kurushima, Jun; Nakane, Daisuke; Nishizaka, Takayuki

    2014-01-01

    Bacteriocin 41 (Bac41) is produced from clinical isolates of Enterococcus faecalis and consists of two extracellular proteins, BacL1 and BacA. We previously reported that BacL1 protein (595 amino acids, 64.5 kDa) is a bacteriolytic peptidoglycan d-isoglutamyl-l-lysine endopeptidase that induces cell lysis of E. faecalis when an accessory factor, BacA, is copresent. However, the target of BacL1 remains unknown. In this study, we investigated the targeting specificity of BacL1. Fluorescence microscopy analysis using fluorescent dye-conjugated recombinant protein demonstrated that BacL1 specifically localized at the cell division-associated site, including the equatorial ring, division septum, and nascent cell wall, on the cell surface of target E. faecalis cells. This specific targeting was dependent on the triple repeat of the SH3 domain located in the region from amino acid 329 to 590 of BacL1. Repression of cell growth due to the stationary state of the growth phase or to treatment with bacteriostatic antibiotics rescued bacteria from the bacteriolytic activity of BacL1 and BacA. The static growth state also abolished the binding and targeting of BacL1 to the cell division-associated site. Furthermore, the targeting of BacL1 was detectable among Gram-positive bacteria with an l-Ala-l-Ala-cross-bridging peptidoglycan, including E. faecalis, Streptococcus pyogenes, or Streptococcus pneumoniae, but not among bacteria with alternate peptidoglycan structures, such as Enterococcus faecium, Enterococcus hirae, Staphylococcus aureus, or Listeria monocytogenes. These data suggest that BacL1 specifically targets the l-Ala-l-Ala-cross-bridged peptidoglycan and potentially lyses the E. faecalis cells during cell division. PMID:25368300

  19. Asymmetric Divisions in Oogenesis.

    Science.gov (United States)

    Bilinski, Szczepan M; Kubiak, Jacek Z; Kloc, Malgorzata

    In the majority of animals, the oocyte/egg is structurally, molecularly, and functionally asymmetric. Such asymmetry is a prerequisite for a flawless fertilization and faithful segregation of maternal determinants during subsequent embryonic development. The oocyte asymmetry develops during oogenesis and must be maintained during consecutive and obligatorily asymmetric oogonial divisions, which depending on the species lead to the formation of either oocyte alone or oocyte and nurse cell complex. In the following chapter, we summarize current knowledge on the asymmetric oogonial divisions in invertebrate (insects) and vertebrate (Xenopus) species.

  20. Revealing the micromechanics driving cellular division: optical manipulation of force-bearing substructure in mitotic cells

    Science.gov (United States)

    Ono, Matthew; Preece, Daryl; Duquette, Michelle; Forer, Arthur; Berns, Michael

    2017-08-01

    During the anaphase stage of mitosis, a motility force transports genetic material in the form of chromosomes to the poles of the cell. Chromosome deformations during anaphase transport have largely been attributed to viscous drag force, however LaFountain et. al. found that a physical tether connects separating chromosome ends in crane-fly spermatocytes such that a backwards tethering force elongates the separating chromosomes. In the presented study laser microsurgery was used to deduce the mechanistic basis of chromosome elongation in rat-kangaroo cells. In half of tested chromosome pairs, laser microsurgery between separating chromosome ends reduced elongation by 7+/-3% suggesting a source of chromosome strain independent of viscous drag. When microsurgery was used to sever chromosomes during transport, kinetochore attached fragments continued poleward travel while half of end fragments traveled towards the opposite pole and the remaining fragments either did not move or segregated to the proper pole. Microsurgery directed between chromosome ends always ceased cross-polar fragment travel suggesting the laser severed a physical tether transferring force to the fragment. Optical trapping of fragments moving towards the opposite pole estimates an upper boundary on the tethering force of 1.5 pN.

  1. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process.

    Science.gov (United States)

    Kodama, Yuuki; Fujishima, Masahiro

    2012-10-01

    The association of ciliate Paramecium bursaria with symbiotic Chlorella sp. is a mutualistic symbiosis. However, both the alga-free paramecia and symbiotic algae can still grow independently and can be reinfected experimentally by mixing them. Effects of the host's nutritional conditions against the symbiotic algal cell division and density were examined during early reinfection. Transmission electron microscopy revealed that algal cell division starts 24 h after mixing with alga-free P. bursaria, and that the algal mother cell wall is discarded from the perialgal vacuole membrane, which encloses symbiotic alga. Labelling of the mother cell wall with Calcofluor White Stain, a cell-wall-specific fluorochrome, was used to show whether alga had divided or not. Pulse labelling of alga-free P. bursaria cells with Calcofluor White Stain-stained algae with or without food bacteria for P. bursaria revealed that the fluorescence of Calcofluor White Stain in P. bursaria with bacteria disappeared within 3 days after mixing, significantly faster than without bacteria. Similar results were obtained both under constant light and dark conditions. This report is the first describing that the cell division and density of symbiotic algae of P. bursaria are controlled by the host's nutritional conditions during early infection. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Rapid white blood cell detection for peritonitis diagnosis

    Science.gov (United States)

    Wu, Tsung-Feng; Mei, Zhe; Chiu, Yu-Jui; Cho, Sung Hwan; Lo, Yu-Hwa

    2013-03-01

    A point-of-care and home-care lab-on-a-chip (LoC) system that integrates a microfluidic spiral device as a concentrator with an optical-coding device as a cell enumerator is demonstrated. The LoC system enumerates white blood cells from dialysis effluent of patients receiving peritoneal dialysis. The preliminary results show that the white blood cell counts from our system agree well with the results from commercial flow cytometers. The LoC system can potentially bring significant benefits to end stage renal disease (ESRD) patients that are on peritoneal dialysis (PD).

  3. T cells suppress memory-dependent rapid mucous cell metaplasia in mouse airways.

    Science.gov (United States)

    Chand, Hitendra S; Mebratu, Yohannes A; Montera, Marena; Tesfaigzi, Yohannes

    2016-10-20

    Airway epithelial cells (AECs) are crucial for mucosal and adaptive immunity but whether these cells respond in a memory-dependent manner is poorly studied. Previously, we have reported that LPS intratracheal instillation in rodents causes extensive neutrophilic inflammation and airway epithelial cell hyperplasia accompanied by mucous cell metaplasia (MCM). And the resolution process required a period of 40 d for the inflammation to subside and the lung epithelia to resemble the non-exposed condition. Therefore, the present study investigated the memory-dependent response of airway epithelial cells to a secondary LPS challenge after the initial inflammation was resolved. Airway epithelial and mucous cells were assessed in response to a secondary LPS challenge in F344/N rats, and in C57BL/6 wild-type (Foxn1(WT)) and T cell-deficient athymic (Foxn1(nu)) mice that were instilled with LPS or saline 40 d earlier. Epithelial expression of TLR4, EGFR, and phosphorylated-ERK1/2 (pERK) were also analyzed. LPS-pretreated F344/N rats responded with elevated numbers of AECs after saline challenge and with 3-4-fold increased MCM following the LPS challenge in LPS- compared with saline-pretreated rats. LPS-pretreated rats showed 5-fold higher number of AECs expressing TLR4 apically than saline-pretreated rats. Also, the expression of EGFR was increased in LPS-pretreated rats along with the number of AECs with active or nuclear pERK, and the levels were further increased upon LPS challenge. LPS-pretreated Foxn1(nu) compared with Foxn1(WT) mice showed increased MCM and elevated levels of TLR4, EGFR, and nuclear pERK at 40 d after LPS instillation. LPS challenge further augmented MCM rapidly in Foxn1(nu) compared with Foxn1(WT) mice. Together, these data suggest that AECs preserve an 'innate memory' that drives a rapid mucous phenotype via spatiotemporal regulation of TLR4 and EGFR. Further, T cells may suppress the sustained elevated expression of TLR4 and EGFR and thereby the

  4. CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability

    NARCIS (Netherlands)

    van der Windt, Gerritje J. W.; O'Sullivan, David; Everts, Bart; Huang, Stanley Ching-Cheng; Buck, Michael D.; Curtis, Jonathan D.; Chang, Chih-Hao; Smith, Amber M.; Ai, Teresa; Faubert, Brandon; Jones, Russell G.; Pearce, Edward J.; Pearce, Erika L.

    2013-01-01

    A characteristic of memory T (T-M) cells is their ability to mount faster and stronger responses to reinfection than naive T (T-N) cells do in response to an initial infection. However, the mechanisms that allow this rapid recall are not completely understood. We found that CD8 T-M cells have more

  5. A trisubstituted benzimidazole cell division inhibitor with efficacy against Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Susan E Knudson

    Full Text Available Trisubstituted benzimidazoles have demonstrated potency against Gram-positive and Gram-negative bacterial pathogens. Previously, a library of novel trisubstituted benzimidazoles was constructed for high throughput screening, and compounds were identified that exhibited potency against M. tuberculosis H37Rv and clinical isolates, and were not toxic to Vero cells. A new series of 2-cyclohexyl-5-acylamino-6-N, N-dimethylaminobenzimidazoles derivatives has been developed based on SAR studies. Screening identified compounds with potency against M. tuberculosis. A lead compound from this series, SB-P17G-A20, was discovered to have an MIC of 0.16 µg/mL and demonstrated efficacy in the TB murine acute model of infection based on the reduction of bacterial load in the lungs and spleen by 1.73 ± 0.24 Log10 CFU and 2.68 ± Log10 CFU, respectively, when delivered at 50 mg/kg by intraperitoneal injection (IP twice daily (bid. The activity of SB-P17G-A20 was determined to be concentration dependent and to have excellent stability in mouse and human plasma, and liver microsomes. Together, these studies demonstrate that SB-P17G-A20 has potency against M. tuberculosis clinical strains with varying susceptibility and efficacy in animal models of infection, and that trisubstituted benzimidazoles continue to be a platform for the development of novel inhibitors with efficacy.

  6. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    Science.gov (United States)

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Haemolysis following rapid experimental red blood cell transfusion--an evaluation of two infusion pumps

    DEFF Research Database (Denmark)

    Hansen, Tom Giedsing; Sprogøe-Jakobsen, U; Pedersen, C M

    1998-01-01

    The vast majority of infusion pumps used for rapid transfusion of large amounts of blood have never been properly examined regarding their influence on the quality of the red blood cells (RBCs) infused. In this study, we evaluated the effect of two different infusion pumps on the degree of RBC...... destruction following rapid experimental blood transfusion....

  8. Nuclear and cell division in Bacillus subtilis: dormant nucleoids in stationary-phase cells and their activation

    NARCIS (Netherlands)

    van Iterson, W.; Michels, P. A.; Vyth-Dreese, F.; Aten, J. A.

    1975-01-01

    The morphology of nucleoids and mesosomes of Bacillus subtilis in stationary-and lag-phase cultures was studied by making three-dimensional cell reconstructions in plastic of electron micrographs of serial sections. In cells from stationary cultures, the dormant nucleoids are frequently, but not

  9. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  10. Interplay between ABA and GA Modulates the Timing of Asymmetric Cell Divisions in the Arabidopsis Root Ground Tissue.

    Science.gov (United States)

    Lee, Shin Ae; Jang, Sejeong; Yoon, Eun Kyung; Heo, Jung-Ok; Chang, Kwang Suk; Choi, Ji Won; Dhar, Souvik; Kim, Gyuree; Choe, Jeong-Eun; Heo, Jae Bok; Kwon, Chian; Ko, Jae-Heung; Hwang, Yong-Sic; Lim, Jun

    2016-06-06

    In multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation. However, the molecular mechanisms underlying the interaction between ABA and GA during GT maturation remain largely unknown. Through transcriptome analyses, we identified a previously uncharacterized C2H2-type zinc finger gene, whose expression is regulated by GA and ABA, thus named GAZ (GA- AND ABA-RESPONSIVE ZINC FINGER). Seedlings ectopically overexpressing GAZ (GAZ-OX) were sensitive to ABA and GA during MC formation, whereas GAZ-SRDX and RNAi seedlings displayed opposite phenotypes. In addition, our results indicated that GAZ was involved in the transcriptional regulation of ABA and GA homeostasis. In agreement with previous studies that ABA and GA coordinate to control the timing of MC formation, we also confirmed the unique interplay between ABA and GA and identified factors and regulatory networks bridging the two hormone pathways during GT maturation of the Arabidopsis root. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  11. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor

    Science.gov (United States)

    2012-01-01

    Background To simplify clinical scale lymphocyte expansions, we investigated the use of the WAVE®, a closed system bioreactor that utilizes active perfusion to generate high cell numbers in minimal volumes. Methods We have developed an optimized rapid expansion protocol for the WAVE bioreactor that produces clinically relevant numbers of cells for our adoptive cell transfer clinical protocols. Results TIL and genetically modified PBL were rapidly expanded to clinically relevant scales in both static bags and the WAVE bioreactor. Both bioreactors produced comparable numbers of cells; however the cultures generated in the WAVE bioreactor had a higher percentage of CD4+ cells and had a less activated phenotype. Conclusions The WAVE bioreactor simplifies the process of rapidly expanding tumor reactive lymphocytes under GMP conditions, and provides an alternate approach to cell generation for ACT protocols. PMID:22475724

  12. IL-6 trans-Signaling-Dependent Rapid Development of Cytotoxic CD8+ T Cell Function

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2014-09-01

    Full Text Available Immune control of infections with viruses or intracellular bacteria relies on cytotoxic CD8+ T cells that use granzyme B (GzmB for elimination of infected cells. During inflammation, mature antigen-presenting dendritic cells instruct naive T cells within lymphoid organs to develop into effector T cells. Here, we report a mechanistically distinct and more rapid process of effector T cell development occurring within 18 hr. Such rapid acquisition of effector T cell function occurred through cross-presenting liver sinusoidal endothelial cells (LSECs in the absence of innate immune stimulation and known costimulatory signaling. Rather, interleukin-6 (IL-6 trans-signaling was required and sufficient for rapid induction of GzmB expression in CD8+ T cells. Such LSEC-stimulated GzmB-expressing CD8+ T cells further responded to inflammatory cytokines, eliciting increased and protracted effector functions. Our findings identify a role for IL-6 trans-signaling in rapid generation of effector function in CD8+ T cells that may be beneficial for vaccination strategies.

  13. Cell division inhibitors with efficacy equivalent to isoniazid in the acute murine Mycobacterium tuberculosis infection model.

    Science.gov (United States)

    Knudson, Susan E; Awasthi, Divya; Kumar, Kunal; Carreau, Alexandra; Goullieux, Laurent; Lagrange, Sophie; Vermet, Hélène; Ojima, Iwao; Slayden, Richard A

    2015-11-01

    The increasing number of clinical strains resistant to one or more of the front-line TB drugs complicates the management of this disease. To develop next-generation benzimidazole-based FtsZ inhibitors with improved efficacy, we employed iterative optimization strategies based on whole bacteria potency, bactericidal activity, plasma and metabolic stability and in vivo efficacy studies. Candidate benzimidazoles were evaluated for potency against Mycobacterium tuberculosis H37Rv and select clinical strains, toxicity against Vero cells and compound stability in plasma and liver microsomes. The efficacy of lead compounds was assessed in the acute murine M. tuberculosis infection model via intraperitoneal and oral routes. MICs of SB-P17G-A33, SB-P17G-A38 and SB-P17G-A42 for M. tuberculosis H37Rv and select clinical strains were 0.18-0.39 mg/L. SB-P17G-A38 and SB-P17G-A42 delivered at 50 mg/kg twice daily intraperitoneally or orally demonstrated efficacy in reducing the bacterial load by 5.7-6.3 log10 cfu in the lungs and 3.9-5.0 log10 cfu in the spleen. SB-P17G-A33 delivered at 50 mg/kg twice daily intraperitoneally or orally also reduced the bacterial load by 1.7-2.1 log10 cfu in the lungs and 2.5-3.4 log10 cfu in the spleen. Next-generation benzimidazoles with excellent potency and efficacy against M. tuberculosis have been developed. This is the first report on benzimidazole-based FtsZ inhibitors showing an equivalent level of efficacy to isoniazid in an acute murine M. tuberculosis infection model. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Rapid cell-surface prion protein conversion revealed using a novel cell system

    Science.gov (United States)

    Goold, R.; Rabbanian, S.; Sutton, L.; Andre, R.; Arora, P.; Moonga, J.; Clarke, A.R.; Schiavo, G.; Jat, P.; Collinge, J.; Tabrizi, S.J.

    2011-01-01

    Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrPC). Here we develop a unique cell system in which epitope-tagged PrPC is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrPC, when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrPSc). Using this epitope-tagged PrPSc, we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion. PMID:21505437

  15. Subsets of CD34+ cells and rapid hematopoietic recovery after peripheral-blood stem-cell transplantation

    NARCIS (Netherlands)

    Dercksen, M. W.; Rodenhuis, S.; Dirkson, M. K.; Schaasberg, W. P.; Baars, J. W.; van der Wall, E.; Slaper-Cortenbach, I. C.; Pinedo, H. M.; von dem Borne, A. E.; van der Schoot, C. E.

    1995-01-01

    To study whether there is a relationship between transplanted cell dose and rate of hematopoietic recovery after peripheral-blood stem-cell (PBSC) transplantation, and to obtain an indication whether specific subsets of CD34+ cell populations contribute to rapid recovery of neutrophils or platelets.

  16. Rapid method for culturing embryonic neuron-glial cell cocultures

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Shan, Wei-Song; Colman, David R

    2003-01-01

    to cultures first treated with antimitotic agents. It also ensures that all the cells present in vivo will be present in the culture. Myelination commences after approximately 2 weeks in culture for dissociated DRG and 3-4 weeks in cerebellar cultures. In enteric cultures, glial wrapping of the enteric...... neurons is seen after 3 weeks (2 weeks in ascorbic acid), suggesting that basal lamina production is important even for glial ensheathment in the enteric nervous system. No overgrowth of fibroblasts or other nonneuronal cells was noted in any cultures, and myelination of the peripheral nervous system...

  17. A spatial analysis of the localization of cell division and cell death in relationship with the morphogenesis of the chick optic cup.

    Science.gov (United States)

    Schook, P

    1980-08-01

    In an attempt to analyze the possible mechanisms underlying the morphogenesis of the optic cup and the optic fissure, two features of generally accepted morphogenetic importance, mitosis and cell death, were studied in their spatial distribution in the chick. The mitotic figures and necrotic remnants visible in serial sections as stained with Feulgen/naphthol yellow-S, were marked on photomicrographs and traced on glass-plates. By piling up the plates, glass reconstructions of five successive developmental phases in the course of the third day of incubation were obtained. Mitotic figures in the walls of the optic vesicle and cup appeared to be distributed at random in all phases. Four areas of cell death, in the lateral wall of the optic vesicle, in the ventral part of the proximal optic stalk, in the uppermost part of the optic cup rim and in the outer layer of the optic cup, were found lying in a frontal plane somewhat rostral from the center of invagination. Evidence for the role of local differences in cell division and localized cell death during the morphogenesis of the optic cup, was not found. Current theories in literature and our observations were discussed. We concluded that for the present, current or conceivable theories can only be teleological explanations of circumstantial evidence. A topographical relationship between cell death and the outgrowth of the optic nerve fibers probably does exist, however. This relationship is born out by studies of congenital anomalies. Possible avenues for further investigation are suggested.

  18. High irradiance responses involving photoreversible multiple photoreceptors as related to photoperiodic induction of cell division in Euglena.

    Science.gov (United States)

    Bolige, Aoen; Goto, Ken

    2007-02-01

    Little is known about the photoreceptors involved in the photoperiodism of unicellular organisms, which we elucidated by deriving their action spectra. The flagellated alga Euglena gracilis exhibits photoperiodism, with a long-day response in cell reproduction. The underlying clock is a circadian rhythm with photoinductive capability, peaking at subjective dusk and occurring at the 26th hour in continuous darkness (DD) when transferred from continuous light (LL); it regulates photoinduction, a high-irradiance response (HIR), of a dark-capability of progressing through cell division. We derived the action spectra by irradiating E. gracilis with monochromatic light for 3h at around the 26th hour; the action maxima occurred at 380, 450-460, 480, 610, 640, 660, 680, and 740nm. Except for the maximum at 450-460nm, which was always a major maximum, the maxima greatly depended on the red (R)/far-red (FR) ratio of the prior LL. The high R/FR ratio resulted in a dominant major peak at 640nm and minor peaks at 480 and 680nm, whereas the low ratio resulted in dominant major peaks at 610 and 740nm and minor peaks at 380 and 660nm; the critical fluence was minimally about 60mmolm(-2). These HIRs resulted from the accumulation of corresponding low-fluence responses (LFRs) because we found that repetition of a 3-min light/dark cycle, with critical fluences of 1mmolm(-2), lasting for 3h resulted in the same photoinduction as the continuous 3-h irradiation. Moreover, these LFRs expressed photoreversibility. Thus, photoperiodic photoinduction involves Euglena-phytochrome (640 and 740nm) and blue photoreceptor (460nm). Although 380, 480, 610, 660, and 680nm may also represent Euglena-phytochrome, a definite conclusion awaits further study.

  19. Rapid prototyping methods for the manufacture of fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Piotr

    2016-01-01

    The potential for the application of this method for the manufacture of metallic bipolar plates (BPP for use in proton exchange membrane fuel cells (PEMFCs is presented and discussed. Special attention is paid to the fabrication of light elements for the construction of PEMFC stacks designed for mobile applications such as aviation technology and unmanned aerial vehicles (UAVs.

  20. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow

    Science.gov (United States)

    Colter, David C.; Class, Reiner; DiGirolamo, Carla M.; Prockop, Darwin J.

    2000-01-01

    Cultures of plastic-adherent cells from bone marrow have attracted interest because of their ability to support growth of hematopoietic stem cells, their multipotentiality for differentiation, and their possible use for cell and gene therapy. Here we found that the cells grew most rapidly when they were initially plated at low densities (1.5 or 3.0 cells/cm2) to generate single-cell derived colonies. The cultures displayed a lag phase of about 5 days, a log phase of rapid growth of about 5 days, and then a stationary phase. FACS analysis demonstrated that stationary cultures contained a major population of large and moderately granular cells and a minor population of small and agranular cells here referred to as recycling stem cells or RS-1 cells. During the lag phase, the RS-1 cells gave rise to a new population of small and densely granular cells (RS-2 cells). During the late log phase, the RS-2 cells decreased in number and regenerated the pool of RS-1 cells found in stationary cultures. In repeated passages in which the cells were plated at low density, they were amplified about 109-fold in 6 wk. The cells retained their ability to generate single-cell derived colonies and therefore apparently retained their multipotentiality for differentiation. PMID:10725391

  1. Evaluation of rapid volume changes of substrate-adherent cells by conventional microscopy 3D imaging.

    Science.gov (United States)

    Boudreault, F; Grygorczyk, R

    2004-09-01

    Precise measurement of rapid volume changes of substrate-adherent cells is essential to understand many aspects of cell physiology, yet techniques to evaluate volume changes with sufficient precision and high temporal resolution are limited. Here, we describe a novel imaging method that surveys the rapid morphology modifications of living, substrate-adherent cells based on phase-contrast, digital video microscopy. Cells grown on a glass substrate are mounted in a custom-designed, side-viewing chamber and subjected to hypotonic swelling. Side-view images of the rapidly swelling cell, and at the end of the assay, an image of the same cell viewed from a perpendicular direction through the substrate, are acquired. Based on these images, off-line reconstruction of 3D cell morphology is performed, which precisely measures cell volume, height and surface at different points during cell volume changes. Volume evaluations are comparable to those obtained by confocal laser scanning microscopy (DeltaVolume microscopy without the need for cell staining or intense illumination to monitor cell volume make this system a promising new tool to investigate the fundamentals of cell volume physiology.

  2. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    Science.gov (United States)

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-12

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  3. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division.

    Directory of Open Access Journals (Sweden)

    Aurore Fleurie

    2014-04-01

    Full Text Available Despite years of intensive research, much remains to be discovered to understand the regulatory networks coordinating bacterial cell growth and division. The mechanisms by which Streptococcus pneumoniae achieves its characteristic ellipsoid-cell shape remain largely unknown. In this study, we analyzed the interplay of the cell division paralogs DivIVA and GpsB with the ser/thr kinase StkP. We observed that the deletion of divIVA hindered cell elongation and resulted in cell shortening and rounding. By contrast, the absence of GpsB resulted in hampered cell division and triggered cell elongation. Remarkably, ΔgpsB elongated cells exhibited a helical FtsZ pattern instead of a Z-ring, accompanied by helical patterns for DivIVA and peptidoglycan synthesis. Strikingly, divIVA deletion suppressed the elongated phenotype of ΔgpsB cells. These data suggest that DivIVA promotes cell elongation and that GpsB counteracts it. Analysis of protein-protein interactions revealed that GpsB and DivIVA do not interact with FtsZ but with the cell division protein EzrA, which itself interacts with FtsZ. In addition, GpsB interacts directly with DivIVA. These results are consistent with DivIVA and GpsB acting as a molecular switch to orchestrate peripheral and septal PG synthesis and connecting them with the Z-ring via EzrA. The cellular co-localization of the transpeptidases PBP2x and PBP2b as well as the lipid-flippases FtsW and RodA in ΔgpsB cells further suggest the existence of a single large PG assembly complex. Finally, we show that GpsB is required for septal localization and kinase activity of StkP, and therefore for StkP-dependent phosphorylation of DivIVA. Altogether, we propose that the StkP/DivIVA/GpsB triad finely tunes the two modes of peptidoglycan (peripheral and septal synthesis responsible for the pneumococcal ellipsoid cell shape.

  4. Temperature Dependence of Cell Division Timing Accounts for a Shift in the Thermal Limits of C. elegans and C. briggsae

    Directory of Open Access Journals (Sweden)

    Maria L. Begasse

    2015-02-01

    Full Text Available Cold-blooded animals, which cannot directly control their body temperatures, have adapted to function within specific temperature ranges that vary between species. However, little is known about what sets the limits of the viable temperature range. Here we show that the speed of the first cell division in C. elegans N2 varies with temperature according to the Arrhenius equation. However, it does so only within certain limits. Outside these limits we observe alterations in the cell cycle. Interestingly, these temperature limits also correspond to the animal’s fertile range. In C. briggsae AF16, isolated from a warmer climatic region, both the fertile range and the temperature range over which the speed of cell division follows the Arrhenius equation, are shifted toward higher temperatures. Our findings suggest that the viable range of an organism can be adapted in part to a different thermal range by adjusting the temperature tolerance of cell division.

  5. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 Gene Defines a Glutathione-Dependent Pathway Involved in Initiation and Maintenance of Cell Division during Postembryonic Root Development

    Science.gov (United States)

    Vernoux, Teva; Wilson, Robert C.; Seeley, Kevin A.; Reichheld, Jean-Philippe; Muroy, Sandra; Brown, Spencer; Maughan, Spencer C.; Cobbett, Christopher S.; Van Montagu, Marc; Inzé, Dirk; May, Mike J.; Sung, Zinmay R.

    2000-01-01

    Activation of cell division in the root apical meristem after germination is essential for postembryonic root development. Arabidopsis plants homozygous for a mutation in the ROOT MERISTEMLESS1 (RML1) gene are unable to establish an active postembryonic meristem in the root apex. This mutation abolishes cell division in the root but not in the shoot. We report the molecular cloning of the RML1 gene, which encodes the first enzyme of glutathione (GSH) biosynthesis, γ-glutamylcysteine synthetase, and which is allelic to CADMIUM SENSITIVE2. The phenotype of the rml1 mutant, which was also evident in the roots of wild-type Arabidopsis and tobacco treated with an inhibitor of GSH biosynthesis, could be relieved by applying GSH to rml1 seedlings. By using a synchronized tobacco cell suspension culture, we showed that the G1-to-S phase transition requires an adequate level of GSH. These observations suggest the existence of a GSH-dependent developmental pathway essential for initiation and maintenance of cell division during postembryonic root development. PMID:10634910

  6. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  7. Winthrop-University Hospital Infectious Disease Division's swine influenza (H1N1) pneumonia diagnostic weighted point score system for hospitalized adults with influenza-like illnesses (ILIs) and negative rapid influenza diagnostic tests (RIDTs).

    Science.gov (United States)

    Cunha, Burke A; Syed, Uzma; Stroll, Stephanie; Mickail, Nardeen; Laguerre, Marianne

    2009-01-01

    In spring 2009, a novel strain of influenza A originating in Veracruz, Mexico, quickly spread to the United States and throughout the world. This influenza A virus was the product of gene reassortment of 4 different genetic elements: human influenza, swine influenza, avian influenza, and Eurasian swine influenza. In the United States, New York was the epicenter of the swine influenza (H1N1) pandemic. Hospital emergency departments (EDs) were inundated with patients with influenza-like illnesses (ILIs) requesting screening for H1N1. Our ED screening, as well as many others, used a rapid screening test for influenza A (QuickVue A/B) because H1N1 was a variant of influenza A. The definitive laboratory test i.e., RT-PCR for H1N1 was developed by the Centers for Disease Control (Atlanta, GA) and subsequently distributed to health departments. Because of the extraordinary volume of test requests, health authorities restricted reverse transcription polymerase chain reaction (RT-PCR) testing. Hence most EDs, including our own, were dependent on rapid influenza diagnostic tests (RIDTs) for swine influenza. A positive rapid influenza A test was usually predictive of RT-PCR H1N1 positivity, but the rapid influenza A screening test (QuickVue A/B) was associated with 30% false negatives. The inability to rely on RIDTs for H1N1 diagnosis resulted in underdiagnosing H1N1. Confronted with adults admitted with ILIs, negative RIDTs, and restricted RT-PCR testing, there was a critical need to develop clinical criteria to diagnose probable swine influenza H1N1 pneumonia. During the pandemic, the Infectious Disease Division at Winthrop-University Hospital developed clinical criteria for adult admitted patients with ILIs and negative RIDTs. Similar to the one developed for the clinical diagnosis of legionnaire's disease. The Winthrop-University Hospital Infectious Disease Division's diagnostic weighted point score system for swine influenza H1N1 pneumonia is based on key clinical and

  8. The influence of athletic status on maximal and rapid isometric torque characteristics and postural balance performance in Division I female soccer athletes and non-athlete controls.

    Science.gov (United States)

    Palmer, Ty B; Hawkey, Matt J; Thiele, Ryan M; Conchola, Eric C; Adams, Bailey M; Akehi, Kazuma; Smith, Doug B; Thompson, Brennan J

    2015-07-01

    The purpose of this study was to examine the effectiveness of maximal and rapid isometric torque characteristics of the hip extensor muscles and postural balance performance to discriminate between female collegiate soccer athletes and non-athlete controls. Ten athletes (mean ± SE: age = 19·20 ± 0·36 year; mass = 62·23 ± 3·12 kg; height = 162·43 ± 1·70 cm) and 10 non-athletes (age = 20·30 ± 0·40 year; mass = 69·64 ± 3·20 kg; height = 163·22 ± 2·10 cm) performed two isometric maximal voluntary contractions (MVCs) of the hip extensor muscles. Peak torque (PT) and absolute and relative rate of torque development (RTD) at early (0-50 ms) and late (100-200 ms) phases of muscle contraction were examined during each MVC. Postural balance was assessed using a commercially designed balance testing device, which provides a measurement of static stability based on sway index (SI). Results indicated that absolute and relative RTD at 0-50 ms (RTD50 and RTD50norm) were greater (P = 0·007 and 0·026), and postural SI was lower (P = 0·022) in the athletes compared with the non-athletes. However, no differences (P = 0·375-0·709) were observed for PT nor absolute and relative RTD at 100-200 ms (RTD100-200 and RTD100-200norm). Significant relationships were also observed between RTD50 and RTD50norm and SI (r = -0·559 and -0·521; P = 0·010 and 0·019). These findings suggest that early rapid torque characteristics of the hip extensor muscles and postural balance performance may be sensitive and effective measures for discriminating between college-aged athletes and non-athletes. Coaches and practitioners may use these findings as performance evaluation tools to help in identifying athletes with both superior early rapid torque and balance performance abilities, which may possibly be an indicator of overall athletic potential. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John

  9. Assessment of three Resistance-Nodulation-Cell Division drug efflux transporters of Burkholderia cenocepacia in intrinsic antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2009-09-01

    Full Text Available Abstract Background Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear. Results To investigate the contribution of efflux pumps to intrinsic drug resistance of B. cenocepacia J2315, we deleted 3 operons encoding the putative RND transporters RND-1, RND-3, and RND-4 containing the genes BCAS0591-BCAS0593, BCAL1674-BCAL1676, and BCAL2822-BCAL2820. Each deletion included the genes encoding the RND transporter itself and those encoding predicted periplasmic proteins and outer membrane pores. In addition, the deletion of rnd-3 also included BCAL1672, encoding a putative TetR regulator. The B. cenocepacia rnd-3 and rnd-4 mutants demonstrated increased sensitivity to inhibitory compounds, suggesting an involvement of these proteins in drug resistance. Moreover, the rnd-3 and rnd-4 mutants demonstrated reduced accumulation of N-acyl homoserine lactones in the growth medium. In contrast, deletion of the rnd-1 operon had no detectable phenotypes under the conditions assayed. Conclusion Two of the three inactivated RND efflux pumps in B. cenocepacia J2315 contribute to the high level of intrinsic resistance of this strain to some antibiotics and other inhibitory compounds. Furthermore, these efflux systems also mediate accumulation in the growth medium of quorum sensing molecules that have been shown to contribute to infection. A systematic study of RND efflux systems in B. cenocepacia is required to provide a full picture of intrinsic antibiotic resistance in this opportunistic

  10. Fundamentals of rapid injection molding for microfluidic cell-based assays.

    Science.gov (United States)

    Lee, Ulri N; Su, Xiaojing; Guckenberger, David J; Dostie, Ashley M; Zhang, Tianzi; Berthier, Erwin; Theberge, Ashleigh B

    2018-01-30

    Microscale cell-based assays have demonstrated unique capabilities in reproducing important cellular behaviors for diagnostics and basic biological research. As these assays move beyond the prototyping stage and into biological and clinical research environments, there is a need to produce microscale culture platforms more rapidly, cost-effectively, and reproducibly. 'Rapid' injection molding is poised to meet this need as it enables some of the benefits of traditional high volume injection molding at a fraction of the cost. However, rapid injection molding has limitations due to the material and methods used for mold fabrication. Here, we characterize advantages and limitations of rapid injection molding for microfluidic device fabrication through measurement of key features for cell culture applications including channel geometry, feature consistency, floor thickness, and surface polishing. We demonstrate phase contrast and fluorescence imaging of cells grown in rapid injection molded devices and provide design recommendations to successfully utilize rapid injection molding methods for microscale cell-based assay development in academic laboratory settings.

  11. Cbf11 and Cbf12, the fission yeast CSL proteins, play opposing roles in cell adhesion and coordination of cell and nuclear division

    Energy Technology Data Exchange (ETDEWEB)

    Prevorovsky, Martin; Grousl, Tomas; Stanurova, Jana; Rynes, Jan [Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2 (Czech Republic); Nellen, Wolfgang [Department of Genetics, Kassel University, Heinrich Plett Strasse 40, 34132 Kassel (Germany); Puta, Frantisek [Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2 (Czech Republic); Folk, Petr, E-mail: folk@natur.cuni.cz [Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2 (Czech Republic)

    2009-05-01

    The CSL (CBF1/RBP-J{kappa}/Suppressor of Hairless/LAG-1) family is comprised of transcription factors essential for metazoan development, mostly due to their involvement in the Notch receptor signaling pathway. Recently, we identified two novel classes of CSL genes in the genomes of several fungal species, organisms lacking the Notch pathway. In this study, we characterized experimentally cbf11{sup +} and cbf12{sup +}, the two CSL genes of Schizosaccharomyces pombe, in order to elucidate the CSL function in fungi. We provide evidence supporting their identity as genuine CSL genes. Both cbf11{sup +} and cbf12{sup +} are non-essential; they have distinct expression profiles and code for nuclear proteins with transcription activation potential. Significantly, we demonstrated that Cbf11 recognizes specifically the canonical CSL response element GTG{sup A}/{sub G}GAA in vitro. The deletion of cbf11{sup +} is associated with growth phenotypes and altered colony morphology. Furthermore, we found that Cbf11 and Cbf12 play opposite roles in cell adhesion, nuclear and cell division and their coordination. Disturbed balance of the two CSL proteins leads to cell separation defects (sep phenotype), cut phenotype, and high-frequency diploidization in heterothallic strains. Our data show that CSL proteins operate in an organism predating the Notch pathway, which should be of relevance to the understanding of (Notch-independent) CSL functions in metazoans.

  12. Aerobically respiring prokaryotic strains exhibit a broader temperature-pH-salinity space for cell division than anaerobically respiring and fermentative strains.

    Science.gov (United States)

    Harrison, Jesse P; Dobinson, Luke; Freeman, Kenneth; McKenzie, Ross; Wyllie, Dale; Nixon, Sophie L; Cockell, Charles S

    2015-09-06

    Biological processes on the Earth operate within a parameter space that is constrained by physical and chemical extremes. Aerobic respiration can result in adenosine triphosphate yields up to over an order of magnitude higher than those attained anaerobically and, under certain conditions, may enable microbial multiplication over a broader range of extremes than other modes of catabolism. We employed growth data published for 241 prokaryotic strains to compare temperature, pH and salinity values for cell division between aerobically and anaerobically metabolizing taxa. Isolates employing oxygen as the terminal electron acceptor exhibited a considerably more extensive three-dimensional phase space for cell division (90% of the total volume) than taxa using other inorganic substrates or organic compounds as the electron acceptor (15% and 28% of the total volume, respectively), with all groups differing in their growth characteristics. Understanding the mechanistic basis of these differences will require integration of research into microbial ecology, physiology and energetics, with a focus on global-scale processes. Critical knowledge gaps include the combined impacts of diverse stress parameters on Gibbs energy yields and rates of microbial activity, interactions between cellular energetics and adaptations to extremes, and relating laboratory-based data to in situ limits for cell division. © 2015 The Author(s).

  13. Contribution of the Ade Resistance-Nodulation-Cell Division-Type Efflux Pumps to Fitness and Pathogenesis of Acinetobacter baumannii.

    Science.gov (United States)

    Yoon, Eun-Jeong; Balloy, Viviane; Fiette, Laurence; Chignard, Michel; Courvalin, Patrice; Grillot-Courvalin, Catherine

    2016-05-31

    Overexpression of chromosomal resistance-nodulation-cell division (RND)-type efflux systems with broad substrate specificity contributes to multidrug resistance (MDR) in Acinetobacter baumannii We have shown that modulation of expression of the structural genes for the efflux systems AdeABC and AdeIJK confers MDR and results in numerous alterations of membrane-associated cellular functions, in particular biofilm formation. However, the contribution of these RND pumps to cell fitness and virulence has not yet been studied. The biological cost of an antibiotic resistance mechanism is a key parameter in determining its stability and dissemination. From an entirely sequenced susceptible clinical isolate, we have generated a set of isogenic derivatives having single point mutations resulting in overexpression of each efflux system or with every pump deleted by allelic replacement. We found that overproduction of the pumps results in a significant decrease in fitness of the bacterial host when measured by competition experiments in vitro Fitness and virulence were also evaluated in vivo both in systemic and pulmonary infection models in immunocompetent mice. A diminished competitiveness of the AdeABC-overexpressing mutant was observed only after intraperitoneal inoculation, but not after intranasal inoculation, the latter mimicking the most frequent type of human A. baumannii infection. However, in mice infected intranasally, this mutant was more virulent and stimulated an enhanced neutrophil activation in the lungs. Altogether, these data account for the observation that adeABC overexpression is common in MDR A. baumannii frequently found in ventilator-associated pneumonia. Overproduction of the RND AdeABC efflux system is observed with a high incidence in multidrug-resistant Acinetobacter baumannii and results in increased resistance to several antibiotics of choice for the treatment of infections caused by this nosocomial pathogen. It was therefore important to

  14. Patterning of the MinD cell division protein in cells of arbitrary shape can be predicted using a heuristic dispersion relation

    Directory of Open Access Journals (Sweden)

    James C. Walsh

    2016-03-01

    Full Text Available Many important cellular processes require the accurate positioning of subcellular structures. Underpinning many of these are protein systems that spontaneously generate spatiotemporal patterns. In some cases, these systems can be described by non-linear reaction-diffusion equations, however, a full description of such equations is rarely available. A well-studied patterning system is the Min protein system that underpins the positioning of the FtsZ contractile ring during cell division in Escherichia coli. Using a coordinate-free linear stability analysis, the reaction terms can be separated from the geometry of a cell. The reaction terms produce a dispersion relation that can be used to predict patterning on any cell shape and size. Applying linear stability analysis to an accurate mathematical model of the Min system shows that while it correctly predicts the onset of patterning, the dispersion relation fails to predict oscillations and quantitative mode transitions. However, we show that data from full solutions of the Min model can be used to generate a heuristic dispersion relation. We show that this heuristic dispersion relation can be used to approximate the Min protein patterning obtained by full simulations of the non-linear reaction-diffusion equations. Moreover, it also predicts Min patterning obtained from experiments where the shapes of E. coli cells have been deformed into rectangles or arbitrary shapes. Using this procedure, it should be possible to generate heuristic dispersion relations from protein patterning data or simulations for any patterning process and subsequently use these to predict patterning for arbitrary cell shapes.

  15. Dissecting the role of conformational change and membrane binding by the bacterial cell division regulator MinE in the stimulation of MinD ATPase activity.

    Science.gov (United States)

    Ayed, Saud H; Cloutier, Adam D; McLeod, Laura J; Foo, Alexander C Y; Damry, Adam M; Goto, Natalie K

    2017-12-15

    The bacterial cell division regulators MinD and MinE together with the division inhibitor MinC localize to the membrane in concentrated zones undergoing coordinated pole-to-pole oscillation to help ensure that the cytokinetic division septum forms only at the mid-cell position. This dynamic localization is driven by MinD-catalyzed ATP hydrolysis, stimulated by interactions with MinE's anti-MinCD domain. This domain is buried in the 6-β-stranded MinE "closed" structure, but is liberated for interactions with MinD, giving rise to a 4-β-stranded "open" structure through an unknown mechanism. Here we show that MinE-membrane interactions induce a structural change into a state resembling the open conformation. However, MinE mutants lacking the MinE membrane-targeting sequence stimulated higher ATP hydrolysis rates than the full-length protein, indicating that binding to MinD is sufficient to trigger this conformational transition in MinE. In contrast, conformational change between the open and closed states did not affect stimulation of ATP hydrolysis rates in the absence of membrane binding, although the MinD-binding residue Ile-25 is critical for this conformational transition. We therefore propose an updated model where MinE is brought to the membrane through interactions with MinD. After stimulation of ATP hydrolysis, MinE remains bound to the membrane in a state that does not catalyze additional rounds of ATP hydrolysis. Although the molecular basis for this inhibited state is unknown, previous observations of higher-order MinE self-association may explain this inhibition. Overall, our findings have general implications for Min protein oscillation cycles, including those that regulate cell division in bacterial pathogens. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Near infrared photoimmunotherapy rapidly elicits specific host immunity against cancer cells (Conference Presentation)

    Science.gov (United States)

    Kobayashi, Hisataka

    2017-02-01

    Near infrared photoimmunotherapy (NIR-PIT) is a new molecularly-targeted cancer photo-therapy based on conjugating a near infrared silica-phthalocyanine dye, IR700, to a monoclonal antibody (mAb) targeting cell-surface molecules. When exposed to NIR light, the conjugate induces a highly-selective necrotic/immunogenic cell death (ICD) only in target-positive, mAb-IR700-bound cancer cells. This cell death occurs as early as 1 minute after exposure to NIR light. Meanwhile, immediately adjacent target-negative cells are unharmed. Dynamic 3D-microscopy of live tumor cells undergoing NIR-PIT showed rapid swelling in treated cells immediately after light exposure, followed by irreversible morphologic changes such as bleb formation, and rupture of vesicles within several minutes. Furthermore, biological markers of ICD including relocation of HSP70/90 and calreticulin, and release of ATP and High Mobility Group Box 1 (HMGB1), were clearly detected immediately after NIR-PIT. When NIR-PIT was performed in a mixture of cancer cells and immature dendritic cells, maturation of immature dendritic cells was strongly induced rapidly after NIR-PIT. Alternatively, NIR-PIT can also target negative regulatory immune cells such as Treg only in the tumor bed. Treg targeting NIR-PIT against CD25 can deplete >80% of Treg in tumor bed within 20 min that induces activation of tumor cell-specific CD8+-T and NK cells within 1.5 hour, and then these activated cells killed cancer cells in local tumor within 1 day and also in distant tumors of the same cell origin within 2 days. In summary, cancer cell-targeting and immuno-suppressor cell-targeting NIR-PITs effectively induce innate and acquired immunity specifically against cancer cells growing in patients, respectively.

  17. Rapid transcriptional pulsing dynamics of high expressing retroviral transgenes in embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Mandy Y M Lo

    Full Text Available Single cell imaging studies suggest that transcription is not continuous and occurs as discrete pulses of gene activity. To study mechanisms by which retroviral transgenes can transcribe to high levels, we used the MS2 system to visualize transcriptional dynamics of high expressing proviral integration sites in embryonic stem (ES cells. We established two ES cell lines each bearing a single copy, self-inactivating retroviral vector with a strong ubiquitous human EF1α gene promoter directing expression of mRFP fused to an MS2-stem-loop array. Transfection of MS2-EGFP generated EGFP focal dots bound to the mRFP-MS2 stem loop mRNA. These transcription foci colocalized with the transgene integration site detected by immunoFISH. Live tracking of single cells for 20 minutes detected EGFP focal dots that displayed frequent and rapid fluctuations in transcription over periods as short as 25 seconds. Similarly rapid fluctuations were detected from focal doublet signals that colocalized with replicated proviral integration sites by immunoFISH, consistent with transcriptional pulses from sister chromatids. We concluded that retroviral transgenes experience rapid transcriptional pulses in clonal ES cell lines that exhibit high level expression. These events are directed by a constitutive housekeeping gene promoter and may provide precedence for rapid transcriptional pulsing at endogenous genes in mammalian stem cells.

  18. Hyperkalemia caused by rapid red cell transfusion and the potassium absorption filter

    Directory of Open Access Journals (Sweden)

    Yasuhiko Imashuku

    2017-01-01

    Full Text Available We report a case of transient hyperkalemia during hysterectomy after cesarean section, due to preoperatively undiagnosed placenta accreta that caused unforeseen massive hemorrhage and required rapid red cell transfusion. Hyperkalemia-induced by rapid red cell transfusion is a well-known severe complication of transfusion; however, in patients with sudden massive hemorrhage, rapid red cell transfusion is necessary to save their life. In such cases, it is extremely important to monitor serum potassium levels. For an emergency situation, a system should be developed to ensure sufficient preparation for immediate transfusion and laboratory tests. Furthermore, sufficient stock of preparations to treat hyperkalemia, such as calcium preparations, diuretics, glucose, and insulin is required. Moreover, a transfusion filter that absorbs potassium has been developed and is now available for clinical use in Japan. The filter is easy to use and beneficial, and should be prepared when it is available.

  19. A mechanism for ParB-dependent waves of ParA, a protein related to DNA segregation during cell division in prokaryotes

    DEFF Research Database (Denmark)

    Hunding, Axel; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2003-01-01

    Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about...... in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes....

  20. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii.

    Science.gov (United States)

    Yoon, Eun-Jeong; Chabane, Yassine Nait; Goussard, Sylvie; Snesrud, Erik; Courvalin, Patrice; Dé, Emmanuelle; Grillot-Courvalin, Catherine

    2015-03-24

    Acinetobacter baumannii is a nosocomial pathogen of increasing importance due to its multiple resistance to antibiotics and ability to survive in the hospital environment linked to its capacity to form biofilms. To fully characterize the contribution of AdeABC, AdeFGH, and AdeIJK resistance-nodulation-cell division (RND)-type efflux systems to acquired and intrinsic resistance, we constructed, from an entirely sequenced susceptible A. baumannii strain, a set of isogenic mutants overexpressing each system following introduction of a point mutation in their cognate regulator or a deletion for the pump by allelic replacement. Pairwise comparison of every derivative with the parental strain indicated that AdeABC and AdeFGH are tightly regulated and contribute to acquisition of antibiotic resistance when overproduced. AdeABC had a broad substrate range, including β-lactams, fluoroquinolones, tetracyclines-tigecycline, macrolides-lincosamides, and chloramphenicol, and conferred clinical resistance to aminoglycosides. Importantly, when combined with enzymatic resistance to carbapenems and aminoglycosides, this pump contributed in a synergistic fashion to the level of resistance of the host. In contrast, AdeIJK was expressed constitutively and was responsible for intrinsic resistance to the same major drug classes as AdeABC as well as antifolates and fusidic acid. Surprisingly, overproduction of AdeABC and AdeIJK altered bacterial membrane composition, resulting in decreased biofilm formation but not motility. Natural transformation and plasmid transfer were diminished in recipients overproducing AdeABC. It thus appears that alteration in the expression of efflux systems leads to multiple changes in the relationship between the host and its environment, in addition to antibiotic resistance. Increased expression of chromosomal genes for RND-type efflux systems plays a major role in bacterial multidrug resistance. Acinetobacter baumannii has recently emerged as an important

  1. Division of Labor

    KAUST Repository

    Oke, Muse

    2014-09-12

    The first assignment of DNA polymerases at the eukaryotic replication fork was possible after the in vitro reconstitution of the simian virus 40 (SV40) replication system. In this system, DNA polymerase α (Pol α) provides both leading and lagging strands with RNA-DNA primers that are extended by DNA polymerase δ (Pol δ). Extrapolating the architecture of the replication fork from the SV40 model system to an actual eukaryotic cell has been challenged by the discovery of a third DNA polymerase in Saccharomyces cerevisiae, DNA polymerase ε (Pol ε). A division of labor has been proposed for the eukaryotic replication fork whereby Pol ε replicates the leading strand and Pol δ replicates the lagging strand. However, an alternative model of unequal division of labor in which Pol δ can still participate in leading-strand synthesis is plausible.

  2. The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry.

    Science.gov (United States)

    Morrish, Fionnuala; Neretti, Nicola; Sedivy, John M; Hockenbery, David M

    2008-04-15

    The c-myc proto-oncogene is rapidly activated by serum and regulates genes involved in metabolism and cell cycle progression. This gene is thereby uniquely poised to coordinate both the metabolic and cell cycle regulatory events required for cell cycle entry. However, this function of Myc has not been evaluated. Using a rat fibroblast model of isogenic cell lines, myc(-/-), myc(+/-), myc(+/+) and myc(-/-) cells with an inducible c-myc transgene (mycER), we show that the Myc protein programs cells to utilize both oxidative phosphorylation and glycolysis to drive cell cycle progression. We demonstrate this coordinate regulation of metabolic networks is essential, as specific inhibitors of these pathways block Myc-induced proliferation. Metabolic events temporally correlated with cell cycle entry include increased oxygen consumption, mitochondrial function, pyruvate and lactate production, and ATP generation. Treatment of normal cells with inhibitors of oxidative phosphorylation recapitulates the myc(-/-) phenotype, resulting in impaired cell cycle entry and reduced metabolism. Combined with a kinetic expression profiling analysis of genes linked to mitochondrial function, our study indicates that Myc's ability to coordinately regulate the mitochondrial metabolic network transcriptome is required for rapid cell cycle entry. This function of Myc may underlie the pervasive presence of Myc in many human cancers.

  3. PERSONNEL DIVISION BECOMES HUMAN RESOURCES DIVISION

    CERN Multimedia

    Division des ressources humaines

    2000-01-01

    In the years to come, CERN faces big challenges in the planning and use of human resources. At this moment, Personnel (PE) Division is being reorganised to prepare for new tasks and priorities. In order to accentuate the purposes of the operation, the name of the division has been changed into Human Resources (HR) Division, with effect from 1st January 2000. Human Resources DivisionTel.73222

  4. Rapid and non-enzymatic in vitro retrieval of tumour cells from surgical specimens.

    Directory of Open Access Journals (Sweden)

    Brigitte Mack

    Full Text Available The study of tumourigenesis commonly involves the use of established cell lines or single cell suspensions of primary tumours. Standard methods for the generation of short-term tumour cell cultures include the disintegration of tissue based on enzymatic and mechanical stress. Here, we describe a simple and rapid method for the preparation of single cells from primary carcinomas, which is independent of enzymatic treatment and feeder cells. Tumour biopsies are processed to 1 mm(3 cubes termed explants, which are cultured 1-3 days on agarose-coated well plates in specified medium. Through incisions generated in the explants, single cells are retrieved and collected from the culture supernatant and can be used for further analysis including in vitro and in vivo studies. Collected cells retain tumour-forming capacity in xenotransplantation assays, mimic the phenotype of the primary tumour, and facilitate the generation of cell lines.

  5. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    Science.gov (United States)

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  6. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    Directory of Open Access Journals (Sweden)

    Noriaki Kadohama

    Full Text Available It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg' and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  7. Microfluidic device for rapid solution exchange to study kinetics of cell physiology

    Science.gov (United States)

    Hu, Howard; Honnatti, Meghana; Gillis, Kevin

    2006-11-01

    Exchanging the extracellular solution of the cell rapidly (less than 10ms) is an important requirement in study the kinetics of cell physiology. A microfluidic device is developed to exchange the solution around the cells as they flow through a junction at the intersection of two microfluidic channels. The solution exchange time is measured experimentally by fluorescently labeling the cell surface membranes with a styryl dye, FM1-43 or FM 2-10, and then observing the time course of cell fluorescence decay following the rapid drop in the extracellular concentration of the FM dye that occurs as the cell flows past the fluidic junction. A numerical model is developed to guide the experimental design of microfluidic device. In the model, the motion of a single cell through a fluid junction is simulated and the mixing process of the solutions is solved. The model also includes the kinetics of departitioning of FM dyes from the cell membrane. The departitioning time constants for the FM dyes are determined from fitting the measured data of the cell fluorescence decay. This departitioning kinetics is important as FM dyes are commonly used to label cell membranes for the purpose of measuring the release of neurotransmitter from synaptic vesicles via exocytosis and the subsequent reuptake of vesicular membrane by endocytosis.

  8. Rapid characterization of the biomechanical properties of drug-treated cells in a microfluidic device

    Science.gov (United States)

    Zhang, Xiaofei; Chu, Henry K.; Zhang, Yang; Bai, Guohua; Wang, Kaiqun; Tan, Qiulin; Sun, Dong

    2015-10-01

    Cell mechanics is closely related to many cell functions. Recent studies have suggested that the deformability of cells can be an effective biomarker to indicate the onset and progression of diseases. In this paper, a microfluidic chip is designed for rapid characterization of the mechanics of drug-treated cells through stretching with dielectrophoresis (DEP) force. This chip was fabricated using PDMS and micro-electrodes were integrated and patterned on the ITO layer of the chip. Leukemia NB4 cells were considered and the effect of all-trans retinoic acid (ATRA) drug on NB4 cells were examined via the microfluidic chip. To induce a DEP force onto the cell, a relatively weak ac voltage was utilized to immobilize a cell at one side of the electrodes. The applied voltage was then increased to 3.5 V pp and the cell started to be stretched along the applied electric field lines. The elongation of the cell was observed using an optical microscope and the results showed that both types of cells were deformed by the induced DEP force. The strain of the NB4 cell without the drug treatment was recorded to be about 0.08 (time t = 180 s) and the drug-treated NB4 cell was about 0.21 (time t = 180 s), indicating a decrease in the stiffness after drug treatment. The elastic modulus of the cell was also evaluated and the modulus changed from 140 Pa to 41 Pa after drug treatment. This microfluidic chip can provide a simple and rapid platform for measuring the change in the biomechanical properties of cells and can potentially be used as the tool to determine the biomechanical effects of different drug treatments for drug discovery and development applications.

  9. A bacteriophage endolysin-based electrochemical impedance biosensor for the rapid detection of Listeria cells.

    Science.gov (United States)

    Tolba, Mona; Ahmed, Minhaz Uddin; Tlili, Chaker; Eichenseher, Fritz; Loessner, Martin J; Zourob, Mohammed

    2012-12-21

    The objective of this study was to develop a biosensor using the cell wall binding domain (CBD) of bacteriophage-encoded peptidoglycan hydrolases (endolysin) immobilized on a gold screen printed electrode (SPE) and subsequent electrochemical impedance spectroscopy (EIS) for a rapid and specific detection of Listeria cells. The endolysin was amine-coupled to SPEs using EDC/NHS chemistry. The CBD-based electrode was used to capture and detect the Listeria innocua serovar 6b from pure culture and 2% artificially contaminated milk. In our study, the endolysin functionalized SPEs have been characterized using X-ray photoelectron spectroscopy (XPS). The integration of endolysin-based recognition for specific bacteria and EIS can be used for direct and rapid detection of Listeria cells with high specificity against non-Listeria cells with a limit of detection of 1.1 × 10(4) and 10(5) CFU mL(-1) in pure culture and 2% milk, respectively.

  10. A rapid and sensitive method for measuring N-acetylglucosaminidase activity in cultured cells.

    Directory of Open Access Journals (Sweden)

    Victor Mauri

    Full Text Available A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4-Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG, in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB, a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in

  11. Rapidly acquired cytotoxicity of lymphoid cells from ice inoculated with allogeneic spleen cells.

    Science.gov (United States)

    Slavina, E G; Karmanova, N V; Leipunskaya, I L; Zinzar, S N; Reinhöfer, J; Svet-Moldavsky, G J

    1976-12-01

    Spleen cells from C57BL/6J or CBA mice inoculated iv with spleen cells from BALB/c mice produced a strong nonspecific cytotoxic effect on target cells (mouse L-cells). Lymph node cells from CBA or C57BL/6J mice inoculated sc with BALB/c spleen cells also destroyed L-cells. Lymph node cells from mice inoculated with syngeneic spleen cells were not cytotoxic. The cytotoxic effect was observed ion of allogeneic but not syngeneic spleen cells. This effect was considerably reduced or completely suppressed after partial or total removal of plastic-adherent cells.

  12. The Soluble Periplasmic Domains of Escherichia coli Cell Division Proteins FtsQ/FtsB/FtsL Form a Trimeric Complex with Submicromolar Affinity*

    Science.gov (United States)

    Glas, Marjolein; van den Berg van Saparoea, H. Bart; McLaughlin, Stephen H.; Roseboom, Winfried; Liu, Fan; Koningstein, Gregory M.; Fish, Alexander; den Blaauwen, Tanneke; Heck, Albert J. R.; de Jong, Luitzen; Bitter, Wilbert; de Esch, Iwan J. P.; Luirink, Joen

    2015-01-01

    Cell division in Escherichia coli involves a set of essential proteins that assembles at midcell to form the so-called divisome. The divisome regulates the invagination of the inner membrane, cell wall synthesis, and inward growth of the outer membrane. One of the divisome proteins, FtsQ, plays a central but enigmatic role in cell division. This protein associates with FtsB and FtsL, which, like FtsQ, are bitopic inner membrane proteins with a large periplasmic domain (denoted FtsQp, FtsBp, and FtsLp) that is indispensable for the function of each protein. Considering the vital nature and accessible location of the FtsQBL complex, it is an attractive target for protein-protein interaction inhibitors intended to block bacterial cell division. In this study, we expressed FtsQp, FtsBp, and FtsLp individually and in combination. Upon co-expression, FtsQp was co-purified with FtsBp and FtsLp from E. coli extracts as a stable trimeric complex. FtsBp was also shown to interact with FtsQp in the absence of FtsLp albeit with lower affinity. Interactions were mapped at the C terminus of the respective domains by site-specific cross-linking. The binding affinity and 1:1:1 stoichiometry of the FtsQpBpLp complex and the FtsQpBp subcomplex were determined in complementary surface plasmon resonance, analytical ultracentrifugation, and native mass spectrometry experiments. PMID:26160297

  13. A rapid and sensitive GC-MS/MS method to measure deuterium labeled deoxyadenosine in DNA from limited mouse cell populations

    Science.gov (United States)

    Farthing, Don E.; Buxbaum, Nataliya P.; Bare, Catherine V.; Treadwell, Shirin M.; Kapoor, Veena; Williams, Kirsten M.; Gress, Ronald E.

    2013-01-01

    A rapid and sensitive GC-MS/MS method was developed to quantitatively measure low levels of DNA base deoxyadenosine (dA) and its isotopologues (e.g. dA M+1) from limited mouse cell populations. Mice undergoing allogeneic hematopoietic transplantation (AHSCT) received deuterated water at biologically relevant time intervals post AHSCT, allowing labeling of DNA upon cell division, which was detected as the dA M+1 isotopologue. Targeted mouse cell populations were isolated from lymphoid organs and purified by multi-parameter fluorescence activated cell sorting. Cell lysis, DNA extraction and hydrolysis were accomplished using available commercial procedures. The novel analytical method utilized a hydrophilic-lipophilic balanced sample preparation, rapid on-line hot GC inlet gas phase sample derivatization, fast GC low thermal mass technology, and a recently marketed GC-MS/MS system. Calibration standards containing dA and fortified with relevant levels of dA M+1 (0.25–20%) and dA M+5 (internal standard) were used for sample quantitation. The method employed a quadratic fit for calibration of dA M+1 (0.25–20%) and dA, demonstrated excellent accuracy and precision, and had limits of detection of 100 fg on-column for the dA isotopologues. The method was validated and required only 20,000 cells to characterize population dynamics of cells involved in the biology of chronic graft-versus-host disease, the main cause of late morbidity and non-relapse-mortality following AHSCT. The high sensitivity and specificity of the method makes it useful for investigating in vivo kinetics on limited and important cell populations (e.g. T regulatory cells) from disease conditions or in disease models that are immune-mediated, such as diabetes, HIV/AIDS, arthritis, inflammatory bowel disease, and multiple sclerosis. PMID:23541182

  14. Rapid Column-Free Enrichment of Mononuclear Cells from Solid Tissues

    Science.gov (United States)

    Scoville, Steven D.; Keller, Karen A.; Cheng, Stephanie; Zhang, Michael; Zhang, Xiaoli; Caligiuri, Michael A.; Freud, Aharon G.

    2015-01-01

    We have developed a rapid negative selection method to enrich rare mononuclear cells from human tissues. Unwanted and antibody-tethered cells are selectively depleted during a Ficoll separation step, and there is no need for magnetic-based reagents and equipment. The new method is fast, customizable, inexpensive, remarkably efficient, and easy to perform, and per sample the overall cost is less than one-tenth the cost associated with a magnetic column-based method. PMID:26223896

  15. Rapid Evaluation of Power Degradation in Series Connection of Single Feeding Microsized Microbial Fuel Cells

    KAUST Repository

    Rojas, Jhonathan Prieto

    2014-07-08

    We have developed a sustainable, single feeding, microsized, air-cathode and membrane-free microbial fuel cells with a volume of 40 mu L each, which we have used for rapid evaluation of power generation and viability of a series array of three cells seeking higher voltage levels. Contrary to expectations, the achieved power density was modest (45 mWm(-3)), limited due to non-uniformities in assembly and the single-channel feeding system.

  16. Rapid and label-free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics.

    Directory of Open Access Journals (Sweden)

    Wenfeng Liang

    Full Text Available Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell sample from red blood cells (RBCs with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for

  17. Rapid and label-free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics.

    Science.gov (United States)

    Liang, Wenfeng; Zhao, Yuliang; Liu, Lianqing; Wang, Yuechao; Dong, Zaili; Li, Wen Jung; Lee, Gwo-Bin; Xiao, Xiubin; Zhang, Weijing

    2014-01-01

    Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP) force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell) sample from red blood cells (RBCs) with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK) chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for efficient and

  18. Kinematic Analysis of Cell Division and Expansion: Quantifying the Cellular Basis of Growth and Sampling Developmental Zones in Zea mays Leaves.

    Science.gov (United States)

    Sprangers, Katrien; Avramova, Viktoriya; Beemster, Gerrit T S

    2016-12-02

    Growth analyses are often used in plant science to investigate contrasting genotypes and the effect of environmental conditions. The cellular aspect of these analyses is of crucial importance, because growth is driven by cell division and cell elongation. Kinematic analysis represents a methodology to quantify these two processes. Moreover, this technique is easy to use in non-specialized laboratories. Here, we present a protocol for performing a kinematic analysis in monocotyledonous maize (Zea mays) leaves. Two aspects are presented: (1) the quantification of cell division and expansion parameters, and (2) the determination of the location of the developmental zones. This could serve as a basis for sampling design and/or could be useful for data interpretation of biochemical and molecular measurements with high spatial resolution in the leaf growth zone. The growth zone of maize leaves is harvested during steady-state growth. Individual leaves are used for meristem length determination using a DAPI stain and cell-length profiles using DIC microscopy. The protocol is suited for emerged monocotyledonous leaves harvested during steady-state growth, with growth zones spanning at least several centimeters. To improve the understanding of plant growth regulation, data on growth and molecular studies must be combined. Therefore, an important advantage of kinematic analysis is the possibility to correlate changes at the molecular level to well-defined stages of cellular development. Furthermore, it allows for a more focused sampling of specified developmental stages, which is useful in case of limited budget or time.

  19. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Medley

    2017-01-01

    Full Text Available Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2 in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner.

  20. Rapid reactivation of extralymphoid CD4 T cells during secondary infection.

    Directory of Open Access Journals (Sweden)

    Timothy J Chapman

    Full Text Available After infection, extralymphoid tissues are enriched with effector and memory T cells of a highly activated phenotype. The capacity for rapid effector cytokine response from extralymphoid tissue-memory T cells suggests these cells may perform a 'sentinel' function in the tissue. While it has been demonstrated that extralymphoid CD4+ T cells can directly respond to secondary infection, little is known about how rapidly this response is initiated, and how early activation of T cells in the tissue may affect the innate response to infection. Here we use a mouse model of secondary heterosubtypic influenza infection to show that CD4(+ T cells in the lung airways are reactivated within 24 hours of secondary challenge. Airway CD4(+ T cells initiate an inflammatory cytokine and chemokine program that both alters the composition of the early innate response and contributes to the reduction of viral titers in the lung. These results show that, unlike a primary infection, extralymphoid tissue-memory CD4(+ T cells respond alongside the innate response during secondary infection, thereby shaping the overall immune profile in the airways. These data provide new insights into the role of extralymphoid CD4(+ T cells during secondary immune responses.

  1. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Science.gov (United States)

    Takahashi, Tadanobu; Agarikuchi, Takashi; Kurebayashi, Yuuki; Shibahara, Nona; Suzuki, Chihiro; Kishikawa, Akiko; Fukushima, Keijo; Takano, Maiko; Suzuki, Fumie; Wada, Hirohisa; Otsubo, Tadamune; Ikeda, Kiyoshi; Minami, Akira; Suzuki, Takashi

    2015-01-01

    Mumps viruses show diverse cytopathic effects (CPEs) of infected cells and viral plaque formation (no CPE or no plaque formation in some cases) depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl)-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac), was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study), even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  2. Easy and Rapid Detection of Mumps Virus by Live Fluorescent Visualization of Virus-Infected Cells.

    Directory of Open Access Journals (Sweden)

    Tadanobu Takahashi

    Full Text Available Mumps viruses show diverse cytopathic effects (CPEs of infected cells and viral plaque formation (no CPE or no plaque formation in some cases depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac, was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation. In the present study, the potential utility of BTP3-Neu5Ac for rapid detection of mumps virus was demonstrated. BTP3-Neu5Ac could visualize dot-blotted mumps virus, virus-infected cells, and plaques (plaques should be called focuses due to staining of infected cells in this study, even if a CPE was not observed. Furthermore, virus cultivation was possible by direct pick-up from a fluorescent focus. In conventional methods, visible appearance of the CPE and focuses often requires more than 6 days after infection, but the new method with BTP3-Neu5Ac clearly visualized infected cells after 2 days and focuses after 4 days. The BTP3-Neu5Ac assay is a precise, easy, and rapid assay for confirmation and titration of mumps virus.

  3. Low concentrations of caffeine induce asymmetric cell division as observed in vitro by means of the CBMN-assay and iFISH.

    Science.gov (United States)

    Hatzi, Vasiliki I; Karakosta, Maria; Barszczewska, Katarzyna; Karachristou, Ioanna; Pantelias, Gabriel; Terzoudi, Georgia I

    2015-11-01

    The dual role of caffeine as a chromosomal damage inducer and G2/M-checkpoint abrogator is well known but it is observed mainly at relatively high concentrations. At low concentrations, caffeine enhances the cytogenetic effects of several carcinogens and its intake during pregnancy has been recently reported to cause adverse birth outcomes. Interestingly, a threshold below which this association is not apparent was not identified. Since chromosomal abnormalities and aneuploidy are the major genetic etiologies of spontaneous abortions and adverse birth outcomes, we re-evaluate here the effects of caffeine at the cytogenetic level and propose a model for the mechanisms involved. Our hypothesis is that low caffeine concentrations affect DNA replication and cause chromosomal aberrations and asymmetric cell divisions not easily detected at metaphase since damaged cells are delayed during their G2/M-phase transition and the low caffeine concentrations cannot abrogate the G2-checkpoint. To test this hypothesis, caffeine-induced chromatid breaks and micronuclei in peripheral blood lymphocytes (PBLs) were evaluated in vitro after low caffeine concentration exposures, followed by a short treatment with 4mM of caffeine to abrogate the G2-checkpoint. The results show a statistically significant increase in chromatid breaks at caffeine concentrations ≥1mM. When caffeine was applied for G2/M-checkpoint abrogation, a statistically significant increase in chromatid breaks, compared to an active checkpoint, was only observed at 4mM of caffeine. The potential of low concentrations to induce asymmetric cell divisions was tested by applying a methodology combining the cytochalasin-B mediated cytokinesis-block micronucleus assay (CBMN) with interphase FISH (iFISH), using selected centromeric probes. Interestingly, low caffeine concentrations induce a dose dependent aneuploidy through asymmetric cell divisions, which are caused by misalignment of chromosomes through a mechanism

  4. Computational modelling of epidermal stratification highlights the importance of asymmetric cell division for predictable and robust layer formation

    National Research Council Canada - National Science Library

    Gord, Alexander; Holmes, William R; Dai, Xing; Nie, Qing

    2014-01-01

    .... Using a new stochastic, multi-scale computational modelling framework, the anisotropic subcellular element method, we investigate the role of cell morphology and biophysical cell-cell interactions...

  5. Cell division and endoreduplication play important roles in stem swelling of tuber mustard (Brassica juncea Coss. var. tumida Tsen et Lee).

    Science.gov (United States)

    Shi, H; Wang, L L; Sun, L T; Dong, L L; Liu, B; Chen, L P

    2012-11-01

    We investigated spatio-temporal variations in cell division and the occurrence of endoreduplication in cells of tuber mustard stems during development. Cells in the stem had 8C nuclei (C represents DNA content of a two haploid genome), since it is an allotetraploid species derived from diploid Brassica rapa (AA) and B. nigra (BB), thus indicating the occurrence of endoreduplication. Additionally, we observed a dynamic change of cell ploidy in different regions of the swollen stems, with a decrease in 4C proportion in P4-1 and a sharp increase in 8C cells that became the dominant cell type (86.33% at most) in the inner pith cells. Furthermore, cDNAs of 14 cell cycle genes and four cell expansion genes were cloned and their spatial transcripts analysed in order to understand their roles in stem development. The expression of most cell cycle genes peaked in regions of the outer pith (P2 or P3), some genes regulating S/G2 and G2/M (BjCDKB1;2, BjCYCB1;1 and BjCYCB1;2) significantly decrease in P5 and P6, while G1/S regulators (BjE2Fa, BjE2Fb and BjE2Fc) showed a relative high expression level in the inner pith (P5) where cells were undergoing endoreduplication. Coincidentally, BjXTH1and BjXTH2 were exclusively expressed in the endoreduplicated cells. Our results suggest that cells of outer pith regions (P2 and P3) mainly divide for cell proliferation, while cells of the inner pith expand through endoreduplication. Endoreduplication could trigger expression of BjXTH1 and BjXTH2 and thus function in cell expansion of the pith tissue. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Modulation of single-cell IgG secretion frequency and rates in human memory B cells by CpG DNA, CD40L, IL-21, and cell division.

    Science.gov (United States)

    Henn, Alicia D; Rebhahn, Jonathan; Brown, Miguel A; Murphy, Alison J; Coca, Mircea N; Hyrien, Ollivier; Pellegrin, Tina; Mosmann, Tim; Zand, Martin S

    2009-09-01

    During the recall response by CD27(+) IgG class-switched human memory B cells, total IgG secreted is a function of the following: 1) the number of IgG-secreting cells (IgG-SC), and 2) the secretion rate of each cell. In this study, we report the quantitative ELISPOT method for simultaneous estimation of single-cell IgG secretion rates and secreting cell frequencies in human B cell populations. We found that CD27(+) IgM(-) memory B cells activated with CpG and cytokines had considerable heterogeneity in the IgG secretion rates, with two major secretion rate subpopulations. BCR cross-linking reduced the frequency of cells with high per-cell IgG secretion rates, with a parallel decrease in CD27(high) B cell blasts. Increased cell death may account for the BCR-stimulated reduction in high-rate IgG-SC CD27(high) B cell blasts. In contrast, the addition of IL-21 to CD40L plus IL-4-activated human memory B cells induced a high-rate IgG-SC population in B cells with otherwise low per-cell IgG secretion rates. The profiles of human B cell IgG secretion rates followed the same biphasic distribution and range irrespective of division class. This, along with the presence of non-IgG-producing, dividing B cells in CpG plus cytokine-activated B memory B cell populations, is suggestive of an on/off switch regulating IgG secretion. Finally, these data support a mixture model of IgG secretion in which IgG secreted over time is modulated by the frequency of IgG-SC and the distribution of their IgG secretion rates.

  7. Cost-effective and rapid blood analysis on a cell-phone.

    Science.gov (United States)

    Zhu, Hongying; Sencan, Ikbal; Wong, Justin; Dimitrov, Stoyan; Tseng, Derek; Nagashima, Keita; Ozcan, Aydogan

    2013-04-07

    We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings.

  8. STUDIES ON THE MATURATION OF MYELOBLASTS INTO MYELOCYTES AND ON AMITOTIC CELL DIVISION IN THE PERIPHERAL BLOOD IN SUBACUTE MYELOBLASTIC LEUCEMIA.

    Science.gov (United States)

    Sabin, F R; Austrian, C R; Cunningham, R S; Doan, C A

    1924-11-30

    1. Myeloblasts can be discriminated in the supravital technique by the great numbers of tiny mitochondria in the cytoplasm and the absence of any other vitally stainable substance. 2. There are three stages in the maturation of myelocytes. 3. These three phases can be correlated with three types of the oxidase reaction. 4. One case of myeloblastic leucemia showed such an amount of an abnormal type of amitosis as to suggest the disordered cell division of neoplasms. 5. In this case transfusions were correlated with a maturation of myeloblasts into myelocytes, with an increase of the oxidase reaction, and with an increase in amitosis.

  9. Molecular evolution in bacteria: cell division Evolução molecular em bactérias: divisão celular

    OpenAIRE

    J.T. Trevors

    1998-01-01

    Molecular evolution in bacteria is examined with an emphasis on the self-assembly of cells capable of primitive division and growth during early molecular evolution. Also, the possibility that some type of encapsulation structure preceeded biochemical pathways and the assembly of genetic material is examined. These aspects will be considered from an evolutionary perspective.A evolução molecular em bactérias é examinada com ênfase na auto-organização de uma célula capaz de divisão primitiva e ...

  10. The acoustic sensor for rapid analysis of bacterial cells in the conductive suspensions.

    Science.gov (United States)

    Borodina, I A; Zaitsev, B D; Guliy, O; Teplykh, A A; Shikhabudinov, A M

    2017-11-01

    The possibility of using the acoustic sensor on the basis of a two-channel delay line for rapid analysis of bacterial cells in the conductive suspensions was investigated. The dependencies of change in phase and insertion loss of output signal of the sensor on conductivity of buffer solution with various concentrations of cells due to a specific interaction "bacterial cells - mini-antibodies" for electrically open and electrically shorted channels of delay line were measured. It has been found that these changes have the most values for the electrically open channel. It has been also shown that the sensor rapidly responds to the specific interaction and the time stabilization of the phase and insertion loss of output signal is less than 10min. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Induction of centrosome injury, multipolar spindles and multipolar division in cultured V79 cells exposed to dimethylarsinic acid: role for microtubules in centrosome dynamics.

    Science.gov (United States)

    Ochi, T

    2000-11-06

    Role for microtubules in the induction of multiple microtubule organizing centers (MTOCs) and multipolar spindles by dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, was investigated with respect to the effects of microtubule disruption and reorganization. DMAA induced multiple signals of gamma-tubulin, a well-characterized component of MTOCs in the centrosome, in a manner specific to mitotic cells. The multiple signals of gamma-tubulin were co-localized with multipolar spindles caused by DMAA. Disruption of microtubules by nocodazole (NOZ) suppressed the appearance of centrosome injury caused by DMAA while disorganization of actin microfilaments by cytochalasin D did not. Post-treatment incubation of cells in which multiple signals of gamma-tubulin caused by DMAA had been coalesced to one or two dots by NOZ caused the reappearance of mitotic cells with multiple signals of gamma-tubulin, in conjunction with reorganization of the microtubules. These results suggest a role for microtubules in the dynamic behavior of the mitotic centrosome. DMAA induced aberrant cytokinesis, such as tripolar and quadripolar division, in a concentration-dependent manner. These results, together with the findings of earlier studies, suggest that the centrosome is the primary target for the induction of multipolar spindles by DMAA and the resultant induction of multinucleation and multipolar division.

  12. Study on the section-division of superconducting proton linac

    CERN Document Server

    Ouyang Hua Fu

    2002-01-01

    Study on the section-division of superconducting proton linac is carried out in detail, which includes the discussion on the principles of the division, the discussion on the symmetric division and non-symmetric division, the determination of the cell number of the superconducting cavity and the value of the geometric beta sub G

  13. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  14. B-Cell Depletion Salvage Therapy in Rapidly Progressive Dermatomyositis Related Interstitial Lung Disease.

    Science.gov (United States)

    Eissa, Khaled; Palomino, Jaime

    2016-01-01

    Interstitial lung disease (ILD) is a major cause of morbidity and mortality in patients with idiopathic inflammatory myopathies (IIM). Glucocorticoids are the initial standard treatment. However, many patients fail to respond and continue to progress despite treatment with high dose glucocorticoids. The efficacy of rituximab has been suggested in case reports and case series of refractory antisynthetase (AS) syndrome, but data on patients without auto-antibodies or with rapidly progressive ILD are scarce. We report a case of rapidly progressive dermatomyositis (DM) associated ILD treated successfully with B-cell depletion therapy.

  15. Cell-scale dynamic recycling and cortical flow of the actin–myosin cytoskeleton for rapid cell migration

    Directory of Open Access Journals (Sweden)

    Shigehiko Yumura

    2012-11-01

    Actin and myosin II play major roles in cell migration. Whereas pseudopod extension by actin polymerization has been intensively researched, less attention has been paid to how the rest of the actin cytoskeleton such as the actin cortex contributes to cell migration. In this study, cortical actin and myosin II filaments were simultaneously observed in migrating Dictyostelium cells under total internal reflection fluorescence microscopy. The cortical actin and myosin II filaments remained stationary with respect to the substratum as the cells advanced. However, fluorescence recovery after photobleaching experiments and direct observation of filaments showed that they rapidly turned over. When the cells were detached from the substratum, the actin and myosin filaments displayed a vigorous retrograde flow. Thus, when the cells migrate on the substratum, the cortical cytoskeleton firmly holds the substratum to generate the motive force instead. The present studies also demonstrate how myosin II localizes to the rear region of the migrating cells. The observed dynamic turnover of actin and myosin II filaments contributes to the recycling of their subunits across the whole cell and enables rapid reorganization of the cytoskeleton.

  16. Rapid Elimination of the Persistent Synergid through a Cell Fusion Mechanism

    KAUST Repository

    Maruyama, Daisuke

    2015-05-01

    In flowering plants, fertilization-dependent degeneration of the persistent synergid cell ensures one-on-one pairings of male and female gametes. Here, we report that the fusion of the persistent synergid cell and the endosperm selectively inactivates the persistent synergid cell in Arabidopsis thaliana. The synergid-endosperm fusion causes rapid dilution of pre-secreted pollen tube attractant in the persistent synergid cell and selective disorganization of the synergid nucleus during the endosperm proliferation, preventing attractions of excess number of pollen tubes (polytubey). The synergid-endosperm fusion is induced by fertilization of the central cell, while the egg cell fertilization predominantly activates ethylene signaling, an inducer of the synergid nuclear disorganization. Therefore, two female gametes (the egg and the central cell) control independent pathways yet coordinately accomplish the elimination of the persistent synergid cell by double fertilization. Two female gametes (the egg cell and the central cell) in flowering plants coordinately prevent attractions of excess number of pollen tubes via two mechanisms to inactivate persistent synergid cell. © 2015 Elsevier Inc.

  17. Rapid morphological oscillation of mitochondrion-rich cell in estuarine mudskipper following salinity changes.

    Science.gov (United States)

    Sakamoto, T; Yokota, S; Ando, M

    2000-05-01

    Morphological changes in the chloride cells or mitochondrion-rich (MR) cells in the skin under the pectoral fin of the estuarine mudskipper (Periophthalmus modestus) were examined in relation to intertidal salinity oscillation in river mouth. MR cells were distinguished between those in contact with the water (cells labeled with both mitochondrial probe DASPEI and Concanavalin-A, an apical surface marker of MR cells) and those that are not (DASPEI-positive only). After transfer of the fish from seawater to freshwater, no difference in the total MR cell density was observed, but the subpopulation of MR cells that are Concanavalin-A-positive decreased dramatically within 30 min. After 6 hr in freshwater, the fish were returned to seawater; the number of Con-A-positive MR cells increased to the initial levels rapidly. Thus, in seawater, mudskippers seem to open the apical crypts of the MR cells to secrete salt; in freshwater, they close the crypt of the MR cells tentatively, and tolerate hypotonicity until the rising tide. This unique response of chloride cells may also be seen in gills of other estuarine species.

  18. Hyaluronic Acid-Serum Hydrogels Rapidly Restore Metabolism of Encapsulated Stem Cells and Promote Engraftment

    Science.gov (United States)

    Chan, Angel T.; Karakas, Mehmet F.; Vakrou, Styliani; Afzal, Junaid; Rittenbach, Andrew; Lin, Xiaoping; Wahl, Richard L.; Pomper, Martin G.; Steenbergen, Charles J.; Tsui, Benjamin M.W.; Elisseeff, Jennifer H.; Abraham, M. Roselle

    2015-01-01

    Background Cell death due to anoikis, necrosis and cell egress from transplantation sites limits functional benefits of cellular cardiomyoplasty. Cell dissociation and suspension, which are a pre-requisite for most cell transplantation studies, lead to depression of cellular metabolism and anoikis, which contribute to low engraftment. Objective We tissue engineered scaffolds with the goal of rapidly restoring metabolism, promoting viability, proliferation and engraftment of encapsulated stem cells. Methods The carboxyl groups of HA were functionalized with N-hydroxysuccinimide (NHS) to yield HA succinimidyl succinate (HA-NHS) groups that react with free amine groups to form amide bonds. HA-NHS was cross-linked by serum to generate HA:Serum (HA:Ser) hydrogels. Physical properties of HA:Ser hydrogels were measured. Effect of encapsulating cardiosphere-derived cells (CDCs) in HA:Ser hydrogels on viability, proliferation, glucose uptake and metabolism was assessed in vitro. In vivo acute intra-myocardial cell retention of 18FDG-labeled CDCs encapsulated in HA:Ser hydrogels was quantified. Effect of CDC encapsulation in HA:Ser hydrogels on in vivo metabolism and engraftment at 7 days was assessed by serial, dual isotope SPECT-CT and bioluminescence imaging of CDCs expressing the Na-iodide symporter and firefly luciferase genes respectively. Effect of HA:Ser hydrogels +/− CDCs on cardiac function was assessed at 7 days & 28 days post-infarct. Results HA:Ser hydrogels are highly bio-adhesive, biodegradable, promote rapid cell adhesion, glucose uptake and restore bioenergetics of encapsulated cells within 1 h of encapsulation, both in vitro and in vivo. These metabolic scaffolds can be applied epicardially as a patch to beating hearts or injected intramyocardially. HA:Ser hydrogels markedly increase acute intramyocardial retention (~6 fold), promote in vivo viability, proliferation, engraftment of encapsulated stem cells and angiogenesis. Conclusion HA:Ser hydrogels

  19. Rapid recognition and functional analysis of membrane proteins on human cancer cells using atomic force microscopy.

    Science.gov (United States)

    Li, Mi; Xiao, Xiubin; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2016-09-01

    Understanding the physicochemical properties of cell surface signalling molecules is important for us to uncover the underlying mechanisms that guide the cellular behaviors. Atomic force microscopy (AFM) has become a powerful tool for detecting the molecular interactions on individual cells with nanometer resolution. In this paper, AFM peak force tapping (PFT) imaging mode was applied to rapidly locate and visually map the CD20 molecules on human lymphoma cells using biochemically sensitive tips. First, avidin-biotin system was used to test the effectiveness of using PFT imaging mode to probe the specific molecular interactions. The adhesion images obtained on avidin-coated mica using biotin-tethered tips obviously showed the recognition spots which corresponded to the avidins in the simultaneously obtained topography images. The experiments confirmed the specificity and reproducibility of the recognition results. Then, the established procedure was applied to visualize the nanoscale organization of CD20s on the surface of human lymphoma Raji cells using rituximab (a monoclonal anti-CD20 antibody)-tethered tips. The experiments showed that the recognition spots in the adhesion images corresponded to the specific CD20-rituximab interactions. The cluster sizes of CD20s on lymphoma Raji cells were quantitatively analyzed from the recognition images. Finally, under the guidance of fluorescence recognition, the established procedure was applied to cancer cells from a clinical lymphoma patient. The results showed that there were significant differences between the adhesion images obtained on cancer cells and on normal cells (red blood cell). The CD20 distributions on ten cancer cells from the patient were quantified according to the adhesion images. The experimental results demonstrate the capability of applying PFT imaging to rapidly investigate the nanoscale biophysical properties of native membrane proteins on the cell surface, which is of potential significance in

  20. Rapid, efficient charging of lead-acid and nickel-zinc traction cells. [for electric vehicles

    Science.gov (United States)

    Smithrick, J. J.

    1978-01-01

    Lead-acid and nickel-zinc traction cells were rapidly and efficiently charged using a high rate taped dc charge (HRTDC) method which could possibly be used for on-the-road service recharge of electric vehicles. The HRTDC method takes advantage of initial high cell charge acceptance and uses cell gassing rate and temperature as an indicator of charging efficiency. On the average, 300 amp-hour nickel-zinc traction cells were given a HRTDC to 78% of rated amp-hour capacity within 53 minutes at an amp-hour efficiency of 92% and an energy efficiency of 52%. Three-hundred amp-hour lead-acid traction cells were charged to 69% of rated amp-hour capacity within 46 minutes at an amp-hour efficiency of 91% with an energy efficiency of 64%.

  1. Optical scatter imaging: a microscopic modality for the rapid morphological assay of living cells

    Science.gov (United States)

    Boustany, Nada N.

    2007-02-01

    Tumors derived from epithelial cells comprise the majority of human tumors and their growth results from the accumulation of multiple mutations affecting cellular processes critical for tissue homeostasis, including cell proliferation and cell death. To understand these processes and address the complexity of cancer cell function, multiple cellular responses to different experimental conditions and specific genetic mutations must be analyzed. Fundamental to this endeavor is the development of rapid cellular assays in genetically defined cells, and in particular, the development of optical imaging methods that allow dynamic observation and real-time monitoring of cellular processes. In this context, we are developing an optical scatter imaging technology that is intended to bridge the gap between light and electron microscopy by rapidly providing morphometric information about the relative size and shape of non-spherical organelles, with sub-wavelength resolution. Our goal is to complement current microscopy techniques used to study cells in-vitro, especially in long-term time-lapse studies of living cells, where exogenous labels can be toxic, and electron microscopy will destroy the sample. The optical measurements are based on Fourier spatial filtering in a standard microscope, and could ultimately be incorporated into existing high-throughput diagnostic platforms for cancer cell research and histopathology of neoplastic tissue arrays. Using an engineered epithelial cell model of tumor formation, we are currently studying how organelle structure and function are altered by defined genetic mutations affecting the propensity for cell death and oncogenic potential, and by environmental conditions promoting tumor growth. This talk will describe our optical scatter imaging technology and present results from our studies on apoptosis, and the function of BCL-2 family proteins.

  2. Rapid and serial quantification of adhesion forces of yeast and Mammalian cells.

    Directory of Open Access Journals (Sweden)

    Eva Potthoff

    Full Text Available Cell adhesion to surfaces represents the basis for niche colonization and survival. Here we establish serial quantification of adhesion forces of different cell types using a single probe. The pace of single-cell force-spectroscopy was accelerated to up to 200 yeast and 20 mammalian cells per probe when replacing the conventional cell trapping cantilever chemistry of atomic force microscopy by underpressure immobilization with fluidic force microscopy (FluidFM. In consequence, statistically relevant data could be recorded in a rapid manner, the spectrum of examinable cells was enlarged, and the cell physiology preserved until approached for force spectroscopy. Adhesion forces of Candida albicans increased from below 4 up to 16 nN at 37°C on hydrophobic surfaces, whereas a Δhgc1-mutant showed forces consistently below 4 nN. Monitoring adhesion of mammalian cells revealed mean adhesion forces of 600 nN of HeLa cells on fibronectin and were one order of magnitude higher than those observed for HEK cells.

  3. The progression of the intra-erythrocytic cell cycle of Plasmodium falciparum and the role of the centriolar plaques in asynchronous mitotic division during schizogony

    DEFF Research Database (Denmark)

    Arnot, David E; Ronander, Elena; Bengtsson, Dominique C

    2011-01-01

    The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases of paras......The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases...... of parasite mitosis are not well defined, nor whether genome divisions are immediately followed by cleavage of the nuclear envelope. Curiously, daughter merozoite numbers do not follow the geometric expansion expected from equal numbers of binary divisions, an outcome difficult to explain using the standard...

  4. A comparative proteomic analysis reveals a new bi-lobe protein required for bi-lobe duplication and cell division in Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Qing Zhou

    Full Text Available A Golgi-associated bi-lobed structure was previously found to be important for Golgi duplication and cell division in Trypanosoma brucei. To further understand its functions, comparative proteomics was performed on extracted flagellar complexes (including the flagellum and flagellum-associated structures such as the basal bodies and the bi-lobe and purified flagella to identify new bi-lobe proteins. A leucine-rich repeats containing protein, TbLRRP1, was characterized as a new bi-lobe component. The anterior part of the TbLRRP1-labeled bi-lobe is adjacent to the single Golgi apparatus, and the posterior side is tightly associated with the flagellar pocket collar marked by TbBILBO1. Inducible depletion of TbLRRP1 by RNA interference inhibited duplication of the bi-lobe as well as the adjacent Golgi apparatus and flagellar pocket collar. Formation of a new flagellum attachment zone and subsequent cell division were also inhibited, suggesting a central role of bi-lobe in Golgi, flagellar pocket collar and flagellum attachment zone biogenesis.

  5. Rapid metabolism of exogenous angiotensin II by catecholaminergic neuronal cells in culture media.

    Science.gov (United States)

    Basu, Urmi; Seravalli, Javier; Madayiputhiya, Nandakumar; Adamec, Jiri; Case, Adam J; Zimmerman, Matthew C

    2015-02-01

    Angiotensin II (AngII) acts on central neurons to increase neuronal firing and induce sympathoexcitation, which contribute to the pathogenesis of cardiovascular diseases including hypertension and heart failure. Numerous studies have examined the precise AngII-induced intraneuronal signaling mechanism in an attempt to identify new therapeutic targets for these diseases. Considering the technical challenges in studying specific intraneuronal signaling pathways in vivo, especially in the cardiovascular control brain regions, most studies have relied on neuronal cell culture models. However, there are numerous limitations in using cell culture models to study AngII intraneuronal signaling, including the lack of evidence indicating the stability of AngII in culture media. Herein, we tested the hypothesis that exogenous AngII is rapidly metabolized in neuronal cell culture media. Using liquid chromatography-tandem mass spectrometry, we measured levels of AngII and its metabolites, Ang III, Ang IV, and Ang-1-7, in neuronal cell culture media after administration of exogenous AngII (100 nmol/L) to a neuronal cell culture model (CATH.a neurons). AngII levels rapidly declined in the media, returning to near baseline levels within 3 h of administration. Additionally, levels of Ang III and Ang-1-7 acutely increased, while levels of Ang IV remained unchanged. Replenishing the media with exogenous AngII every 3 h for 24 h resulted in a consistent and significant increase in AngII levels for the duration of the treatment period. These data indicate that AngII is rapidly metabolized in neuronal cell culture media, and replenishing the media at least every 3 h is needed to sustain chronically elevated levels. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  6. Dexamethasone rapidly suppresses IL-33-stimulated mast cell function by blocking transcription factor activity.

    Science.gov (United States)

    Paranjape, Anuya; Chernushevich, Oksana; Qayum, Amina Abdul; Spence, Andrew J; Taruselli, Marcela T; Abebayehu, Daniel; Barnstein, Brian O; McLeod, Jamie Josephine Avila; Baker, Bianca; Bajaj, Gurjas S; Chumanevich, Alena P; Oskeritzian, Carole A; Ryan, John J

    2016-12-01

    Mast cells are critical effectors of allergic disease and can be activated by IL-33, a proinflammatory member of the IL-1 cytokine family. IL-33 worsens the pathology of mast cell-mediated diseases, but therapies to antagonize IL-33 are still forthcoming. Because steroids are the mainstay of allergic disease treatment and are well known to suppress mast cell activation by other stimuli, we examined the effects of the steroid dexamethasone on IL-33-mediated mast cell function. We found that dexamethasone potently and rapidly suppressed cytokine production elicited by IL-33 from murine bone marrow-derived and peritoneal mast cells. IL-33 enhances IgE-mediated mast cell cytokine production, an activity that was also antagonized by dexamethasone. These effects were consistent in human mast cells. We additionally observed that IL-33 augmented migration of IgE-sensitized mast cells toward antigen. This enhancing effect was similarly reversed by dexamethasone. Simultaneous addition of dexamethasone with IL-33 had no effect on the phosphorylation of MAP kinases or NFκB p65 subunit; however, dexamethasone antagonized AP-1- and NFκB-mediated transcriptional activity. Intraperitoneal administration of dexamethasone completely abrogated IL-33-mediated peritoneal neutrophil recruitment and prevented plasma IL-6 elevation. These data demonstrate that steroid therapy may be an effective means of antagonizing the effects of IL-33 on mast cells in vitro and in vivo, acting partly by suppressing IL-33-induced NFκB and AP-1 activity. © Society for Leukocyte Biology.

  7. Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection.

    Directory of Open Access Journals (Sweden)

    William H Thiel

    Full Text Available The broad applicability of RNA aptamers as cell-specific delivery tools for therapeutic reagents depends on the ability to identify aptamer sequences that selectively access the cytoplasm of distinct cell types. Towards this end, we have developed a novel approach that combines a cell-based selection method (cell-internalization SELEX with high-throughput sequencing (HTS and bioinformatics analyses to rapidly identify cell-specific, internalization-competent RNA aptamers.We demonstrate the utility of this approach by enriching for RNA aptamers capable of selective internalization into vascular smooth muscle cells (VSMCs. Several rounds of positive (VSMCs and negative (endothelial cells; ECs selection were performed to enrich for aptamer sequences that preferentially internalize into VSMCs. To identify candidate RNA aptamer sequences, HTS data from each round of selection were analyzed using bioinformatics methods: (1 metrics of selection enrichment; and (2 pairwise comparisons of sequence and structural similarity, termed edit and tree distance, respectively. Correlation analyses of experimentally validated aptamers or rounds revealed that the best cell-specific, internalizing aptamers are enriched as a result of the negative selection step performed against ECs.We describe a novel approach that combines cell-internalization SELEX with HTS and bioinformatics analysis to identify cell-specific, cell-internalizing RNA aptamers. Our data highlight the importance of performing a pre-clear step against a non-target cell in order to select for cell-specific aptamers. We expect the extended use of this approach to enable the identification of aptamers to a multitude of different cell types, thereby facilitating the broad development of targeted cell therapies.

  8. Rapid identification of cell-specific, internalizing RNA aptamers with bioinformatics analyses of a cell-based aptamer selection.

    Science.gov (United States)

    Thiel, William H; Bair, Thomas; Peek, Andrew S; Liu, Xiuying; Dassie, Justin; Stockdale, Katie R; Behlke, Mark A; Miller, Francis J; Giangrande, Paloma H

    2012-01-01

    The broad applicability of RNA aptamers as cell-specific delivery tools for therapeutic reagents depends on the ability to identify aptamer sequences that selectively access the cytoplasm of distinct cell types. Towards this end, we have developed a novel approach that combines a cell-based selection method (cell-internalization SELEX) with high-throughput sequencing (HTS) and bioinformatics analyses to rapidly identify cell-specific, internalization-competent RNA aptamers. We demonstrate the utility of this approach by enriching for RNA aptamers capable of selective internalization into vascular smooth muscle cells (VSMCs). Several rounds of positive (VSMCs) and negative (endothelial cells; ECs) selection were performed to enrich for aptamer sequences that preferentially internalize into VSMCs. To identify candidate RNA aptamer sequences, HTS data from each round of selection were analyzed using bioinformatics methods: (1) metrics of selection enrichment; and (2) pairwise comparisons of sequence and structural similarity, termed edit and tree distance, respectively. Correlation analyses of experimentally validated aptamers or rounds revealed that the best cell-specific, internalizing aptamers are enriched as a result of the negative selection step performed against ECs. We describe a novel approach that combines cell-internalization SELEX with HTS and bioinformatics analysis to identify cell-specific, cell-internalizing RNA aptamers. Our data highlight the importance of performing a pre-clear step against a non-target cell in order to select for cell-specific aptamers. We expect the extended use of this approach to enable the identification of aptamers to a multitude of different cell types, thereby facilitating the broad development of targeted cell therapies.

  9. Rapid Fatal Outcome from Pulmonary Arteries Compression in Transitional Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ioannis A. Voutsadakis

    2009-01-01

    Full Text Available Transitional cell carcinoma of the urinary bladder is a malignancy that metastasizes frequently to lymph nodes including the mediastinal lymph nodes. This occurrence may produce symptoms due to compression of adjacent structures such as the superior vena cava syndrome or dysphagia from esophageal compression. We report the case of a 59-year-old man with metastatic transitional cell carcinoma for whom mediastinal lymphadenopathy led to pulmonary artery compression and a rapidly fatal outcome. This rare occurrence has to be distinguished from pulmonary embolism, a much more frequent event in cancer patients, in order that proper and prompt treatment be initiated.

  10. Rapid NK-cell activation in chicken after infection with infectious bronchitis virus M41.

    Science.gov (United States)

    Vervelde, L; Matthijs, M G R; van Haarlem, D A; de Wit, J J; Jansen, C A

    2013-02-15

    Natural killer (NK) cells are cytotoxic lymphocytes and play an important role in the early defence against viruses. In this study we focussed on NK cell and interferon (IFN) responses after infection with infectious bronchitis virus (IBV). Based on surface expression of CD107+, enhanced activation of lung NK cells was observed at 1 dpi, whereas in blood prolonged NK-cell activation was found. IFN-α and IFN-β mRNA and proteins were not rapidly induced whereas IFN-γ production in lung, measured by Elispot assay, increased over time at 2 and 4 dpi. In contrast, IFN-γ production in blood was highest at 1 dpi and decreased over time down to levels comparable to uninfected birds at 4 dpi. Collectively, infection with IBV-M41 resulted in activation of NK cells in the lung and blood and rapid production of IFN-γ and not IFN-α and IFN-β compared to uninfected birds. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Migratory dermal dendritic cells act as rapid sensors of protozoan parasites.

    Directory of Open Access Journals (Sweden)

    Lai Guan Ng

    2008-11-01

    Full Text Available Dendritic cells (DC, including those of the skin, act as sentinels for intruding microorganisms. In the epidermis, DC (termed Langerhans cells, LC are sessile and screen their microenvironment through occasional movements of their dendrites. The spatio-temporal orchestration of antigen encounter by dermal DC (DDC is not known. Since these cells are thought to be instrumental in the initiation of immune responses during infection, we investigated their behavior directly within their natural microenvironment using intravital two-photon microscopy. Surprisingly, we found that, under homeostatic conditions, DDC were highly motile, continuously crawling through the interstitial space in a Galpha(i protein-coupled receptor-dependent manner. However, within minutes after intradermal delivery of the protozoan parasite Leishmania major, DDC became immobile and incorporated multiple parasites into cytosolic vacuoles. Parasite uptake occurred through the extension of long, highly dynamic pseudopods capable of tracking and engulfing parasites. This was then followed by rapid dendrite retraction towards the cell body. DDC were proficient at discriminating between parasites and inert particles, and parasite uptake was independent of the presence of neutrophils. Together, our study has visualized the dynamics and microenvironmental context of parasite encounter by an innate immune cell subset during the initiation of the immune response. Our results uncover a unique migratory tissue surveillance program of DDC that ensures the rapid detection of pathogens.

  12. Rapid deterioration of preexisting renal insufficiency after autologous mesenchymal stem cell therapy

    Directory of Open Access Journals (Sweden)

    Jun-Seop Kim

    2017-06-01

    Full Text Available Administration of autologous mesenchymal stem cells (MSCs has been shown to improve renal function and histological findings in acute kidney injury (AKI models. However, its effects in chronic kidney disease (CKD are unclear, particularly in the clinical setting. Here, we report our experience with a CKD patient who was treated by intravenous infusion of autologous MSCs derived from adipose tissue in an unknown clinic outside of Korea. The renal function of the patient had been stable for several years before MSC administration. One week after the autologous MSC infusion, the preexisting renal insufficiency was rapidly aggravated without any other evidence of AKI. Hemodialysis was started 3 months after MSC administration. Renal biopsy findings at dialysis showed severe interstitial fibrosis and inflammatory cell infiltration, with a few cells expressing CD34 and CD117, 2 surface markers of stem cells. This case highlights the potential nephrotoxicity of autologous MSC therapy in CKD patients.

  13. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    2010-04-01

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  14. Geminin deploys multiple mechanisms to regulate Cdt1 before cell division thus ensuring the proper execution of DNA replication

    DEFF Research Database (Denmark)

    Ballabeni, Andrea; Zamponi, Raffaella; Moore, Jodene K

    2013-01-01

    the accumulation of Cdt1 in mitosis, because decreasing the Geminin levels prevents Cdt1 accumulation and impairs DNA replication. Geminin is known to inhibit Cdt1 function; its depletion during G2 leads to DNA rereplication and checkpoint activation. Here we show that, despite rapid Cdt1 protein turnover in G2...

  15. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.; Riley, Brian J.; Addleman, Raymond S.; Harrer, Bruce J.; Peterman, John W.

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited to provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.

  16. Rapid Turnover of Effector–Memory CD4+ T Cells in Healthy Humans

    Science.gov (United States)

    Macallan, Derek C.; Wallace, Diana; Zhang, Yan; de Lara, Catherine; Worth, Andrew T.; Ghattas, Hala; Griffin, George E.; Beverley, Peter C.L.; Tough, David F.

    2004-01-01

    Memory T cells can be divided into central–memory (TCM) and effector–memory (TEM) cells, which differ in their functional properties. Although both subpopulations can persist long term, it is not known whether they are maintained by similar mechanisms. We used in vivo labeling with deuterated glucose to measure the turnover of CD4+ T cells in healthy humans. The CD45R0+CCR7− TEM subpopulation was shown to have a rapid proliferation rate of 4.7% per day compared with 1.5% per day for CD45R0+CCR7+ TCM cells; these values are equivalent to average intermitotic (doubling) times of 15 and 48 d, respectively. In contrast, the CD45RA+CCR7+ naive CD4+ T cell population was found to be much longer lived, being labeled at a rate of only 0.2% per day (corresponding to an intermitotic time of approximately 1 yr). These data indicate that human CD4+ TEM cells constitute a short-lived cell population that requires continuous replenishment in vivo. PMID:15249595

  17. Rapid in vitro derivation of endothelium directly from human cancer cells.

    Directory of Open Access Journals (Sweden)

    Jennifer D Elster

    Full Text Available The development of an independent blood supply by a tumor is essential for maintaining growth beyond a certain limited size and for providing a portal for metastatic dissemination. Host-derived endothelial cells (ECs residing in and compromising the tumor vasculature originate via distinct processes known as sprouting angiogenesis and vasculogenesis. More recently ECs originating directly from the tumor cells themselves have been described although the basis for this phenomenon remains poorly understood. Here we describe in vitro conditions that allow lung and ovarian cancer cells to undergo a rapid and efficient transition into ECs that are indistinguishable from those obtained in vivo. A variety of methods were used to establish that the acquired phenotypes and behaviors of these tumor-derived ECs (TDECs closely resemble those of authentic ECs. Xenografts arising from co-inoculated in vitro-derived TDECs and tumor cells were also more highly vascularized than control tumors; moreover, their blood vessels were on average larger and frequently contained admixtures of host-derived ECs and TDECs derived from the initial inoculum. These results demonstrate that cancer cells can be manipulated under well-defined in vitro conditions to initiate a tumor cell-to-EC transition that is largely cell-autonomous, highly efficient and closely mimics the in vivo process. These studies provide a suitable means by which to identify and perhaps modify the earliest steps in TDEC generation.

  18. Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior.

    Science.gov (United States)

    Buch-Månson, Nina; Spangenberg, Arnaud; Gomez, Laura Piedad Chia; Malval, Jean-Pierre; Soppera, Olivier; Martinez, Karen L

    2017-08-23

    Mammalian cells have been widely shown to respond to nano- and microtopography that mimics the extracellular matrix. Synthetic nano- and micron-sized structures are therefore of great interest in the field of tissue engineering, where polymers are particularly attractive due to excellent biocompatibility and versatile fabrication methods. Ordered arrays of polymeric pillars provide a controlled topographical environment to study and manipulate cells, but processing methods are typically either optimized for the nano- or microscale. Here, we demonstrate polymeric nanopillar (NP) fabrication using 3D direct laser writing (3D DLW), which offers a rapid prototyping across both size regimes. The NPs are interfaced with NIH3T3 cells and the effect of tuning geometrical parameters of the NP array is investigated. Cells are found to adhere on a wide range of geometries, but the interface depends on NP density and length. The Cell Interface with Nanostructure Arrays (CINA) model is successfully extended to predict the type of interface formed on different NP geometries, which is found to correlate with the efficiency of cell alignment along the NPs. The combination of the CINA model with the highly versatile 3D DLW fabrication thus holds the promise of improved design of polymeric NP arrays for controlling cell growth.

  19. Overcoming challenges to initiating cell therapy clinical trials in rapidly developing countries: India as a model.

    Science.gov (United States)

    Viswanathan, Sowmya; Rao, Mahendra; Keating, Armand; Srivastava, Alok

    2013-08-01

    Increasingly, a number of rapidly developing countries, including India, China, Brazil, and others, are becoming global hot spots for the development of regenerative medicine applications, including stem cell-based therapies. Identifying and overcoming regulatory and translational research challenges and promoting scientific and ethical clinical trials with cells will help curb the growth of stem cell tourism for unproven therapies. It will also enable academic investigators, local regulators, and national and international biotechnology and biopharmaceutical companies to accelerate stem cell-based clinical research that could lead to effective innovative treatments in these regions. Using India as a model system and obtaining input from regulators, clinicians, academics, and industry representatives across the stem cell field in India, we reviewed the role of key agencies and processes involved in this field. We have identified areas that need attention and here provide solutions from other established and functioning models in the world to streamline and unify the regulatory and ethics approval processes for cell-based therapies. We also make recommendations to check the growth and functioning of clinics offering unproven treatments. Addressing these issues will remove considerable hurdles to both local and international investigators, accelerate the pace of research and development, and create a quality environment for reliable products to emerge. By doing so, these countries would have taken one important step to move to the forefront of stem cell-based therapeutics.

  20. Simple and Rapid Bioink Jet Printing for Multiscale Cell Adhesion Islands.

    Science.gov (United States)

    Mecozzi, Laura; Gennari, Oriella; Rega, Romina; Battista, Luigi; Ferraro, Pietro; Grilli, Simonetta

    2017-03-01

    A simple and rapid process for multiscale printing of bioinks with dot widths ranging from hundreds of microns down to 0.5 μm is presented. The process makes use of spontaneous surface charges generated pyroelectrically that are able to draw little daughter droplets directly from the free meniscus of a mother drop through jetting ("p-jet"), thus avoiding time-consuming and expensive fabrication of microstructured nozzles. Multiscale can be easily achieved by modulating the parameters of the p-jet process. Here, it is shown that the p-jet allows us to print well-defined adhesion islands where NIH-3T3 fibroblasts are constrained to live into cluster configurations ranging from 20 down to single cell level. The proposed fabrication approach can be useful for high-throughput studies on cell adhesion, cytoskeleton organization, and stem cell differentiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Short communication: HIV type 1 escapes inactivation by saliva via rapid escape into oral epithelial cells.

    Science.gov (United States)

    Dietrich, Elizabeth A; Gebhard, Kristin H; Fasching, Claudine E; Giacaman, Rodrigo A; Kappes, John C; Ross, Karen F; Herzberg, Mark C

    2012-12-01

    Saliva contains anti-HIV-1 factors, which show unclear efficacy in thwarting mucosal infection. When incubated in fresh, unfractionated whole saliva, infectious HIV-1 IIIb and BaL (X4- and R5-tropic, respectively) persisted from 4 to at least 30 min in a saliva concentration-dependent manner. In salivary supernatant for up to 6 h, both infectious HIV-1 strains "escaped" into immortalized oral epithelial cells; infectious BaL showed selectively enhanced escape in the presence of saliva. Fluorescently labeled HIV-1 virus-like particles entered oral epithelial cells within minutes of exposure. Using a previously unrecognized mechanism, therefore, strains of HIV-1 escape inactivation by saliva via rapid uptake into oral epithelial cells.

  2. Overexpression of the oil palm (Elaeis guineensis Jacq.) TAPETUM DEVELOPMENT1-like Eg707 in rice affects cell division and differentiation and reduces fertility.

    Science.gov (United States)

    Thuc, Le Vinh; Geelen, Danny; Ky, Huynh; Ooi, Siew-Eng; Napis, Suhaimi B; Sinniah, Uma Rani; Namasivayam, Parameswari

    2013-02-01

    The functional analysis of the TAPETUM DEVELOPMENT1-like analog Eg707 of oil palm was carried out in rice by over-expressing Eg707 under the control of a double cauliflower mosaic virus 35S promoter. Ectopic expression of Eg707 in rice induced dark green and matured compact brownish calli compared to pale wild type and negative control calli. Regenerated transgenic rice plants exhibited a reduction in organ size and plant height, rolled, erect leaves, less tillers, increased chlorophyll content, and reduced fertility with smaller green seeds. At the molecular level Eg707 overexpression caused an increase in the transcription of SAPK9, a SnRK2 protein kinase family member that is activated by ABA and hyperosmotic stress. Together, the results show that ectopic Eg707 expression influences cell division and differentiation, presumably via altered hormone homeostasis.

  3. Molecular evolution in bacteria: cell division Evolução molecular em bactérias: divisão celular

    Directory of Open Access Journals (Sweden)

    J.T. Trevors

    1998-10-01

    Full Text Available Molecular evolution in bacteria is examined with an emphasis on the self-assembly of cells capable of primitive division and growth during early molecular evolution. Also, the possibility that some type of encapsulation structure preceeded biochemical pathways and the assembly of genetic material is examined. These aspects will be considered from an evolutionary perspective.A evolução molecular em bactérias é examinada com ênfase na auto-organização de uma célula capaz de divisão primitiva e multiplicação durante o princípio da evolução molecular. Também se discute a possibilidade de que algum tipo de estrutura de encapsulação tenha antecedido as vias bioquímicas e o agrupamento de material genético. Esses aspectos são considerados sob uma perspectiva evolutiva.

  4. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy

    Directory of Open Access Journals (Sweden)

    Wang Xueying

    2008-10-01

    Full Text Available Abstract Background Telomeres cap chromosome ends and protect the genome. We studied individual telomeres in live human cancer cells. In capturing telomere motions using quantitative imaging to acquire complete high-resolution three-dimensional datasets every second for 200 seconds, telomere dynamics were systematically analyzed. Results The motility of individual telomeres within the same cancer cell nucleus was widely heterogeneous. One class of internal heterochromatic regions of chromosomes analyzed moved more uniformly and showed less motion and heterogeneity than telomeres. The single telomere analyses in cancer cells revealed that shorter telomeres showed more motion, and the more rapid telomere motions were energy dependent. Experimentally increasing bulk telomere length dampened telomere motion. In contrast, telomere uncapping, but not a DNA damaging agent, methyl methanesulfonate, significantly increased telomere motion. Conclusion New methods for seconds-scale, four-dimensional, live cell microscopic imaging and data analysis, allowing systematic tracking of individual telomeres in live cells, have defined a previously undescribed form of telomere behavior in human cells, in which the degree of telomere motion was dependent upon telomere length and functionality.

  5. Random migration and signal integration promote rapid and robust T cell recruitment.

    Science.gov (United States)

    Textor, Johannes; Henrickson, Sarah E; Mandl, Judith N; von Andrian, Ulrich H; Westermann, Jürgen; de Boer, Rob J; Beltman, Joost B

    2014-08-01

    To fight infections, rare T cells must quickly home to appropriate lymph nodes (LNs), and reliably localize the antigen (Ag) within them. The first challenge calls for rapid trafficking between LNs, whereas the second may require extensive search within each LN. Here we combine simulations and experimental data to investigate which features of random T cell migration within and between LNs allow meeting these two conflicting demands. Our model indicates that integrating signals from multiple random encounters with Ag-presenting cells permits reliable detection of even low-dose Ag, and predicts a kinetic feature of cognate T cell arrest in LNs that we confirm using intravital two-photon data. Furthermore, we obtain the most reliable retention if T cells transit through LNs stochastically, which may explain the long and widely distributed LN dwell times observed in vivo. Finally, we demonstrate that random migration, both between and within LNs, allows recruiting the majority of cognate precursors within a few days for various realistic infection scenarios. Thus, the combination of two-scale stochastic migration and signal integration is an efficient and robust strategy for T cell immune surveillance.

  6. Rapid spread of mouse mammary tumor virus in cultured human breast cells

    Directory of Open Access Journals (Sweden)

    Günzburg Walter H

    2007-10-01

    Full Text Available Abstract Background The role of mouse mammary tumor virus (MMTV as a causative agent in human breast carcinogenesis has recently been the subject of renewed interest. The proposed model is based on the detection of MMTV sequences in human breast cancer but not in healthy breast tissue. One of the main drawbacks to this model, however, was that until now human cells had not been demonstrated to sustain productive MMTV infection. Results Here, we show for the first time the rapid spread of mouse mammary tumor virus, MMTV(GR, in cultured human mammary cells (Hs578T, ultimately leading to the infection of every cell in culture. The replication of the virus was monitored by quantitative PCR, quantitative RT-PCR and immunofluorescence imaging. The infected human cells expressed, upon cultivation with dexamethasone, MMTV structural proteins and released spiked B-type virions, the infectivity of which could be neutralized by anti-MMTV antibody. Replication of the virus was efficiently blocked by an inhibitor of reverse transcription, 3'-azido-3'-deoxythymidine. The human origin of the infected cells was confirmed by determining a number of integration sites hosting the provirus, which were unequivocally identified as human sequences. Conclusion Taken together, our results show that human cells can support replication of mouse mammary tumor virus.

  7. Primary Cutaneous Peripheral T-Cell Lymphoma Not Otherwise Specified: A Rapidly Progressive Variant of Cutaneous T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Kimberly Aderhold

    2015-01-01

    Full Text Available Primary Cutaneous Peripheral T-Cell Lymphoma NOS (PTL-NOS is a rare, progressive, fatal dermatologic disease that presents with features similar to many common benign plaque-like skin conditions, making recognition of its distinguishing features critical for early diagnosis and treatment (Bolognia et al., 2008. A 78-year-old woman presented to ambulatory care with a single 5 cm nodule on her shoulder that had developed rapidly over 1-2 weeks. Examination was suspicious for malignancy and a biopsy was performed. Biopsy results demonstrated CD4 positivity, consistent with Mycosis Fungoides with coexpression of CD5, CD47, and CD7. Within three months her cancer had progressed into diffuse lesions spanning her entire body. As rapid progression is usually uncharacteristic of Mycosis Fungoides, her diagnosis was amended to PTL-NOS. Cutaneous T-Cell Lymphoma (CTCL should be suspected in patients with patches, plaques, erythroderma, or papules that persist or multiply despite conservative treatment. Singular biopsies are often nondiagnostic, requiring a high degree of suspicion if there is deviation from the anticipated clinical course. Multiple biopsies are often necessary to make the diagnosis. Physicians caring for patients with rapidly progressive, nonspecific dermatoses with features described above should keep more uncommon forms of CTCL in mind and refer for early biopsy.

  8. Monitoring and rapid quantification of total carotenoids in Rhodotorula glutinis cells using laser tweezers Raman spectroscopy.

    Science.gov (United States)

    Tao, Zhanhua; Wang, Guiwen; Xu, Xiaodong; Yuan, Yufeng; Wang, Xue; Li, Yongqing

    2011-01-01

    Rhodotorula glutinis is known to accumulate large amounts of carotenoids under certain culture conditions, which have very important industrial applications. So far, the molecular mechanism of regulating carotenogenesis is still not well understood. To better understand the carotenogenesis process, it requires methods that can detect carotenogenesis rapidly and reliably in single live cells. In this paper, a method based on laser tweezers Raman spectroscopy (LTRS) was developed to directly detect carotenoids, as well as other important biological molecules in single live R. glutinis cells. The data showed that the accumulation of carotenoids and lipids occurred mainly in the late exponential and stationary phases when the cell growth was inhibited by nutrient limitation. Meanwhile, the carotenoid concentration changed together with the concentration of nucleic acids, which increased in the first phase and decreased in the last phase of the culture. These data demonstrate that LTRS is a rapid, convenient, and reliable method to study the carotenogenesis process in vivo. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Gene-modified stem cells combined with rapid prototyping techniques: a novel strategy for periodontal regeneration.

    Science.gov (United States)

    He, Huixia; Cao, Junkai; Wang, Dongsheng; Gu, Bing; Guo, Hong; Liu, Hongchen

    2010-03-01

    Periodontal disease, a worldwide prevalent chronic disease in adults, is characterized by the destruction of the periodontal supporting tissue including the cementum, periodontal ligament and alveolar bone. The regeneration of damaged periodontal tissue is the main goal of periodontal treatment. Because conventional periodontal treatments remain insufficient to attain complete and reliable periodontal regeneration, periodontal tissue engineering has emerged as a prospective alternative method for improving the regenerative capacity of periodontal tissue. However, the potential of periodontal regeneration seems to be limited by the understanding of the cellular and molecular events in the formation of periodontal tissue and by the insufficient collaboration of multi-disciplinary research that periodontal tissue engineering involves. In this paper, we first reviewed the recent advancements in stem cells, signaling factors, and scaffolds that relate to periodontal regeneration. Then we speculate that specific genes would improve regenerative capacity of these stem cells, which could differentiate into cementoblasts, osteoblasts and fibroblasts. In addition, the 3D scaffolds that mimic the different structure and physiologic functions of natural fibro-osseous tissue could be fabricated by rapid prototyping (RP) techniques. It was therefore hypothesized that gene-modified stem cells combined with rapid prototyping techniques would be a new strategy to promote more effective and efficient periodontal regeneration.

  10. Parenteral nutrition rapidly reduces hepatic mononuclear cell numbers and lipopolysaccharide receptor expression on Kupffer cells in mice.

    Science.gov (United States)

    Omata, Jiro; Fukatsu, Kazuhiko; Murakoshi, Satoshi; Noguchi, Midori; Moriya, Tomoyuki; Okamoto, Koichi; Saitoh, Daizoh; Yamamoto, Junji; Hase, Kazuo

    2010-01-01

    Parenteral nutrition (PN) reduces the number of hepatic mononuclear cell (MNCs) and impairs their function, resulting in poor survival after intraportal bacterial challenge in mice. Our recent animal study demonstrated resumption of enteral nutrition after PN to rapidly restore hepatic MNC numbers (in 12 hours) and lipopolysaccharide (LPS) receptor expression on Kupffer cells (in 48 hours). The present study examined the time courses of hepatic MNC number reductions and LPS receptor expression changes in mice receiving PN. Male mice (n = 49) from the Institute of Cancer Research were divided into chow (n = 8), PN0.5 (n = 8), PN1 (n = 8), PN2 (n = 9), PN3 (n = 9), and PN5 (n = 7) groups. The chow group was given chow with an intravenous saline infusion. The PN groups were fed parenterally for 0.5, 1, 2, 3, or 5 days following the chow-feeding courses. After 7 days of nutrition support, hepatic MNCs were isolated and counted. The expression of LPS receptors on Kupffer cells was analyzed by flow cytometry. Hepatic MNC numbers rapidly reached their lowest level in the PN0.5 and PN1 groups but were somewhat restored thereafter and remained stable after the third day, without significant differences between any 2 of the PN groups. CD14 and Toll-like receptor 4/MD-2 expressions both showed significant reductions in the PN1 group compared with the chow group and gradually decreased to their lowest levels in the PN5 group. PN administration rapidly reduces hepatic MNC numbers and LPS receptor expression on Kupffer cells.

  11. Plasma membrane events associated with the meiotic divisions in the amphibian oocyte: insights into the evolution of insulin transduction systems and cell signaling

    Directory of Open Access Journals (Sweden)

    Morrill Gene A

    2013-01-01

    Full Text Available Abstract Background Insulin and its plasma membrane receptor constitute an ancient response system critical to cell growth and differentiation. Studies using intact Rana pipiens oocytes have shown that insulin can act at receptors on the oocyte surface to initiate resumption of the first meiotic division. We have reexamined the insulin-induced cascade of electrical and ion transport-related plasma membrane events using both oocytes and intact plasma membranes in order to characterize the insulin receptor-steroid response system associated with the meiotic divisions. Results [125I]Insulin binding (Kd = 54 ± 6 nM at the oocyte plasma membrane activates membrane serine protease(s, followed by the loss of low affinity ouabain binding sites, with a concomitant 3–4 fold increase in high affinity ouabain binding sites. The changes in protease activity and ouabain binding are associated with increased Na+/Ca2+ exchange, increased endocytosis, decreased Na+ conductance resulting in membrane hyperpolarization, increased 2-deoxy-D-glucose uptake and a sustained elevation of intracellular pH (pHi. Hyperpolarization is largely due to Na+-channel inactivation and is the main driving force for glucose uptake by the oocyte via Na+/glucose cotransport. The Na+ sym- and antiporter systems are driven by the Na+ free energy gradient generated by Na+/K+-ATPase. Shifts in α and/or β Na+-pump subunits to caveolar (lipid raft membrane regions may activate Na/K-ATPase and contribute to the Na+ free energy gradient and the increase in both Na+/glucose co-transport and pHi. Conclusions Under physiological conditions, resumption of meiosis results from the concerted action of insulin and progesterone at the cell membrane. Insulin inactivates Na+ channels and mobilizes fully functional Na+-pumps, generating a Na+ free energy gradient which serves as the energy source for several membrane anti- and symporter systems.

  12. Disease-associated CAG·CTG triplet repeats expand rapidly in non-dividing mouse cells, but cell cycle arrest is insufficient to drive expansion.

    Science.gov (United States)

    Gomes-Pereira, Mário; Hilley, James D; Morales, Fernando; Adam, Berit; James, Helen E; Monckton, Darren G

    2014-06-01

    Genetically unstable expanded CAG·CTG trinucleotide repeats are causal in a number of human disorders, including Huntington disease and myotonic dystrophy type 1. It is still widely assumed that DNA polymerase slippage during replication plays an important role in the accumulation of expansions. Nevertheless, somatic mosaicism correlates poorly with the proliferative capacity of the tissue and rates of cell turnover, suggesting that expansions can occur in the absence of replication. We monitored CAG·CTG repeat instability in transgenic mouse cells arrested by chemical or genetic manipulation of the cell cycle and generated unequivocal evidence for the continuous accumulation of repeat expansions in non-dividing cells. Importantly, the rates of expansion in non-dividing cells were at least as high as those of proliferating cells. These data are consistent with a major role for cell division-independent expansion in generating somatic mosaicism in vivo. Although expansions can accrue in non-dividing cells, we also show that cell cycle arrest is not sufficient to drive instability, implicating other factors as the key regulators of tissue-specific instability. Our data reveal that de novo expansion events are not limited to S-phase and further support a cell division-independent mutational pathway. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. A DNA damage checkpoint pathway coordinates the division of dikaryotic cells in the ink cap mushroom Coprinopsis cinerea.

    Science.gov (United States)

    de Sena-Tomás, Carmen; Navarro-González, Mónica; Kües, Ursula; Pérez-Martín, José

    2013-09-01

    The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.

  14. Rapidly induced, T-cell independent xenoantibody production is mediated by marginal zone B cells and requires help from NK cells.

    Science.gov (United States)

    Li, Shengqiao; Yan, Yehong; Lin, Yuan; Bullens, Dominique M; Rutgeerts, Omer; Goebels, Jozef; Segers, Constant; Boon, Louis; Kasran, Ahmad; De Vos, Rita; Dewolf-Peeters, Christiane; Waer, Mark; Billiau, An D

    2007-12-01

    Xenoantibody production directed at a wide variety of T lymphocyte-dependent and T lymphocyte-independent xenoantigens remains the major immunologic obstacle for successful xenotransplantation. The B lymphocyte subpopulations and their helper factors, involved in T-cell-independent xenoantibody production are only partially understood, and their identification will contribute to the clinical applicability of xenotransplantation. Here we show, using models involving T-cell-deficient athymic recipient mice, that rapidly induced, T-cell-independent xenoantibody production is mediated by marginal zone B lymphocytes and requires help from natural killer (NK) cells. This collaboration neither required NK-cell-mediated IFN-gamma production, nor NK-cell-mediated cytolytic killing of xenogeneic target cells. The T-cell-independent IgM xenoantibody response could be partially suppressed by CD40L blockade.

  15. Rapid Detection of Cell-Free Mycobacterium tuberculosis DNA in Tuberculous Pleural Effusion.

    Science.gov (United States)

    Che, Nanying; Yang, Xinting; Liu, Zichen; Li, Kun; Chen, Xiaoyou

    2017-05-01

    Tuberculous pleurisy is one of the most common types of extrapulmonary tuberculosis, but its diagnosis remains difficult. In this study, we report for the first time on the detection of cell-free Mycobacterium tuberculosis DNA in pleural effusion and an evaluation of a newly developed molecular assay for the detection of cell-free Mycobacterium tuberculosis DNA. A total of 78 patients with pleural effusion, 60 patients with tuberculous pleurisy, and 18 patients with alternative diseases were included in this study. Mycobacterial culture, the Xpert MTB/RIF assay, the adenosine deaminase assay, the T-SPOT.TB assay, and the cell-free Mycobacterium tuberculosis DNA assay were performed on all the pleural effusion samples. The cell-free Mycobacterium tuberculosis DNA assay and adenosine deaminase assay showed significantly higher sensitivities of 75.0% and 68.3%, respectively, than mycobacterial culture and the Xpert MTB/RIF assay, which had sensitivities of 26.7% and 20.0%, respectively (P Mycobacterium tuberculosis DNA assay detected as few as 1.25 copies of IS6110 per ml of pleural effusion and showed good accordance of the results between repeated tests (r = 0.978, P = 2.84 × 10-10). These data suggest that the cell-free Mycobacterium tuberculosis DNA assay is a rapid and accurate molecular test which provides direct evidence of Mycobacterium tuberculosis etiology. Copyright © 2017 American Society for Microbiology.

  16. A bioluminescent caspase-1 activity assay rapidly monitors inflammasome activation in cells.

    Science.gov (United States)

    O'Brien, Martha; Moehring, Danielle; Muñoz-Planillo, Raúl; Núñez, Gabriel; Callaway, Justin; Ting, Jenny; Scurria, Mike; Ugo, Tim; Bernad, Laurent; Cali, James; Lazar, Dan

    2017-08-01

    Inflammasomes are protein complexes induced by diverse inflammatory stimuli that activate caspase-1, resulting in the processing and release of cytokines, IL-1β and IL-18, and pyroptosis, an immunogenic form of cell death. To provide a homogeneous method for detecting caspase-1 activity, we developed a bioluminescent, plate-based assay that combines a substrate, Z-WEHD-aminoluciferin, with a thermostable luciferase in an optimized lytic reagent added directly to cultured cells. Assay specificity for caspase-1 is conferred by inclusion of a proteasome inhibitor in the lytic reagent and by use of a caspase-1 inhibitor to confirm activity. This approach enables a specific and rapid determination of caspase-1 activation. Caspase-1 activity is stable in the reagent thereby providing assay convenience and flexibility. Using this assay system, caspase-1 activation has been determined in THP-1 cells following treatment with α-hemolysin, LPS, nigericin, gramicidin, MSU, R848, Pam3CSK4, and flagellin. Caspase-1 activation has also been demonstrated in treated J774A.1 mouse macrophages, bone marrow-derived macrophages (BMDMs) from mice, as well as in human primary monocytes. Caspase-1 activity was not detected in treated BMDMs derived from Casp1-/- mice, further confirming the specificity of the assay. Caspase-1 activity can be measured directly in cultured cells using the lytic reagent, or caspase-1 activity released into medium can be monitored by assay of transferred supernatant. The caspase-1 assay can be multiplexed with other assays to monitor additional parameters from the same cells, such as IL-1β release or cell death. The caspase-1 assay in combination with a sensitive real-time monitor of cell death allows one to accurately establish pyroptosis. This assay system provides a rapid, convenient, and flexible method to specifically and quantitatively monitor caspase-1 activation in cells in a plate-based format. This will allow a more efficient and effective

  17. Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues.

    Science.gov (United States)

    Wang, Yu; Woehrstein, Johannes B; Donoghue, Noah; Dai, Mingjie; Avendaño, Maier S; Schackmann, Ron C J; Zoeller, Jason J; Wang, Shan Shan H; Tillberg, Paul W; Park, Demian; Lapan, Sylvain W; Boyden, Edward S; Brugge, Joan S; Kaeser, Pascal S; Church, George M; Agasti, Sarit S; Jungmann, Ralf; Yin, Peng

    2017-10-11

    To decipher the molecular mechanisms of biological function, it is critical to map the molecular composition of individual cells or even more importantly tissue samples in the context of their biological environment in situ. Immunofluorescence (IF) provides specific labeling for molecular profiling. However, conventional IF methods have finite multiplexing capabilities due to spectral overlap of the fluorophores. Various sequential imaging methods have been developed to circumvent this spectral limit but are not widely adopted due to the common limitation of requiring multirounds of slow (typically over 2 h at room temperature to overnight at 4 °C in practice) immunostaining. We present here a practical and robust method, which we call DNA Exchange Imaging (DEI), for rapid in situ spectrally unlimited multiplexing. This technique overcomes speed restrictions by allowing for single-round immunostaining with DNA-barcoded antibodies, followed by rapid (less than 10 min) buffer exchange of fluorophore-bearing DNA imager strands. The programmability of DEI allows us to apply it to diverse microscopy platforms (with Exchange Confocal, Exchange-SIM, Exchange-STED, and Exchange-PAINT demonstrated here) at multiple desired resolution scales (from ∼300 nm down to sub-20 nm). We optimized and validated the use of DEI in complex biological samples, including primary neuron cultures and tissue sections. These results collectively suggest DNA exchange as a versatile, practical platform for rapid, highly multiplexed in situ imaging, potentially enabling new applications ranging from basic science, to drug discovery, and to clinical pathology.

  18. Use of bacteriophage cell wall-binding proteins for rapid diagnostics of Listeria.

    Science.gov (United States)

    Schmelcher, Mathias; Loessner, Martin J

    2014-01-01

    Diagnostic protocols for food-borne bacterial pathogens such as Listeria need to be sensitive, specific, rapid, and inexpensive. Conventional culture methods are hampered by lengthy enrichment and incubation steps. Bacteriophage-derived high-affinity binding molecules (cell wall-binding domains, CBDs) specific for Listeria cells have recently been introduced as tools for detection and differentiation of this pathogen in foods. When coupled with magnetic separation, these proteins offer advantages in sensitivity and speed compared to the standard diagnostic methods. Furthermore, fusion of CBDs to differently colored fluorescent reporter proteins enables differentiation of Listeria strains in mixed cultures. This chapter provides protocols for detection of Listeria in food by CBD-based magnetic separation and subsequent multiplexed identification of strains of different serotypes with reporter-CBD fusion proteins.

  19. Transferrin-mediated rapid targeting, isolation, and detection of circulating tumor cells by multifunctional magneto-dendritic nanosystem.

    Science.gov (United States)

    Banerjee, Shashwat S; Jalota-Badhwar, Archana; Satavalekar, Sneha D; Bhansali, Sujit G; Aher, Naval D; Mascarenhas, Russel R; Paul, Debjani; Sharma, Somesh; Khandare, Jayant J

    2013-06-01

    A multicomponent magneto-dendritic nanosystem (MDNS) is designed for rapid tumor cell targeting, isolation, and high-resolution imaging by a facile bioconjugation approach. The highly efficient and rapid-acting MDNS provides a convenient platform for simultaneous isolation and high-resolution imaging of tumor cells, potentially leading towards an early diagnosis of cancer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rapid Cell-Based Assay for Detection and Quantification of Active Staphylococcal Enterotoxin Type D.

    Science.gov (United States)

    Rasooly, Reuven; Do, Paula M; Hernlem, Bradley J

    2017-03-01

    Food poisoning by Staphylococcus aureus is a result of ingestion of Staphylococcal enterotoxins (SEs) produced by this bacterium and is a major source of foodborne illness. Staphylococcal enterotoxin D (SED) is one of the predominant enterotoxins recovered in Staphylococcal food poisoning incidences, including a recent outbreak in Guam affecting 300 children. Current immunology methods for SED detection cannot distinguish between the biologically active form of the toxin, which poses a threat, from the inactive form, which poses no threat. In vivo bioassays that measure emetic activity in kitten and monkeys have been used, but these methods rely upon expensive procedures using live animals and raising ethical concerns. A rapid (5 h) quantitative bioluminescence assay, using a genetically engineered T-cell Jurkat cell line expressing luciferase under regulation of nuclear factor of activated T cells response elements, in combination with the lymphoblastoid B-cell line Raji for antigen presentation, was developed. In this assay, the detection limit of biologically active SED is 100 ng/mL, which is 10 times more sensitive than the splenocyte proliferation assay, and 105 times more sensitive than monkey or kitten bioassay. Pasteurization or repeated freeze-thaw cycles had no effect on SED activity, but reduction in SED activity was shown with heat treatment at 100°C for 5 min. It was also shown that milk exhibits a protective effect on SED. This bioluminescence assay may also be used to rapidly evaluate antibodies to SED for potential therapeutic application as a measurement of neutralizing biological effects of SED. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. A simple and rapid flow cytometric method for detection of porcine cell surface markers.

    Science.gov (United States)

    Stabel, T J; Bolin, S R; Pesch, B A; Rahner, T E

    2000-11-01

    The objective of this study was to develop a rapid and reliable method for flow cytometric analysis of porcine whole blood cells. Fifty-microliters of heparin- or EDTA-treated whole blood was added to wells of a round-bottom 96-well microtitration plate. Each well contained 10 microl of an appropriate dilution of four different antibodies (40 microl total; two primary monoclonal antibodies and two fluorescent-labeled secondary antibodies). For convenience, the antibody mixture could be added to plates 1-2 days prior to assay and stored at 4 degrees C. Once whole blood was added to wells, plates were mixed gently, placed in a sealed bag and incubated in the dark at room temperature for 20 min. Contents of wells were then transferred to polystyrene tubes containing 2 ml of 1.5% formalin in distilled water and mixed gently. Cells were fixed for a minimum of 30 min and then stored in the dark at 4 degrees C until analysis by flow cytometry. Analysis of cell samples may be done up to 3 days after fixation. Results indicate that the percentages of Class I, Class II, CD3, CD8, CD4, CD45, monocyte, gamma-delta T-cell populations, and total number of granulocytes identified using this method were comparable to standard values or to values obtained following separation of white blood cells from red blood cells. The percentage of labeled B-cells was lower than standard values. Total assay time from receipt of blood to acquisition of data by flow cytometry required less than 2 h. This modified assay was shown to be simple, reliable, and useful for screening large numbers of porcine samples in a minimal period of time.

  2. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

    Science.gov (United States)

    Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V

    2015-11-01

    Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. A novel rapid and reproducible flow cytometric method for optimization of transfection efficiency in cells

    Science.gov (United States)

    Homann, Stefanie; Hofmann, Christian; Gorin, Aleksandr M.; Nguyen, Huy Cong Xuan; Huynh, Diana; Hamid, Phillip; Maithel, Neil; Yacoubian, Vahe; Mu, Wenli; Kossyvakis, Athanasios; Sen Roy, Shubhendu; Yang, Otto Orlean

    2017-01-01

    Transfection is one of the most frequently used techniques in molecular biology that is also applicable for gene therapy studies in humans. One of the biggest challenges to investigate the protein function and interaction in gene therapy studies is to have reliable monospecific detection reagents, particularly antibodies, for all human gene products. Thus, a reliable method that can optimize transfection efficiency based on not only expression of the target protein of interest but also the uptake of the nucleic acid plasmid, can be an important tool in molecular biology. Here, we present a simple, rapid and robust flow cytometric method that can be used as a tool to optimize transfection efficiency at the single cell level while overcoming limitations of prior established methods that quantify transfection efficiency. By using optimized ratios of transfection reagent and a nucleic acid (DNA or RNA) vector directly labeled with a fluorochrome, this method can be used as a tool to simultaneously quantify cellular toxicity of different transfection reagents, the amount of nucleic acid plasmid that cells have taken up during transfection as well as the amount of the encoded expressed protein. Finally, we demonstrate that this method is reproducible, can be standardized and can reliably and rapidly quantify transfection efficiency, reducing assay costs and increasing throughput while increasing data robustness. PMID:28863132

  4. Peripheral blood mononuclear cell gene expression in healthy adults rapidly transported to high altitude

    Directory of Open Access Journals (Sweden)

    Herman NM

    2014-12-01

    Full Text Available Nicole M Herman,1 Diane E Grill,2 Paul J Anderson,1 Andrew D Miller,1 Jacob B Johnson,1 Kathy A O’Malley,1 Maile L Ceridon Richert,1 Bruce D Johnson1 1Department of Cardiovascular Diseases, 2Department of Biostatistics, Mayo Clinic Rochester, MN, USA Abstract: Although mechanisms of high altitude illness have been studied extensively, the processes behind the development of these conditions are still unclear. Few genome-wide studies on rapid exposure to high altitude have been performed. Each year, scientists and support workers are transferred by plane from McMurdo Station in Antarctica (sea level to the Amundsen-Scott South Pole Station at 2,835 meters. This uniform and rapid transfer to altitude provides a unique opportunity to study the effects of hypobaric hypoxia on gene expression that may help illustrate the body's adaptations to these conditions. We hypothesized that an extensive number of genes would change with rapid exposure to altitude and further expected that these genes would correspond to inflammatory pathways proposed as a mechanism in development of acute mountain sickness. Peripheral venous blood samples were drawn from 98 healthy subjects at sea level and again on day two at altitude. Microarray analysis was performed on these samples. In total, 1,118 probe sets with significant P-values and fold changes (90% upregulated were identified and entered into MetaCore™ software. Several pathways, including oxidative phosphorylation, cytoskeleton remodeling, and platelet aggregation, were significantly represented by the data set and all were upregulated. Many genes changed expression, and the vast majority of these increased. Increased metabolism in peripheral blood mononuclear cells suggests increased inflammatory activity. Keywords: peripheral blood mononuclear cells, microarray, gene expression, acute mountain sickness

  5. On infinitely divisible semimartingales

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Rosiński, Jan

    2015-01-01

    to non Gaussian infinitely divisible processes. First we show that the class of infinitely divisible semimartingales is so large that the natural analog of Stricker's theorem fails to hold. Then, as the main result, we prove that an infinitely divisible semimartingale relative to the filtration generated...... by a random measure admits a unique decomposition into an independent increment process and an infinitely divisible process of finite variation. Consequently, the natural analog of Stricker's theorem holds for all strictly representable processes (as defined in this paper). Since Gaussian processes...... are strictly representable due to Hida's multiplicity theorem, the classical Stricker's theorem follows from our result. Another consequence is that the question when an infinitely divisible process is a semimartingale can often be reduced to a path property, when a certain associated infinitely divisible...

  6. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants

    Czech Academy of Sciences Publication Activity Database

    Siddique, S.; Radakovic, Z.S.; De La Torre, C.M.; Chronis, D.; Novák, Ondřej; Ramireddy, E.; Holbein, J.; Matera, C.; Hutten, M.; Gutbrod, P.; Anjam, M.S.; Rozanska, E.; Habash, S.; Elashry, A.; Sobczak, M.; Kakimoto, T.; Strnad, Miroslav; Schmülling, T.; Mitchum, M.G.; Grundler, F.M.W.

    2015-01-01

    Roč. 112, č. 41 (2015), s. 12669-12674 ISSN 0027-8424 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Arabidopsis thaliana * cell cycle * cytokinin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  7. Ultrastructure of cells after reversible dark-induced blocking of mitotic divisions in antheridial filaments of Chara vulgaris L.

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2014-01-01

    Full Text Available As compared with the control plants cultured under photoperiodic L : D = =14 : 10 conditions (K w i a t k o w s k a, M a s z e w s k i, 1978, the ultrastructure of nuclei -in cells blocked by a 5 day exposure to continuous darkness is characterized by homogenous arrangement. This homogeneity is maintained in all generations of antheridial filaments irrespective of cell length, which in the controls, being directly correlated with particular type of nuclear structure, may serve as a precise indicator of a given stage of interphase. From similarities in both the spatial distribution and content of condensed chromatin in is concluded that the block of the cell cycle is imposed at the beginning of the G2 phase. On comparing these cells with the early G2 period (stage VII in the control plants, marked changes in the structure of nucleoli were found. They decrease in size by half owing to the complete decline of granular component. The area occupied by endoplasmic reticulum undergoes a 50% reduction. The decrease in the activity of Golgi apparatus expressed by a drop in number of smooth vesicles surrounding a single dictyosome is found to parallel the limited rate of cell growth. The number of coated vesicles and cisterns of dictyosome slightly increases. Mitochondria show typical condensed configuration with dense matrices and swollen cristae, while in the control orthodox forms are prevailing. The mean size of mitochondria is smaller, but their number exceeds that of the control plants. The surface area of mitochondrial profiles is found to remain constant proportion of the cytoplasm section, e.g., about 3%. Dark-cultured antheridial filaments show absolute decline of lipid droplets. No differences were found in structure of plastids and vacuols, as well as in number of ribosomes in cytoplasm surface unit.

  8. Light differentially regulates cell division and the mRNA abundance of pea nucleolin during de-etiolation

    Science.gov (United States)

    Reichler, S. A.; Balk, J.; Brown, M. E.; Woodruff, K.; Clark, G. B.; Roux, S. J.

    2001-01-01

    The abundance of plant nucleolin mRNA is regulated during de-etiolation by phytochrome. A close correlation between the mRNA abundance of nucleolin and mitosis has also been previously reported. These results raised the question of whether the effects of light on nucleolin mRNA expression were a consequence of light effects on mitosis. To test this we compared the kinetics of light-mediated increases in cell proliferation with that of light-mediated changes in the abundance of nucleolin mRNA using plumules of dark-grown pea (Pisum sativum) seedlings. These experiments show that S-phase increases 9 h after a red light pulse, followed by M-phase increases in the plumule leaves at 12 h post-irradiation, a time course consistent with separately measured kinetics of red light-induced increases in the expression of cell cycle-regulated genes. These increases in cell cycle-regulated genes are photoreversible, implying that the light-induced increases in cell proliferation are, like nucleolin mRNA expression, regulated via phytochrome. Red light stimulates increases in the mRNA for nucleolin at 6 h post-irradiation, prior to any cell proliferation changes and concurrent with the reported timing of phytochrome-mediated increases of rRNA abundance. After a green light pulse, nucleolin mRNA levels increase without increasing S-phase or M-phase. Studies in animals and yeast indicate that nucleolin plays a significant role in ribosome biosynthesis. Consistent with this function, pea nucleolin can rescue nucleolin deletion mutants of yeast that are defective in rRNA synthesis. Our data show that during de-etiolation, the increased expression of nucleolin mRNA is more directly regulated by light than by mitosis.

  9. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection.

    Science.gov (United States)

    Almeida, F F; Belz, G T

    2016-09-01

    Innate lymphoid cells (ILCs) have stormed onto the immune landscape as "newly discovered" cell types. These tissue-resident sentinels are enriched at mucosal surfaces and engage in complex cross talk with elements of the adaptive immune system and microenvironment to orchestrate immune homeostasis. Many parallels exist between innate cells and T cells leading to the initial partitioning of ILCs into rather rigid subsets that reflect their "adaptive-like" effector cytokines profiles. ILCs themselves, however, have unique attributes that are only just beginning to be elucidated. These features result in complementarity with, rather than complete duplication of, functions of the adaptive immune system. Key transcription factors determine the pathway of differentiation of progenitors towards an ILC1, ILC2, or ILC3 subset. Once formed, flexibility in the responses of these subsets to stimuli unexpectedly allows transdifferentation between the different subsets and the acquisition of altered phenotypes and function. This provides a mechanism for rapid innate immune responsiveness. Here, we discuss the models of differentiation for maintenance and activation of tissue-resident ILCs in maintaining immune homeostasis and protection.

  10. A microfluidic chip for direct and rapid trapping of white blood cells from whole blood

    Science.gov (United States)

    Chen, Jingdong; Chen, Di; Yuan, Tao; Xie, Yao; Chen, Xiang

    2013-01-01

    Blood analysis plays a major role in medical and science applications and white blood cells (WBCs) are an important target of analysis. We proposed an integrated microfluidic chip for direct and rapid trapping WBCs from whole blood. The microfluidic chip consists of two basic functional units: a winding channel to mix and arrays of two-layer trapping structures to trap WBCs. Red blood cells (RBCs) were eliminated through moving the winding channel and then WBCs were trapped by the arrays of trapping structures. We fabricated the PDMS (polydimethylsiloxane) chip using soft lithography and determined the critical flow velocities of tartrazine and brilliant blue water mixing and whole blood and red blood cell lysis buffer mixing in the winding channel. They are 0.25 μl/min and 0.05 μl/min, respectively. The critical flow velocity of the whole blood and red blood cell lysis buffer is lower due to larger volume of the RBCs and higher kinematic viscosity of the whole blood. The time taken for complete lysis of whole blood was about 85 s under the flow velocity 0.05 μl/min. The RBCs were lysed completely by mixing and the WBCs were trapped by the trapping structures. The chip trapped about 2.0 × 103 from 3.3 × 103 WBCs. PMID:24404026

  11. Active and energy-dependent rapid formation of cell aggregates in the thermophilic photosynthetic bacterium Chloroflexus aggregans.

    Science.gov (United States)

    Hanada, Satoshi; Shimada, Keizo; Matsuura, Katsumi

    2002-03-05

    The thermophilic filamentous phototroph Chloroflexus aggregans was able to form a bacterial mat-like dense cell aggregate rapidly. The aggregate formation, which was observed in growing cells in a liquid medium in a bottle, occurred every time within 20-30 min after the cells were dispersed by shaking. The aggregation depended on the energy supplied by photosynthesis or respiration. Cells aggregated most rapidly under temperature and pH conditions that support maximum growth. The aggregation was also accelerated by the addition of 3-isobutyl-1-methylxanthine that inhibits cyclic 3',5'-AMP phosphodiesterase. Microscopic observation revealed that the bacterium has a fast gliding mobility (1-3 microm s(-1)). The distinctive cell aggregation of C. aggregans was due to this rapid gliding movement.

  12. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand.

    Directory of Open Access Journals (Sweden)

    Tamir Epstein

    Full Text Available To maintain optimal fitness, a cell must balance the risk of inadequate energy reserve for response to a potentially fatal perturbation against the long-term cost of maintaining high concentrations of ATP to meet occasional spikes in demand. Here we apply a game theoretic approach to address the dynamics of energy production and expenditure in eukaryotic cells. Conventionally, glucose metabolism is viewed as a function of oxygen concentrations in which the more efficient oxidation of glucose to CO2 and H2O produces all or nearly all ATP except under hypoxic conditions when less efficient (2 ATP/ glucose vs. about 36ATP/glucose anaerobic metabolism of glucose to lactic acid provides an emergency backup. We propose an alternative in which energy production is governed by the complex temporal and spatial dynamics of intracellular ATP demand. In the short term, a cell must provide energy for constant baseline needs but also maintain capacity to rapidly respond to fluxes in demand particularly due to external perturbations on the cell membrane. Similarly, longer-term dynamics require a trade-off between the cost of maintaining high metabolic capacity to meet uncommon spikes in demand versus the risk of unsuccessfully responding to threats or opportunities. Here we develop a model and computationally explore the cell's optimal mix of glycolytic and oxidative capacity. We find the Warburg effect, high glycolytic metabolism even under normoxic conditions, is represents a metabolic strategy that allow cancer cells to optimally meet energy demands posed by stochastic or fluctuating tumor environments.

  13. Selective Rapid Eye Movement Sleep Deprivation Affects Cell Size and Number in Kitten Locus Coeruleus

    Directory of Open Access Journals (Sweden)

    James P Shaffery

    2012-05-01

    Full Text Available Cells in the locus coeruleus (LC constitute the sole source of norepinephrine (NE in the brain, and change their discharge rates according to vigilance state. In addition to its well established role in vigilance, NE affects synaptic plasticity in the postnatal critical period (CP of development. One form of CP synaptic plasticity affected by NE results from monocular occlusion, which leads to physiological and cytoarchitectural alterations in central visual areas. Selective suppression of rapid eye movement sleep (REMS in the CP kitten enhances the central effects of monocular occlusion. The mechanisms responsible for heightened cortical plasticity following REMS deprivation (REMSD remain undetermined. One possible mediator of an increase in plasticity is continuous NE outflow, which presumably persists during extended periods of REMSD. Tyrosine hydroxylase (TH is the rate-limiting enzyme in the synthesis of NE and serves as a marker for NE-producing cells. We selectively suppressed REMS in kittens for one week during the CP. The number and size of LC cells expressing immunoreactivity to tyrosine hydroxylase (TH-ir was assessed in age-matched REMS-deprived (RD-, treatment-control (TXC-, and home cage-reared (HCC animals. Sleep amounts and slow wave activity (SWA were also examined relative to baseline. Time spent in REMS during the study was lower in RD compared to TXC animals, and RD kittens increased SWA delta power in the latter half of the REMSD period. The estimated total number of TH-ir cells in LC was significantly lower in the RD- than in the TXC kittens and numerically lower than in HCC animals. The size of LC cells expressing TH-ir was greatest in the HCC group. They were significantly larger than the cells in the RD kittens. These data are consistent with a possible reduction in NE in forebrain areas, including visual cortex, caused by one week of REMSD.

  14. Single-cell genomics reveals pyrrolysine-encoding potential in members of uncultivated archaeal candidate division MSBL1

    KAUST Repository

    Guan, Yue

    2017-05-11

    Pyrrolysine (Pyl), the 22nd canonical amino acid, is only decoded and synthesized by a limited number of organisms in the domains Archaea and Bacteria. Pyl is encoded by the amber codon UAG, typically a stop codon. To date, all known Pyl-decoding archaea are able to carry out methylotrophic methanogenesis. The functionality of methylamine methyltransferases, an important component of corrinoid-dependent methyltransfer reactions, depends on the presence of Pyl. Here, we present a putative pyl gene cluster obtained from single-cell genomes of the archaeal Mediterranean Sea Brine Lakes group 1 (MSBL1) from the Red Sea. Functional annotation of the MSBL1 single cell amplified genomes (SAGs) also revealed a complete corrinoid-dependent methyl-transfer pathway suggesting that members of MSBL1 may possibly be capable of synthesizing Pyl and metabolizing methylated amines. This article is protected by copyright. All rights reserved.

  15. Clock controls timing of mouse pancreatic differentiation through regulation of Wnt- and Notch-based and cell division components.

    Science.gov (United States)

    Li, Zhixing; Ruan, Lingjuan; Lin, Shuibin; Gittes, George K

    2007-08-03

    The oscillations of circadian genes control the daily circadian clock, regulating a diverse array of physiologies with the 24-hour light/dark cue across a wide variety of organisms. Here we first show that before embryonic circadian rhythms occur, the oscillation (nucleocytoplasmic shuttling) of core circadian gene Clock is tissue-specific and correlated with the state of differentiation during both early development and later pancreas organogenesis. Disruption of Clock as well as Timeless in the embryonic pancreas does not block pancreatic differentiation but alters the balance and maturity of endocrine and exocrine cells. Molecular analysis indicates that inhibition of Clock or Timeless expression disturbs not only cell cycle regulators, but also Wnt- and Notch-signaling components, whose oscillations establish the timing mechanism in somitogenesis. Thus, our results provide new insights about circadian genes' function in control of the timing of differentiation during embryonic development.

  16. Rapid Electrokinetic Isolation of Cancer-Related Circulating Cell-Free DNA Directly from Blood

    Science.gov (United States)

    Sonnenberg, Avery; Marciniak, Jennifer Y.; Rassenti, Laura; Ghia, Emanuela M.; Skowronski, Elaine A.; Manouchehri, Sareh; McCanna, James; Widhopf, George F.; Kipps, Thomas J.; Heller, Michael J.

    2014-01-01

    BACKGROUND Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a “liquid biopsy” may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. METHODS We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification,PCR,and DNA sequencing. The complete process, blood to PCR, required <10 min. ccf-DNA was amplified by PCR with immunoglobulin heavy chain variable region (IGHV)-specific primers to identify the unique IGHV gene expressed by the leukemic B-cell clone, and then sequenced. RESULTS PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15–20 mL blood. CONCLUSIONS Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring. PMID:24270796

  17. Rapid electrokinetic isolation of cancer-related circulating cell-free DNA directly from blood.

    Science.gov (United States)

    Sonnenberg, Avery; Marciniak, Jennifer Y; Rassenti, Laura; Ghia, Emanuela M; Skowronski, Elaine A; Manouchehri, Sareh; McCanna, James; Widhopf, George F; Kipps, Thomas J; Heller, Michael J

    2014-03-01

    Circulating cell-free DNA (ccf-DNA) is becoming an important biomarker for cancer diagnostics and therapy monitoring. The isolation of ccf-DNA from plasma as a "liquid biopsy" may begin to replace more invasive tissue biopsies for the detection and analysis of cancer-related mutations. Conventional methods for the isolation of ccf-DNA from plasma are costly, time-consuming, and complex, preventing the use of ccf-DNA biomarkers for point-of-care diagnostics and limiting other biomedical research applications. We used an AC electrokinetic device to rapidly isolate ccf-DNA from 25 μL unprocessed blood. ccf-DNA from 15 chronic lymphocytic leukemia (CLL) patients and 3 healthy individuals was separated into dielectrophoretic (DEP) high-field regions, after which other blood components were removed by a fluidic wash. Concentrated ccf-DNA was detected by fluorescence and eluted for quantification, PCR, and DNA sequencing. The complete process, blood to PCR, required B-cell clone, and then sequenced. PCR and DNA sequencing results obtained by DEP from 25 μL CLL blood matched results obtained by use of conventional methods for ccf-DNA isolation from 1 mL plasma and for genomic DNA isolation from CLL patient leukemic B cells isolated from 15-20 mL blood. Rapid isolation of ccf-DNA directly from a drop of blood will advance disease-related biomarker research, accelerate the transition from tissue to liquid biopsies, and enable point-of-care diagnostic systems for patient monitoring.

  18. A mechanism for ParB-dependent waves of ParA, a protein related to DNA segregation during cell division in prokaryotes.

    Science.gov (United States)

    Hunding, Axel; Ebersbach, Gitte; Gerdes, Kenn

    2003-05-23

    Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about 20 minutes. A model is discussed which is based on cooperative non-specific binding of ParA to the nucleoid, and local ParB initiated generation of ParA oligomer degradation products, which act autocatalytically on the degradation reaction. The model yields self-initiated spontaneous pattern formation, based on Turing's mechanism, and these patterns are destroyed by the degradation products, only to initiate a new pattern at the opposite nucleoid region. A recurrent wave thus emerges. This may be a particular example of a more general class of pattern forming mechanisms, based on protein oligomerization upon a template (membranes, DNA a.o.) with resulting enhanced NTPase function in the oligomer state, which may bring the oligomer into an unstable internal state. An effector initializes destabilization of the oligomer to yield degradation products, which act as seeds for further degradation in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes.

  19. Evolution and tinkering: what do a protein kinase, a transcriptional regulator and chromosome segregation/cell division proteins have in common?

    Science.gov (United States)

    Derouiche, Abderahmane; Shi, Lei; Kalantari, Aida; Mijakovic, Ivan

    2016-02-01

    In this study, we focus on functional interactions among multi-domain proteins which share a common evolutionary origin. The examples we develop are four Bacillus subtilis proteins, which all possess an ATP-binding Walker motif: the bacterial tyrosine kinase (BY-kinase) PtkA, the chromosome segregation protein Soj (ParA), the cell division protein MinD and a transcription regulator SalA. These proteins have arisen via duplication of the ancestral ATP-binding domain, which has undergone fusions with other functional domains in the process of divergent evolution. We point out that these four proteins, despite having very different physiological roles, engage in an unusually high number of binary functional interactions. Namely, MinD attracts Soj and PtkA to the cell pole, and in addition, activates the kinase function of PtkA. SalA also activates the kinase function of PtkA, and it gets phosphorylated by PtkA as well. The consequence of this phosphorylation is the activation of SalA as a transcriptional repressor. We hypothesize that these functional interactions remain preserved during divergent evolution and represent a constraint on the process of evolutionary "tinkering", brought about by fusions of different functional domains.

  20. Vibrational spectroscopy--a powerful tool for the rapid identification of microbial cells at the single-cell level.

    Science.gov (United States)

    Harz, M; Rösch, P; Popp, J

    2009-02-01

    Rapid microbial detection and identification with a high grade of sensitivity and selectivity is a great and challenging issue in many fields, primarily in clinical diagnosis, pharmaceutical, or food processing technology. The tedious and time-consuming processes of current microbiological approaches call for faster ideally on-line identification techniques. The vibrational spectroscopic techniques IR absorption and Raman spectroscopy are noninvasive methods yielding molecular fingerprint information; thus, allowing for a fast and reliable analysis of complex biological systems such as bacterial or yeast cells. In this short review, we discuss recent vibrational spectroscopic advances in microbial identification of yeast and bacterial cells for bulk environment and single-cell analysis. IR absorption spectroscopy enables a bulk analysis whereas micro-Raman-spectroscopy with excitation in the near infrared or visible range has the potential for the analysis of single bacterial and yeast cells. The inherently weak Raman signal can be increased up to several orders of magnitude by applying Raman signal enhancement methods such as UV-resonance Raman spectroscopy with excitation in the deep UV region, surface enhanced Raman scattering, or tip-enhanced Raman scattering. Copyright 2008 International Society for Advancement of Cytometry

  1. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Makarova, Kira S; Koonin, Eugene V; Aravind, L

    2004-01-01

    Recently, it has been shown that a predicted P-loop ATPase (the HerA or MlaA protein), which is highly conserved in archaea and also present in many bacteria but absent in eukaryotes, has a bidirectional helicase activity and forms hexameric rings similar to those described for the TrwB ATPase. In this study, the FtsK-HerA superfamily of P-loop ATPases, in which the HerA clade comprises one of the major branches, is analyzed in detail. We show that, in addition to the FtsK and HerA clades, this superfamily includes several families of characterized or predicted ATPases which are predominantly involved in extrusion of DNA and peptides through membrane pores. The DNA-packaging ATPases of various bacteriophages and eukaryotic double-stranded DNA viruses also belong to the FtsK-HerA superfamily. The FtsK protein is the essential bacterial ATPase that is responsible for the correct segregation of daughter chromosomes during cell division. The structural and evolutionary relationship between HerA and FtsK and the nearly perfect complementarity of their phyletic distributions suggest that HerA similarly mediates DNA pumping into the progeny cells during archaeal cell division. It appears likely that the HerA and FtsK families diverged concomitantly with the archaeal-bacterial division and that the last universal common ancestor of modern life forms had an ancestral DNA-pumping ATPase that gave rise to these families. Furthermore, the relationship of these cellular proteins with the packaging ATPases of diverse DNA viruses suggests that a common DNA pumping mechanism might be operational in both cellular and viral genome segregation. The herA gene forms a highly conserved operon with the gene for the NurA nuclease and, in many archaea, also with the orthologs of eukaryotic double-strand break repair proteins MRE11 and Rad50. HerA is predicted to function in a complex with these proteins in DNA pumping and repair of double-stranded breaks introduced during this process and

  2. PBP1a-deficiency causes major defects in cell division, growth and biofilm formation by Streptococcus mutans.

    Directory of Open Access Journals (Sweden)

    Zezhang T Wen

    Full Text Available Streptococcus mutans, a key etiological agent of human dental caries, lives almost exclusively on the tooth surface in plaque biofilms and is known for its ability to survive and respond to various environmental insults, including low pH, and antimicrobial agents from other microbes and oral care products. In this study, a penicillin-binding protein (PBP1a-deficient mutant, strain JB467, was generated by allelic replacement mutagenesis and analyzed for the effects of such a deficiency on S. mutans' stress tolerance response and biofilm formation. Our results so far have shown that PBP1a-deficiency in S. mutans affects growth of the deficient mutant, especially at acidic and alkaline pHs. As compared to the wild-type, UA159, the PBP1a-deficient mutant, JB467, had a reduced growth rate at pH 6.2 and did not grow at all at pH 8.2. Unlike the wild-type, the inclusion of paraquat in growth medium, especially at 2 mM or above, significantly reduced the growth rate of the mutant. Acid killing assays showed that the mutant was 15-fold more sensitive to pH 2.8 than the wild-type after 30 minutes. In a hydrogen peroxide killing assay, the mutant was 16-fold more susceptible to hydrogen peroxide (0.2%, w/v after 90 minutes than the wild-type. Relative to the wild-type, the mutant also had an aberrant autolysis rate, indicative of compromises in cell envelope integrity. As analyzed using on 96-well plate model and spectrophotometry, biofilm formation by the mutant was decreased significantly, as compared to the wild-type. Consistently, Field Emission-SEM analysis also showed that the PBP1a-deficient mutant had limited capacity to form biofilms. TEM analysis showed that PBP1a mutant existed primarily in long rod-like cells and cells with multiple septa, as compared to the coccal wild-type. The results presented here highlight the importance of pbp1a in cell morphology, stress tolerance, and biofilm formation in S. mutans.

  3. Rapid Treatment of Leukostasis in Leukemic Mantle Cell Lymphoma Using Therapeutic Leukapheresis: A Case Report

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available We describe a case of severe leukocytosis caused by leukemic mantle cell lymphoma (MCL, complicated by leukostasis with myocardial infarction in which leukapheresis was used in the initial management. A 73-year-old male presented to the emergency department because of fatigue and thoracic pain. Blood count revealed 630 × 109/L WBC (white blood cells. The electrocardiogram showed ST-elevation with an increase of troponin and creatinine kinase. The diagnosis was ST-elevation myocardial infarction (STEMI induced and complicated by leukostasis. Immunophenotyping, morphology, cytogenetic and fluorescence-in-situ-hybridization analysis revealed the diagnosis of a blastoid variant of MCL. To remove leukocytes rapidly, leukapheresis was performed in the intensive care unit. Based on the differential blood count with 95% blasts, which were assigned to the lymphocyte population by the automatic hematology analyzer, leukapheresis procedures were then performed with the mononuclear cell standard program on the Spectra cell separator. The patient was treated with daily leukapheresis for 3 days. The WBC count decreased to 174 × 109/L after the third leukapheresis, with a 72% reduction. After the second apheresis, treatment with vincristine, cyclophosphamide, and prednisolone was started. The patient fully recovered in the further course of the treatment. To the best of our knowledge, this is the first report on blastoid MCL with leukostasis associated with a STEMI that was successfully treated by leukapheresis. Effective harvest of circulating lymphoma cells by leukapheresis requires adaptation of instrument settings based on the results of the differential blood count prior to apheresis.

  4. Semi-automated, occupationally safe immunofluorescence microtip sensor for rapid detection of Mycobacterium cells in sputum.

    Directory of Open Access Journals (Sweden)

    Shinnosuke Inoue

    Full Text Available An occupationally safe (biosafe sputum liquefaction protocol was developed for use with a semi-automated antibody-based microtip immunofluorescence sensor. The protocol effectively liquefied sputum and inactivated microorganisms including Mycobacterium tuberculosis, while preserving the antibody-binding activity of Mycobacterium cell surface antigens. Sputum was treated with a synergistic chemical-thermal protocol that included moderate concentrations of NaOH and detergent at 60°C for 5 to 10 min. Samples spiked with M. tuberculosis complex cells showed approximately 10(6-fold inactivation of the pathogen after treatment. Antibody binding was retained post-treatment, as determined by analysis with a microtip immunosensor. The sensor correctly distinguished between Mycobacterium species and other cell types naturally present in biosafe-treated sputum, with a detection limit of 100 CFU/mL for M. tuberculosis, in a 30-minute sample-to-result process. The microtip device was also semi-automated and shown to be compatible with low-cost, LED-powered fluorescence microscopy. The device and biosafe sputum liquefaction method opens the door to rapid detection of tuberculosis in settings with limited laboratory infrastructure.

  5. Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells.

    Directory of Open Access Journals (Sweden)

    Heather C Jensen-Smith

    Full Text Available Aminoglycosides (AG, including gentamicin (GM, are the most frequently used antibiotics in the world and are proposed to cause irreversible cochlear damage and hearing loss (HL in 1/4 of the patients receiving these life-saving drugs. Akin to the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs preferentially succumb to multiple HL pathologies while inner hair cells (IHCs are much more resilient. To determine if endogenous differences in IHC and OHC mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH fluorescence during acute (1 h GM treatment were compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate differences in HC fate during multiple HL pathologies.

  6. Quality controls in cellular immunotherapies: rapid assessment of clinical grade dendritic cells by gene expression profiling.

    Science.gov (United States)

    Castiello, Luciano; Sabatino, Marianna; Zhao, Yingdong; Tumaini, Barbara; Ren, Jiaqiang; Ping, Jin; Wang, Ena; Wood, Lauren V; Marincola, Francesco M; Puri, Raj K; Stroncek, David F

    2013-02-01

    Cell-based immunotherapies are among the most promising approaches for developing effective and targeted immune response. However, their clinical usefulness and the evaluation of their efficacy rely heavily on complex quality control assessment. Therefore, rapid systematic methods are urgently needed for the in-depth characterization of relevant factors affecting newly developed cell product consistency and the identification of reliable markers for quality control. Using dendritic cells (DCs) as a model, we present a strategy to comprehensively characterize manufactured cellular products in order to define factors affecting their variability, quality and function. After generating clinical grade human monocyte-derived mature DCs (mDCs), we tested by gene expression profiling the degrees of product consistency related to the manufacturing process and variability due to intra- and interdonor factors, and how each factor affects single gene variation. Then, by calculating for each gene an index of variation we selected candidate markers for identity testing, and defined a set of genes that may be useful comparability and potency markers. Subsequently, we confirmed the observed gene index of variation in a larger clinical data set. In conclusion, using high-throughput technology we developed a method for the characterization of cellular therapies and the discovery of novel candidate quality assurance markers.

  7. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Nitzan Krinsky

    Full Text Available Cell-free protein synthesis (CFPS systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3 and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa. This system was able to produce 40-150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins.

  8. Division: The Sleeping Dragon

    Science.gov (United States)

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  9. An automated robotic platform for rapid profiling oligosaccharide analysis of monoclonal antibodies directly from cell culture.

    Science.gov (United States)

    Doherty, Margaret; Bones, Jonathan; McLoughlin, Niaobh; Telford, Jayne E; Harmon, Bryan; DeFelippis, Michael R; Rudd, Pauline M

    2013-11-01

    Oligosaccharides attached to Asn297 in each of the CH2 domains of monoclonal antibodies play an important role in antibody effector functions by modulating the affinity of interaction with Fc receptors displayed on cells of the innate immune system. Rapid, detailed, and quantitative N-glycan analysis is required at all stages of bioprocess development to ensure the safety and efficacy of the therapeutic. The high sample numbers generated during quality by design (QbD) and process analytical technology (PAT) create a demand for high-performance, high-throughput analytical technologies for comprehensive oligosaccharide analysis. We have developed an automated 96-well plate-based sample preparation platform for high-throughput N-glycan analysis using a liquid handling robotic system. Complete process automation includes monoclonal antibody (mAb) purification directly from bioreactor media, glycan release, fluorescent labeling, purification, and subsequent ultra-performance liquid chromatography (UPLC) analysis. The entire sample preparation and commencement of analysis is achieved within a 5-h timeframe. The automated sample preparation platform can easily be interfaced with other downstream analytical technologies, including mass spectrometry (MS) and capillary electrophoresis (CE), for rapid characterization of oligosaccharides present on therapeutic antibodies. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Miniaturized Antimicrobial Susceptibility Test by Combining Concentration Gradient Generation and Rapid Cell Culturing

    Directory of Open Access Journals (Sweden)

    Samuel C. Kim

    2015-10-01

    Full Text Available Effective treatment of bacterial infection relies on timely diagnosis and proper prescription of antibiotic drugs. The antimicrobial susceptibility test (AST is one of the most crucial experimental procedures, providing the baseline information for choosing effective antibiotic agents and their dosages. Conventional methods, however, require long incubation times or significant instrumentation costs to obtain test results. We propose a lab-on-a-chip approach to perform AST in a simple, economic, and rapid manner. Our assay platform miniaturizes the standard broth microdilution method on a microfluidic device (20 × 20 mm that generates an antibiotic concentration gradient and delivers antibiotic-containing culture media to eight 30-nL chambers for cell culture. When tested with 20 μL samples of a model bacterial strain (E. coli ATCC 25922 treated with ampicillin or streptomycin, our method allows for the determination of minimum inhibitory concentrations consistent with the microdilution test in three hours, which is almost a factor of ten more rapid than the standard method.

  11. Glyphosate resistance in Ambrosia trifida: Part 1. Novel rapid cell death response to glyphosate.

    Science.gov (United States)

    Van Horn, Christopher R; Moretti, Marcelo L; Robertson, Renae R; Segobye, Kabelo; Weller, Stephen C; Young, Bryan G; Johnson, William G; Schulz, Burkhard; Green, Amanda C; Jeffery, Taylor; Lespérance, Mackenzie A; Tardif, François J; Sikkema, Peter H; Hall, J Christopher; McLean, Michael D; Lawton, Mark B; Sammons, R Douglas; Wang, Dafu; Westra, Philip; Gaines, Todd A

    2017-03-07

    Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis.

    Science.gov (United States)

    Mucci, Maíra; Noyma, Natalia Pessoa; de Magalhães, Leonardo; Miranda, Marcela; van Oosterhout, Frank; Guedes, Iamê Alves; Huszar, Vera L M; Marinho, Marcelo Manzi; Lürling, Miquel

    2017-07-01

    Combining coagulant and ballast to remove cyanobacteria from the water column is a promising restoration technique to mitigate cyanobacterial nuisance in surface waters. The organic, biodegradable polymer chitosan has been promoted as a coagulant and is viewed as non-toxic. In this study, we show that chitosan may rapidly compromise membrane integrity and kill certain cyanobacteria leading to release of cell contents in the water. A strain of Cylindrospermopsis raciborskii and one strain of Planktothrix agardhii were most sensitive. A 1.3 h exposure to a low dose of 0.5 mg l-1 chitosan already almost completely killed these cultures resulting in release of cell contents. After 24 h, reductions in PSII efficiencies of all cyanobacteria tested were observed. EC50 values varied from around 0.5 mg l-1 chitosan for the two sensitive strains, via about 5 mg l-1 chitosan for an Aphanizomenon flos-aquae strain, a toxic P. agardhii strain and two Anabaena cylindrica cultures, to more than 8 mg l-1 chitosan for a Microcystis aeruginosa strain and another A. flos-aquae strain. Differences in sensitivity to chitosan might be related to polymeric substances that surround cyanobacteria. Rapid lysis of toxic strains is likely and when chitosan flocking and sinking of cyanobacteria is considered in lake restoration, flocculation efficacy studies should be complemented with investigation on the effects of chitosan on the cyanobacteria assemblage being targeted. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis

    Science.gov (United States)

    Lu, Yuqing; Li, Cong; Wang, Hai; Chen, Hao; Berg, Howard; Xia, Yiji

    2011-01-01

    SUMMARY Pentatricopeptide repeat (PPR) proteins are mainly involved in regulating post-transcriptional processes in mitochondria and plastids, including chloroplasts. Mutations in the Arabidopsis PPR2 gene have previously been found to cause defects in seed development and reduced transmission through male and female gametophytes. However, the exact function of AtPPR2 has not been defined. We found that a loss-of-function mutation of AtPPR2 leads to arrest of the first mitotic division during both male and female gametogenesis. In addition, the Atppr2 mutation causes delayed embryogenesis, leading to embryonic lethality. Mutation in emb2750, which appears to be a weak mutant allele of the AtPPR2 locus, also results in defective seeds. However, a majority of emb2750 seeds were able to germinate, but their cotyledons were albino and often deformed, and growth of the emb2750 seedlings were arrested after germination. AtPPR2 is mainly expressed in plant parts that undergo cell division, and AtPPR2 protein was localized to chloroplasts. RNA immunoprecipitation and protein gel mobility shift assays showed that AtPPR2 binds to plastid 23S rRNA. Our study adds to a growing body of evidence that plastids and/or chloroplasts play a key role in cell division. AtPPR2 may modulate the translational process to fine-tune plastid function, thereby regulating cell division. PMID:21435048

  14. The cell division control protein 42-Src family kinase-neural Wiskott-Aldrich syndrome protein pathway regulates human proplatelet formation.

    Science.gov (United States)

    Palazzo, A; Bluteau, O; Messaoudi, K; Marangoni, F; Chang, Y; Souquere, S; Pierron, G; Lapierre, V; Zheng, Y; Vainchenker, W; Raslova, H; Debili, N

    2016-12-01

    Essentials The role of the cytoskeleton during megakaryocyte differentiation was examined. Human megakaryocytes are derived from in vitro cultured CD34(+) cells. Cell division control protein 42 (CDC42) positively regulates proplatelet formation (PPF). Neural Wiskott-Aldrich syndrome protein, the main effector of CDC42 with Src positively regulates PPF. Background Cytoskeletal rearrangements are essential for platelet release. The RHO small GTPase family, as regulators of the actin cytoskeleton, play an important role in proplatelet formation (PPF). In the neuronal system, CDC42 is involved in axon formation, a process that combines elongation and branching as for PPF. Objective To analyze the role of CDC42 and its effectors of the Wiskott-Aldrich syndrome protein (WASP) family in PPF. Methods Human megakaryocytes (MKs) were obtained from CD34(+) cells. Inhibition of CDC42 in MKs was performed with the chemical inhibitor CASIN or with an active or a dominant-negative form of CDC42. The knock-down of N-WASP was obtained with a small hairpin RNA strategy Results Herein, we show that CDC42 activity increased during MK differentiation. The use of the chemical inhibitor CASIN or of an active or a dominant-negative form of CDC42 demonstrated that CDC42 positively regulated PPF in vitro. We determined that N-WASP, but not WASP, regulated PPF. We found that N-WASP knockdown led to a marked decrease in PPF, owing to a defect in the demarcation membrane system (DMS). This was associated with RHOA activation, and a concomitant augmentation in the phosphorylation of mysosin light chain 2. Phosphorylation of N-WASP, creating a primed form of N-WASP, increased during MK differentiation. Phosphorylation inhibition by two Src family kinase inhibitors decreased PPF. Conclusions We conclude that N-WASP positively regulates DMS development and PPF, and that the Src family kinases in association with CDC42 regulate PPF through N-WASP. © 2016 International Society on Thrombosis and

  15. Rapid activation of Rac GTPase in living cells by force is independent of Src.

    Directory of Open Access Journals (Sweden)

    Yeh-Chuin Poh

    2009-11-01

    Full Text Available It is well known that mechanical forces are crucial in regulating functions of every tissue and organ in a human body. However, it remains unclear how mechanical forces are transduced into biochemical activities and biological responses at the cellular and molecular level. Using the magnetic twisting cytometry technique, we applied local mechanical stresses to living human airway smooth muscle cells with a magnetic bead bound to the cell surface via transmembrane adhesion molecule integrins. The temporal and spatial activation of Rac, a small guanosine triphosphatase, was quantified using a fluorescent resonance energy transfer (FRET method that measures changes in Rac activity in response to mechanical stresses by quantifying intensity ratios of ECFP (enhanced cyan fluorescent protein as a donor and YPet (a variant yellow fluorescent protein as an acceptor of the Rac biosensor. The applied stress induced rapid activation (less than 300 ms of Rac at the cell periphery. In contrast, platelet derived growth factor (PDGF induced Rac activation at a much later time (>30 sec. There was no stress-induced Rac activation when a mutant form of the Rac biosensor (RacN17 was transfected or when the magnetic bead was coated with transferrin or with poly-L-lysine. It is known that PDGF-induced Rac activation depends on Src activity. Surprisingly, pre-treatment of the cells with specific Src inhibitor PP1 or knocking-out Src gene had no effects on stress-induced Rac activation. In addition, eliminating lipid rafts through extraction of cholesterol from the plasma membrane did not prevent stress-induced Rac activation, suggesting a raft-independent mechanism in governing the Rac activation upon mechanical stimulation. Further evidence indicates that Rac activation by stress depends on the magnitudes of the applied stress and cytoskeletal integrity. Our results suggest that Rac activation by mechanical forces is rapid, direct and does not depend on Src

  16. Rapid labeling of intracellular His-tagged proteins in living cells

    Science.gov (United States)

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A.; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-01-01

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni2+-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni2+-NTA–based probes. Unfortunately, previous Ni-NTA–based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni2+ ions. The probe, driven by Ni2+-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells. PMID:25713372

  17. Effect of estrone on somatic and female gametophyte cell division and differentiation in Arabidospis thaliana cultured in vitro

    Directory of Open Access Journals (Sweden)

    Piotr Żabicki

    2014-04-01

    Full Text Available The aim of the study was to determine the effect of the mammalian female sex hormone estrone on differentiation of somatic tissues and on induction of autonomous endosperm in culture of female gametophyte cells of Arabidopsis thaliana ecotype Columbia (Col-0. In culture, estrone-stimulated development of autonomous endosperm (AE occurred in 14.7% of unpollinated pistils. The AE represented development stages similar to those of young endosperm after fertilization and AE of fis mutants in vivo. In the majority of ovules the AE was in a few-nucleate young stage. Some ovules showed more advanced stages of AE development, with nuclei and cytoplasm forming characteristic nuclear cytoplasmic domains (NCDs. Sporadically, AE was divided into regions characteristic for Arabidopsis endosperm formed after fertilization. Direct organogenesis (caulogenesis, rhizogenesis, callus proliferation and formation of trichome-like structures were observed during in vitro culture of hypocotyls and cotyledons of 3-day-old seedlings cultured on medium supplemented with estrone for 28 days. Histological analysis showed adventitious root formation and changes in explant anatomy caused by estrone.

  18. Rapid adhesion of nerve cells to muscle fibers from adult rats is mediated by a sialic acid-binding receptor

    OpenAIRE

    1986-01-01

    Single viable muscle fibers isolated from adult rats by collagenase digestion rapidly bind dissociated spinal neurons or PC-12 cells but not a variety of other cells tested. The adhesion process is calcium- independent, temperature-sensitive, and is not blocked by pretreating cells with inhibitors of energy metabolism or actin polymerization. Adhesion is mediated by a carbohydrate-binding protein and can be inhibited by N-acetylneuraminic acid or mucin, a glycoprotein with high sialic acids c...

  19. Decreased levels of cell-division cycle 42 (Cdc42) protein in peripheral lymphocytes from ischaemic stroke patients are associated with Golgi apparatus function.

    Science.gov (United States)

    Mo, Xiao-Ye; Li, Ting; Hu, Zhi-Ping

    2013-06-01

    To investigate levels of cell-division cycle 42 (Cdc42) protein, and their relationship with Golgi apparatus function in peripheral lymphocytes, in patients following ischaemic stroke. Patients with acute cerebral ischaemic stroke (within 24-72 h of the onset of focal neurological symptoms) and healthy control subjects were enrolled in this prospective case-control study. The cellular location of Cdc42 in peripheral lymphocytes was demonstrated using immunofluorescence. Protein levels of Cdc42 and trans-golgi network protein 2 (TGN46) in peripheral lymphocytes were determined by immunocytochemical staining and Western blotting. A total of 38 patients with stroke and 38 control subjects were studied. The mean ± SD percentage of Cdc42-positive lymphocytes from patients with stroke was significantly lower than that in control subjects (39.53 ± 13.55% versus 66.61 ± 23.30%, respectively). Similar findings were demonstrated for TGN46. Cdc42 levels were positively correlated with TGN46 levels (r = 0.92). Acute ischaemic stroke was associated with reduced levels of Cdc42 protein. These findings might lead to the development of drugs that could have therapeutic benefits in patients with acute ischaemic stroke.

  20. A rapid selection strategy for an anodophilic consortium for microbial fuel cells

    KAUST Repository

    Wang, Aijie

    2010-07-01

    A rapid selection method was developed to enrich for a stable and efficient anodophilic consortium (AC) for microbial fuel cells (MFCs). A biofilm sample from a microbial electrolysis cell was serially diluted up to 10-9 in anaerobic phosphate buffer solution and incubated in an Fe(III)-acetate medium, and an Fe(III)-reducing AC was obtained for dilutions up to 10-6. The activity of MFC inoculated with the enrichment AC was compared with those inoculated with original biofilm or activated sludge. The power densities and Coulombic efficiencies of the AC (226 mW/m2, 34%) were higher than those of the original biofilm (209 mW/m2, 23%) and activated sludge (192 mW/m2, 19%). The start-up period of the AC (60 h) was also shorter than those obtained with the other inocula (biofilm, 95 h; activated sludge, 300 h). This indicated that such a strategy is highly efficient for obtaining an anodophilic consortium for improving the performance of an MFC. © 2010 Elsevier Ltd.

  1. Cell-free expression of protein kinase a for rapid activity assays.

    Science.gov (United States)

    Leippe, Donna M; Zhao, Kate Qin; Hsiao, Kevin; Slater, Michael R

    2010-05-19

    Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag((R)) fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  2. Cell-Free Expression of Protein Kinase a for Rapid Activity Assays

    Directory of Open Access Journals (Sweden)

    Donna M. Leippe

    2010-01-01

    Full Text Available Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag ® fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  3. Cell-Free Expression of Protein Kinase A for Rapid Activity Assays

    Directory of Open Access Journals (Sweden)

    Donna M. Leippe

    2010-05-01

    Full Text Available Functional protein analysis often calls for lengthy, laborious in vivo protein expression and purification, and can be complicated by the lack of stability of the purified protein. In this study, we demonstrate the feasibility of a simplified procedure for functional protein analysis on magnetic particles using cell-free protein synthesis of the catalytic subunit of human cAMP-dependent protein kinase as a HaloTag® fusion protein. The cell-free protein synthesis systems provide quick access to the protein of interest, while the HaloTag technology provides efficient, covalent protein immobilization of the fusion protein, eliminating the need for further protein purification and minimizing storage-related stability issues. The immobilized cPKA fusion protein is assayed directly on magnetic beads and can be used in inhibitor analyses. The combination of rapid protein synthesis and capture technologies can greatly facilitate the process of protein expression and activity screening, and therefore, can become a valuable tool for functional proteomics studies.

  4. Control of nuclear division by the Chromosomal Passenger Complex

    NARCIS (Netherlands)

    van der Waal, M.S.

    2012-01-01

    Most cells within an organism function while they are in a non-dividing state. Cells enter the division cycle to initiate tissue growth or to repair damaged tissue. In the last phase of this cycle, M-phase, cytoplasmic division (cytokinesis) is accomplished after, in case of dividing human cells, 23

  5. Rapid fabricating technique for multi-layered human hepatic cell sheets by forceful contraction of the fibroblast monolayer.

    Directory of Open Access Journals (Sweden)

    Yusuke Sakai

    Full Text Available Cell sheet engineering is attracting attention from investigators in various fields, from basic research scientists to clinicians focused on regenerative medicine. However, hepatocytes have a limited proliferation potential in vitro, and it generally takes a several days to form a sheet morphology and multi-layered sheets. We herein report our rapid and efficient technique for generating multi-layered human hepatic cell (HepaRG® cell sheets using pre-cultured fibroblast monolayers derived from human skin (TIG-118 cells as a feeder layer on a temperature-responsive culture dish. Multi-layered TIG-118/HepaRG cell sheets with a thick morphology were harvested on day 4 of culturing HepaRG cells by forceful contraction of the TIG-118 cells, and the resulting sheet could be easily handled. In addition, the human albumin and alpha 1-antitrypsin synthesis activities of TIG-118/HepaRG cells were approximately 1.2 and 1.3 times higher than those of HepaRG cells, respectively. Therefore, this technique is considered to be a promising modality for rapidly fabricating multi-layered h